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Reduced, tame, and exotic fusion systems

Kasper Andersen, Bob Oliver, and Joana Ventura

Abstract
We define here two new classes of saturated fusion systems, reduced fusion systems and tame fusion systems.
These are motivated by our attempts to better understand and search for exotic fusion systems: fusion systems
which are not the fusion systems of any finite group. Our main theorems say that every saturated fusion system
reduces to a reduced fusion system which is tame only if the original one is realizable, and that every reduced
fusion system which is not tame is the reduction of some exotic (nonrealizable) fusion system.

When G is a finite group and S ∈ Sylp(G), the fusion category of G is the category FS(G) whose objects
consist of all subgroups of S, and where

MorFS(G)(P,Q) = HomG(P,Q)
def
= {cg ∈ Hom(P,Q) | g ∈ G, gPg−1 ≤ Q} .

This provides a means of encoding the p-local structure of G: the conjugacy relations among the subgroups
of the Sylow p-subgroup S. An abstract “saturated fusion system” over a finite p-group S is a category
whose objects are the subgroups of S, whose morphisms are certain monomorphisms of groups between the
subgroups, and which satisfies certain conditions formulated by Puig [Pg2] and stated here in Definition 1.1.
In particular, for any finite G as above, FS(G) is a saturated fusion system. A saturated fusion system is
called realizable if it is isomorphic to the fusion system of some finite group G, and is called exotic otherwise.

It turns out to be very difficult in general to construct exotic fusion systems, especially over 2-groups.
This says something about how close Puig’s definition is to the properties of fusion systems of finite groups.

This paper is centered around the problem of identifying exotic fusion systems. A first step towards doing
this was taken in [OV2], where two of the authors developed methods for listing saturated fusion systems
over any given 2-group. However, it quickly became clear that in order to have any chance of making a
systematic search through all 2-groups (or p-groups) of a given type, one must first find a way to limit the
types of fusion systems under consideration, and do so without missing any possible exotic ones.

This leads to the concept of a reduced fusion system. A saturated fusion system is reduced if it contains
no nontrivial normal p-subgroups, and also contains no proper normal subsystems of p-power index or of
index prime to p. These last concepts will be defined precisely in Definitions 1.2 and 1.21; for now, we just
remark that they are analogous to requiring a finite group to have no nontrivial normal p-subgroups and no
proper normal subgroups of p-power index or of index prime to p. Thus it is very far from requiring that the
fusion system be simple in any sense, but it is adequate for our purposes.

The second concept which plays a central role in our results is that of a tame fusion system. Roughly, a
fusion system F is tame if it is realized by a finite group G for which all automorphisms of F are induced
by automorphisms of G. The precise (algebraic) definition is given in Definition 2.5. In terms of classifying
spaces, F is tame if it is realized by a finite group G such that the natural map from Out(G) to Out(BG∧p )
is split surjective, where Out(BG∧p ) is the group of homotopy classes of self homotopy equivalences of the
space BG∧p .

For any saturated fusion system F over a finite p-group S, there is a canonical reduction red(F) of
F (Definition 2.1). The analogy for a finite group G with maximal normal p-subgroup Q would be to set
G0 = CG(Q)/Q, and then let red(G) E G0 be the smallest normal subgroup such thatG0/red(G) is p-solvable.
Our first main theorem is the following.
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Theorem A. For any saturated fusion system F over a finite p-group S, if red(F) is tame, then F is
also tame, and in particular F is realizable.

Thus Theorem A says that reduced fusion systems detect all possible exotic fusion systems. If one wants
to find all exotic fusion systems over p-groups of order ≤ pk for some p and k, then one first searches for all
reduced fusion systems over p-groups of order ≤ pk which are not tame, and then for all other fusion systems
which reduce to them.

The proof of Theorem A uses the uniqueness of linking systems associated to the fusion system of a finite
group, and through that depends on the classification of finite simple groups. In order to make it clear
exactly which part of the result depends on the classification theorem and which part is independent, we
introduce another (more technical) concept, that of “strongly tame” fusion systems (Definition 2.9). Using
the classification, together with results in [O1] and [O2], we prove that all tame fusion systems are strongly
tame (Theorem 2.10). (In fact, the definition of “strongly tame” is such that any tame fusion system which
we’re ever likely to be working with can be shown to be strongly tame without using the classification.)
Independently of that, and without using the classification theorem, we prove in Theorem 2.20 that F is
tame whenever red(F) is strongly tame; and this together with Theorem 2.10 imply Theorem A.

Alternatively, one can also avoid using the classification theorem by restating Theorem A in terms of
fusion systems together with associated linking systems.

Albert Ruiz has constructed examples [Rz] which show that the reduction of a tame fusion system need
not be tame, and in fact, can be exotic. So there is no equivalence between the tameness of F and tameness
of red(F). The next theorem does, however, provide a weaker converse to Theorem A, by saying that for
every non-tame reduced fusion system, there is some associated exotic fusion system in the background.

Theorem B. Let F be a reduced fusion system which is not tame. Then there is an exotic fusion system
whose reduction is isomorphic to F .

As remarked above, reduced fusion systems can be very far from being simple in any sense. For example,
a product of reduced fusion systems is always reduced (Proposition 3.4). The next theorem handles reduced
fusion systems which factor as products.

Theorem C. Each reduced fusion system F over a finite p-group S has a unique maximal factorization
F = F1 × · · · × Fm as a product of indecomposable fusion systems Fi over subgroups Si E S. If Fi is tame
for each i, then F is tame.

Here, “unique” means that the indecomposable subsystems are unique as subcategories, not only up to
isomorphism. By Theorem C, in order to find minimal reduced fusion systems which are not tame, it suffices
to look at those which are indecomposable. In practice, it seems that any reduced indecomposable fusion
system which is not simple (which has no proper normal fusion subsystems in the sense of Definition 1.18
or of [Asch, § 6]) has to be over a p-group of very large order. The smallest example of this type we know
of is the fusion system of A6 oA5, over a group of order 217.

Using these results and those in [OV2] as starting point, we have started to undertake a systematic
computer search for reduced fusion systems over small 2-groups. So far, while details have yet to be rechecked
carefully, we seem to have shown that each reduced fusion system over a 2-group of order ≤ 512 is the fusion
system of a finite simple group, and is tame. We hope to be able to extend this soon to 2-groups of larger
order.

What we really would like to find is an example of a realizable fusion system which is not tame. It seems
very likely that such a fusion system exists, but so far, our attempts to find one have been unsuccessful.

The theorems stated above will all be proven in Sections 2 and 3: Theorems A and B as Theorems 2.20
and 2.6, and Theorem C as Proposition 3.6 and Theorem 3.7. They are preceded by a first section containing
mostly background definitions and results, and are followed by a fourth section with examples of how to
prove certain fusion systems are tame.



REDUCED, TAME, AND EXOTIC FUSION SYSTEMS Page 3 of 56

All three authors would like to thank Copenhagen University for its hospitality, when letting us meet there
for 2-week periods on two separate occasions. We would also like to thank Richard Lyons for his help with
automorphisms of certain sporadic groups; and thank the referee for reading the paper very carefully and
making many helpful suggestions.

Contents

1. Fusion and linking systems . . . . . . . . . . . . . . . . 3

1.1. Background on fusion systems . . . . . . . . . . . . . . 3

1.2. Background on linking systems . . . . . . . . . . . . . . 6

1.3. Automorphisms of fusion and linking systems . . . . . . . . . . . 8

1.4. Normal fusion subsystems . . . . . . . . . . . . . . . 12

1.5. Normal linking subsystems . . . . . . . . . . . . . . . 16

2. Reduced fusion systems and tame fusion systems . . . . . . . . . . . 19

2.1. Reduced fusion systems and reductions of fusion systems . . . . . . . . 19

2.2. Tame fusion systems and the proof of Theorem B . . . . . . . . . . 20

2.3. Strongly tame fusion systems and linking systems for extensions . . . . . . 23

2.4. Proof of Theorem A . . . . . . . . . . . . . . . . . 28

3. Decomposing reduced fusion systems as products . . . . . . . . . . . 38

4. Examples . . . . . . . . . . . . . . . . . . . . 43

4.1. Dihedral and semidihedral 2-groups . . . . . . . . . . . . . 46

4.2. Tameness of some fusion systems studied in [OV2] . . . . . . . . . . 48

4.3. Alternating groups . . . . . . . . . . . . . . . . . 51

References . . . . . . . . . . . . . . . . . . . . . 55

1. Fusion and linking systems

We first collect the basic results about fusion and linking systems and their automorphisms which will
be needed in the rest of the paper. Most of this is taken directly from earlier papers, such as [BLO2],
[BCGLO1], [BCGLO2] and [O3].

1.1. Background on fusion systems

We first recall very briefly the definition of a saturated fusion system, in the form given in [BLO2].
In general, for any group G and any pair of subgroups H,K ≤ G, HomG(H,K) denotes the set of all
homomorphisms from H to K induced by conjugation by some element of G. When G is finite and S ∈
Sylp(G), FS(G) (the fusion category of G) is the category whose objects are the subgroups of S, and where
for each pair of objects MorFS(G)(P,Q) = HomG(P,Q).

A fusion system over a finite p-group S is a category F , where Ob(F) is the set of all subgroups of S,
such that for all P,Q ≤ S,

HomS(P,Q) ⊆ HomF (P,Q) ⊆ Inj(P,Q);

and each ϕ ∈ HomF (P,Q) is the composite of an isomorphism in F followed by an inclusion. Here, Inj(P,Q)
denotes the set of injective homomorphisms from P to Q. If F is a fusion system over a finite p-subgroup S,
then two subgroups P,Q ≤ S are F-conjugate if they are isomorphic as objects of the category F .

Definition 1.1 [Pg2], see [BLO2, Definition 1.2]. Let F be a fusion system over a finite p-group S.
– A subgroup P ≤ S is fully centralized in F if |CS(P )| ≥ |CS(P ∗)| for each P ∗ ≤ S which is F-conjugate

to P .
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– A subgroup P ≤ S is fully normalized in F if |NS(P )| ≥ |NS(P ∗)| for each P ∗ ≤ S which is F-conjugate
to P .

– F is a saturated fusion system if the following two conditions hold:
(I) (Sylow axiom) For each P ≤ S which is fully normalized in F , P is fully centralized in F and

AutS(P ) ∈ Sylp(AutF (P )).

(II) (Extension axiom) If P ≤ S and ϕ ∈ HomF (P, S) are such that ϕ(P ) is fully centralized in F , and
if we set

Nϕ = {g ∈ NS(P ) |ϕcgϕ−1 ∈ AutS(ϕ(P ))},

then there is ϕ ∈ HomF (Nϕ, S) such that ϕ|P = ϕ.

If G is a finite group and S ∈ Sylp(G), then the category FS(G) is a saturated fusion system (cf. [BLO2,
Proposition 1.3]).

We now list some classes of subgroups of S which play an important role when working with fusion systems
over S. Here and elsewhere, for any fusion system F over a finite p-group S, we write for each P ≤ S,

OutF (P ) = AutF (P )/Inn(P ) ≤ Out(P ) .

Definition 1.2. Fix a prime p, a finite p-group S, and a fusion system F over S. Let P ≤ S be any
subgroup.

– P is F-centric if CS(P ∗) = Z(P ∗) for each P ∗ which is F-conjugate to P .

– P is F-radical if Op(OutF (P )) = 1; i.e., if OutF (P ) contains no nontrivial normal p-subgroups.

– P is central in F if P E S, and every morphism ϕ ∈ HomF (Q,R) in F extends to a morphism ϕ ∈
HomF (PQ,PR) such that ϕ|P = IdP .

– P is normal in F (P E F) if P E S, and every morphism ϕ ∈ HomF (Q,R) in F extends to a morphism
ϕ ∈ HomF (PQ,PR) such that ϕ(P ) = P .

– P is strongly closed in F if no element of P is F-conjugate to an element of SrP .

– Z(F) ≤ Z(S) and Op(F) ≤ S denote the largest subgroups of S which are central in F and normal in
F , respectively.

It follows directly from the definitions that if P1 and P2 are both central (normal) in F , then so is P1P2.
This is why there always is a largest central subgroup Z(F), and a largest normal subgroup Op(F).

Several forms of Alperin’s fusion theorem have been shown for saturated fusion systems, starting with
Puig in [Pg2, § 5]. The following version suffices for what we need in most of this paper. A stronger version
will be given in Theorem 4.1.

Theorem 1.3 [BLO2, Theorem A.10]. For any saturated fusion system F over a finite p-group S, each
morphism in F is a composite of restrictions of automorphisms in AutF (P ), for subgroups P which are fully
normalized in F , F-centric, and F-radical.

The following elementary result is useful for identifying subgroups which are centric and radical in a fusion
system.

Lemma 1.4. Let F be a saturated fusion system over a finite p-group S. If P ≤ S is F-centric and F-
radical, then there is no g ∈ NS(P )rP such that cg ∈ Op(AutF (P )). Conversely, if P ≤ S is fully normalized
in F , and there is no g ∈ NS(P )rP such that cg ∈ Op(AutF (P )), then P is F-centric and F-radical.
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Proof. Assume P is F-centric and F-radical. Fix g ∈ NS(P ) such that cg ∈ Op(AutF (P )). Then
Op(OutF (P )) = 1 since P is F-radical, so cg ∈ Inn(P ), and g ∈ P ·CS(P ) = P since P is F-centric. This
proves the first statement.

Now assume P is fully normalized in F . If P is not F-centric, then CS(P ) � P (since P is fully centralized),
and hence there is g ∈ NS(P )rP with cg = 1. If P is not F-radical, then Op(OutF (P )) 6= 1. This subgroup
is contained in each Sylow p-subgroup of OutF (P ), and in particular is contained in OutS(P ). Thus each
nontrivial element of Op(OutF (P )) is induced by conjugation by some element of NS(P )rP .

Proposition 1.5. Let F be a saturated fusion system over a finite p-group S. For any normal subgroup
Q E S, Q is normal in F if and only if Q is strongly closed and contained in all subgroups which are centric
and radical in F .

Proof. This is shown in [BCGLO1, Proposition 1.6]. Note, however, that wherever “F-radical” appears
in the statement and proof of that proposition, it should be replaced by “F-centric and F-radical”.

Lemma 1.4 shows the importance of being able to identify elements of the subgroup Op(AutF (P )). The
following, very well known property of automorphisms of p-groups is useful in many cases when doing this.

Lemma 1.6. Fix a prime p, a finite p-group P , and a group A ≤ Aut(P ) of automorphisms of P . Assume
1 = P0 E P1 E · · · E Pm = P is a sequence of normal subgroups such that α(Pi) = Pi for all α ∈ A and all
i. For 1 ≤ i ≤ m, let Ψi : A −−−→ Aut(Pi/Pi−1) be the homomorphism which sends α ∈ A to the induced
automorphism of Pi/Pi−1. Then for all α ∈ A, α ∈ Op(A) if and only if Ψi(α) ∈ Op(Ψi(A)) for all i =
1, . . . ,m.

Proof. Set Ψ = (Ψ1, . . . ,Ψm), as a homomorphism from A to
∏m
i=1 Aut(Pi/Pi−1). Then Ker(Ψ) is a p-

group (cf. [G, Corollary 5.3.3]). If Ψi(α) ∈ Op(Ψi(A)) for all i = 1, . . . ,m, then Ψ(α) ∈ Op(Ψ(A)), and so
α ∈ Op(A). Conversely, if α ∈ Op(A), then clearly Ψi(α) ∈ Op(Ψi(A)) for all i.

Another elementary lemma which is frequently useful when working with centric and radical subgroups is
the following:

Lemma 1.7. Let P and Q be p-subgroups of a finite group G such that P ≤ NG(Q) and Q � P . Then
NQP (P ) 	 P , and (Q ∩NG(P )) � P .

Proof. Since P normalizes Q, QP is also a p-group, and QP 	 P by assumption. Hence NQP (P ) 	 P
(cf. [Sz1, Theorem 2.1.6]). Since NQP (P ) = P ·(Q ∩NQP (P )), we have (Q ∩NQP (P )) � P .

We also need to work with certain quotient fusion systems. When F is a saturated fusion system over S
and Q E S is strongly closed in F , we define the quotient fusion system F/Q over S/Q by setting

HomF/Q(P/Q,R/Q) = Im
[
HomF (P,R) −−−→ Hom(P/Q,R/Q)

]
for all P,R ≤ S containing Q.

Proposition 1.8. Let F be a saturated fusion system over a finite p-group S, and let Q E S be a
strongly closed subgroup. Then F/Q is a saturated fusion system. For each P ≤ S containing Q, P is fully
normalized in F if and only if P/Q is fully normalized in F/Q. If Q is central in F , then P E F if and only
if P/Q E F/Q.

Proof. By [O1, Lemma 2.6], F/Q is a saturated fusion system, and P is fully normalized if and only if
P/Q is. So it remains only to prove the last statement.
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By Proposition 1.5, P is normal in F if and only if it is strongly closed in F , and contained in each
subgroup which is F-centric and F-radical. For P ≤ S containing Q, clearly P is strongly closed in F if and
only if P/Q is strongly closed in F/Q.

We apply the criterion in Lemma 1.4 for detecting subgroups which are centric and radical. Let
ρ : AutF (P ) −−−→ AutF/Q(P/Q) be the homomorphism induced by projection. Then ρ is surjective by
definition of F/Q. For α ∈ AutF (P ), we have α|Q = IdQ since Q is central in F , so by Lemma 1.6,
α ∈ Op(AutF (P )) if and only if ρ(α) ∈ Op(AutF/Q(P/Q)).

If Q ≤ R ≤ S, and R∗ is F-conjugate to R and fully normalized in F , then R∗/Q is F/Q-conjugate to
R/Q and fully normalized in F/Q. So by Lemma 1.4, R and R∗ are centric and radical in F if and only if
R/Q and R∗/Q are centric and radical in F/Q. Upon combining this with the above criterion for normality,
we see that P E F if and only if P/Q E F/Q.

1.2. Background on linking systems

We next define abstract linking systems associated to a fusion system F . We use the definition given in
[O3], which is more flexible in the choice of objects than the earlier definitions in [BLO2] and [BCGLO1].
This definition also differs slightly from the one given in [BCGLO1, Definition 3.3], in that we include a
choice of inclusion morphisms as part of the data in the linking system. All of these definitions are, however,
equivalent, aside from having greater freedom in the choice of objects.

For any finite group G and any S ∈ Sylp(G), let TS(G) denote the transporter category of G: the category
whose objects are the subgroups of S, and where for all P,Q ≤ S,

MorTS(G)(P,Q) = NG(P,Q)
def
=
{
g ∈ G

∣∣ gPg−1 ≤ Q
}
.

If H is a set of subgroups of S, then TH(G) ⊆ TS(G) denotes the full subcategory with object set H.

Definition 1.9 [O3, Definition 3]. Let F be a fusion system over a finite p-group S. A linking system
associated to F is a finite category L, together with a pair of functors

TOb(L)(S)
δ−−−−−−→ L π−−−−−−→ F ,

satisfying the following conditions:
(A) Ob(L) is a set of subgroups of S closed under F-conjugacy and overgroups, and includes all subgroups

which are F-centric and F-radical. Each object in L is isomorphic (in L) to one which is fully centralized
in F . Also, δ is the identity on objects, and π is the inclusion on objects. For each P,Q ∈ Ob(L) such
that P is fully centralized in F , CS(P ) acts freely on MorL(P,Q) via δP and right composition, and
πP,Q induces a bijection

MorL(P,Q)/CS(P )
∼=−−−−−−→ HomF (P,Q) .

(B) For each P,Q ∈ Ob(L) and each g ∈ NS(P,Q), πP,Q sends δP,Q(g) ∈ MorL(P,Q) to cg ∈ HomF (P,Q).

(C) For all ψ ∈ MorL(P,Q) and all g ∈ P , the diagram

P
ψ
//

δP (g)

��

Q

δQ(π(ψ)(g))

��

P
ψ
// Q

commutes in L.
If L∗ is another linking system associated to F with the same set of objects as L, then an isomorphism of

linking systems is an isomorphism of categories L
∼=−−−→ L∗ which commutes with the structural functors:

those coming from TOb(L)(S) and those going to F .

Note that we do not assume in this definition that F is saturated, since we want to at least be able to talk
about linking systems associated to F without first proving F is saturated. This leads to some pretty exotic
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examples; for example, a linking system could be empty. In practice, however, we only work with linking
systems associated to saturated fusion systems.

A p-local finite group is defined to be a triple (S,F ,L), where F is a saturated fusion system over a finite
p-group S, and where L is a centric linking system associated to F (i.e., one whose objects are the F-centric
subgroups of S).

For P ≤ Q in Ob(L), we usually write ιQP = δP,Q(1), and regard this as the “inclusion” of P into Q. The
definition in [BCGLO1, Definition 3.3] of a (quasicentric) linking system does not include these inclusions,
but it is explained there how to choose inclusions in a way so that a functor δ : TOb(L)(S) −−−→ L can be
defined in a unique way with the above properties ([BCGLO1, Lemma 3.7]). Note also that because the
above definition includes a choice of inclusions, condition (D)q in [BCGLO1, Definition 3.3] is not needed
here.

We have defined linking systems to be as flexible as possible in the choice of objects, but one cannot avoid
completely discussing quasicentric subgroups in this context. First recall the definition of the centralizer
fusion system (cf. [BLO2, § 2] or [AKO, § I.5]): if F is a fusion system over a finite p-group S and Q ≤ S,
then CF (Q) is the fusion system over CS(Q) for which

HomCF (Q)(P,R) =
{
ϕ ∈ HomF (P,R)

∣∣ϕ = ϕ|P , ϕ ∈ HomF (PQ,RQ), ϕ|Q = IdQ
}
.

This is a special case of the normalizer fusion systems which will be defined in Section 1.4. If F is saturated
and Q is fully centralized in F , then CF (Q) is also saturated (cf. [AKO, Theorem I.5.5]).

Definition 1.10.
(a) For any finite group G, a p-subgroup P ≤ G is G-quasicentric if Op(CG(P )) has order prime to p.

(b) For any saturated fusion system F over a finite p-group S, a subgroup P ≤ S is F-quasicentric if for
each P ∗ which is fully centralized in F and F-conjugate to P , CF (P ∗) is the fusion system of the p-group
CS(P ∗). Equivalently, for each such P ∗ and each Q ≤ P ∗·CS(P ∗) containing P ∗, {α ∈ AutF (Q) |α|P∗ =
Id} is a p-group.

The equivalence of the two definitions in (b) is shown in [AKO, Lemma III.4.6(a)].

For any saturated fusion system F , the set of F-quasicentric subgroups is closed under F-conjugacy and
overgroups (see [AKO, Lemma III.4.6(d)]). So a quasicentric linking system as defined in [BCGLO1, § 3]
is a linking system in the sense defined here.

Fix a finite group G and S ∈ Sylp(G), and set F = FS(G). Then a subgroup P ≤ S is G-quasicentric if
and only if it is F-quasicentric (cf. [AKO, Lemma III.4.6(e)]). For any set H of G-quasicentric subgroups
of S, define LHS (G) to be the category with object set H, and where for each P,Q ∈ H,

MorLHS (G)(P,Q) = NG(P,Q)/Op(CG(P )).

Composition is well defined, since for each g ∈ NG(P,Q), g−1Qg ≥ P , so g−1CG(Q)g ≤ CG(P ), and thus
g−1Op(CG(Q))g ≤ Op(CG(P )). When H is closed under F-conjugacy and overgroups and contains all
subgroups of S which are F-centric and F-radical, then LHS (G) is a linking system associated to F . When
H is the set of F-centric subgroups of S, we write LcS(G) = LHS (G).

Proposition 1.11. The following hold for any linking system L associated to a saturated fusion system
F over a finite p-group S.

(a) For each P,Q ∈ Ob(L), the subgroup E(P )
def
= Ker[AutL(P ) −−−→ AutF (P )] acts freely on MorL(P,Q)

via right composition, and πP,Q induces a bijection

MorL(P,Q)/E(P )
∼=−−−−−−→ HomF (P,Q) .

(a′) A morphism ψ ∈ Mor(L) is an isomorphism if and only if π(ψ) ∈ Mor(F) is an isomorphism.

(b) For every morphism ψ ∈ MorL(P,Q), and every P0, Q0 ∈ Ob(L) such that P0 ≤ P , Q0 ≤ Q, and
π(ψ)(P0) ≤ Q0, there is a unique morphism ψ|P0,Q0 ∈ MorL(P0, Q0) (the “restriction” of ψ) such that
ψ ◦ ιPP0

= ιQQ0
◦ ψ|P0,Q0

.

(b′) For each P,Q ∈ Ob(L) and each ψ ∈ MorL(P,Q), if we set Q0 = π(ψ)(P ), then there is a unique
ψ0 ∈ IsoL(P,Q0) such that ψ = ιQQ0

◦ ψ0.
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(c) The functor δ is injective on all morphism sets.

(d) If P ∈ Ob(L) is fully normalized in F , then δP (NS(P )) ∈ Sylp(AutL(P )).

(e) Let P,Q, P ,Q ∈ Ob(L) and ψ ∈ MorL(P,Q) be such that P E P and Q ≤ Q. Then there is a morphism

ψ ∈ MorL(P ,Q) such that ψ|P,Q = ψ if and only if

∀ g ∈ P ∃ h ∈ Q such that ιQQ ◦ ψ ◦ δP (g) = δ
Q,Q

(h) ◦ ψ. (1)

If such a morphism ψ exists, then it is unique.

(f) All morphisms in L are monomorphisms and epimorphisms in the categorical sense.

(g) All objects in L are F-quasicentric.

Proof. Most of this is contained in [O3, Proposition 4]. Point (a′) follows from (a), which implies that
if ψ ∈ MorL(P, P ) and πP (ψ) = IdP , then ψ is an automorphism. Point (b′) is a special case of (b), where

ψ0
def
= ψ|P,Q0

is an isomorphism by (a′). In (e), the implication that the existence of ψ implies (1) follows

from axiom (C) in Definition 1.9 (where h = π(ψ)(g)).

We will also have use for the following “linking system version” of Alperin’s fusion theorem.

Theorem 1.12. For any saturated fusion system F over a finite p-group S and any linking system L
associated to F , each morphism in L is a composite of restrictions of automorphisms in AutL(P ), where P
is fully normalized in F , F-centric, and F-radical.

Proof. Using Theorem 1.3 together with Proposition 1.11(a), we are reduced to proving the theorem
for automorphisms in E(P ) = Ker[AutL(P ) −−−→ AutF (P )] for P ∈ Ob(L). If P is fully centralized, then
E(P ) = {δP (g) | g ∈ CS(P )} by axiom (A), and each element δP (g) is the restriction of δS(g) ∈ AutL(S). If
P is arbitrary, and Q is fully centralized in F and F-conjugate to P , then there is some ψ ∈ IsoL(P,Q) which
satisfies the conclusion of the theorem (choose any ϕ ∈ IsoF (P,Q), write it as a composite of restrictions
of automorphisms, and lift each of those automorphisms to L). Then each element of E(P ) has the form
ψ−1δQ(g)ψ for some g ∈ CS(Q), and hence satisfies the conclusion of the theorem.

1.3. Automorphisms of fusion and linking systems

Recall that for any linking system L associated to a fusion system F over S, and any pair P ≤ Q of objects
in L, the inclusion of P into Q is the morphism ιQP = δP,Q(1) ∈ MorL(P,Q). By Proposition 1.11(b′), each
morphism in L splits uniquely as the composite of an isomorphism followed by an inclusion.

As usual, an equivalence of small categories is a functor Φ: C −−−→ D which induces a bijection between
the sets of isomorphism classes of objects and bijections between each pair of morphism sets. It is not hard
to see that for each such equivalence, there is an “inverse” Ψ: D −−−→ C such that both composites Φ ◦Ψ
and Ψ ◦ Φ are naturally isomorphic to the identities. In particular, the quotient monoid Out(C) of all self
equivalences of C modulo natural isomorphisms of functors is a group.

Definition 1.13 [BLO2, § 8]. Let F be a saturated fusion system over a finite p-group S, and let L be
a linking system associated to F .
(a) An automorphism β ∈ Aut(S) is fusion preserving if for each P,Q ≤ S and each ϕ ∈ HomF (P,Q),

(β|Q,β(Q))ϕ(β|P,β(P ))
−1 lies in HomF (β(P ), β(Q)). In particular, each such β normalizes AutF (S).

Let Aut(S,F) be the group of all fusion preserving automorphisms of S, and set Out(S,F) =
Aut(S,F)/AutF (S). Note that Out(S,F) is a subquotient of Out(S).

(b) An equivalence of categories α : L −−−→ L is isotypical if α(δP (P )) = δα(P )(α(P )) for each P ∈ Ob(L).
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(c) Let Outtyp(L) be the group of classes of isotypical self equivalences of L modulo natural isomorphisms
of functors.

(d) Let AutItyp(L) be the group of isotypical equivalences of L which send inclusions to inclusions.

Since Out(L) is a group by the above remarks, and is finite since Mor(L) is finite, Outtyp(L) is a submonoid
of a finite group and hence itself a group. Another proof of this, as well as a proof that AutItyp(L) is a group,
will be given in Lemma 1.14.

One of the main results in [BLO2] (Theorem 8.1) says that for any p-local finite group (S,F ,L),
Outtyp(L) ∼= Out(|L|∧p ): the group of homotopy classes of self homotopy equivalences of |L|∧p . This helps
to explain the importance of Outtyp(L), among other groups of automorphisms of (S,F ,L) which we might
have chosen.

The next lemma gives an alternative description of Outtyp(L), and also of Out(G) — descriptions which
will be useful later. For each L associated to F over S, and each γ ∈ AutL(S), let cγ ∈ AutItyp(L) be the
automorphism which sends P ∈ Ob(L) to γ(P ) = π(γ)(P ), and sends ψ ∈ MorL(P,Q) to (γ|Q,γ(Q)) ◦ ψ ◦
(γ|P,γ(P ))

−1. This is clearly isotypical, since for g ∈ P ∈ Ob(L), cγ(δP (g)) = δγ(P )(π(γ)(g)) by axiom (C).

For P ≤ Q in Ob(L), cγ sends ιQP to ι
γ(Q)
γ(P ) by definition of restriction, and thus cγ ∈ AutItyp(L).

Lemma 1.14.
(a) For any saturated fusion system F over a finite p-group S, and any linking system L associated to F ,

the sequence

1 −−−→ Z(F)
δS−−−−−→ AutL(S)

γ 7→cγ−−−−−−→ AutItyp(L) −−−−−→ Outtyp(L) −−−→ 1

is exact. All elements of AutItyp(L) are automorphisms of L, and hence AutItyp(L) and Outtyp(L) are
both groups.

(b) For any finite group G and any S ∈ Sylp(G), the sequence

1 −−−→ Z(G)
incl−−−−−→ NG(S)

g 7→cg−−−−−−→ Aut(G,S) −−−−−→ Out(G) −−−→ 1

is exact, where Aut(G,S) = {α ∈ Aut(G) |α(S) = S}.

Proof. (a) Each equivalence of L (isotypical or not) sends S to itself, since S is the only object which
is the target of morphisms from all other objects.

If α ∈ AutItyp(L), then for each P ∈ Ob(L), αP,S sends ιSP to ιSα(P ), and αP sends δP (P ) to δα(P )(α(P )).
Hence αS sends δS(P ) to δS(α(P )), and thus determines the action of α on Ob(L). In particular, α permutes
the objects of L bijectively, and hence is an automorphism of L. This proves that AutItyp(L) is a group; and
that Outtyp(L) is also a group if the above sequence is exact.

We next show that each isotypical equivalence α : L −−−→ L is naturally isomorphic to an isotypical
equivalence which sends inclusions to inclusions. For each P ∈ Ob(L), let α(ιSP ) = ιSβ(P ) ◦ ω(P ) be the unique

decomposition of α(ιSP ) as a composite of an isomorphism ω(P ) ∈ IsoL(α(P ), β(P )) followed by an inclusion
(Proposition 1.11(b′)). In particular, ω(S) = Id. Let β be the automorphism of L which on objects sends
P to β(P ), and which on morphisms sends ϕ ∈ MorL(P,Q) to ω(Q) ◦ α(ϕ) ◦ ω(P )−1 in MorL(β(P ), β(Q)).
Then β is isotypical by axiom (C) (and since α is isotypical); it sends inclusions to inclusions by construction
(and since ω(S) = Id); and ω(−) defines a natural isomorphism from α to β.

This proves that the natural homomorphism from AutItyp(L) to Outtyp(L) is onto. If α ∈ AutItyp(L) is in
the kernel, then it is naturally isomorphic to the identity, via some ω(−) which consists of isomorphisms
ω(P ) ∈ IsoL(P, α(P )) such that for each ψ ∈ MorL(P,Q), α(ψ) ◦ ω(P ) = ω(Q) ◦ ψ. Since α sends ιSP to ιSα(P ),
ω(P ) = ω(S)|P,α(P ), and thus α is conjugation by ω(S) ∈ AutL(S).

Conversely, if γ ∈ AutL(S), then cγ is naturally isomorphic to IdL, by the natural isomorphism which
sends P ∈ Ob(L) to γ|P,π(γ)(P ). This finishes the proof that the above sequence is exact at AutItyp(L).

It remains to show, for γ ∈ AutL(S), that cγ = IdL if and only if γ ∈ δS(Z(F)). If cγ = IdL, then since
γδS(g)γ−1 = δS(g) for all g ∈ S, π(γ) = IdS by axiom (C) and the injectivity of δS . So by axiom (A), there
is a ∈ Z(S) such that γ = δS(a). For each P,Q ∈ Ob(L) and each ψ ∈ MorL(P,Q), δQ(a) ◦ ψ = ψ ◦ δP (a)

implies there is ψ ∈ MorL(〈P, a〉, 〈Q, a〉) such that ψ|P,Q = ψ (Proposition 1.11(e)), and π(ψ)(a) = a by
axiom (C) and the injectivity of δ. Together with Theorem 1.3, this proves that each morphism in F extends
to one which sends a to itself, and hence that a ∈ Z(F).
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Conversely, if a ∈ Z(F), then each ψ ∈ Mor(L) extends to some ψ such that π(ψ)(a) = a, ψ commutes
with γ = δS(a) by axiom (C) again, and so cγ(ψ) = ψ. Thus cγ = IdL.

(b) The natural homomorphism from Aut(G,S) to Out(G) is onto by the Frattini argument (the Sylow
p-subgroups of G are permuted transitively by inner automorphisms). The kernel of that map clearly consists
of conjugation by elements of NG(S).

In particular, the group AutItyp(L) defined here is the same as that defined in [O3], where it was defined
explicitly as a group of automorphisms of L rather than of equivalences.

The next lemma describes how elements of AutItyp(L) induce automorphisms of the associated fusion
system. For β ∈ Aut(S,F), let cβ ∈ Aut(F) be the automorphism of the category F which sends P ≤ S to
β(P ), and sends ϕ ∈ Mor(F) to βϕβ−1.

Lemma 1.15 [O3, Proposition 6]. Let L be a linking system associated to a saturated fusion system

F over a finite p-group S, with structure functors TOb(L)(S)
δ−−−→ L π−−−→ F . Fix α ∈ AutItyp(L). Let β ∈

Aut(S) be such that α(δS(g)) = δS(β(g)) for all g ∈ S. Then β ∈ Aut(S,F), α(P ) = β(P ) for P ∈ Ob(L),
and π ◦ α = cβ ◦ π.

Proof. See [O3, Proposition 6] (and note that F is, in fact, assumed to be saturated in the proof of that
proposition). The relation α(P ) = β(P ) is not in the statement of the proposition, but it is shown in its
proof. It is really part of the statement π ◦ α = cβ ◦ π (since π is the inclusion on objects).

Lemma 1.15 motivates the following definition. For any saturated fusion system F over a finite p-group
S, and any linking system L associated to F , define

µ̃L : AutItyp(L) −−−−−−→ Aut(S,F)

by setting µ̃L(α) = δ−1
S ◦ αS ◦ δS ∈ Aut(S) for α ∈ AutItyp(L). By Lemma 1.15, Im(µ̃L) ≤ Aut(S,F). For

γ ∈ AutL(S), µ̃L(cγ) = π(γ) ∈ AutF (S) by axiom (C) in Definition 1.9. So by Lemma 1.14(a), µ̃L induces a
homomorphism

µL : Outtyp(L) −−−−−−→ Out(S,F)

by sending the class of α to that of µ̃L(α). When L = LHS (G) for some finite group G and some set of
objects H, we write µ̃HG = µ̃L and µHG = µL for short. When L = LcS(G) is the centric linking system, we
write µ̃G = µ̃L and µG = µL.

Lemma 1.16. For any linking system L associated to a saturated fusion system F , Ker(µL) is a finite
p-group.

Proof. Assume F is a fusion system over the finite p-group S. Since L is a finite category, AutItyp(L) and
Outtyp(L) are finite groups. So it suffices to prove that each element of Ker(µL) has p-power order.

Fix α ∈ AutItyp(L) such that [α] ∈ Ker(µL). Thus µ̃L(α) ∈ AutF (S), and µ̃L(α) = π(γ) for some γ ∈
AutL(S). So upon replacing α by c−1

γ ◦ α, we can assume α ∈ Ker(µ̃L).
Thus αS |δS(S) = Id. Since α sends inclusions to inclusions, αP |δP (P ) = Id for all P ∈ Ob(L). Assume also

that P is F-centric. For each ψ ∈ AutL(P ), ψ and α(ψ) have the same conjugation action on δP (P ), so
ψ−1α(ψ) ∈ CAutL(P )(δP (P )) ≤ δP (Z(P )). Hence α(ψ) = ψδP (g) for some g ∈ Z(P ), and αk(ψ) = ψδP (gk)
for all k since α is the identity on δP (P ).

Choose m ≥ 0 such that gp
m

= 1 for all g ∈ S. Then αp
m

is the identity on AutL(P ) for each P ∈ Ob(L)
which is F-centric. So by Theorem 1.12, αp

m

= IdL.

The kernel of µL will be studied much more closely in Proposition 4.2.

Since we will need to work with linking systems with different sets of objects associated to the same fusion
system, it will be important to know they have the same automorphisms.
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Lemma 1.17. Fix a saturated fusion system F over a finite p-group S. Let L0 ⊆ L be a pair
of linking systems associated to F . Set H0 = Ob(L0) and H = Ob(L), and assume H0 ⊆ H are both
Aut(S,F)-invariant. Then restriction defines an isomorphism

Outtyp(L)
R−−−−−→∼= Outtyp(L0).

Proof. Using axiom (A), one sees that L0 must be a full subcategory of L. Set P = HrH0. We can
assume, by induction on |H| − |H0|, that all subgroups in P have the same order. Thus all morphisms in L
between subgroups in P are isomorphisms.

Since H0 is Aut(S,F)-invariant and L0 is a full subcategory, there is a well defined restriction
homomorphism

AutItyp(L)
Res−−−−−→ AutItyp(L0).

By assumption, H0 contains all subgroups which are F-centric and F-radical. Hence Theorem 1.12 implies
that all morphisms in L are composites of restrictions of morphisms in L0. Since each α ∈ AutItyp(L) sends
inclusions to inclusions, it also sends restrictions to restrictions, and hence α|L0

= IdL0
only if α = IdL. Thus

Res is injective. We next show it is surjective, and hence an isomorphism.
Let P∗ ⊆ P be a subset consisting of one fully normalized subgroup from each F-conjugacy class in P.

For each P ∈ P∗, δP (NS(P )) ∈ Sylp(AutL(P )) by Proposition 1.11(d), so there is a unique P̂ ≤ NS(P ) such

that δP (P̂ ) = Op(AutL(P )). Since P /∈ H0, P is either not F-centric or not F-radical. In either case, P̂ 	 P

by Lemma 1.4. By Proposition 1.11(e), each ψ ∈ AutL(P ) extends to a unique automorphism ψ̂ ∈ AutL(P̂ ).
Let ν : P −−−→ P∗ be the map which sends P to the unique subgroup ν(P ) ∈ P∗ which is F-conjugate

to P . For each P ∈ P, δν(P )(NS(ν(P ))) ∈ Sylp(AutL(ν(P ))) by Proposition 1.11(d) (and since ν(P ) is fully
normalized), and hence there is λP ∈ IsoL(P, ν(P )) such that

λP δP (NS(P ))λ−1
P ≤ δν(P )(NS(ν(P ))) .

By Proposition 1.11(e) again, λP extends to a unique λ̂P ∈ MorL(NS(P ), NS(ν(P ))). When P ∈ P∗ (so
ν(P ) = P ), we set λP = IdP , and hence λ̂P = IdNS(P ).

Fix any α0 ∈ AutItyp(L0); we want to extend α0 to L. By Lemma 1.15, α0 induces some β ∈ Aut(S,F),
and α0(P ) = β(P ) for all P ∈ H0. So define α(P ) = β(P ) for P ∈ H; this is possible since H is Aut(S,F)-
invariant by assumption. By Lemma 1.15 again, for each P,Q ∈ H0 and each ψ ∈ MorL0

(P,Q), π(α0(ψ)) =
cβ(π(ψ)) = β(π(ψ))β−1. In other words,

ψ ∈ MorL0(P,Q), g ∈ P , π(ψ)(g) = h ∈ Q =⇒ π(α0(ψ))(β(g)) = β(h) . (2)

We next define α on isomorphisms between subgroups in P. Fix P1, P2 ∈ P and ψ ∈ IsoL(P1, P2), and set
P∗ = ν(P1) = ν(P2). There is a unique ψ∗ ∈ AutL(P∗) such that ψ = λ−1

P2
◦ ψ∗ ◦ λP1

, and we set

α(ψ) =
(
α0(λ̂P2)|α(P2),α(P∗)

)−1
◦
(
α0(ψ̂∗)|α(P∗),α(P∗)

)
◦
(
α0(λ̂P1

)|α(P1),α(P∗)

)
.

Note that λ̂P1
, λ̂P2

, and ψ̂∗ are all in Mor(L0), since all subgroups strictly containing subgroups in P are in
H0 = Ob(L0) by assumption. Also, the restrictions are well defined (for example, π(α0(λ̂Pi))(α(Pi)) = α(P ∗))
by (2).

Recall that H and H0 are both closed under overgroups and F-conjugacy. Hence each morphism in L
not in L0 factors uniquely as an isomorphism between subgroups in P followed by an inclusion (Proposition
1.11(b′)), and thus the above definitions extend to define α as a map from Mor(L) to itself. This clearly
preserves composition of isomorphisms between subgroups in P. To prove that α is a functor, it remains
to show it preserves composites of inclusions followed by isomorphisms in L0. This means showing, for
each P1, P2 ∈ P, each Pi � Qi, and each ψ ∈ IsoL(P1, P2) which extends to ϕ ∈ MorL0(Q1, Q2), that α(ψ) =
α0(ϕ)|α(P1),α(P2). Since NQi(Pi) 	 Pi, we can assume Pi E Qi for i = 1, 2. Set P∗ = ν(P1) = ν(P2) again, and

set Ri = π(λ̂Pi)(Qi) 	 P∗. Then P∗ E Ri since Pi E Qi. We saw that ψ factors in a unique way ψ = λ−1
P2
◦

ψ∗ ◦ λP1
for ψ∗ ∈ AutL(P∗). We also have ϕ = λ−1

P2
◦ ϕ∗ ◦ λP1 , where λPi = λ̂Pi |Qi,Ri and ϕ∗ ∈ MorL0(R1, R2).

Thus α0(λPi) is a restriction of α0(λ̂Pi) (i = 1, 2), and hence an extension of α(λPi).
It remains to show α(ψ∗) is the restriction of α0(ϕ∗). By definition, α(ψ∗) is the restriction to α(P∗) of

α0(ψ̂∗), where ψ̂∗ ∈ AutL(P̂∗). Set Ti = 〈P̂∗, Ri〉. By Proposition 1.11(e), since ψ∗ ∈ AutL(P∗) extends to

ψ̂∗ ∈ AutL(P̂∗) and to ϕ∗ ∈ MorL(R1, R2), there is ϕ∗ ∈ MorL(T1, T2) which extends both ψ̂∗ and ϕ∗. Hence
α0(ϕ∗) extends both α0(ψ̂∗) and α0(ϕ∗) (all of these are in L0), and thus α(ψ∗) is a restriction of each of
the latter. This finishes the proof that α is a functor. By construction, α is isotypical, sends inclusions to
inclusions, and extends α0; and thus Res is surjective.
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We have now shown that restriction defines an isomorphism from AutItyp(L) to AutItyp(L0). By Lemma
1.14(a), the outer automorphism groups of L and L0 are defined by dividing out by conjugation by elements
of AutL(S). Hence the induced homomorphism

Outtyp(L)
R−−−−−→ Outtyp(L0)

is also an isomorphism.

1.4. Normal fusion subsystems

Let F be a saturated fusion system over a finite p-group S. By a (saturated) fusion subsystem of F over a
subgroup S0 ≤ S, we mean a subcategory F0 ⊆ F whose objects are the subgroups of S0, and which is itself
a (saturated) fusion system over S0.

The following definition of a normal fusion subsystem is the same as that of a weakly normal fusion
subsystem in [AKO, § I.6]. We have dropped the word “weakly” here, since the extra condition for being
normal in the sense of Aschbacher ([AKO, Definition I.6.1]) will not be needed.

Definition 1.18. Let F be a saturated fusion system over a finite p-group S, and let F0 ⊆ F be a
saturated fusion subsystem over S0 ≤ S. Then F0 is normal in F (F0 E F) if
(i) S0 is strongly closed in F ;

(ii) for each P,Q ≤ S0 and each ϕ ∈ HomF (P,Q), there are α ∈ AutF (S0) and ϕ0 ∈ HomF0(α(P ), Q) such
that ϕ = ϕ0 ◦ α|P,α(P ); and

(iii) for each P,Q ≤ S0, each ϕ ∈ HomF0(P,Q), and each β ∈ AutF (S0), βϕβ−1 ∈ HomF0(β(P ), β(Q)).

The above definition is equivalent to Puig’s definition [Pg2, § 6.4], and also to Aschbacher’s definition of
an F-invariant subsystem [Asch, § 3], except that they do not require the subsystem to be saturated. See
[Pg2, Proposition 6.6], [Asch, Theorem 3.3], and [AKO, Proposition I.6.4] for proofs of the equivalence of
these and other conditions.

We next list some of the basic properties of normal fusion subsystems, starting with the following technical
result.

Lemma 1.19. Fix a saturated fusion system F over a finite p-group S. Let F0 ⊆ F be a fusion subsystem
(not necessarily saturated) over the subgroup S0 E S, which satisfies conditions (i–iii) in Definition 1.18.
Assume P0 ≤ S0 is F0-centric and fully normalized in F , and OutS0

(P0) ∩Op(OutF0
(P0)) = 1. Then there

is P ≤ S which is F-centric and F-radical and such that P ∩ S0 = P0.

Proof. Set

P = {x ∈ NS(P0) | cx ∈ Op(AutF (P0))} .

If x ∈ P ∩ S0, then cx ∈ Op(AutF (P0)) ∩AutF0(P0) = Op(AutF0(P0)) (AutF0(P0) is normal in AutF (P0) by
1.18(ii–iii)), so cx ∈ AutS0

(P0) ∩Op(AutF0
(P0)) = Inn(P0), and x ∈ P0 since P0 is F0-centric. Thus P ∩ S0 =

P0.
By construction, NS(P ) = NS(P0). So if Q if F-conjugate to P and Q0 = Q ∩ S0, then |NS(Q)| ≤

|NS(Q0)| ≤ |NS(P0)| = |NS(P )| since P0 is fully normalized in F and F-conjugate to Q0. This proves that
P is fully normalized in F .

Now, AutS(P0) ≥ Op(AutF (P0)) since P0 is fully normalized in F . So AutP (P0) = Op(AutF (P0)),
and hence this is normal in AutF (P0). By the extension axiom, the restriction homomorphism
AutF (P ) −−−→ AutF (P0) is surjective, and thus sendsOp(AutF (P )) intoOp(AutF (P0)). So for all x ∈ NS(P )
such that cx ∈ Op(AutF (P )), cx ∈ Op(AutF (P0)), and hence x ∈ P . Since P is fully normalized, it is
F-centric and F-radical by Lemma 1.4.
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The following is our main lemma listing properties of normal pairs of fusion systems. Recall that Op(F)
is the largest normal p-subgroup of the fusion system F .

Lemma 1.20. Fix a saturated fusion system F over a finite p-group S, and let F0 E F be a normal
fusion subsystem over the normal subgroup S0 E S. Then the following hold.
(a) Each F-conjugacy class contains a subgroup P ≤ S such that P and P ∩ S0 are both fully normalized

in F , and P ∩ S0 is fully normalized in F0.

(b) For each P,Q ≤ S0 and each ϕ ∈ IsoF (P,Q), ϕAutF0
(P )ϕ−1 = AutF0

(Q).

(c) The set of F0-centric subgroups of S0, and the set of F0-radical subgroups of S0, are both invariant
under F-conjugacy.

(d) If P ≤ S is F-centric and F-radical, then P ∩ S0 is F0-centric and F0-radical. Conversely, if P0 ≤ S0 is
F0-centric, F0-radical, and fully normalized in F , then there is P ≤ S which is F-centric and F-radical,
and such that P ∩ S0 = P0.

(e) Op(F0) is normal in F , and Op(F0) = Op(F) ∩ S0.

Proof. Throughout the proof, whenever P ≤ S, we write P0 = P ∩ S0 for short.

(a) Fix Q ≤ S. By [BLO2, Proposition A.2(b)], there are subgroups R ≤ S and P0 ≤ S0 which are fully
normalized in F , and morphisms ϕ ∈ HomF (NS(Q), NS(R)) and ψ ∈ HomF (NS(R0), NS(P0)) such that
ϕ(Q) = R and ψ(R0) = P0. Set P = ψ(R) (note that P ∩ S0 = P0 since S0 is strongly closed). Since NS(R) ≤
NS(R0), P is also fully normalized in F . Also, P = ψ ◦ ϕ(Q) is F-conjugate to Q.

By [BLO2, Proposition A.2(b)] again, if P ∗0 is F-conjugate to P0, then there is a morphism in F from
NS(P ∗0 ) to NS(P0) which sends P ∗0 to P0. In particular, |NS0

(P ∗0 )| ≤ |NS0
(P0)|, and hence P0 is also fully

normalized in F0.

(b) Fix P,Q ≤ S0 and ϕ ∈ IsoF (P,Q). By condition (ii) in Definition 1.18, there are α ∈ AutF (S0) and
ϕ0 ∈ IsoF0

(α(P ), Q) such that ϕ = ϕ0 ◦ α|P,α(P ). Hence

ϕAutF0
(P )ϕ−1 = ϕ0AutF0

(α(P ))ϕ−1
0 = AutF0

(Q) ,

where the first equality holds by condition (iii) in Definition 1.18.

(c) Fix P ≤ S0, let P be the F-conjugacy class of P , and let P0 be its F0-conjugacy class.
If P is F0-centric, then CS0

(P ∗) = Z(P ∗) for all P ∗ ∈ P0. For all R ∈ P, there is α ∈ AutF (S0) such that
α(R) ∈ P0 (condition (ii) in Definition 1.18), and hence CS0(R) = Z(R). Since this holds for all subgroups
in P, all of these subgroups are F0-centric.

Now assume P is F0-radical; then Op(OutF0
(P ∗)) = 1 for all P ∗ ∈ P0. If R ∈ P, and α ∈ AutF (S0) is

such that α(R) ∈ P0, then by condition (iii) in Definition 1.18, conjugation by α sends OutF0
(R) ≤ OutF (R)

isomorphically to OutF0
(α(R)). Since Op(OutF0

(α(R))) = 1, Op(OutF0
(R)) = 1. So all subgroups in P are

F0-radical.

(d) The second statement was shown in Lemma 1.19. It remains to prove the first.
Assume P is F-centric and F-radical. We must show that P0 is F0-centric and F0-radical. By (c), this is

independent of the choice of P in its F-conjugacy class, and hence by (a), it suffices to prove it when P0 is
fully normalized in F0. By (b), AutF0(P0) is normal in AutF (P0), and hence

Op(AutF0
(P0)) ≤ Op(AutF (P0)) .

Let T be the subgroup of all x ∈ NS0
(P0) such that cx ∈ Op(AutF0

(P0)). If x ∈ T ∩NS(P ), then cx ∈
Op(AutF (P0)), and cx induces the identity on P/P0 since [x, P ] ≤ P ∩ [S0, P ] ≤ P0. Thus cx ∈ Op(AutF (P ))
by Lemma 1.6, and x ∈ P by Lemma 1.4 since P is centric and radical in F .

Thus T ∩NS(P ) ≤ P0. Also, P normalizes T by construction, so T ≤ P0 by Lemma 1.7. Hence P0 is centric
and radical in F0 by Lemma 1.4 again.

(e) Set Q = Op(F0) and R = Op(F) for short. To prove that Q E F and R0 = Q, it suffices to show that
Q E F and R0 E F0. We apply Proposition 1.5, which says that a subgroup is normal in a saturated fusion
system if and only if it is strongly closed and contained in all subgroups which are centric and radical. Since
an intersection of strongly closed subgroups is strongly closed, R0 is strongly closed in F and hence in F0.

If P ≤ S is F-centric and F-radical, then P0 is F0-centric and F0-radical by (d), so P ≥ P0 ≥ Q. If P0 is
F0-centric and F0-radical, then the same holds for each subgroup in its F-conjugacy class by (c). So by (d),



Page 14 of 56 KASPER ANDERSEN, BOB OLIVER, AND JOANA VENTURA

there is P ∗ ≤ S which is F-centric and F-radical with P ∗0 F-conjugate to P0; P ∗ ≥ R, and hence P ∗0 and P0

both contain R0.
It remains to prove that Q is strongly closed in F . Fix F-conjugate elements g, h ∈ S such that g ∈ Q;

we must show h ∈ Q. Since S0 is strongly closed in F (since F0 E F), h ∈ S0. Fix ϕ ∈ IsoF (〈g〉, 〈h〉) with
ϕ(g) = h. Since F0 E F , there are morphisms χ ∈ AutF (S0) and ϕ0 ∈ IsoF0

(〈g〉, 〈χ−1(h)〉) such that ϕ =

χ ◦ ϕ0. Then g′
def
= ϕ0(g) ∈ Q, and h = χ(g′). The invariance condition (iii) in Definition 1.18 implies that χ

sends a normal subgroup of F0 to another normal subgroup. Thus χ(Q)·Q is also normal in F0, so χ(Q) = Q
since Q is the largest subgroup of S0 normal in F0, and thus h = χ(g′) ∈ Q.

We now turn to the specific examples of normal fusion subsystems which we work with in this paper. We
first look at those of p-power index and of index prime to p. Two other definitions are first needed. For any
saturated fusion system F , the focal subgroup foc(F) and the hyperfocal subgroup hyp(F) are defined by

foc(F) = 〈s−1t | s, t ∈ S are F-conjugate〉 = 〈s−1α(s) | s ∈ P ≤ S, α ∈ AutF (P )〉
hyp(F) = 〈s−1α(s) | s ∈ P ≤ S, α ∈ Op(AutF (P ))〉 .

Note that in [BCGLO2], we wrote OpF (S) = hyp(F).

The following definition also includes many fusion subsystems which are not normal.

Definition 1.21 [BCGLO2, Definition 3.1]. Let F be a saturated fusion system over a finite p-group
S, and let F0 ⊆ F be a saturated fusion subsystem over a subgroup S0 ≤ S.
(a) F0 has p-power index in F if hyp(F) ≤ S0 ≤ S, and AutF0(P ) ≥ Op(AutF (P )) for all P ≤ S0.

(b) F0 has index prime to p in F if S0 = S, and AutF0
(P ) ≥ Op′(AutF (P )) for all P ≤ S.

Recall that despite the terminology, these are not analogous to subgroups of a finite group of p-power
index or index prime to p. Instead, they are analogous to subgroups which contain a normal subgroup
having appropriate index.

The following theorem gives a complete description of all such fusion subsystems.

Theorem 1.22 [BCGLO2, Theorems 4.3 & 5.4]. The following hold for any saturated fusion system F
over a finite p-group S.
(a) For each subgroup S0 ≤ S containing the hyperfocal subgroup hyp(F), there is a unique fusion

subsystem F0 over S0 of p-power index in F . Thus F contains a proper fusion subsystem of p-power
index if and only if hyp(F) � S, or equivalently foc(F) � S.

(b) There is a subgroup Γ E OutF (S) with the following properties. For each subsystem F0 ⊆ F of index
prime to p, OutF0(S) ≥ Γ. Conversely, for each H ≤ OutF (S) containing Γ, there is a unique subsystem
F0 ⊆ F of index prime to p with OutF0(S) = H.

Proof. The only part not shown in [BCGLO2] is that hyp(F) � S implies foc(F) � S. By Theorem 1.3,

foc(F) = 〈s−1α(s) | s ∈ P ≤ S, P fully normalized in F , α ∈ AutF (P )〉 .

Since AutF (P ) = Op(AutF (P ))·AutS(P ) when P is fully normalized, and since s−1α(s) ∈ [S, S] when s ∈
P and α ∈ AutS(P ), we have foc(F) = hyp(F)·[S, S]. Also, hyp(F) � S implies there is Q E S such that
[S:Q] = p and hyp(F) ≤ Q. Then [S, S] ≤ Q since S/Q is abelian, and hence foc(F) ≤ Q � S.

In the situation of Theorem 1.22, a fusion subsystem of p-power index is normal in F exactly when its
underlying p-group is normal in S, and a fusion subsystem F0 ⊆ F of index prime to p is normal in F exactly
when AutF0

(S) is normal in AutF (S) (cf. [AKO, Theorems I.7.4 and I.7.7(c)]). But in fact, we will only be
concerned here (in Proposition 1.25(a,b)) with the minimal such fusion subsystems, defined as follows.

Definition 1.23. For any saturated fusion system F over a finite p-group S, Op(F) and Op
′
(F) denote

the unique minimal saturated fusion subsystems of p-power index over hyp(F), or of index prime to p over
S, respectively.
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We next recall the definitions of the normalizer fusion systems NK
F (Q) (cf. [Pg2, § 2.8] or [BLO2,

Definitions A.1, A.3]). For any group G, any subgroup Q ≤ G, and any K ≤ Aut(Q), define

NK
G (Q) =

{
g ∈ NG(Q)

∣∣ cg|Q ∈ K} .
For example, N

Aut(Q)
G (Q) = NG(Q) is the usual normalizer, and N

{Id}
G (Q) = CG(Q) is the centralizer.

Let F be a saturated fusion system over a finite p-group S, and fix Q ≤ S and K ≤ Aut(Q). We say
Q is fully K-normalized if for each Q∗ which is F-conjugate to Q and each ϕ ∈ IsoF (Q,Q∗), |NK

S (Q)| ≥
|NϕKϕ−1

S (Q∗)|. Let NK
F (Q) be the fusion system over NK

S (Q) defined by setting, for all P,R ≤ NK
S (Q),

HomNKF (Q)(P,R) =
{
ϕ ∈ HomF (P,R)

∣∣ ∃ϕ ∈ HomF (PQ,RQ),

ϕ|P = ϕ, ϕ(Q) = Q, ϕ|Q ∈ K
}
.

As special cases, CF (Q) = N
{Id}
F (Q) and NF (Q) = N

Aut(Q)
F (Q). By [Pg2, Proposition 2.15] or [AKO,

Theorem I.5.5], if Q is fully K-normalized in F , then NK
F (Q) is a saturated fusion system. If K ≥ Inn(Q),

then Q is normal in NK
F (Q) by definition.

This construction is motivated by the following proposition.

Proposition 1.24 [AKO, Proposition I.5.4]. Fix a finite group G and S ∈ Sylp(G), and set F = FS(G).
For Q ≤ S and K ≤ Aut(Q), Q is fully K-normalized in F if and only if NK

S (Q) ∈ Sylp(N
K
G (Q)). When this

is the case, then NK
F (Q) = FNKS (Q)(N

K
G (Q)).

We now give some examples of normal fusion subsystems: examples which will be important later in the
paper. The most obvious example is the inclusion FS0

(G0) ⊆ FS(G) when G0 E G are finite groups and
S0 = S ∩G0, but this case will be handled later (Proposition 1.28).

Proposition 1.25. The following hold for any saturated fusion system F over a finite p-group S.
(a) Op(F) E F .

(b) Op
′
(F) E F .

(c) For each Q E F and each K E Aut(Q), NK
F (Q) E F .

Proof. (a,b) See [AKO, Theorems I.7.4 & I.7.7].

(c) Assume g, h ∈ S are F-conjugate. Since Q E F , there is ϕ ∈ HomF (〈Q, g〉, 〈Q, h〉) such that ϕ(g) = h
and ϕ(Q) = Q. Set ϕ0 = ϕ|Q ∈ AutF (Q). Then ch = ϕ0cgϕ

−1
0 in AutF (Q). Since K E Aut(Q), g ∈ NK

S (Q)
(i.e., cg ∈ K) if and only if h ∈ NK

S (Q). This proves that NK
S (Q) is strongly closed in F .

Set AutKS (Q) = K ∩AutS(Q) and AutKF (Q) = K ∩AutF (Q). Fix P,R ≤ NK
S (Q) and ϕ ∈ HomF (P,R).

Since Q E F , there is ϕ̂ ∈ HomF (QP,QR) such that ϕ̂|P = ϕ and ϕ̂(Q) = Q. Set ϕ0 = ϕ̂|Q ∈ AutF (Q). Since
K E Aut(Q) and AutS(Q) ∈ Sylp(AutF (Q)), AutKS (Q) ∈ Sylp(AutKF (Q)). Since ϕ0AutKS (Q)ϕ−1

0 is contained

in AutKF (Q) (again since K is normal), there is χ ∈ AutKF (Q) such that

(χϕ0)AutKS (Q)(χϕ0)−1 = AutKS (Q) .

By the extension axiom, there is ϕ ∈ HomF (NK
S (Q)·Q,S) such that ϕ|Q = χϕ0. Furthermore, ϕ(NK

S (Q)) =
NK
S (Q) since χϕ0 normalizes AutKS (Q).

Set P1 = ϕ(P ), ψ̂ = ϕ̂ ◦ (ϕ|PQ,P1Q)−1 ∈ HomF (P1Q,RQ), and ψ = ψ̂|P1,R. Then ψ̂|Q = χ−1, so ψ ∈
HomNKF (Q)(P1, R), and ϕ = ψ ◦ ϕ|P,P1

. This proves condition (ii) in Definition 1.18. The last condition —

the subsystem NK
F (Q) is invariant under conjugation by elements of AutF (NK

S (Q)) — is clear.

We just showed that Op
′
(F) is normal in F for any F . The following lemma can be thought of as a

“converse” to this.

Lemma 1.26. Assume F0 E F is a normal pair of fusion systems over the same finite p-group S. Then
F0 has index prime to p in F , and thus F0 ⊇ Op

′
(F).
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Proof. If P,Q ≤ S are F-conjugate, then by condition (ii) in Definition 1.18, P is F0-conjugate to α(Q)
for some α ∈ AutF (S). Since |NS(Q)| = |NS(α(Q))|, this shows that P is fully normalized in F0 if and only
if it is fully normalized in F .

If P ≤ S is fully normalized in F0 (and hence in F), then AutF0
(P ) contains AutS(P ) ∈ Sylp(AutF (P )).

Also, since AutF0(P ) is normal in AutF (P ) by Lemma 1.20(b), AutF0(P ) contains Op
′
(AutF (P )). Since this

property depends only on the isomorphism class of P in F0, it holds for all P ≤ S. So F0 has index prime
to p in F by Definition 1.21(b).

1.5. Normal linking subsystems

The following definition of a normal linking subsystem seems to be the most appropriate one for our needs
here; it is also the one used in [O3]. In the following definition (and elsewhere), whenever we say that L0 ⊆ L
is a pair of linking systems associated to F0 ⊆ F (or L0 is a linking subsystem), it is understood not only
that L0 is a subcategory of L, but also that the structural functors for L0 are the restrictions of the structural

functors TOb(L)(S)
δ−−−→ L π−−−→ F for L.

Definition 1.27. Fix a pair of saturated fusion systems F0 ⊆ F over finite p-groups S0 E S such that
F0 E F , and let L0 ⊆ L be a pair of associated linking systems. Then L0 is normal in L (L0 E L) if
(i) Ob(L) = {P ≤ S |P ∩ S0 ∈ Ob(L0)};

(ii) for all P,Q ∈ Ob(L0) and ψ ∈ MorL(P,Q), there are morphisms γ ∈ AutL(S0) and ψ0 ∈
MorL0

(γ(P ), Q) such that ψ = ψ0 ◦ γ|P,γ(P ); and

(iii) for all γ ∈ AutL(S0) and ψ ∈ Mor(L0), γψγ−1 ∈ Mor(L0).
Here, for P,Q ∈ Ob(L0), and ψ ∈ MorL0

(P,Q), we write γ(P ) = π(γ)(P ), γ(Q) = π(γ)(Q), and

γψγ−1 = γ|Q,γ(Q) ◦ ψ ◦ (γ|P,γ(P ))
−1 ∈ MorL(γ(P ), γ(Q))

for short. For any such pair L0 E L, the quotient group L/L0 is defined by setting

L/L0 = AutL(S0)/AutL0(S0).

Also, L0 is centric in L if for each γ ∈ AutL(S0)rAutL0(S0), there is ψ ∈ Mor(L0) such that γψγ−1 6= ψ.

In the situation of Definition 1.27, we will sometimes say that L0 E L is a normal pair of linking systems
associated to F0 E F , or just that (S0,F0,L0) E (S,F ,L) is a normal pair.

One source of normal pairs of linking systems is a normal pair of finite groups; at least, under certain
conditions.

Proposition 1.28. Fix a pair G0 E G of finite groups, choose S ∈ Sylp(G), and set S0 = S ∩G0 ∈
Sylp(G0). Then FS0

(G0) E FS(G). Assume in addition that H0 and H are sets of subgroups of S0 and S,

respectively, such that LH0

S0
(G0) and LHS (G) are linking systems associated to FS0(G0) and FS(G), and such

that H = {P ≤ S |P ∩ S0 ∈ H0}. Then LH0

S0
(G0) E LHS (G).

Proof. Fix P,Q ≤ S0 and g ∈ NG(P,Q). Then gS0g
−1 is another Sylow p-subgroup of G0, so there is

some h ∈ G0 such that (h−1g)S0(h−1g)−1 = S0. Set a = h−1g; thus g = ha where a ∈ NG(S0) and h ∈ G0.
Thus cg = ch ◦ ca ∈ HomG(P,Q), where ca ∈ AutG(S0) and ch ∈ HomG0

(aPa−1, Q). This proves condition
(ii) in the definition of a normal fusion system; and condition (ii) in Definition 1.27 follows in a similar way.
The other conditions clearly hold.

When (S0,F0,L0) E (S,F ,L) is a normal pair, then for each γ ∈ AutL(S0), we let cγ ∈ Aut(L0) denote the
automorphism which sends P to γ(P ) = π(γ)(P ) and sends ψ ∈ MorL0(P,Q) to (γ|Q,γ(Q)) ◦ ψ ◦ (γ|P,γ(P ))

−1.
The next lemma describes how to tell, in terms only of the fusion system F , whether or not cδ(g) = IdL0

for
g ∈ S (δ = δS0

).
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When L is a linking system associated to F , and A E F , we say that an automorphism α of L is the identity
modulo A if for each P,Q ∈ Ob(L) which contain A and each ψ ∈ MorL(P,Q), α(P ) = P , α(Q) = Q, and
α(ψ) = ψ ◦ δP (a) for some a ∈ A.

Lemma 1.29. Let (S0,F0,L0) E (S,F ,L) be a normal pair such that all objects in L are F-centric. Fix
A E F0. Then for g ∈ S, cδ(g) ∈ Aut(L0) is the identity modulo A if and only if [g, S0] ≤ A, and for each
P,Q ≤ S0 and ϕ ∈ MorF0(P,Q), ϕ extends to some ϕ ∈ MorF (〈PA, g〉, 〈QA, g〉) such that ϕ(g) ∈ gA.

Proof. Fix g ∈ S. Set γ = δS0
(g) and B = 〈g,A〉 for short.

Assume cγ ∈ Aut(L0) is the identity modulo A. Then [g, S0] ≤ A since [γ, δS0
(s)] ∈ δS0

(A) for s ∈ S0

(and δS0 is injective by Proposition 1.11(c)). Since F0 is generated by morphisms between objects of L0

which contain A (by Theorem 1.3 and Proposition 1.5, and since A E F0), it suffices to prove the extension
property for such morphisms. Fix P,Q ∈ Ob(L0) such that A ≤ P and A ≤ Q, fix ϕ ∈ HomF0

(P,Q), and
choose a lifting of ϕ to ψ ∈ MorL0

(P,Q). By assumption, δQ(g) ◦ ψ ◦ δP (g)−1 = ψ ◦ δP (a) for some a ∈ A. So

by Proposition 1.11(e), there is a unique morphism ψ ∈ MorL(PB,QB) such that ψ|P,Q = ψ, and δQB(g) ◦

ψ ◦ δPB(ag)−1 = ψ by the uniqueness of the extension. Set ϕ = π(ψ); then ϕ ∈ HomF (PB,QB), ϕ|P = ϕ,
and ϕ(ag) = g (so ϕ(g) ∈ gA) by axiom (C).

Now assume [g, S0] ≤ A, and g has the above extension property: each ϕ ∈ HomF0(P,Q) extends to ϕ ∈
HomF (PB,QB) such that ϕ(g) ∈ gA. We claim cγ ∈ Aut(L0) is the identity modulo A. Since [g, S0] ≤ A,
gPg−1 = P for all P ∈ Ob(L0) which contain A. Fix ψ ∈ MorL0

(P,Q), where A ≤ P,Q. By assumption,
π(ψ) extends to some ϕ ∈ HomF (PB,QB) such that ϕ(g) ∈ gA, and this lifts to ψ̂ ∈ MorL(PB,QB). Since
P is F-centric, ψ̂|P,Q = ψ ◦ δP (x) for some x ∈ Z(P ). Upon replacing ψ̂ by ψ̂ ◦ δPB(x)−1 and ϕ by ϕ ◦ c−1

x ,

we can assume ψ̂|P,Q = ψ. By axiom (C), the conjugation action of δS(g) fixes ψ̂ modulo δPB(A), and hence
cγ ∈ Aut(L0) sends ψ into ψ ◦ δP (A).

The next lemma describes another way to construct normal pairs of linking systems.

Lemma 1.30. Fix a normal pair of fusion systems F0 E F over p-groups S0 E S. Let H0 be a set of
subgroups of S0 such that

– H0 is closed under F-conjugacy and overgroups, and contains all subgroups of S0 which are F0-centric
and F0-radical; and

– H def
= {P ≤ S |P ∩ S0 ∈ H0} is contained in the set of F-centric subgroups.

Assume F has an associated centric linking system Lc. Let L ⊆ Lc be the full subcategory with object set
H. Let L0 ⊆ L be the subcategory with object set H0, where for P,Q ∈ H0,

MorL0
(P,Q) = {ψ ∈ MorL(P,Q) |π(ψ) ∈ HomF0

(P,Q)} . (3)

Then L0 E L is a normal pair of linking systems associated to F0 E F . For any such pair L0 E L with
Ob(L0) = H0 and Ob(L) = H, L0 is centric in L.

Proof. Since Ob(L) is closed under F-conjugacy and under overgroups, and contains all subgroups which
are F-centric and F-radical by Lemma 1.20(d) and the assumptions on H0, L is a linking system associated
to F . Since all objects in L0 are F-centric, they are also F0-centric, and hence fully centralized in F0. Axiom
(A) for L0 thus follows from axiom (A) for L, together with the assumptions on H0 = Ob(L0). Axioms (B)
and (C) for L0 follow immediately from those for L, and L0 is thus a linking system associated to F0.

Condition (i) in Definition 1.27 holds by assumption, while conditions (ii) and (iii) follow from (3) and
since F0 is normal in F . Thus L0 E L.

Fix any such pair L0 E L associated to F0 E F . Assume γ ∈ AutL(S0) is such that γψγ−1 = ψ for each
ψ ∈ Mor(L0). Since γ(δS0(g))γ−1 = δS0(π(γ)(g)) for g ∈ S0 by axiom (C) for the linking system L, π(γ) =
IdS0

. Since S0 ∈ H0 is F-centric, this means that γ = δS0
(z) for some z ∈ Z(S0), and in particular, that

γ ∈ AutL0
(S0). So L0 is centric in L.

We now list the examples of normal pairs of linking systems which motivated Definition 1.27, and which
we need to refer to later.
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Proposition 1.31. Let F be a saturated fusion system over the finite p-group S, let F0 E F be a normal
fusion subsystem over S0 E S, and let H0 be a set of subgroups of S0. Assume that F has an associated
centric linking system Lc, and that one of the following three conditions holds.
(a) F0 = Op(F), S0 = hyp(F), and H0 is the set of F0-centric subgroups of S0.

(b) F0 = Op
′
(F), S0 = S, and H0 is the set of F0-centric subgroups of S0.

(c) For some normal p-subgroup Q E F and some normal subgroup K E Aut(Q) containing Inn(Q), F0 =
NK
F (Q), S0 = NK

S (Q), and H0 is the set of all F0-centric subgroups of S0 which contain Q.
Set H = {P ≤ S |P ∩ S0 ∈ H0}. Then there is a normal pair of linking systems L0 E L associated to F0 E F
with Ob(L0) = H0 and Ob(L) = H. For any such normal pair L0 E L, L0 is centric in L in cases (b) and
(c), and in case (a) if Z(F) = 1. Furthermore, in cases (a) and (b), and in case (c) if Q = Op(F) and
K = Inn(Q), H0 is Aut(S0,F0)-invariant, H is Aut(S,F)-invariant, and L0 E L can be chosen such that L0

is AutItyp(L)-invariant.

Proof. In all cases, F0 E F by Proposition 1.25. Also, H0 is Aut(S0,F0)-invariant and H is Aut(S,F)-
invariant: this is clear in cases (a) and (b), and holds in case (c) when Q = Op(F) (since Q = Op(F0) by
Lemma 1.20(e)).

(a) Set S0 = hyp(F), F0 = Op(F), and H0 = Ob(Fc0). By [BCGLO2, Theorem 4.3(a)], a subgroup of S0

is F0-quasicentric if and only if it is F-quasicentric. In particular, every F0-centric subgroup of S0 is F-
quasicentric and hence all subgroups in H are F-quasicentric. By Lemma 1.20(d), H contains all subgroups
which are F-centric and F-radical. By Lemma 1.20(c), H0 is closed under F-conjugacy, so H is closed under
F-conjugacy (and it is clearly closed under overgroups). Hence if Lq ⊇ Lc is the quasicentric linking system
which contains Lc constructed in [BCGLO1, Proposition 3.4], then the full subcategory L ⊆ Lq with object
set H is also a linking system associated to F .

By [BCGLO2, Proposition 2.4], there is a unique map λ : Mor(Lq) −−−→ S/S0 which sends composites
to products and inclusions in Lq to the identity, and such that λ(δS(g)) = [g] for all g ∈ S. By [BCGLO2,
Theorem 3.9], there is a p-local finite group (S0,F ′0,L0) where for P,Q ∈ Ob(L0),

MorL0
(P,Q) = {ψ ∈ MorLq (P,Q) |λ(ψ) = 1} . (4)

Furthermore, F ′0 is constructed using [BCGLO2, Proposition 3.8] (cf. the proof of [BCGLO2, Theorem
3.9]), and hence (by part (b) of that proposition) it has p-power index in F . Thus F ′0 = F0 by Theorem
1.22(a).

Now, Ob(L0) = H0 since L0 is a centric linking system. Condition (i) in Definition 1.27 holds for L0 ⊆ L
by definition of H, condition (iii) (γL0γ

−1 = L0 for γ ∈ AutL(S0)) holds by construction, and condition (ii)
holds since λ|δS0 (S) is surjective. So L0 E L.

We next check that L0 is AutItyp(L)-invariant. Fix α ∈ AutItyp(L) and set β = µ̃L(α) ∈ Aut(S,F). Then
β(S0) = S0 since S0 = hyp(F), and β|S0 ∈ Aut(S0,F0) by the uniqueness of F0 (Theorem 1.22(a) again).
Since α(P ) = β(P ) for P ∈ Ob(L0) (Lemma 1.15), α sends Ob(L0) = H0 to itself. By Lemma 1.17, α = α|L
for some α ∈ AutItyp(Lq), λ ◦ α = β ◦ λ (where β ∈ Aut(S/S0) is induced by β) by the uniqueness of λ, and
hence α(Mor(L0)) = Mor(L0) by (4).

Now let L0 E L be any normal pair of linking systems associated to F0 E F with these objects. Assume
Z(F) = 1; we must show L0 is centric in L. Assume γ ∈ AutL(S0) is such that γψγ−1 = ψ for each ψ ∈
Mor(L0). Since γ(δS0(g))γ−1 = δS0(π(γ)(g)) for g ∈ S0 by axiom (C) for the linking system L, π(γ) = IdS0 .
So by axiom (A) (and since S0 is fully centralized in F), γ = δS0(h) for some h ∈ CS(S0).

Let H ≤ CS(S0) be the subgroup of all h such that the conjugation action of δS0
(h) on L0 is trivial. The

p-group L/L0 = AutL(S0)/AutL0
(S0) acts on δS0

(H) ∼= H by conjugation. Let H0 be the fixed subgroup of
this action. Note that H0 ≤ Z(S) since H0 is fixed by δS0

(S) ≤ AutL(S0). Fix h ∈ H0, and set γ̄ = δS(h). Let
γ̄(P ) and γ̄ψγ̄−1 be as in Definition 1.27, but this time for all P ∈ Ob(L) and ψ ∈ Mor(L). For P ∈ Ob(L),
γ̄(P ) = hPh−1 = P . Also, γ̄ψγ̄−1 = ψ for all ψ ∈ AutL(S0) by definition of H0, γ̄ψγ̄−1 = ψ for ψ ∈ Mor(L0)
by definition of H, and hence conjugation by γ̄ is the identity on morphisms in L between subgroups
in H0 by condition (ii) in Definition 1.27. By Proposition 1.11(f), for each P,Q ∈ H, the restriction map
from MorL(P,Q) to MorL(P ∩ S0, Q ∩ S0) is injective, and hence γ̄ψγ̄−1 = ψ for all ψ ∈ MorL(P,Q). Thus
conjugation by γ̄ = δS(h) is the identity on L, and so h ∈ Z(F) = 1 by Lemma 1.14(a). Since H0 = 1 is the
fixed subgroup of an action of the p-group L/L0 on the p-group H, H = 1, and so L0 is centric in L.

(b) Set F0 = Op
′
(F). By [BCGLO2, Proposition 3.8(c)], a subgroup of S is F0-centric if and only if it

is F-centric. So upon letting H0 = H be the set of all F-centric subgroups of S, the hypotheses of Lemma
1.30 are satisfied. By the lemma, there is a normal pair L0 E L of linking systems associated to F0 E F with
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object set H0 = H; and for any such pair, L0 is centric in L. By the explicit description of L0 (formula (3)
in Lemma 1.30), L0 is AutItyp(L)-invariant.

(c) Fix Q E F and Inn(Q) ≤ K E Aut(Q), and set S0 = NK
S (Q) and F0 = NK

F (Q). Let H0 be the set of all
F0-centric subgroups of S0 which contain Q. We first check that all subgroups in H = {P ≤ S |P ∩ S0 ∈ H0}
are F-centric; it suffices to show this for subgroups in H0. By Lemma 1.20(c) (and since F0 E F), the
set of F0-centric subgroups, and hence also the set H0, are closed under F-conjugacy. For each P ∈ H0,
CS(P ) ≤ CS(Q) ≤ S0 since P ≥ Q, and hence CS(P ) = CS0(P ) = Z(P ) since P is F0-centric. Since this
holds for all subgroups F-conjugate to P , we conclude that P is F-centric.

We just saw that H0 is closed under F-conjugacy, and it is clearly closed under overgroups. Since Q E F0,
each subgroup of S0 which is F0-centric and F0-radical contains Q by Proposition 1.5, and thus lies in H0.
So by Lemma 1.30, there is a normal pair L0 E L of linking systems associated to F0 E F with object sets
H0 and H, and for any such pair, L0 is centric in L. If Q = Op(F) and K = Inn(Q), then Q = Op(F0) by
Lemma 1.20(e), and so F0 is Aut(S,F)-invariant. Hence L0 is AutItyp(L)-invariant by the explicit description
of L0 in Lemma 1.30.

2. Reduced fusion systems and tame fusion systems

Throughout this section, p denotes a fixed prime, and we work with fusion systems over finite p-groups.
We first define reduced fusion systems and the reduction of a fusion system. We then define tame fusion
systems, and prove that a reduced fusion system is tame if every saturated fusion system which reduces to it
is realizable (Theorem B). We then make a digression to look at the existence of linking systems in certain
situations, before proving that all fusion systems whose reduction is tame are realizable (Theorem A). We
thus end up with a way to “detect” exotic fusion systems in general while looking only at reduced fusion
systems.

2.1. Reduced fusion systems and reductions of fusion systems

We begin with the definition of a reduced fusion system, and the reduction of an (arbitrary) fusion system.
See Proposition 1.8 and the discussion before that for the definition and properties of quotient fusion systems.

Definition 2.1. A reduced fusion system is a saturated fusion system F such that

– F has no nontrivial normal p-subgroups,

– F has no proper normal subsystem of p-power index, and

– F has no proper normal subsystem of index prime to p.

Equivalently, F is reduced if Op(F) = 1, Op(F) = F , and Op
′
(F) = F .

For any saturated fusion system F , the reduction of F is the fusion system red(F) defined as follows.
Set F0 = CF (Op(F))/Z(Op(F)), and let F0 ⊇ F1 ⊇ F2 ⊇ · · · ⊇ Fm be such that Fi = Op(Fi−1) if i is odd,
Fi = Op

′
(Fi−1) if i is even, and Op(Fm) = Op

′
(Fm) = Fm. Then red(F) = Fm.

Fix any F , and set Q = Op(F) for short. By definition of centralizer fusion systems, every morphism in
CF (Q) extends to a morphism in F which is the identity on Q, and hence to a morphism in CF (Q) which is
the identity on Z(Q). This proves that Z(Q) is always central in CF (Q), and hence that F0 = CF (Q)/Z(Q)
is well defined as a fusion system.

What is important in the last part of the definition of red(F) is that we give an explicit procedure for
successively applying Op(−) and Op

′
(−), starting with F0, until neither makes the fusion system any smaller.

It seems likely that the final result red(F) is independent of the order in which we apply these reductions,
but we have not shown this, and do not need to know it when proving the results in this section.

Clearly, for these definitions to make sense, we want red(F) to always be reduced.
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Proposition 2.2. The reduction of any saturated fusion system is reduced.

For later reference, we also state the following, more technical result, which will be proven together with
Proposition 2.2.

Lemma 2.3. Let F be a saturated fusion system. Set Q = Op(F) and F0 = CF (Q)/Z(Q). Let F0 ⊇
F1 ⊇ · · · ⊇ Fm = red(F) be such that for each i, Fi = Op(Fi−1) or Fi = Op

′
(Fi−1). Then Op(Fi) = 1 for

each 0 ≤ i ≤ m.

Proof. Fix F , and let Q E F and the Fi be as above. Since CF (Q) E F by Proposition 1.25(c),
Op(CF (Q)) ≤ Op(F) = Q by Lemma 1.20(e). Hence Op(CF (Q)) = Z(Q). We just saw that Z(Q) is central
in CF (Q). So by Proposition 1.8, a subgroup P/Z(Q) ≤ CS(Q)/Z(Q) is normal in CF (Q)/Z(Q) only if
P E CF (Q). Thus Op(F0) = Z(Q)/Z(Q) = 1.

By definition, Op(red(F)) = Op
′
(red(F)) = red(F). By Proposition 1.25(a,b), Fi E Fi−1 for each i ≥ 1. So

by Lemma 1.20(e) again, Op(Fi) = 1 if Op(Fi−1) = 1. Since Op(F0) = 1, this proves that Op(Fi) = 1 for
each i. In particular, Op(red(F)) = 1, and hence red(F) is reduced.

A saturated fusion system F is constrained if there is a normal subgroup Q E F which is F-centric (cf.
[BCGLO1, § 4]).

Proposition 2.4. For any saturated fusion system F , red(F) = 1 (the fusion system over the trivial
group) if and only if F is constrained.

Proof. If F is constrained, then clearly red(F) = 1. Conversely, assume F is a fusion system over a finite
p-group S such that red(F) = 1. Set Q = Op(F) and F0 = CF (Q)/Z(Q). If F0 = 1, then CF (Q) is a fusion
system over Z(Q), and hence CS(Q) = Z(Q). So Q is F-centric, and hence F is constrained in this case.

If F0 6= 1, then there is a sequence of fusion subsystems 1 = Fm $ Fm−1 $ · · · $ F0 such that for each
i, Fi+1 = Op(Fi) or Fi+1 = Op

′
(Fi). By Lemma 2.3, Op(Fi) = 1 for each 0 ≤ i ≤ m. Since Fm−1 6= 1, it is

a fusion system over a p-group Sm−1 6= 1, so Op
′
(Fm−1) 6= 1 (it is over the same p-group), which implies

Op(Fm−1) = 1. Thus hyp(Fm−1) = 1 by Definition 1.21(a), so there are no nontrivial automorphisms of order
prime to p in Fm−1, and Fm−1 is the fusion system of the p-group Sm−1. This is impossible, since it would
imply Op(Fm−1) = Sm−1 6= 1, and we conclude F0 = 1.

2.2. Tame fusion systems and the proof of Theorem B

Assume F = FS(G) for some finite group G with S ∈ Sylp(G). Let H be an Aut(G,S)-invariant set of

G-quasicentric subgroups of S such that L def
= LHS (G) is a linking system associated to F (i.e. H is closed

under overgroups and contains all F-centric F-radical subgroups). Define the homomorphism

κ̃HG :Aut(G,S) −−−−−−→ AutItyp(L)

as follows. For β ∈ Aut(G,S), κ̃HG(β) sends P to β(P ) and sends [a] ∈ MorL(P,Q) (for a ∈ NG(P,Q)) to
[β(a)].

For any g ∈ NG(S), κ̃HG sends cg ∈ Aut(G,S) to c[g] ∈ AutItyp(L), where [g] ∈ AutL(S) is the class of g.
Thus by Lemma 1.14, κ̃HG induces a homomorphism

κHG : Out(G) −−−−−−→ Outtyp(L)

by sending the class of β to the class of κ̃HG(β). When L = LcS(G) is the centric linking system of G, we write
κ̃G = κ̃HG and κG = κHG for short.

Note that when F = FS(G) and L = LHS (G) as above, µ̃HG ◦ κ̃
H
G : Aut(G,S) −−−→ Aut(S,F) is the

restriction homomorphism.
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Definition 2.5. A saturated fusion system F over S is tame if there is a finite group G which satisfies:
– S ∈ Sylp(G) and F ∼= FS(G); and

– κG : Out(G) −−−−→ Outtyp(LcS(G)) is split surjective.
In this situation, we say F is tamely realized by G.

The condition that κG be split surjective was chosen since, as we will see shortly, that is what is needed
in the proof of Theorem B. In contrast, Theorem A would still be true (with essentially the same proof) if
we replaced “split surjective” by “an isomorphism” in the above definition.

By Lemma 1.17, Outtyp(LcS(G)) ∼= Outtyp(LHS (G)) for any Aut(S,F)-invariant set of objects H (which
satisfies the conditions for LHS (G) to be a linking system). Hence Ker(κHG) = Ker(κG), and κHG is (split)
surjective if and only if κG is.

By [BLO1, Theorem B], κG is split surjective if and only if the natural map from Out(G) to Out(BG∧p )
is split surjective, where Out(BG∧p ) is the group of homotopy classes of self equivalences of BG∧p . So this
gives another way to formulate the definition of tameness.

It is natural to ask whether a tame fusion system F can always be realized by a finite group G such that
κG is an isomorphism. We know of no counterexamples to this, but do not know how to prove it either.

We are now ready to prove Theorem B: every reduced fusion system which is not tame is the reduction of
some exotic fusion system. This is basically a consequence of the definition of tameness, together with [O3,
Theorem 9] which gives a general procedure for constructing extensions of linking systems.

Theorem 2.6. Let F be a reduced fusion system which is not tame. Then there is an exotic fusion
system F whose reduction is isomorphic to F .

Proof. If F is itself exotic, then we take F = F . So assume F is the fusion system of a finite group, and
hence that F has at least one associated centric linking system L. Assume L is chosen such that |Outtyp(L)| is
maximal among all centric linking systems associated to F . (All such linking systems are isomorphic to each
other by [BLO2, Proposition 3.1] and Theorem A in [O1, O2], but since those results use the classification
of finite simple groups, we will not use them here.) Since F is not tame, it is not the fusion system of any
finite group H for which κH is split surjective.

Since Z(F) = 1 (F is reduced), we can identify AutL(S) as a normal subgroup of AutItyp(L) via its

conjugation action on L (Lemma 1.14(a)). Thus Outtyp(L) = AutItyp(L)/AutL(S). Let A be any finite abelian
p-group on which Outtyp(L) acts faithfully, and let

ν : AutItyp(L) −−−→ Aut(A)

denote the given action. Thus Ker(ν) = AutL(S).
Set S0 = A× S and F0 = A×F (= FA(A)×F). We refer to the beginning of Section 3, or to [BLO2, § 1],

for the definition of the product of two fusion systems. Set L0 = A× L: the centric linking system associated
to F0 whose objects are the subgroups A× P ≤ S0 for P ∈ Ob(L), and where MorL0

(A× P,A×Q) =
A×MorL(P,Q).

Set Γ0 = AutL0
(S0) = A×AutL(S). Set Γ = AoAutItyp(L): the semidirect product taken with respect

to the action ν of AutItyp(L) on A. Thus Γ0 embeds as a normal subgroup of Γ, and Γ/Γ0
∼= Outtyp(L). To

avoid confusion, an element ψ ∈ AutL(S) will be written cψ when regarded as an element of Γ0 E Γ.
We claim the given Γ-action on L0 satisfies the hypotheses of [O3, Theorem 9]. This means checking that

the following diagram commutes:

A×AutL(S) = Γ0
conj

//

incl

��

AutItyp(L0) = AutItyp(A× L)

(α 7→αA×S)

��

AoAutItyp(L) = Γ
conj

//

τ

::ttttttttttt
Aut(Γ0) ,

where τ sends (a, γ) ∈ AoAutItyp(L) to (ν(γ), γ) ∈ AutItyp(A× L). For ψ ∈ AutL(S), ν(cψ) = IdA, so
τ(a, cψ) = (Id, cψ), which shows that the upper triangle commutes. As for the lower triangle, for (a, γ) ∈ Γ
and (b, cψ) ∈ Γ0,

τ(a, γ)(b, cψ) = (ν(γ)(b), cγ(ψ)) = (ν(γ)(b)·a, cγ(ψ) ◦ γ)(a, γ)−1 = (a, γ)(b, cψ)(a, γ)−1



Page 22 of 56 KASPER ANDERSEN, BOB OLIVER, AND JOANA VENTURA

(since cγ(ψ) = γ ◦ cψ ◦ γ
−1); and thus the lower triangle commutes.

Fix S ∈ Sylp(Γ). We identify S0 = Op(Γ0) (via δS0
), and hence S0 E S. Since

CΓ(S0) = CΓ(A× S) = CΓ0
(A× S) = A× CAutL(S)(S) = A× Z(S)

is a p-group, and since all objects in L0 are F0-centric by construction, [O3, Theorem 9] shows that there

exists a saturated fusion system F over S and an associated linking system L such that (S0,F0,L0) E
(S,F ,L) and AutL(S0) = Γ with the action on L0 given by τ . In particular,

AutF (S0) = AutΓ(S0) =
{

(ν(γ), µ̃L(γ))
∣∣ γ ∈ AutItyp(L)

}
. (1)

Assume F is realizable: the fusion system of a finite group G. Since A is central in F0, Op(F0)/A is normal
in F0/A ∼= F by Proposition 1.8. Since Op(F) = 1 (F is reduced), this shows that Op(F0) = A. By Lemma

1.20(e) we then get A E F . By Proposition 1.24 we have F ∼= F
S

(G) = F
S

(N
G

(A)). Upon replacing G by

N
G

(A), we may assume A E G.
Set G0 = C

G
(A) and G = G0/A. Assume the following two statements hold:

(i) A = Op(F) and CF (A) = F0.

(ii) The composite

ξ : Aut
G

(A) ∼= G/G0
conj−−−−−→ Out(G)

κG−−−−−→ Outtyp(LcS(G))

is injective.
We now finish the proof of the theorem, assuming (i) and (ii).

By (i), CF (Op(F))/Z(Op(F)) = F0/A ∼= F . Since Op(F) = Op
′
(F) = F , this shows red(F) ∼= F . Also,

S0 = C
S

(A) ∈ Sylp(CG(A)) since F0 = CF (A). Hence by Proposition 1.24 (applied with K = 1), F0 =
CF (A) = FS0(C

G
(A)), and so

F ∼= F0/A ∼= FS0/A(G0/A) ∼= FS(G) .

By condition (ii) in Definition 1.18 (applied to F0 E F), and since A E F and A ≤ S0, each ϕ ∈ AutF (A) has
the form ϕ = ϕ0 ◦ α|A,A for some α ∈ AutF (S0) = AutΓ(S0) and some ϕ0 ∈ AutF0

(A). Also, AutF0
(A) = 1

by definition, and thus

Aut
G

(A) = AutF (A) = AutΓ(A) ∼= Γ/Γ0
∼= Outtyp(L) .

So by (ii), there is a homomorphism s from Outtyp(L) to Out(G) such that κG ◦ s is injective. Since L
was chosen with |Outtyp(L)| maximal, κG ◦ s is an isomorphism, so κG is split surjective, contradicting the

assumption that F is not tame. We conclude that F is exotic (and red(F) ∼= F).
It remains to prove (i) and (ii).

Proof of (i): For each P ∈ Ob(L), P0 = P ∩ S0 ∈ Ob(L0) since L0 E L, so P0 = A×Q for some Q ≤ S
which is F-centric. Then C

S
(P ) ≤ C

S
(A) = S ∩ CΓ(A) = S ∩ Γ0 = S0, so C

S
(P ) ≤ A× Z(Q) ≤ P . Since

this holds for all subgroups F-conjugate to P , all objects in L are F-centric.
Set B = Op(F). We already saw that A = Op(F0). Hence B ∩ S0 = A by Lemma 1.20(e). Since B E S

and S0 E S, it follows that [B,S0] ≤ A.

Since A E F0 and B E F , each ϕ ∈ HomF0(P,Q) can be extended to a morphism ϕ ∈ HomF (PB,QB)
such that ϕ|PA ∈ HomF0

(PA,QA) and ϕ(B) = B. Then ϕ|A = IdA. Hence for each g ∈ B, g and ϕ(g) have
the same conjugation action on A, and g−1ϕ(g) ∈ CB(A) = B ∩ C

S
(A) = B ∩ S0 = A. By Lemma 1.29,

cδ(g) = τ(δS0(g)) ∈ AutItyp(L0) is the identity modulo A, and thus g ∈ A by definition of τ . So B = Op(F) =
A.

Since C
S

(A) = S0, F0 and CF (A) are both fusion systems over S0. Also, F0 ⊆ CF (A) since A is central
in F0. To see that CF (A) = F0, fix P,Q ≤ S0 and ϕ ∈ HomCF (A)(P,Q). By definition, ϕ extends to ϕ ∈
HomF (AP,AQ) with ϕ(A) = A and ϕ|A = IdA. Since F0 E F , condition (ii) in Definition 1.18 shows that
there are α ∈ AutF (S0) and ϕ0 ∈ HomF0

(α(AP ), AQ) such that ϕ = ϕ0 ◦ α|AP,α(AP ). For each a ∈ A, α(a) =

ϕ−1
0 (ϕ(a)) = a, and thus α|A = IdA. Hence

α ∈
{
β ∈ AutF (S0)

∣∣β|A = IdA
}

= {IdA} ×AutF (S) = AutF0
(S0) ,

where the first equality holds by (1) (and since µ̃L(AutL(S)) = AutF (S)). Thus α ∈ AutF0
(S0), so ϕ ∈

Mor(F0), and hence also ϕ ∈ Mor(F0). This proves that CF (A) = F0.

Proof of (ii): Set

L∗ = LcS(G), L∗0 = LH0

S0
(G0) = LcS0

(G0), and L∗ = LH
S

(G) ,
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where H0 = Ob(L0) and H = Ob(L). Note that (S0,F0,L∗0) E (S,F ,L∗) by Proposition 1.28. Let

cj : G −−−→ Aut(G) denote the conjugation action of G on G. Set

H =
{
g ∈ N

G
(S0)

∣∣ κ̃G(cj(g)) = IdL∗
}

and T = H ∩ S .

We first claim T = A. By [BCGLO2, Theorem 6.8], L∗0/A is a centric linking system associated to F0/A ∼=
F . Hence the natural functor L∗0/A −−−→ L∗ (induced by the projection G0 −−−→ G) is an isomorphism, since

it commutes with the structure functors. So for g ∈ S, g ∈ T if and only if cδ(g) ∈ AutItyp(L∗0) is the identity

modulo A, in the sense of Lemma 1.29. We showed in the proof of (i) that each P ∈ Ob(L∗) = Ob(L) is

F-centric. Hence by Lemma 1.29, applied to both normal pairs (S0,F0,L0) E (S,F ,L) and (S0,F0,L∗0) E
(S,F ,L∗), g ∈ T if and only if cδ(g) ∈ AutItyp(L0) is the identity modulo A; i.e., induces the identity on L.

By definition of S ≤ Γ = AoAutItyp(L), this is the case exactly when g ∈ A.

Thus H is a normal subgroup of N
G

(S0) whose intersection with its Sylow p-subgroup S is A. It follows
that H/A has order prime to p. We claim that H ≤ G0. Fix h ∈ H of order prime to p. Then cj(h) ∈ Aut(G)
acts via the identity on S = S0/A, so [h, S0] ≤ A. Hence by (1), ch = (ν(γ), IdS) ∈ Aut

G
(S0) for some γ ∈

AutItyp(L) such that γ ∈ Ker(µ̃L). Since Ker(µL) is a p-group by Lemma 1.16 and h has order prime to p,
γ ∈ AutL(S), so ν(γ) = 1 ∈ Aut(A), and h ∈ G0. Thus H = Op(H)·A ≤ G0.

Fix g ∈ G such that cg ∈ Ker(ξ). Recall we are only interested in g modulo C
G

(A) = G0. Since G =
G0·NG(S0) by the Frattini argument, we can assume g normalizes S0. Thus κG([cj(g)]) = 1 in Outtyp(L∗),
so κ̃G(cj(g)) = cγ for some γ ∈ AutL∗(S). Let h ∈ NG(S) be such that γ = [h] and lift h to h̃ ∈ NG0

(S0).

Upon replacing g by h̃−1g, we can assume κ̃G(cj(g)) = IdL∗ , and thus g ∈ H ≤ G0. Hence cg = IdA, ξ is
injective, and this finishes the proof of (ii).

2.3. Strongly tame fusion systems and linking systems for extensions

We are now ready to start working on the proof of Theorem A. As stated in the introduction, this proof
uses the vanishing of certain higher limit groups, and through that depends on the classification of finite
simple groups. In order to have a clean statement which does not depend on the classification (Theorem
2.20), we first define a certain class of finite groups which in fact (by the classification) includes all finite
groups.

The obstruction groups for the existence and uniqueness of centric linking systems associated to a given
saturated fusion system are higher derived functors for inverse limits taken over the centric orbit category
of the fusion system. We begin by defining this category.

Definition 2.7. Let F be a fusion system over a finite p-group S, and let Fc ⊆ F be the full subcategory
whose objects are the F-centric subgroups of S. The centric orbit category O(Fc) of F is the category with
Ob(O(Fc)) = Ob(Fc), and where

MorO(Fc)(P,Q) = Inn(Q)\HomF (P,Q)

for any pair of objects P,Q ≤ S. In particular, AutO(Fc)(P ) = OutF (P ) for each P . If F0 ⊆ Fc is any full
subcategory, then O(F0) denotes the full subcategory of O(Fc) with the same objects as F0.

We need the following technical result about higher limits over these orbit categories.

Lemma 2.8. Let F be a saturated fusion system over a finite p-group S. Let H ⊆ Ob(Fc) be any subset
which is closed under F-conjugacy and overgroups, and let FH ⊆ Fc be the full subcategory with object set
H. Fix a functor F : O(Fc)op −−−→ Z(p)-mod. Assume, for each P ∈ Ob(Fc)rH, that either Op(OutF (P )) 6=
1, or some element of order p in OutF (P ) acts trivially on F (P ). Let F0 : O(Fc)op −−−→ Z(p)-mod be the
functor where F0(P ) = F (P ) if P ∈ H and F0(P ) = 0 otherwise. Then

lim←−
∗

O(Fc)
(F ) ∼= lim←−

∗

O(Fc)
(F0) ∼= lim←−

∗

O(FH)

(F |O(FH)op) .
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Proof. Let F1 ⊆ F be the subfunctor defined by setting F1(P ) = F (P ) if P /∈ H and F1(P ) = 0 otherwise.
Thus F0

∼= F/F1. By [O1, Lemma 2.3], lim←−
∗
O(Fc)(F1) = 0 if certain graded groups Λ∗(OutF (P );F (P )) vanish

for each P ∈ Ob(Fc)rH. By [JMO, Proposition 6.1(ii)], this is the case whenever Op(OutF (P )) 6= 1, or some
element of order p in OutF (P ) acts trivially on F (P ). This proves the first isomorphism.

For any category C, let C-mod be the category of contravariant functors from C to abelian groups. Let E
be the functor “extension by zero” from O(FH)-mod to O(Fc)-mod. Since H ⊆ Ob(Fc) is closed under F-
conjugacy and overgroups, E is right adjoint to the restriction functor. Thus E sends injectives to injectives.
So for Φ in O(FH)-mod, lim←−

∗
O(FH)

(Φ) ∼= lim←−
∗
O(Fc)(E(Φ)). Since F0 = E(F |O(FH)op), the second isomorphism

now follows.

For any saturated fusion system F over a finite p-group S, let

ZF : O(Fc)op −−−−−−→ Z(p)-mod

be the functor which sends an object P of Fc to Z(P ) = CS(P ). For each ϕ ∈ HomFc(P,Q),

ZF ([ϕ]) = ϕ−1|Z(Q) : Z(Q) −−−−−→ Z(P ).

By [BLO2, Proposition 3.1], the obstruction to the existence of a centric linking system associated to F lies
in lim←−

3

O(Fc)(ZF ), and the obstruction to its uniqueness lies in lim←−
2

O(Fc)(ZF ). The main results in [O1] and

[O2] state that these groups vanish whenever F is the fusion system of a finite group G.

We also need to work with the following closely related categories and functors. For any finite group
G, let Op(G) be the p-subgroup orbit category of G as defined in [O2] and [O1]. Thus Ob(Op(G))
is the set of p-subgroups of G, and MorOp(G)(P,Q) = Q\NG(P,Q). Let ZG : Op(G)op −−−→ Ab be the
functor ZG(P ) = Z(P ) if Z(P ) ∈ Sylp(CG(P )) and ZG(P ) = 0 otherwise. For H E G, let ZHG ⊆ ZG be the
subfunctor ZHG (P ) = ZG(P ) ∩H.

Definition 2.9. Fix a prime p.
(a) Let L̂(p) be the class of all nonabelian finite simple groups L with the following property. For each

finite group G, and each pair of subgroups H E K E G both normal in G such that K/H ∼= Lm for some
m ≥ 1, lim←−

i

Op(G)
(ZKG /ZHG ) = 0 for i ≥ 2.

(b) Let G(p) be the class of all finite groups G all of whose nonabelian composition factors lie in L̂(p).

(c) A saturated fusion system F over a finite p-group S is strongly tame if it is tamely realizable by a
group G ∈ G(p).

In fact, by results in [O1, O2], all finite groups are in G(p) for each p.

Theorem 2.10. For each prime p, the class L̂(p) contains all nonabelian finite simple groups, and the
class G(p) contains all finite groups. Hence all tame fusion systems are strongly tame.

Proof. The last two statements follow immediately from the first one and the definitions. So we need
only show that L̂(p) contains all nonabelian finite simple groups.

Assume p is odd. By [O1, Proposition 4.1] (and its proof), a nonabelian finite simple group L with
S ∈ Sylp(L) lies in L̂(p) if there is a subgroup Q ≤ XL(S) which is centric in S (i.e., CS(Q) ≤ Q) and not
Aut(L)-conjugate to any other subgroup of S. Here, XL(S) is a certain subgroup of S defined in [O1, §§ 3–4].
By [O1, Propositions 4.2–4.4] (and the classification theorem), all nonabelian finite simple groups have this
property, and thus they all lie in L̂(p).

If p = 2, then by [O2, Proposition 2.7], a nonabelian finite simple group L is contained in L̂(2) if it is
contained in the class L≥2(2) defined in [O2, Definition 2.8]. By [O2, Theorems 5.1, 6.2, 7.5, 8.13, & 9.1]
and the classification theorem, all nonabelian finite simple groups are contained in L≥2(2).

Theorem 2.10 together with Theorem 2.20 will imply Theorem A. From now on, for the rest of the section,
we avoid using the classification theorem by assuming whenever necessary that our groups are in G(p) and
applying the following lemma.
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Lemma 2.11. Fix a finite group G with Sylow subgroup S ∈ Sylp(G), and set F = FS(G). Assume
G ∈ G(p). Then the following hold.
(a) If Ĝ is a finite group with G E Ĝ, then lim←−

i

Op(Ĝ)
(ZG

Ĝ
) = 0 for each i ≥ 2.

(b) If G = G1 ×G2, then G ∈ G(p) if and only if G1, G2 ∈ G(p). If H E G and G/H is p-solvable, then
H ∈ G(p) if and only if G ∈ G(p).

(c) Let L be a linking system associated to F such that all subgroups in H def
= Ob(L) are F-centric. Then

L ∼= LHS (G).

(d) The homomorphism µG : Outtyp(LcS(G)) −−−→ Out(S,F) defined in Section 1.3 is surjective.

Proof. (a) Let 1 = G0 E G1 E · · · E Gm = G be a sequence of subgroups, all normal in Ĝ, such that for
each r, Gr+1/Gr is a minimal nontrivial normal subgroup of Ĝ/Gr. By [G, Theorem 2.1.5], each quotient
Gr+1/Gr is a product of simple groups isomorphic to each other. By [O2, Proposition 2.2], if Gr+1/Gr is

abelian, then lim←−
i

Op(Ĝc)
(ZGr+1

Ĝ
/ZGr

Ĝ
) = 0 for all i ≥ 1. Thus (a) follows immediately from the definition of

L̂(p), together with the exact sequences

lim←−
i

Op(Ĝ)

(ZGs
Ĝ
/ZGr

Ĝ
) −−−−−→ lim←−

i

Op(Ĝ)

(ZGt
Ĝ
/ZGr

Ĝ
) −−−−−→ lim←−

i

Op(Ĝ)

(ZGt
Ĝ
/ZGs

Ĝ
)

for all 0 ≤ r < s < t ≤ m and all i ≥ 2.

(b) The first statement is immediate, since a simple group is a composition factor of G = G1 ×G2 if and
only if it is a composition factor of G1 or of G2. When H E G and G/H is p-solvable, then the only simple
groups which could be composition factors of G but not of H are Cp and simple groups of order prime to p.

So we need only show that every nonabelian simple group of order prime to p lies in L̂(p).
Fix such a simple group L, and assume H E K E G (where H E G), and K/H ∼= Lm for some m. Then

ZHG = ZKG since K/H has order prime to p; and thus L ∈ L̂(p).

(c,d) By (a), applied with Ĝ = G, lim←−
2

Op(G)
(ZG) = 0. So by [BLO1, Theorem E], µG is onto. This proves

(d).
Now let L be a linking system associated to F , set H = Ob(L), and assume H ⊆ Ob(Fc). Since H contains

all subgroups of S which are F-centric and F-radical, Op(OutF (P )) 6= 1 for P ∈ Ob(Fc)rH. Hence

lim←−
2

O(FH)
(ZF |O(FH)op) ∼= lim←−

2

O(Fc)(ZF ) ∼= lim←−
2

Op(G)
(ZG) = 0,

where the first isomorphism holds by Lemma 2.8, the second by [O1, Lemma 2.1], and the third group was just
shown to vanish in the proof of (d). So by the same argument as that used in the proof of [BLO2, Proposition
3.1], all linking systems associated to F with object set H are isomorphic. In particular, L ∼= LHS (G), and
this proves (c).

The following is the main technical result in this subsection, and will be needed in the proof of Theorem
A. Given F0 E F satisfying certain technical assumptions, and given a linking system L0 associated to F0,
we want to find L associated to F such that L0 E L. It is natural to ask why this cannot be done using [O3,
Theorem 9], where conditions are explicitly set up to construct extensions of fusion and linking systems.
There seem to be two difficulties with that approach. First, the hypotheses of Proposition 2.12 are very
different from those in [O3], and it is not clear how to convert from the one to the other. But more seriously,
even if one does manage to do that and construct an extension (F ′,L′) of (F0,L0), it is not clear how to
prove that F ′ ∼= F ; i.e., that L′ really is a linking system associated to F .

Proposition 2.12. Let F be a saturated fusion system over a finite p-group S, and let F0 ⊆ F be one
of the following saturated fusion subsystems over S0 E S:
(a) F0 = Op(F), or

(b) F0 = Op
′
(F), or

(c) F0 = NK
F (Q) for some Q E F and some K E Aut(Q) containing Inn(Q).

Assume F0 is strongly tame. Then there is a centric linking system associated to F .

Proof. In all cases (a), (b), and (c), F0 E F by Proposition 1.25.
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Since F0 is strongly tame, we can choose a finite group G0 ∈ G(p) such that S0 ∈ Sylp(G0), F0 = FS0
(G0),

and κG0 is split surjective. We first claim that

µ̃G0
◦ κ̃G0

: Aut(G0, S0) −−−−−−→ Aut(S0,F0) is onto. (2)

As noted in Section 2.2, this composite is defined by restriction. Since G0 ∈ G(p), µG0 is surjective
by Lemma 2.11(d). Also, κG0

is split surjective by assumption. Thus every element of Out(S0,F0) =
Aut(S0,F0)/AutG0

(S0) extends to an element of Out(G0) = Aut(G0, S0)/AutNG0
(S0)(G0), and hence the

map in (2) is onto.
Define

∆ =
{
α ∈ Aut(G0, S0)

∣∣α|S0
∈ AutF (S0)

}
.

We just showed that every element in AutF (S0) is the restriction of some element in ∆. Fix S∆ ∈ Sylp(∆)
which surjects onto AutS(S0) under the restriction map to AutF (S0). Set

Ĝ = G0 o∆ and Ŝ = S0 o S∆.

Thus Ŝ ∈ Sylp(Ĝ).

Now set S1 = S, F1 = F , S2 = Ŝ, and F2 = FŜ(Ĝ). We claim, for each P0, Q0 ≤ S0, that

HomF2(P0, Q0) = HomF1(P0, Q0)
def
= HomF (P0, Q0)

HomS2(P0, Q0) = HomS1(P0, Q0)
def
= HomS(P0, Q0) .

(3)

We have already remarked that F0 E F = F1, and F0 E F2 by Proposition 1.28 since they are the fusion
systems of G0 E Ĝ. Hence by condition (ii) in Definition 1.18, each ϕ ∈ HomFi(P,Q) (for i = 1, 2 and P,Q ≤
S0) is the composite of a morphism in F0 and the restriction of a morphism in AutFi(S0). Furthermore,

AutF2
(S0) = AutĜ(S0) =

〈
AutG0

(S0) , ResG0

S0
(∆)

〉
= AutF1

(S0)

by (2), and the first line in (3) now follows. The second holds since AutS2(S0) = AutS(S0) by definition of
S2 = S0 o S∆.

We next claim that for all P0 ≤ S0,

P0 is fully centralized in F2 ⇐⇒ P0 is fully centralized in F1 = F . (4)

By (3), the F1- and F2-conjugacy classes of P0 are the same, and AutS2
(S0) = AutS(S0). Hence for each Q0

which is Fi-conjugate to P0,

|CS1
(Q0)|

|CS1
(S0)|

=
∣∣{α ∈ AutS(S0)

∣∣α|Q0
= Id

}∣∣ =
|CS2

(Q0)|
|CS2

(S0)|
,

and so |CS1
(P0)| is maximal if and only if |CS2

(P0)| is maximal.
We want to compute lim←−

∗
O(Fc1 )

(ZF1
) by comparing it with lim←−

∗
O(Fc2 )

(ZF2
). To do this, we first define in Step

1 certain full subcategories F∗i ⊆ Fci , and an intermediate category C which can be used to compare O(F∗1 )
with O(F∗2 ). Certain properties of the “comparison functors” Φi : O(F∗i ) −−−→ C are stated and proven
in Step 2. In Step 3, we define certain subfunctors Zi ⊆ ZFi on O(Fci ), and prove that lim←−

∗
O(Fc1 )

(Z1) ∼=
lim←−
∗
O(Fc2 )

(Z2) using the intermediate categories O(F∗i ) and C to compare them. Finally, in Step 4, we prove

that lim←−
∗
O(Fc2 )

(Z2) = 0 for ∗ ≥ 2, and then show that lim←−
∗
O(Fc)(ZF ) ∼= lim←−

∗
O(Fc1 )

(Z1) for ∗ ≥ 1 by analyzing

individually the three cases (a)–(c).
Throughout the rest of the proof, whenever P ≤ S1 or P ≤ S2, we write P0 = P ∩ S0.

Step 1: Let F∗i ⊆ Fi (i = 1, 2) be the full subcategories with objects

Ob(F∗i ) =
{
P ≤ Si

∣∣CSi(Q0) ≤ Q for all Q Fi-conjugate to P
}
.

All objects in F∗i are Fi-centric; i.e., F∗i ⊆ Fci . Also, if P ≤ Si is Fi-conjugate to an object in F∗i , then
P ∈ Ob(F∗i ).

We next construct a category C which acts as intermediary between the orbit categories of F∗1 and F∗2 . It
will be a subcategory of a larger category Ĉ, defined by setting

Ob(Ĉ) =
{

(P0,K)
∣∣P0 ≤ S0 is F0-centric and fully centralized in F ,

Inn(P0) ≤ K ≤ AutS(P0)
}

and

MorĈ
(
(P0,K), (Q0, L)

)
= L

∖{
ϕ ∈ HomF (P0, Q0)

∣∣ϕK ⊆ Lϕ}.
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Here, we regard ϕK and Lϕ as subsets of HomF (P0, Q0).
Define functors

O(F∗1 )
Φ1−−−−−→ Ĉ Φ2←−−−−− O(F∗2 ) ,

by setting Φi(P ) = (P0,AutP (P0)) and Φi([ϕ]) = [ϕ|P0
] for P,Q ∈ Ob(F∗i ) and ϕ ∈ HomF∗i (P,Q). Since

restriction sends Inn(Q) to AutQ(Q0) for Q ∈ Ob(F∗i ), Φi is well defined on morphisms if it is defined on
objects.

To see that Φi is well defined on objects, fix P ∈ Ob(F∗i ), and set K = AutP (P0). Then Inn(P0) ≤
AutP (P0) ≤ AutS(P0), since P ≥ P0, and since AutS(P0) = AutSi(P0) by (3). By Lemma 1.20(a), P is
Fi-conjugate to some Q such that Q0 is fully normalized in Fi and in F0. Hence P0 is F0-centric by
Lemma 1.20(c). Also, |CSi(P0)| = |CP (P0)| = |CQ(Q0)| = |CSi(Q0)| by definition of Ob(F∗i ), and so P0 is

fully centralized in Fi (hence in F by (4)) since Q0 is fully centralized in Fi. Thus (P0,K) ∈ Ob(Ĉ).
We claim that Im(Φ1) = Im(Φ2). In what follows, when P0 ≤ S0 and K ≤ Aut(P0), we set NK

S (P0) = {g ∈
NS(P0) | cg ∈ K}. Then

P ∈ Ob(F∗i ) and Φi(P ) = (P0,K) =⇒ P = NK
Si (P0) (5)

since P ≥ CSi(P0) by definition of Ob(F∗i ).
Assume (P0,K) ∈ Ob(Ĉ), and set Pi = NK

Si
(P0) for i = 1, 2. Then Pi ≥ P0 and K = AutPi(P0), since

Inn(P0) ≤ K ≤ AutS(P0) by assumption. Also, P1 ∩ S0 = NK
S0

(P0) = P2 ∩ S0, so P1 ∩ S0 = P0 if and only
if P2 ∩ S0 = P0, and we assume this is the case since otherwise (P0,K) is in the image of neither functor
Φi by (5). By assumption, P0 is fully centralized in F , and hence in Fi by (4). So for each Q which is
Fi-conjugate to Pi, |CSi(Q0)| ≤ |CSi(P0)| = |CPi(P0)| = |CQ(Q0)|, where the last equality holds since any
ϕ ∈ IsoFi(Pi, Q) induces an isomorphism of pairs (Pi, P0) ∼= (Q,Q0). Thus CSi(Q0) ≤ Q. This proves that
Pi ∈ Ob(F∗i ), and hence that Φi(Pi) = (P0,K) for i = 1, 2.

Now fix objects (P0,K) and (Q0, L) in Im(Φi), and choose ϕ0 ∈ HomF (P0, Q0) such that ϕ0K ⊆ Lϕ0. Thus
[ϕ0] ∈ MorĈ((P0,K), (Q0, L)). If [ϕ0] = Φi([ϕ]) for some ϕ ∈ HomF∗i (P,Q) (i = 1 or 2), then ϕ(P ) ∈ Ob(F∗i ),

so ϕ0(P0) is fully centralized in F (since Φi(ϕ(P )) = (ϕ0(P0),Autϕ(P )(ϕ0(P0))) ∈ Ob(Ĉ)), and hence in F1

and F2 by (4). So we assume this from now on.
Set Pi = NK

Si
(P0) and Qi = NL

Si
(Q0): these are both in Ob(F∗i ) by (5). Set R0 = ϕ0(P0), let ϕ̇0 ∈

IsoF (P0, R0) be the restriction of ϕ0, and set M = ϕ̇0Kϕ̇
−1
0 ≤ AutF (R0). Then ϕ0Kϕ̇

−1
0 ⊆ L|R0

⊆
HomS(R0, Q0), and so M ≤ AutS(R0) = AutSi(R0). By the extension axiom for Fi, ϕ0 extends to some ϕi ∈
HomFi(Pi, Si), and [ϕ0] ∈ Im(Φi) if and only if ϕi can be chosen with ϕi(Pi) ≤ Qi. Now, M = Autϕi(Pi)(R0)
since K = AutPi(P0), so Φi(ϕi(Pi)) = (R0,M), and ϕi(Pi) = NM

Si
(R0) by (5). Hence ϕi(Pi) ≤ Qi if and only

if for all α ∈ AutSi(S0),

α(R0) = R0 and α|R0
∈M =⇒ α(Q0) = Q0 and α|Q0

∈ L .

Since AutS1(S0) = AutS2(S0) by (3), [ϕ0] ∈ Im(Φ1) if and only if [ϕ0] ∈ Im(Φ2).
Now set C = Im(Φ1) = Im(Φ2) ⊆ Ĉ. Since the Φi are injective on objects by (5), this is a subcategory of
Ĉ. From now on, we regard the Φi as functors to C.
Step 2: For each i = 1, 2, and each P ∈ Ob(F∗i ), set

Γi(P ) = Ker
[
OutFi(P )

Φi−−−→ AutC(P0,AutP (P0))
]

= Ker
[
OutFi(P )

R−−−→ NAutF (P0)(AutP (P0))/AutP (P0)
]

where R is induced by restriction. We claim that, for each i = 1, 2,
(i) Φi : O(F∗i ) −−−→ C is bijective on objects and surjective on morphism sets;

(ii) Γi(P ) has order prime to p for all P ; and

(iii) whenever ψ,ψ′ ∈ MorO(F∗i )(P,Q) are such that Φi(ψ) = Φi(ψ
′), there is χ ∈ Γi(P ) such that ψ′ = ψ ◦ χ.

Point (i) follows from (5) and the definition of C in Step 1.
When proving (ii), it suffices to consider the case where P is fully normalized in Fi. If g ∈ NSi(P ) is such

that [cg] ∈ Γi(P ), then cg|P0 ∈ AutP (P0); and since CSi(P0) ≤ P , this implies g ∈ P and [cg] = 1 ∈ Γi(P ) ≤
OutFi(P ). Thus OutSi(P ) is a Sylow p-subgroup of OutFi(P ) and intersects trivially with Γi(P ) E OutFi(P ),
so |Γi(P )| is prime to p.

It remains to prove (iii). Assume ψ,ψ′ ∈ MorO(F∗i )(P,Q) are such that Φi(ψ) = Φi(ψ
′). Fix ϕ,ϕ′ ∈

HomF∗i (P,Q) such that ψ = [ϕ] and ψ′ = [ϕ′]. Then ϕ|P0
= cg ◦ ϕ

′|P0
for some cg ∈ AutQ(Q0); i.e., for some

g ∈ Q. So upon replacing ϕ′ by cg ◦ ϕ
′ (this time with cg ∈ Inn(Q)), we can assume ϕ0

def
= ϕ|P0

= ϕ′|P0
. Since
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P ∈ Ob(F∗i ), we have CSi(ϕ0(P0)) ≤ ϕ(P ), so

ϕ(P ) =
{
g ∈ NSi(ϕ0(P0))

∣∣ cg ∈ ϕ0AutP (P0)ϕ−1
0

}
= ϕ′(P ).

Hence there is a unique β ∈ AutFi(P ) such that ϕ′ = ϕ ◦ β; and also β|P0
= Id. So ψ′ = ψ ◦ [β] in

MorO(F∗i )(P,Q), where [β] ∈ Γi(P ).

Step 3: Define functors

Zi : O(Fci )op −−−−−→ Z(p)-mod and ZC : Cop −−−−−→ Z(p)-mod

by setting Zi(P ) = Z(P ) ∩ S0 = CZ(P0)(P ) and ZC(Q,K) = CZ(Q)(K) (the subgroup of elements of Z(Q)
fixed pointwise by K). Morphisms are sent in the obvious way. Set Zi∗ = Zi|O(F∗i )op .

We claim that

lim←−
∗

O(Fc1 )

(Z1) ∼= lim←−
∗

O(F∗1 )

(Z1∗) ∼= lim←−
C

∗(ZC) ∼= lim←−
∗

O(F∗2 )

(Z2∗) ∼= lim←−
∗

O(Fc2 )

(Z2). (6)

Since Zi∗ = ZC ◦ Φi by definition, the second and third isomorphisms follow from points (i–iii) in Step 2 and
[BLO1, Lemma 1.3].

We prove the other isomorphisms in (6) using Lemma 2.8. Fix i = 1, 2. We already saw in Step 1 that
Ob(F∗i ) is closed (inside Ob(Fci )) with respect to Fi-conjugacy. If P ≤ Q ≤ Si and P ∈ Ob(F∗i ), then for
each Q∗ which is Fi-conjugate to Q, if we set P ∗ = ϕ(P ) ≤ Q∗ for some ϕ ∈ IsoFi(Q,Q

∗), then CSi(P
∗
0 ) ≤ P ∗

implies CSi(Q
∗
0) ≤ Q∗, and so Q ∈ Ob(F∗i ). Thus Ob(F∗i ) is closed with respect to overgroups.

For each object P in Fci not in F∗i , there is P ∗ Fi-conjugate to P such that CSi(P
∗
0 ) � P ∗. By Lemma

1.7, there is g ∈ NSi(P ∗)rP ∗ which centralizes P ∗0 . Thus [cg] ∈ OutFi(P
∗) is a nontrivial element of p-power

order which acts trivially on Zi(P ∗). So by Lemma 2.8, lim←−
∗
O(Fci )

(Zi) ∼= lim←−
∗
O(F∗i )

(Zi∗) for each i = 1, 2; and

this finishes the proof of (6).

Step 4: By [O1, Lemma 2.1] and Lemma 2.11(a),

lim←−
j

O(Fc2 )
(Z2)

def
= lim←−

j

O(Fc
Ŝ

(Ĝ))

(
Z(−) ∩ S0

) ∼= lim←−
j

Op(Ĝ)
(ZG0

Ĝ
) = 0

for j ≥ 2. Hence by (6), lim←−
j

O(Fc)(Z1) = 0 for j ≥ 2 (recall F = F1).

We claim that for j ≥ 2,

lim←−
j

O(Fc)
(ZF ) ∼= lim←−

j

O(Fc)
(Z1). (7)

Set Ẑ = ZF/Z1 for short; thus Ẑ(P ) = Z(P )/(Z(P ) ∩ S0) for each P . If F0 = Op
′
(F), then (7) holds since

S0 = S and hence ZF = Z1. If F0 = NK
F (Q) for some Q E F and some K E Aut(Q), then Ẑ(P ) = 0 for each

P ∈ Ob(Fc) which contains Q, in particular for each subgroup which is F-centric and F-radical (Proposition
1.5); and (7) holds by Lemma 2.8.

Assume F0 = Op(F). For each P ∈ Ob(Fc), let HP E OutF (P ) be the kernel of the OutF (P )-action
on Ẑ(P ) = Z(P )/(Z(P ) ∩ S0). By definition of S0 = hyp(F), HP contains Op(OutF (P )), and thus
OutF (P )/HP is a p-group. So for j ≥ 1,

Λj(OutF (P ); Ẑ(P )) ∼=


0 if p

∣∣|HP |
0 if p - |OutF (P )|
Λj(OutF (P )/HP ; Ẑ(P )) = 0 otherwise

by [JMO, Proposition 6.1]: by point (ii) of the proposition in the first case, by point (i) in the second, and
by points (iii) and (ii) in the third. So by [O1, Lemma 2.3], lim←−

j

O(Fc)(Ẑ) = 0 for all j ≥ 1, and (7) also holds

in this case.
We now conclude that lim←−

j

O(Fc)(ZF ) = 0 for all j ≥ 2. So by [BLO2, Proposition 3.1], there is a (unique)

centric linking system Lc associated to F .

2.4. Proof of Theorem A

We want to show that if red(F) is tame, then so is F . The proof splits naturally into two parts. We first
show, under certain additional hypotheses, that if F0 E F and F0 is tame, then F is tame. Afterwards,
we show (again under additional hypotheses) that F is tame if F/Z(F) is tame. In both cases, this means
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proving that certain homomorphisms are split surjective, by first constructing an appropriate pullback square
of automorphism groups, and then applying the following elementary lemma.

Lemma 2.13. If the following square of groups and homomorphisms

A1
α

//

��

A2

��

B1
β

// B2

is a pullback square, and β is split surjective, then α is split surjective.

We first work with normal subsystems. We first recall some convenient notation. When P is a p-centric
subgroup of a finite group G (i.e., an FS(G)-centric subgroup when P ≤ S ∈ Sylp(G)), we set C ′G(P ) =
Op(CG(P )). Thus C ′G(P ) has order prime to p, and CG(P ) = Z(P )× C ′G(P ).

For any normal pair (S0,F0,L0) E (S,F ,L), let

ρ̃ = ρ̃LL0
: AutL(S0) −−−−−→ AutItyp(L0)

be the homomorphism which sends γ ∈ AutL(S0) to cγ . Here, cγ ∈ AutItyp(L0) sends an object P to π(γ)(P )
and sends ψ ∈ MorL0

(P,Q) to (γ|Q,π(γ)(Q)) ◦ ψ ◦ (γ|P,π(γ)(P ))
−1 (well defined by Definition 1.27). Let

ρ = ρLL0
: L/L0

=AutL(S0)/AutL0 (S0)

−−−−−−−→ Outtyp(L0)
=AutItyp(L0)/{cγ | γ∈AutL0 (S0)}

be the homomorphism induced by ρ̃, which sends [γ] to the class of cγ . This is analogous to the conjugation
homomorphism G/G0 −−−→ Out(G0) for a pair of groups G0 E G. For example, L0 is centric in L (see
Definition 1.27) if and only if ρLL0

is injective.

We next show that when F0 E F have associated linking systems L0 E L, where L0 is centric in L and
F0 is realizable, then under some extra conditions, F is also realizable.

Lemma 2.14. Fix a normal pair (S0,F0,L0) E (S,F ,L) such that L0 is centric in L. Set H0 = Ob(L0)
and H = Ob(L), and assume H0 is Aut(S0,F0)-invariant. Assume there is a finite group G0 such that
(a) S0 ∈ Sylp(G0), F0 = FS0

(G0), and L0
∼= LH0

S0
(G0);

(b) Z(G0) = Z(F0); and

(c) there is a homomorphism ρ̂ : L/L0 −−−→ Out(G0) such that

κH0

G0
◦ ρ̂ = ρLL0

: L/L0 −−−→ Outtyp(L0) .

Then F = FS(G) and L ∼= LHS (G) for some finite group G such that S ∈ Sylp(G), G0 E G, G/G0
∼= L/L0,

and such that the extension realizes the given outer action ρ̂ of G/G0
∼= L/L0 on G0.

Proof. We construct the group G in Step 1, and prove that LHS (G) ∼= L and FS(G) = F in Step 2.
Throughout the proof, we identify L0 with LH0

S0
(G0).

Step 1: Consider the following diagram whose rows are exact by Lemma 1.14:

1 // Z(G0) // NG0
(S0)

conj
//

λ0

��
��

Aut(G0, S0)
pr1

//

κ̃ =κ̃
H0
G0

��

Out(G0) //

κ =κ
H0
G0

��

1

1 // Z(F0) // AutL0
(S0)

conj
// AutItyp(L0)

pr2
// Outtyp(L0) // 1 .

(8)

Here, λ0 sends g ∈ NG0
(S0) to its class in AutL0

(S0) = NG0
(S0)/C ′G0

(S0). The first and third squares
clearly commute. The second square commutes since for g ∈ NG0(S0), κ̃ sends cg to the automorphism
[a] 7→ [gag−1] = cλ0(g)(a). By definition of κ̃ = κ̃H0

G0
,

κ̃(β)(λ0(g)) = λ0(β(g)) for all β ∈ Aut(G0, S0), g ∈ NG0
(S0) . (9)
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Set Aut(G0, S0)ρ̂ = pr−1
1 (ρ̂(L/L0)). Since L0 is centric in L, ρ = ρLL0

sends L/L0 injectively into
Outtyp(L0). Hence κ sends ρ̂(L/L0) injectively into Outtyp(L0). So by a diagram chase in (8), NG0

(S0)
is the pullback of Aut(G0, S0)ρ̂ and AutL0

(S0) over AutItyp(L0).
Let H be the group which makes the following square a pullback:

H
ϕ

//

λ

��
��

Aut(G0, S0)ρ̂

κ̃

��

AutL(S0)
ρ̃
// AutItyp(L0) .

(10)

For each α ∈ AutL(S0), ρ̃(α) ∈ pr−1
2 (ρ(L/L0)) by definition, and hence lifts to an element of Aut(G0, S0)ρ̂.

This proves that λ is onto. By comparison with the middle square in (8), we can identify NG0(S0) with
λ−1(AutL0(S0)) E H. Thus

H/NG0
(S0) = H/H0

∼= AutL(S0)/AutL0
(S0) = L/L0 , (11)

where we set H0 = NG0
(S0), regarded as a subgroup of G0 and of H.

We claim that for all h ∈ H and a ∈ H0,

ϕ(h)(a) = hah−1 ∈ H0 . (12)

Since (10) is a pullback, it suffices to prove (12) after applying ϕ and after applying λ. It holds after applying
λ (or λ0) since

λ0(ϕ(h)(a)) = κ̃(ϕ(h))(λ0(a)) = ρ̃(λ(h))(λ0(a)) = λ(h)λ0(a)λ(h)−1 = λ0(hah−1) :

the first equality by (9), the second by the commutativity of (10), and the third since ρ̃ is defined by
conjugation in L. Since ϕ|H0 is also defined to be conjugation,

ϕ(ϕ(h)(a)) = cϕ(h)(a) = ϕ(h) ◦ ca ◦ ϕ(h)−1 = ϕ(h) ◦ ϕ(a) ◦ ϕ(h)−1 = ϕ(hah−1) .

This finishes the proof of (12).
We want to construct a group G with G0 E G, G/G0

∼= L/L0, and NG(S0) = H. To do this, first set
Γ = G0 oH: the semidirect product with the action of H on G0 given by ϕ as defined in (10). Elements of Γ
are written as pairs (g, h) for g ∈ G0 and h ∈ H. Thus (g, h)(g′, h′) = (g·ϕ(h)(g′), hh′). SetN = {(a, a−1) | a ∈
H0}. For a, b ∈ H0,

(a, a−1)(b, b−1) = (a·ϕ(a−1)(b), a−1b−1) = (a·a−1ba, a−1b−1) = (ba, (ba)−1) ∈ N,

where the second equality holds by (12). Thus N is a subgroup. For g ∈ G0 and a ∈ H0,

(g, 1)(a, a−1)(g, 1)−1 = (ga, a−1)(g−1, 1) = (ga·ϕ(a−1)(g−1), a−1)

= (ga·a−1g−1a, a−1) = (a, a−1) ;

where ϕ(a−1)(g−1) = a−1g−1a since by construction, ϕ|H0
is the conjugation homomorphism of (8). Thus

(g, 1) normalizes (centralizes) N . For h ∈ H and a ∈ H0,

(1, h)(a, a−1)(1, h)−1 = (ϕ(h)(a), ha−1)(1, h−1) = (ϕ(h)(a), (hah−1)−1) ∈ N

by (12), and thus (1, h) also normalizes N . This proves that N E Γ.
Now set G = Γ/N , and regard G0 and H as subgroups of G. By construction, G = G0H, G0 ∩H = H0 =

NG0
(S0), G0 E G, and G/G0

∼= H/H0
∼= L/L0 (the last isomorphism by (11)). Also, H ≤ NG(S0), and since

[H:NG0
(S0)] = [G:G0] ≥ [NG(S0):NG0

(S0)], we have H = NG(S0). The outer conjugation action of G/G0 on
G0 is induced by ϕ. Consider the following diagram

G/G0
∼=H/H0

ϕ
//

∼= λ

��

Out(G0)

κ

��

L/L0
def
= AutL(S0)/AutL0

(S0)
ρLL0

//

ρ̂

66nnnnnnnnnnnnnnnnn

Outtyp(L0)

(13)

where ϕ and λ are induced by ϕ and λ and the square commutes by (10), and where the lower
triangle commutes by condition (c). Then Im(ϕ) ≤ Im(ρ̂) by definition of Aut(G0, S0)ρ̂, and κ sends Im(ρ̂)
isomorphically to Im(ρLL0

) since ρLL0
is injective. Thus the upper triangle in (13) commutes, so the outer

conjugation action of G/G0 on G0 is equal to ρ̂ via our identification G/G0
∼= L/L0.
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By comparison of (8) and (10), we see that

Ker(λ) = Ker(λ0) = C ′G0
(S0) .

In particular, Ker(λ) has order prime to p. Also, δS0
(S) is a Sylow p-subgroup of AutL(S0) by Proposition

1.11(d). Fix any Sylow p-subgroup of λ−1(δS0
(S)), and identify it with S via δ−1

S0
◦ λ. Since [G:H] = [G0:H0]

is prime to p, we also have S ∈ Sylp(G).

Step 2: Set F ′ = FS(G) for short. By Proposition 1.28, F0 = FS0
(G0) is normal in F ′. So by Lemma

1.20(d), H = Ob(L) contains all subgroups of S which are F ′-centric and F ′-radical.
We next show that all subgroups in H are G-quasicentric. Since overgroups of G-quasicentric subgroups

are G-quasicentric, it suffices to prove this for P ∈ H0. Fix such P , and assume it is fully centralized in F ′.
We must show that Op′(CG(P )) = Op(CG(P )); i.e., that CG(P ) contains a normal subgroup of order prime
to p and of p-power index. Define

ΦP : NG(P ) −−−−−−→ AutL(P )

as follows. Fix g ∈ NG(P ), write g = g0h for some g0 ∈ G0 and h ∈ H = NG(S0), and set ΦP (g) = [g0] ◦
λ(h)|P,hPh−1 , where [g0] ∈ MorL0

(hPh−1, P ) is induced by the identification L0 = LH0

S0
(G0). If g = g0h =

g′0h
′ where g0, g

′
0 ∈ G0 and h, h′ ∈ H, then a

def
= g−1

0 g′0 = hh′−1 ∈ H0, so g′0 = g0a, h = ah′, and

[g0] ◦ λ(h)|P,hPh−1 = [g0] ◦ λ(a)|h′Ph′−1,hPh−1 ◦ λ(h′)|P,h′Ph′−1 = [g0a] ◦ λ(h′)|P,h′Ph′−1 .

Thus ΦP (g) is well defined, independently of the choice of g0 and h, and ΦS0 = λ. Moreover, ΦP |NS(P ) =
δP , since λ|S = δS0

: S −−−→ AutL(P ) by the identification of S as a subgroup of H. To see that ΦP is a
homomorphism, it suffices to check that

[hg0h
−1] = λ(h) ◦ [g0] ◦ λ(h)−1 (14)

for each g0 ∈ G0 and h ∈ H, and this follows from the commutativity of (10).
We next claim that the composite πP ◦ ΦP : NG(P ) −−−→ AutF (P ) sends g ∈ NG(P ) to cg ∈ Aut(P ).

Set g = g0h as above. By definition of the linking system LH0

S0
(G0), πP (ΦP (g0)) = πP ([g0]) = cg0 . By (14)

and axiom (C) for the linking system L, πS0
(λ(h)) ∈ AutF (S0) is conjugation by h, and hence it is also

conjugation by h on P ≤ S0 E H. This proves the claim.
Since F0 E F , F0 E F ′, and AutF (S0) = AutF ′(S0), the F- and F ′-conjugacy classes of any subgroup

Q ≤ S0 are the same. It follows that H is closed under F ′-conjugacy, and that P is fully centralized in F .
Hence

– Ker[AutL(P )
πP−−−→ AutF (P )] = δP (CS(P ));

– ΦP |NS(P ) = δP is injective by Proposition 1.11(c);

– Ker(πP ◦ ΦP ) = CG(P ) since πP ◦ ΦP (g) = cg; and

– CS(P ) ∈ Sylp(CG(P )) by [BLO2, Proposition 1.3].

Hence Ker(ΦP ) is a normal subgroup of CG(P ) of order prime to p, and CG(P )/Ker(ΦP ) ∼= CS(P ) is a
p-group. It follows that Ker(ΦP ) = Op(CG(P )), and thus that P is G-quasicentric.

Set L′ = LHS (G). We have now shown that H satisfies the conditions which ensure that L′ is a linking
system associated to FS(G). By Proposition 1.28 again, L′ contains L0 as a normal linking subsystem. Also,
AutL′(S0) = H/Ker(λ) ∼= AutL(S0) since Op(CG(S0)) = Ker(ΦS0

) = Ker(λ), and they have the same action
on L0 (under this identification) by the commutativity of (10).

Now, CAutL(S0)(S0) = δS0
(CS(S0)) by axioms (C) and (A) (and since S0 is fully centralized in F). Each

P ∈ H0 is F-quasicentric by Proposition 1.11(g), and hence satisfies the second condition in Definition
1.10(b). (A priori, this condition only holds when P ∈ H0 is fully centralized in F , but it is easily extended
to arbitrary subgroups in H0.) Thus conditions (2) and (3) in the statement of [O3, Theorem 9] hold, where
Γ = AutL(S0) and τ = ρ̃. So by the uniqueness statement in that theorem, F = F ′ and L ∼= L′.

In order to compare tameness of F0 and of F when (S0,F0,L0) E (S,F ,L), we need to compare the
automorphisms of L0 with those of L. This is done in the following lemma. For any normal pair L0 E L of
linking systems, we set

AutL(L0) = ρ̃LL0
(AutL(S0)) = {cγ | γ ∈ AutL(S0)} ≤ AutItyp(L0)

OutL(L0) = ρLL0
(L/L0) = AutL(L0)/AutL0(L0) ≤ Outtyp(L0) .
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Lemma 2.15. Fix a pair of finite groups G0 E G, let S0 E S be Sylow p-subgroups of G0 E G, and set
F0 = FS0(G0) and F = FS(G). Assume Z(G0) = Z(F0). Let H0 and H be sets of subgroups such that

L0
def
= LH0

S0
(G0) and L def

= LHS (G)

are linking systems associated to F0 and F , respectively. Assume

L0 E L , L0 is centric in L , and L/L0
∼= G/G0 .

Assume also H0 is Aut(S0,F0)-invariant, and H is Aut(S,F)-invariant. Then the following square

Out(G,G0)
κ

//

R1

��

Outtyp(L,L0)

R2

��

NOut(G0)(OutG(G0))/OutG(G0) κ∗
// NOuttyp(L0)(OutL(L0))/OutL(L0)

(15)

is a pullback. Here, Out(G,G0) ≤ Out(G) and Outtyp(L,L0) ≤ Outtyp(L) are the subgroups of classes of
automorphisms which leave G0 and L0 invariant, respectively, κ is the restriction of κHG , κ∗ is induced by
κH0

G0
, and R1 and R2 are induced by restriction.

Proof. By the Frattini argument, G = G0·NG(S0) (all subgroups G-conjugate to S0 are G0-conjugate to
S0). Hence G/G0

∼= NG(S0)/NG0
(S0), while

L/L0
def
= AutL(S0)/AutL0

(S0) =
(
NG(S0)/Op(CG(S0))

)/(
NG0

(S0)/C ′G0
(S0)

)
(and S0 is G-quasicentric since it is an object of the linking system L = LHS (G)). Since G/G0

∼= L/L0, it
follows that Op(CG(S0)) = C ′G0

(S0). Also, for each g ∈ CG(G0) ≤ NG(S0), [g] ∈ AutL(S0) acts trivially on
L0 under conjugation, so [g] ∈ AutL0

(S0) since L0 is centric in L, and hence g ∈ G0. We have now shown
that

Op(CG(S0)) = C ′G0
(S0) and CG(G0) = Z(G0) . (16)

Step 1: We first show the following square is a pullback:

Aut(G,G0, S·C ′G0
(S0)) κ̃

//

Res1

��

AutItyp(L,L0)

Res2

��

NAut(G0,S0)(AutG(G0, S0))
κ̃0

// NAutItyp(L0)(AutL(L0)) .

(17)

Here, Aut(G,G0, S·C ′G0
(S0)) is the group of automorphisms of G which send both G0 and S·C ′G0

(S0) to

themselves and AutItyp(L,L0) ≤ AutItyp(L) is the subgroup of elements which leave L0 invariant.
Both Res1 and Res2 are defined by restriction. Each α ∈ Aut(G,G0, S·C ′G0

(S0)) leaves S0 × C ′G0
(S0) =

G0 ∩ (S·C ′G0
(S0)) invariant, and hence also leaves S0 invariant. Clearly, α|Aut(G0,S0) normalizes AutG(G0, S0).

To see that Res2 maps to the normalizer, fix σ ∈ AutItyp(L,L0) and γ ∈ AutL(S0), and set σ0 = σ|L0
∈

AutItyp(L0). Then

σ0cγσ
−1
0 = cσ(γ), (18)

(using Lemma 1.15 to show this holds on objects), and thus σ0 normalizes AutL(L0).
The homomorphism κ̃0 is the restriction of κ̃H0

G0
, which is defined since H0 is Aut(S0,F0)-invariant. Since

κ̃H0

G0
maps AutG(G0, S0) onto AutL(L0), it sends the normalizer of AutG(G0, S0) into the normalizer of

AutL(L0).
Defining κ̃ requires more explanation. For α ∈ Aut(G,G0, S·C ′G0

(S0)), α(S) is a Sylow p-subgroup of

S·C ′G0
(S0), so α(S) = hSh−1 for some h ∈ C ′G0

(S0). Hence c−1
h ◦ α ∈ Aut(G,G0, S) and we define κ̃(α) =

κ̃HG(c−1
h ◦ α) ∈ AutItyp(L,L0). If h′ ∈ C ′G0

(S0) with α(S) = h′Sh′
−1

, then h−1h′ ∈ C ′G0
(S0) ∩NG(S). Since

S0 is strongly closed in F , the restriction homomorphism

NG(S)/C ′G(S) = AutL(S) −−−−−−→ AutL(S0) = NG(S0)/C ′G0
(S0)

is injective by Proposition 1.11(f). It follows that h−1h′ ∈ C ′G(S), so κ̃HG(ch−1h′) = 1 since C ′G(S) ≤
Op(CG(P )) for each P ≤ S. Thus κ̃ is well defined, and it is easily seen to be a homomorphism. Since
conjugation by any element of C ′G0

(S0) induces the identity in AutItyp(L0) (and since Res2 ◦ κ̃
H
G = κ̃H0

G0
◦ Res1

as maps from Aut(G,G0, S) to AutItyp(L0)), square (17) commutes.
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Next consider the following commutative diagram:

1 // Z(G0) // NG(S0)
cj1

//

λ0 g 7→[g]
��
��

AutG(G0, S0)

κ̃1

��
��

// 1

1 // Z(F0)
δS0

// AutL(S0)
cj2

// AutL(L0) // 1 .

(19)

Here, cj1 and cj2 are induced by conjugation, and κ̃1 is the restriction of κ̃0. Both rows in (19) are exact: the
first since Ker(cj1) = CG(G0) = Z(G0) by (16); and the second since Ker(cj2) ≤ AutL0

(S0) (L0 is centric in
L) and hence Ker(cj2) = Z(F0) by Lemma 1.14(a). Thus the right hand square in (19) is a pullback square.

Fix automorphisms

α ∈ NAut(G0,S0)(AutG(G0, S0)) and χ ∈ AutItyp(L,L0)

such that χ|L0 = κ̃0(α). Then χ(S0) = S0, so χS0 is an automorphism of AutL(S0) = NG(S0)/C ′G0
(S0) by

(16).
We first construct β ∈ Aut(NG(S0)) such that for each g ∈ NG(S0), cβ(g) = αcgα

−1 in Aut(G0) and
χS0

([g]) = [β(g)] in AutL(S0). Consider the following automorphisms

cα ∈ Aut
(
AutG(G0, S0)

)
, χS0

∈ Aut
(
AutL(S0)

)
, cκ̃0(α) = cχ ∈ Aut

(
AutL(L0)

)
of groups in the pullback square in (19). We want to define β as the pullback of cα and χS0 over cχ.
For γ ∈ AutL(S0), cχ(cj2(γ)) = χcγχ

−1 = cχ(γ) = cj2(χS0(γ)) (using (18)) and thus cj2 ◦ χS0 = cχ ◦ cj2. By
a similar (but simpler) computation, κ̃1 ◦ cα = cκ̃0(α) ◦ κ̃1; and hence these three automorphisms pull back
(via the pullback square in (19)) to a unique β ∈ Aut(NG(S0)). Thus for g ∈ NG(S0),

[β(g)] = χS0([g]) ∈ AutL(S0) and cj1(β(g)) = cα ◦ cj1(g) = αcgα
−1 ∈ Aut(G0) . (20)

Now, χS0(δS0(S0)) = δS0(S0) and χS0(δS0(S)) = δS0(S) since χ is isotypical and sends inclusions to
inclusions (and hence restrictions to restrictions). Since AutL(S0) = NG(S0)/C ′G0

(S0) by (16), (20) implies
that β sends S0 × C ′G0

(S0) to itself and sends S·C ′G0
(S0) to itself. In particular, β(S0) = S0.

Now, for all g ∈ NG0
(S0),

λ0(α(g)) = [α(g)] = κ̃0(α)([g]) = χS0([g]) ∈ AutL(S0) (κ̃0(α) = χ|L0)

and

cj1 ◦ α(g) = cα(g) = αcgα
−1 ∈ AutG(G0, S0) .

Thus λ0(α(g)) = λ0(β(g)) and cj1(α(g)) = cj1(β(g)) by comparison with (20); and hence α(g) = β(g) by the
pullback square in (19). This proves that α|NG0

(S0) = β|NG0
(S0).

We already saw that G = G0·NG(S0). Define α̂ ∈ Aut(G,G0, S·C ′G0
(S0)) by setting α̂(g0h) = α(g0)β(h)

for g0 ∈ G0 and h ∈ NG(S0). Since α|NG0
(S0) = β|NG0

(S0), this is well defined as a bijective map of sets. For
all g0, g

′
0 ∈ G0 and h, h′ ∈ NG(S0),

α̂(g0h·g′0h′) = α̂(g0·ch(g′0)·hh′) = α(g0)α(ch(g′0))β(hh′)

= α(g0)cβ(h)(α(g′0))β(hh′) = α(g0)β(h)α(g′0)β(h′) = α̂(g0h)α̂(g′0h
′),

where the third equality follows from the condition cβ(h) = αchα
−1. It now follows that α̂ ∈ Aut(G,G0).

Also, α̂ sends S·C ′G0
(S0) to itself since β does.

By construction, Res1(α̂) = α̂|G0
= α. We claim that κ̃(α̂) = χ. Since α̂|G0

= α and χ|L0
= κ̃0(α), κ̃(α̂)

and χ define the same action on L0 (by the commutativity of (17)). Choose h ∈ C ′G0
(S0) = Op(CG(S0)) with

α̂(S) = hSh−1. For g ∈ NG(S0),

κ̃(α̂)([g]) = κ̃HG(c−1
h ◦ α̂)([g]) = [h−1α̂(g)h] = [α̂(g)] = [β(g)] = χ([g]) ∈ AutL(S0)

by (20) and since α̂|NG(S0) = β. Hence κ̃(α̂) and χ define the same action on AutL(S0). Since L0 and AutL(S0)
generate the full subcategory L|≤S0

, κ̃(α̂) and χ are equal after restriction to this subcategory.
We just showed that χS0([s]) = κ̃(α̂)S0([s]) for s ∈ S. So by Proposition 1.11(f), χS([s]) = κ̃(α̂)S([s])

in AutL(S). Lemma 1.15 now implies that χ(P ) = κ̃(α̂)(P ) for P ∈ Ob(L). Since both κ̃(α̂) and χ send
inclusions to inclusions, and since the restriction map from MorL(P,Q) to MorL(P ∩ S0, Q ∩ S0) is injective
for all P,Q ∈ H by Proposition 1.11(f) again, it now follows that κ̃(α̂) = χ.

To prove (17) is a pullback, it remains to show κ̃× Res1 is injective. So assume α̂ ∈ Aut(G,G0, S·C ′G0
(S0))

is such that α̂|G0
= IdG0

and κ̃(α̂) = IdL. For each g ∈ G, cα̂(g) = cg ∈ Aut(G0), and hence g−1α̂(g) ∈
CG(G0) = Z(G0) by (16). Since κ̃(α̂) = IdL, α̂ induces the identity on AutL(S0) = NG(S0)/C ′G0

(S0) (see (16)
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again). Since G = G0·NG(S0) and α̂|G0
= Id, g−1α̂(g) ∈ C ′G0

(S0) for all g ∈ G. Finally, C ′G0
(S0) ∩ Z(G0) = 1

because Z(G0) = Z(F0) ≤ S0 is a p-group, and we conclude that α̂ = IdG.

Step 2: We are now ready to prove (15) is a pullback. Fix elements

[α] ∈ NOut(G0)(OutG(G0))/OutG(G0) and [χ] ∈ Outtyp(L,L0)

such that κ∗([α]) = R2([χ]), and choose liftings α ∈ Aut(G0, S0) and χ ∈ AutItyp(L,L0). Then α normalizes
AutG(G0), and hence also normalizes AutG(G0, S0).

Since κ∗([α]) = R2([χ]), χ|L0
= κ̃0(α) ◦ c[x] for some element x ∈ NG(S0) (where [x] ∈ AutL(S0) is the class

of x). Upon replacing α by α ◦ cx ∈ Aut(G0), we can arrange that χ|L0
= κ̃0(α). Hence α and χ pull back to

an element of Aut(G,G0, S·C ′G0
(S0)) by Step 1, and so [α] and [χ] pull back to an element of Out(G,G0).

To see that this pullback is unique, fix [γ] ∈ Out(G,G0) such that R1([γ]) = 1 and κ([γ]) = 1, and choose
γ ∈ Aut(G,G0) which represents [γ]. Then γ(S) = gSg−1 for some g ∈ G, and upon replacing γ by c−1

g ◦ γ,
we can assume γ(S) = S. Also, κ̃(γ) = c[y] for some y ∈ NG(S); and upon replacing γ by γ ◦ c−1

y , we can
assume κ̃(γ) = IdL. Now, γ|G0

= ch for some h ∈ NG(S0), and c[h] = IdL0
. Hence h ∈ G0 since L0 is centric

in L, and so h ∈ CG0(S0) = Z(S0)× C ′G0
(S0).

Write h = h1h2, where h1 ∈ Z(S0) and h2 ∈ C ′G0
(S0). Thus [h] = [h1] ∈ AutL0(S0), and h1 ∈ Z(F0) =

Z(G0) since c[h] = IdL0
(see Lemma 1.14(a)). Thus γ|G0

= ch = ch2
in Aut(G0). Since [S, h2] ≤

[S,C ′G0
(S0)] ≤ C ′G0

(S0), ch2
∈ Aut(G,G0, S·C ′G0

(S0)). Also, κ̃(ch2
) = Id by definition of κ̃ (and since h2 ∈

C ′G0
(S0)). Thus γ = ch2

since (17) is a pullback, and so [γ] = 1 in Out(G,G0).

We are finally ready to prove:

Proposition 2.16. Let (S0,F0,L0) E (S,F ,L) be a normal pair such that L0 is centric in L, Ob(L0)
and Ob(L) are Aut(S0,F0)- and Aut(S,F)-invariant, respectively, and L0 is AutItyp(L)-invariant. Assume F0

is tamely realized by some finite group G0 such that S0 ∈ Sylp(G0), Z(G0) = Z(F0), and L0
∼= LOb(L0)

S0
(G0).

Then F is tamely realized by a finite group G such that S ∈ Sylp(G), G0 E G and G/G0
∼= L/L0.

Proof. SetH = Ob(L) andH0 = Ob(L0). By assumption, F0 = FS0(G0), and κG0 is split surjective. Also,
L0
∼= LH0

S0
(G0) by assumption, and we identify these two linking systems. By Lemma 1.17, Outtyp(L0) ∼=

Outtyp(LH
c
0

S0
(G0)) ∼= Outtyp(LcS0

(G0)), where Hc0 is the set of F0-centric subgroups in H0. Choose a splitting

s : Outtyp(L0) ∼= Outtyp(LcS0
(G0)) −−−−−−→ Out(G0)

for κH0

G0
, and set

ρ̂ = s ◦ ρLL0
: L/L0 −−−−−→ Outtyp(L0) −−−−−→ Out(G0) .

By Lemma 2.14, there is a finite group G such that S ∈ Sylp(G), G0 E G, F = FS(G), L ∼= LHS (G),
G/G0

∼= L/L0, and such that the outer action of G/G0 on G0 is equal to ρ̂ via this last isomorphism. In
particular, s sends OutL(L0) = Im(ρLL0

) isomorphically to OutG(G0) = Im(ρ̂).

Since L0 is AutItyp(L)-invariant by assumption, Outtyp(L,L0) = Outtyp(L). So by Lemma 2.15, the
following is a pullback square:

Out(G,G0)
κ

//

R1

��

Outtyp(L)

R2

��

NOut(G0)(OutG(G0))/OutG(G0) κ∗
// NOuttyp(L0)(OutL(L0))/OutL(L0)

(21)

where κ∗ is induced by κH0

G0
. Since the splitting s of κH0

G0
sends OutL(L0) isomorphically to OutG(G0), it

induces a splitting s∗ of κ∗. Since (21) is a pullback, s∗ induces a splitting of κ = κHG |Out(G,G0) (Lemma
2.13). By Lemma 1.17, Outtyp(L) ∼= Outtyp(LcS(G)), and so F is tamely realized by G.

We next turn to central extensions of fusion and linking systems. In the following lemma, when L is a
linking system associated to F over the p-group S, and A ≤ S, we set

AutItyp(L, A) = {α ∈ AutItyp(L) |αS(δS(A)) = δS(A)} ,

and let Outtyp(L, A) be its image in Outtyp(L).
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Lemma 2.17. Fix a finite group G and a central p-subgroup A ≤ Z(G). Choose S ∈ Sylp(G), and set

G = G/A and S = S/A ∈ Sylp(G). Set F = FS(G), F = F
S

(G) and

H = {P ≤ S |P ≥ A, P/A is F-centric} .

Then H contains all subgroups of S which are F-centric and F-radical, all subgroups in H are F-centric,

and hence L def
= LHS (G) is a linking system associated to F . If, furthermore, Z(G) = Z(F), then the following

square is a pullback:

Out(G,A)

ν1

��

κHG,A
// Outtyp(L, A)

ν2

��

Out(G)
κ
G

// Outtyp(L) ,

(22)

where L = Lc
S

(G), κHG,A is defined analogously to κG, and ν1 and ν2 are induced by the projections G −−� G

and L −−� L.

Proof. We first prove the statements about H = Ob(L). If P ∈ H, then P is F-centric since A ≤ P
and P/A is F-centric (cf. [BCGLO2, Lemma 6.4(a)]). Now assume P ≤ S is F-centric and F-radical; we
must show P ∈ H. Since P is F-centric, A ≤ CS(P ) ≤ P . For x ∈ S with xA ∈ C

S
(P/A), cx induces the

identity on A and on P/A. Hence cx ∈ Op(AutF (P )) by Lemma 1.6, so x ∈ P by Lemma 1.4. This proves
C
S

(P/A) ≤ P/A. Since this argument applies to all subgroups F-conjugate to P , we conclude that P/A is

F-centric, so P ∈ H.
Consider the following diagram (with homomorphisms defined below):

1 // Hom(G,A)
λ1

//

τ∼=
��

Aut(G,S,A)
(ν̃1,r1)

//

κ̃1

��

Aut(G,S)×Aut(A)

κ̃2×Id

��

1 // Hom(π1(|L|), A)
λ2

// AutItyp(L, A)
(ν̃2,r2)

// AutItyp(L)×Aut(A) .

(23)

Here, ν̃1 and ν̃2 are induced by the projection G −−� G and r1 and r2 by restriction to A, and Aut(G,S,A) ≤
Aut(G) is the subgroup of automorphisms which leave both S and A invariant. Also, κ̃1 = κ̃HG,A (defined
analogously to κ̃G), and κ̃2 = κ̃

G
. The right hand square clearly commutes.

For β ∈ Hom(G,A) and g ∈ G, λ1(β)(g) = g·β(gA). For any morphism ψ ∈ MorL(P,Q), let [ψ] ∈ π1(|L|)
be the class of the loop based at the vertex S, formed by the edges ιSP , ψ, and ιSQ (in that order). For β ∈
Hom(π1(|L|), A), λ2(β) is the automorphism of L which is the identity on objects, and sends ψ ∈ MorL(P,Q)

(with image ψ ∈ MorL(P/A,Q/A)) to ψ ◦ δP (β([ψ])). It follows immediately from these definitions that for
i = 1, 2, λi is injective and (ν̃i, ri) ◦ λi is trivial.

Since A is a finite abelian p-group, Hom(π1(X), A) ∼= H1(X;A) ∼= H1(X∧p ;A) for any “p-good” space X

(the second isomorphism by [BK, Definition I.5.1]). Also, |L| is p-good by [BLO2, Proposition 1.12], BG is

p-good since it has finite fundamental group (cf. [BK, Proposition VII.5.1]), and BG∧p ' |L|∧p by [BLO1,
Proposition 1.1]. We thus get an isomorphism

τ : Hom(G,A)
∼=−−−−→ H1(BG∧p ;A)

∼=−−−−→ H1(|L|∧p ;A)
∼=−−−−→ Hom(π1(|L|), A) .

Alternatively, by [BCGLO2, Theorem B], π1(|L|)/Op(π1(|L|)) ∼= S/hyp(F), where for an infinite group Γ,
Op(Γ) denotes the intersection of all normal subgroups of p-power index. By the hyperfocal subgroup theorem

for groups [Pg1, § 1.1], G/Op(G) ∼= S/hyp(F); and these isomorphisms induce an isomorphism

τ : Hom(G,A)
∼=−−−−−→ Hom(S/hyp(F), A)

∼=−−−−−→ Hom(π1(|L|), A) .

By either construction, τ makes the left hand square in (23) commute.

An element α ∈ Ker(ν̃1, r1) is an automorphism of G which induces the identity on A and on G = G/A,

and since A ≤ Z(G), any such automorphism has the form α(g) = g·β(gA) for some unique β ∈ Hom(G,A).
Thus the top row in (23) is exact.

Similarly, an element α ∈ Ker(ν̃2, r2) is an isotypical automorphism of L which sends inclusions to

inclusions and induces the identity on L and on A. Since L −−−→ L is bijective on objects (by definition),
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α induces the identity on objects in L, and on morphisms it has the form α(ψ) = ψ ◦ β(ψ) for some

β : Mor(L) −−−→ A which preserves composition and sends inclusions to the identity. Such a β is equivalent

to a homomorphism from π1(|L|) to A (cf. [OV1, Proposition A.3(a)]), so α = λ2(β), and thus the second
row in (23) is exact.

We are now ready to prove that (22) is a pullback. Fix automorphisms α ∈ Aut(G,S) and β ∈ AutItyp(L, A)

such that κ
G

([α]) = ν2([β]). Then ν̃2(β) = κ̃2(α) ◦ c[x] for some x ∈ N
G

(S) which induces [x] ∈ AutL(S). So
upon replacing α by α ◦ cx, we can assume κ̃2(α) = ν̃2(β). Consider the following diagram:

1 // A //

∼= r2(β)

��

G //

α̂

��
�
�
�

G //

∼= α

��

1

1 // A // G // G // 1

We want to find α̂ ∈ Aut(G) which makes the two squares commute. This means showing that the class

[G] ∈ H2(G;A) is invariant under the automorphism of H2(G;A) induced by r2(β) and α. But β ∈ AutItyp(L)
induces an automorphism γ = βS |δS(S) ∈ Aut(S,F) (see Lemma 1.15). Also, γ|A = βS |A = r2(β), γ induces

the automorphism (ν̃2(β))
S
|
S

= α|
S

on S, and thus [S] ∈ H2(S;A) is invariant under these automorphisms

of S and A. Since H2(G;A) injects into H2(S;A) under restriction, this proves that [G] is also invariant,
and hence that there is an automorphism α̂ ∈ Aut(G,S,A) as desired.

Thus (ν̃1, r1)(α̂) = (α, r2(β)). By the commutativity of (23),

(ν̃2, r2)(κ̃1(α̂)) = (κ̃2(α), r2(β)) = (ν̃2, r2)(β).

Hence there is χ ∈ Hom(G,A) such that λ2(τ(χ)) = κ̃1(α̂)−1 ◦ β, and the element α̂ ◦ λ1(χ) ∈ Aut(G,S,A)

pulls back α ∈ Aut(G,S) and β ∈ AutItyp(L, A).
This proves that Out(G,A) surjects onto the pullback in square (22). To prove that it injects into the

pullback, fix α̂ ∈ Aut(G,S,A) such that κHG([α̂]) = 1 and ν1([α̂]) = 1. Upon composing α̂ by an appropriate

inner automorphism, we can assume it induces the identity on G. Thus κ̃1(α̂) = c[x] ∈ AutItyp(L) for some

x ∈ NG(S) inducing [x] ∈ AutL(S), where c[x] induces the identity on L. This means that xA ∈ Z(F)

(Lemma 1.14(a)), and hence xA ∈ Z(G) by assumption. So upon replacing α̂ by α̂ ◦ c−1
x ∈ Aut(G) we have

an automorphism which induces the identity on L and on G. By the exactness of the rows in (23) again,
α̂ = Id, and this finishes the proof.

Lemma 2.17 now implies the result we need about tameness.

Proposition 2.18. Fix a saturated fusion system F over a finite p-group S. Assume F/Z(F) is tamely

realized by the finite group G such that Op′(G) = 1 and Z(G) = Z(F/Z(F)). Then F is tamely realized

by a finite group G such that Z(G) = Z(F) and G/Z(G) ∼= G, and hence Op′(G) = 1. If G ∈ G(p), then
G ∈ G(p).

Proof. Set A = Z(F) and S = S/A for short. By assumption, S ∈ Sylp(G), F/A ∼= F
S

(G), κ
G

is split

surjective, Op′(G) = 1, and Z(G) = Z(F/A).
By [BCGLO2, Corollary 6.14], the fusion system F is realizable, and by the proof of that corollary, it is

realizable by a finite group G such that S ∈ Sylp(G), A ≤ Z(G), and G/A ∼= G. Hence Op′(G) = 1, so Z(G)
is a p-group which is central in F . Thus Z(G) = Z(F).

Let L ⊆ LcS(G) be the full subcategory whose objects are the subgroups P ≤ S such that P ≥ A and

P/A is F/A-centric, and set L = Lc
S

(G). Then L is a linking system associated to F by Lemma 2.17, and

A = Z(F) is invariant under all automorphisms in AutItyp(L) by Lemma 1.15. Lemma 2.17 now implies that
the following is a pullback square:

Out(G,A)
κ

//

��

Outtyp(L)

��

Out(G)
κ
G

// Outtyp(L) .
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By assumption, κ
G

is split surjective. Hence κ = κHG |Out(G,A) (H = Ob(L)) is also split surjective by Lemma

2.13, so κHG is split surjective. Since Outtyp(L) ∼= Outtyp(LcS(G)) by Lemma 1.17, this finishes the proof that
F is tame.

By construction, G and G have the same nonabelian composition factors. Hence G ∈ G(p) if G ∈ G(p).

One more technical lemma is needed before we can prove Theorem A.

Lemma 2.19. Let F be a saturated fusion system over a finite p-group S. If F is tame, then there is a
finite group G such that Op′(G) = 1 and F is tamely realized by G. If F is strongly tame, then G can be
chosen such that in addition, G ∈ G(p).

Proof. Fix any Ĝ which tamely realizes F . If F is strongly tame, we assume Ĝ ∈ G(p). Thus S ∈ Sylp(Ĝ),

F ∼= FS(Ĝ), and κĜ is split surjective. Set G = Ĝ/Op′(Ĝ), and identify S with its image in G. Since G is a

quotient group of Ĝ, G ∈ G(p) if Ĝ ∈ G(p).
By construction, FS(G) ∼= FS(Ĝ) ∼= F , and Op′(G) = 1. The natural homomorphism from Ĝ onto G

induces a homomorphism between their outer automorphism groups and an isomorphism between their
linking systems, and the resulting square

Out(Ĝ) //

κĜ

��

Out(G)

κG

��

Outtyp(LcS(Ĝ))
∼=
// Outtyp(LcS(G))

commutes. Since κĜ is split surjective, so is κG.

We are now ready to prove Theorem A. Recall that red(F) denotes the reduction of a fusion system F
(see Definition 2.1).

Theorem 2.20. For any saturated fusion system F over a finite p-group S, if red(F) is strongly tame,
then F is tame.

Proof. Set Q = Op(F), S0 = CS(Q)/Z(Q), and F0 = CF (Q)/Z(Q). Let red(F) = Fm ⊆ Fm−1 ⊆ · · · ⊆
F0 be a sequence of fusion subsystems, where for each i, Fi = Op(Fi−1) or Fi = Op

′
(Fi−1). Let Sm E · · · E S0

be the corresponding sequence of p-groups: each Fi is a fusion system over Si. By Lemma 2.3, Op(Fi) = 1
for each i, and hence Z(Fi) = 1 for each i.

We first show inductively that each of the Fi is strongly tame. Fix 1 ≤ i ≤ m, and assume Fi is tamely
realized by Gi ∈ G(p). By Lemma 2.19, we can assume Op′(Gi) = 1. Thus Z(Gi) is a p-group central in
the fusion system Fi, and hence Z(Gi) = 1 since Z(Fi) = 1. By Proposition 2.12(a,b), there is a centric
linking system associated to Fi−1. Hence by Proposition 1.31(a,b), there are linking systems Li E Li−1

associated to Fi E Fi−1 such that Li is a centric linking system (so Ob(Li) is Aut(Si,Fi)-invariant),
Ob(Li−1) is Aut(Si−1,Fi−1)-invariant, and Li is AutItyp(Li−1)-invariant. Also, Li is centric in Li−1 by
Proposition 1.31(a,b) again (and since Z(Fi−1) = 1). By Lemma 2.11(c), Li ∼= LcSi(Gi). The hypotheses of
Proposition 2.16 are thus satisfied, and hence Fi−1 is tamely realized by some Gi−1 such that Gi E Gi−1

and Gi−1/Gi ∼= Li−1/Li. In particular, Gi−1/Gi is p-solvable, and so Gi−1 ∈ G(p) by Lemma 2.11(b).
Since Fm was assumed to be tamely realized by some Gm ∈ G(p), we now conclude that F0 is tamely

realized by G0 ∈ G(p). By Lemma 2.19 again, we can assume Op′(G0) = 1, and Z(G0) = 1 since Z(F0) =

1. Next consider the saturated fusion system F∗ def
= N

Inn(Q)
F (Q) over S∗

def
= Q·CS(Q). Since F∗ E F by

Proposition 1.25(c), Op(F∗) = Q by Lemma 1.20(e). Let Z(Q) = Z1(Q) ≤ Z2(Q) ≤ · · · ≤ Q be the upper
central series for Q. Since AutF∗(Q) = Inn(Q), Zi+1(Q)/Zi(Q) is central in F∗/Zi(Q) for each i. Also, by
repeated application of Proposition 1.8, if P/Zi(Q) = Z(F∗/Zi(Q)), then P E F∗, and hence P ≤ Q. Thus
Z(F∗/Zi(Q)) ≤ Z(Q/Zi(Q)) = Zi+1(Q)/Zi(Q), and these two subgroups are equal.

In other words, F∗/Q is obtained from F∗ by sequentially dividing out by its center until the fusion

system is centerfree. Now identify CS(Q)/Z(Q) with N
Inn(Q)
S (Q)/Q in the canonical way. By definition, each

morphism in CF (Q) extends to a morphism between subgroups containing Q which is the identity on Q and
hence lies in F∗. Thus CF (Q)/Z(Q) ⊆ F∗/Q, and the opposite inclusion holds by a similar argument. Hence
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F0 = CF (Q)/Z(Q) is obtained from F∗ by sequentially dividing out by its center. By repeated application
of Proposition 2.18, F∗ is tamely realizable by some finite group G∗ ∈ G(p) such that Op′(G

∗) = 1 and
Z(G∗) = Z(F∗).

By Proposition 2.12(c), there is a centric linking system associated to F . Hence by Proposition 1.31(c),
there are linking systems L∗ E L associated to F∗ E F , where all objects in L∗ are F∗-centric, Ob(L∗) is
Aut(S∗,F∗)-invariant, Ob(L) is Aut(S,F)-invariant, L∗ is AutItyp(L)-invariant, and L∗ is centric in L. By

Lemma 2.11(c) (and since G∗ ∈ G(p)), L∗ ∼= LOb(L∗)
S∗ (G∗). Hence by Proposition 2.16, F is tamely realized

by a finite group G.

3. Decomposing reduced fusion systems as products

If F1 and F2 are fusion systems over finite p-groups S1 and S2, respectively, then F1 ×F2 is the fusion
system over S1 × S2 defined as follows. For all P,Q ≤ S1 × S2, if Pi, Qi ≤ Si denote the images of P and Q
under projection to Si, then

HomF1×F2
(P,Q) =

{
(ϕ1, ϕ2)|P

∣∣ϕi ∈ HomFi(Pi, Qi), (ϕ1, ϕ2)(P ) ≤ Q
}
.

Here, we regard P and Q as subgroups of P1 × P2 and Q1 ×Q2, respectively. Thus F1 ×F2 is the smallest
fusion system over S1 × S2 for which

HomF1×F2
(P1 × P2, Q1 ×Q2) = HomF1

(P1, Q1)×HomF2
(P2, Q2)

for each Pi, Qi ≤ Si. By [BLO2, Lemma 1.5], F1 ×F2 is saturated if F1 and F2 are saturated. We leave it
as an easy exercise to check, for any pair of finite groups G1, G2 with Sylow subgroups Si ∈ Sylp(Gi), that
FS1×S2

(G1 ×G2) = FS1
(G1)×FS2

(G2).

We say that a nontrivial fusion system F is indecomposable if it has no decomposition as a product of
fusion systems over nontrivial p-groups. The main result in this section is Theorem C: every reduced fusion
system has a unique decomposition as a product of reduced indecomposable fusion systems, and the product
is tame if each of the indecomposable factors is tame. The first statement will be proven as Proposition 3.6,
and the second as Theorem 3.7.

We first prove the following easy lemma about fusion systems over products of finite p-groups.

Lemma 3.1. Let S1, S2 be a pair of finite p-groups, and set S = S1 × S2. For each subgroup P ≤ S which
does not split as a product P = P1 × P2 for Pi ≤ Si, there is x ∈ NS(P )rP such that cx ∈ Op(Aut(P )).
Hence for each saturated fusion system F over S, and each subgroup P ≤ S which is F-centric and F-radical,
P = P1 × P2 for some pair of subgroups Pi ≤ Si.

Proof. We prove the first statement; the last then follows by Lemma 1.4.
Fix P ≤ S. For i = 1, 2, let Pi ≤ Si be the image of P under projection. Thus P ≤ P1 × P2. Let Zk(P ) and

Zk(Pi) be the k-th terms in the upper central series for P and Pi; i.e., Z1(P ) = Z(P ) and Zk+1(P )/Zk(P ) =
Z(P/Zk(P )). We claim that for each k,

Zk(P ) = P ∩ (Zk(P1)× Zk(P2)) . (1)

This is clear for k = 1: an element of P is central only if it commutes with all elements in P1 and all elements
in P2. If (1) holds for k, then P/Zk(P ) can be identified as a subgroup of (P1/Zk(P1))× (P2/Zk(P2)) (a
subgroup which projects onto each factor), and the result for Zk+1(P ) then follows immediately.

If P � P1 × P2, then choose x ∈ NP1×P2
(P )rP (see [Sz1, Theorem 2.1.6]). By (1), conjugation by x acts

via the identity on each quotient Zk+1(P )/Zk(P ). So cx ∈ Op(Aut(P )) by Lemma 1.6.

The next lemma gives some basic properties of product fusion systems.

Lemma 3.2. Assume F1 and F2 are saturated fusion systems over finite p-groups S1 and S2. For each
i = 1, 2, let F ′i ⊆ Fi be a saturated fusion subsystem over S′i ≤ Si.
(a) If F ′i E Fi for i = 1, 2, then F ′1 ×F ′2 is normal in F1 ×F2.
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(b) If F ′i has index prime to p in Fi for i = 1, 2, then F ′1 ×F ′2 has index prime to p in F1 ×F2.

Proof. Set S = S1 × S2, S′ = S′1 × S′2, F = F1 ×F2, and F ′ = F ′1 ×F ′2.
(a) Since S′i is strongly closed in Fi, S′ is strongly closed in F .
Fix P,Q ≤ S′ and ϕ ∈ HomF (P,Q). Let Pi, Qi ≤ S′i be the images of P and Q under projection to S′i.

Then ϕ = (ϕ1, ϕ2)|P for some ϕi ∈ HomFi(Pi, Qi). By condition (ii) in Definition 1.18, there are morphisms
αi ∈ AutFi(S

′
i) and ϕ′i ∈ HomF ′i (αi(Pi), Qi) such that ϕi = ϕ′i ◦ αi|Pi,αi(Pi). Set α = (α1, α2) ∈ AutF (S′),

and set ϕ′ = (ϕ′1, ϕ
′
2)|α(P ). Then ϕ′(α(P )) ≤ Q, so ϕ′ ∈ HomF ′(α(P ), Q) and ϕ = ϕ′ ◦ α|P,α(P ). This proves

condition (ii) for the pair F ′ ⊆ F .
Let P,Q ≤ S′ and Pi, Qi ≤ S′i be as above, and fix ϕ = (ϕ1, ϕ2)|P ∈ HomF ′(P,Q) and β = (β1, β2) ∈

AutF (S′). Then βiϕiβ
−1
i ∈ HomF ′i (βi(Pi), βi(Qi)) by condition (iii) for the normal pair F ′i E Fi. Also,

βϕβ−1(β(P )) ≤ β(Q), and hence βϕβ−1 ∈ HomF ′(β(P ), β(Q)). This proves condition (iii) for the pair
F ′ ⊆ F , and finishes the proof that F ′ is normal in F .

(b) Note that S′i = Si, since F ′i has index prime to p in Fi. Since F ′i ⊇ Op
′
(Fi), it suffices to prove this point

when F ′i = Op
′
(Fi), and thus when F ′i E Fi (Proposition 1.25(b)). Hence F ′1 ×F ′2 is normal in F1 ×F2 by

(a). Since they are fusion systems over the same p-group, the result now follows by Lemma 1.26.

We next prove the following criterion for a reduced fusion system to decompose: F factors as a product
of fusion subsystems whenever S factors as a product of subgroups which are strongly closed in F .

Proposition 3.3. Let F be a saturated fusion system over a finite p-group S = S1 × · · · × Sm, where
S1, . . . , Sm are all strongly closed in F . Set Fi = F|Si (i = 1, . . . ,m): the full subcategory of F with objects
the subgroups of Si, regarded as a fusion system over Si. For each i, let S∗i =

∏
j 6=i Sj , identify S = Si × S∗i ,

and let F ′i ⊆ Fi be the fusion subsystem over Si where for P,Q ≤ Si,

HomF ′i (P,Q) =
{
ϕ ∈ HomFi(P,Q)

∣∣ (ϕ, IdS∗i ) ∈ HomF (P × S∗i , Q× S∗i )
}
.

Then F ′i and Fi are saturated fusion systems for each i, Op
′
(Fi) ⊆ F ′i , and

F ′1 × · · · × F ′m ⊆ F ⊆ F1 × · · · × Fm .

If Op
′
(F) = F , then F ′i = Fi for each i, and hence F = F1 × · · · × Fm.

Proof. Fix i ∈ {1, . . . ,m}. We first claim that

∀ P,Q ≤ Si and ϕ ∈ HomFi(P,Q), there are ψ ∈ AutF (S∗i ) and χ ∈ AutFi(Si)

such that (ϕ,ψ) ∈ HomF (P × S∗i , Q× S∗i ) and χ|Q ◦ ϕ ∈ HomF ′i (P, Si) .
(2)

If ϕ(P ) is fully centralized in F , the existence of ψ follows by the extension axiom, and since the Si are all
strongly closed in F . The general case then follows upon choosing α ∈ IsoF (ϕ(P ), R) where R ≤ Si is fully
centralized in F , and applying the extension axiom to α ◦ ϕ and to α. By the extension axiom again, this
time applied to ψ, there is χ such that (χ−1, ψ) ∈ AutF (S), and hence χ|Q ◦ ϕ ∈ HomF ′i (P, Si). This finishes
the proof of (2).

Two subgroups of Si are Fi-conjugate if and only if they are F-conjugate; and they cannot be F-conjugate
to any other subgroups of S since Si is strongly closed. Also, for P ≤ Si, |NS(P )| = |NSi(P )|·|S∗i | and
|CS(P )| = |CSi(P )|·|S∗i |. Hence P is fully normalized (centralized) in Fi if and only if it is fully normalized
(centralized) in F . By (2), P,Q ≤ Si are Fi-conjugate only if P is F ′i-conjugate to a subgroup in the
AutFi(Si)-orbit of Q, and hence P is fully normalized (centralized) in Fi if and only if it is fully normalized
(centralized) in F ′i . Also, in the context of axiom (II), NFϕ = NFiϕ × S∗i for all ϕ ∈ Mor(Fi), and NF(ϕ,IdS∗

i
) =

N
F ′i
ϕ × S∗i for all ϕ ∈ Mor(F ′i). Axioms (I) and (II) for Fi and for F ′i now follow easily from the same axioms

applied to F ; and thus Fi and F ′i are saturated.
Fix P ≤ Si, and choose ϕ ∈ AutFi(P ) and α ∈ AutF ′i (P ). By (2), there is ψ ∈ AutF (S∗i ) such that

(ϕ,ψ), (α, Id) ∈ AutF (P × S∗i ). Hence (ϕαϕ−1, Id) ∈ AutF (P × S∗i ), ϕαϕ−1 ∈ AutF ′i (P ), and so AutF ′i (P )
is normal in AutFi(P ). When P is fully normalized, AutF ′i (P ) contains AutSi(P ) ∈ Sylp(AutFi(P )), and thus

AutF ′i (P ) ≥ Op′(AutFi(P )). Hence F ′i has index prime to p in Fi (see Definition 1.21), and so F ′i ⊇ Op
′
(Fi).

Clearly, F contains F ′1 × · · · × F ′m. By Lemma 3.1 together with Alperin’s fusion theorem (Theorem 1.3),
each morphism in F is a composite of restrictions of automorphisms of subgroups of the form P1 × . . .× Pm
for Pi ≤ Si. Since the Si are strongly closed in F , each such automorphism has the form (ϕ1, . . . , ϕm) for some
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ϕi ∈ AutF (Pi) = AutFi(Pi). Hence for arbitrary P,Q ≤ S, if Pi, Qi ≤ Si denote the images of P and Q under
projection, then each ϕ ∈ HomF (P,Q) extends to some morphism (ϕ1, . . . , ϕm) where ϕi ∈ HomF (Pi, Qi).
Since HomF (Pi, Qi) = HomFi(Pi, Qi), this shows that F ⊆ F1 × · · · × Fm.

Since F ′i has index prime to p in Fi for each i, F ′1 × · · · × F ′m has index prime to p in F1 × · · · × Fm
by Lemma 3.2(b), and hence has index prime to p in F . So if Op

′
(F) = F , then F = F ′1 × · · · × F ′m; and

Fi = F ′i for each i by definition of Fi.

Note that if F is any fusion system (saturated or not) over a finite p-group S = S1 × S2, and F factors
as a product of fusion systems over S1 and S2, then the factors must be the fusion subsystems Fi = F ′i as
defined in Proposition 3.3. In other words, if there is any such factorization, it must be unique.

We next show that a product of reduced fusion systems is reduced.

Proposition 3.4. Fix finite p-groups S1 and S2 and saturated fusion systems Fi over Si. Set F =
F1 ×F2. Then

Op(F) = Op(F1)×Op(F2), Op(F) = Op(F1)×Op(F2), Op
′
(F) = Op

′
(F1)×Op

′
(F2) .

In particular, F is reduced if and only if F1 and F2 are both reduced.

Proof. Set S = S1 × S2. The decomposition of Op(F) is clear: if P ≤ S is normal in F , then so are its
projections into S1 and S2, and Pi E Fi implies P1 × P2 E F .

The relation “of index prime to p” among fusion systems is transitive (see Definition 1.21), and hence
Op
′
(Op

′
(F)) = Op

′
(F). So by Proposition 3.3, Op

′
(F) = F ′1 ×F ′2 for some pair of fusion systems F ′i over Si.

Also, Op
′
(F) ⊆ Op′(F1)×Op′(F2) by Lemma 3.2(b), so F ′i ⊆ Op

′
(Fi), and F ′i has index prime to p in Fi

since F ′1 ×F ′2 has index prime to p in F . Thus F ′i = Op
′
(Fi).

By definition,

hyp(F) = 〈s−1α(s) | s ∈ P ≤ S, α ∈ Op(AutF (P ))〉 = hyp(F1)× hyp(F2) .

Since Op(F) is the unique fusion subsystem over hyp(F) of p-power index in F (Theorem 1.22(a)), we have
Op(F) = Op(F1)×Op(F2).

The last statement is now immediate.

By definition, every fusion system F factors as a product of indecomposable fusion systems. The following
lemma is the key step when showing that this factorization is unique (not only up to isomorphism) when F
is reduced.

Lemma 3.5. Let F be a reduced fusion system over a finite p-group S. Assume F = F1 ×F2 = F3 ×F4,
where each Fi is a saturated fusion system over some Si ≤ S. Set Sij = Si ∩ Sj for i = 1, 2 and j = 3, 4.
Then F = F13 ×F14 ×F23 ×F24, where Fij is a reduced fusion system over Sij .

Proof. By assumption, the subgroups Si for i ∈ {1, 2, 3, 4} are all strongly closed in F , and S = S1 × S2 =
S3 × S4. Fix x, y ∈ S1 which are F-conjugate, and choose ϕ ∈ HomF (〈x〉, 〈y〉) which sends x to y. Write
x = x3x4 and y = y3y4, where x3, y3 ∈ S3 and x4, y4 ∈ S4. There are homomorphisms ϕi ∈ HomFi(〈xi〉, 〈yi〉)
for i = 3, 4 which send xi to yi, and such that ϕ is the restriction of (ϕ3, ϕ4). Hence (ϕ3, IdS4

)(x) = y3x4,
y3x4 ∈ S1 since S1 is strongly closed, and thus x−1

3 y3 ∈ S13. By a similar argument, x−1
4 y4 ∈ S14, and thus

x−1y ∈ S13 × S14. This proves that foc(F1) ≤ S13 × S14.
By a similar argument, foc(F2) ≤ S23 × S24. Since F = F1 ×F2, it follows that

foc(F) = foc(F1)× foc(F2) ≤ S13 × S14 × S23 × S24 ≤ S .

Also, foc(F) = S since F is reduced (Theorem 1.22(a)), so S is the product of the Sij . Since the intersection
of two subgroups which are strongly closed in F is strongly closed in F , F splits as a product of reduced
fusion systems Fij over Sij by Propositions 3.3 and 3.4 (recall Op

′
(F) = F since F is reduced).

This now implies the uniqueness of any decomposition of a reduced fusion system as a product of
indecomposables.
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Proposition 3.6. Each reduced fusion system F over a finite p-group S has a unique factorization
F = F1 × · · · × Fm as a product of indecomposable fusion systems Fi over subgroups Si E S. Moreover, the
Fi are all reduced, and each fusion preserving automorphism α ∈ Aut(S,F) permutes the factors Si.

Proof. Let F = F1 × · · · × Fm = F ′1 × · · · × F ′n be two decompositions as products of indecomposable
fusion systems. By Lemma 3.5 applied to the decompositions F = F1 ×

∏
i≥2 Fi = F ′1 ×

∏
i≥2 F ′i , and since

F1 and F ′1 are indecomposable, either F1 = F ′1 and
∏
i≥2 Fi =

∏
i≥2 F ′i , or F1 is a direct factor in

∏
i≥2 F ′i .

In the latter case, we can assume by induction on |S| that the decomposition of
∏
i≥2 F ′i is unique, and hence

that for some j, F1 = F ′j and so
∏
i 6=1 Fi =

∏
i6=j F ′i (Lemma 3.5 again). By the same induction hypothesis,

this proves that the two decompositions are equal up to permutation of the factors. The factors Fi are all
reduced by Proposition 3.4.

Fix α ∈ Aut(S,F). Since S =
∏m
i=1 α(Si) is a product of subgroups which are strongly closed in F , F

factors as a product of saturated fusion systems over the α(Si) by Proposition 3.3 (and since Op
′
(F) = F).

So α permutes the factors Si by the uniqueness of the decomposition.

We are now ready to prove that a product of reduced, indecomposable, tame fusion systems is tame.
Together with Theorem 2.20, this shows that any “minimal” exotic fusion system is indecomposable as well
as reduced.

Theorem 3.7. Fix a reduced fusion system F over a finite p-group S, and let F = F1 × · · · × Fm be its
unique factorization as a product of indecomposable fusion systems. If Fi is tame (strongly tame) for each
i, then F is tame (strongly tame).

Proof. Let S = S1 × · · · × Sm be the corresponding decomposition of p-groups; i.e., Fi is a fusion system
over Si. Assume each Fi is tame, and let Gi be a finite group which tamely realizes Fi. Assume also that
these are chosen so that Gi ∼= Gj if Fi ∼= Fj . Set Li = LcSi(Gi). Set G = G1 × · · · ×Gm, L = LcS(G), and

L̂ = L1 × · · · × Lm. We identify L̂ with the full subcategory of L having as objects those P = P1 × · · · × Pm
where Pi ∈ Ob(Li). Note that L̂ is not a linking system, since Ob(L̂) is not closed under overgroups.

Set m = {1, . . . ,m}. Define

Aut0
typ(L) =

{
α ∈ AutItyp(L)

∣∣αS(δS(Si)) = δS(Si) for each i ∈m
}
.

We first construct a monomorphism

Ψ: Aut0
typ(L) −−−−−→ AutItyp(L1)× · · · ×AutItyp(Lm)

such that for each α ∈ Aut0
typ(L), if Ψ(α) = (α1, . . . , αm), then α|L̂ =

∏
i∈m αi.

To define Ψ, fix α ∈ Aut0
typ(L), and let β ∈ Aut(S,F) be the induced automorphism of Lemma 1.15

(i.e., δS(β(g)) = α(δS(g)) for g ∈ S). Then β(Si) = Si for each i since δS is injective. Also, by Lemma
1.15, α(P ) = β(P ) for each P ∈ Ob(L), and π ◦ α = cβ ◦ π, where cβ ∈ Aut(F) is conjugation by β (and its
restrictions).

Fix i ∈m, set S∗i =
∏
j 6=i Sj and L∗i =

∏
j 6=i Lj , and identify S = Si × S∗i and L̂ = Li × L∗i . We claim the

following:

∀ ψ ∈ Mor(Li), ∃ αi(ψ) ∈ Mor(Li) such that α(ψ, IdS∗i ) = (αi(ψ), IdS∗i ). (3)

For each ψ ∈ Mor(Li),

π(α(ψ, IdS∗i )) = cβ(π(ψ), IdS∗i ) = (cβ(π(ψ)), IdS∗i ) ∈ Mor(F)

since β(Sj) = Sj for all j. Hence by axiom (A), α(ψ, IdS∗i ) = (αi(ψ), δS∗i (z)) for some αi(ψ) ∈ Mor(Li) and
some z ∈ Z(S∗i ). In particular, (3) holds when ψ is an automorphism of order prime to p. Since α(δP (x)) =
δβ(P )(β(x)) for all P ∈ Ob(L) and all x ∈ NS(P ) (and since β(Si) = Si), (3) also holds when ψ = δP (x) for
P ≤ Si and x ∈ NSi(P ). When P ∈ Ob(Li) is fully normalized in Fi, AutLi(P ) is generated by elements of
order prime to p and by its Sylow p-subgroup δP (NSi(P )) (Proposition 1.11(d)), and hence (3) holds for all
ψ ∈ AutLi(P ). Finally, by Theorem 1.12, all morphisms in Li are composites of restrictions of automorphisms
of fully normalized subgroups, and hence (3) holds for all ψ ∈ Mor(Li).

Now let αi ∈ Aut(Li) be the automorphism defined by sending P ∈ Ob(Li) to β(P ), and ψ ∈ Mor(Li) to
αi(ψ) as defined in (3). This is clearly a functor, it is isotypical since α is, and it preserves inclusions since
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α does. Set Ψ(α) = (α1, . . . , αm). Since each morphism in L̂ is a composite of restrictions of morphisms of
the form (ψi, IdS∗i ) for ψi ∈ Mor(Li), the restriction of α to L̂ is

∏
i∈m αi.

By construction, Ψ is a homomorphism. If Ψ(α) = (IdL1
, . . . , IdLm), then α|L̂ = Id by the above remarks,

α is the identity on objects since αS = IdAutL(S) (Lemma 1.15), and so α = IdL by Theorem 1.12 and

since all F-centric F-radical subgroups are objects in L̂ (Lemma 3.1). Hence Ψ is injective. Finally, since
AutL(S) ∼=

∏
i∈m AutLi(Si), Ψ induces a monomorphism

Ψ: Out0
typ(L)

def
= Aut0

typ(L)/{cζ | ζ ∈ AutL(S)} −−−−−→ Outtyp(L1)× · · · ×Outtyp(Lm) .

Next consider the equivalence relation ∼ on m, where i ∼ j if Gi ∼= Gj (equivalently, Fi ∼= Fj). Fix
isomorphisms τij ∈ Iso(Gi, Gj) for all pairs i ∼ j of elements in m, such that τij(Si) = Sj , τii = IdGi ,

τji = τ−1
ij , and τik = τjk ◦ τij whenever i ∼ j ∼ k. Let τ̂ij : Li

∼=−−−→ Lj be the induced isomorphism of
linking systems. Then conjugation by τ̂ij sends Outtyp(Li) to Outtyp(Lj). For each i, fix a splitting
si : Outtyp(Li) −−−→ Out(Gi) of κGi , chosen so that cτij ◦ si = sj ◦ cτ̂ij if i ∼ j.

Let Σ ≤ Σm be the group of permutations σ of m such that σ(i) ∼ i for each i. For each σ ∈ Σ, let σ̂G ∈
Aut(G) be the automorphism which sends Gi to Gσ(i) via τi,σ(i), and set σ̂L = κ̃G(σ̂G). Thus σ̂L ∈ AutItyp(L)
sends each Li to Lσ(i) via τ̂i,σ(i).

Fix α ∈ AutItyp(L), and let β ∈ Aut(S,F) be the restriction of αS ∈ Aut(AutL(S)) to S ∼= δS(S). By
Proposition 3.6, there is σ ∈ Σm such that β(Si) = Sσ(i) for each i. Since β is fusion preserving, Fi ∼= Fσ(i),

and hence i ∼ σ(i), for each i. Thus σ ∈ Σ, and σ̂−1
L ◦ α ∈ Aut0

typ(L). So AutItyp(L) is generated by Aut0
typ(L)

and the σ̂L.
Now let s : Outtyp(L) −−−→ Out(G) be the composite

Outtyp(L) = Out0
typ(L)o {[σ̂L] |σ ∈ Σ} Ψo−−−−−→

([σ̂L]7→σ)

(
Outtyp(L1)× · · · ×Outtyp(Lm)

)
o Σ

(s1,...,sm)o−−−−−−−−→
(σ 7→[σ̂G])

(
Out(G1)× · · · ×Out(Gm)

)
o {[σ̂G] |σ ∈ Σ} incl−−−−−→ Out(G) .

We must show κG ◦ s = Id. Since κG(s([σ̂L])) = κG([σ̂G]) = [σ̂L] for σ ∈ Σ, it will suffice to show κG(s([α])) =
[α] for α ∈ Aut0

typ(L). Let Out0(G) ≤ Out(G) be the subgroup of classes of automorphisms which leave each
Gi invariant, and consider the following composite:

Out0
typ(L)

Ψ−−−−−→
m∏
i=1

Outtyp(Li)
∏
si−−−−−→

m∏
i=1

Out(Gi) ∼= Out0(G)

κG|Out0(G)−−−−−−−−−→ Out0
typ(L)

Ψ−−−−−→
m∏
i=1

Outtyp(Li) .

Here, (
∏
si) ◦Ψ = s|Out0typ(L), Ψ ◦ κG|Out0(G) =

∏
κGi , and (

∏
κGi) ◦ (

∏
si) = Id. This proves that Ψ ◦

κG|Out0(G) ◦ s|Out0typ(L) = Ψ. Since Ψ is injective, κG ◦ s = Id on Out0
typ(L). Thus s is a splitting for κG,

and this finishes the proof that F is tame.
If each Fi is strongly tame, then we can choose the Gi to all be in the class G(p). Hence G ∈ G(p) by

Lemma 2.11(b), and F is strongly tame.

Theorem 3.7 does not say that an arbitrary product of reduced, tame fusion systems is tame: such a
product could conceivably have an indecomposable factor which is not tame. However, at least when p = 2,
a theorem of Goldschmidt implies this is not possible.

Theorem 3.8. Assume p = 2, and let F be a reduced fusion system over a 2-group S. Assume F =
F1 ×F2, where Fi is a fusion system over Si and S = S1 × S2. Then F is realizable, tame, or strongly tame
if and only if F1 and F2 are both realizable, tame, or strongly tame, respectively.

Proof. Assume F = FS(G), where G is a finite group and S ∈ Syl2(G). If F is tame, we also assume
κG is split surjective, and if F is strongly tame, we also assume G ∈ G(2). By Lemma 2.19, we can assume
O2′(G) = 1.

Let Gi E G be the normal closure of Si in G. Since F factors as a product F1 ×F2, the subgroups S1

and S2 are strongly closed in F , and hence strongly closed in G in the sense of [Gd]. So by Goldschmidt’s
theorem [Gd, Corollary A1], G1 ∩G2 = 1. Thus G1 ×G2 is a normal subgroup of odd index in G. Since
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F = FS(G) has no proper normal subsystem of odd index (since it is reduced), FS(G) = FS(G1 ×G2) =
FS1(G1)×FS2(G2). Hence Fi = FSi(Gi) for i = 1, 2 (there can be at most one way to factor F as a product
of fusion systems over the Si), and thus each Fi is realizable.

Set L = LcS(G) and Li = LcSi(Gi). Define Φ: AutItyp(L1)×AutItyp(L2) −−−→ AutItyp(L) as follows. Fix

αi ∈ AutItyp(Li) (i = 1, 2). Let βi ∈ Aut(Si,Fi) be the corresponding automorphisms (see Lemma 1.15),

and set β = (β1, β2) ∈ Aut(S,F). Thus αi(Pi) = βi(Pi) for each Pi ∈ Ob(Li) and π(αi(ψi)) = βiπ(ψi)β
−1
i for

ψi ∈ Mor(Li). Define α ∈ AutItyp(L) on objects by setting α(P ) = β(P ) for P ∈ Ob(L). Fix ψ ∈ MorL(P,Q),

let Pi, Qi ≤ Si be the images of P and Q under projection, and set P̂ = P1 × P2 and Q̂ = Q1 ×Q2.
Since G and G1 ×G2 have the same fusion system over S, ψ = [g] for some g = (g1, g2) ∈ NG(P,Q),
where gi ∈ Gi. Then gi ∈ NGi(Pi, Qi), and hence ψ extends to ψ̂ = (ψ1, ψ2) ∈ MorL(P̂ , Q̂) where ψi =
[gi] ∈ MorLi(Pi, Qi). Also, π(α1(ψ1), α2(ψ2)) = β(π(ψ1), π(ψ2))β−1 sends β(P ) into β(Q), and we define
α(ψ) = (α1(ψ1), α2(ψ2))|β(P ),β(Q). Finally, α ∈ AutItyp(L) since αi ∈ AutItyp(Li), and we set Φ(α1, α2) = α.

Assume F is tamely realized by G, and let s : Outtyp(L) −−−→ Out(G) be a splitting for κG. For each
α1 ∈ AutItyp(L1), s([Φ(α1, IdL2

)]) = [γ] for some γ ∈ Aut(G,S) such that γ|S2
= Id. Also, γ(G2) = G2 since

G2 is the normal closure of S2 in G, and so γ induces γ ∈ Aut(G/G2, S1). The class [γ] ∈ Out(G/G2) is
independent of the choice of γ modulo Inn(G), and hence this gives a well defined homomorphism s1 from
OutItyp(L1) to Out(G/G2). Also, FS1(G/G2) ∼= F/S2

∼= F1, so LcS1
(G/G2) ∼= L1; and s1 is a splitting for

κG/G2
since s is a splitting for κG. Thus F1 is tame, and F2 is tame by a similar argument. If F is strongly

tame, then we can choose G ∈ G(2), so G/Gi ∈ G(2) (i = 1, 2) by Lemma 2.11(b), and hence F1 and F2 are
strongly tame.

This proves the “only if” part of the theorem. Clearly, F is realizable if both factors are. If F1 and F2

are both (strongly) tame, then we have just shown that each of the indecomposable factors of F1 and F2 is
(strongly) tame, and so F is (strongly) tame by Theorem 3.7.

4. Examples

We now give three families of examples, to illustrate some of the techniques which can be used to prove
tameness of reduced fusion systems. As an introduction to these techniques, we first list the reduced fusion
systems over dihedral and semidihedral groups and prove they are all tame. Next, we prove that certain
fusion systems studied in [OV2, § 4–5] are reduced and tame; as a way of explaining how the information
about these fusion systems given in [OV2] is just what is needed to prove tameness. As a third example,
we prove that the fusion systems of all alternating groups are tame, and that they are reduced with certain
obvious exceptions.

In general, tameness is shown by examining, for a p-local finite group (S,F ,L) realized by G, the
homomorphisms

Out(G)
κG−−−−−→ Outtyp(L)

µG−−−−−→ Out(S,F)

defined in Sections 2.2 and 1.3. By definition, F is tame if κG is split surjective (for some choice of G).
However, the group Out(S,F) is usually much easier to describe than Outtyp(L), and the composite µG ◦ κG
is induced by restriction to S. So we need some way of describing Ker(µG).

We first recall some definitions. A proper subgroup H � G of a finite group G is strongly p-embedded if
p
∣∣|H|, and for each g ∈ GrH, H ∩ gHg−1 has order prime to p. It is not hard to see that G has a strongly
p-embedded subgroup if and only if the poset Sp(G) of nontrivial p-subgroups is disconnected (cf. [HB3,
Theorem X.4.11(b)]), but we will not be using that here.

When F is a saturated fusion system over a finite p-group S, then a proper subgroup P � S is F-essential
if it is F-centric and fully normalized, and OutF (P ) contains a strongly p-embedded subgroup. Thus each
F-essential subgroup is fully normalized and F-centric by definition, and is F-radical since Op(Γ) = 1 for
any group Γ which has a strongly p-embedded subgroup. See, e.g., [Sz2, Theorem 6.4.3] for a proof of this
last statement (it is shown there only for p = 2, but the same proof works for odd primes). The following
proposition is a stronger version of Theorems 1.3 and 1.12, and helps show the importance of essential
subgroups when working with fusion systems.

Theorem 4.1. Let F be any saturated fusion system over a finite p-group S. Let E be the set of F-
essential subgroups of S, and set E+ = E ∪ {S}. Then each morphism in F is a composite of restrictions of
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elements of AutF (P ) for P ∈ E+. If L is a linking system associated to F , then each morphism in L is a
composite of restrictions of elements of AutL(P ) for P ∈ E+.

Proof. The statement about morphisms in F is shown in [Pg2, § 5], and also in [OV2, Corollary 2.6].
The second statement follows from this together with Proposition 1.11(a) (and since Ob(L) is closed under
overgroups).

The following proposition will be useful when describing Ker(µG), and for determining whether or not
explicit elements in this group vanish. In fact, it applies to help describe Ker(µL), when L is an arbitrary
linking system (not necessarily induced by a finite group). For any fusion system F over S and any P ≤ S,
we write

CZ(P )(AutF (P )) = {g ∈ Z(P ) |α(g) = g for all α ∈ AutF (P )}

and similarly for CZ(P )(AutS(P )) and CZ(P )(AutL(P )).

Proposition 4.2. Let F be a saturated fusion system over the finite p-group S, and let L be a linking
system associated to F . Let Lc ⊆ L be the full subcategory whose objects are the F-centric objects in L.
Each element in Ker(µL) is represented by some α ∈ AutItyp(L) such that αS = IdAutL(S). For each such α,
there are elements gP ∈ CZ(P )(AutS(P )), defined for each fully normalized subgroup P ∈ Ob(Lc), for which
the following hold:
(a) αP ∈ Aut(AutL(P )) is conjugation by δP (gP ), and gP is uniquely determined by α modulo

CZ(P )(AutF (P )). In particular, αP = IdAutL(P ) if and only if gP ∈ CZ(P )(AutF (P )).

(b) Assume P,Q ∈ Ob(Lc) are both fully normalized in F . If Q = aPa−1 for some a ∈ S, then we can choose
gQ = agPa

−1. More generally, if Q is F-conjugate to P , and there is ζ ∈ IsoL(P,Q) such that α(ζ) = ζ,
then we can choose gQ = π(ζ)(gP ). In either case, αP = IdAutL(P ) if and only if αQ = IdAutL(Q).

(c) If Q ≤ P are both fully normalized objects in Lc, then gP ≡ gQ (mod CZ(Q)(AutF (P,Q))), where
AutF (P,Q) is the group of those ϕ ∈ AutF (P ) such that ϕ(Q) = Q.

(d) Let E be the set of all F-essential subgroups P � S and let E0 ⊆ E be the subset of those P ∈ E
such that CZ(P )(AutF (P )) � CZ(P )(AutS(P )). Then [α] = 1 in Outtyp(L) if and only if there is g ∈
CZ(S)(AutF (S)) such that gP ∈ g·CZ(P )(AutF (P )) for all P ∈ E0.

(e) Let E0 be as in (d), and let Ê0 be the set of all P ∈ E0 such that P = CS(E) for some elementary abelian
p-subgroup E ≤ S which is fully centralized in F . LetH be a set of subgroups of S such that all subgroups
in H are F-centric and fully normalized in F , and each P ∈ Ê0 is F-conjugate to some Q ∈ Ê0 ∩H. Then
[α] = 1 in Outtyp(L) if and only if there is g ∈ CZ(S)(AutF (S)) such that gP ∈ g·CZ(P )(AutF (P )) for
all P ∈ H.

Proof. We identify S with δS(S) ≤ AutL(S) for short. Fix α ∈ AutItyp(L) such that [α] ∈ Ker(µL). Set
β = µ̃L(α); thus β ∈ AutF (S). Choose ζ ∈ AutL(S) such that π(ζ) = β. Then µ̃L(cζ) = β by axiom (C)
for the linking system L, and so upon replacing α by α ◦ cζ

−1, we can arrange that αS is the identity on
δS(S) E AutL(S). We will show in the proof of (a) how to arrange that αS = IdAutL(S).

(a) Fix a fully normalized subgroup P ∈ Ob(Lc). Set Γ = AutL(P ) for short, and identify P with δP (P ) E Γ.
Set Out(Γ, P ) = Aut(Γ, P )/Inn(Γ), where Aut(Γ, P ) ≤ Aut(Γ) is the subgroup of automorphisms leaving P
invariant. By [OV2, Lemma 1.2], there is an exact sequence

1 −−−→ H1(Γ/P ;Z(P ))
η−−−−−→ Out(Γ, P )

R−−−−−→ NOut(P )(OutΓ(P ))/OutΓ(P ),

where R is induced by restriction. Since αP ∈ Aut(Γ) and αP |δP (NS(P )) = Id, [αP ] ∈ Ker(R), and
η−1([αP ]) is trivial after restriction to H1(NS(P )/P ;Z(P )). The restriction map from H1(Γ/P ;Z(P )) to
H1(NS(P )/P ;Z(P )) is injective since δP (NS(P )) ∈ Sylp(Γ) (Proposition 1.11(d)), and hence [αP ] = 1. Thus
αP = cδP (gP ) for some gP ∈ Z(P ) which is uniquely determined modulo CZ(P )(Γ) = CZ(P )(AutF (P )). Also,
gP ∈ CZ(P )(AutS(P )), since αP is the identity on δP (NS(P )).

Set γ = δS(gS) ∈ AutL(S). Upon replacing α by α ◦ c−1
γ , we can arrange that αS = Id.
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(b) Assume ζ ∈ IsoL(P,Q) and α(ζ) = ζ. Fix ψ ∈ AutL(Q), and set ϕ = ζ−1ψζ ∈ AutL(P ). Set g =
π(ζ)(gP ); then ζ ◦ δP (gP ) ◦ ζ−1 = δQ(g) by axiom (C) for a linking system. Hence

αQ(ψ) = αQ(ζϕζ−1) = ζαP (ϕ)ζ−1 = ζδP (gP )ϕδP (gP )−1ζ−1 = δQ(g)ψδQ(g)−1 ,

and we can choose gQ = g.
If Q = aPa−1 and ζ = δP,Q(a), then α(ζ) = ζ since αS = Id (and since α sends inclusions to inclusions).

So again we can choose gQ = ca(gP ).
In either case, gP ∈ CZ(P )(AutF (P )) if and only if gQ ∈ CZ(Q)(AutF (Q)), and hence αP = Id if and only

if αQ = Id.

(c) Assume Q ≤ P , and let AutL(P,Q) be the group of elements ψ ∈ AutL(P ) such that π(ψ)(Q) = Q.
Then α commutes with the restriction map

ResPQ : AutL(P,Q) −−−−−→ AutL(Q)

which is injective by Proposition 1.11(f). So if α acts on AutL(P,Q) via conjugation by δP (gP ) and on
AutL(Q) via conjugation by δQ(gQ), they must have the same action on AutL(P,Q). Since gQ and gP both
lie in Z(Q) ≥ Z(P ), we conclude gQ ≡ gP (mod CZ(Q)(AutF (P,Q))).

(d) By Theorem 4.1, all morphisms in L are composites of restrictions of elements in AutL(P ) for P
F-essential or P = S. Hence if α 6= IdL, then since αS = Id by assumption, αP 6= Id for some P ∈ E . By
(a), gP ∈ CZ(P )(AutS(P )) but gP /∈ CZ(P )(AutF (P )), and so P ∈ E0. The converse is clear: if α = IdL, then
αP = Id and hence gP ∈ CZ(P )(AutF (P )) for all P ∈ E0.

By Lemma 1.14(a), [α] = 1 in Outtyp(L) if and only if α = cβ for some β ∈ AutL(S), and β ∈ Z(AutL(S))
since αS = Id. Since βδS(g) = δS(π(β)(g))β for each g ∈ S by axiom (C) in Definition 1.9, π(β) = IdS .
Hence β = δS(g) for some g ∈ Z(S) by axiom (A), and g ∈ CZ(S)(AutF (S)) by axiom (C) again. Thus
[α] = 1 if and only if α = cδS(g) for some g ∈ CZ(S)(AutF (S)), which we just saw is the case exactly when
g−1gP ∈ CZ(P )(AutF (P )) for all P ∈ E0.

(e) We first prove that

α = IdL ⇐⇒ gP ∈ CZ(P )(AutF (P )) for all P ∈ H. (1)

The first statement implies the second by (a).
Now assume α 6= IdL. As was just seen in the proof of (d), there is P ∈ E0 such that gP /∈ CZ(P )(AutF (P )).

Assume P is such that |P | is maximal among orders of all such subgroups. We will show that P ∈ Ê0 (possibly
after replacing P by another subgroup in its F-conjugacy class), and that gQ /∈ CZ(Q)(AutF (Q)) for each

Q ∈ Ê0 which is F-conjugate to P . In particular, gQ /∈ CZ(Q)(AutF (Q)) for some Q ∈ H, which will prove
the remaining implication in (1).

We first check that

T ∈ Ob(L) and |T | > |P | =⇒ αT = Id . (2)

If T = S or T ∈ E0, this follows by assumption. If T ∈ ErE0, then gT ∈ CZ(T )(AutS(T )) = CZ(T )(AutF (T )),
and hence αT = Id by definition of gT . Otherwise, each ψ ∈ AutL(T ) is a composite of restrictions of
automorphisms of subgroups in E ∪ {S} (Theorem 4.1), each of those automorphisms and its restrictions are
sent to themselves by α, and hence αT (ψ) = ψ.

We next claim that

for all Q F-conjugate to P , there is ζ ∈ IsoL(P,Q) such that αP,Q(ζ) = ζ. (3)

Choose any ζ0 ∈ IsoL(P,Q). By Theorem 4.1 again, ζ0 is the composite of restrictions of automorphisms
ψi ∈ AutL(Ri) for subgroups Ri ≤ S with |Ri| ≥ |P |. If we remove from this composite all ψi for which
|Ri| = |P |, we get an isomorphism ζ ∈ IsoL(P,Q) which is a composite of restrictions of automorphisms of
strictly larger subgroups. We just showed that αRi(ψi) = ψi whenever |Ri| > |P |, and thus αP,Q(ζ) = ζ.

Set E = Ω1(Z(P )): the p-torsion subgroup of the center Z(P ). If E is not fully normalized in F , then choose
ϕ ∈ HomF (NS(E), S) such that ϕ(E) is fully normalized (using [BLO2, Proposition A.2(b)]). Then ϕ(P ) is
fully normalized since NS(ϕ(P )) ≥ ϕ(NS(P )). By (3), there is ζ ∈ IsoL(P,ϕ(P )) such that αP,ϕ(P )(ζ) = ζ.
So αϕ(P ) 6= Id by (b). Upon replacing P by ϕ(P ) and E by ϕ(E), we can now assume E and P are both
fully normalized.

Set P ∗ = NCS(E)(P ) ≥ P and Γ = AutL(P ) for short. To simplify notation, we identify NS(P ) with
δP (NS(P )). Then E E Γ, so CΓ(E) E Γ; and P ∗ ∈ Sylp(CΓ(E)) since NS(P ) ∈ Sylp(Γ) (Proposition 1.11(d)).
Also, CΓ(Z(P )) E Γ, and has p-power index in CΓ(E) since each automorphism of Z(P ) which is the identity
on its p-torsion subgroup E has p-power order (cf. [G, Theorem 5.2.4]). Hence each Sylow p-subgroup of
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CΓ(E) is CΓ(Z(P ))-conjugate to P ∗ = CNS(P )(E). By the Frattini argument,

Γ = NΓ(P ∗)·CΓ(Z(P )) . (4)

Since αP 6= IdΓ is conjugation by gP ∈ Z(P ), αP is the identity on CΓ(Z(P )). Hence by (4), αP is not the
identity on NΓ(P ∗). By Proposition 1.11(e), each α ∈ NΓ(P ∗) extends to α ∈ AutL(P ∗), and thus αP∗ 6=
IdAutL(P∗). If CS(E) 	 P , then P ∗ = NCS(E)(P ) 	 P (cf. [Sz1, Theorem 2.1.6]), which would imply αP∗ = Id

by (2). We now conclude that CS(E) = P , and hence that P ∈ Ê0.
Assume Q ∈ Ê0 is F-conjugate to P . By (3), there is ζ ∈ IsoL(P,Q) such that α(ζ) = ζ. So by (b), αQ 6= Id

since αP 6= Id, and this finishes the proof of (1).
The rest of the proof of (e) is identical to that of (d).

As one simple application of Proposition 4.2, consider the groupG = A6
∼= PSL2(9) (cf. [H1, Satz II.8.14]).

Set

T1 = 〈(1 2)(3 4), (1 3)(2 4)〉 ∼= C2
2 , T2 = 〈(1 2)(3 4), (3 4)(5 6)〉 ∼= C2

2 ,

and S = 〈T1, T2〉 ∈ Syl2(G), and let F = FS(G) and L = LcS(G). Then E = E0 = Ê0 = {T1, T2}. Set g = (5 6),
and consider the automorphism α = κ̃G(cg) ∈ AutItyp(L). Then α ∈ Ker(µ̃G), since [g, S] = 1 (and since µ̃G ◦
κ̃G sends β ∈ Aut(G,S) to β|S). Since [g,NG(T1)] = 1, αT1

= IdAutL(T1). Since (1 2)(3 4)(5 6) commutes with
NG(T2) = 〈T2, (1 3)(2 4), (1 3 5)(2 4 6)〉, αT2

acts on AutL(T2) ∼= NG(T2) as conjugation by x = (1 2)(3 4) ∈
Z(S). So in the notation of Proposition 4.2, gT1 = 1 and gT2 = x. In both cases, CZ(Ti)(AutF (Ti)) = 1, so
the gTi are uniquely determined. Hence by Proposition 4.2(d), [α] = κG([cg]) represents a nontrivial element
in Ker(µG).

If [α] ∈ Ker(µG) is arbitrary, represented by α ∈ AutItyp(L) such that αS = IdAutL(S), then by Proposition
4.2 again, gTi ∈ Z(S) for i = 1, 2, and [α] = 1 if and only if gT1

= gT2
. Thus Ker(µG) ∼= C2 is generated by

κG([cg]) as described above. Using this, and the well known description of Out(A6) ∼= C2
2 (see [Sz1, Theorem

3.2.19(iii)]), it is not hard to see that κG is an isomorphism from Out(G) to Outtyp(L).

This example will be generalized in two different ways below: to other groups PSL2(q) for q ≡ ±1 (mod
8) in Proposition 4.3, and to other alternating groups in Proposition 4.8.

4.1. Dihedral and semidihedral 2-groups

As our first examples, we list all reduced fusion systems over dihedral and semidihedral 2-groups, and
prove they are all tame. The list of all fusion systems over such groups is well known; it turns out that each
of them supports exactly one fusion system which is reduced.

As usual, vp(−) denotes the p-adic valuation: vp(n) = k if pk|n but pk+1-n.

Proposition 4.3. Let S be a dihedral group of order 2k (k ≥ 3). Then there is a unique reduced fusion
system F over S, and it is tame. Let q be a prime power such that v2(q2 − 1) = k + 1, set G = PSL2(q),

and fix S∗ ∈ Syl2(G). Then S ∼= S∗ and F ∼= FS∗(G); and κG is an isomorphism if q = p2k−2

for some prime
p ≡ 5 (mod 8).

Proof. Fix a, b ∈ S such that 〈a〉 has index two and S = 〈a, b〉. For each i ∈ Z, set Ti = 〈a2k−2

, aib〉 ∼= C2
2 .

Two subgroups Ti and Tj are S-conjugate if and only if i ≡ j (mod 2). Set P = {Ti | i ∈ Z}.
If P ≤ S is cyclic of order 2m, then Aut(P ) ∼= (Z/2m)× is a 2-group. If P ≤ S is dihedral of order 2m ≥ 8,

then there is a unique cyclic subgroup of index two in P , and Aut(P ) is a 2-group by Lemma 1.6. Thus the
only subgroups P ≤ S for which Aut(P ) is not a 2-group are the Ti.

Define F to be the fusion system over S generated by the automorphisms in Inn(S), Aut(P ) for P ∈ P,
and their restrictions. Assume F is saturated (this will be shown later). Then foc(F) = 〈[S, S],P〉 = S, and
hence O2(F) = F (Theorem 1.22(a)). Also, O2′(F) = F since any normal subsystem of odd index would
have to contain the same automorphism groups, and O2(F) = 1 by inspection. Thus F is reduced.

Let F∗ be an arbitrary saturated fusion system over S such that foc(F∗) = S. Let E be the set of all
F∗-essential subgroups of S. If P ∈ E , then Aut(P ) must have elements of odd order, and hence P ∈ P.
For each Ti ∈ P, Aut(Ti) ∼= Σ3 and AutS(Ti) ∼= C2. Hence AutF∗(Ti) = Aut(Ti) if Ti ∈ E . Since Aut(S) is
a 2-group, Theorem 4.1 implies F∗ is generated by automorphisms in AutF∗(S) = Inn(S), the Aut(P ) for
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P ∈ E ⊆ P, and their restrictions. In particular, foc(F∗) ≤ 〈[S, S], E〉, and this has index at least two in S if
E $ P. Hence E = P, and so F∗ = F .

Set G = PSL2(q) for any prime power q ≡ ±1 (mod 8), and fix S∗ ∈ Syl2(G). As is well known (cf. [G,
Lemma 15.1.1(iii)]), S∗ is a dihedral group and |G| = 1

2q(q
2 − 1), so S∗ ∼= D2k where k = v2(q2 − 1)− 1. So

we identify S∗ = S for S as above. Since G is simple, foc(FS(G)) = S ∩ [G,G] = S by the focal subgroup
theorem (cf. [G, Theorem 7.3.4]), and we have just seen this implies FS(G) = F . In particular, F is saturated,
and hence reduced.

Now assume q = p2k−2

, where p ≡ 5 (mod 8) (and k ≥ 3). The homomorphism κG is an isomorphism in
this case by [BLO1, Proposition 7.9], where it is shown more generally for p ≡ ±3 (mod 8). But we give a
different proof here to illustrate how Proposition 4.2 can be applied.

Set G̃ = SL2(q). Fix u ∈ F×q of order 2k. Set ã =
(
u 0
0 u−1

)
and b̃ =

(
0 1
−1 0

)
, and let a, b ∈ G be their images

in the quotient. Then S
def
= 〈a, b〉 ∈ Syl2(G). Let δ ∈ Aut(G) be conjugation by ( u 0

0 1 ); then δ(a) = a and
δ(b) = ab. Since u is not a square in F×q , [δ] generates the subgroup (of order 2) of diagonal automorphisms
in Out(G).

By [St, § 3], Out(G) = 〈[δ]〉 × 〈[ψp]〉 ∼= C2 × C2k−2 , where ψp is the field automorphism which acts via
x 7→ xp on matrix elements. Also, ψp(a) = ap and ψp(b) = b. Since p ≡ 5 (mod 8), [δ|S ] and [ψp|S ] generate
Out(S). Thus

µG ◦ κG : Out(G) −−−−−−→ Out(S,F) = Out(S)

is surjective with kernel generated by [α], where α = (ψp)2k−3

is the field automorphism of order 2.
To prove that κG is an isomorphism, it remains to show that Ker(µG) has order 2 and is generated by

κG([α]). Set w = a2k−2 ∈ Z(S). We refer to Proposition 4.2. Since α is the identity on S = NG(S) (α(a) = a
since the field automorphism of order two sends u to −u), there are elements gTi ∈ CZ(Ti)(AutS(Ti)) = 〈w〉
for each i such that κ̃G(α) acts on AutL(Ti) via conjugation by gTi . These elements are uniquely defined
since CZ(Ti)(AutF (Ti)) = 1.

When i is even, Ti ≤ G0
def
= PSL2(

√
q) (recall Ti = 〈a2k−2

, aib〉), and NG0(Ti) has index at most two in
NG(Ti). Since α|G0 = Id and α|S = Id, α is the identity on NG(Ti) ∼= Σ4 in this case, and so gTi = 1.

Now consider Ti for odd i. Let T̃i ∼= Q8 be the inverse image in G̃ of Ti ≤ G, let w̃ be any lifting of w to
G̃, and set z = w̃2 =

(−1 0
0 −1

)
∈ Z(G̃). Since the field automorphism of order two sends u to −u, it sends

ãib̃ to zãib̃. If α acted on NG(Ti) ∼= Σ4 via the identity, then its action on NG̃(T̃i) would be the identity on

a subgroup of index two, which necessarily would include T̃i. Since this is not the case, we conclude that α
acts via conjugation by w, and thus that gTi = w for i odd.

By Proposition 4.2(d), since gT0
= 1 and gT1

= w (and CZ(Ti)(AutF (Ti)) = 1), κG([α]) 6= 1 in Outtyp(L),
and it is the only nontrivial element in Ker(µG). Thus Ker(µG) ∼= C2, which is what was left to prove.

We now consider the semidihedral case.

Proposition 4.4. Let S be a semidihedral group of order 2k (k ≥ 4). Then there is a unique reduced
fusion system F over S, and it is tame. Let q be a prime power such that v2(q − 1) = k − 2, set G = PSU3(q),

and fix S∗ ∈ Syl2(G). Then S ∼= S∗ and F ∼= FS∗(G), and κG is an isomorphism if 3-(q + 1) and q = p2k−4

for some prime p ≡ 5 (mod 8).

Proof. Fix a, b ∈ S such that 〈a〉 has index two, b2 = 1, and S = 〈a, b〉. Then |aib| = 2 for i even and

|aib| = 4 for i odd. For each i ∈ Z, set Ti = 〈a2k−2

, a2ib〉 ∼= C2
2 , and Ri = 〈a2k−3

, a2i+1b〉 ∼= Q8. The Ti are all
S-conjugate to each other, and similarly for the Ri. Set P = {Ti, Ri | i ∈ Z}.

As shown in the proof of Proposition 4.3, Aut(P ) is a 2-group for each P ≤ S which is cyclic, or dihedral
of order ≥ 8. The same argument applies when P is quaternion of order ≥ 16, and also to S itself. Thus the
only subgroups P ≤ S for which Aut(P ) is not a 2-group are those in P.

Define F to be the fusion system over S generated by the automorphisms in Inn(S), Aut(P ) for P ∈ P,
and their restrictions. Assume F is saturated (to be shown later). Then foc(F) = 〈[S, S],P〉 = S, and hence
O2(F) = F (Theorem 1.22(a)). Also, O2′(F) = F since any normal subsystem of odd index would have to
contain the same automorphism groups, and O2(F) = 1 by inspection. Thus F is reduced.

Let F∗ be an arbitrary saturated fusion system over S such that foc(F∗) = S. Let E be the set of all
F∗-essential subgroups of S. If P ∈ E , then Aut(P ) must have elements of odd order, and hence P ∈ P.
For all P ∈ P, [Aut(P ):AutS(P )] = 3, and hence AutF∗(P ) = Aut(P ) if P ∈ E . Since Aut(S) is a 2-group,
Theorem 4.1 implies F∗ is generated by automorphisms in AutF∗(S) = Inn(S), the Aut(P ) for P ∈ E , and
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their restrictions. In particular, foc(F∗) ≤ 〈[S, S], E〉, and this has index at least two in S if E $ P. Hence
E = P, and so F∗ = F .

Fix a prime power q ≡ 1 (mod 4), set G = PSU3(q), and fix S∗ ∈ Syl2(G). Then |G| = 1
dq

3(q2 − 1)(q3 + 1)
where d = gcd(3, q + 1) [Ta, p. 118], and hence |S∗| = 2k where k = v2(q − 1) + 2. Since GU2(q) has odd
index in SU3(q), and the Sylow 2-subgroups of GU2(q) are semidihedral by [CF, p.143], the Sylow 2-
subgroups of SU3(q) and of G are also semidihedral. Thus S∗ ∼= SD2k , and we identify S∗ = S as above.
Since G is simple, foc(FS(G)) = S (cf. [G, Theorem 7.3.4]), and we just saw this implies FS(G) = F . In
particular, F is saturated.

Now assume 3-(q + 1) and q = p2k−4

for some prime p ≡ 5 (mod 8). By [St, § 3], Out(G) is generated by
diagonal and field automorphisms; where the group of diagonal automorphisms has order gcd(3, q + 1) = 1.
Thus Out(G) = 〈[ψp]〉, generated by the class of the field automorphism (x 7→ xp). Since G = PSU3(q) is
defined via matrices over Fq2 , ψp has order 2k−3.

More explicitly, regard G = PSU3(q) = SU3(q) as the group of matrices M ∈ SL3(q2) such that ψq(M t) =
M−1, where M t is the transpose (aij) 7→ (a4−j,4−i). Fix u ∈ F×q2 of order 2k−1 (recall v2(q − 1) = k − 2), and

set a = diag(u,−1, u−q). Since uq−1 = −1, a ∈ SU3(q). Set b =
(

0 0 1
0 1 0
1 0 0

)
. Then bab−1 = a−q = a2k−2−1, and

so S = 〈a, b〉 is semidihedral. Also, ψp(a) = ap, ψp(b) = b, so [ψp|S ] generates Out(S), and we conclude that

µG ◦ κG : Out(G)
∼=−−−−−−→ Out(S,F) = Out(S)

is an isomorphism.
It remains to prove that Ker(µG) = 1. Fix [α] ∈ Ker(µG), and choose a representative α ∈ AutItyp(LcS(G))

for the class [α] such that αS is the identity on AutLcS(G)(S). In the notation of Proposition 4.2, E0
contains only the subgroups Ti, since Z(Ri) ∼= C2 (and hence CZ(Ri)(AutS(Ri)) = CZ(Ri)(AutF (Ri))). If
α is represented by elements gP , then gTi ∈ CZ(Ti)(AutS(Ti)) = Z(S) for each i, and is uniquely determined
since CZ(Ti)(AutF (Ti)) = 1. All of the gTi are equal by point (b) in the proposition, and hence [α] = 1 by
point (d).

4.2. Tameness of some fusion systems studied in [OV2]

We next consider some fusion systems studied in [OV2, §4–5], and prove they are reduced and tame using
the lists of essential subgroups and other information determined there.

Proposition 4.5. The fusion systems at the prime 2 of the group PSL4(5), and of the sporadic simple
groups M22, M23, McL, J2, and J3, are all reduced and tame. Moreover, if G is any of these groups, then
κG is an isomorphism.

Proof. By [GL, §1.5], Out(G) ∼= C2 when G ∼= M22, McL, J2, or J3, while Out(M23) = 1. By [St, (3.2)],
when G = PSL4(5), Out(G) is generated by diagonal automorphisms (induced by conjugation by diagonal
matrices in GL4(5)) and a graph automorphism (induced by transpose inverse). Since all multiples of the
identity in GL4(5) have determinant one, the group of diagonal outer automorphisms is isomorphic to
F×5 ∼= C4. Since the graph automorphism inverts all diagonal matrices, we get Out(G) ∼= D8.

Now let G be any of the above six groups, fix S ∈ Syl2(G), and set F = FS(G). We prove below in each
case that among the homomorphisms

Out(G)
κG−−−−−→ Outtyp(LcS(G))

µG−−−−−→ Out(S,F) ,

µG ◦ κG is an isomorphism and µG is injective. It then follows that κG is an isomorphism.
We show that µG ◦ κG is injective for each of these groups, using arguments suggested to us by Richard

Lyons. These are based on the following statement, applied to certain subgroups H ≤ G:

α ∈ Aut(H), S ∈ Syl2(H), α|S = IdS
Q = O2(H), CH(Q) ≤ Q,

}
=⇒ α ∈ AutZ(S)(H). (5)

This follows, for example, from [OV2, Lemma 1.2]: α ∈ Inn(H) if a certain element in H1(H/Q;Z(Q))
vanishes, and this element does vanish since its restriction to the Sylow subgroup S/Q vanishes. Thus
α ∈ Inn(H) and is the identity on S, so it must be conjugation by an element of CH(S) = Z(S).



REDUCED, TAME, AND EXOTIC FUSION SYSTEMS Page 49 of 56

As in [OV2], we let S0 = UT3(4) denote the group of upper triangular 3× 3 matrices over F4 with 1’s on
the diagonal. For x ∈ F4 and 1 ≤ i < j ≤ 3, exij ∈ UT3(4) is the matrix with entry x in position (i, j), 1’s on
the diagonal, and 0’s elsewhere. Set

Eij = {exij |x ∈ F4} , A1 = 〈E12, E13〉 , and A2 = 〈E13, E23〉 .

The field automorphism of F4 is denoted x 7→ x̄, and we write F4 = {0, 1, ω, ω̄}. Also, τ, ρ∗1, ρ
∗
2, γ0, γ1, cφ ∈

Aut(S0) are the automorphisms

τ
((

1 a b
0 1 c
0 0 1

))
=
(

1 c b
0 1 a
0 0 1

)−1

, ρ∗1

((
1 a b
0 1 c
0 0 1

))
=
(

1 a b+ā
0 1 c
0 0 1

)
, ρ∗2

((
1 a b
0 1 c
0 0 1

))
=
(

1 a b+c̄
0 1 c
0 0 1

)
,

γ0

((
1 a b
0 1 c
0 0 1

))
=
(

1 ωa ω̄b
0 1 ωc
0 0 1

)
, γ1

((
1 a b
0 1 c
0 0 1

))
=
(

1 ωa b
0 1 ω̄c
0 0 1

)
, cφ

((
1 a b
0 1 c
0 0 1

))
=
(

1 ā b̄
0 1 c̄
0 0 1

)
.

The group Out(S0) ∼= C4
2 o (Σ3 × Σ3) is described precisely by [OV2, Lemma 4.5]. In particular, the

subgroups 〈γ0, cφ ◦ τ〉 and 〈γ1, τ〉 are isomorphic to Σ3 and commute with each other.
By the focal subgroup theorem (cf. [G, Theorem 7.3.4]), foc(F) = S ∩ [G,G] = S in each case, and hence

O2(F) = F . In each of Cases 1 and 2 below, we prove successively that (i) µG ◦ κG is an isomorphism, (ii)
µG is injective, (iii) O2(F) = 1, and (iv) O2′(F) = F .

Case 1: Assume first that S = Sφ = S0 o 〈φ〉: the extension of UT3(4) by a field automorphism of F4. Then
S0 = 〈A1, A2〉 is characteristic in S, since A1 and A2 are the unique subgroups of S isomorphic to C4

2 (cf.
[OV2, Lemma 5.1(b)]). Since cφ permutes freely a basis of Z(S0) = E13, [OV2, Corollary 1.3 & Lemma
4.5(a)] imply there is an isomorphism

Out(S)
Res−−−−−→∼= COut(S0)(〈[cφ]〉)/〈[cφ]〉 = 〈[ρ∗1], [ρ∗2], [τ ]〉 ∼= D8 .

Let τ̇ , ρ̇∗1, ρ̇
∗
2 ∈ Aut(S) be the extensions of τ, ρ∗1, ρ

∗
2 ∈ Aut(S0) which send φ to itself.

Set Hi = 〈Ai, φ〉, and Ni = 〈Hi, e
1
12e

1
23〉. By [OV2, Theorem 5.11] and Table 5.2 in its proof, in all cases, S0

is F-essential, and for i = 1, 2 either Hi or Ni is F-essential but not both. Also, OutF (S) = 1 (since Out(S) is
a 2-group), and OutF (S0) = 〈[γ0], [cφ]〉 or 〈[γ0], [γ1], [cφ]〉. By [OV2, Lemma 5.8], there is a unique possibility
for OutF (Ni) if Ni is essential, and hence this group is normalized by [ρ̇∗1] and [ρ̇∗2]. By [OV2, Lemma 5.7],
there are two possibilities for OutF (Hi) (if Hi is essential) which are exchanged under conjugation by [ρ̇∗i ]
and invariant under conjugation by [ρ̇∗3−i].

By inspection, for i = 1, 2, [ρ∗i , γ0] = 1 but [ρ∗i , γ1] 6= 1. Together with the above observations about the
action of ρ̇∗i on the possibilities for OutF (Hi) and OutF (Ni), this shows that ρ̇∗i is fusion preserving (contained
in Aut(S,F)) exactly when Ni is F-essential and [γ1] /∈ OutF (S0) (and ρ̇∗1ρ̇

∗
2 ∈ Aut(S,F) only if N1 and N2

are both essential). Also, τ̇ is fusion preserving if either the Ni are both essential or the Hi are both essential
(and the OutF (Hi) are chosen appropriately in the latter case), and otherwise Out(S,F) ≤ 〈[ρ̇∗1], [ρ̇∗2]〉. Thus
Out(S,F) is as described in Table 4.1, where we refer to [OV2, Table 5.2] for the information about the
fusion systems.

G F-essential OutF (S0) Out(S,F) Out(G)

M22 S0, H1, N2 〈[γ0], [cφ]〉 〈[ρ̇∗2]〉 ∼= C2 C2

M23 S0, H1, N2 〈[γ0], [γ1], [cφ]〉 1 1

PSL4(5) S0, N1, N2 〈[γ0], [cφ]〉 Out(S) ∼= D8 D8

McL S0, N1, N2 〈[γ0], [γ1], [cφ]〉 〈[τ̇ ]〉 ∼= C2 C2

Table 4.1.

(i) Since |Out(G)| = |Out(S,F)|, it suffices to prove µG ◦ κG is injective. Fix α ∈ Aut(G,S) such that
µG(κG([α])) = 1; thus α|S = cg for some g ∈ NG(S). Upon replacing α by c−1

g ◦ α, we can assume α|S = IdS .
When G is one of the three sporadic groups, then by [GL, §1.5], Ai is centric in NG(Ai) (i = 1, 2) and
G = 〈NG(A1), NG(A2)〉. When G ∼= PSL4(5) ∼= PΩ+

6 (5), this is easily checked by identifying S0 ≤ PΩ+
6 (5)

as the subgroup generated by classes of diagonal matrices (with respect to an orthonormal basis), together
with permutation matrices for the permutations (1 2)(3 4) and (3 4)(5 6). So by (5), there are elements
z1, z2 ∈ Z(S) = 〈e1

13〉 such that α|NG(Ai) = czi for i = 1, 2. Let g ∈ NG(S0) be such that cg = γ0 ∈ AutF (S0).
Then g ∈ NG(Ai) for i = 1, 2 since γ0 leaves the Ai invariant, so α(g) = cz1(g) = cz2(g), and hence z1 = z2

since [g, Z(S)] 6= 1. Thus α ∈ AutZ(S)(G).

(ii) Set L = LcS(G). By Proposition 4.2, each element of Ker(µG) is represented by some α ∈ AutItyp(L)
which is the identity on objects and on AutL(S), and such that for each fully normalized P ∈
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Ob(L), αP ∈ Aut(AutL(P )) is conjugation by some element gP ∈ CZ(P )(AutS(P )). Since Z(Ni) ∼= C2 (so
CZ(Ni)(AutS(Ni)) = CZ(Ni)(AutF (Ni))), the only F-essential subgroups which could be in the set E0 defined
in Proposition 4.2(d) are S0, and H1 and its S-conjugates if they are essential.

When P = S0,

gP ∈ CZ(P )(AutS(P )) = 〈e1
13〉 = Z(S) = CZ(S)(AutF (S)) . (6)

So if H1 is not F-essential, then [α] = 1 in Outtyp(L) by Proposition 4.2(d).
Assume now that H1 is F-essential. Then H1 and A1 are both F-centric and fully normalized in F , and (6)

holds when P is either of these subgroups. By the description of AutF (S0) and AutF (H1) in Table 4.1 and
[OV2, Lemma 5.7(a)], A1 is invariant under all F-automorphisms of S0 and of H1, and hence AutF (S0, A1) =
AutF (S0) and AutF (H1, A1) = AutF (H1). Also, CA1(AutF (S0)) = CA1(AutF (H1)) = 1. Proposition 4.2(c)
now implies gH1

= gA1
= gS0

. So [α] = 1 by Proposition 4.2(d) again; and thus µG is injective.
(iii) By [OV2, Table 5.2], for each i = 1, 2, OutF (Ai) is isomorphic to one of the groups Σ5, (C3 ×A5)oC2,
A6, or A7. Hence A1 and A2 are F-radical and F-centric, and O2(F) ≤ A1 ∩A2 = E13 by Proposition 1.5.
Since no proper nontrivial subgroup of E13 is invariant under the action of γ0 ∈ AutF (S0), and E13 itself is
not invariant under the action of ν2 ∈ AutF (N2) (see [OV2, Lemma 5.8]), we conclude that O2(F) = 1.
(iv) Since OutF (S) = 1 in each of the four cases, condition (ii) in Definition 1.18 implies that F cannot
contain a proper normal subsystem over S. So O2′(F) = F .

Case 2: Now assume S = Sθ = S0 o 〈θ〉, where cθ = τ ◦ cφ ∈ Aut(S0). Thus G = J2 or J3. Again in this
case, S0 is characteristic in S (cf. [OV2, Lemma 4.1(d)]). Since cθ permutes freely a basis of Z(S0) = E13,
[OV2, Corollary 1.3] together with the description of Out(S0) in [OV2, Lemma 4.5], imply there is an
isomorphism

Out(S)
Res−−−−−→∼= COut(S0)(〈[cθ]〉)/〈[cθ]〉 ∼= Σ4.

Set Q = 〈E13, e
1
12e

1
23, e

ω
12e

ω̄
23, θ〉, an extraspecial group of type D8 ×C2

Q8 with Out(Q) ∼= Σ5. Let γ̇1 ∈
Aut(S) be the extension of γ1 ∈ Aut(S0) which sends θ to itself. By results in [OV2, §4.2–3], F = FS(G) is
isomorphic to the fusion system generated by automorphisms

OutF (S) = 〈[γ̇1]〉, OutF (S0) = 〈[γ0], [γ1], [cθ]〉 ∼= C3 × Σ3, OutF (Q) ∼= A5;

and by OutF (Ai) ∼= GL2(4) if G = J3. Since Aut(S,F)/Inn(S) normalizes OutF (S) ∼= C3, and the normalizer
in Σ4 of a subgroup of order 3 has order 6, |Out(S,F)| ≤ 2.
(i) In both cases (G ∼= J2 or J3), Out(G) ∼= C2. So to prove µG ◦ κG is an isomorphism, it suffices to show
it is injective. Fix α ∈ Aut(G,S) such that µG(κG([α])) = 1; as before, we can assume α|S = IdS . By [GL,
§1.5], NG(Z(S)) and NG(E13) satisfy the hypotheses of (5), and they generate G since both are maximal
proper subgroups. By (5), α|NG(Z(S)) = Id, and α|NG(E13) = cz for some z ∈ Z(S). Thus α ∈ AutZ(S)(G).

(ii) Set L = LcS(G). By Proposition 4.2, each element of Ker(µG) is represented by some α ∈ AutItyp(L) which
is the identity on objects, and such that for each fully normalized P ∈ Ob(L), αP ∈ Aut(AutL(P )) is conjuga-
tion by some element gP ∈ CZ(P )(AutS(P )). Since Z(Q) ∼= C2 (hence CZ(Q)(AutS(Q)) = CZ(Q)(AutF (Q))),
E0 contains at most the subgroups S0, A1, and A2. Note that in both cases, A1 and A2 are F-centric and
fully normalized in F .

In both cases, γ0 ∈ AutF (S0) leaves A1 and A2 invariant, and acts on each of the groups Z(S0) = E13,
A1, and A2 with trivial fixed subgroup. Hence

CZ(A1)(AutF (S0, A1)) = CZ(A2)(AutF (S0, A2)) = 1 ,

so gA1 = gS0 = gA2 by Proposition 4.2(c). Also, gS0 ∈ CZ(S0)(AutS(S0)) = 〈e1
13〉 = Z(S) = CZ(S)(AutF (S)),

and Proposition 4.2(d) applies (with g = gS0
) to show that [α] = 1 in Outtyp(L). Thus µG is injective.

(iii) Since S0 and Q are F-centric and F-radical, O2(F) ≤ S0 ∩Q. Also, AutF (Q) acts transitively on the
set of elements of order four in Q, and on the set of noncentral elements of order two. Since each of those sets
contains elements in S0 and elements not in S0, this implies O2(F) ≤ Z(Q) = 〈e1

13〉. Since γ0 ∈ AutF (S0)
and γ0(e1

13) 6= e1
13, it follows that O2(F) = 1.

(iv) Set F0 = O2′(F). By Lemma 1.20(e), O2(F0) = 1 since O2(F) = 1. So F0 is a centerfree, nonconstrained
fusion system over S, and is included in the list given in [OV2, Theorem 4.8]. Since OutF (Q) ∼= A5 in all
cases, OutF0

(Q) contains O2′(OutF (Q)) = OutF (Q), and so F0 is the fusion system of J2 or J3. Since
OutF (S) ∼= C3 in both cases (G ∼= J2 or J3), neither of these fusion systems can be properly contained as a
normal subsystem of the other (see condition (ii) in Definition 1.18). Hence O2′(F) = F .
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4.3. Alternating groups

We prove here that all fusion systems of alternating groups are tame, and are also (with the obvious
exceptions) reduced. Unlike the other examples given in this paper, we prove tameness without first
determining the list of essential subgroups.

We first fix some notation when working with alternating and symmetric groups. We always regard An ≤
Σn as groups of permutations of the set n = {1, . . . , n}. For σ ∈ Σn, we set supp(σ) = {i ∈ n |σ(i) 6= i} (the
support of σ). Likewise, for H ≤ Σn, supp(H) is defined to be the union of the supports of its elements.

Lemma 4.6. Fix a prime p and n ≥ p2. Assume n ≥ 8 if p = 2. Set G = An, and fix S ∈ Sylp(G). Set
q = p if p is odd, and q = 4 if p = 2. Then

Out(S,FS(G)) ∼=

{
C2 if n ≡ 0, 1 (mod q)

1 otherwise.

In all cases, µG ◦ κG sends Out(G) = OutΣn(G) ∼= C2 onto Out(S,FS(G)).

Proof. Set F = FS(G) for short. Set E∗ = 〈(1 2 · · · p)〉 ∼= Cp if p is odd, and E∗ = 〈(1 2)(3 4), (1 3)(2 4)〉 ∼=
C2

2 if p = 2. Let Q ≤ S be the subgroup generated by all subgroups of S which are G-conjugate to E∗. If
E1 and E2 are G-conjugate to E∗, then either E1 = E2, or supp(E1) ∩ supp(E2) = ∅ and [E1, E2] = 1,
or 〈E1, E2〉 is not a p-group. Since this last case is impossible when E1, E2 ≤ S, we conclude that Q =
Q1 × · · · ×Qk, where k = [n/q] and the Qi are pairwise commuting subgroups conjugate to E∗.

Fix α ∈ Aut(S,F), and set R = α(Q). We first show that R = Q. For i ≥ 1, let ri be the number of orbits
of length pi under the action of R on n. Thus∑

i≥1

piri = |supp(R)| ≤

{
q·[n/q] if p is odd or r1 = 0

2·[n/2] if p = 2 and r1 ≥ 1
(7)

since supp(R) has order a multiple of p, and a multiple of 4 when p = 2 and r1 = 0. Since R ∼= Q is elementary
abelian, R is contained in a product

∏
i≥1(Bi)

ri , where Bi ∼= Cip acts freely on a subset of n of order pi, and
hence

rk(Q) = rk(R) ≤

{∑
i≥1 iri if p is odd or r1 = 0∑
i≥1 iri − 1 if p = 2 and r1 ≥ 1 .

(8)

In the last case, “−1” appears since R contains only even permutations, and since the only factors Bi which
act via odd permutations are those for i = 1.

Thus if p is odd or r1 = 0, then by (7) and (8),∑
i≥1

piri ≤ q·[n/q] = qk = p·rk(Q) ≤
∑
i≥1

piri . (9)

Also, pi ≥ pi, with equality only when i = 1 or pi = 4. Hence (9) is possible only when p is odd, r1 = k,
and ri = 0 for i > 1; or when p = 2, r2 = k, and ri = 0 for i > 2. In both cases, R is a product of subgroups
conjugate to E∗, and thus R = Q.

Now assume p = 2 and r1 6= 0. By (7) and (8) again,∑
i≥1

2iri − 2 ≤ 2·([n/2]− 1) ≤ 4·[n/4] = 4k = 2·rk(Q) ≤
∑
i≥1

2iri − 2 ,

so ri = 0 for i ≥ 3, and the inequalities are equalities. In particular, r1 + 2r2 = [n/2] = 2k + 1, so r1 and
[n/2] are both odd. Hence R ∼= (C2

2 )r2 × Cr1−1
2 (and r1 ≥ 3), where each element in AutG(R) permutes

the C2
2 -factors and the C2-factors. It follows that AutG(R) ∼= (Σ3 o Σr2)× Σr1 . Since α is fusion preserving,

we have AutG(R) ∼= AutG(Q), where AutG(Q) = AutΣn(Q) ∼= Σ3 o Σk since [n/2] is odd (n− 4k ≥ 2 where
4k = |supp(Q)|, so there is a transposition which centralizes Q). Thus Σ3 o Σk ∼= (Σ3 o Σr2)× Σr1 . Since
(Σ3 o Σ`)ab ∼= C2

2 for all ` ≥ 2, we get r2 = 1, Σ3 o Σk ∼= Σ3 × Σr1 , and this is clearly impossible.
Thus α(Q) = Q. Since α is fusion preserving, it permutes the G-conjugacy classes in Q. For each 1 ≤ r ≤ k,

there are
(
k
r

)
·(q − 1)r products of r disjoint p-cycles in Q if p is odd, and

(
k
r

)
·(q − 1)r products of 2r disjoint

2-cycles in Q if p = 2. Clearly, k(q − 1) <
(
k
r

)
·(q − 1)r for 1 < r < k, and k(q − 1) < (q − 1)k since k > 1 and

(k, q) 6= (2, 3) by assumption. Hence α sends the set of p-cycles in Q (products of two 2-cycles in Q) to itself.
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Since the p-cycles (products of two 2-cycles) are precisely the nonidentity elements in
⋃k
i=1Qi, and since

Q1, . . . , Qk are the maximal subgroups in this set, α permutes the Qi.
Thus there is g ∈ NΣn(Q) such that cg|Q = α|Q, and hence

AutgSg−1(Q) = (α|Q)AutS(Q)(α|Q)−1 = AutS(Q)

since α ∈ Aut(S). Since Q E S by construction, this implies gSg−1 ≤ S·CΣn(Q), where S normalizes CΣn(Q)
since it normalizes Q. Hence there is h ∈ CΣn(Q) such that hg ∈ NΣn(S) (and α|Q = chg|Q). Upon replacing
α by α ◦ c−1

hg , we can now assume α|Q = Id.
Set F0 = NF (Q). Since Q is fully normalized in F and Q E S, this is a saturated fusion system over S.

Also, CS(Q) ≤ Q: any permutation which centralizes Q must leave each set supp(Qi) invariant, and hence
CG(Q) ∼= (CAq (E∗))

k ×An−qk ∼= Q×An−qk. Thus Q is normal and centric in F0, so F0 is constrained in
the sense of [BCGLO1, Definition 4.1]. By [BCGLO1, Proposition 4.3], there is a finite group G0, unique
up to isomorphism, such that Op′(G0) = 1, Q E G0, CG0

(Q) ≤ Q, S ∈ Sylp(G0), and F0 = FS(G0). Thus
G0/Q ∼= AutF (Q). The fusion preserving automorphism α induces an automorphism of F0 = NF (Q), and
hence by the uniqueness of G0 (in the strong sense of [AKO, Lemma II.4.3]) induces an automorphism
β ∈ Aut(G0) such that β|S = α. Let H E G0 be the group of those g ∈ G0 such that cg sends each Qi to
itself via an automorphism of order prime to p. Thus H/Q ≤ (Cp−1)k (with index 1 or 2) when p is odd, and
H/Q ∼= Ck3 when p = 2. Since β|Q = IdQ and H/Q has order prime to p, β|H is conjugation by an element
a ∈ Q. Upon replacing α and β by α ◦ c−1

a and β ◦ c−1
a , we can assume β|H = IdH . But now, Z(H) = 1, so

distinct elements of G0 have distinct conjugation actions on H, and hence β = IdG0
. Thus α = β|S = IdS .

We have now shown that each element of Aut(S,F) is conjugation by some element of Σn. Since n > 6,
Out(G) = OutΣn(G) by, e.g., [Sz1, Theorem 3.2.17]. Thus µG ◦ κG sends Out(G) ∼= C2 onto Out(S,F). This
last group is trivial exactly when there is g ∈ NΣn(S)rAn such that cg|S ∈ AutF (S); i.e., when cg|S = ch|S for
some h ∈ NG(S). Upon replacing g by gh−1, we see that Out(S,F) = 1 if and only if some odd permutation
g ∈ ΣnrAn centralizes S.

If n 6≡ 0, 1 (mod q), then there is a transposition (i j) which centralizes S: when p is odd because one can
choose i, j ∈ nrsupp(S), and when p = 2 because the S-action on n has an orbit {i, j} of order 2. Thus
Out(S,F) = 1 in this case. If n ≡ 0, 1 (mod q), then |nrsupp(Q)| ≤ 1, and so

CΣn(S) ≤ CΣn(Q) = Q ≤ An .

Thus Out(S,F) = OutΣn(S) has order two in this case.

The following well known lemma will be needed when working with elementary abelian subgroups of
symmetric groups.

Lemma 4.7. Fix n ≥ 1 and an abelian subgroup G ≤ Σn. Let H1, . . . ,Hm ≤ G be the distinct stabilizer
subgroups for the action of G on n, and let Xi ⊆ n be the set of elements with stabilizer subgroup Hi (so n
is the disjoint union of the Xi). Then each Xi is G-invariant. Let ki be the number of G-orbits in Xi. Then

CΣn(G) ∼=
m∏
i=1

(G/Hi) o Σki ,

where each factor (G/Hi) o Σki has support Xi, Σki permutes the ki G-orbits in Xi, and each factor G/Hi

in (G/Hi)
ki has as support one of those G-orbits.

Proof. Let Y1, . . . , Yt be the G-orbits in n, and let C0 ≤ CΣn(G) be the subgroup of elements which leave
each of the Yi invariant. Since G is abelian, y and g(y) have the same stabilizer subgroup for each g ∈ G and
each y ∈ n. Let Ki be the stabilizer subgroup of the elements in Yi. Then the homomorphism

χ :

t∏
i=1

(G/Ki) −−−−−−→ C0 ,

defined by setting χ(g1K1, . . . , gtKt)(y) = gi(y) for y ∈ Yi, is an isomorphism.
Since all elements in each orbit have the same stabilizer subgroup, each set Xi is a union of orbits Yj (i.e.,

is G-invariant). Also, C0 is normal in CΣn(G): it is the kernel of the homomorphism to Σt which describes
how an element σ permutes the orbits. Each σ ∈ CΣn(G) sends each orbit in n to another orbit with the same
stabilizer subgroup, and thus leaves each Xi invariant. Since Xi contains ki orbits, CΣn(G)/C0

∼=
∏m
i=1 Σki ,

and CΣn(G) is isomorphic to the product of the wreath products (G/Hi) o Σki .
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We are now ready to prove that all fusion systems of alternating groups are tame.

Proposition 4.8. Fix a prime p and n ≥ 2, set G = An, and choose S ∈ Sylp(G). Then FS(G) is tame.
If p = 2 and n ≥ 8; or if p is odd, n ≥ p2 and n ≡ 0, 1 (mod p); then

κG : Out(G) −−−−−→ Outtyp(LcS(G)) ∼= C2

is an isomorphism.

Proof. Set F = FS(G) and L = LcS(G). If n < p2, or if p = 2 and n < 6, then the Sylow p-subgroups of
An are abelian, so F is constrained, red(F) = 1 by Proposition 2.4, and so F is tame by Theorem 2.20.
If p = 2 and n = 6, 7, then since A6

∼= PSL2(9) and A7 has the same fusion system as A6, F is tame by
Proposition 4.3.

If p is odd and n ≥ p2, then µG : Outtyp(L)
∼=−−−→ Out(S,F) is an isomorphism by [BLO1, Theorem E]

and [O1, Theorem A]. (Note that while the latter result depends on the classification of finite simple groups,
this particular case does not. For example, it follows from [O1, Proposition 3.5], applied with T0 = 1, T = S,
and X = Q the group defined in the proof of Lemma 4.6.) So by Lemma 4.6, either n ≡ 0, 1 (mod p) and κG
is an isomorphism, or Outtyp(L) = 1 and hence κG is split surjective. Thus F is tame in these cases.

It remains to handle the case p = 2 and n ≥ 8. By Lemma 4.6 again, it suffices to prove

Ker(µG) = 1 if n ≡ 0, 1 (mod 4) and |Ker(µG)| ≤ 2 if n ≡ 2, 3 (mod 4) , (10)

and also

n ≡ 2, 3 (mod 4) =⇒ there is x ∈ CΣn(S)rG such that κG([cx]) 6= 1 . (11)

Let Q ≤ S be as in the proof of Lemma 4.6: the subgroup generated by all subgroups of S G-conjugate
to E∗ = 〈(1 2)(3 4), (1 3)(2 4)〉. We saw in the proof of the lemma that Q = Q1 × · · · ×Qk, where k = [n/4],
the Qi are the only subgroups of S G-conjugate to E∗, and they have pairwise disjoint support. Thus Q is
weakly closed: the unique subgroup of S in its G-conjugacy class.

Fix [α] ∈ Ker(µG). By Proposition 4.2, we can assume [α] is the class of α ∈ AutItyp(L) for which αS =
IdAutL(S). Let gP ∈ CZ(P )(AutS(P )), for P ≤ S F-centric and fully normalized, be the elements defined in
Proposition 4.2. Set g = gQ ∈ CQ(AutS(Q)) = Z(S) (the last equality since Q is normal and centric in S).
For each fully normalized P ≥ Q (including P = S), all automorphisms in AutF (P ) leave Q invariant since
it is weakly closed, so gP ≡ gQ = g (mod CZ(Q)(AutF (P )) = CZ(P )(AutF (P ))) by Proposition 4.2(c). So
upon replacing α by α ◦ c−1

[g] , we can assume g = 1, and αP = IdAutL(P ) (and gP = 1) for all fully normalized
P ≥ Q.

For each 1 ≤ i ≤ k, there is a 3-cycle hi ∈ NG(Q) which permutes transitively the involutions in Qi
and centralizes the other Qj . Thus CQ(AutF (Q)) ≤

⋂k
i=1 CQ(hi) = 1. Recall that P ∈ Ê0 if P is F-

essential, P = CS(E) for some elementary abelian subgroup E fully centralized in F , and CZ(P )(AutS(P )) 	
CZ(P )(AutF (P )). Let Ê�Q0 be the set of subgroups P ∈ Ê0 which do not contain Q. Let X be a set of

representatives for Ê0 modulo F-conjugacy. By Proposition 4.2(e), applied with H = X ∪ {Q}, [α] = 1 if and

only if gP ∈ CZ(P )(AutF (P )) for all P in a set of representatives for Ê�Q0 modulo F-conjugacy.

Fix P = CS(E) ∈ Ê�Q0 . Since E is fully centralized, P ∈ Syl2(CG(E)). Since P is F-essential, OutF (P )
has a strongly 2-embedded subgroup, and hence all involutions in any Sylow 2-subgroup of OutF (P ) are in
its center (cf. [OV2, Propositions 3.3(a) & 3.2]). In particular, OutF (P ) contains no subgroup isomorphic
to D8.

Fix P ∈ Syl2(CΣn(E)) which contains P . Thus P = P ∩An. Also, E E P , so P ≤ P ·CΣn(P ) ≤ CΣn(E),
and hence

P ·CΣn(P )
/
P has odd order. (12)

By Lemma 4.7, each union of m E-orbits of order q = 2i which have the same stabilizer subgroup contributes
a factor Eq o Σm to CΣn(E), where Eq ∼= (C2)i is acting freely on an orbit of order q in n. Since a Sylow

2-subgroup of Σm is a product of wreath products C2 o · · · o C2, P ∈ Syl2(CΣn(E)) is a product of subgroups

of the form Eq o C2 o · · · o C2 (or Eq) with pairwise disjoint support. If P contains a factor Eq o C2 o · · · o C2

for q = 2r ≥ 8, then OutF (P ) contains GLr(2) ≥ D8, which we just saw is impossible.

Write n = X0 qX1 qX2, where X0 is the set of points fixed by P , X1 is the union of P -orbits of length
2, and X2 is the union of P -orbits of length ≥ 4. By the above description of P , P = P1 × P2, where
supp(Pi) = Xi for i = 1, 2, P1

∼= Cm2 where 2m = |X1|, and P2 is a product of subgroups E4 o C2 o · · · o C2
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and C2 o · · · o C2 (the latter of order ≥ 8). By (12), |X0| ≤ 1, since otherwise there would be a 2-cycle in

CΣn(P ) not in P .
Each factor E4 or C2 o C2 (with support of order 4) contains a subgroup conjugate to E∗ (thus one of

the factors Qi in Q). Thus X2 ⊆ supp(Q ∩ P ). If n− |X2| ≤ 3, then X2 = supp(Q), so Q ≤ P ∩An = P ,
contradicting the original assumption on P . Thus |X0 ∪X1| > 3. Since |X0| ≤ 1 and |X1| = 2m is even, we
have m ≥ 2.

If {i, j} is any of the m orbits of order 2 in X1, then (i j) ∈ CΣn(P )rAn and P = 〈P, (i j)〉. Thus NΣn(P ) =

NΣn(P ), CΣn(P ) = CΣn(P ), P ·CΣn(P ) = P ·CΣn(P ), and so NΣn(P )/P ·CΣn(P ) ∼= NG(P )/P ·CG(P ). This
proves that

OutG(P ) = OutΣn(P ) ∼= OutΣn(P ) ∼= Σm ×OutΣX2
(P2),

where the first isomorphism is induced by restriction. Here, ΣX2
is the group of permutations of X2.

If m = 2, then O2(OutG(P )) 6= 1, and if m ≥ 4, then OutG(P ) ≥ D8. Either of these would contradict the
assumption that OutG(P ) contains a strongly 2-embedded subgroup. Thus m = 3, and X1 = supp(P1) has
order 6. A group with a strongly 2-embedded subgroup cannot split as a product of two groups of even order,
so |OutΣX2

(P2)| is odd. Since P2·CΣX2
(P2)/P2 is isomorphic to a subgroup of P ·CΣn(P )/P , it has odd order

by (12), and hence∣∣NΣX2
(P2)/P2

∣∣ =

∣∣∣∣∣ NΣX2
(P2)

P2·CΣX2
(P2)

∣∣∣∣∣ ·
∣∣∣∣P2·CΣX2

(P2)

P2

∣∣∣∣ =
∣∣OutΣX2

(P2)
∣∣·∣∣P2·CΣX2

(P2)/P2

∣∣
is also odd. If P2 ≤ T ∈ Syl2(ΣX2

), then NT (P2)/P2 has odd order, so P2 = T (cf. [Sz1, Theorem 2.1.6]),
and thus P2 ∈ Syl2(ΣX2).

Since P2 is a Sylow 2-subgroup of a symmetric group and has no orbits of order 2, it is a product of
subgroups C2 o · · · o C2 of order ≥ 8. Since 4

∣∣|X2| (a union of orbits of order 2i ≥ 4) and |X0| ≤ 1,

n = |X0|+ 6 + |X2| ≡ 2, 3 (mod 4) .

If R is any other subgroup in Ê�Q0 , then R = R ∩G, n = Y0 q Y1 q Y2 where Y0 is the set of elements

fixed by R and Y1 is the union of R-orbits of order 2, R = R1 ×R2 where supp(Ri) = Yi, R2 ∈ Syl2(ΣY2),
|Y1| = 6 = |X1|, and |Y2| = |X2| (the largest multiple of 4 which is ≤ n−6). Thus R is Σn-conjugate to P ,
and is An-conjugate to P since there are odd permutations which centralize P (the transpositions in P1).

Now, Z(P ) = P1 × Z(P2), where Z(P2) is a product of one copy of C2 for each factor C2 o · · · o C2 in P2

(equivalently, for each P2-orbit in X2). Also, each of these factors C2 has support the corresponding P2-
orbit, hence of order a multiple of 4, and hence contained in An. Thus Z(P2) ≤ G = An. Also, AutF (P )
acts via the identity on Z(P2), since all of the factors C2 o · · · o C2 in P2 have different orders (hence their
supports have different orders). Since AutAn(P1 ∩An) ∼= Σ3 acts on P1 by permuting the three transpositions,
AutF (P ) acts on P1 ∩An ∼= C2

2 with trivial fixed set. Since Z(P ) = (P1 ∩An)× Z(P2), it now follows that
CZ(P )(AutS(P ))/CZ(P )(AutF (P )) has order two.

To summarize, every class in Ker(µG) is represented by some α such that αP = Id when P ≥ Q, and for
such α, [α] = 1 if and only if gP ∈ CZ(P )(AutF (P )) for some representative in each F-conjugacy class in

Ê�Q0 . When n ≡ 0, 1 (mod 4), Ê�Q0 = ∅, so Ker(µG) = 1. When n ≡ 2, 3 (mod 4), all subgroups in Ê�Q0 are
F-conjugate to some fixed P , and so |Ker(µG)| ≤ |CZ(P )(AutS(P ))/CZ(P )(AutF (P ))| = 2. This proves (10).

Assume n ≡ 2, 3 (mod 4), and set k = [n/4] as before. Set P1 = 〈(1 2), (3 4), (5 6)〉 and E = G ∩ P1. Assume

S was chosen so that supp(S) = {1, . . . , 4k + 2}, supp(Q) = {3, . . . , 4k + 2}, and P
def
= CS(E) ∈ Syl2(CG(E)).

Then AutF (P ) ∼= Σ3 ×A where A has odd order, and so P ∈ Ê�Q0 .
Set x = (1 2). Then Out(G) = 〈[cx]〉 ∼= C2, [x, S] = 1, and cx is the identity on NG(Q)/C ′G(Q) = AutL(Q).

(Note that if n = 4k + 3, then C ′G(Q) = 〈(1 2n)〉 does not commute with x.) Also, (1 2)(3 4)(5 6) centralizes

NG(P ), and hence cx acts on AutL(P ) (or on NG(P )) via conjugation by gP
def
= (3 4)(5 6) ∈ CZ(P )(AutS(P )).

Since gP /∈ CZ(P )(AutF (P )), [cx] is sent to a nontrivial element in Ker(µG). This proves (11), and finishes
the proof of the proposition.

We finish by proving that with the obvious exceptions, most fusion systems of alternating groups are
reduced.

Proposition 4.9. Fix a prime p and n ≥ p2 such that n ≡ 0, 1 (mod p). Assume n ≥ 8 if p = 2. Set
G = An, and choose S ∈ Sylp(G). Then the fusion system FS(G) is reduced.
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Proof. Set F = FS(G). By the focal subgroup theorem (cf. [G, Theorem 7.3.4]), foc(F) = S ∩ [G,G] = S,
so Op(F) = F .

Let Q ≤ S be as in the proof of Lemma 4.6: the subgroup generated by all subgroups of S G-conjugate to
E∗, where E∗ = 〈(1 2 · · · p)〉 ∼= Cp if p is odd, and E∗ = 〈(1 2)(3 4), (1 3)(2 4)〉 ∼= C2

2 if p = 2. We saw in the
proof of the lemma that Q = Q1 × · · · ×Qk, where k = [n/p] (p > 2) or [n/4] (p = 2), the Qi are the only
subgroups of S G-conjugate to E∗, and they have pairwise disjoint support. Thus Q is AutF (S)-invariant.
We also saw that CS(Q) = Q, and hence Q is F-centric (since it is the only subgroup in its F-conjugacy
class by construction). Finally,

AutΣn(Q) ∼= Aut(E∗) o Σk where Aut(E∗) ∼=

{
Cp−1 if p > 2

Σ3 if p = 2 ,
(13)

and hence AutF (Q) has index at most two in this wreath product. When p = 2, since Σk ≤ AutΣn(Q)
permutes the Qi with support of order 4, it is contained in AutF (Q).

Set R = Op(F). Since Q is F-centric, and is F-radical by (13), R ≤ Q by Proposition 1.5. Assume R 6= 1,
and fix g ∈ R of order p. There is h ∈ Q which is G-conjugate to g (a product of the same number of p-cycles)
such that gh is a p-cycle (or a product of two 2-cycles if p = 2). Then h ∈ R since R E F , and so gh ∈ R.
Since each Qi is generated by elements G-conjugate to gh, this would imply that R = Q. But in all cases,
there are elements both in Q and in SrQ which are products of p disjoint p-cycles, so Q is not strongly
closed in F . We conclude that R = Op(F) = 1.

Now set F0 = Op
′
(F); we must show F0 = F . By [BCGLO2, Theorem 5.4], it suffices to show that

AutF0
(S) = AutF (S). Also, by the same theorem,

AutF0
(S) = Aut0

F (S) ≥
〈
α ∈ AutF (S)

∣∣α|P ∈ Op′(AutF (P )),

some F-centric subgroup P ≤ S with α(P ) = P
〉
.

For α ∈ AutF (S), if α|Q ∈ Op
′
(AutF (Q)), then α ∈ AutF0

(S). If p = 2, then O2′(AutF (Q)) = AutF (Q) by
the description in (13), so F0 = F in this case.

Assume p is odd. Let p` be the largest power of p such that p` ≤ n. Write S = S1 × S2, where supp(S1) ∩
supp(S2) = ∅ and |supp(S1)| = p`. Fix T ∈ Sylp(Σp), and identify

S1 = T o T o · · · o T ≤ Σp o Σp o · · · o Σp ≤ Σp` ≤ Σn.

Let Φ: (Σp)
` −−−→ Σp o · · · o Σp ≤ Σp` be the monomorphism which sends the first factor diagonally to

(Σp)
p`−1

, the second factor diagonally to (1 o Σp)p
`−2

, etc. Set P1 = Φ(T `) and P = P1 × S2 ≤ S. Fix u ∈ F×p
of order p− 1, and choose h ∈ NΣp(T ) such that hgh−1 = gu for g ∈ T . Let α ∈ AutF (S) be conjugation
by Φ(h, h−1, 1, . . . , 1). Then α|P1 has matrix diag(u, u−1, 1, . . . , 1) ∈ SL`(p) with respect to the canonical
basis. Since AutF (P1) has index at most two in AutΣn(P1) ∼= GL`(p), we get α|P ∈ Op

′
(AutF (P )), and so

α ∈ AutF0
(S) since P is F-centric. Also, α|Q represents a generator of AutF (Q)/Op

′
(AutF (Q)) ∼= F×p , so

this finishes the proof that AutF0
(S) = AutF (S) and hence that F0 = F . Thus F is reduced.
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