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Abstract. We study reduced fusion systems from the point of view of their essential
subgroups, using the classification by Goldschmidt and Fan of amalgams of prime
index to analyze certain pairs of such subgroups. Our results are applied here to study
reduced fusion systems over 2-groups of order at most 64, and also reduced fusion
systems over 2-groups having abelian subgroups of index two. More applications are
given in later papers.

A saturated fusion system over a finite p-group S is a category whose objects are
the subgroups of S, whose morphisms are monomorphisms between subgroups, and
which satisfy certain axioms first formulated by Puig [Pg2] and motivated by conjugacy
relations among p-subgroups of a given finite group. A saturated fusion system is
reduced if it has no proper normal subsystem of p-power index, no proper normal
subsystem of index prime to p, and no nontrivial normal p-subgroup. (All three of
these concepts are defined by analogy with finite groups.) Reduced fusion systems
need not be simple, in that they can have proper nontrivial normal subsystems. They
were introduced by us in [AOV] as forming a class of fusion systems which is small
enough to be manageable, but still large enough to detect any fusion systems (reduced
or not) which are “exotic” (not defined via conjugacy relations in any finite group).

When G is a finite group and S ∈ Sylp(G), the version of Alperin’s fusion theorem
shown by Goldschmidt [Gd1] says that all G-conjugacy relations among subgroups of
S are generated by AutG(S) (automorphisms induced by conjugation in G), together
with AutG(P ) for certain “essential” proper subgroups of S, and restrictions of such
automorphisms. There is a version of this result for abstract fusion systems (see The-
orem 1.2), which says that a fusion system F is generated by F -automorphisms of
F -essential subgroups (Definition 1.1). Our goal in this and our other papers is to
study, and to classify in certain cases, reduced fusion systems from the point of view
of their essential subgroups and generating automorphisms.

This point of view was introduced in [OV], where two of us described how fusion
systems over a given 2-group S could be classified by first listing the subgroups of S
which potentially could be essential, using Bender’s theorem on groups with strongly
embedded subgroups. When we try to extend those methods to larger classes of groups,
it is useful to search for pairs of essential subgroups via theorems of Goldschmidt and
Fan classifying certain types of amalgams.
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The situation we want to study is the following. Assume F is a saturated fusion
system over a finite 2-group S, and P1, P2 < S are distinct F -essential subgroups of
index two in their normalizer. In addition, we assume either that P1 and P2 have index
two in S, or that NS(P1) = NS(P2) < S and P1, P2 are S-conjugate to each other.
Set P = P1P2 = NS(Pi). Then there are finite groups Gi > P such that Pi E Gi,
Gi/Pi ∼= D2pi for some odd prime pi, and AutGi

(Pi) ≤ AutF(Pi). By applying the
classifications of amalgams by Goldschmidt and Fan to the triple (G1 > P < G2), we
get information about S and the Pi. In this paper, we only deal with certain cases
(see Theorems 4.5 and 4.6), but these are the cases which occur most often in “small”
examples.

Applications of these results are given in Section 5. The reduced fusion systems over
2-groups of order at most 32, and the groups of order 64 which support reduced fusion
systems, are all listed in Theorems 5.3 and 5.4, respectively. These are preceded by
Propositions 5.1 and 5.2, which list various conditions on a reduced fusion system over
a 2-group S which imply that S is dihedral of order at least 8, semidihedral of order
at least 16, or a wreath product C2n o C2 for n ≥ 2. Furthermore, in these cases, F is
isomorphic to the fusion system of PSL2(q) for some q ≡ ±1 (mod 8), or of PSL3(q) for
some odd q. For example, by Proposition 5.2(a,b,c,e), these conclusions hold whenever
F is a reduced fusion system over a 2-group S, where either

• S contains an abelian subgroup of index two; or

• [S, S] is cyclic; or

• there is a subgroup Q < S such that |NS(Q)/Q| = 2, OutS(Q) � O2(Out(Q)), and
either Q is abelian or |Q| ≤ 16.

These results are applied in a later paper by the same authors, where we combine
them with a computer search to list reduced fusion systems over 2-groups of order at
most 29. They have also been applied by the second author when classifying reduced
fusion systems over 2-groups of sectional rank at most four.

Notation: For any group G, we let Gab = G/[G,G] denote its abelianization.
Also, Cn denotes a (multiplicative) cyclic group of order n, and D2m , SD2m , and
Q2m denote dihedral, semidihedral, and quaternion groups of order 2m. As usual,
when P is a finite p-group for some prime p, then Ω1(P ) = 〈g ∈ P | gp = 1〉, and
Fr(P ) = 〈ap, [a, b] | a, b ∈ P 〉 (the Frattini subgroup). For any finite group G, Op(G)
is the largest normal p-subgroup of G, and Op(G) is the smallest normal subgroup of
p-power index.

When G acts on a group X, we let CX(G) be the subgroup of elements of X fixed
by G. When A ⊆ G and B ⊆ X are subsets, we set [A,B] = 〈g(x)x−1 | g ∈ A, x ∈ B〉.
When g, h are elements of any group G, we write their commutator [g, h] = ghg−1h−1.
Also, cg always denotes the conjugation homomorphism cg(h) = ghg−1.

We would like very much to thank Copenhagen University for its hospitality while
letting the three of us meet there on several occasions. We also want to thank the
referee for reading the paper so thoroughly and making many helpful suggestions.

1. Saturated fusion systems

When G is a finite group and S ∈ Sylp(G), the fusion system of G over S is the
category FS(G) whose objects are the subgroups of S, and where MorFS(G)(P,Q) =
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HomG(P,Q) is the set of monomorphisms from P to Q induced by conjugation in G.
An abstract fusion system F over a finite p-group S is a category whose objects are the
subgroups of S, whose morphisms are monomorphisms of groups including all those
induced by conjugation in S, and where for each ϕ ∈ HomF(P,Q) = MorF(P,Q), ϕ
restricts to an F -isomorphism from P to ϕ(P ) ≤ Q. A fusion system is saturated if
it satisfies certain additional conditions. Rather than listing those conditions here, we
refer to [AKO, Definition I.2.2] or our earlier paper [AOV].

In particular, for any finite G with S ∈ Sylp(G), FS(G) is a saturated fusion system
(cf. [AKO, Theorem I.2.3]). An abstract fusion system F over S is called realizable if
F = FS(G) for some finite group G with S ∈ Sylp(G), and is called exotic otherwise.

If G is a finite group and p is a prime, then a proper subgroup H < G is strongly
p-embedded in G if p

∣∣|H|, and for each g ∈ GrH, p-|H ∩ gHg−1|. We refer to [AKO,
Proposition A.7] for a very brief survey of some of the properties of strongly p-embedded
subgroups, and to [A1, § 46] or [Sz2, § 6.4] for more details.

Definition 1.1. Fix a prime p, a finite p-group S, and a saturated fusion system F
over S. Let P ≤ S be any subgroup. Set OutF(P ) = AutF(P )/Inn(P ).

• PF denotes the set of subgroups of S which are F -conjugate to P ; i.e., isomorphic
to P in the category F . For each g ∈ S, gF denotes the F-conjugacy class of
g.

• P is fully normalized in F if |NS(P )| ≥ |NS(Q)| for each Q ∈ PF .

• P is F -centric if CS(Q) = Z(Q) for all Q ∈ PF .

• P is F -essential if P < S, P is F-centric and fully normalized in F , and OutF(P )
contains a strongly p-embedded subgroup.

• P is normal in F (P E F) if P E S and every morphism ϕ ∈ HomF(Q,R) in F
extends to a morphism ϕ ∈ HomF(PQ,PR) such that ϕ(P ) = P .

• Op(F) denotes the largest subgroup of S which is normal in F .

• NF(P ) ⊆ F denotes the largest fusion subsystem over NS(P ) (i.e., the largest
subcategory of F which is a fusion system over NS(P )) which contains P as a
normal subgroup.

• For each ϕ ∈ Aut(S), ϕFϕ−1 is the fusion system over S defined by

HomϕFϕ−1(P,Q) =
{

(ϕ|ϕ−1(Q)) ◦ ψ ◦ (ϕ|ϕ−1(P ))
−1
∣∣ψ ∈ HomF(ϕ−1(P ), ϕ−1(Q))

}
for all P,Q ≤ S.

It follows immediately from the definition of a normal subgroup in F that the max-
imal normal subgroup Op(F) E F is well defined. The notation is, of course, chosen
by analogy with that for finite groups.

We now look at essential subgroups of a fusion system.

Theorem 1.2. Let F be a saturated fusion system over a finite p-group S. Then
each morphism in F is a composite of restrictions of morphisms in AutF(S), and of
morphisms in Op′(AutF(P )) for F-essential subgroups P ≤ S.

Proof. See, e.g., [O1, Proposition 1.10(a,b)]. In fact, a proper subgroup P < S fully
normalized in F is F -essential exactly when AutF(P ) is not generated by restrictions
of morphisms between strictly larger subgroups of S. (See [OV, Proposition 2.5] or
[AKO, Proposition I.3.3(b)] for more details.) �
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The next proposition follows easily from Theorem 1.2, together with the definition
of a normal p-subgroup.

Proposition 1.3. Let F be a saturated fusion system over a finite p-group S, and fix
Q ≤ S. Then Q E F if and only if it satisfies the following condition: if P = S or P
is F-essential, then P ≥ Q and each α ∈ AutF(P ) sends Q to itself.

Proof. See, e.g., [AKO, Proposition I.4.5] for details. �

The next proposition is a special case of the model theorem for constrained fusion
systems (but much more elementary than the general theorem).

Proposition 1.4. Let F be a saturated fusion system over a finite p-group S, and let
P ≤ S be a fully normalized F-centric subgroup. Then there is a finite group G such
that NS(P ) ∈ Sylp(G), P E G, CG(P ) ≤ P , and AutG(P ) = AutF(P ).

Proof. Since P is fully normalized, NF(P ) is a saturated fusion system over NS(P ) (cf.
[AKO, Theorem I.5.5]). Since P is F -centric, P is normal and centric in NF(P ) and
hence NF(P ) is constrained in the sense of [AKO, Definition I.4.8]. The result now
follows from [AKO, Proposition III.5.8(a)]. �

The next two lemmas are our main tools for detecting essential subgroups, or rather,
for proving that certain subgroups are not essential.

Lemma 1.5 ([OV, Lemma 3.4]). Fix a prime p, a finite p-group S, a subgroup P ≤ S,
and a characteristic subgroup Θ ≤ P . Assume there is g ∈ NS(P )rP such that

(a) [g, P ] ≤ Θ·Fr(P ), and

(b) [g,Θ] ≤ Fr(P ).

Then cg ∈ Op(Aut(P )). Hence P is not F-essential for any saturated fusion system F
over S.

In fact, [OV, Lemma 3.4] is stated in terms of “(semi)critical subgroups” of a finite
p-group S rather than essential subgroups. We refer to [OV, Definition 3.1] for the
definition of critical subgroups, and just note here that by [OV, Proposition 3.2], each
F -essential subgroup (for any saturated fusion system F over S) is critical in S. This
remark also applies to the next lemma, which is a special case of [OV, Proposition
3.3(c)].

Lemma 1.6. Let S be a finite 2-group. Assume that P ≤ S is F-essential for some
saturated fusion system F over S, and also that |NS(P )/P | ≥ 4. Then rk(P/Fr(P )) ≥
4, and rk([s, P/Fr(P )]) ≥ 2 for all s ∈ NS(P )rP .

We next recall the definitions of the focal and hyperfocal subgroups of a saturated
fusion system, defined by analogy with the finite group case.

Definition 1.7. Let F be a saturated fusion system over a finite p-group S. The focal
subgroup of F is the subgroup

foc(F)
def
= 〈g−1h | g, h ∈ S and h ∈ gF〉
= 〈g−1α(g) | g ∈ P ≤ S, P = S or P is F -essential, α ∈ AutF(P )〉.

The hyperfocal subgroup of F is the subgroup

hyp(F) = 〈g−1α(g) | g ∈ P ≤ S, α ∈ Op(AutF(P ))〉.
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The two definitions of foc(F) are equivalent by Theorem 1.2. In the definition of
hyp(F), we could equivalently restrict to automorphisms of order prime to p. When
F = FS(G) for a finite group G and S ∈ Sylp(G), then foc(F) = S∩ [G,G] by the focal
subgroup theorem (cf. [G, Theorem 7.3.4]), and hyp(F) = S∩Op(G) by the hyperfocal
theorem of Puig [Pg1, § 1.1].

Next recall the following definitions from [5a2].

Definition 1.8. Let F be a saturated fusion system over a finite p-group S, and let
F0 ⊆ F be a saturated fusion subsystem over a subgroup S0 ≤ S.

(a) F0 has p-power index in F if hyp(F) ≤ S0 ≤ S, and AutF0(P ) ≥ Op(AutF(P ))
for all P ≤ S0.

(b) F0 has index prime to p in F if S0 = S, and AutF0(P ) ≥ Op′(AutF(P )) for all
P ≤ S.

By [5a2, Theorems 4.3 & 5.4], each saturated fusion system F over a finite p-group
S contains a unique minimal saturated fusion subsystem Op(F) of p-power index (over
hyp(F)), and a unique minimal saturated fusion subsystem Op′(F) of index prime to
p (over S). Furthermore:

Proposition 1.9. For any saturated fusion system F over a finite p-group S,

F = Op(F) ⇐⇒ hyp(F) = S ⇐⇒ foc(F) = S .

Proof. See, e.g., [AKO, Corollary I.7.5]. The second equivalence follows upon checking
that the image of foc(F) in S/hyp(F) is precisely its commutator subgroup (cf. [AKO,
Lemma I.7.2]). �

2. Reduced fusion systems

This paper is centered around the special class of reduced fusion systems, which are
defined as follows.

Definition 2.1. A reduced fusion system is a saturated fusion system F such that

• F has no nontrivial normal p-subgroups,

• F has no proper subsystem of p-power index, and

• F has no proper subsystem of index prime to p.

Equivalently, F is reduced if Op(F) = 1, Op(F) = F , and Op′(F) = F .

Definition 2.1 was originally formulated in [AOV], and was motivated by Theorems
A and B in that paper. Very roughly, those theorems describe a way to “detect” exotic
fusion systems while looking only at reduced fusion systems.

In this section, we give some conditions on a fusion system which are necessary for it
to be reduced (equivalently, conditions which imply that it is not reduced). We begin
with two very general results.

Lemma 2.2. If F is a reduced fusion system over a nontrivial finite 2-group S, and
E is the set of F-essential subgroups of S, then |E| ≥ 2 and [S:〈E〉] 6= 2.



6 KASPER K. S. ANDERSEN, BOB OLIVER, AND JOANA VENTURA

Proof. By Proposition 1.3, S E F if E = ∅, while P E F if E = {P} for some P . So
F is not reduced (Op(F) 6= 1) if |E| ≤ 1.

If [S:〈E〉] = 2, then [AutF(S), S] ≤ 〈E〉 since AutF(S) acts trivially on S/〈E〉 ∼= C2.
Since foc(F) is generated by [AutF(S), S] and the [AutF(P ), P ] for P ∈ E , foc(F) ≤
〈E〉 < S. So F is not reduced by Proposition 1.9. �

The next proposition is a simple application of a transfer homomorphism for fusion
systems.

Proposition 2.3. Let F be a saturated fusion system over a finite 2-group S.

(a) Assume there is g ∈ Ω1(Z(S))r[S, S] such that each α ∈ AutF(S) sends the coset
g[S, S] to itself. Then g /∈ foc(F), and F is not reduced.

(b) More generally, let U E S be such that each element of AutF(S) sends U to itself,
and U ≤ [P, P ] for each P < S of index two. Assume there is g ∈ Sr[S, S] such
that [g, S] ≤ U , g2 ∈ U , and each α ∈ AutF(S) sends the coset g[S, S] to itself.
Then g /∈ foc(F), and F is not reduced.

Proof. We refer to [AKO, § I.8] for some of the properties of the transfer homomorphism
trfF : S/foc(F) −−−→ Sab when F is a saturated fusion system over S. Let [g] ∈ Sab

be the class of g. Since (a) is a special case of (b) (the case U = 1), and was shown to
hold in [AKO, Corollary I.8.5], we assume g satisfies the conditions of (b).

For P < S, let trfSP : Sab −−−→ P ab be the usual transfer homomorphism (cf. [AKO,
Lemma I.8.1(b)]). If [S:P ] = 2, then trfSP ([g]) = [g2] if g /∈ P , and trfSP ([g]) = [gxgx−1]
if g ∈ P and x ∈ SrP . This follows from the construction in [AKO] upon taking
coset representatives {1, x}. Since g2 ∈ U , gxgx−1 = g2[g−1, x] ∈ U , and U ≤ [P, P ],
trfSP ([g]) = 1. Since this holds for each P < S of index two, trfSP ([g]) = 1 for each
P < S since transfers compose (cf. [AKO, Lemma I.8.1(d)]).

By assumption, for each α ∈ AutF(S), α([g]) = [g]. So by [AKO, Proposition
I.8.4(a)], trfF([g]) = [g]k 6= 1 where k = |OutF(S)| is odd. Thus g /∈ foc(F) since
trfF is well defined, so foc(F) < S, O2(F) 6= F by Proposition 1.9, and F is not
reduced. �

The next lemma is an application of Lemma A.7, together with the transfer ho-
momorphism for fusion systems (cf. [AKO, § I.8]). Recall that a finite group G is
metacyclic if it has a normal cyclic subgroup H E G such that G/H is also cyclic.

Lemma 2.4. Let S be a finite 2-group, and let F be a saturated fusion system over S.
Let E be the set of F-essential subgroups of S.

(a) Assume P ∈ E is such that [NS(P ), P ] is cyclic. Then there are decompositions
P = P0P1 and OutF(P ) = Γ0×Γ1, where for i = 0, 1, [P, P ] ≤ Pi E P , Γi sends Pi
to itself and acts trivially on P1−i/[P, P ], Γ0 has odd order, and Γ1

∼= Σ3. Either

(i) P is abelian, P1
∼= C2n × C2n for some n ≥ 1, CP1(NS(P )) ∼= C2n and

[NS(P ), P ] ∼= C2n are both direct factors of P1, and P0 ∩ P1 = 1; or

(ii) P1
∼= Q8, [P0, P1] = 1, and P0 ∩ P1 = [P, P ] = Z(P1).

(b) If the image of AutF(S) in Aut(S/Z(S)) is a 2-group, then AutF(S) = ∆×Inn(S)
for some (unique) subgroup ∆ ≤ AutF(S) of odd order.
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(c) Assume F is reduced and the image of AutF(S) in Aut(S/Z(S)) is a 2-group.
Assume also, for each P ∈ E, that [NS(P ), P ] is cyclic and the factor P0 of point
(a) is contained in Z(S). Then OutF(S) = 1, and Ω1(Z(S)) ≤ [S, S].

Proof. (a) By Lemma 1.6, |OutS(P )| = |NS(P )/P | = 2. If P is abelian, then by
Lemma A.7, P and AutF(P ) have decompositions as described in (i). More precisely,
Lemma A.7 says that P1

∼= C2n × C2n and [NS(P ), P ] = [NS(P ), P1] ∼= C2n for some
n ≥ 1, and hence that [NS(P ), P ] is a direct factor of P1. Also, for x ∈ NS(P )rP ,
CP1(NS(P )) = CP1(x) is the kernel of the map P1 −−−→ P1 which sends g to [x, g], so
P1/CP1(x) ∼= [x, P1] ∼= C2n , and CP1(x) ∼= C2n is also a direct factor of P1.

Assume P is nonabelian. By Lemma A.2 (applied with P0 = [P, P ]), the kernel of
the action of AutF(P ) on P ab is a 2-group. Also, O2(OutF(P )) = 1 (i.e., OutS(P ) 6E
OutF(P )), since OutF(P ) has a strongly 2-embedded subgroup. Thus OutF(P ) acts
faithfully on P ab.

Set P ′ = [P, P ]. By assumption, P ′ 6= 1. By Lemma A.7, applied to the OutF(P )-
action on P ab = P/P ′, there are decompositions P = P0P1 and OutF(P ) = Γ0 × Γ1

such that Pi E P is AutF(P )-invariant, P0 ∩ P1 = P ′, P1/P
′ ∼= C2n × C2n for some

n ≥ 1, Γ0 has odd order and acts trivially on P1/P
′, and Γ1

∼= Σ3 acts trivially on
P0/P

′. Also (by the same lemma), [NS(P ), P ab] = [NS(P ), P1/P
′] ∼= C2n , so

P1/[NS(P ), P ] ∼= (P1/P
′)/[NS(P ), P1/P

′] ∼= C2n .

Since [NS(P ), P ] is cyclic by assumption, P1 is metacyclic.

Any [α] ∈ Γ1
∼= Σ3 of order 3 lifts to some α ∈ AutF(P ), and upon replacing α by αk

for appropriate k, we can assume α has order 3. If P1 is abelian, then P1
∼= C2n ×C2m

where m > n (since P ′ 6= 1), which is impossible by Corollary A.3(a). So by [Cr,
Proposition 7.6], P1

∼= Q8. Hence P1/P
′ ∼= C2

2 , and P ′ = [P1, P1] = Z(P1) ∼= C2.

For x ∈ P0 and y ∈ P1, [x, y] = α([x, y]) = [x, α(y)] since |P ′| = 2 and α acts trivially
on P0/P

′. Hence [x, y−1α(y)] = 1, and [P0, P1] = 1 since [α, P1] = P1.

(b) Assume that the image of AutF(S) in Aut(S/Z(S)) is a 2-group. Then for each
α ∈ AutF(S) of odd order, α induces the identity on S/Z(S). So for each g ∈ S, there
is x ∈ Z(S) such that α(g) = xg, and hence αcgα

−1 = cα(g) = cg.

Thus each element of odd order in AutF(S) commutes with Inn(S), so AutF(S) =
Inn(S)CAutF (S)(Inn(S)). Since Inn(S) is 2-centric in AutF(S), CAutF (S)(Inn(S)) =
Z(Inn(S)) × ∆ where ∆ has odd order (cf. [BLO1, Lemma A.4]). Thus AutF(S) =
Inn(S)×∆.

(c) Let ∆ be as in (b), and set Q = [∆, S] ≤ Z(S). We first show that Q E F .

Fix P ∈ E , and let P = P0P1 and OutF(P ) = Γ0 × Γ1 be the decompositions of (a).
For each δ ∈ ∆, δ(P ) = P since [∆, S] = Q ≤ Z(S) ≤ P , so δ|P ∈ AutF(P ). Also,
[δ|P ] ∈ NOutF (P )(OutS(P )) = Γ0 × OutS(P ) since δ(NS(P )) = NS(P ), so [δ|P ] ∈ Γ0

since it has odd order. Thus [δ, P ] ≤ P0. Hence

Q = [∆, S] = [∆, [∆, S]] ≤ [∆, P ] ≤ P0,

where the second equality holds by [G, Theorem 5.3.6].

Fix β ∈ AutF(P ) of odd order, and let [β] be its class in OutF(P ). If [β] ∈ Γ0, then
since P0 ≤ Z(S) by assumption, β|P0 extends to an element of odd order in AutF(S) by
the extension axiom (i.e., since P0 is fully centralized), and thus extends to an element
of ∆. So β(Q) = Q in this case. If [β] ∈ Γ1, then β induces the identity on P0/[P, P ]
and on [P, P ] (since |[P, P ]| ≤ 2), and hence β|P0 = IdP0 (and β|Q = IdQ) by Lemma
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A.2. Since AutS(P ) acts trivially on Z(S), this proves that all elements of AutF(P )
send Q to itself.

Since this holds for each P ∈ E , Q E F by Proposition 1.3. Hence Q = [∆, S] = 1
since F is reduced, so OutF(S) ∼= ∆ = 1, and Ω1(Z(S)) ≤ [S, S] by Proposition 2.3(a)
(and since F is reduced). �

The next proposition will be greatly generalized in Section 5, as a consequence of
the results in Section 4 using amalgams.

Proposition 2.5. Let S be any finite nonabelian 2-group such that [S, S] is cyclic and
S has an abelian subgroup of index two. Then either S ∼= D2n (n ≥ 3), SD2n (n ≥ 4),
or C2n o C2 (n ≥ 2); or there is no reduced fusion system over S.

Proof. Let A < S be abelian of index two in S. By Lemma A.6(a), all elements
in (S/Z(S))r(A/Z(S)) have order two, and A/Z(S) ∼= [S, S]. Since [S, S] is cyclic,
S/Z(S) is dihedral (including the case D4

∼= C2
2).

Assume F is a reduced fusion system over S, and let E be the set of F -essential
subgroups of S. We first show that the hypotheses of Lemma 2.4(c) hold. For each
P ∈ E , [NS(P ), P ] is cyclic since [S, S] is cyclic, and hence Lemma 2.4(a) applies to P .
Let P0, P1 E P be as in that lemma; thus P = P0P1 and P0 ∩ P1 = [P, P ].

If P is abelian, it must be maximal abelian since it is centric. So either P = A, in
which case Z(S) = CP (S) = CP (NS(P )) and P/Z(S) = A/Z(S) is cyclic; or PA = S,
in which case P ∩ A = Z(S), so |P/Z(S)| = 2, Z(S) ≤ CP (NS(P )) < P , and hence
Z(S) = CP (NS(P )). In either case, Z(S) = CP (NS(P )) ≥ P0 and P/Z(S) is cyclic.

If P is nonabelian, then by Lemma 2.4(a.ii), P1
∼= Q8, [P, P ] = Z(P1), and [P0, P1] =

1. In particular, Z(S) ≤ CP (P1) = P0. If Z(S) < P0, then P/Z(S) contains a subgroup
isomorphic to Q8 (if Z(P1) � Z(S)) or C3

2 , both of which are impossible since S/Z(S)
is dihedral. Hence Z(S) = P0.

Recall that S/Z(S) is dihedral of order at least four. If |S/Z(S)| ≥ 8, then Aut(S/Z(S))
is a 2-group by Corollary A.3(b). If |S/Z(S)| = 4, then the three subgroups A1, A2, A3

of index two in S which contain Z(S) are all abelian, they are the only proper subgroups
centric in S, and hence the only subgroups which could be in E . If Ai ∈ E (recall E 6= ∅
by Lemma 2.2), then by Lemma 2.4(a.i), it contains a direct factor Ai1 ∼= C2m × C2m

(some m ≥ 1), which in turn contains CAi1
(S) ∼= C2m and [S, S] = [S,Ai] ∼= C2m as di-

rect factors. Thus Z(S) = CAi
(S) ∼= Ai0×C2m and [S, S] are both direct factors of Ai,

and so [S, S] � Fr(Z(S)). By Lemma A.6(d), there is no automorphism of S which per-
mutes the Ai transitively, and thus the image of AutF(S) in Aut(S/Z(S)) ∼= Aut(C2

2)
is a 2-group.

The hypotheses of Lemma 2.4(c) thus hold, and so Ω1(Z(S)) ≤ [S, S]. Since [S, S]
is cyclic, this implies that |Ω1(Z(S))| = 2, and hence that Z(S) is cyclic.

If |Z(S)| = 2, then Z(S) = Ω1(Z(S)) ≤ [S, S]. So Sab ∼= (S/Z(S))ab ∼= C2
2 , which

implies S is dihedral, semidihedral, or quaternion (cf. [G, Theorem 5.4.5]). If S ∼= Q2n ,
then by Lemma 2.4(a), for each P ∈ E , P ∼= Q8 and Z(P ) = Z(S). Hence Z(S) E F
by Proposition 1.3, which contradicts the assumption that F is reduced.

Now assume |Z(S)| = 2m for m ≥ 2; we will show that S ∼= C2m oC2. If P ≤ S is any
nonabelian subgroup, then since [S, S] is cyclic, Ω1([S, S]) = Ω1([P, P ]) is characteristic
in P . So if all F -essential subgroups are nonabelian, then Ω1([S, S]) is characteristic
in each of them, and hence is normal in F by Proposition 1.3. Since this contradicts
the assumption that F is reduced, there is an abelian subgroup P ∈ E , and we already
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saw that this implies P/Z(S) is cyclic. Since Z(S) is also cyclic, P has rank two, and
hence by Lemma 2.4(a.i), P ∼= C2n × C2n for some n (i.e., P0 = 1). Then |Z(S)| ≤ 2n,
|P/Z(S)| ≤ 2n, and so 2n = |Z(S)| = 2m. Thus n = m ≥ 2. Also, P/Z(S) ∼= C2m is
normal in the dihedral group S/Z(S), and hence P E S. So [S:P ] = 2 by Lemma 1.6
(and since rk(P ) = 2). Choose any t ∈ SrP , fix a ∈ P such that aZ(S) generates

P/Z(S), and set b = tat−1. Then a2m−1
/∈ Z(S) implies 1 6= [t, a2m−1

] = (ba−1)2m−1
, so

|ba−1| = 2m, and P = 〈a, b〉. Also, tbt−1 = a since t2 ∈ P , so Z(S) = 〈ab〉. Let i be
such that t2 = (ab)i; then (a−it)2 = 1, and this finishes the proof that S ∼= C2m oC2. �

In Section 5, as applications of our main theorems, we will generalize Proposition 2.5
by giving different (weaker) conditions on a 2-group each of which implies the conclusion
of Proposition 2.5. For example, by Proposition 5.2(a,b), the same conclusion holds if
S has an abelian subgroup of index two or [S, S] is cyclic.

3. Two examples

For use in Section 4, we determine here the essential subgroups of the simple groups
PSU3(3) and M12. At the same time, since reduced fusion systems over wreath products
C2n oC2 play an important role in Section 5 (and in Proposition 2.5), we determine all
reduced fusion systems over such groups.

We begin with the wreath products. Let v2(−) denote the 2-adic valuation: v2(n) = k
if 2k|n and 2k+1-n.

Proposition 3.1. Assume S = 〈a, b, t〉 ∼= C2m oC2 for some m ≥ 2, where A
def
= 〈a, b〉 ∼=

C2m × C2m, t2 = 1, and tat−1 = b. Set

Q = 〈ab, a2m−1

, t〉 ∼= C2m ×C2 D8
∼= C2m ×C2 Q8 .

(a) If F is a saturated fusion system over S, then the only subgroups of S which could
be F-essential are A and the subgroups S-conjugate to Q. If O2(F) = F , then all
of these subgroups are F-essential.

(b) Up to isomorphism, there is a unique saturated fusion system F over S such that
O2(F) = F . Also, F is reduced, and is isomorphic to the fusion system of PSL3(q)
for any prime power q such that v2(q−1) = m, and to the fusion system of PSU3(q)
for any prime power q such that v2(q + 1) = m.

Proof. Let F be a saturated fusion system over S, and let E be the set of F -essential
subgroups of S. If P ∈ E and |NS(P )/P | ≥ 4, then rk(P/Fr(P )) ≥ 4 by Lemma 1.6.
Since P ∩ A is abelian of rank at most two and [P :P ∩ A] ≤ 2, this is impossible. So
|NS(P )/P | = 2.

Assume P 6= A. Since P is centric in S, Z(S) = 〈ab〉 ≤ P . Also, P � A since
P is centric, and P � A since P /∈ {A, S}. Thus P ∩ A = 〈ab, a2i〉 for some i, and
P = 〈ab, a2i, ajt〉 for some j. If a2i = 1, then P is abelian with a cyclic subgroup Z(S)
of index two and order at least four, and Aut(P ) is a 2-group by Corollary A.3(a).
If |a2i| ≥ 4, then Z(P ) = 〈ab〉 = Z(S) is cyclic and P/Z(P ) is dihedral of order
2·|a2i| ≥ 8 (all elements in (S/Z(S))r(A/Z(S)) have order two by Lemma A.6(a)), so
Aut(P ) is a 2-group by Lemma A.2 and Corollary A.3(b). Thus P can be essential
only if P = 〈ab, a2i, ajt〉 where |a2i| = 2. If j is odd, then (ajt)2 = (ab)j generates
Z(S), P ab ∼= C2×C2m , and Aut(P ) is a 2-group by Corollary A.3(a). This leaves only
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the possiblity P = 〈ab, a2m−1
, ajt〉 = aj/2Qa−j/2 for even j. Thus E ⊆ {A} ∪ Q, where

Q denotes the S-conjugacy class of Q.

Now assume O2(F) = F . Then foc(F) = S by Proposition 1.9. By Corollary
A.3(a) (and since Sab ∼= C2m × C2), Aut(S) is a 2-group, and so OutF(S) = 1. Hence
foc(F) ≤

〈
[S, S], E

〉
. Since the images of A and of Q are both properly contained in

Sab, E = {A} ∪ Q. This proves (a).

Each of the three abelian subgroups of index two in Q is isomorphic to C2m × C2

and contains exactly two elements of order four not in Z(S). Hence Q contains exactly
six such elements, and they generate a subgroup Q0 which is the unique subgroup of
Q isomorphic to Q8. Since Q = Q0Z(S) and Q0 ∩ Z(S) = 〈(ab)2m−1〉 (and Z(S) =
Z(Q)), Out(Q) = Out(Q0) × Out(Z(S)), where Out(Q0) ∼= Σ3, and Out(Z(S)) is
a 2-group since Z(S) is cyclic. Hence OutF(Q) ∼= Σ3, and AutF(Q) acts on Q0 as
its full automorphism group and acts trivially on Z(S). Thus AutF(Q) is uniquely
determined.

By Lemma A.2, Aut(A)/O2(Aut(A)) ∼= Aut(A/Fr(A)) ∼= Σ3. Hence AutF(A) ∼= Σ3.
Set c = (ab)−1 ∈ Z(S), and let {a′, b′, c} be its AutF(A)-orbit. Thus a′, b′, c represent
the three involutions in A/Fr(A), and any two of them generate A. Also, a′b′c = 1
since AutF(A) fixes a′b′c, and hence c = (a′b′)−1.

Since c ∈ Z(S) = CA(t), ct exchanges a′ and b′ and fixes c. We can thus assume the
a and b were chosen so that a = a′ and b = b′. So up to an automorphism of S (i.e.,
a relabelling of its generators), AutF(A) is uniquely determined. Thus F is uniquely
determined up to isomorphism by (a) and Theorem 1.2.

Now, O2′(F) = F since OutF(S) = 1 (F is generated by O2′(F) and AutF(S)
by Theorem 1.2). If P E F , then P is contained in all F -essential subgroups by

Proposition 1.3, and hence is contained in their intersection 〈ab, a2m−1〉. Then P ≤
〈ab〉 since it is AutF(Q)-invariant, and so P = 1 since it is AutF(A)-invariant. Thus
O2(F) = 1, and F is reduced.

If q is a prime power with v2(q − 1) = m, then the Sylow 2-subgroups of GL2(q)
are isomorphic to S. Since SL3(q) contains a subgroup of odd index isomorphic to
GL2(q), SL3(q) and hence PSL3(q) also have Sylow 2-subgroups isomorphic to S. If
v2(q+1) = m, then by a similar argument, GU2(q), SU3(q), and PSU3(q) all have Sylow
2-subgroups isomorphic to S (cf. [CF, pp. 142–143]). Set G = PSL3(q) or PSU3(q), as
appropriate, and identify S ∈ Syl2(G). Since G is simple, foc(FS(G)) = S ∩ [G,G] = S
by the focal subgroup theorem (cf. [G, Theorem 7.3.4]), and hence FS(G) ∼= F . �

We now look at 2-groups of type M12.

Proposition 3.2. Consider the group S = Ao 〈r, t〉, where A = 〈a, b〉 ∼= C2
4 , 〈r, t〉 ∼=

C2
2 , rar−1 = a−1, rbr−1 = b−1, tat−1 = b, and tbt−1 = a. Set R = 〈A, r〉 ∼= C2

4 o C2,
and

Q = 〈a2, ab, r, t〉 = 〈ab−1, a2t〉 ×〈a2b2〉 〈ab, a2rt〉 ∼= Q8 ×C2 Q8 .

For any saturated fusion system F over S, the set of F-essential subgroups is contained
in {Q,R}, with equality if F is reduced. Also, Aut(S) is a 2-group.

Proof. Let E be the set of F -essential subgroups of S. If F is reduced, then |E| ≥ 2 by
Lemma 2.2. So it suffices to prove that E ⊆ {R,Q} for each saturated F .

Fix P ∈ E . Then Z(S) = 〈a2b2〉 ≤ P . Assume first that Fr(S) = 〈a2, ab〉 � P ,
and fix g ∈ Fr(S)rP . Then [g, P ] ≤ [g, S] = 〈a2b2〉, so |NS(P )/P | = 2 by Lemma
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1.6, and a2b2 /∈ Fr(P ) by Lemma 1.5 (applied with Θ = 1). In particular, since
(ab)2 = (ab−1)2 = a2b2, neither ab nor ab−1 is in P . Hence a2 ∈ P , since |NS(P )/P | = 2.
Also, P ≤ CS(a2) = 〈a, b, r〉 since a2b2 /∈ Fr(P ), NS(P ) ≥ 〈a, b, r〉 since 〈a, b, r〉/〈a2, b2〉
is abelian and P ≥ 〈a2, b2〉, and hence [〈a, b, r〉:P ] ≤ 2. So up to S-conjugacy, P =
〈a, b2, r〉 or 〈a, b2, br〉 (recall ab /∈ P ). In either case, P ∼= C2 × D8, so Aut(P ) is a
2-group by Corollary A.3(c). Hence P /∈ E .

Thus P ≥ Fr(S), so P E S. If [S:P ] ≥ 4, then |P | ≤ 16, rk(P/Fr(P )) ≥ 4 by
Lemma 1.6, and hence P ∼= C4

2 . This is impossible since P ≥ Fr(S) ∼= C4 ×C2, and so
[S:P ] = 2. If P = 〈a, b, t〉 or 〈a, b, rt〉, then P/[P, P ] ∼= C4 × C2, Aut(P ) is a 2-group
by Corollary A.3(a), and hence P /∈ E . So R = 〈a, b, r〉 is the only (possible) subgroup
in E which contains A.

Now assume P = Pij = 〈ab, a2, air, ajt〉 for i, j = 0, 1: these are the remaining four
subgroups of index two in S. Let Z2(P ) E P be the subgroup such that Z2(P )/Z(P ) =
Z(P/Z(P )). Then Z(P ) = 〈a2b2〉 and Z2(P ) ≥ 〈a2, ab〉. If (i, j) 6= (0, 0), then the
relations

[r, at] = a2, [ar, t] = ab−1, [ar, at] = a−1b−1

show that Z2(P ) = 〈a2, ab〉. So [a, P ] ≤ Z2(P ), [a, Z2(P )] = 1, and P /∈ E by Lemma
1.5. Thus Q = P00 is the only possible subgroup in E which does not contain A.

By the above arguments, Q and R are both characteristic in S. So Aut(S) is a
2-group by Lemma A.2, applied to the sequence Fr(S) < Q ∩R < R < S. �

With a little more work, one can show that the only reduced fusion systems over S
(as above) are those of M12 and G2(3). But we leave that for a later paper.

4. Detecting essential subgroups via amalgams

We are now ready to describe how theorems of Goldschmidt and Fan [Gd2, Fn] on
amalgams can be used to get information about essential subgroups of index two in
their normalizer for saturated fusion systems over 2-groups. Throughout the section,
in the statements of lemmas and in the proofs of Theorems 4.5 and 4.6, we will refer
repeatedly to the following set of hypotheses.

(∗)

Assume P1, P2 ≤ P ≤ G1, G2 are finite groups such that the following hold:

• P is a 2-group, [P :P1] = [P :P2] = 2, and P = P1P2.

• For i = 1, 2, Pi E Gi, Gi/Pi ∼= D2pi for some odd prime pi, and CGi
(Pi) ≤

Pi.

Set P12 = P1 ∩P2, and let T ≤ P12 be the largest subgroup which is normal
in both G1 and G2.

Clearly, hypotheses (∗) imply that [Gi:P ] = pi and Pi = O2(Gi) for i = 1, 2. In
particular, in the terminology of Goldschmidt [Gd2], the triple

(
G1 > P < G2

)
is an

amalgam of index (p1, p2).

The following lemma helps to explain the motivation for these hypotheses.

Lemma 4.1. Fix a finite 2-group S and a saturated fusion system F over S.

(a) Assume P1, P2 ≤ S are distinct F-essential subgroups of index two in S. Then
there are groups G1 > S < G2, and odd primes p1 and p2, such that OutGi

(Pi) ≤
OutF(Pi), and such that hypotheses (∗) hold with P = S.
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(b) Let P1 ≤ S be an F-essential subgroup which is not normal and has index two in
its normalizer. Set P = NS(P1) < S, choose x ∈ NS(P )rP such that x2 ∈ P ,
and set P2 = xP1x

−1. Then there are groups G1 > P < G2 and an odd prime
p, such that OutF(Pi) ≥ OutGi

(Pi) and hypotheses (∗) hold with p1 = p2 = p.
Also, x ∈ NS(T ), where T is as defined in (∗), and there is an isomorphism

β : G1

∼=−−−→ G2 such that β|P = cx|P .

Proof. Assume the hypotheses of (a) or (b), and set P = S in (a). Since each Pi is F -
essential (and |NS(Pi)/Pi| = 2), OutS(Pi) ∈ Syl2(OutF(Pi)) and is not the only Sylow
2-subgroup. Fix 1 6= g ∈ OutS(Pi), and let h ∈ OutF(Pi) be any other involution.
Then 〈g, h〉 is dihedral since it is generated by two involutions, and it has order 2n for
some odd integer n > 1 since 4-|OutF(Pi)|. Upon choosing an appropriate subgroup
Γi ≤ 〈g, h〉, we can arrange that OutS(Pi) ≤ Γi ≤ OutF(Pi) and Γi ∼= D2pi for some
odd prime pi.

Fix i = 1, 2. By Proposition 1.4, there is a finite group G∗i such that P ∈ Syl2(G∗i ),
Pi E G∗i , CG∗i (Pi) ≤ Pi, and OutG∗i (Pi) = OutF(Pi). Let Gi ≤ G∗i be the unique
subgroup such that P ≤ Gi and OutGi

(Pi) = Γi. Then these groups satisfy hypotheses
(∗).

In the situation of (b), we can assume that Γ2 is chosen so that Γ2 = [cx]Γ1[cx]
−1 ≤

OutF(P2). Choose G1 as in (a), and then choose G2 together with an isomorphism
β ∈ Iso(G1, G2) such that β|P = cx|P . Since T is the unique largest subgroup of
P12 which is normal in G1 and G2, x ∈ NS(T ) since cx exchanges P1 and P2 (recall
x2 ∈ P = NS(P1)). �

As usual, we say T is centric in a group X ≥ T if CX(T ) ≤ T . In general, our
results using hypotheses (∗) split into separate cases, depending on whether or not T
is centric in P .

We say that a finite group G is strictly p-constrained for a prime p if Op(G) is centric
in G. The question of whether one or both of the groups Gi/T (under hypotheses (∗))
is strictly 2-constrained plays an important role in Fan’s classification of amalgams of
type (p1, p2) [Fn].

Lemma 4.2. Assume hypotheses (∗). Then the following hold.

(a) If T is centric in P , then T is also centric in G1 and G2.

(b) If Op1(G1/T ) 6= 1 or Op2(G2/T ) 6= 1, then T is centric in P .

(c) For i = 1, 2, Gi/T is strictly 2-constrained if and only if Opi(Gi/T ) = 1.

(d) Assume T is centric in P , and let S ≥ P be any finite 2-group such that NS(Pi) =
P for i = 1, 2. Then T is centric in S.

(e) Assume T is centric in P , and let S ≥ P be as in (d). Set Ĝi = OutGi
(T ),

Ŝ = OutS(T ), and Ĝ = 〈Ĝ1, Ĝ2, Ŝ〉 ≤ Out(T ), and assume Ŝ ∈ Syl2(Ĝ). Then

O2(Ĝ) = 1, and Ĝ acts faithfully on T/Fr(T ).

Proof. Let S ≥ P be any finite 2-group as in (d); i.e., such that NS(Pi) = P for i = 1, 2.
Set

P 0 = CP (T ), G0
i = CGi

(T ) (i = 1, 2), and S0 = CS(T ) .

Note that P 0 E P and G0
i E Gi since T is normal in P and in the Gi, and P 0 ∈ Syl2(G0

i )
since P ∈ Syl2(Gi).
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If pi-|G0
i |, then G0

i is a 2-group, and G0
i ≤ O2(Gi) = Pi since G0

i E Gi. If P 0 = G0
1 =

G0
2, then P 0 ≤ P12 and is normal in G1 and G2, so P 0 ≤ T by the maximality of T .

To summarize:

pi-|G0
i | =⇒ P 0 = G0

i ≤ Pi and P 0 = G0
1 = G0

2 =⇒ P 0 ≤ T . (1)

We next claim that when i ∈ {1, 2},
Opi(Gi/T ) 6= 1 or P 0 ≤ T =⇒ pi-|G0

i | . (2)

To see this, assume pi
∣∣|G0

i |, and fix gi ∈ G0
i of order pi. Then [gi, T ] = 1, while

[gi, Pi] 6= 1 by (∗) (CGi
(Pi) ≤ Pi). So by Lemma A.2, gi acts nontrivially on Pi/T ;

i.e., [gi, Pi] � T . Thus 〈T, gi〉 6E Gi, so Opi(Gi/T ) = 1. Also, G0
iT E Gi contains the

normal closure of 〈T, gi〉 in Gi, so G0
iT > 〈T, gi〉, P 0T > T , and thus P 0 � T .

(a) If T is centric in P (i.e., P 0 ≤ T ), then it is centric in the Gi by (2) and (1).

(b) Let Hi E Gi be the subgroup such that Hi/T = Opi(Gi/T ). If H1/T 6= 1 and
H2/T 6= 1, then P 0 ≤ T by (2) and (1) again. So assume H1/T 6= 1 and H2/T = 1.
By (2) and (1), P 0 = G0

1 ≤ P1. Also, P12 E G1 = H1P since

[P12, H1] ≤ [P1, H1] ≤ P1 ∩H1 = T ≤ P12

(recall P1/T is a 2-group and |H1/T | = p1). Since G0
1∩P = P 0 = G0

2∩P and G0
1 ≤ P1,

G0
2 ∩ P2 = P 0 ∩ P2 = G0

1 ∩ P2 = G0
1 ∩ P12 E G1 .

Also, G0
2 ∩ P2 E G2, so G0

2 ∩ P2 ≤ T by the maximality of T , and the induced map
G0

2T/T −−−→ G2/P2
∼= D2p2 is injective. Then Op2(G

0
2T/T ) = 1 since G0

2T/T E G2/T
and Op2(G2/T ) = 1, and hence G0

2T/T = 1 since it is isomorphic to a normal subgroup
of D2p2 . Thus P 0 ≤ G0

2 ≤ T , so T is centric in P .

(c) By assumption, for i = 1, 2, Gi/T is solvable of order 2npi for some n. Hence the
Fitting subgroup F (Gi/T ) = O2(Gi/T )Opi(Gi/T ) is always centric in Gi/T (cf. [G,
Theorem 6.1.3]). So Gi/T is strictly 2-constrained if and only if Opi(Gi/T ) = 1.

(d) Assume T is centric in P . Then S0 E NS(T ) and S0 ∩ P = P 0 ≤ T . Since
NS(Pi) = P by assumption, NS0Pi

(Pi) = P ∩ S0Pi = Pi, so S0Pi = Pi by Lemma A.1.
Thus CS(T ) = S0 ≤ P , so CS(T ) = CP (T ), and T is centric in S since it is centric in
P .

(e) Assume T is centric in P , and hence also centric in G1, G2, and S by (a) and

(d). Assume Ŝ ∈ Syl2(Ĝ), and set Q = O2(Ĝ) ≤ Ŝ for short. For i = 1, 2, Q ∩ Ĝi ≤
O2(Ĝi) = P̂i, and hence

NQP̂i
(P̂i) = NŜ(P̂i) ∩QP̂i = P̂ ∩QP̂i = (P̂ ∩Q)P̂i = P̂i .

By Lemma A.1, this implies QP̂i = P̂i, and hence Q ≤ P̂i.

Thus Q ≤ P̂12. Hence Q = R̂ = OutR(T ) for some unique R ≤ P12 such that R ≥ T ,

and R E Gi (i = 1, 2) since Q = O2(Ĝ) E Ĝ. Thus R = T by definition of T , and
Q = 1.

Since Ĝ ≤ Out(T ), the kernel of the induced Ĝ-action on T/Fr(T ) is a 2-group by

Lemma A.2, and is trivial since O2(Ĝ) = 1. So the action is faithful. �

The next lemma will be needed to handle the cases involving amalgams whose max-
imal normal subgroup is not centric. As usual, when F is a fusion system over a finite
p-group S, a subgroup P ≤ S is strongly closed in F if no element of P is F -conjugate
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to an element of SrP . For example, if F = FS(G) for a finite group G, and H E G,
then S ∩H is strongly closed in F .

Lemma 4.3. Assume hypotheses (∗), and also that T is not centric in P . Set P = P/T

and Gi = Gi/T for short, and let F∗ be the smallest fusion system over P which

contains F
P

(G1) and F
P

(G2). Assume

(a) F∗ = F
P

(Γ) for some finite perfect group Γ for which P ∈ Syl2(Γ);

(b) no nontrivial proper subgroup of P is strongly closed in F∗;

(c) Gi/O
2(Gi) is abelian for i = 1, 2; and

(d) (P ∩ [G1, G1]) ∩ (P ∩ [G2, G2]) ≤ [P , P ].

Then CP (T )·T = P , and CGi
(T )·T = Gi for i = 1, 2. If, in addition, we define

Ui = P ∩O2(Gi) , U = U1U2 , and Z = U ∩ T ,

then Ui E P , U E P , [U, T ] = 1, P = UT , and U ∈ Syl2(Γ̃) for some finite perfect

group Γ̃ such that Z ≤ Z(Γ̃) and Γ̃/Z ∼= Γ.

Proof. In general, for X ≤ Gi or g ∈ Gi (i = 1, 2), we let X = XT/T or g = gT denote

the image of X or g, respectively, in Gi. Write P 0 = CP (T ) and G0
i = CGi

(T ) for short.

Then G0
i E Gi since T E Gi, and hence G0

i E Gi. So P 0 = P ∩G0
i is strongly closed in

F
P

(G1) and F
P

(G2), and hence is strongly closed in F∗ = 〈F
P

(G1),F
P

(G2)〉. Since T

is not centric in P by assumption, P 0 = CP (T ) � T , so P 0 6= 1, and hence P 0 = P by

(b). This in turn implies that G0
i ≥ P for i = 1, 2, and hence G0

i = Gi since Gi is the

normal closure of P (recall that Gi/P i
∼= D2pi). We have now shown that

CP (T )·T = P 0T = P and CGi
(T )·T = G0

iT = Gi (i = 1, 2) .

In particular, O2(Gi) = O2(G0
i ), and hence Ui = P ∩O2(G0

i ) E P 0. Set

U•i = P ∩ [G0
i , G

0
i ] E P 0 , U• = U•1U

•
2 E P 0 , and Z• = U• ∩ T .

Then Ui ≤ U•i (see Lemma A.4), and hence U ≤ U• and Z ≤ Z•.

Now, Ui = P ∩O2(Gi) = P ∩ [Gi, Gi] = U•i , where the first and third equalities hold
since P ≥ T , and the second holds by (c) and Lemma A.4. Hence

U = U1U2 =
〈
P ∩ [G1, G1], P ∩ [G2, G2]

〉
= foc(F∗) = foc(F

P
(Γ)) = P ,

where the third and fifth equalities hold by the focal subgroup theorem (cf. [G, Theorem

7.3.4]) applied to G1, G2, and Γ (and since Γ is perfect by (a)). Thus UT = P . So
after taking intersections with P 0 = CP (T ) and recalling that U = U1U2 ≤ P 0, we get
UZ(T ) = P 0 and hence

[U,U ] = [P 0, P 0] .

Assume u = u1u2 ∈ T ∩ U• = Z(T ) ∩ U•, where ui ∈ U•i . Then u = 1 and ui ∈
P ∩ [Gi, Gi], so u1 = u−1

2 ∈ [P , P ] by (d). Thus ui ∈ P 0 ∩ [P 0T, P 0T ]T = [P 0, P 0]Z(T )
(recall that [P 0, T ] = 1). Write ui = giti where gi ∈ [P 0, P 0] ≤ U•i and ti ∈ Z(T )∩U•i .
Since Z(T )∩U•i = Z(T )∩ [G0

i , G
0
i ] = Z(T )∩ [P 0, P 0], the last equality by Proposition

A.5, we see that g1g2, t1, and t2 all lie in Z(T ) ∩ [P 0, P 0]. This proves that

Z• = T ∩ U• = Z(T ) ∩ [P 0, P 0] = Z(T ) ∩ [U,U ] ≤ T ∩ U = Z .
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Hence Z = Z•, since we already saw that Z ≤ Z•.

Let τ ∈ H2(P ;Z(T )) and τi ∈ H2(Gi;Z(T )) be the classes of the central extensions

P 0 and G0
i , respectively. Thus τ = τi|P , so τ is stable with respect to fusion in Gi, and

hence is stable with respect to the fusion system F∗. Since F∗ = F
P

(Γ) by (a), τ is
the restriction of a unique element τΓ ∈ H2(Γ;Z(T )), where Γ acts trivially on Z(T )

(cf. [CE, Theorem XII.10.1]). Let Γ̂ be the corresponding central extension of Z(T )

by Γ. Thus P 0 ∈ Syl2(Γ̂).

Set Γ̃ = [Γ̂, Γ̂]. Since Γ̂/Z(T ) ∼= Γ is perfect, Γ̂ = Γ̃·Z(T ) where [Γ̃, Z(T )] = 1, so

Γ̃ = [Γ̂, Γ̂] = [Γ̃, Γ̃]. Thus Γ̃ is perfect. Since P 0 ∈ Syl2(Γ̂), we have

Z = Z• = Z(T ) ∩ [P 0, P 0] = Z(T ) ∩ [Γ̂, Γ̂] = Z(T ) ∩ Γ̃ ,

the third equality by Proposition A.5. Recall that P 0 = UZ(T ). Hence P 0/U ∼=
Z(T )/Z ∼= Γ/Γ̃, and so U ∈ Syl2(Γ̃). �

We recall the terminology which will be used in the statements of our main theorems.
By an amalgam is meant here a triple of groups G = (G1 > H < G2). A (proper)
completion of G is a group G, together with injections ρi : Gi −−−→ G, such that ρ1|H =
ρ2|H and G = 〈ρ1(G1), ρ2(G2)〉. The universal completion is the amalgamated free
product G1∗

H
G2. When H has prime index in G1 and in G2, then the amalgam G is

primitive if no nontrivial subgroup of H is normal in G1 and in G2. An isomorphism
of amalgams from (G1 > H < G2) to (G∗1 > H∗ < G∗2) is a triple of isomorphisms

α : H
∼=−−−→ H∗ and βi : Gi

∼=−−−→ G∗i such that β1|H = α = β2|H .

Lemma 4.4. For each n = 1, . . . , 6, let G1 = G
(n)
1 , G2 = G

(n)
2 , and Γ = Γ(n)

be the groups listed in case (n) of Table 4.1. Then there is a primitive amalgam

(G1 > S < G2) with completion Γ, where S = S(n) ∈ Syl2(Gi) and [Gi:S] = 3 for
i = 1, 2, and this amalgam is uniquely determined up to isomorphism. Set F (n) =〈
F
S(n)(G

(n)
1 ),F

S(n)(G
(n)
2 )
〉
.

(a) For each n = 1, 3, 5, Γ(n) can be identified with a subgroup of index two in Γ(n+1)

in such a way that the amalgam
(
G

(n)
1 > S(n) < G

(n)
2

)
is contained in

(
G

(n+1)
1 >

S(n+1) < G
(n+1)
2

)
with index two, and the normal closure of S(n) in G

(n+1)
i equals

G
(n)
i for i = 1, 2.

(b) For each 1 ≤ n ≤ 6, if Q ≤ S(n) is strongly closed in F (n), then either Q = 1 or

Q = S(n), or n is even and Q = S(n−1).

(c) For n = 1, 3, 5, S(n) ∈ Syl2(Γ(n)) and F (n) = F
S(n)(Γ

(n)). (This also holds when
n = 2, 4, 6, but we will not need that.)

Proof. These are the amalgams denoted Gi and G1
i for i = 3, 4, 5 in [Gd2, Table 1]. In

all but the first case, Goldschmidt’s choice of completion is the same as the one listed
here in Table 4.1. (Note that Aut(U3(3)) ∼= G2(2).) In case (1), Goldschmidt lists
L3(2) as a completion, but A6 is easily seen to be a completion for the same amalgam.

The uniqueness of the amalgams (for given Gi and Γ) follows from the classification in
[Gd2, Theorem A].
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(G1, G2) ∼= Γ U ∼= |Z| [S:UT ]

(1) (Σ4,Σ4) A6

D8 1 1

Q16 2 1

(2) (C2 × Σ4, C2 × Σ4) Σ6

D8 1 2

Q16 2 2

(3)
(
(Q8 ×C2 C4).Σ3, C

2
4 o Σ3

)
U3(3) C4 o C2 1 1

(4)
(
(Q8 ×C2 Q8)o Σ3, C

2
4 oD12

)
1 Aut(U3(3)) C4 o C2 1 2

(5)
(
(Q8 ×C2 Q8)o Σ3, C

2
4 oD12

)1

M12

Syl2(M12) 1 1

Syl2(2M12) 2 1

(6)

(
(Q8 ×C2 Q8).D12,

Aut(M12)
Syl2(M12) 1 2

C2
4 o ((C2

2 × C3)o C2)
)

Syl2(2M12) 2 2

Table 4.1

(a) This follows from Goldschmidt’s construction of the amalgams [Gd2, 3.5, 3.7, 3.8],
and also by a direct inspection of the groups in question.

(c) In each case, F (n) ⊆ F
S
(Γ) since Γ is a proper completion of

(
G1 > S < G2

)
. To

prove the opposite inclusion, it suffices to show that

(i) P 1 = O2(G1) and P 2 = O2(G2) are the only (possible) F
S
(Γ)-essential subgroups

of S;

(ii) Out
Gi

(P i) ∼= OutΓ(P i) for i = 1, 2; and

(iii) Aut(S) is a 2-group.

Point (i) is clear when n = 1 (the P i
∼= C2

2 are the only subgroups of S ∼= D8 whose
automorphism group is not a 2-group), and was shown in Propositions 3.1 and 3.2 when
n = 3 and 5, respectively. Point (ii) is shown in [A2, Lemma 5.3(2)] when n = 5 and

i = 1, and follows in all of the other cases since Aut(P i)/O2(Aut(P i)) ∼= Σ3 by Lemma
A.2. Point (iii) follows from Corollary A.3(b,a) when n = 1, 3, and from Proposition
3.2 when n = 5.

(b) When n = 1, 3, 5, it suffices by (c) to show that S(n) contains no proper nontrivial
subgroup which is strongly closed with respect to Γ(n). This was shown by Foote
in [Ft, Corollary 1]. Note that while Foote’s theorem depends on the classification of
finite simple groups, his proofs that these particular groups do not have strongly closed
subgroups does not (see [Ft, 2.8, 2.14, and p. 601]).

When n is even, this follows from point (a), point (b) for n−1, and the observation

that no central subgroup of order two in S(n) is strongly closed. �

Note that the last three columns in Table 4.1 were not used in Lemma 4.4. Their
significance will become clear in the statement of the following theorem.

1The groups G1 in cases (4) and (5) are not isomorphic. See [Gd2, Table 1] for more details.
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Theorem 4.5. Let F be a saturated fusion system over a finite 2-group S, with distinct
F-essential subgroups P1 and P2 of index two in S. Then there are finite groups G1 >
S < G2 such that for i = 1, 2, Pi E Gi, Gi/Pi ∼= OutGi

(Pi) ∼= D2pi for some odd prime
pi, and AutGi

(Pi) ≤ AutF(Pi). Let T ≤ P1 ∩P2 be the largest subgroup normal in both
G1 and G2. Then these groups satisfy hypotheses (∗) with P = S.

If T is not centric in S, then p1 = p2 = 3, and (G1/T > S/T < G2/T ) is one of the
amalgams listed in Table 4.1. Set

Ui = S ∩O2(Gi) (i = 1, 2), U = U1U2, and Z = U ∩ T.

Then U E S, [U, T ] = 1; and Gi = Gi/T , U , Z, and [S:UT ] are as listed in Table 4.1.

Proof. Set P = S. By Lemma 4.1(a), there are groups G1 > P < G2 as described in
that lemma, such that hypothesis (∗) is satisfied. This proves the assertions in the first

paragraph. Let T be as in (∗), and set Gi = Gi/T and S = S/T .

Assume T is not centric in S. By Lemma 4.2(b,c), Opi(Gi) = 1, and Gi is strictly 2-

constrained, for i = 1, 2. So by a theorem of Fan [Fn, Theorem 1], either (G1 > S < G2)
is one of the amalgams listed by Goldschmidt in [Gd2, Table 1], or it is the 2F4(2)′-
or 2F4(2)-amalgam (points (2) and (3) in [Fn, Theorem 1]). It cannot be either of the
last two, since that would require that Gi/O2(Gi) ∼= Sz(2) ∼= C5 o C4 for i = 1 or 2
(see, e.g., [Wi, Theorem 1], or the discussion in [Car, § 8.5] of the Levi decomposition
of parabolic subgroups of groups of Lie type). Hence it is one of the six amalgams
listed in Table 4.1, since the others listed by Goldschmidt involve groups which are not
strictly 2-constrained.

Assume we are in case (n) in Table 4.1. When n is odd, we apply Lemma 4.3.
Conditions (a) and (b) in the lemma were shown in Lemma 4.4(c,b), respectively, and
(c) and (d) are easily checked case-by-case. So by that lemma, [U, T ] = 1, UT = S, and

U ∈ Syl2(Γ̃) for some finite perfect group Γ̃ such that Z ≤ Z(Γ̃) and Γ̃/Z ∼= Γ. Here,
Γ ∼= A6, U3(3), or M12, when n = 1, 3, or 5. These groups have Schur multiplier C6,
1, and C2, respectively (see [A1, (33.15)], [Gr, Theorem 2], and [Mz]). Hence |Z| ≤ 2,
with equality possible only when n = 1 or 5.

When n is even, then by Lemma 4.4(a), there are subgroups G̃i < Gi and S̃ < S of

index two, all containing T , such that S̃ = S∩G̃i, and such that
(
G̃1/T > S̃/T < G̃2/T

)
is an amalgam of type (n− 1). Hence Ui = S ∩O2(Gi) = S̃ ∩O2(G̃i), and so U = U1U2

plays the same role for the new amalgam as for the original one. Also, (∗) holds for(
G̃1 > S̃ < G̃2

)
, and T is the largest subgroup normal in G̃1 and G̃2 since the quotient

amalgam is primitive. If T were centric in S̃, then it would be centric in the G̃i by
Lemma 4.2(a), and since T is not centric in S, T ·CS(T ) = T ·CGi

(T ) > T would be a
strictly larger subgroup normal in the Gi. Since this contradicts the choice of T , we

conclude that T is not centric in S̃, and hence that the result follows by the argument

in the last paragraph applied to (G̃1 > S̃ < G̃2). �

Theorem 4.5 will be used when looking for pairs of essential subgroups of index two
in S. We next turn to the problem of identifying essential subgroups which have index
two in their normalizer but are not normal. The idea is to apply the classification of
amalgams by Goldschmidt and Fan to a pair of essential subgroups which are conjugate
in S, and have index two in their common normalizer.

Theorem 4.6. Let F be a saturated fusion system over a finite 2-group S. Let P1 ≤ S
be an F-essential subgroup which is not normal in S, and such that |NS(P1)/P1| = 2.
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Set P = NS(P1) < S. Choose x ∈ NS(P )rP such that x2 ∈ P , and set P2 = xP1x
−1.

Then there are finite groups G1 > P < G2, an odd prime p, and an isomorphism

β : G1

∼=−−−→ G2 such that β|P = cx ∈ AutS(P ), and for i = 1, 2, OutGi
(Pi) ≤ OutF(Pi),

Pi E Gi, and OutGi
(Pi) ∼= Gi/Pi ∼= D2p. Let T ≤ P1 ∩P2 be the largest subgroup which

is normal in G1 and in G2.

(a) If T is not centric in S, then p = 3. Set Ui = P ∩ O2(Gi) E P , U = U1U2, and
Z = T ∩ U . Set W = Fr(U), S∗ = NS(W ), and let ∆ be the normal closure of U
in S∗. Then the following hold.

(i) [T, U ] = 1; and either Ui ∼= C2
2 , U ∼= D8, and Z = 1; or Ui ∼= Q8, U ∼= Q16,

and Z = Z(U).

(ii) There is a subgroup T • E P such that T ≤ T • < P1 ∩ P2, [T •:T ] ≤ 2;

(ii.1) Pi = T •Ui and T • ∩ U = T ∩ U = Z; and

(ii.2) [S∗:T
•∆] = 2, CS∗(U1) = T •U1 if U ∼= D8, CS∗(U1) = T • if U ∼= Q16.

Also, Gi/T , |Z|, Ui, U , ∆, [T •:T ], and [T •, U ] are as described in Table 4.2.

(b) If T is centric in P or (equivalently) centric in S, then [S, S] is nonabelian,
O2(OutF(T )) = 1, and OutF(T ) acts faithfully on T/Fr(T ).

(c) In the situation of (a), if [S, S] is abelian, or if T •/Z is abelian, or more generally
if T • contains no quaternion subgroup of order 16 and T •/Z contains no dihedral
subgroup of order 8, then S∗ = S.

Gi/T ∼= |Z| Ui ∼= U ∼= ∆ ∼= |T •/T | [T •, U ]

Σ4 1 C2
2 D8 D2n , n ≥ 3 1 1

Σ4 2 Q8 Q16 Q2n , n ≥ 4 1 1

Σ4 × C2 1 C2
2 D8 D2n , n ≥ 3 2 1

Σ4 × C2 2 Q8 Q16 Q2n , n ≥ 4 2 Z

Table 4.2

Proof. By Lemma 4.1(b), there are finite groups G1 > P < G2 such that Pi E Gi,
Gi/Pi ∼= D2p for some odd prime p, OutS(Pi) ≤ OutGi

(Pi) ≤ OutF(Pi), and β|P = cx|P
for some β ∈ Iso(G1, G2). Thus (∗) holds with p1 = p2 = p. Also, x ∈ NS(T ), where
T ≤ P1 ∩ P2 is the largest subgroup normal in G1 and G2.

(a) If T is not centric in S, then it is not centric in P by Lemma 4.2(d). Hence
the Gi/T are strictly 2-constrained by Lemma 4.2(b,c). By [Fn, Theorem 1], they are
among the groups listed in [Gd2, Table 1], and hence are isomorphic to Σ4 or C2 ×Σ4

(and p = 3).

Case 1: Gi/T ∼= Σ4. We apply Lemma 4.3 with Γ = A6 (see Table 4.1).
Conditions (a) and (b) follow from Lemma 4.4(c,b), and conditions (c) and (d) are
easily checked. Recall that Ui = P ∩ O2(Gi), U = U1U2, and Z = T ∩ U . By Lemma

4.3, [T, U ] = 1 and P = UT ; and U ∈ Syl2(Γ̃), where Γ̃ is a finite perfect group such that

Z ≤ Z(Γ̃) and Γ̃/Z ∼= A6. Thus Γ̃ is isomorphic to A6
∼= PSL2(9) or its 2-fold central

extension SL2(9) (cf. [A1, 33.15]), and U ∼= D8 or Q16. The image of Ui in P/T ∼= U/Z
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is a Sylow 2-subgroup of O2(Gi/T ) ∼= A4, so Pi/T = O2(Gi/T ) = UiT/T ∼= C2
2 , and

thus Pi = UiT . Since each nontrivial subgroup of Q16 contains its center,

either U ∼= D8, Ui ∼= C2
2 , and Z = 1; or U ∼= Q16, Ui ∼= Q8, and |Z| = 2.

Set T • = T . We have now proven (i) and (ii.1) in this case, and proven the information
on the first two lines in Table 4.2, except for the facts involving ∆.

Case 2: Gi/T ∼= C2 × Σ4. By Lemma 4.4(a), there are subgroups G̃i < Gi,

P̃i < Pi, and P̃ < P of index two, all containing T and satisfying (∗), such that

G̃1 > P̃ < G̃2, P̃i = O2(G̃i), and
(
G̃1/T > P̃/T < G̃2/T

)
is an amalgam of the type

handled in Case 1. Also, Ui = O2(Gi) ∩ P = O2(G̃i) ∩ P̃i (i.e., Ui and U play the

same role for the smaller amalgam as for the original one), and T is not centric in P̃
by a similar argument to the one used at the end of the proof of Theorem 4.5. So the

conclusions in Case 1 hold after replacing P and Pi by P̃ and P̃i. In particular, (i)
holds.

Let T •/T ≤ P1/T ∼= C3
2 be the subgroup of order two which is fixed by the

conjugation action of G1/P1
∼= Σ3. Then P1/T = (T •/T )·(TU1/T ) and P2/T =

(T •/T )·(TU2/T ) (but note that T •/T is not fixed by the action of AutG2(P2) on P2/T ).
So P1 = T •U1, P2 = T •U2, and T • ∩ U = T ∩ U = Z. This finishes the proof of (ii.1).

Now, [T •, U ] ≤ T •∩U = Z since T • and U are both normal in P . Hence [T •, U ] = 1
if |Z| = 1. Now assume |Z| = 2, U ∼= Q16, and W = Fr(U) ∼= C4, and fix g ∈ T •rT .
Since Z is central in U , [g,−] is a homomorphism from U to Z, and so [g,W ] = 1.
Also, gT ∈ Z(G1/T ) by definition of T •. Choose a ∈ G1 such that aT has order
three in G1/T and W 6= aWa−1. Then aga−1 ∈ gT , aWa−1 ≤ P ∩ O2(G1) = U1,
and [g, aWa−1] = [aga−1, aWa−1] = 1 since [T, U ] = 1 by (i) and [g,W ] = 1. Since
U1 = 〈W,aWa−1〉, we conclude that [T •, U1] = [g, U1] = 1.

By a similar argument, there is g′ ∈ P2rT such that g′T ∈ P2/T ∼= C3
2 is the

involution fixed by the action of G2/P2
∼= Σ3, and such that [g′, U2] = 1. Then gT

and g′T are both in the center of P/T ∼= C2 × D8, not in [P/T, P/T ] = WT/T , and
gT 6= g′T since otherwise 〈T, g〉 would be normal in G1 and in G2 (contradicting the
maximality of T ). So g′ ∈ gwT for some w ∈ WrZ. Thus [gw, U2] = 1, and since
[w,U2] = Z (w has order four in U2

∼= Q8), [T •, U ] = [g, U2] = Z.

This finishes the proof of the information in Table 4.2, except for the facts involving
∆.

Both cases. Suppose U ∼= D8. Then W = Z(U) has order two, so W ≤ Z(S∗).
Also, T •U = P = NS(T •U1) = NS∗(T

•U1) since P1 = T •U1; and x ∈ NS∗(U)rT •U .
Hence the hypotheses of Lemma B.4 are satisfied with U , T •, and S∗ in the roles of ∆0,
T , and S. So by that lemma, ∆ E S∗ is dihedral, T • ∩∆ = 1, [S∗:T

•∆] = 2, and all
noncentral involutions in ∆ are S∗-conjugate. Fix y ∈ U1rZ(U). For g ∈ S∗, cg(y) is
∆-conjugate to y if g ∈ T •∆ (recall [T •, U1] = 1), so cg(y) lies in the other ∆-conjugacy
class of noncentral involutions if g /∈ T •∆. Thus CS∗(U1) = CT •∆(U1) = T •U1.

If U ∼= Q16, then by Lemma B.4 applied to U/Z ≤ S∗/Z, ∆/Z E S∗/Z is dihedral,
T • ∩∆ = Z, [S∗:T

•∆] = 2, and all noncentral involutions in ∆/Z are S∗/Z-conjugate.
Since all involutions in ∆/Z are S∗/Z-conjugate to elements of U1/Z where U1

∼= Q8,
there are no involutions in ∆rZ, and ∆ is quaternion. Since [T •, U1] = 1, and since
the non-normal subgroups of order four in ∆ are S∗-conjugate, a similar argument to
that used in the last paragraph (applied with y ∈ U1rFr(U)) shows that CS∗(U1) =
CT •∆(U1) = T •.



20 KASPER K. S. ANDERSEN, BOB OLIVER, AND JOANA VENTURA

This proves (ii.2), and the description of ∆ in Table 4.2.

(c) Assume S > S∗, so NS(S∗) > S∗ by Lemma A.1. Fix y ∈ NS(S∗)rS∗ such that
y2 ∈ S∗. Set ∆∗ = y∆y−1, Z∗ = yZy−1, W ∗ = yWy−1, and N = ∆ ∩ ∆∗. The
subgroups ∆ and ∆∗ are both normal in S∗, so N E S∗ is normal in each of them,
and [∆,∆∗] ≤ N . If Z = 1 (if ∆ is dihedral), then W ∗ 6= W , W ∗ ≤ Z(S∗) (since
W ≤ Z(S∗)) and hence W ∗ � ∆, and N = 1 since each nontrivial normal subgroup
of ∆∗ contains W ∗. Thus [∆∗,∆] = 1, ∆∗ ≤ CS∗(∆) ≤ T •W , and thus T • ∼= T •W/W
contains a dihedral subgroup of order 8. Also, since the commutator subgroup of 〈∆, y〉
contains all elements of the form g−1(ygy−1) for g ∈ ∆, it surjects onto ∆ under the
projection from ∆·∆∗, and thus is nonabelian. So [S, S] is nonabelian in this case.

If |Z| = 2 (if ∆ is quaternion) and Z∗ 6= Z, then a similar argument shows that
∆∗ ≤ T • and hence T • contains a quaternion subgroup of order 16. If Z∗ = Z, we
apply the argument in the last paragraph to the conjugation action of y on S∗/Z, where
y(W/Z)y−1 6= (W/Z) by assumption. Thus [∆∗,∆] ≤ Z, so ∆∗ ≤ CS∗(U1)·W = T •W
since Ker

[
Aut(∆)→ Aut(∆/Z)

] ∼= C2
2 is generated by AutW (∆) and an automorphism

which is the identity on U1. So in this case, T •W/W ∼= T •/Z contains a dihedral
subgroup of order 8. In both cases, [S, S] is nonabelian by the argument used in the
last paragraph.

(b) If T is centric in P , then it is centric in S by Lemma 4.2(d), while the converse
is immediate. Assume both of these hold.

If T is not fully normalized, then there is some ϕ ∈ HomF(NS(T ), S) such that ϕ(T )
is fully normalized (cf. [AKO, Lemma I.2.6(c)]). Upon replacing T by ϕ(T ), Pi by
ϕ(Pi), P by ϕ(P ), etc., we can assume T is fully normalized (and (∗) still holds and T
is still centric in P ).

Set Ŝ = OutS(T ), Ĝi = OutGi
(T ), and similarly for subgroups of S, and set Ĝ =

〈Ĝ1, Ĝ2, Ŝ〉 ≤ OutF(T ). Then Ŝ ∈ Syl2(Ĝ) by the Sylow axiom. Set V = T/Fr(T ),

written additively, and regarded as an F2[Out(T )]-module. By Lemma 4.2(e), O2(Ĝ) =

1 and Ĝ acts faithfully on V . Hence O2(OutF(T )) = 1, and by Lemma A.2, OutF(T )
acts faithfully on V .

It remains to show that [S, S] is nonabelian. Set V0 = [Ŝ, V ]. Since every element of

Ŝ lifts to an element of S, and every element of V0 lifts to an element of [S, S], it will

suffice to show that [Ŝ, Ŝ] acts nontrivially on V0. Assume otherwise: assume [Ŝ, Ŝ] acts

trivially on V0. If g ∈ [Ŝ, Ŝ], then for each v ∈ V , g acts trivially on [g, v] = gv−v ∈ V0,

so (g2 − 1)v = (g − 1)2v = 0, and g2v = v. Thus g2 = 1 since Ŝ acts faithfully on V .

It follows that [Ŝ, Ŝ] is elementary abelian.

If Ĝ1
∼= Ĝ2 are strictly 2-constrained, then by the argument used in the second

paragraph in the proof of Theorem 4.5,
(
Ĝ1 > P̂ < Ĝ2

)
must be one of the amalgams

listed in Table 4.1. Hence P̂ ∼= D8 or D8 × C2 (the only cases in the table with

G1
∼= G2), and P̂i = O2(Ĝi) ∼= C2

2 or C3
2 , respectively. Note that P̂12 = Z(P̂ ) in

either case. Choose x1 ∈ P̂1rP̂12. Then x1 is Ŝ-conjugate to some x2 ∈ P̂2rP̂12, and

x1x
−1
2 ∈ [Ŝ, Ŝ] has order four. So this case is impossible.

Thus Ĝ1
∼= Ĝ2 are not strictly 2-constrained. By Lemma 4.2(c), Op(Ĝi) 6= 1 for

i = 1, 2. Thus [P̂i, Op(Ĝi)] = 1 since both are normal in Ĝi (and have relatively prime

order), so P̂12 E Ĝi for i = 1, 2. Hence P12 E Gi, and P12 = T by definition of T . In

other words, P̂12 = 1, P̂i ∼= C2, and so P̂ ∼= C2
2 .
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Let ai ∈ P̂i ∼= C2 be the generator, and let g ∈ Op(Ĝ1) be an element of order

p. Thus Ĝ1 = 〈a1, a2, g〉 ∼= D4p, 〈g, a2〉 ∼= D2p, and [g, a1] = 1. Set t = [cx] ∈ Ŝ
(recall that x was fixed in the statement of the theorem). Then tait

−1 = a3−i and

t2 ∈ P̂ , so ta1a2 = a1a2t. By assumption, and since a1a2 ∈ [Ŝ, Ŝ], [a1a2, V0] = 0 (recall

V0 = [Ŝ, V ]).

Set W = [g, V ]; W 6= 0 since Ĝ1 acts faithfully on V . We claim that

CW (a2) = [a2,W ] and [a1,W ] = 0 . (1)

The first statement holds in general for faithful F2[D2p]-modules: CW (a2) ≥ [a2,W ],
[a2,W ] = (Id− a2)(W ) ∼= W/CW (a2), and CW (a2)∩CW (ga2) = CW (〈g, a2〉) = 0 imply
dim(CW (a2)) = 1

2
dim(W ) and hence CW (a2) = [a2,W ]. To prove the second, set

W0 = [a1,W ]. We just showed that CW0(a2) = [a2,W0], and [a2,W0] = [a1a2,W0] ≤[
a1a2, V0

]
= 0. Thus a2 acts trivially on W0, and hence W0 = 0.

Since W = [g, V ] is a Ĝ1-invariant direct summand of V , W ∩ [a1, V ] = [a1,W ] = 0
by (1). So if v ∈ W ∩ t(W ), then a1(v) = v and v ∈ Ct(W )(a1) = [a1, t(W )] by (1)
again, and so v ∈ W ∩ [a1, V ] = 0. Thus W ∩ t(W ) = 0. So if we choose any w ∈ W
such that a2(w) 6= w, then t(w)− w ∈ [Ŝ, V ] = V0, and hence

a1a2(t(w)− w) = t(w)− w =⇒ w − a1a2(w) = t(w)− ta1a2(w) ∈ W ∩ t(W ) = 0

(recall that ta1a2 = a1a2t). Thus a1(w) 6= a1a2(w) = w, which contradicts (1). �

5. Some applications

We finish the paper with some applications of Theorems 4.5 and 4.6. Following the
terminology of [G, § 16.7], we say that a 2-group S is wreathed if S ∼= C2m oC2 for some
m ≥ 2. These groups arise as Sylow 2-subgroups of GL2(q) and (P)SL3(q) when q ≡ 1
(mod 4).

Proposition 5.1. Fix a finite 2-group S containing a normal subgroup ∆ E S which
is dihedral or quaternion of order at least 8. Assume

(a) for some dihedral or quaternion subgroup ∆0 ≤ ∆ of order 8, CS(∆0) is abelian;
and

(b) two of the three subgroups of index two in ∆ are S-conjugate.

Then either S is dihedral, semidihedral, or wreathed, or there is no reduced fusion
system over S.

Proof. We first fix some notation for elements and subgroups of S. Let A E ∆ be the
unique cyclic subgroup of index two in ∆ which is normal in S (A is characteristic in ∆
unless ∆ ∼= Q8). Set Z = Z(∆), and let W ≤ A be the subgroup of order four. Fix a
generator a ∈ A, and fix b ∈ ∆0rA. Thus ∆ = 〈a, b〉 and ∆0 = 〈W, b〉. Set A0 = 〈a2〉,
and set T = CS(∆0). To summarize these definitions for later reference,

Z
=Z(∆)

≤ A0
=〈a2〉

< A
=〈a〉

< ∆
=〈a,b〉

E S , W∼=C4

≤ A , ∆0 = 〈W, b〉, T = CS(∆0).

By (a) and (b), we are in the situation of Lemma B.3. In particular,

[S:T∆] = 2 and ∀ g ∈ S, gbg−1 = ajb where

{
j is even if g ∈ T∆

j is odd if g /∈ T∆
(1)
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by Lemma B.3(b). Note also that

∀ g ∈ S, gag−1 = ai where

{
i ∈ 4Z+ 1 if g ∈ CS(W )

i ∈ 4Z− 1 if g /∈ CS(W ) .
(2)

We claim that the following hold.

TA0 E S, S/TA0
∼= D8, and Z(S/TA0) = TA/TA0 . (3)

[S, S] is abelian, and [S, S] = 〈A, [y, T ]〉 for each y ∈ SrT∆ . (4)

[S, S] = A =⇒ ∀ g ∈ SrCS(W ), CTA(g)·A = TA and |CTA(g)| = |T |. (5)

Point (3) and the first statement in (4) are shown in Lemma B.3(c,d). Since [S, S] ≥
A by Lemma B.3(a), S = 〈∆, T, y〉 for y ∈ SrT∆, and T is abelian, [S, S] =
〈[∆, S], [y, T ]〉 = 〈A, [y, T ]〉. This proves the last statement in (4).

To see (5), fix g ∈ SrCS(W ) and t ∈ T . By (2), gag−1 = a4k−1 for some k ∈ Z.
Also, t−1gt = ajg for some j since [S, S] = A, and j is even (aj ∈ A0) since TA0 E S
by (3). Choose i such that i(1− 2k) ≡ (j/2) (mod |A|). Then aiga−i = ajg = t−1gt, so
tai ∈ CTA(g). This proves the first statement in (5), and the second then follows since
CTA(g) ∩ A = CA(g) = Z = T ∩ A.

Set S = S/TA0 (TA0 E S by (3)). We write g = gTA0 ∈ S for g ∈ S, and

Q = QTA0/TA0 for Q ≤ S: the images of g and Q in S.

Fix x ∈ SrT∆. Upon replacing x by bx if necessary, we can assume x ∈ CS(W )rT∆.
Also, xbx−1 = ajb for some odd j by (1), and upon replacing x by an appropriate ele-
ment of xA, we can assume xbx−1 = ab. By (2), xax−1 = ai for some i ∈ 1 + 4Z. Then

x2bx−2 = ai+1b where i+ 1 ∈ 2 + 4Z; x2 ∈ TA since S/TA ∼= S/Z(S) ∼= C2
2 by (3); and

hence x2 ∈ TA0a. To summarize,

S = 〈TA, b, x〉, CS(W ) = 〈TA, x〉, xbx−1 = ab, x2 = a ∈ S. (6)

Assume F is a reduced fusion system over S, and let E be the set of F -essential
subgroups of S. Define

b0 = x, b1 = b, b2 = bx, Hi = 〈TA, bi〉, Ei = {P ∈ E |P ≤ Hi}
for i = 0, 1, 2. Thus H0 = CS(W ) and H1 = T∆. We will prove the following
statements.

E = E0 ∪ E1 ∪ E2, and P ∈ Ei =⇒ the normal closure of P is Hi. (7)

E0 6= ∅ =⇒ S is wreathed. (8)

E2 6= ∅ =⇒ [S, S] = A, ∃ b• ∈ TAb2 s.t. 〈A, b•〉 dihedral or quaternion. (9)

E0 = ∅ =⇒ E1 6= ∅, E2 6= ∅, and S is dihedral or semidihedral. (10)

The proposition then follows from (8) and (10).

Points (7), (8), and (9) will be shown in Steps 1 and 2: essential subgroups of index
two in S will be handled in Step 1, and the others in Step 2. It is in Step 2 that
Theorem 4.6 plays a crucial role. Point (10) will be shown in Step 3.

Step 1: Fix P ∈ E such that [S:P ] = 2. Thus P ≥ [S, S] ≥ A.

We consider seven cases. In the first four, we show P cannot be F -essential using
Lemma 1.5 applied with Θ one of the following characteristic subgroups Θi ≤ P :

Θ1 = Z(P ) , Θ2 =
〈
g ∈ P

∣∣ [P :CP (g)] ≤ 2
〉
, or Θ3 =

〈
β(A)

∣∣ β ∈ Aut(P )
〉
.
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By Lemma 1.5, P /∈ E if for some i = 1, 2, 3 and some g ∈ SrP , [g, P ] ≤ ΘiFr(P ) and
[g,Θi] ≤ Fr(P ).

Since P ≥ A, either P � T , or P is one of the Hi. In the first two cases below,
P � T , and we set T0 = P ∩ T , choose t• ∈ TrT0 ⊆ SrP , and let t1, t2 ∈ {1, t•} be

such that P = 〈T0A, bt1, xt2〉. Since [xt2, bt1] = [x, b] = a, [xt2, bt1] ∈ [S, S] ∩ TA0a.

• P � T , [t•, P ] ≤ AZ(S), and Θ = Θ1 = Z(P ). Then P = S, so Z(P ) ≤
Z(S) = TA by (3), and Z(P ) ≤ TA. Thus [t•, Z(P )] ≤ [t•, TA] ≤ A0 ≤ Fr(P ).
Also, [t•, P ] ≤ [t•, S] ≤ TA0 since t• ∈ TA0 E S by (3). So by assumption
(and since Z(S) ≤ CS(∆0) = T ), [t•, P ] ≤ TA0∩AZ(S) = Z(S)A0 ≤ Θ1Fr(P ).
Thus P /∈ E .

• P � T , [t•, P ] � AZ(S), and Θ = Θ2. Then [t•, P ] ≤ TA0 ∩ [S, S] since
t• ∈ TA0 E S. Since [t•, T∆] = [t•, A] ≤ A0 (recall 〈T, b〉 is abelian) and
[t•, P ] � AZ(S), [t•, x] = [t•, xt2] = sa2i for some s ∈ T0rAZ(S). Then
[s, A] = 1 since sa2i ∈ [S, S], A ≤ [S, S], and [S, S] is abelian by (4). Hence
[s, T∆] = 1, and [s, g] 6= 1 for g ∈ SrT∆ since s /∈ Z(S).

Now, s ∈ Θ since CP (s) = T∆ ∩ P . Also, [t•, T∆] ≤ A0 E S, so [t•, P ] ≤
〈A0, [t

•, x]〉 = 〈A0, s〉 ≤ ΘFr(P ). For all g ∈ PrT∆, CP (g) ≤ 〈T0A, g〉 since
C
S
(g) = 〈a, g〉, and this inclusion is strict since [s, g] 6= 1. Thus g /∈ Θ. So

Θ ≤ T∆, and hence [t•,Θ] ≤ [t•, T∆] ≤ A0 ≤ Fr(P ). Thus P /∈ E .

• P ∈ {H0,H2} and Θ = Θ3 ≤ TA. Then b ∈ SrP , [b, P ] ≤ A ≤ Θ since
bA ∈ Z(S/A), and [b,Θ] ≤ [b, TA] ≤ A0 ≤ Fr(P ). Thus P /∈ E .

• P = H1, [S, S] = A, and Θ = Θ3 ≤ TA. Then x ∈ SrP and [x, P ] ≤ [S, S] =

A ≤ Θ. Also, since TA = Z(S) and hence [S, TA] ≤ TA0, [x,Θ] ≤ [S, TA] ≤
A ∩ TA0 = A0 ≤ Fr(P ). Thus P /∈ E .

• P = H1, [S, S] > A, and Θ3 ≤ TA. We will see later that we don’t need to
consider this case separately.

• P = H0, and Θ3 � TA. Since Θ3 � TA, there is β ∈ Aut(P ) such that
β(A) � TA. Set u = β(a) ∈ PrTA = TAx and U = 〈u〉 = β(A) E P . Then
u ∈ {x, ax}, so u2 = a by (6), and u2 = tai where t ∈ T and i is odd. Set
C = A ∩ U and 2m = [A:C] = [U :C], so [A,U ] ≤ C, C = 〈a2m〉 = 〈u2m〉, and

AU/C ∼= (C2m)2. Then t2
m−1

= (u2a−i)2m−1 ≡ u2ma−i·2
m−1 ≡ a2m−1

(mod C)

since i is odd, so t2
m−1

= ak·2
m−1

for some odd k, ak·2
m−1 ∈ A∩T = Z has order

at most two, and hence |a| = 2m. Thus C = 1, and AU ∼= A× A ∼= (C2m)2.
Now, [T, u2] ≤ [T, TA] ≤ A, and [T, u2] ≤ U since U E P . Hence [T, u2] = 1,

and [T,A] = [T, ai] = 1 since u2 = tai for i odd. Thus [A,P ] = [A, TAU ] = 1,
[U, P ] = β([A,P ]) = 1, and so P = TAU is abelian. Also, T ≤ Z(S) since
S = 〈P, b〉 and [T, b] = 1. Hence [S, S] = A by (4).

Thus [S, S] = A is cyclic and H0 = P is abelian of index two in S, so we are
in the situation of Proposition 2.5. Since S ≥ AU ∼= A×A, S is not dihedral or
semidihedral, and hence is wreathed.

• P ∈ {H1,H2} and Θ3 � TA. Let i = 1, 2 be such that P = Hi = 〈TA, bi〉.
Since Θ3 � TA, there is β ∈ Aut(P ) such that β(a) /∈ TA. Set b• = β(a); thus
b• ∈ TAbi ⊆ SrCS(W ), so b•ab•−1 = aj for some j ∈ −1 + 4Z by (2). Then

β(A) ≥ β([a, P ]) = [b•, P ] ≥ [b•, A] = 〈a2〉 = A0
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since A ≥ [A,P ]. Also, [β(A):A0] = 2 since |β(A)| = |A|, and so b•2 = a2` for
some odd `. Thus a2 = b•a2b•−1 = a2j, so j ≡ 1 (mod 1

2
|a|). Since j ≡ 3 (mod

4), this proves that |a| = |b•| = 4, [b•, a] = a2, and thus 〈A, b•〉 = 〈a, b•〉 ∼= Q8.
Also, A = W , so [A, T ] = 1, and TA is abelian.

If P = H2 = 〈TA, bx〉, then [b•, T ] ≤ (〈b•〉∩TA) = Z since 〈b•〉 = β(A) E P ,
b• /∈ TA, and Z = A0 ≤ β(A). Hence [S, S] =

〈
A, [b•, T ]

〉
= A by (4).

To summarize, if P ∈ E has index two in S, then either P = H0 and S is wreathed,
or P = H2 and [S, S] = A, or P = H1. Also, if P ∈ {H1, H2} and [S, S] = A, then
P = T∆• for some Q8

∼= ∆• E P , and P = CTA(∆•)∆• by (5). So this proves (7), (8),
and (9) for essential subgroups of index two in S.

Step 2: Now assume P ∈ E where [S:P ] > 2. If |NS(P )/P | > 2, then by Lemma
1.6, rk([g, P/Fr(P )]) ≥ 2 for all g ∈ NS(P )rP . For each i ∈ Z, [ai, S] = 〈a2i〉, so ai ∈
NS(P ) if a2i ∈ P , in which case ai ∈ P since [ai, S] is cyclic while rk([ai, P/Fr(P )]) > 1
if ai /∈ P . Thus A ≤ P by induction on |A ∩ P |, so A0 ≤ Fr(P ). For t ∈ T , [t, T∆] =
[t, A] ≤ A0 E S, and since S = 〈T∆, x〉, [t, S] ≤ A0

〈
[t, x]

〉
. Thus rk([t, P/Fr(P )]) ≤ 1

if t ∈ NTP (P ), so NTP (P ) = P (recall TA E S), and TA ≤ P by Lemma A.1. Hence
P = TA since [S:P ] ≥ 4, so [b, P ] = 〈a2〉 ≤ Fr(P ) (and b ∈ NS(P )), which contradicts
Lemma 1.6. We conclude that |NS(P )/P | = 2.

In particular, P is not normal in S. By Theorem 4.6(b,c) (applied with P playing
the role of P1), and since [S, S] is abelian by (4), P is of the type described in Theorem
4.6(a) with S∗ = S. Write U•, ∆• for the groups U1, ∆ in that theorem. By Theorem
4.6(a.ii), P = CS(U•)U•. By Theorem 4.6(a.i), U• ∼= C2

2 or Q8, and the normal closure
∆• of U• in S is dihedral of order at least 8 or quaternion of order at least 16. Let
A• E ∆• be the unique cyclic subgroup of index two, and fix b• ∈ U•rA•. Thus
∆• = 〈A•, b•〉.

Since A• and ∆• are both normal in S, the coset A•b• = ∆•rA• is a union of S-
conjugacy classes, and its elements are all conjugate since otherwise [b•, S] = [b•, A•]
has index two in A• and the normal closure of U• is strictly contained in ∆•. Hence

A• = [b•, S] ≤ [S, S] ≤ TA

(recall that S/TA ∼= C2
2 is abelian by (3)). We claim that ∆• � TA, and hence

b• /∈ TA. Assume otherwise: then Z(∆•) ≤ [∆•,∆•] ≤ [TA, TA] ≤ A, so Z(∆•) = Z,
and the dihedral group ∆•/Z(∆•) is generated by elements of order two in TA/Z.
Since each element of order two in TA/Z ∼= (A/Z) o (T/Z) lies in TW/Z by (2), ∆•

is contained in the abelian group TW , which is impossible.

Thus b• ∈ HirTA = TAbi for some unique i = 0, 1, 2. Since b• /∈ TA, b• is not

central in S ∼= D8 (see (3)), so C
S
(b•) = 〈b•, a〉 = H i. Hence CS(b•) ≤ Hi = 〈TA, b•〉,

so P = CS(U•)·U• ≤ CS(b•)A• ≤ Hi, and P ∈ Ei. Since the normal closure of P has
index two in S = S∗ by Theorem 4.6(a) again, it must be equal to Hi. This proves (7).

Assume i = 0 (so b• ∈ TAx), or i = 2 (so b• ∈ TAbx). Since [b, TA] = A0 = 〈a2〉 and

[x, b] = a, we get 〈[b•, b]〉 = A in all cases. Thus A• = [b•, S] ≥ A, A• = [S, S] = A, and
hence A• = A. (If A• > A, then since both are cyclic, they could not have the same
nontrivial image in any quotient group.) So ∆• = 〈A, b•〉. Also, since S = 〈T∆, b•〉 in
these cases, (4) implies that

[S, S] = 〈A, [b•, T ]〉 = A .

Together with Step 1, this proves (9).
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The subgroup W ≤ A• = A of order four is central in H0 and not central in ∆•. Thus
P /∈ E0. Together with Step 1, this finishes the proof of (8): E0 = ∅ or E0 = {H0}, and
in the latter case, S is wreathed.

Step 3: We have now proven (7), (8), and (9), and it remains to prove (10). So
assume E0 = ∅. Then E1 6= ∅ and E2 6= ∅ by (7) and Lemma 2.2, and [S, S] = A by
(9). It remains to prove that S is dihedral or semidihedral.

Fix P2 = CS(U•)U• ∈ E2 with normal closure H2, as described in Step 2. Choose
b• ∈ U•rA, so that 〈A, b•〉 is the normal closure of U• and is dihedral or quaternion.

Thus b• ∈ TAbx, and ∆̂
def
= 〈A, b, b•〉 E S is dihedral, semidihedral, or quaternion by

Lemma B.3(e). Also, T ∆̂ = 〈TA, b, b•〉 = S. Let Â < ∆̂ be the cyclic subgroup of

index two (so ∆̂ = 〈Â, b〉, [Â:A] = 2, and Â E S).

If S contains an abelian subgroup of index two, then since [S, S] = A is cyclic, S
is dihedral, semidihedral, or wreathed by Proposition 2.5. Since [S, S] = A is strictly

contained in the larger cyclic subgroup Â, S cannot be wreathed.

Assume S does not contain an abelian subgroup of index two. Thus TÂ is nonabelian,

so [T, Â] 6= 1 (T and Â are both abelian), and the homomorphism c : T −−−→ Aut(Â)
induced by conjugation is nontrivial. Also, Im(c) is cyclic (each t ∈ T acts via (a 7→ ai)

for i ∈ 1 + 4Z by (2)), and CT (Â) = Ker(c) = Z(S) since S = 〈TÂ, b〉, [T, T ] = [T, b] =

1, and T
def
= CS(∆0) ≥ Z(S). Also, CT (A) =

{
t ∈ T

∣∣ |c(t)| ≤ 2
}

, since for i ∈ 4Z + 1,

i ≡ 1 (mod |A|) if and only if i2 ≡ 1 (mod |Â|). So [CT (A):CT (Â)] = 2. Thus

CS(A)/Z(S) = CT (A)Â/CT (Â) ∼= (CT (A)/CT (Â))× (Â/Z) ∼= C2 × (Â/Z)

since [CT (A), Â] = Z, so Aut(CS(A)/Z(S)) is a 2-group by Corollary A.3(a). Hence
each element of odd order in AutF(S) induces the identity on CS(A)/Z(S), and so
the action of the odd order group OutF(S) on Sab = S/A induces the identity on
CS(A)/Z(S)A.

We want to apply Proposition 2.3(b), with U = Z = [S, S] ∩ Z(S). For each P < S
of index two, 1 6= [P, P ] ≤ [S, S] = A, so [P, P ] ≥ Z since A is cyclic. Choose

g0 ∈ CT (A)rCT (Â), and let g1 be such that g1A =
∏

α∈OutF (S) α(g0A). Since OutF(S)

acts trivially on CS(A)/Z(S)A, g1 ≡ gk0 (mod Z(S)A), where k = |OutF(S)| is odd,
and we can assume g1 ∈ T and g1 ≡ gk0 (mod Z(S)). Thus |c(g1)| = |c(gk0)| = 2 since

k is odd and [g0, Â] = Z, so g1 /∈ Z. Fix g ∈ 〈g1〉 such that g /∈ Z but g2 ∈ Z. Then

|c(g)| ≤ 2, so [g, S] = [g, Â] ≤ Z. By construction, every element of AutF(S) sends gA
to itself.

Thus F is not reduced by Proposition 2.3, applied with U = Z and g as above. �

We now prove some other versions of Proposition 5.1, by listing different hypotheses
which give the same conclusion.

Proposition 5.2. Let S be a finite nonabelian 2-group which satisfies at least one of
the following conditions.

(a) There is an abelian subgroup A E S of index two.

(b) [S, S] is cyclic.

(c) There is an abelian subgroup Q < S such that |NS(Q)/Q| = 2 and OutS(Q) �
O2(Out(Q)).
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(d) There is a subgroup Q = Z(Q)U in S, where U ∼= Q8, |NS(Q)/Q| = 2, and
OutS(Q) exchanges two of the three abelian subgroups of index two in Q.

(e) There is a subgroup Q < S such that |Q| ≤ 16, |NS(Q)/Q| = 2, and OutS(Q) �
O2(Out(Q)).

Then either S is dihedral, semidihedral, or wreathed, or there is no reduced fusion
system over S.

Proof. Assume there is a reduced fusion system F over S, and let E be the set of all F -
essential subgroups. Let DSW be the class of all dihedral, semidihedral, and wreathed
2-groups; we must show S ∈ DSW .

(a) Let A ≤ S be an abelian subgroup of index two. If R ∈ E and R 6= A, then R � A
since R is centric in S, and so AR = S. So there is g ∈ A ∩ NS(R)rR, and [g,R] is
cyclic, generated by [g, h] for any h ∈ RrA. Hence by Lemma 1.6, |NS(R)/R| = 2.

For each x ∈ SrA, CS(x) = 〈CA(x), x〉 is abelian. Hence

R ≤ S, R � A =⇒ CS(R) is abelian. (1)

By Theorem 4.6(b,c), and since [S, S] ≤ A is abelian, each R ∈ E either has index
two in S, or has the form described in Theorem 4.6(a) with S∗ = S. In the latter case,
there is ∆ E S which is dihedral of order at least 8 or quaternion of order at least 16,
and the noncyclic subgroups of index two in ∆ are S-conjugate since ∆ is the normal
closure of a subgroup U1

∼= C2
2 or Q8. Also, for ∆0 ≤ ∆ dihedral or quaternion of

order 8, CS(∆0) is abelian by (1). The hypotheses of Proposition 5.1 thus hold, and
so S ∈ DSW .

We are left with the case where each R ∈ E has index two in S. If all F -essential
subgroups are abelian, then S has at least two abelian subgroups of index two (Lemma
2.2), so |[S, S]| = 2 by Lemma A.6(c), and S ∈ DSW by Proposition 2.5.

Assume R ∈ E is nonabelian. If A ∩ R is the only abelian subgroup of index two in
R, then it is characteristic in R. For g ∈ ArR, [g,R] ≤ R∩A, [g,R∩A] = 1, and this
contradicts Lemma 1.5 (applied with Θ = R ∩ A).

Thus by Lemma A.6(b,c), R has three abelian subgroups of index two, [R:Z(R)] = 4,
and |[R,R]| = 2. Set Z = [R,R] ≤ Z(R), and fix a generator z ∈ Z. Fix g ∈ ArR
and h ∈ RrA, and set y = [h, g]. Thus [g,R] = 〈y〉, and

hgh−1 = gy =⇒ g = h2gh−2 = gy(hyh−1) =⇒ [h, y] = hyh−1y−1 = y−2.

If y2 = 1, then [h, y] = 1, so [g,R] = 〈y〉 ≤ Z(R), [g, Z(R)] = 1 since Z(R) ≤ A, and
this again contradicts Lemma 1.5 (applied with Θ = Z(R)). Thus y2 = [h, y]−1 6= 1,
so y2 = z ∈ [R,R], and [S,R] = 〈y, [R,R]〉 = 〈y〉 is cyclic.

By Lemma 2.4(a.ii) (and since R is nonabelian), there are R1 E R and OutS(R) ≤
Γ1 E OutF(R) such that R1

∼= Q8, AutF(R) sends R1 to itself, and Γ1
∼= Σ3 acts

faithfully on R1/Fr(R1). Thus R1 E S, AutS(R) exchanges two of the three subgroups
of index two in R1, and CS(R1) is abelian by (1). Hence S ∈ DSW by Proposition 5.1.

(b) Assume [S, S] is cyclic, and let Z ≤ [S, S] be the subgroup of order two. If some
P ∈ E has index ≥ 4 in its normalizer, then rk([s, P/Fr(P )]) ≥ 2 for each s ∈ NS(P )rP
by Lemma 1.6, which is impossible since [S, S] is cyclic. If P ∈ E is nonabelian, then
1 6= [P, P ] ≤ [S, S], and Z = Ω1([P, P ]) is characteristic in P . So if each P ∈ E
is nonabelian, then Z is characteristic in S and in each P ∈ E , hence Z E F by
Proposition 1.3, and F is not reduced.



FUSION SYSTEMS AND AMALGAMS 27

Thus some R ∈ E is abelian and has index two in its normalizer. If [S:R] = 2,
then the result follows from (a). Otherwise, by Theorem 4.6, there is ∆ E S which is
dihedral of order at least 8 (R � Q8 since it is abelian), and the noncyclic subgroups
of index two in ∆ are S-conjugate since ∆ is the normal closure of a subgroup U1

∼= C2
2

in R. Also, for ∆0 ≤ ∆ dihedral of order 8 containing U1, CS(∆0) ≤ CS(U1) ≤ R is
abelian. The hypotheses of Proposition 5.1 thus hold, and so S ∈ DSW .

(c) If S contains an abelian subgroup of index two, then S ∈ DSW by (a). If
there is an abelian subgroup Q < S which satisfies the assumptions in (c) and is not
normal, then by Lemma B.5(a), there are subgroups ∆0 ≤ ∆ E S such that ∆ is
dihedral, ∆0

∼= D8, CS(∆0) ≤ Q is abelian, and the noncentral involutions in ∆ are all
S-conjugate. Then S ∈ DSW by Proposition 5.1.

(d) Fix Q = Z(Q)U ≤ S, where U ∼= Q8, |NS(Q)/Q| = 2, and OutS(Q) exchanges
two abelian subgroups A1 and A2 of index two in Q. Set Z = Z(U) = [Q,Q] ∼= C2, let
z ∈ Z be the generator, choose u1 ∈ A1∩U of order four, and set u2 = xu1x

−1 ∈ A2 for
some x ∈ NS(Q)rQ. Then u2

2 = u2
1 = z since [x, z] = 1, u2 /∈ Z(Q), and so [u1, u2] = z

and 〈u1, u2〉 ∼= Q8. So upon replacing U by 〈u1, u2〉, we can assume U E NS(Q).

Set S∗ = CS(Z), and let ∆ be the normal closure of U in S∗. Then Q/Z is abelian,
and [NS∗/Z(Q/Z):Q/Z] = 2 since [NS(Q):Q] = 2 and NS∗(Q) = NS(Q). Also, U/Z ∼=
C2

2 is a direct factor in Q/Z, and [NS(Q)/Z, U/Z] 6= 1 since OutS(Q) exchanges two of
the abelian subgroups of U .

If ∆ > U , then ∆/Z is dihedral by Lemma B.5(b), and all involutions in ∆/Z are
S∗-conjugate to elements of U/Z. Hence there are no involutions in ∆rZ, and ∆ is
quaternion.

Set R = NCS(U)(Z(Q)). Since conjugation by each y ∈ NS(Q)rQ exchanges A1 and
A2, CS(U)∩NS(Q) ≤ Q. Also, R normalizes Z(Q)U = Q, so R ≤ CS(U)∩NS(Q) ≤ Q.
Hence R ≤ CQ(U) = Z(Q), so CS(U) = Z(Q) by Lemma A.1.

If S∗ < S, then choose y ∈ NS(S∗)rS∗, and set β = cy ∈ Aut(S∗). Thus β(Z) 6= Z,
and ∆ ∩ β(∆) = 1 since Z and β(Z) contain the only elements of order two in ∆ and
β(∆), respectively. So [∆, β(∆)] ≤ ∆ ∩ β(∆) = 1 since both subgroups are normal in
S∗, which is impossible since CS(∆) ≤ CS(U) = Z(Q) is abelian. Thus S∗ = S.

If ∆ = U , then by assumption, AutS(Q) exchanges two of the abelian subgroups
of index two in Q = Z(Q)U , and hence exchanges two of the index two subgroups of
U = ∆. If ∆ > U , the two noncyclic subgroups of index two in ∆ are S-conjugate
since ∆ is generated by the S-conjugates of U < ∆. Since CS(U) = Z(Q) is abelian,
S ∈ DSW by Proposition 5.1, applied with ∆0 = U .

(e) AssumeQ < S is such that |Q| ≤ 16, |NS(Q)/Q| = 2, and OutS(Q) � O2(Out(Q)).
In particular, Out(Q) is not a 2-group. By Corollary A.3(a), Qab 6∼= C4 ×C2, so either
Q is abelian or Qab is elementary abelian. If Q is abelian, then S ∈ DSW by (c), so we
assume Q is nonabelian. By Corollary A.3(b,c), Q is not one of the groups D8, D16, Q16,
or SD16, or C2×D8. So by the list of groups of order 16 (cf. [Bu, § 74]), Q is isomorphic
to Q8, C2 × Q8, or C4 ×C2 Q8. In each of these cases, by Lemma A.2 applied to the
chain 1 < Fr(Q) ≤ Z(Q) < Q, O2(Aut(Q)) contains all α ∈ Aut(Q) which act trivially
on Q/Z(Q). Since AutS(Q) � O2(Aut(Q)), AutS(Q) acts nontrivially on Q/Z(Q) and
hence contains elements which exchange two of the three abelian subgroups of index
two in Q. So S ∈ DSW by (d). �
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Each reduced fusion system over a dihedral, semidihedral, or wreathed 2-group is
isomorphic to the fusion system of PSL2(q) for q ≡ ±1 (mod 8), or of PSU3(q) or
PSL3(q) for q ≡ 1 (mod 4). Fusion systems over dihedral and semidihedral 2-groups
have been listed by several people; cf. [AOV, § 4.1] for the reduced case. For wreathed
2-groups, this was shown in Proposition 3.1. The fusion systems (at the prime 2) of
PSU3(q) and PSL3(q) for q ≡ 3 (mod 4) also have this form (see, e.g., [BMO, Theorem
A(d)]).

Proposition 5.2(e) has as an easy consequence:

Theorem 5.3. Let F be a reduced fusion system over a nontrivial finite 2-group S of
order at most 32. Then S is dihedral, semidihedral, or wreathed, and F is isomorphic
to the fusion system of PSL2(q) for q ≡ ±1 (mod 8), or that of PSL3(q) for q odd.

Proof. By Lemma 2.2, there exists an F -essential subgroup Q < S. Then |Q| ≤ 16, and
|NS(Q)/Q| = 2, since otherwise |S| ≥ |NS(Q)| ≥ 64 by Lemma 1.6. Since OutF(Q)
contains a strongly 2-embedded subgroup, O2(OutF(Q)) = 1 (cf. [AKO, Proposition
A.7(c)]). Hence OutS(Q) � O2(Out(Q)), so S is dihedral, semidihedral or wreathed
by Theorem 5.2(e). The description of F follows from the above remarks. �

We finish with a slightly less easy consequence of the results in this section and in
Section 4: a list of those groups of order 64 which support reduced fusion systems. For
all n and q, UTn(q) denotes the group of strictly upper triangular matrices over Fq (i.e.,
those with 1’s on the diagonal). A fusion system over a p-group S is indecomposable if
it is not isomorphic to a product of fusion systems over nontrivial subgroups of S.

Theorem 5.4. Let F be a reduced, indecomposable fusion system over S, where |S| =
64. Then S is isomorphic to one of the groups D64, SD64, UT4(2), UT3(4), or to a
Sylow 2-subgroup of M12.

Proof. Fix F and S, and let E be the set of F -essential subgroups of S. Assume S is
neither dihedral nor semidihedral; it cannot be wreathed since |S| is a power of 4.

Case 1: Assume there is P ∈ E such that P 5 S and |NS(P )/P | = 2. Then |P | ≤ 16,
OutS(P ) � O2(Out(P )) since P is essential, and this is impossible by Proposition
5.2(e).

Case 2: Assume that there is P ∈ E such that |NS(P )/P | ≥ 4. By Lemma 1.6,
rk(P/Fr(P )) ≥ 4. Thus P ∼= C4

2 and P E S. Using Bender’s classification of groups
with strongly 2-embedded subgroups [Bd, Satz 1], we see that either AutF(P ) ≥ A5, or
AutF(P ) ∼= C5oC4, C15oC4, or C2

3oC4. Also, there are exactly two conjugacy classes
of subgroups isomorphic to A5 in GL4(2) ∼= A8 (cf. [Ta, Corollary 6.7]), corresponding
to the A5-orbits A5/A4 and A5/D10.

Case 2A: Assume A5 ≤ AutF(P ), acting via the reduced permutation action (i.e., the
permutation action on F5

2 modulo its fixed subspace). Then AutS(P ) ∼= C2
2 permutes

freely a basis for P ∼= C4
2 , and in particular, the extension of P by S/P splits.

For 1 ≤ i < j ≤ 4, let eij ∈ UT4(2) be the elementary matrix with off diagonal entry
1 in position (i, j). Set B = 〈e13, e23, e14, e24〉 and C = 〈e12, e34〉. Then UT4(2) = BC,
B E UT4(2), B ∩ C = 1, and the C-orbit of e23 is a basis for B ∼= C4

2 . Thus there is

an isomorphism UT4(2)
∼=−−−→ S which sends B to P and C to a complement of P .

Case 2B: Assume A5 ≤ AutF(P ), acting via the canonical action of A5
∼= SL2(4)

on F2
4. By Proposition 1.4, there is a finite group G such that S ∈ Syl2(G), P E G,
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CG(P ) = P , G/P ∼= A5, and G/P ∼= AutG(P ) ≤ AutF(P ). By [GH, Lemma II.2.6], G
splits as a semidirect product: G ∼= C4

2oA5, is thus isomorphic to a maximal parabolic
subgroup of PSL3(4), and hence S ∼= UT3(4).

Case 2C: Assume AutS(P ) ∼= S/P ∼= C4, and fix x ∈ S such that S = 〈P, x〉. Thus
AutF(P ) ∼= C5 o C4, C15 o C4, or C2

3 o C4. In the first two cases, S/P acts on P via
the Galois action of C4 on F16, and hence freely permutes a basis by the normal basis
theorem (cf. [Bb, §V.10.9, Théorème 6]). In the third case, P = P1P2 where the Pi are
irreducible F2[C2

3 ]-modules of rank two, xPix
−1 = P3−i, and cx2 acts nontrivially on

each Pi. Thus in each case, there is a basis {a1, a2, a3, a4} for P such that xaix
−1 = ai+1

(with indices taken modulo 4). In particular, S splits over P , so we can assume x was
chosen with x4 = 1.

Set U = [x2, P ] = 〈a1a3, a2a4〉 E S. If Q < S has index two, then either Q = 〈P, x2〉,
in which case [Q,Q] = U , or QP = S and Q ∩ P = 〈aiaj | i 6= j〉, in which case
[Q,Q] = [x,Q∩P ] = U . In particular, U is characteristic in S. Since |Fr(S)/[S, S]| = 2,
each α ∈ Aut(S) sends the coset x2[S, S] to itself. So by Proposition 2.3(b) applied
with g = x2, x2 /∈ foc(F), and F is not reduced.

Case 3: We are left with the case where each F -essential subgroup has index two
in S. Since |E| ≥ 2 by Lemma 2.2, we can choose distinct P1, P2 ∈ E . By Theorem
4.5, we can choose G1 > S < G2 and T ≤ P12 = P1 ∩ P2 which satisfy conditions
(∗) at the beginning of Section 4, with P = S and AutGi

(Pi) ≤ AutF(Pi). Thus
AutGi

(T ) ≤ AutF(T ).

Case 3A: Assume T is not centric in S. Let U and Z = T ∩U be as in Theorem 4.5;
[T, U ] = 1 in all cases. There are six cases to consider, listed in Table 4.1.

(1) (U,Z) ∼= (D8, 1) or (Q16, C2) and S = TU . Thus S ∼= T × D8 or T ×C2 Q16,
and so |T | = 8. The first is impossible by [O1, Theorem B] (and since F is
indecomposable), and the second by Proposition 5.2(b) ([S, S] = [U,U ] is cyclic).

(2) (U,Z) ∼= (D8, 1) or (Q16, C2), [S:TU ] = 2, and S/T ∼= D8 × C2. Thus |T | = 4,
UT ∼= T ×D8 or T ×C2 Q16, and S = 〈UT, x〉 for some x such that xT ∈ Z(S/T )
and x2 ∈ T . Also, U E S by Theorem 4.5. If U ∼= D8, then S = U × 〈T, x〉
since S/T = (UT/T ) × 〈xT 〉 and U ∩ T = Z = 1, and this is impossible by [O1,
Theorem B] again. Hence U ∼= Q16, [x, U ] ≤ T ∩ U = Z since [x, S] ≤ T and
U E S, and [x, T ] ≤ Z since [T :Z] = 2 and Z E S. Thus [S, S] = [U,U ] is cyclic,
and this is impossible by Proposition 5.2(b).

(3) U ∼= C4 o C2, Z = 1, and S = UT . Then S ∼= U × C2 has an abelian subgroup of
index two, which is impossible by Proposition 5.2(a).

(4) S/T is of type Aut(U3(3)), so T = 1 and S is of type Aut(U3(3)). By the de-
scriptions of this amalgam in [Gd2, Table 1 & (3.7)], S is isomorphic to a Sylow
2-subgroup of M12.

(5) S/T is of type M12. Since |S| = 26, T = 1 and S is of type M12.

(6) S/T is of type Aut(M12), so |S/T | = 27, which is impossible.

In the remaining cases, we assume T is centric in S. Set Ŝ = OutS(T ), Ĝi =

OutGi
(T ), Ĝ = 〈Ĝ1, Ĝ2〉 ≤ OutF(T ), and P̂i = OutPi

(T ). Thus Ŝ ∈ Syl2(Ĝ) by the
Sylow axiom since T E S (hence T is fully normalized). By Proposition 1.4, there is
a finite group Γ such that S ∈ Syl2(Γ), T E Γ, CΓ(T ) ≤ T , and AutΓ(T ) = AutF(T ).
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Let G ≤ Γ be such that T ≤ G and OutG(T ) = Ĝ. Thus

S ∈ Syl2(G), T E G, CG(T ) ≤ T, and Ĝ = OutG(T ).

Case 3B: Assume [S:T ] = 4. Thus Ŝ ∼= S/T ∼= C2
2 by (∗), T = P12, Pi/T ∼= C2 is

normal in Ĝi
∼= Gi/T with quotient group Gi/Pi ∼= D2pi , and hence Ĝi

∼= C2 × D2pi

contains an element of order 2pi. Also, Ĝ acts faithfully on T/Fr(T ) by Lemma 4.2(e),
GL4(2) ∼= A8 contains no element of order 2pi for primes pi ≥ 5, and GL3(2) contains
no element of order 6. It follows that rk(T/Fr(T )) = 4, so T ∼= C4

2 , and p1 = p2 = 3.

Set Ĥi = O2(Ĝi) ∼= C3. It is not hard to see, by examining normalizers of subgroups
of order three in GL4(2) ∼= A8, that there are exactly two conjugacy classes of subgroups
C2 × Σ3 in GL4(2). Hence for some decomposition T = V1 × V2, where Vi ∼= C2

2 , the

action of Ĝ1
∼= C2 × Σ3 on T has the following form: either

(i) Σ3 acts faithfully on each Vi, and C2 switches the two factors; or

(ii) Σ3 acts faithfully on V1 and trivially on V2, and C2 acts faithfully on V2 and
trivially on V1.

In case (i), Ŝ acts by permuting freely a basis of T , and hence S ∼= UT4(2) as seen
earlier.

In case (ii), there is a basis of T permuted by Ŝ in two orbits of length two. Hence

the three involutions in Ŝ cannot be conjugate in Ĝ, so FŜ(Ĝ) is the fusion system of

Ŝ ∼= C2
2 . Thus [Ĝ, Ĝ]∩Ŝ = 1 by the focal subgroup theorem (cf. [G, Theorem 7.3.4]), so

there is Ĥ E Ĝ of odd order and index four. Also, P̂i E Ĝi for i = 1, 2, where P̂i ∼= C2

and Ĝi
∼= C2×Σ3, so Ĝ1 6= Ĝ2. Thus Ĝ = 〈Ĝ1, Ĝ2〉 contains two distinct subgroups of

order 3, they are contained in Ĥ, and hence |Ĥ| > 3. Also, Ĥ cannot contain a normal

subgroup K̂ E Ĥ of order 7, since that would imply Ĝ ≤ NAut(T )(K̂) ∼= C7 o C3.

Since |GL4(2)| = 26·32·5·7, Ĥ contains C2
3 or C5, and in either case, CT (Ĥ) = 1. Let

H < G be such that H ≥ T and AutH(T ) = Ĥ. By Lemma A.8, applied to the triple
T E H E G, G (and hence S) splits as a semidirect product over T . Thus S ∼= D8×D8,
which is impossible by [O1, Theorem B] again (F is indecomposable).

Case 3C: Now assume [S:T ] ≥ 8. Since Ŝ acts faithfully on T/Fr(T ), rk(T/Fr(T )) ≥
3, so T ∼= C3

2 , |Ŝ| = |S/T | = 8, and Ŝ ∼= D8 since this is a Sylow 2-subgroup of GL3(2).

Neither P̂1 nor P̂2 can be cyclic of order four, since the normalizer in Aut(T ) ∼= GL3(2)

of such a subgroup has order 8. Hence P̂i ∼= C2
2 for i = 1, 2, Ĝi

∼= Σ4 (the normalizer

in Aut(T ) ∼= GL3(2) of P̂i), and Ĝ = 〈Ĝ1, Ĝ2〉 = Aut(T ). Thus G is an extension of
C3

2 by GL3(2). By [GH, Lemma II.3.4], either the extension is split and S ∼= UT4(2),
or it is not split and S is a Sylow 2-subgroup of M12. �

Appendix A. Background on groups

We list here some elementary results about finite groups which are needed throughout
the paper, beginning with a well known property of p-groups.

Lemma A.1. If Q < P are finite p-groups for some prime p, then Q < NP (Q).

Proof. See, e.g., [Sz1, Theorem 2.1.6]. �
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We next look at automorphisms of finite p-groups.

Lemma A.2. Fix a prime p, a finite p-group P , a subgroup P0 ≤ Fr(P ), and a sequence
of subgroups

P0 E P1 E · · · E Pk = P.

Set

A =
{
α ∈ Aut(P )

∣∣x−1α(x) ∈ Pi−1, all x ∈ Pi, all i = 1, . . . , k
}
≤ Aut(P ):

the group of automorphisms which leave each Pi invariant, and which induce the identity
on each quotient group Pi/Pi−1. Then A is a p-group. If the Pi are all characteristic
in P , then A E Aut(P ), and hence A ≤ Op(Aut(P )).

Proof. See, for example, [G, Theorems 5.1.4 & 5.3.2]. �

As an easy exercise, Lemma A.2 implies the following corollary, which contains a
list of some 2-groups whose automorphism groups are 2-groups. Note, in the last case,
that P ∼= C2 ×D8 contains a unique (hence characteristic) subgroup Q ∼= C2 × C4, so
that Fr(P ) < Z(P ) < Q < P is a chain of characteristic subgroups.

Corollary A.3. For a finite 2-group P , Aut(P ) is a 2-group if at least one of the
following hold:

(a) P/[P, P ] ∼= C2k1 × C2k2 × · · · × C2kr , where k1, . . . , kr are pairwise distinct.

(b) P is dihedral of order at least 8, or semidihedral or quaternion of order at least
16.

(c) P ∼= C2 ×D8.

The next two results involve the intersection of a Sylow subgroup with the commu-
tator subgroup.

Lemma A.4. For any finite group G with S ∈ Sylp(G), S ∩Op(G) ≤ S ∩ [G,G], with
equality if G/Op(G) is abelian.

Proof. Set G′ = [G,G]. Since G/G′ is abelian, its largest p-group quotient G/Op(G)G′

is isomorphic to its Sylow p-subgroup SG′/G′ ∼= S/(S ∩ G′) (and the isomorphism is
induced by the inclusion S ≤ G). Hence S ∩ G′ = S ∩ Op(G)G′, and so S ∩ Op(G) ≤
S ∩G′ with equality if G′ ≤ Op(G). �

The following proposition goes essentially back to Schur [Sch, IX–X].

Proposition A.5. Fix a finite group G with S ∈ Sylp(G). Let Z ≤ Z(G) be a p-
subgroup. Then Z ∩ [G,G] = Z ∩ [S, S].

Proof. This follows as an application of the transfer in (co)homology. See, e.g., [Hu,
Satz IV.2.2]. �

The next lemma describes nonabelian 2-groups with abelian subgroup of index two.

Lemma A.6. Let S be a finite nonabelian 2-group containing an abelian subgroup
A E S of index two. Then the following hold.

(a) [S, S] ∼= A/Z(S), and all elements of (S/Z(S))r(A/Z(S)) have order two.

(b) If |[S, S]| = 2, then S/Z(S) ∼= C2
2 , and S contains exactly three abelian subgroups

of index two.
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(c) If |[S, S]| ≥ 4, then |S/Z(S)| ≥ 8, and A is the unique abelian subgroup of index
two in S.

(d) If S contains three abelian subgroups of index two which are permuted transitively
by some automorphism of S, then either Z(S) is not a direct factor of A, or
[S, S] ≤ Fr(Z(S)).

Proof. (a) For each x ∈ SrA, x2 ∈ CA(x) = Z(S), and thus xZ(S) has order two
in S/Z(S). Also, [S, S] = [x,A] is the image of Id−cx as a homomorphism from A to
itself, and Z(S) is its kernel. Hence [S, S] ∼= A/Z(S).

(b) Assume |[S, S]| = 2. Then by (a), |S/Z(S)| = 4 and S/Z(S) ∼= C2
2 . Each abelian

subgroup of index two in S contains Z(S), and since |S:Z(S)| = 4, each subgroup
of index two in S which contains Z(S) is abelian. So there are exactly three abelian
subgroups of index two in S.

(c) Now assume |[S, S]| ≥ 4, so |S/Z(S)| ≥ 8 by (a). If B 6= A is another abelian
subgroup of index two in S, then AB = S, so Z(S) ≥ A ∩ B, and |S/Z(S)| ≤ 4, a
contradiction. Thus A is the only abelian subgroup of index two.

(d) Assume S contains three abelian subgroups A = A1, A2, A3 of index two which are
permuted transitively by some automorphism of S. Thus |[S, S]| = 2 and S/Z(S) ∼= C2

2

by (b,c). Fix a generator z ∈ [S, S]. If Z(S) is a direct factor of A = A1, then it is
a direct factor of each Ai since Aut(S) acts transitively on the Ai, and there are
elements ai ∈ AirZ(S) of order two. Then a1a2a3 ∈ Z(S) since the ai represent the
three nonidentity elements in S/Z(S) ∼= C2

2 , [ai, aj] = z for distinct i, j ∈ {1, 2, 3} since
S = 〈ai, aj, Z(S)〉 is nonabelian, and so (a1a2a3)2 = z3 = z. Thus z ∈ Fr(Z(S)). �

The following result about actions on abelian 2-groups is very useful in certain situ-
ations.

Lemma A.7. Fix a finite abelian 2-group A and a subgroup G ≤ Aut(A) with Sylow
subgroup S ∈ Syl2(G) of order two. Assume S � Z(G), and [S,A] ∼= C2n for some
n ≥ 1. Then there are unique factorizations A = A0 × A1 and G = G0 × G1 such
that |G0| is odd, G1

∼= Σ3, A1
∼= C2n × C2n, and for i = 1, 2, Gi sends Ai to itself and

centralizes (i.e., acts trivially on) A3−i.

Proof. See, e.g., [O1, Proposition 2.3]. �

Lemma A.8. Fix a prime p, and a finite group G with subgroups A E B E G,
both normal in G, such that A is an abelian p-group, B/A has order prime to p, and
CA(B) = 1. Then G splits as a semidirect product G = AoH, where H ∼= G/A.

Proof. By the spectral sequence for the extension 1 → B/A → G/A → G/B →
1, H i(G/A;A) = 0 for each i ≥ 0 since H0(B/A;A) = CA(B) = 0 (and since
(|B/A|, |A|) = 1). In particular, G ∼= Ao (G/A).

Alternatively, since |B/A| is prime to |A|, by the Schur-Zassenhaus theorem [G,
Theorem 6.2.1], there is K ≤ B such that KA = B and K ∩ A = 1, and each such
subgroup is B-conjugate, and hence A-conjugate, to K. So G = ANG(K) by a Frattini
argument, and since NA(K) = CA(K) = 1, NG(K) is a complement to A in G. �
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Appendix B. Finite 2-groups with normal dihedral or quaternion
subgroups

We prove here some elementary results about certain finite 2-groups which have
normal dihedral or quaternion subgroups, and their automorphisms. We begin by
stating the following general proposition about automorphisms of products of p-groups.

Proposition B.1 ([O1, Proposition 3.2(a)]). Fix a pair of finite p-groups S1 and
S2, set S = S1 × S2, and let pri ∈ Hom(S, Si) be the projection. Let α ∈ Aut(S)
be such that α(Ω1(Z(S1))) = Ω1(Z(S1)). Then for i = 1, 2, pri(α(Si)) = Si and
α(SiZ(S3−i)) = SiZ(S3−i).

We next look at semidirect products with normal dihedral subgroup.

Lemma B.2. Fix a finite 2-group S, and subgroups ∆ E S and T ≤ S. Assume that
S = T∆, T ∩∆ = 1, ∆ is dihedral of order at least 8, and [T,∆0] = 1 for some dihedral
subgroup ∆0 ≤ ∆ of order 8. Let A,∆1,∆2 ≤ ∆ be the three subgroups of index two
where A is cyclic, and let A0 = [∆,∆] be the subgroup of index two in A. Set Z = Z(∆)
for short. Fix b ∈ ∆0rA.

(a) Assume ϕ ∈ Hom(∆, S) is such that ϕ(Z) = Z and ϕ(A) E S. Then ϕ(A0) = A0,
ϕ(A) ≤ TA, and ϕ(b) ∈ TAb.

(b) Assume α ∈ Aut(S) is such that α(Z) = Z. Then either α sends each of the
subgroups T∆1 and T∆2 to itself or it exchanges them.

Proof. Fix a generator a ∈ A; thus A0 = 〈a2〉. Since ∆ E S and A is characteristic
in ∆, A E S. For all t ∈ T , [t,∆0] = 1 by assumption, so [t, b] = 1, and [t, ak] = 1 if
|ak| ≤ 4. Hence tat−1 = a4j+1 for some j, so [t, a] ∈ 〈a4〉. Thus [T,∆] ≤ 〈a4〉, and so
〈T, a4〉 E S.

(a) Assume ϕ ∈ Hom(∆, S) is such that ϕ(Z) = Z and ϕ(A) E S. Since A0 = [∆,∆],
ϕ(A0) ≤ [S, S] ≤ TA0. If ϕ(A0) ≤ 〈T, a4〉, then there are distinct elements ai 6= aj in
A0 such that ϕ(ai), ϕ(aj) ∈ Tak for some k. Then 1 6= ai−j and ϕ(ai−j) ∈ T , which is
impossible since Z ≤ 〈ai−j〉 and ϕ(Z) = Z � T .

Thus ϕ(a2) /∈ 〈T, a4〉, and the image of ϕ(a) in S/〈T, a4〉 ∼= D8 has order four.
Hence ϕ(a) = tai for some t ∈ T and some odd i. Also, the image of ϕ(b) in S/〈T, a4〉
must invert that of ϕ(a), and so ϕ(b) ∈ TAb. Since ϕ(A) E S, b(tai)b−1 = ta−i, and
(ta−i)−1tai = a2i, we have a2i ∈ ϕ(A). Thus A0 = 〈a2i〉 ≤ ϕ(A), so ϕ(A0) = A0. This
finishes the proof of (a).

(b) Now assume α ∈ Aut(S) is such that α(Z) = Z. By (a), applied with ϕ = α|∆,
α(A) ≤ TA and α(A0) = A0. Hence α(〈a4〉) = 〈a4〉, and α induces an automorphism
α of S/〈a4〉 ∼= T × D8 which sends Z(∆/〈a4〉) = A0/〈a4〉 to itself. By Proposition
B.1, α(TA0/〈a4〉) = TA0/〈a4〉, and thus α(TA0) = TA0. Since α(TA) = TA, it now
follows that α either sends the two subgroups T∆i/TA0 of S/TA0

∼= C2
2 to themselves

(i = 1, 2) or switches them. �

The next lemma involves a similar situation.

Lemma B.3. Fix a finite 2-group S with a normal dihedral or quaternion subgroup
∆ E S of order at least 8. Assume two of the three subgroups of index two in ∆ are
S-conjugate. Let ∆0 ≤ ∆ be a dihedral or quaternion subgroup of order 8, and set
T = CS(∆0). Let A E ∆ be the cyclic subgroup of index two: the one which is normal
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in S if ∆ ∼= Q8. Fix a generator a ∈ A, and choose b ∈ ∆0rA. Let Z ≤ A0 < A be
the subgroups of order two and index two, respectively. Then the following hold.

(a) A ≤ [S, S].

(b) [S:T∆] = 2. For each g ∈ S, gbg−1 = aib where i is even if g ∈ T∆ and i is odd
if g ∈ SrT∆.

(c) TA0 E S, S/TA0
∼= D8, and Z(S/TA0) = TA/TA0.

(d) If T is abelian, then [S, S] is abelian.

(e) Assume b1, b2 ∈ S are in distinct cosets of TA, [b1, A] = A0 = [b2, A], b2
i ∈ A, and

〈A, bi〉 E S. Then 〈A, b1, b2〉 is dihedral, semidihedral, or quaternion.

(f) Assume that ∆ is dihedral and Z is a direct factor of T . Let α ∈ Aut(S) be such

that α2 ∈ Inn(S), α(Z) = Z, and α(T∆) 6= T∆. Set ∆̂ = α(∆)·∆. Then ∆̂ is

dihedral, ∆̂ E S, [∆̂:∆] = 2, T ∩ ∆̂ = Z, and T ∆̂ = S.

Proof. By assumption, ∆ E S. Hence A E S since A is characteristic in ∆, except
when ∆ ∼= Q8 in which case A was chosen to be the unique subgroup of index two in
∆ normal in S.

(a) By assumption, the subgroups 〈A0, b〉 and 〈A0, ba〉 are S-conjugate. Hence there is
x ∈ S such that cx(bA0) = baA0, so xbx−1 = bai for some odd i, and A = 〈ai〉 ≤ [S, S].

(b) By definition (and since A = 〈a〉 E S),

T = CS(∆0) =
{
g ∈ S

∣∣ gbg−1 = b, gag−1 = a4j+1 some j
}
. (1)

Hence

T∆ =
{
g ∈ S | cg ∈ AutT (∆)Inn(∆)} = {g ∈ S

∣∣ gbg−1 = aib some i ≡ 0 (mod 2)
}
.

Since ∆ E S, this proves that gbg−1 = aib with i odd whenever g ∈ SrT∆. Also,
T∆ < S since 〈A0, b〉 and 〈A0, ab〉 are S-conjugate, and hence [S:T∆] = 2.

(c) If ∆ = ∆0 has order 8, then TA0 = T = CS(∆) is normal in S since ∆ E S. So
assume |∆| > 8. Since A E S, 1 6= 〈a4〉 E S. Also, [T,A] ≤ 〈a4〉 by (1), and hence
T∆/〈a4〉 ∼= (T/Z)×D8. For x ∈ S, cx(T∆) = T∆ by (b), so cx(TA0/〈a4〉) = TA0/〈a4〉
by Proposition B.1 applied with α = cx ∈ Aut(T∆/〈a4〉). Thus TA0 E S.

Throughout the rest of the proof of the lemma, we set S = S/TA0, and let P ≤ S

or g ∈ S be the image of P ≤ S or g ∈ S. Thus T∆ = 〈a, b〉 ∼= C2
2 .

For x ∈ SrT∆, cx(a) = a and cx(b) = ab by (b). Thus S ∼= D8, with center

〈a〉 = TA.

(d) Assume T is abelian. Since A is cyclic, Aut(A) is abelian, and hence [S, S] is in
the kernel of the map S −−−→ Aut(A) induced by conjugation. Thus [S, S] ≤ CS(A).
Also, [S, S] ≤ TA since TA is normal of index four in S. Since T is abelian, CTA(A) is
also abelian, and so is [S, S].

(e) Fix b1, b2 as above, and set ∆i = 〈A, bi〉 E S and ∆̂ = ∆1∆2. Then ∆̂/A ∼= C2
2

since the ∆i are normal and distinct and contain A with index two. Also, (b1b2)2 = a

since S ∼= D8 and b1 and b2 are in distinct nonidentity cosets of A = Z(S) and have

order two in S. Since (b1b2)2 ∈ A (recall ∆̂/A ∼= C2
2), we have (b1b2)2 = aj for some

odd j. Thus Â
def
= 〈b1b2〉 is cyclic of index two in ∆̂, conjugation by b1 inverts the
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subgroup A of index two in Â, and hence ∆̂ is dihedral, semidihedral, or quaternion
(cf. [G, Theorem 5.4.4]).

(f) Now assume that ∆ is dihedral, and that T = T0Z where T0 ∩ Z = 1. Let
α ∈ Aut(S) be such that α2 ∈ Inn(S), α(Z) = Z, and α(T∆) 6= T∆. Set ∆∗ = α(∆),

and ∆̂ = ∆∆∗. Since ∆ and ∆∗ are both normal in S and are exchanged by α (since

α2 ∈ Inn(S)), ∆̂ is normal in S.

Set a∗ = α(a) and b∗ = α(b). By (c), TA0 E S, and S = S/TA0 is dihedral of order
8 with center TA/TA0.

Since A ≤ [S, S] by (a), α(A) ≤ [S, S] ≤ TA. If b∗ ∈ T∆, then α(∆) ≤ T∆,
and by Lemma B.2(a) (applied with ϕ = α|∆ and T replaced by T0), b∗ ∈ T0Ab. So

b∗ ∈ {b, ab}. Since [T, b] = 1 (recall b ∈ ∆0), [α(T ), b∗] = 1, so α(T ) ≤ 〈a, b〉 = T∆.
Thus α(T ) ≤ T∆, so α(T∆) = T∆, and this contradicts our original assumption about
α.

Thus b∗ /∈ T∆. Hence by (b), b∗bb
−1
∗ = aib for some odd i. Set â = b∗b; then â2 = ai,

and thus 〈b∗, b〉 = 〈â, b〉 is a dihedral group which contains ∆ with index two. Since
α2 ∈ Inn(S), α(b∗) = α2(b) = ajb for some j, and so α(â) = ajbb∗ = aj(b∗b)

−1 = aj â−1

is in 〈â〉. So a∗ ∈ 〈a〉, 〈b∗, b〉 = ∆∆∗ is dihedral, and it contains ∆ with index two.

Also, T ∆̂ = S since [S:T∆] = 2 and ∆̂ � T∆, and T ∩ ∆̂ = T ∩ ∆ = Z since

T∆ ∩ ∆̂ = ∆. �

This will now be applied to prove the following lemma.

Lemma B.4. Fix a finite 2-group S, and subgroups T,∆0 ≤ S such that ∆0 is dihedral
of order 8, T ∩∆0 = 1, and [T,∆0] = 1. Let U, V ≤ ∆0 be the two noncyclic subgroups
of order four, and set Z = U ∩ V = Z(∆0). Assume NS(TU) = T∆0, NS(∆0) > T∆0,
and either Z ≤ Z(S) or T contains no subgroup isomorphic to D8. Let ∆ E S be
the normal closure of ∆0 in S. Then ∆ is dihedral, T ∩ ∆ = 1, [S:T∆] = 2, and all
noncentral involutions in ∆ are S-conjugate.

Proof. Case 1: Assume first that Z ≤ Z(S). Set ∆−1 = U . We will construct
subgroups ∆0 < ∆1 < · · · < ∆m < S, all normalized by T , such that [S:T∆m] = 2,
and such that for each 0 ≤ i ≤ m,

(i) ∆i is dihedral of order 23+i;

(ii) T ∩∆i = 1 and T∆i = NS(T∆i−1) = NS(∆i−1); and

(iii) NS(∆i) > T∆i.

To simplify notation, we set Si = T∆i whenever ∆i has been defined.

When i = 0, the only condition which is not immediate from the hypotheses is
that T∆0 = NS(U). One inclusion is clear: NS(U) ≥ T∆0 since [U, T ] = 1 and
U E ∆0. If g ∈ NNS(U)(T∆0), then since g normalizes U and T∆0 and CT∆0(U) = TU ,
g ∈ NS(TU) = T∆0. Thus NNS(U)(T∆0) = T∆0, and so NS(U) = T∆0 by Lemma
A.1.

Assume, for some i ≥ 0, that we have constructed ∆i which satisfies (i)–(iii). If
[S:Si] = 2 (recall Si = T∆i), then ∆i E S since NS(∆i) > Si. For g ∈ SrSi,
g /∈ NS(∆i−1) = Si implies that g exchanges the two conjugacy classes of noncentral
involutions in ∆i, and hence the noncentral involutions in ∆i are all S-conjugate. If
i > 0, then the normal closure of ∆0 in ∆i is ∆i−1 which is not normal in S, and thus
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∆i is the normal closure of ∆0 in S (this is trivial if i = 0). So the subgroup ∆ = ∆i

satisfies the conditions in the statement of the lemma.

Now assume [S:Si] ≥ 4. Set Si+1 = NS(∆i) > Si. Let ∆i−1 and ∆∗i−1 be the
two dihedral subgroups of index two in ∆i. Since Si = NS(∆i−1) and ∆i E Si+1,
conjugation by any element of Si+1rSi exchanges ∆i−1 with ∆∗i−1. The product of any
two elements of Si+1rSi thus lies in Si, so [Si+1:Si] = 2, and Si E Si+1 < S.

For each x ∈ NS(Si), since cx(Z) = Z by assumption (Z ≤ Z(S)), Lemma B.2(b)
implies that cx either leaves T∆i−1 and T∆∗i−1 invariant or exchanges them; and leaves
them invariant only if x ∈ NS(T∆i−1) = Si. Thus [NS(Si):Si] = 2. Since Si E Si+1

with index two, this implies NS(Si) = Si+1.

Choose any g ∈ NS(Si+1)rSi+1 such that g2 ∈ Si+1, and set α = cg ∈ Aut(Si+1).
Then α(Z) = Z since Z ≤ Z(S), and α(Si) 6= Si since g /∈ Si+1 = NS(Si). Also,
CS(∆0) = TZ since NS(U) = T∆0 by (ii) when i = 0 (and since CS(∆0) ≤ CS(U) ≤
NS(U)). The hypotheses of Lemma B.3(f) thus hold (but where T in Lemma B.3
corresponds to TZ here). So if we define ∆i+1 = ∆i·α(∆i), then ∆i+1 E Si+1 is
dihedral, [∆i+1:∆i] = 2, T ∩∆i+1 = 1, and T∆i+1 = Si+1. Thus (i) and (ii) hold, (iii)
holds since g ∈ NS(∆i+1), and this finishes the induction step in the proof.

Case 2: Now assume Z � Z(S), and set S∗ = CS(Z) < S. By Case 1, S∗ has the
form described in the lemma: it contains a normal dihedral subgroup ∆ E S∗ (the
normal closure of ∆0 in S∗), T ∩∆ = 1, and [S∗:T∆] = 2. We prove that T contains a
subgroup isomorphic to D8, contradicting the assumptions.

Choose any g ∈ NS(S∗)rS∗ such that g2 ∈ S∗, and set β = cg ∈ Aut(S∗). Then
β(Z) 6= Z. Assume first that β(∆) � T∆, and choose x ∈ β(∆)rT∆. Let A E ∆ be
the cyclic subgroup of index two (A E S∗), and choose b ∈ UrZ. (Recall C2

2
∼= U ≤

∆0.) If cx(b) ∈ ∆rA is ∆-conjugate to b, then cax(U) = U for some a ∈ A, which is
impossible since we showed in the proof of Case 1 that NS(U) = T∆0. Thus b is not
∆-conjugate to xbx−1, so [x, b] generates A, and hence A ≤ β(∆) since x ∈ β(∆) E S∗.
Since A is cyclic of order at least four, this is possible only if β(A) = A, which is
impossible since β(Z) 6= Z.

Thus β(∆) ≤ T∆. Let ψ ∈ Hom(∆, T ) be the composite ∆
β−−−→ T∆ −−� T∆/∆ ∼=

T . Since β(Z) 6= Z and β(Z) ≤ Z(T∆), β(Z) � ∆, and hence Z � Ker(ψ). Since any
nontrivial normal subgroup of ∆ contains Z, this implies that ψ is injective, and thus
that T contains a subgroup isomorphic to D8. �

We also need the following corollary to Lemma B.4.

Lemma B.5. Fix a finite 2-group S, and an abelian subgroup P ≤ S such that
|NS(P )/P | = 2 and P 6E S. Assume either

(a) AutS(P ) � O2(Aut(P )), or

(b) there is a direct factor U ≤ P such that U ∼= C2
2 and 1 6= [NS(P ), U ] ≤ U .

Then there are subgroups ∆0 ≤ ∆ E S such that ∆ is dihedral, ∆0
∼= D8, CS(∆0) ≤ P ,

and the noncentral involutions in ∆ are all S-conjugate. In case (b), ∆ can be taken
to be the normal closure of U in S.

Proof. Set P̂ = NS(P ) < S, fix x ∈ NS(P̂ )rP̂ such that x2 ∈ P̂ , and set Q = xPx−1.

Set Z = [P̂ , P̂ ]. Since P̂ is nonabelian, and P,Q are distinct abelian subgroups of



FUSION SYSTEMS AND AMALGAMS 37

index two, Lemma A.6(c,a) implies that |Z| = 2, and Z(P̂ ) = P ∩Q has index two in

P and in Q. Also, Z ≤ Z(P̂ ).

We first show that (a) implies (b). Consider the subgroups

Θ1 =
{
α ∈ Aut(P )

∣∣ [α, P ] ≤ Fr(P )
}

and Θ2 =
{
α ∈ Aut(P )

∣∣α|Ω1(P ) = Id
}
.

Both are normal in Aut(P ), and they are 2-subgroups by Lemma A.2 and [G, The-
orem 5.2.4], respectively. Thus Θ1Θ2 ≤ O2(Aut(P )). Since AutP̂ (P ) = AutS(P ) �
O2(Aut(P )) by assumption, AutP̂ (P ) � Θ1Θ2. Hence for y ∈ P̂rP , Z = [y, P ] �
Fr(P ) and Z(P̂ ) = CP (y) � Ω1(P ).

Thus there is g ∈ PrZ(P̂ ) such that |g| = 2 and P = Z(P̂ )×〈g〉, and also T < Z(P̂ )

such that Z(P̂ ) = Z × T (T = Ker(f) for any f : Z(P̂ )→ Z(P̂ )/Fr(Z(P̂ ))→ C2 with
Z � Ker(f)). Set U = 〈Z, g〉. Then U ∼= C2

2 , P = TU , and T ∩ U = 1. So (b) holds.

Now assume (b). Thus P = TU where U ∼= C2
2 , T ∩ U = 1, U � Z(P̂ ), and

Z = [P̂ , P̂ ] ≤ U . In particular, Z = U ∩Z(P̂ ), and Z � Fr(Z(P̂ )) since U ∩Fr(P ) = 1.

Hence Z(P̂ ) = T ∗ × Z for some T ∗, so P = Z(P̂ )U = T ∗ × U , and so we can assume

T = T ∗ ≤ Z(P̂ ).

Set V = xUx−1 and ∆0 = UV . Then V � P since x normalizes Z(P̂ ) but not

P = Z(P̂ )U . Thus [U, V ] = Z, so ∆0
∼= D8 since U ∼= V ∼= C2

2 . Also, T ∩ ∆0 =

T ∩ Z = 1, [T,∆0] ≤ [T, P̂ ] = 1 since T ≤ Z(P̂ ), NS(TU) = NS(P ) = P̂ = T∆0, and
NS(∆0) > T∆0 since x ∈ NS(∆0)rT∆0. Since T is abelian, it contains no subgroup
isomorphic to D8. So by Lemma B.4, the normal closure ∆ of ∆0 in S is dihedral, and
all noncentral involutions in ∆ are S-conjugate.

Set R = NCS(∆0)(Z(P̂ )). Then R normalizes Z(P̂ )U = P , so R ≤ NS(P ) = P̂ .

Hence R ≤ CP̂ (∆0) = Z(P̂ ), so by Lemma A.1, CS(∆0) = Z(P̂ ) ≤ P . �
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