THE RATIONAL COHOMOLOGY OF A p-LOCAL COMPACT
GROUP

C. BROTO, R. LEVI, AND B. OLIVER

Let p be a prime number. In [BLO3|, we developed the theory of p-local compact
groups. The theory is modelled on the p-local homotopy theory of classifying spaces
of compact Lie groups and p-compact groups, and generalises the earlier concept of
p-local finite groups [BLO2|. It provides a coherent context in which classifying spaces
of compact Lie groups and p-compact groups [DW] can be studied, and also gives rise
to many exotic examples. In this paper, we study the rational p-adic cohomology

Hy (-) € H'(-,Z,) ®Q,

of a p-local compact group. Our main result here is that, as one would expect, the
p-adic rational cohomology of p-local compact groups behaves the same way as that of
a compact Lie group.

Theorem A. Let G = (S, F, L) be a p-local compact group. Let Sy < S be its mazximal

torus, and let W(G) def Autz(Sy) be its Weyl group. Then

Hp, (BG) = Hg, (BS,)" 9.

Of course, the Weyl group of a p-local compact group need not be a pseudo-reflection
group, and hence the rational cohomology of the classifying space is not in general a
polynomial algebra.

Like compact Lie groups and p-compact groups, p-local compact groups admit un-
stable Adams operations, which are defined in [JLL|, using the internal structure of
the p-local group in question, rather than its rational cohomology. One application of
Theorem A is Proposition 3.2, which states that under a mild condition, the obvious
cohomological definition of an unstable Adams operation characterises the same family
of maps as the one referred to in [JLL] as “geometric unstable Adams operations”.

Another easy application of Theorem A is the observation that if G is a p-local
compact group with maximal torus Sy, then the inclusion in G of the p-local subgroup
given by the normaliser Ng(Sp) induces a rational p-adic cohomology isomorphism.

In Section 1, we recall the basic concepts in the theory of p-local compact groups
which will be needed to prove Theorem A. Section 2 is dedicated to the proof of the
theorem. Finally in Section 3 we discuss the applications described above.
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1. SOME BASIC CONCEPTS

We recall the definition and some basic properties of p-local compact groups. The
reader is referred to [BLO3] for a comprehensive account of these objects.

We begin by defining discrete p-toral groups. By Z/p™ we mean the union of all
Z/p" with respect to the natural inclusions.

Definition 1.1. A discrete p-torus is a group isomorphic to (Z/p™)" for some positive
integer r. A discrete p-toral group s a group S which contains a normal discrete
p-torus Sy, with p-power index. The normal subgroup Sy will be referred to as the
maximal torus or the identity component of S, and the quotient group T' = S/Sy will
be called the group of components of S.

The identity component Sy of a discrete p-toral group S can be characterised as
the subset of all infinitely p-divisible elements in S, and also as the unique minimal
subgroup of finite index in .S. Thus, Sy is a characteristic subgroup. The rank of S is
the number r = rk(S) such that Sy = (Z/p™)".

Recall that for P,Q < S, the transporter set Ts(P, Q) is the set of all elements
g € S such that gPg~! < Q. We denote by Homg(P, Q) the set of all homomorphisms
¢yt P — (@), which are restrictions of an inner automorphism of S, and by Inj(P, Q)
denote the set of all the injective homomorphisms P — (). We are now ready to recall
the definition of fusion systems over discrete p-toral groups.

Definition 1.2. A fusion system JF over a discrete p-toral group S is a category whose
objects are the subgroups of S, and whose morphism sets Homz(P, Q) satisfy the fol-
lowing conditions:

(a) Homg(P, Q) C Homz(P, Q) C Inj(P,Q) for all P,Q < S.
(b) Ewvery morphism in F factors as an isomorphism in F followed by an inclusion.

Two subgroups P, P’ < S are called F-conjugate if P and P’ are isomorphic as
objects in F. A subgroup P < S is said to be F-centric if for every subgroup P’ < S
which is F-conjugate to P, Cs(P’) = Z(P").

All fusion systems considered in this paper are required to be saturated [BLO3, Def-
inition 2.2]. Although the results we present here are based on properties of saturated
fusion systems proved in [BLO3|, we do not explicitly use the saturation axioms, and
thus we will not repeat them here.

Next, we briefly recall what are centric linking systems and p-local compact groups.
The full definition can be found in [BLO3, Definitions 4.1, 4.2]

Definition 1.3. Let F be a fusion system over a discrete p-toral group S. A centric
linking system associated to F is a category L whose objects are the F-centric subgroups
of S, together with a functor

w: L — F°,
and “distinguished” monomorphisms P e, Autz(P) for each F-centric subgroup P <
S, which satisfy the following conditions.

(A) 7 is the identity on objects and surjective on morphisms. More precisely, for each
pair of objects P,Q € L, the centre Z(P) acts freely on Morz(P, Q) by composition
(upon identifying Z(P) with 0p(Z(P)) < Autz(P)), and 7 induces a bijection

Mor (P, Q)/Z(P) ———— Homz(P,Q).
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(B) For each F-centric subgroup P < S and each g € P, 7 sends 0p(g) € Autz(P) to
¢y € Autz(P).

(C) For each f € Morz(P,Q) and each g € P, the following square commutes in L:

p—1 .0
ap<g>l lcs@(w(fxm)
P—71 .0

A p-local compact group is a triple G = (S, F, L), where S is a discrete p-toral group,
F is a saturated fusion system over S, and L is a centric linking system associated to
F. The classifying space of G is the p-completed nerve \£|]’3\, which we will generally
denote by BG.

In [BLO3], the authors show that compact Lie groups and p-compact groups give rise
to particular examples of p-local compact groups. Another large family of examples
arises from linear torsion groups. In each case, the respective classifying space coincides
up to homotopy (after p-completion in the case of genuine groups) with the classifying
space of the p-local compact group it gives rise to.

Definition 1.4. Let G = (S, F, L) be a p-local compact group. Then the Weyl group
W(G) of G is defined to be the automorphism group in F of the mazimal torus Sy < S.

Notice that Hg (X) e (X,Z,)®Q is not in general isomorphic to H*(X,Q,). For

instance if X = BZ/p>, then Hp, (X) is a polynomial ring over the p-adic rationals on
a generator in degree 2, while H*(X,Q,) is trivial. The use of Hg, as the appropriate
cohomology theory for our purpose goes back to Dwyer and Wilkerson [DW], in their
first paper on p-compact groups.

2. THE RATIONAL COHOMOLOGY

Two preparatory lemmas are needed before we prove our main claim.

Lemma 2.1. Let P be a discrete p-toral group with maximal torus Py < P. Then
Hy (BP) = Hg (BP,)"/™.

Proof. This is of course a particular case of a much more general statement. Up to
homotopy, BF, is a covering space of BP with group P/Fy, and so one has the usual
transfer map

Tr: H*(BP,, ZQ) —— H*(BP, ZQ),
where TroRes is multiplication by |P/P,|. Hence after tensoring with @ this composite
is an isomorphism. On the other hand, the composition the other way Reso Tr is norm
map for the action of P/Fy on Hg (BFp), and hence the image of restriction is the

subgroup of invariants Hg (BP)™/". O

To prove the theorem, we will use the subgroup decomposition for p-local compact
groups [BLO3, Proposition 4.6]. Hence the following lemma is an essential ingredient.
In order to state it, we need to recall some notation and terminology.

For a fusion system F over a discrete p-toral group S, we denote by O(F) the
orbit category associated to F, i.e., the category with the same objects and with
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morphisms Morpr) (P, Q) = Repz(P, Q) o Homz(P,Q)/Inn(Q). For P,Q € S, let
Ns(P, Q) denote the transporter set consisting of all elements of S which conjugate P
into Q. If ' is a full subcategory of F, we denote by O(F’) the full subcategory of
O(F) whose objects are those of F'. If I' is a finite group, we denote by O,(I") the
category whose objects are the p-subgroups of I and whose morphisms are Mor (P, Q) =

Cr(P)\Nr(P, Q)/Inn(Q).
Lemma 2.2. Let F be any saturated fusion system over a discrete p-toral group S.
Define

F*: O(F°)°® ——— Q-mod
on objects by setting F*(P) = Hg (BP). On morphisms, F* sends the class of
® GlHom}-(P, P’) to the homomorphism induced by Byp. Then F* is acyclic, namely

fm'(F*) =0 for alli > 0.
O(Fe)

Proof. Set Q = Cs(Sy) < 5, and I' = Outx(Q). Then @ is F-centric, and is weakly
closed in F since Sy is. Let F>¢g denote the full subcategory of F whose objects are
those P < S which contain @), and let

©: O(F>q) — O, (1)

be the functor which sends an object P to Outp(Q) < T, and a morphism ¢ €
Repr(P, P’) to the class of ¢|g € Nr(O(P),0(F’)) (see [BLO3, Lemma 5.7]). For
each p-subgroup Il < T, regarded as a group of automorphisms of Sy, define

O*(IT) = Hp, (BSo)"

This defines a graded functor ®*: O,(I"')® —— Q-mod. Furthermore, for each P < S
which contains (@),

F*(P) = Hg, (BQ)" = &(9(P)).
Thus ¢* - O = F*’O(}‘ZQ).

For each P < S, Outg(P) acts trivially on F*(P) since () centralises P, and F*(P)
is a subring of Hg (BF). So by [BLO3, Lemma 5.7],

L (F) & Lim’(2").
O(F°) Op(I')

The functor ®* is a Mackey functor on O,(I"), and hence is acyclic (see [JM, Proposition
5.14] or [JMO, Proposition 5.2]). O

We are now ready to prove our main theorem.
Theorem 2.3. Let G = (S, F, L) be a p-local compact group. Then
Hp, (BG) = Hg, (BS,)" .

Proof. Let m: £ — O(F*) be the projection, and let B: O(F¢) — Top denote the
left homotopy Kan extension of the constant functor on £ along 7. Then there is a
homotopy equivalence

hocolim B —— |£],
O(F°)

and for each object P € O(F¢), B(P) ~ BP [BLO3, Proposition 4.6]. Consider the
Bousfield-Kan spectral sequence [BK] for cohomology of the homotopy colimit, with
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coefficients in the p-adic integers Z,. Since Q is flat as a Z-module, one can tensor the
spectral sequence with Q to get a spectral sequence for p-adic rational cohomology

EpY = lm? HY (B(-)) = HE(|L)).
O(Fe¢)

By Lemma 2.2, the higher limits all vanish and we obtain the formula

1, (1£]) = tim Hy, (B(-)). (1)
O(Fe)

For each F-centric subgroup P < S, let tp: P — S denote the inclusion. The inverse
limit in (1) consists of all elements z € H¢ (BS) such that ¢* o u(x) = tp(x) for all
F-centric subgroups P,Q < S, and all morphisms ¢ € Homz(P, Q).

Let ¢: P — @ be any morphism in F, where P and () are F-centric. Then by
[BLO3, Lemma 2.4] the restriction ¢|p, coincides with the restriction to Py of some
automorphism o € W(G). Let z € H@p(BSO)W(g) < Hp, (BS) be any element. Then
vp(x) € Hy (BP) < Hy (P), and () € Hy (BQ) < Hg (BQo), and

" (1)) = 0" (1 (2)) = 1po™ (x) = Ep(a).
Hence
H, (BS)™9 < lim Hy (B(-)).
O(F¢)

Conversely, let y € Hg (BS) < Hg (BSo) be an element which is stable under
each morphism in F between centric subgroups, and let o € W(G). By Alperin’s
fusion theorem, o can be decomposed into a sequence 0 = 010 030 - - - 0,, where each
o; € W(G) can be extended to an automorphism of some F-centric subgroup P; < S.
But since y is stable under each of the o7, it is also stable under ¢*. This shows that

lim 1 (B(-) = Hy (BSy)"
O(Fe)

and thus completes the proof of our claim. 0

3. APPLICATIONS

For a compact Lie group G, one defines an unstable Adams operation of degree
¢ to be a selfmap of the classifying space inducing multiplication by ¢* on rational
cohomology in dimension 27, where ( is an integer. An analogous definition is made for
p-compact groups, except ( is required to be a p-adic unit, and rational cohomology
is replaced by p-adic rational cohomology. Unstable Adams operations are a very
important concept in the homotopy theory of classifying spaces of compact Lie groups
and p-compact groups.

In [JLL], it is shown that p-local compact groups also admit unstable Adams oper-
ations. Let G = (S, F, L) be a p-local compact group and let ¢ be a p-adic unit. A
normal Adams automorphism of degree ( on S is an automorphism ¢ € Aut(S) which
restricts to the (-power map on Sy, and induces the identity on the group of compo-
nents S/Sy. A geometric unstable Adams operation of degree ( on G is a selfmap ¥
of BG, such that there exist a normal Adams automorphism ¢ of degree ( on S, with
the property that ¢ o B¢ ~ W ot Here v: BS — BG is the canonical inclusion. (See
[JLL, Definitions 2.3, 3.4]) Theorem A allows us to define geometric unstable Adams
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operations of p-local compact groups, along the lines of the classical cohomological
definition.

The following lemma is an analogue of a theorem of Notbohm [N, Proposition 4.1].

Lemma 3.1. Let G = (S, F, L) be a p-local compact group, and let T be a discrete
p-torus. Then there is an isomorphism

Hom(T, S,)/W (G) = [BT, BG),

where W(G) acts by left translation. Also, two maps f,h: BT — BG are homotopic if
and only if they induce the same homomorphism on H@p(—).

Proof. By [BLO3, Theorem 6.3 (a)] there is an isomorphism of sets

o)

Rep(T', £) — [BT, BY],

where Rep(T, L) o Hom(7, S)/~, with a ~ [ if and only if there is some ¢ €

Homz(a(T), B(T)) such that ¢ o & = . Since T is a discrete p-torus, the image
of every homomorphism from it to S is contained in Sy, and by [BLO3, Lemma 2.4

(b)], every homomorphism in F between subgroups of Sy is the restriction of some
element in W(G). Thus

Rep(T, L) = Hom(T, Sy) /W (G),
as claimed.

It remains to prove the last statement. Two maps f,h: BT — BG that are homo-
topic clearly induce the same map on cohomology. Conversely, assume that f, h: BT —
BG are two maps such that f* = g*: Hy (BG) — Hg (BT). Let , 8: T — Sj be
homomorphisms such that f = 10 Ba and ¢ = ¢ o B3, where t: BSy; — BG is the
inclusion of the maximal torus.

We will show that there is w € W (G) such that w o a = f, following the argument
used by Adams and Mahmud to prove [AM, Theorem 1.7]: an argument based on
the uniqueness of factorisation in the polynomial ring H@p(BSD). For simplicity, write

V = Hg (BSy) and V' = Hg (BT). For each w € W(G), define
V(w) ={z € V|Bf*(z) = Blwoa)(z) } =Ker((BS* — Blwoa))|v).
For each z € V| set
z= ]] Bw(+z)eS(V)=H; (BS)
weW (G)

where S(V') denotes the symmetric algebra on the Q,-vector space V. Since z is W(G)-
invariant, Theorem 2.3 implies that € Im(.*), and hence that Ba*(z) = Bp*(Z). In
other words,

H (1+ Ba*Bw*z) = H (1+ BB*Bw*z) € S(V').
weWw (G) weW (G)
Since S(V’) is a unique factorization domain, there is w € W(G) such that (1+Bp*x) =
A1+ Ba*Bw*r), for some A € Q. Then A = 1 and hence Bf*r = Ba*Bw*z. In
particular, z € V(w).

This proves that V' =,y g) V(w). Since Q, is infinite, V' finite dimensional, and
W (G) finite, there is w € W(G) such that V = V(w) (cf. [AM, Lemma 3.1]). Hence
Bf* = B(w o a)*. Since Hom(T, Sp) injects into Hom (Hp, (BSo), Hg (T)), it now
follows that woa = f € Hom(T, Sy), and hence that f ~ g as maps BT — BG. O
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Proposition 3.2. Let G = (S, F, L) be a p-local compact group, and let ¢ be a p-adic
unit. Then any geometric unstable Adams operation ¥ of degree ¢ induces multiplica-
tion by C* on Héi(Bg) . If Sy s self centralising in S, then any self equivalence W of
BG which induces multiplication by ¢* on Héi(Bg) for each i is a geometric unstable
Adams operation on F.

Proof. Let +: BS — BG be the canonical inclusion (induced by the distinguished
monomorphism dg: S — Aut,(S)), and set vy = t|s,. If ¢ is a geometric unstable
Adams operation on G of degree (, then by definition, there exists a normal Adams
automorphism ¢ of S such that Wor o~ 1o B, and hence Voo =~ 190 B(¢|g,). For each
i >0, ¢|s, induces multiplication by ¢’ on Hg (BS;), and hence ¥ does the same on
Hélp(BQ).

Assume now that Sy is self centralising in S. Let ¥: BG — BG be a self equivalence
such that W* is multiplication by ¢* on Hg (BG). By [BLO3, Theorem 6.3(a)] and
Lemma 3.1, the natural maps

End(S)/ Aut#(S) = [BS, BG] and End(S,)/W(G) = [BS,, BG] (2)
are bijections. Hence there is ¢ € End(S) such that 1o By >~ Wor, and ¢ € Aut(S)

smce ¥ is a homotopy equivalence. Let g € Aut(Sg) be the restriction of ¢ to Sy, let
C denote the (-power map on Sy, and set p = Q oyt € Aut(Sy). Then

Bpg oy = BC oly: HQP(BQ) SN HQP(BSO),

and by Lemma 3.1, there is w € W(G) such that w o ¢y = ZE Aut(Sp).

Fix a morphism 7 € Mor,(Sp, S) such that 7(7) is the inclusion, and regard this
as the inclusion of Sy in S in the category £. By [BLO3, Lemma 4.3(a)], for each
g € S, there is a unique restriction dg,(g) € Autz(So) of ds(g) € Auty(S); ie., a
unique morphism such that 7o dg,(g) = ds(g) o 2. Identify S and Sy with their images
in Autz(Sp). Let a € Aut,(Sp) be a lift of w, i.e., () = w. By Axiom (C), for each

t € Sp, aodg,(t) = dg,(w(t))oa. Hence, ¢,ls, = w, and so x = Calgop: S — Autz(Sy)
restricts to wo g = ¢ on Sy.

Now, for each g € S, x o ¢y = ¢y(g) © X as automorphisms of S, and since x|s, = Zis
central in Aut(Sp), ¢4ls, = Cyg)ls,- Since Sy is self centralising in S, it follows that for

each g € S, g = x(¢9) (mod Sp). In particular, x(S) = S, and x induces the identity
on S/Sy. Thus y is a normal Adams automorphism of S of degree (. Also,

Lo Bx ~toB(cals) o Bp~toBp~WVour,

and thus ¥ is a geometric unstable Adams operation on G as claimed. O

If G = (5,F,L) is a p-local compact group, and P < S is a subgroup satisfying a
certain mild condition (fully normalised), then one can define the normaliser fusion
system, Nx(P), which is shown in [BLOG6, Theorem 2.3] to be a saturated fusion
system. The normaliser linking system N.(P) can be defined in exactly the same way
as in [BLO2, Definition 6.1}, and the proof of [BLO2, Lemma 6.2] applies verbatim to
show that N.(P) is a centric linking system associated to Nz(P). Thus in this case
Ng(P) = (Ng(P), Nx(P),N.(P)) is a p-local compact subgroup of G.

In particular, the maximal torus Sy, is fully normalised, since it is unique in its
F-conjugacy class, and we may consider the inclusion

Ng(So) — G. (3)
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Then, Sy is the maximal torus in both G and Ng(Sp), and from the definition of
morphisms in the normaliser fusion system [BLOG, Definition 2.1],

W(G) = Aut(S5) = Autas (s, (So) = W (NG (S0))

Thus one obtains as an immediate corollary of Theorem A, that the inclusion (3)
induces an isomorphism in p-adic rational cohomology. This is analogous to the corre-
sponding statements for compact Lie groups and p-compact groups.
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