FUSION SYSTEMS AND AMALGAMS

KASPER K. S. ANDERSEN, BOB OLIVER, AND JOANA VENTURA

ABSTRACT. We study reduced fusion systems from the point of view of their essential
subgroups, using the classification by Goldschmidt and Fan of amalgams of prime
index to analyze certain pairs of such subgroups. Our results are applied here to study
reduced fusion systems over 2-groups of order at most 64, and also reduced fusion
systems over 2-groups having abelian subgroups of index two. More applications are
given in later papers.

A saturated fusion system over a finite p-group S is a category whose objects are
the subgroups of S, whose morphisms are monomorphisms between subgroups, and
which satisfy certain axioms first formulated by Puig [Pg2] and motivated by conjugacy
relations among p-subgroups of a given finite group. A saturated fusion system is
reduced if it has no proper normal subsystem of p-power index, no proper normal
subsystem of index prime to p, and no nontrivial normal p-subgroup. (All three of
these concepts are defined by analogy with finite groups.) Reduced fusion systems
need not be simple, in that they can have proper nontrivial normal subsystems. They
were introduced by us in [AOV] as forming a class of fusion systems which is small
enough to be manageable, but still large enough to detect any fusion systems (reduced
or not) which are “exotic” (not defined via conjugacy relations in any finite group).

When G is a finite group and S € Syl (G), the version of Alperin’s fusion theorem
shown by Goldschmidt [Gd1] says that all G-conjugacy relations among subgroups of
S are generated by Autg(S) (automorphisms induced by conjugation in G), together
with Autg(P) for certain “essential” proper subgroups of S, and restrictions of such
automorphisms. There is a version of this result for abstract fusion systems (see The-
orem 1.2), which says that a fusion system JF is generated by F-automorphisms of
F-essential subgroups (Definition 1.1). Our goal in this and our other papers is to
study, and to classify in certain cases, reduced fusion systems from the point of view
of their essential subgroups and generating automorphisms.

This point of view was introduced in [OV], where two of us described how fusion
systems over a given 2-group S could be classified by first listing the subgroups of S
which potentially could be essential, using Bender’s theorem on groups with strongly
embedded subgroups. When we try to extend those methods to larger classes of groups,
it is useful to search for pairs of essential subgroups via theorems of Goldschmidt and
Fan classifying certain types of amalgams.
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The situation we want to study is the following. Assume F is a saturated fusion
system over a finite 2-group S, and P, P, < S are distinct F-essential subgroups of
index two in their normalizer. In addition, we assume either that P, and P, have index
two in S, or that Ng(P;) = Ng(P;) < S and Pj, P, are S-conjugate to each other.
Set P = PPy = Ng(F;). Then there are finite groups G; > P such that P, < G,
Gi/P, = D,,, for some odd prime p;, and Autg,(P;) < Autg(FP;). By applying the
classifications of amalgams by Goldschmidt and Fan to the triple (G; > P < Gs), we
get information about S and the P;. In this paper, we only deal with certain cases
(see Theorems 4.5 and 4.6), but these are the cases which occur most often in “small”
examples.

Applications of these results are given in Section 5. The reduced fusion systems over
2-groups of order at most 32, and the groups of order 64 which support reduced fusion
systems, are all listed in Theorems 5.3 and 5.4, respectively. These are preceded by
Propositions 5.1 and 5.2, which list various conditions on a reduced fusion system over
a 2-group S which imply that S is dihedral of order at least 8, semidihedral of order
at least 16, or a wreath product Cy. ¢ Cs for n > 2. Furthermore, in these cases, F is
isomorphic to the fusion system of PSLsy(q) for some ¢ = £1 (mod 8), or of PSL;3(q) for
some odd ¢. For example, by Proposition 5.2(a,b,c,e), these conclusions hold whenever
F is a reduced fusion system over a 2-group S, where either

e S contains an abelian subgroup of index two; or
e [S, 5] is cyclic; or

e there is a subgroup @ < S such that |[Ng(Q)/Q| = 2, Outs(Q) £ O2(Out(Q)), and
either @) is abelian or |Q] < 16.

These results are applied in a later paper by the same authors, where we combine
them with a computer search to list reduced fusion systems over 2-groups of order at
most 2°. They have also been applied by the second author when classifying reduced
fusion systems over 2-groups of sectional rank at most four.

Notation: For any group G, we let G* = G/[G, G| denote its abelianization.
Also, C,, denotes a (multiplicative) cyclic group of order n, and Dom, SDym, and
(Qom denote dihedral, semidihedral, and quaternion groups of order 2™. As usual,
when P is a finite p-group for some prime p, then Q;(P) = (g € P|g? = 1), and
Fr(P) = (a?,[a,b] |a,b € P) (the Frattini subgroup). For any finite group G, O,(G)
is the largest normal p-subgroup of G, and OP(G) is the smallest normal subgroup of
p-power index.

When G acts on a group X, we let C'x(G) be the subgroup of elements of X fixed
by G. When A C G and B C X are subsets, we set [4, B] = (g(z)x"'|g € A, z € B).
When g, h are elements of any group G, we write their commutator [g, h] = ghg~'h™!.
Also, ¢, always denotes the conjugation homomorphism c,(h) = ghg™*.

We would like very much to thank Copenhagen University for its hospitality while
letting the three of us meet there on several occasions. We also want to thank the
referee for reading the paper so thoroughly and making many helpful suggestions.

1. SATURATED FUSION SYSTEMS

When G is a finite group and S € Syl (G), the fusion system of G over S is the
category Fg(G) whose objects are the subgroups of S, and where Morz ) (P, Q) =
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Homg (P, Q) is the set of monomorphisms from P to @) induced by conjugation in G.
An abstract fusion system JF over a finite p-group S is a category whose objects are the
subgroups of S, whose morphisms are monomorphisms of groups including all those
induced by conjugation in S, and where for each ¢ € Homz(P, Q) = Morz(P,Q), ¢
restricts to an F-isomorphism from P to ¢(P) < Q. A fusion system is saturated if
it satisfies certain additional conditions. Rather than listing those conditions here, we
refer to [AKO, Definition 1.2.2] or our earlier paper [AOV].

In particular, for any finite G with S € Syl (G), Fs(G) is a saturated fusion system
(cf. [AKO, Theorem 1.2.3]). An abstract fusion system F over S is called realizable if
F = Fs(G) for some finite group G' with S € Syl,(G), and is called exotic otherwise.

If G is a finite group and p is a prime, then a proper subgroup H < G is strongly
p-embedded in G if p||H|, and for each g € GNH, pf{H N gHg™'|. We refer to [AKO,
Proposition A.7] for a very brief survey of some of the properties of strongly p-embedded
subgroups, and to [Al, §46] or [Sz2, §6.4] for more details.

Definition 1.1. Fiz a prime p, a finite p-group S, and a saturated fusion system F
over S. Let P < S be any subgroup. Set Outz(P) = Autz(P)/Inn(P).

e P7 denotes the set of subgroups of S which are F-conjugate to P; i.e., isomorphic
to P in the category F. For each g € S, g© denotes the F-conjugacy class of

g.
P is fully normalized in F if |[Ns(P)| > |Ns(Q)| for each Q € P”.

e P is F-centric if Cs(Q) = Z(Q) for all Q € P”.

P is F-essential if P < S, P is F-centric and fully normalized in F, and Outxz(P)

contains a strongly p-embedded subgroup.

e P is normal in F (P < F) if P <8 and every morphism ¢ € Homz(Q, R) in F
extends to a morphism o € Homz(PQ, PR) such that p(P) = P.

O,(F) denotes the largest subgroup of S which is normal in F.

Nz(P) C F denotes the largest fusion subsystem over Ng(P) (i.e., the largest
subcategory of F which is a fusion system over Ng(P)) which contains P as a
normal subgroup.

For each ¢ € Aut(S), oF o~ is the fusion system over S defined by

Homyrg-1(P, Q) = {(¢le-1@) o ¥ o (¢le-1p) ™! [ ¢ € Homz(p ™ (P), 9 H(Q)) }
for all P,Q < S.

It follows immediately from the definition of a normal subgroup in F that the max-
imal normal subgroup O,(F) < F is well defined. The notation is, of course, chosen
by analogy with that for finite groups.

We now look at essential subgroups of a fusion system.

Theorem 1.2. Let F be a saturated fusion system over a finite p-group S. Then
each morphism in F is a composite of restrictions of morphisms in Autz(S), and of
morphisms in O (Autz(P)) for F-essential subgroups P < S.

Proof. See, e.g., [O1, Proposition 1.10(a,b)]. In fact, a proper subgroup P < S fully
normalized in F is F-essential exactly when Autz(P) is not generated by restrictions
of morphisms between strictly larger subgroups of S. (See [OV, Proposition 2.5] or
[AKO, Proposition 1.3.3(b)] for more details.) O
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The next proposition follows easily from Theorem 1.2, together with the definition
of a normal p-subgroup.

Proposition 1.3. Let F be a saturated fusion system over a finite p-group S, and fix
Q < S. Then Q < F if and only if it satisfies the following condition: if P =S or P
is F-essential, then P > @ and each oo € Autz(P) sends Q to itself.

Proof. See, e.g., [AKO, Proposition 1.4.5] for details. O

The next proposition is a special case of the model theorem for constrained fusion
systems (but much more elementary than the general theorem).

Proposition 1.4. Let F be a saturated fusion system over a finite p-group S, and let
P < S be a fully normalized F-centric subgroup. Then there is a finite group G such
that Ns(P) € Syl (G), P 4G, Ca(P) < P, and Autg(P) = Autz(P).

Proof. Since P is fully normalized, Nz(P) is a saturated fusion system over Ng(P) (cf.
[AKO, Theorem 1.5.5]). Since P is F-centric, P is normal and centric in Nz(P) and
hence Nx(P) is constrained in the sense of [AKO, Definition 1.4.8]. The result now
follows from [AKO, Proposition I11.5.8(a)]. O

The next two lemmas are our main tools for detecting essential subgroups, or rather,
for proving that certain subgroups are not essential.

Lemma 1.5 ([OV, Lemma 3.4]). Fiz a prime p, a finite p-group S, a subgroup P < S,
and a characteristic subgroup © < P. Assume there is g € Ng(P)N\P such that

(a) [gvp] < @FI'(P), and

(b) [g,0] < Fr(P).

Then ¢y € O,(Aut(P)). Hence P is not F-essential for any saturated fusion system F
over S.

In fact, [OV, Lemma 3.4] is stated in terms of “(semi)critical subgroups” of a finite
p-group S rather than essential subgroups. We refer to [OV, Definition 3.1] for the
definition of critical subgroups, and just note here that by [OV, Proposition 3.2], each
F-essential subgroup (for any saturated fusion system F over S) is critical in S. This
remark also applies to the next lemma, which is a special case of [OV, Proposition
3.3(c)].

Lemma 1.6. Let S be a finite 2-group. Assume that P < S is F-essential for some
saturated fusion system F over S, and also that |Ng(P)/P| > 4. Then tk(P/Fr(P)) >
4, and rk([s, P/Fr(P)]) > 2 for all s € Ng(P)\P.

We next recall the definitions of the focal and hyperfocal subgroups of a saturated
fusion system, defined by analogy with the finite group case.

Definition 1.7. Let F be a saturated fusion system over a finite p-group S. The focal
subgroup of F is the subgroup

foc(F) € (g7 h|g,h € S and h € ¢7)
= (g 'a(g)|ge P< S, P=S or Pis F-essential, a € Autyz(P)).
The hyperfocal subgroup of F is the subgroup
bop(F) = (9 "a(g)| g € P < S,a € O"(Autz(P))).
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The two definitions of foc(F) are equivalent by Theorem 1.2. In the definition of
hyp(F), we could equivalently restrict to automorphisms of order prime to p. When
F = Fs(G) for a finite group G and S € Syl,(G), then foc(F) = SN[G, G] by the focal
subgroup theorem (cf. [G, Theorem 7.3.4]), and hyp(F) = SNOP(G) by the hyperfocal
theorem of Puig [Pgl, §1.1].

Next recall the following definitions from [5a2].

Definition 1.8. Let F be a saturated fusion system over a finite p-group S, and let
Fo C F be a saturated fusion subsystem over a subgroup Sy < S.

(a) Fo has p-power index in F if hyp(F) < Sy < S, and Autx,(P) > OP(Autx(P))
for all P < 5.

(b) Fo has index prime to p in F if Sy = S, and Autz,(P) > O (Autz(P)) for all
P<S.

By [5a2, Theorems 4.3 & 5.4], each saturated fusion system JF over a finite p-group
S contains a unique minimal saturated fusion subsystem O (F) of p-power index (over
byp(F)), and a unique minimal saturated fusion subsystem O (F) of index prime to
p (over S). Furthermore:

Proposition 1.9. For any saturated fusion system F over a finite p-group S,

F=0"(F) < bhyp(F) =S5 < foc(F)=S.

Proof. See, e.g., [AKO, Corollary 1.7.5]. The second equivalence follows upon checking
that the image of foc(F) in S/bhyp(F) is precisely its commutator subgroup (cf. [AKO,
Lemma 1.7.2]). O

2. REDUCED FUSION SYSTEMS

This paper is centered around the special class of reduced fusion systems, which are
defined as follows.

Definition 2.1. A reduced fusion system is a saturated fusion system F such that

o F has no nontrivial normal p-subgroups,
o F has no proper subsystem of p-power index, and

o F has no proper subsystem of index prime to p.

Equivalently, F is reduced if Op(F) = 1, OP(F) = F, and O” (F) = F.

Definition 2.1 was originally formulated in [AOV], and was motivated by Theorems
A and B in that paper. Very roughly, those theorems describe a way to “detect” exotic
fusion systems while looking only at reduced fusion systems.

In this section, we give some conditions on a fusion system which are necessary for it
to be reduced (equivalently, conditions which imply that it is not reduced). We begin
with two very general results.

Lemma 2.2. If F is a reduced fusion system over a nontrivial finite 2-group S, and
E is the set of F-essential subgroups of S, then |E] > 2 and [S:(E)] # 2.



6 KASPER K. S. ANDERSEN, BOB OLIVER, AND JOANA VENTURA

Proof. By Proposition 1.3, S < F if £ = &, while P Q F if £ = {P} for some P. So
F is not reduced (O,(F) # 1) if |€] < 1.

If [S:(€)] = 2, then [Autx(S5),S] < (€) since Autx(S) acts trivially on S/(€) = C.
Since foc(F) is generated by [Autz(S), S| and the [Autz(P), P] for P € &, foc(F)
(€) < S. So F is not reduced by Proposition 1.9.

N

CTIA Y

The next proposition is a simple application of a transfer homomorphism for fusion
systems.

Proposition 2.3. Let F be a saturated fusion system over a finite 2-group S.

(a) Assume there is g € Q1(Z(S))\[S,S] such that each o € Autx(S) sends the coset
g[S, S| to itself. Then g ¢ foc(F), and F is not reduced.

(b) More generally, let U < S be such that each element of Autx(S) sends U to itself,
and U < [P, P] for each P < S of index two. Assume there is g € S\[S,S] such
that [g,S] < U, ¢*> € U, and each a € Autz(S) sends the coset g[S, S] to itself.
Then g ¢ foc(F), and F is not reduced.

Proof. We refer to [AKO, §1.8] for some of the properties of the transfer homomorphism
trfr: S/foc(F) —— S when F is a saturated fusion system over S. Let [g] € S
be the class of g. Since (a) is a special case of (b) (the case U = 1), and was shown to
hold in [AKO, Corollary 1.8.5], we assume g satisfies the conditions of (b).

For P < 8, let trfy: S —— P2 be the usual transfer homomorphism (cf. [AKO,
Lemma 1.8.1(b)]). If [S:P] = 2, then trf3([g]) = [¢%] if g ¢ P, and trf3([g]) = [grgz"]
if g € P and x € S\P. This follows from the construction in [AKO] upon taking
coset representatives {1,z}. Since g*> € U, grgr—' = ¢*[g7', 2] € U, and U < [P, P],
trf3([g]) = 1. Since this holds for each P < S of index two, trf5([g]) = 1 for each
P < § since transfers compose (cf. [AKO, Lemma 1.8.1(d)]).

By assumption, for each o € Autz(S), a([g]) = [g]. So by [AKO, Proposition
1.8.4(a)], trfx([g]) = [g]* # 1 where k = |Outz(9)| is odd. Thus g ¢ foc(F) since
trfz is well defined, so foc(F) < S, O*(F) # F by Proposition 1.9, and F is not
reduced. O]

The next lemma is an application of Lemma A.7, together with the transfer ho-
momorphism for fusion systems (cf. [AKO, §1.8]). Recall that a finite group G is
metacyclic if it has a normal cyclic subgroup H < G such that G/H is also cyclic.

Lemma 2.4. Let S be a finite 2-group, and let F be a saturated fusion system over S.
Let £ be the set of F-essential subgroups of S.

(a) Assume P € & is such that [Ns(P), P] is cyclic. Then there are decompositions
P = ByP; and Outz(P) = T'gxT'y, where fori = 0,1, [P,P] < P, < P, T'; sends P,
to itself and acts trivially on Py_;/[P, P|, Ty has odd order, and I'y = 3. Fither

(i) P is abelian, Py = Con X Con for some n > 1, Cp (Ng(P)) = Cyn and
[Ns(P), P] = Can are both direct factors of Py, and Py N Py =1; or
(11) Png&[Po,Pl]:].,andPQQPIZ[P,P]:Z(Pl).

(b) If the image of Autx(S) in Aut(S/Z(S)) is a 2-group, then Autz(S) = A x Inn(S)
for some (unique) subgroup A < Autx(S) of odd order.
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(c) Assume F is reduced and the image of Autz(S) in Aut(S/Z(S)) is a 2-group.
Assume also, for each P € &, that [Ns(P), P] is cyclic and the factor Py of point
(a) is contained in Z(S). Then Outz(S) =1, and Q,(Z(S)) < [S, S].

Proof. (a) By Lemma 1.6, |Outs(P)| = |Ng(P)/P| = 2. If P is abelian, then by
Lemma A.7, P and Aut ]-‘(P) have decompositions as described in (i). More precisely,
Lemma A.7 says that P, = Cyn X Con and [Ng(P), P| = [Ns(P), P1] = Can for some
n > 1, and hence that [Ng(P), P] is a direct factor of P;. Also, for x € Ng(P)\P,
Cp,(Ng(P)) = Cp () is the kernel of the map P, —— P; which sends ¢ to [z, g], so
P /Cp,(x) = [z, P] = Cyn, and Cp,(x) = Cyn is also a direct factor of P.

Assume P is nonabelian. By Lemma A.2 (applied with Py = [P, P]), the kernel of
the action of Autz(P) on P is a 2-group. Also, Oz(Outx(P)) = 1 (i.e., Outg(P) 4
Outxz(P)), since Outz(P) has a strongly 2-embedded subgroup. Thus Outz(P) acts
faithfully on P2

Set P’ = [P, P]. By assumption, P’ # 1. By Lemma A.7, applied to the Outz(P)-
action on P* = P/P’ there are decompositions P = PP, and Outz(P) = [y x T
such that P, < P is Autz(P)-invariant, Py N P, = P', P;/P’ = Cyn x Con for some
n > 1, I'y has odd order and acts trivially on P;/P’, and I'y = X3 acts trivially on
Py/P'. Also (by the same lemma), [Ng(P), P?*] = [NS( ), P1/P'| = Can, so

Py/[Ns(P), P] = (P1/P')/[Ns(P), P/ P'] = Cyn.

Since [Ng(P), P] is cyclic by assumption, P; is metacyclic.

11

Any [a] € T} & X3 of order 3 lifts to some o € Autz(P), and upon replacing a by o
for appropriate k, we can assume « has order 3. If P; is abelian, then P; & Con X Com
where m > n (since P’ # 1), which is impossible by Corollary A.3(a). So by [Cr,
Proposition 7.6], P, = Qg. Hence P,/P' = C%, and P' = [P, P] = Z(P,) = C,.

Forz € Pyandy € Py, [z,y] = o[z, y]) = [z, a(y)] since | P'| = 2 and « acts trivially
on Py/P'. Hence [z,y 'a(y)] = 1, and [Py, P,] = 1 since [, P| = P;.

(b) Assume that the image of Autz(S) in Aut(S/Z(S)) is a 2-group. Then for each
a € Autz(S) of odd order, v induces the identity on S/Z(S). So for each g € S, there
is z € Z(S) such that a(g) = xzg, and hence ac,a™ = coq) = .

Thus each element of odd order in Autz(S) commutes with Inn(S), so Autz(S) =
Inn(S)Cautr(s)(Inn(S)). Since Inn(S) is 2-centric in Autz(S), Caur(s)(Inn(S)) =
Z(Inn(S)) x A where A has odd order (cf. [BLO1, Lemma A.4]). Thus Autz(S) =
Inn(S) x A.

(c) Let A beasin (b), and set Q@ = [A,S] < Z(S). We first show that @ < F.

Fix P € £, and let P = PyP; and Outx(P) =Ty x I'; be the decompositions of (a).
For each 0 € A, 0(P) = P since [A,S] = Q < Z(S) < P, so 0|p € Autz(P). Also,
[6lp] € Nouyp)(Outg(P)) = Iy x Outg(P) since 6(Ng(P)) = Ng(P), so [0|p] € Iy
since it has odd order. Thus [0, P] < Fy. Hence

Q = [AWS] = [Aa [AWSH S [A,P] S POa
where the second equality holds by [G, Theorem 5.3.6].

Fix § € Autz(P) of odd order, and let 3] be its class in Outz(P). If [5] € Ty, then
since Py < Z(.S) by assumption, 3|p, extends to an element of odd order in Autz(.S) by
the extension axiom (i.e., since Fj is fully centralized), and thus extends to an element
of A. So 5(Q) = Q in this case. If [§] € I'y, then § induces the identity on Py/[P, P]
and on [P, P] (since |[P, P]| < 2), and hence §|p, = Idp, (and B|g = Idg) by Lemma
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A.2. Since Autg(P) acts trivially on Z(S), this proves that all elements of Autz(P)
send @ to itself.

Since this holds for each P € £, @ < F by Proposition 1.3. Hence Q = [A,S] =1
since F is reduced, so Outxz(S) = A =1, and 2,(Z(5)) < [S, S| by Proposition 2.3(a)
(and since F is reduced). O

The next proposition will be greatly generalized in Section 5, as a consequence of
the results in Section 4 using amalgams.

Proposition 2.5. Let S be any finite nonabelian 2-group such that [S, S] is cyclic and
S has an abelian subgroup of index two. Then either S = Don (n>3), SDon (n > 4),
or Con L Cy (n > 2); or there is no reduced fusion system over S.

Proof. Let A < S be abelian of index two in S. By Lemma A.6(a), all elements
in (S/Z(S))~(A/Z(S)) have order two, and A/Z(S) = [S,S]. Since [S,S] is cyclic,
S/Z(S) is dihedral (including the case Dy = C3).

Assume F is a reduced fusion system over S, and let £ be the set of F-essential
subgroups of S. We first show that the hypotheses of Lemma 2.4(c) hold. For each
P e &, [Ng(P), P] is cyclic since [S, S] is cyclic, and hence Lemma 2.4(a) applies to P.
Let Py, P, < P be as in that lemma; thus P = PP, and Py N P, = [P, P].

If P is abelian, it must be maximal abelian since it is centric. So either P = A, in
which case Z(S) = Cp(S) = Cp(Ns(P)) and P/Z(S) = A/Z(S) is cyclic; or PA =S,
in which case PN A = Z(95), so |P/Z(S)| = 2, Z(S) < Cp(Ng(P)) < P, and hence
Z(S) = Cp(Ns(P)). In either case, Z(S) = Cp(Ng(P)) > Py and P/Z(S) is cyclic.

If P is nonabelian, then by Lemma 2.4(a.ii), P, = Qs, [P, P] = Z(P1), and [Py, P,] =
1. In particular, Z(S) < Cp(P,) = By. If Z(S) < Py, then P/Z(S) contains a subgroup
isomorphic to Qs (if Z(Py) £ Z(S)) or C3, both of which are impossible since S/Z(S)
is dihedral. Hence Z(5) = B.

Recall that S/Z(S) is dihedral of order at least four. If |S/Z(S)| > 8, then Aut(S/Z(S))
is a 2-group by Corollary A.3(b). If |S/Z(S)| = 4, then the three subgroups A;, Ay, A3
of index two in .S which contain Z(.S) are all abelian, they are the only proper subgroups
centric in S, and hence the only subgroups which could be in €. If A; € & (recall £ # &
by Lemma 2.2), then by Lemma 2.4(a.i), it contains a direct factor A; = Com X Com
(some m > 1), which in turn contains Cyu,, (S) = Com and [S, S] =[S, A;] = Com as di-
rect factors. Thus Z(S) = Cy,(S) = Ao x Cam and [S, S| are both direct factors of A;,
and so S, S] £ Fr(Z(S)). By Lemma A.6(d), there is no automorphism of S which per-
mutes the A; transitively, and thus the image of Autz(S) in Aut(S/Z(S)) = Aut(C3)
is a 2-group.

The hypotheses of Lemma 2.4(c) thus hold, and so ©(Z(S)) < [S,S]. Since [S, S|
is cyclic, this implies that |Q,(Z(S))| = 2, and hence that Z(.5) is cyclic.

If |Z(S)| = 2, then Z(S) = Q,(Z(5)) < [S,S]. So 52> = (§/Z(S))* = C2, which
implies S is dihedral, semidihedral, or quaternion (cf. [G, Theorem 5.4.5]). If S = Qan,
then by Lemma 2.4(a), for each P € £, P = Qs and Z(P) = Z(S). Hence Z(S) < F
by Proposition 1.3, which contradicts the assumption that F is reduced.

Now assume |Z(S)| = 2™ for m > 2; we will show that S = Com1Cy. If P < S is any
nonabelian subgroup, then since [S, S| is cyclic, Q4 ([S, S]) = Q4 ([P, P]) is characteristic
in P. So if all F-essential subgroups are nonabelian, then §2;([S, S]) is characteristic
in each of them, and hence is normal in F by Proposition 1.3. Since this contradicts
the assumption that F is reduced, there is an abelian subgroup P € £, and we already
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saw that this implies P/Z(S) is cyclic. Since Z(S) is also cyclic, P has rank two, and
hence by Lemma 2.4(a.i), P = Cyn X Con for some n (i.e., Py = 1). Then |Z(S5)] < 27,
|P/Z(S)| < 2" and so 2" = |Z(S)| = 2™. Thus n = m > 2. Also, P/Z(S) = Com is
normal in the dihedral group S/Z(S), and hence P < S. So [S:P] = 2 by Lemma 1.6
(and since rk(P) = 2). Choose any t € S\ P, fix a € P such that aZ(S) generates
P/Z(S), and set b = tat™'. Then a®" " ¢ Z(S) implies 1 # [t,a®" '] = (ba™ )", s0
|ba~'] = 2™ and P = (a,b). Also, tht™! = a since t* € P, so Z(S) = (ab). Let ¢ be
such that t? = (ab)’; then (a~'t)? = 1, and this finishes the proof that S = Cym1Cy. O

In Section 5, as applications of our main theorems, we will generalize Proposition 2.5
by giving different (weaker) conditions on a 2-group each of which implies the conclusion
of Proposition 2.5. For example, by Proposition 5.2(a,b), the same conclusion holds if
S has an abelian subgroup of index two or [S, S] is cyclic.

3. TWO EXAMPLES

For use in Section 4, we determine here the essential subgroups of the simple groups
PSU;(3) and M. At the same time, since reduced fusion systems over wreath products
Cyn 1 Cy play an important role in Section 5 (and in Proposition 2.5), we determine all
reduced fusion systems over such groups.

We begin with the wreath products. Let vo(—) denote the 2-adic valuation: vy(n) = k
if 2%|n and 2+ 4n.

Proposition 3.1. Assume S = (a,b,t) = Com1Cy for some m > 2, where A o (a,b) =
Com X Com, t2 =1, and tat™* = b. Set
Q: (ab,a ,t> gC’Qm X s Dggogm Xy Qg .

(a) If F is a saturated fusion system over S, then the only subgroups of S which could
be F-essential are A and the subgroups S-conjugate to Q. If O*(F) = F, then all
of these subgroups are F-essential.

2m71

(b) Up to isomorphism, there is a unique saturated fusion system F over S such that
O*(F) = F. Also, F is reduced, and is isomorphic to the fusion system of PSL3(q)
for any prime power q such that ve(q—1) = m, and to the fusion system of PSUs(q)
for any prime power q such that ve(q + 1) = m.

Proof. Let F be a saturated fusion system over S, and let £ be the set of F-essential
subgroups of S. If P € £ and |Ng(P)/P| > 4, then rk(P/Fr(P)) > 4 by Lemma 1.6.
Since P N A is abelian of rank at most two and [P:P N A] < 2, this is impossible. So
[Ns(P)/P| = 2.

Assume P # A. Since P is centric in S, Z(S) = (ab) < P. Also, P £ A since
P is centric, and P % A since P ¢ {A,S}. Thus PN A = (ab,a*) for some i, and
P = (ab,a*,a’t) for some j. If a* = 1, then P is abelian with a cyclic subgroup Z(S)
of index two and order at least four, and Aut(P) is a 2-group by Corollary A.3(a).
If |a*| > 4, then Z(P) = (ab) = Z(S) is cyclic and P/Z(P) is dihedral of order
2:[a*| > 8 (all elements in (S/Z(S))\(A/Z(S)) have order two by Lemma A.6(a)), so
Aut(P) is a 2-group by Lemma A.2 and Corollary A.3(b). Thus P can be essential
only if P = (ab,a*,a’t) where |a*| = 2. If j is odd, then (a’t)? = (ab)’ generates
Z(8), P? = Cy x Com, and Aut(P) is a 2-group by Corollary A.3(a). This leaves only
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the possiblity P = (ab,a®" ", a/t) = a?/?Qa~7/? for even j. Thus £ C {A} U Q, where
Q denotes the S-conjugacy class of Q).

Now assume O*(F) = F. Then foc(F) = S by Proposition 1.9. By Corollary
A.3(a) (and since S = Cym x C), Aut(S) is a 2-group, and so Outz(S) = 1. Hence
foc(F) < ([S,S5],€). Since the images of A and of @ are both properly contained in
Sab € = {A} U Q. This proves (a).

Each of the three abelian subgroups of index two in @ is isomorphic to Com X Cy
and contains exactly two elements of order four not in Z(S). Hence @) contains exactly
six such elements, and they generate a subgroup )y which is the unique subgroup of
Q isomorphic to Qs. Since Q = QuZ(S) and Qo N Z(S) = ((ab)>" ") (and Z(S) =
Z(Q)), Out(Q) = Out(Qg) x Out(Z(S)), where Out(Qp) = X3, and Out(Z(5)) is
a 2-group since Z(95) is cyclic. Hence Outz(Q) = 33, and Autz(Q) acts on Qo as
its full automorphism group and acts trivially on Z(S). Thus Autz(Q) is uniquely
determined.

By Lemma A.2, Aut(A)/Oz(Aut(A)) = Aut(A/Fr(A)) = X;. Hence Autr(A) = Xs.
Set ¢ = (ab)™! € Z(S), and let {d, ¥, c} be its Autz(A)-orbit. Thus a’,¥', ¢ represent
the three involutions in A/Fr(A), and any two of them generate A. Also, a'b'c = 1
since Autr(A) fixes a’b'c, and hence ¢ = (a't/) 1.

Since ¢ € Z(S) = Ca(t), ¢; exchanges @’ and V' and fixes c. We can thus assume the
a and b were chosen so that a = a’ and b = &'. So up to an automorphism of S (i.e.,
a relabelling of its generators), Autz(A) is uniquely determined. Thus F is uniquely
determined up to isomorphism by (a) and Theorem 1.2.

Now, O?(F) = F since Outz(S) = 1 (F is generated by O (F) and Autz(S)
by Theorem 1.2). If P < F, then P is contained in all F-essential subgroups by
Proposition 1.3, and hence is contained in their intersection (ab,a®" ). Then P <

(ab) since it is Autz(Q)-invariant, and so P = 1 since it is Autz(A)-invariant. Thus
O5(F) =1, and F is reduced.

If ¢ is a prime power with vy(¢ — 1) = m, then the Sylow 2-subgroups of GLy(q)
are isomorphic to S. Since SL3(¢q) contains a subgroup of odd index isomorphic to
GLs(q), SL3(q) and hence PSL3(q) also have Sylow 2-subgroups isomorphic to S. If
v2(g+1) = m, then by a similar argument, GUs(q), SUs(q), and PSUs(q) all have Sylow
2-subgroups isomorphic to S (cf. [CF, pp. 142-143]). Set G = PSL3(q) or PSUs(q), as
appropriate, and identify S € Syl,(G). Since G is simple, foc(Fs(G)) = SN[G,G] = S
by the focal subgroup theorem (cf. |G, Theorem 7.3.4]), and hence Fs(G) = F. O

We now look at 2-groups of type M.

Proposition 3.2. Consider the group S = A x (r,t), where A = {a,b) = C?, (r,t) =
CZ rar~t =a™t, rort =071 tat™' =0, and tht™' = a. Set R = (A,r) = C? x Cy,
and

Q = (a®,ab,r,t) = (ab~"', a’t) X (q2p2) (ab, a’rt) = Qg ¢, Qs -
For any saturated fusion system F over S, the set of F-essential subgroups is contained
in {Q, R}, with equality if F is reduced. Also, Aut(S) is a 2-group.

Proof. Let € be the set of F-essential subgroups of S. If F is reduced, then |E| > 2 by
Lemma 2.2. So it suffices to prove that £ C {R, Q} for each saturated F.

Fix P € £ Then Z(S) = (a®b*) < P. Assume first that Fr(S) = (a* ab) £ P,
and fix g € Fr(S)\P. Then [g, P] < [g,5] = (a?V?), so |Ng(P)/P| = 2 by Lemma
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1.6, and a?b* ¢ Fr(P) by Lemma 1.5 (applied with © = 1). In particular, since
(ab)?* = (ab™1)? = ab?, neither ab nor ab™! is in P. Hence a® € P, since |[Ng(P)/P| = 2.
Also, P < Cg(a®) = (a,b,r) since a?b* ¢ Fr(P), Ng(P) > (a,b,r) since (a,b,r)/{a? b?)
is abelian and P > (a? b?), and hence [{a,b,r):P] < 2. So up to S-conjugacy, P =
(a,b*,r) or (a,b* br) (recall ab ¢ P). In either case, P = Cy x Dg, so Aut(P) is a
2-group by Corollary A.3(c). Hence P ¢ £.

Thus P > Fr(S), so P < S. If [S:P] > 4, then |P| < 16, tk(P/Fr(P)) > 4 by
Lemma 1.6, and hence P = . This is impossible since P > Fr(S) = €, x Cy, and so
[S:P] =2. If P={a,b,t) or (a,b,rt), then P/[P, P] = Cy x Cy, Aut(P) is a 2-group
by Corollary A.3(a), and hence P ¢ £. So R = (a, b, ) is the only (possible) subgroup
in £ which contains A.

Now assume P = P;; = (ab,a?, a'r,a’t) for i,j = 0,1: these are the remaining four
subgroups of index two in S. Let Zy(P) < P be the subgroup such that Zy(P)/Z(P) =
Z(P/Z(P)). Then Z(P) = (a**) and Zy(P) > {(a? ab). If (i,5) # (0,0), then the
relations

[r,at] = a?, [ar,t] = ab™?, lar,at] = a 'b7!
show that Zy(P) = (a?,ab). So [a, P] < Zy(P), [a, Zo(P)] = 1, and P ¢ £ by Lemma
1.5. Thus Q) = Py is the only possible subgroup in £ which does not contain A.

By the above arguments, () and R are both characteristic in S. So Aut(9S) is a
2-group by Lemma A.2, applied to the sequence Fr(S) < QNR < R < S. 0

With a little more work, one can show that the only reduced fusion systems over S
(as above) are those of Mjs and G1(3). But we leave that for a later paper.

4. DETECTING ESSENTIAL SUBGROUPS VIA AMALGAMS

We are now ready to describe how theorems of Goldschmidt and Fan [Gd2, Fn] on
amalgams can be used to get information about essential subgroups of index two in
their normalizer for saturated fusion systems over 2-groups. Throughout the section,
in the statements of lemmas and in the proofs of Theorems 4.5 and 4.6, we will refer
repeatedly to the following set of hypotheses.

Assume P, P, < P < (G1, G are finite groups such that the following hold:
e Pisa2-group, [P:P] =[PP =2,and P = P\ P,.

(%) e Fori=1,2, P, 4G,;, G;/P, = Dy, for some odd prime p;, and Cg, (P;) <
P

Set P = PN P, and let T' < Pj5 be the largest subgroup which is normal
in both G; and Gs.

Clearly, hypotheses (x) imply that [G;:P] = p; and P, = O9(G;) for i = 1,2. In
particular, in the terminology of Goldschmidt [Gd2], the triple (G1 > P < Gz) is an
amalgam of index (p1, p2).

The following lemma helps to explain the motivation for these hypotheses.
Lemma 4.1. Fix a finite 2-group S and a saturated fusion system F over S.

(a) Assume Py, Py < S are distinct F-essential subgroups of index two in S. Then
there are groups Gh > S < Ga, and odd primes py and py, such that Outg,(P;) <
Outz(F;), and such that hypotheses (x) hold with P = S.
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(b) Let P, < S be an F-essential subgroup which is not normal and has index two in
its normalizer. Set P = Ng(Py) < S, choose x € Ng(P)\P such that z* € P,
and set Py = xPyx~t. Then there are groups Gi > P < Gy and an odd prime
p, such that Outz(P;) > Outg,(P;) and hypotheses (%) hold with p; = ps = p.
Also, x € Ng(T), where T is as defined in (x), and there is an isomorphism

B: Gy =, Go such that Blp = c.|p.

Proof. Assume the hypotheses of (a) or (b), and set P = S in (a). Since each P; is F-
essential (and |Ng(F;)/P;| = 2), Outs(P;) € Syly(Outx(P;)) and is not the only Sylow
2-subgroup. Fix 1 # g € Outg(F;), and let h € Outz(P;) be any other involution.
Then (g, h) is dihedral since it is generated by two involutions, and it has order 2n for
some odd integer n > 1 since 44|Outx(P;)|. Upon choosing an appropriate subgroup
I'; < (g, h), we can arrange that Outg(P;) < I'; < Outz(F;) and I'; = D,,, for some
odd prime p;.

Fix i = 1,2. By Proposition 1.4, there is a finite group G such that P € Syl,(G}),
P, 4 G}, Ca:(F;) < B, and OutG (P;)) = Outz(P;). Let G; < Gf be the unique
subgroup such that P < G; and Outgl( ) = I';. Then these groups satisfy hypotheses
().

In the situation of (b), we can assume that I’y is chosen so that 'y = [c,]T[c,] ™! <
Outz(P,). Choose GG as in (a), and then choose Gy together with an isomorphism
B € Iso(Gy,Gs) such that f|p = ¢;|p. Since T is the unique largest subgroup of
Py which is normal in Gy and Gy, © € Ng(T) since ¢, exchanges P, and P (recall
2 € P = Ng(P)). O

As usual, we say T is centric in a group X > T if Cx(T) < T. In general, our
results using hypotheses (x) split into separate cases, depending on whether or not 7'
is centric in P.

We say that a finite group G is strictly p-constrained for a prime p if O,(G) is centric
in G. The question of whether one or both of the groups G;/T" (under hypotheses (x))
is strictly 2-constrained plays an important role in Fan’s classification of amalgams of

type (p1,p2) [Fn].
Lemma 4.2. Assume hypotheses (x). Then the following hold.

(a) If T is centric in P, then T is also centric in Gy and G.

(b) If O0,,(G1/T) # 1 or O,,(G2/T) # 1, then T is centric in P.

(c) Fori=1,2, G;/T is strictly 2-constrained if and only if O,,(G;/T) = 1.
)

(d) Assume T is centric in P, and let S > P be any finite 2-group such that Ng(FP;) =
P fori=1,2. Then T is centric in S.

(e) Assume T is centric in P, and let S > P be as in (d). Set G; = = Outg, (1),
S = - Outs(T), and G = (G1,Gs, S) < Out(T), and assume S € Syl,(G). Then
05(G) =1, and G acts faithfully on T /Fr(T).

Proof. Let S > P be any finite 2-group as in (d); i.e., such that Ng(P;) = P fori = 1, 2.
Set

= CP(T), G? = CGZ<T) (Z = 1,2), and SO = Cs(T) .
Note that P < P and G? < G| since T' is normal in P and in the G;, and PY € Syl,(GY)
since P € Syl,(G;).
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If pA|GY], then GY is a 2-group, and GY < 05(G;) = P, since GY < G;. If P' =G =
GY, then P° < Pj, and is normal in G; and G, so P° < T by the maximality of T
To summarize:

pdlGY = P'=GY<P and P'=GY'=G) = P°<T. (1)
We next claim that when ¢ € {1, 2},

Op(Gi/T)#1 or P°<T = pdlG]|. (2)
To see this, assume p;||GY|, and fix g; € G? of order p;. Then [g;,T] = 1, while
lgi, P;] # 1 by () (Cg,(P;) < P;). So by Lemma A.2, g; acts nontrivially on P;/T};
ie, (g5, P] £ T. Thus (T, ¢;) 4 G, so O,,(G;/T) = 1. Also, GIT < G; contains the
normal closure of (T, g;) in G;, so GYT > (T, g;), P'T > T, and thus P* £ T
(a) If T is centric in P (i.e., P® < T, then it is centric in the G; by (2) and (1).
(b) Let H; < G; be the subgroup such that H;/T = O,,(G,;/T). If H;/T # 1 and
H,/T # 1, then P° < T by (2) and (1) again. So assume H;/T # 1 and Hy/T = 1.
By (2) and (1), P° = GY < P;. Also, Py < Gy = H, P since

[Pro, Hy| < [P, Hi| < PANH, =T < Py

(recall P,/T is a 2-group and |H;/T| = p;). Since GYNP =P’ = GNP and GY < P,

GINP=P'NP=GNP=G"'NP,y,<G,.
Also, GSN P, < Gy, so GNPy < T by the maximality of T, and the induced map
GYT /T —— Ga/ P> = Ds,, is injective. Then O,,(GYT/T) = 1 since GST/T < Go/T

and O,,(G2/T) = 1, and hence GYT/T = 1 since it is isomorphic to a normal subgroup
of Dy,,. Thus PY < @GY <T,soT is centric in P.

(c) By assumption, for i = 1,2, G;/T is solvable of order 2"p; for some n. Hence the
Fitting subgroup F(G;/T) = O2(G;/T)0,,(G;/T) is always centric in G;/T (cf. [G,
Theorem 6.1.3]). So G;/T is strictly 2-constrained if and only if O,,(G;/T) = 1.

(d) Assume T is centric in P. Then S° < Ng(T) and S°N P = P° < T. Since
Ns(P;) = P by assumption, Ngop.(P;) = PN S°P, = P, so S°P; = P, by Lemma A.1.
Thus Cs(T) = S° < P, so Cs(T) = Cp(T), and T is centric in S since it is centric in
P.

(e) Assume T is centric in P, and hence also centric in Gy, Gy, and S by (a) and
(d). Assume S € Syl,(G), and set @ = Oz(G) < S for short. For i = 1,2, QN G; <
O5(G;) = P;, and hence

Ny (P) = Ng(B)nQP. = PN QP = (PNQ)B. = P, .

By Lemma A.1, this implies Q]Si = ]31-, and hence @) < P.

Thus @Q < Ppy. Hence Q= R= OutRA(T) fO£ some unique R < Pjy such that R > T,
and R < G; (i = 1,2) since Q) = O9(G) < G. Thus R = T by definition of 7', and
Q=1

Since G < Out(T), the kernel of the induced G-action on T/Fr(T) is a 2-group by

~

Lemma A.2, and is trivial since O3(G) = 1. So the action is faithful. O

The next lemma will be needed to handle the cases involving amalgams whose max-
imal normal subgroup is not centric. As usual, when F is a fusion system over a finite
p-group S, a subgroup P < S is strongly closed in F if no element of P is F-conjugate
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to an element of S\ P. For example, if F = Fg(G) for a finite group G, and H < G,
then SN H is strongly closed in F.

Lemma 4.3. Assume hypotheses (), and also that T is not centric in P. Set P = P/T
and G; = G;/T for short, and let F* be the smallest fusion system over P which
contains F5(G1) and Fp(Gs). Assume

F* = Fp(T') for some finite perfect group I' for which P € Syl,(I);

)

b) no nontrivial proper subgroup of P is strongly closed in F*;

(c) G;/O*G,) is abelian for i =1,2; and

(d) (PN[Gy,Gi]) N (PN [Gy,Go]) < [P, Pl.

Then Cp(T)-T = P, and Cq,(T)-T = G; for i =1,2. If, in addition, we define
U=PnO*G;), U=UU,, and Z=UNT,

then U; < P, U < P, [U, T] =1, P=UT, and U € Syl,(T ) for some finite perfect
group T such that Z < Z(T') and T'/Z = T.

Proof. In general, for X < G;or g € G; (i = 1,2), we let X = XT/T or g = gT denote
the image of X or g, respectively, in G;. Write P? = Cp(T) and GY = Cg,(T) for short.
Then GY < G; since T' < G, and hence CT? <G, SoP'=Pn G? is strongly closed in
F5(G1) and F5(G>), and hence is strongly closed in F* = (F5(G1), Fp(Ga)). Since T
is not centric in P by assumption, P° = Cp(T) £ T, so P’ # 1, and hence P° = P by
(b). This in turn implies that GO > P for i =1,2, and hence G? = G; since G, is the
normal closure of P (recall that G;/P; = Ds,,). We have now shown that

Cp(T)T=PT=P and Cqg(T)T=GT=0G; (i=1,2).
In particular, O?(G;) = O*(G?), and hence U; = P N O?(G?) < P°. Set
U =PNn[GY,GY <P, U=UUs<P’, and Z°=U°*NT.
Then U; < U? (see Lemma A.4), and hence U < U*® and Z < Z°.
Now, U; = PNO*(G;) = PN|[G;,G;] = U?, where the first and third equalities hold
since P > T, and the second holds by (¢) and Lemma A.4. Hence
6 = ﬁl@ = <ﬁ N [él,él],ﬁ N [ég,ég]> = fOC(.F*) = fOC(.Flg(F)) = ﬁ,
where the third and fifth equalities hold by the focal subgroup theorem (cf. [G, Theorem

7.3.4]) applied to Gy, Go, and I' (and since T is perfect by (a)). Thus UT = P. So
after taking intersections with P® = Cp(T') and recalling that U = U,U, < PY, we get
UZ(T) = P° and hence

U, U] = [P", P°].

Assume u = wyug € TNU® = Z(T) NU®, where u; € U?. Then v = 1 and u; €
PN[Gi,Gi], so a1 = uy " € [P, P] by (d). Thus u; € P°N[P°T, P°T|T = [P°, P°)Z(T)
(recall that [P°,T| = 1). Write u; = g;t; where g; € [P°, P°] < Uf and t; € Z(T)NU?.
Since Z(T)NU? = Z(T)N|[G?, GV = Z(T) N [P°, P, the last equality by Proposition
A.5, we see that g1ge, t1, and ty all lie in Z(T') N [P°, P°]. This proves that

Z*=TnU*=Z(T)N[P, Pl =Z(T)Nn[U,U)<TNU = 7.
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Hence Z = Z*, since we already saw that Z < Z°.

Let 7 € H*(P; Z(T)) and 7; € H*(Gy; Z(T)) be the classes of the central extensions
PY and GY, respectively. Thus 7 = 7| 5, 50 T is stable with respect to fusion in G;, and
hence is stable with respect to the fusion system F*. Since F* = F3(I') by (a), 7 is
the restriction of a unique element 7~ € H*(T; Z(T)), where T acts trivially on Z(T)
(cf. [CE, Theorem XII.10.1]). Let I' be the corresponding central extension of Z(T)
by I'. Thus P° € Syl,(T).

Set I = [T, ] Since F/Z( ) = T is perfect, T' = T~ -Z(T) where [T, Z(T)] = 1, so
I'=[[,T] = [[,T]. Thus [ is perfect. Since P° € Syl,(T'), we have

Z=2"=Z(T)N[P°, P =Z(T)n[,T] = Z(T)NT,

the third equality by Proposition A.5. Recall that P = UZ(T). Hence P°/U
Z(T))Z =TT, and so U € Syl,(I").

(I

We recall the terminology which will be used in the statements of our main theorems.
By an amalgam is meant here a triple of groups G = (G; > H < G3). A (proper)
completion of G is a group G, together with injections p;: G; —— G, such that pi |y =
p2lr and G = (p1(Gy), p2(G2)). The universal completion is the amalgamated free
product G4 ;kl (Go. When H has prime index in GG; and in G5, then the amalgam G is
primitive if no nontrivial subgroup of H is normal in GG; and in Gy. An isomorphism
of amalgams from (G; > H < G3) to (Gy > H* < G3) is a triple of isomorphisms
a: H —=- H* and Bi: Gy N G such that f1|gp = a = Ba|n.

Lemma 4.4. For each n = 1,...,6, let G; = G\, Gy = G, and T = T™
be the groups listed in case ( ) of Table 4.1. Then there is a primitive amalgam
(Gy > S < Gy) with completion T, where S = S™ € Syl,(G;) and [G:S] = 3 for
1 =1, 2 and this amalgam 1s uniquely determmed up to isomorphism. Set F™ =

< (n) s(n (ng) >> :

(a) For eachn =1,3,5, '™ can be identified with a subgroup of index two in T
in such a way that the amalgam (6*5”) > S < één)) is contained in (G (nt)
St < éé”“)) with index two, and the normal closure of S™ in Gi equals
G fori=1,2.

(b) For each 1 <n <6, if Q < S™ is strongly closed in F™, then either Q = 1 or
Q= S"™, orn is even and Q = S}

(c) Forn =1,3,5 S™ € Syl,(T™) and F™ = Fgo(T'™). (This also holds when
n=2,4,6, but we will not need that.)

n+1)

Proof. These are the amalgams denoted G; and G} for i = 3,4,5 in [Gd2, Table 1]. In
all but the first case, Goldschmidt’s choice of completion is the same as the one listed
here in Table 4.1. (Note that Aut(Us(3)) = G3(2).) In case (1), Goldschmidt lists
L3(2) as a completion, but Ag is easily seen to be a completion for the same amalgam.

The uniqueness of the amalgams (for given G; and I') follows from the classification in
[Gd2, Theorem A].
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(G1,G) = r U= ||z||[S:UT]

D 1 1

(1) (247 24) AG 8
Q16 2 1
D 1 2

(2) (Cy x X4, Cy X Xy) DI i
Q16 2 2
(3) ((QS XCQ C4)‘237 Cz Do 23) U3<3) C4 2 CQ 1 1
(4) | ((Qs X, Qs) % X3,C% x Dia)' [ Aut(Us(3)) || Ci2Cy | 1| 2
! Syl, (M 1 1

(5) | ((Qs xc, @s) x B3, CF % D) M, vl (M)
SyIQ(QMlz) 2 1
(6) ((QB X, Qg).Dia, Aut(My) Syly(Mis) | 1 2
CZ bl ((022 X 03) bl Cg)) Sy12(2M12) 2 2
TABLE 4.1

(a) This follows from Goldschmidt’s construction of the amalgams [Gd2, 3.5, 3.7, 3.8],
and also by a direct inspection of the groups in question.

(c) In each case, F™ C Fy(T') since I' is a proper completion of (él >S5 < ég) To
prove the opposite inclusion, it suffices to show that

(i) Py = O(G) and Py = O,(G5) are the only (possible) F(I')-essential subgroups
of S;
(i) Outg (P;) = Outr(P;) for i = 1,2; and
(iii) Aut(5) is a 2-group.

Point (i) is clear when n = 1 (the P; & C% are the only subgroups of S = Dg whose
automorphism group is not a 2-group), and was shown in Propositions 3.1 and 3.2 when
n = 3 and b, respectively. Point (ii) is shown in [A2, Lemma 5.3(2)] when n = 5 and
i = 1, and follows in all of the other cases since Aut(P;)/Oz(Aut(P;)) = X3 by Lemma
A.2. Point (iii) follows from Corollary A.3(b,a) when n = 1,3, and from Proposition
3.2 when n = 5.

(b) When n = 1,3, 5, it suffices by (c) to show that S contains no proper nontrivial
subgroup which is strongly closed with respect to I'™. This was shown by Foote
in [F't, Corollary 1]. Note that while Foote’s theorem depends on the classification of
finite simple groups, his proofs that these particular groups do not have strongly closed
subgroups does not (see [Ft, 2.8, 2.14, and p. 601]).

When n is even, this follows from point (a), point (b) for n—1, and the observation
that no central subgroup of order two in S is strongly closed. U

Note that the last three columns in Table 4.1 were not used in Lemma 4.4. Their
significance will become clear in the statement of the following theorem.

'The groups Gy in cases (4) and (5) are not isomorphic. See [Gd2, Table 1] for more details.
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Theorem 4.5. Let F be a saturated fusion system over a finite 2-group S, with distinct
F-essential subgroups Py and P, of index two in S. Then there are finite groups Gy >
S < Gy such that for i =1,2, P, < G;, G;/P; = Outg,(P;) = Dy, for some odd prime
pi, and Autg, (P;) < Autz(P;). Let T < Py N Py be the largest subgroup normal in both
G1 and Go. Then these groups satisfy hypotheses (x) with P = S.

If T is not centric in S, then p1 = ps = 3, and (G1/T > S/T < G5/T) is one of the
amalgams listed in Table 4.1. Set

U =SNO*G) (i=1,2), U = U,Us, and Z=UnNT.
Then U 4 S, [U,T)=1; and G; = G;/T, U, Z, and [S:UT] are as listed in Table 4.1.

Proof. Set P = S. By Lemma 4.1(a), there are groups G; > P < G as described in
that lemma, such that hypothesis (x) is satisfied. This proves the assertions in the first

paragraph. Let T be as in (%), and set G; = G;/T and S = S/T.

Assume T is not centric in S. By Lemma 4.2(b,c), O,,(G;) = 1, and G is strictly 2-
constrained, for i = 1,2. So by a theorem of Fan [Fn, Theorem 1], either (G > S < G3)
is one of the amalgams listed by Goldschmidt in [Gd2, Table 1], or it is the %Fy(2)'-
or *Fy(2)-amalgam (points (2) and (3) in [Fn, Theorem 1]). It cannot be either of the
last two, since that would require that G;/O5(G;) = Sz(2) = C5 x Cy for t = 1 or 2
(see, e.g., [Wi, Theorem 1], or the discussion in [Car, §8.5] of the Levi decomposition
of parabolic subgroups of groups of Lie type). Hence it is one of the six amalgams
listed in Table 4.1, since the others listed by Goldschmidt involve groups which are not
strictly 2-constrained.

Assume we are in case (n) in Table 4.1. When n is odd, we apply Lemma 4.3.
Conditions (a) and (b) in the lemma were shown in Lemma 4.4(c,b), respectively, and
(c) and (d) are easily checked case-by-case. So by that lemma, [U,T] = 1, UT = S, and
U € Syly(T) for some finite perfect group I such that Z < Z(T') and I'/Z = T. Here,
' = Ag, Us(3), or Mo, when n =1, 3, or 5. These groups have Schur multiplier Cg,
1, and Cy, respectively (see [Al, (33.15)], [Gr, Theorem 2|, and [Mz]). Hence |Z| < 2,
with equality possible only when n =1 or 5.

When n is even, then by Lemma 4.4(a), there are subgroups G; < G;and S < S of
index two, all containing T, such that S = SNG;, and such that (GI/T > S/T < GQ/T)
is an amalgam of type (n— 1). Hence U; = SNO*(G;) = SNO%(G;), and so U = U, Us
plays the same role for the new amalgam as for the orlglnal one. Also, (%) holds for
(G1 >S5 < Gg) and T is the largest subgroup normal in G4 and G since the quotient
amalgam is primitive. If T" were centric in S , then it would be centric in the Gi by
Lemma 4.2(a), and since T' is not centric in S, T-Cs(T) = T-Cg,(T) > T would be a
strictly larger subgroup normal in the G;. Since this contradicts the choice of T, we
conclude that 7' is not centric in S and hence that the result follows by the argument
in the last paragraph applied to (G1 > S < Gg) O

Theorem 4.5 will be used when looking for pairs of essential subgroups of index two
in §. We next turn to the problem of identifying essential subgroups which have index
two in their normalizer but are not normal. The idea is to apply the classification of
amalgams by Goldschmidt and Fan to a pair of essential subgroups which are conjugate
in S, and have index two in their common normalizer.

Theorem 4.6. Let F be a saturated fusion system over a finite 2-group S. Let P, < S
be an F-essential subgroup which is not normal in S, and such that |[Ns(Py)/P| = 2.
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Set P = Ng(P) < S. Choose x € Ng(P)\P such that z* € P, and set P, = x Pz~ !,
Then there are finite groups G; > P < G9, an odd prime p, and an isomorphism

B: Gy —— Gy such that B|p = ¢y € Autsg(P), and fori=1,2, Outg, (P;) < Outg(F),
P, 4G, and Outg, (P;) = G/ P, = Dy,. Let T < Py N Py be the largest subgroup which
1s normal in G1 and in Gsy.

(a) If T is not centric in S, then p = 3. Set Uy = PN O*G;) < P, U = U,U,, and
Z=TnNU. Set W =Fr(U), S, = Ns(W), and let A be the normal closure of U
i Sy. Then the following hold.

(i) [T,U] =1; and either U; = C%, U = Dg, and Z = 1; or U; = Qg, U = Qs
and Z = Z(U).

(ii) There is a subgroup T®* < P such that T <T* < PLN Py, [T*:T] <2;
(ii.l) B=TU; andT*NU =TNU=Z; and
(ii.2) [S.:T°A] = 2, Cs.(Uy) = T*Uy if U = Dg, Cs.(Uy) = T* if U = Qus.
Also, G;/T, |Z|, U;, U, A, [T*:T), and [T*,U] are as described in Table 4.2.

(b) If T is centric in P or (equivalently) centric in S, then [S,S] is nonabelian,
O3(Outx(T)) =1, and Out£(T) acts faithfully on T /Fr(T).

(c) In the situation of (a), if [S, S] is abelian, or if T*/Z is abelian, or more generally
if T* contains no quaternion subgroup of order 16 and T*/Z contains no dihedral
subgroup of order 8, then S, = S.

ar=iz\v=u=] a= [ |Eu)
>, | 1| 2| Dy | Do, n>3] 1 1
Xy 2 | Qs | Qe | Qan, n >4 1 1
SuxCy| 1| €2 | Dy | Don, n>3] 2 1
YyxCy| 2 | s | Qi [Q2n, n >4 2 Z
TABLE 4.2

Proof. By Lemma 4.1(b), there are finite groups G; > P < G; such that P; < G|,
G/ P; = Dy, for some odd prime p, Outg(P;) < Outg,(P;) < Outz(F), and S|p = c.|p
for some f € Iso(Gy,Gs). Thus (%) holds with p; = py = p. Also, z € Ng(T'), where
T < P, N P, is the largest subgroup normal in GG; and Gb.

(a) If T is not centric in S, then it is not centric in P by Lemma 4.2(d). Hence
the G;/T are strictly 2-constrained by Lemma 4.2(b,c). By [Fn, Theorem 1], they are
among the groups listed in [Gd2, Table 1], and hence are isomorphic to ¥4 or Cy x 34
(and p = 3).

Case 1: G;/T = ;. We apply Lemma 4.3 with I' = Ag (see Table 4.1).
Conditions (a) and (b) follow from Lemma 4.4(c,b), and conditions (c¢) and (d) are
easily checked. Recall that U; = PN O*(G), U = U Uy, and Z = T NU. By Lemma
43,[T,Ul=1land P =UT;and U € Syb(f), where I'is a finite perfect group such that
Z < Z(T') and I'/Z = Ag. Thus T is isomorphic to Ag & PSLy(9) or its 2-fold central
extension SLy(9) (cf. [Al, 33.15]), and U = Dg or Q1. The image of U; in P/T = U/Z
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is a Sylow 2-subgroup of O*(G;/T) = Ay, so P,/)T = O5(G;/T) = U;T/T = C%, and

thus P, = U;T. Since each nontrivial subgroup of ()14 contains its center,
either U = Dg, U; 2 C5, and Z = 1; or U = Qq4, U; = Qg, and |Z| = 2.

Set T* = T. We have now proven (i) and (ii.1) in this case, and proven the information
on the first two lines in Table 4.2, except for the facts 1nvolv1ng A.

Case 2: G;/T = Cy X ¥4. By Lemma 4.4(a), there are subgroups G; < Gy,
P < P, and P < P of index two, all containing 7" and satisfying (x), such that

G, >P< Gg, P = Og(Gi), and (Gl/T > P/T < GQ/T) is an amalgam of the type
handled in Case 1. Also, U; = O2(G;) N P = O*G,) N P; (i.e., U; and U play the
same role for the smaller amalgam as for the original one), and T is not centric in P
by a similar argument to the one used at the end of the proof of Theorem 4.5. So the

conclusions in Case 1 hold after replacing P and P; by Pand P. In particular, (i)
holds.

Let T*/T < P,/T = (3§ be the subgroup of order two which is fixed by the
conjugation action of Gy/P; = ¥3. Then P /T = (T*/T)-(TU,/T) and P,/T =
(T*/T)-(TU,/T) (but note that T /T is not fixed by the action of Autg,(P;) on Py/T).
So P, =T*Uy, P, =T°Usy, and T*NU =T NU = Z. This finishes the proof of (ii.1).

Now, [T*, U] <T*NU = Z since T* and U are both normal in P. Hence [T*, U] =1
if |Z] = 1. Now assume |Z| =2, U = Q4, and W = Fr(U) = Cy, and fix g € T*\T.
Since Z is central in U, [g,—] is a homomorphism from U to Z, and so [g, W] = 1.
Also, gT € Z(G,/T) by definition of T°. Choose a € G; such that a7 has order
three in G1/T and W # aWa™!. Then aga™' € ¢gT, aWa™! < PN O*G,) = Uy,
and [g,aWa™'] = [aga™',aWa™'] = 1 since [T,U] = 1 by (i) and [g, W] = 1. Since
Uy = (W,aWa™'), we conclude that [T*, U] = [g,U;] = 1.

By a similar argument, there is ¢’ € Po~\T such that ¢'T € P,/T = C3 is the
involution fixed by the action of Go/Py = 3, and such that [¢/,Us] = 1. Then ¢T
and ¢'T" are both in the center of P/T = Cy x Dg, not in [P/T, P/T| = WT /T, and
gT # ¢'T since otherwise (T, g) would be normal in G; and in Gy (contradicting the

maximality of T'). So ¢’ € gwT for some w € W~Z. Thus [gw,Us] = 1, and since
[w,Us] = Z (w has order four in Uy = Qs), [T°,U] = [g,Us] = Z.

This finishes the proof of the information in Table 4.2, except for the facts involving

A.

Both cases. Suppose U = Dg. Then W = Z(U) has order two, so W < Z(S,).
Also, T*U = P = Ng(T*U;) = Ng,(T*U;) since P, = T*Uy; and © € Ng, (U)NT*U.
Hence the hypotheses of Lemma B.4 are satisfied with U, T, and S, in the roles of A,
T, and S. So by that lemma, A < S, is dihedral, 7* N A = 1, [S.:T*A] = 2, and all
noncentral involutions in A are S,-conjugate. Fix y € UyN\Z(U). For g € S,, ¢,4(y) is
A-conjugate to y if g € T*A (recall [T, U;] = 1), so ¢,(y) lies in the other A-conjugacy
class of noncentral involutions if g ¢ T*A. Thus Cg,(Uy) = Crea(Uy) = T*U;.

If U= @46, then by Lemma B.4 applied to U/Z < S./Z, AJZ < S./Z is dihedral,
T*NA =27, [S.:T*A] =2, and all noncentral involutions in A/Z are S,/Z-conjugate.
Since all involutions in A/Z are S,./Z-conjugate to elements of U;/Z where U; = Qs,
there are no involutions in ANZ, and A is quaternion. Since [T, U;] = 1, and since
the non-normal subgroups of order four in A are S,-conjugate, a similar argument to
that used in the last paragraph (applied with y € U;~\Fr(U)) shows that Cs, (U;) =
CT-A(Ul) =17T°.
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This proves (ii.2), and the description of A in Table 4.2.

(c) Assume S > S,, so Ng(Si) > S, by Lemma A.1. Fix y € Ng(S,)~\S, such that
y? € S,. Set A* = yAy~t, Z7* = yZy=!, W* = yWy~ !, and N = AN A*. The
subgroups A and A* are both normal in S,, so N < S, is normal in each of them,
and [A,AY] < N. If Z =1 (if A is dihedral), then W* # W, W* < Z(S,) (since
W < Z(5,)) and hence W* £« A, and N = 1 since each nontrivial normal subgroup
of A* contains W*. Thus [A* Al =1, A* < Cs,(A) < T*W, and thus T* = T*W/W
contains a dihedral subgroup of order 8. Also, since the commutator subgroup of (A, y)
contains all elements of the form ¢g~'(ygy=?!) for g € A, it surjects onto A under the
projection from A-A*, and thus is nonabelian. So [S,S] is nonabelian in this case.

If |Z| = 2 (if A is quaternion) and Z* # Z, then a similar argument shows that
A* < T* and hence T*® contains a quaternion subgroup of order 16. If Z* = Z, we
apply the argument in the last paragraph to the conjugation action of y on S,/Z, where
y(W/Z)y=' # (W/Z) by assumption. Thus [A* A] < Z, so A* < Cs, (U)W =T*W
since Ker[Aut(A) — Aut(A/Z)] 2 C3 is generated by Auty (A) and an automorphism
which is the identity on U;. So in this case, T*W/W = T*/Z contains a dihedral
subgroup of order 8. In both cases, [S,S] is nonabelian by the argument used in the
last paragraph.

(b) If T is centric in P, then it is centric in S by Lemma 4.2(d), while the converse
is immediate. Assume both of these hold.

If T" is not fully normalized, then there is some ¢ € Homz(Ng(7'), S) such that ¢(7T')
is fully normalized (cf. [AKO, Lemma 1.2.6(c)]). Upon replacing T by ¢(T), P; by
©(P;), P by ¢(P), etc., we can assume 71" is fully normalized (and (x) still holds and T
is still centric in P).

Set S = Outg(T), G; = Outg, (7)), and similarly for subgroups of 5, and set G =
(Gy, G5, 5) < Outz(T). Then S e Syl,(G) by the Sylow axiom. Set V = T/Fr(T),
written additively, and regarded as an Fo[Out(7")]-module. By Lemma 4.2(e), O2(G)

1 and G acts faithfully on V. Hence O(Out#(T)) = 1, and by Lemma A.2, Outz(T)
acts faithfully on V.

It remains to show that [S, S] is nonabelian. Set Vg = [S, V]. Since every element of
S lifts to an element of S, and every element of V; lifts to an element of [S, 5], it will
suffice to show that [3, S] acts nontrivially on V. Assume otherwise: assume [S, S] acts
trivially on Vy. If g € [S S] then for each v € V| g acts trivially on [g,v] = gv—v € V,
so (¢ — 1)v = (g —1)%v =0, and ¢g*>v = v. Thus g*> = 1 since S acts faithfully on V.
It follows that [S, S] is clementary abelian.

If G1 > Gg are strictly 2-constrained, then by the argument used in the second
paragraph in the proof of Theorem 4.5, (@1 > P < @2) must be one of the amalgams
listed in Table 4.1. Hence P = Dg or Dg x Cy (the only cases in the table with
G, = G,), and P, = OQ(G) ~ C2 or C3, respectively. Note that P = Z(P)
elther case. Choose z; € Pl\P12 Then z; is S- conjugate to some xy € PQ\P]_Q, and
225" € [S, 5] has order four. So this case is impossible.

Thus Gy = G2 are not strictly 2-constrained. By Lemma 4.2(c), p(@i) # 1 for
t=1,2. Thus [R, O (G )] = 1 since both are normal in G (and have relatively prime

order), so P12 < G for i = 1,2. Hence P12 < Gy, and Pjp = T by definition of T'. In
other words, Py = 1, P =~ (5, and so P Cz.
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Let a; = (, be the generator, and let g € O (Gl) be an element of order
p. Thus G1 = (a1,a9,9) = Dy, (9,a2) = Dy, and [g,a1] = 1. Set t = [¢,] € S
(recall that 2 was fixed in the statement of the theorem). Then ta;t™" = az_; and
t? ¢ P so tajas = ajast. By assumption, and since a,ay € [S S] [aas, Vo] = 0 (recall

Set W = [g,V]; W # 0 since G, acts faithfully on V. We claim that

Cw(az) = [az, W] and l[a1, W] =0 (1)
The first statement holds in general for faithful Fy[Dyy]-modules: Cy (az) > [aq, W],
[ag, W] = (Id — a2) (W) = W/Cw(az), and Cy (az) NCw(gaz) = Cw({g,az)) = 0 imply
dim(Cw (az)) = 3 dim(W) and hence Cyy(az) = [as, W]. To prove the second, set
WO = [al,W]. We just showed that CWo<a2) = [CLQ,W()], and [CLQ,W()] = [CL16L2,W0] S
[alaz, VO} = 0. Thus as acts trivially on Wy, and hence W, = 0.

Since W = [g, V] is a G;-invariant direct summand of V, W N [ay, V] = [ay, W] = 0
by (1). Soif v € W N¢(W), then ay(v) = v and v € Cyw)(ar) = [ar, t(W)] by (1)
again, and so v € W N [ay, V] =0. Thus W N¢(W) = 0. So if we choose any w € W
such that as(w) # w, then t(w) — w € [S, V] = V,, and hence

aras(t(w) —w) =t(w) —w = w— ajaz(w) = t(w) — tajaz(w) € WNt(W) =0
(recall that tajas = ajast). Thus ai(w) # ajas(w) = w, which contradicts (1). O

5. SOME APPLICATIONS

We finish the paper with some applications of Theorems 4.5 and 4.6. Following the
terminology of [G, § 16.7], we say that a 2-group S is wreathed if S = Com { C5 for some
m > 2. These groups arise as Sylow 2-subgroups of GLy(q) and (P)SL;(q) when ¢ =1
(mod 4).

Proposition 5.1. Fiz a finite 2-group S containing a normal subgroup A < S which
is dihedral or quaternion of order at least 8. Assume

(a) for some dihedral or quaternion subgroup Ay < A of order 8, Cs(Ay) is abelian;
and

(b) two of the three subgroups of index two in A are S-conjugate.

Then either S s dihedral, semidihedral, or wreathed, or there is no reduced fusion
system over S.

Proof. We first fix some notation for elements and subgroups of S. Let A < A be the
unique cyclic subgroup of index two in A which is normal in S (A is characteristic in A
unless A = Q). Set Z = Z(A), and let W < A be the subgroup of order four. Fix a
generator a € A, and fix b € AgNA. Thus A = (a,b) and Ay = (W, b). Set Ay = (a?),
and set T'= Cg(Ap). To summarize these definitions for later reference,

7 < Ay < A< A 45, ,_E/IC/:SA, A():(Wb), T:CS(A())

=Z(A) T =2y =(a) =(ab)
By (a) and (b), we are in the situation of Lemma B.3. In particular,

jiseven if geTA

S:TA] =2 d VgeS, gbg ' =a’bwh 1
[ ] a 9 €25 959 @0 WAELe {jisodd if g ¢ TA ()
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by Lemma B.3(b). Note also that

i€dZ+1 if ge Cs(W)

Vges, “1=4" wh
g2 90 =@ WAGe {¢e4z—1 it g & Cs(W).

We claim that the following hold.
TAy<9S, S/TAy=Ds, and Z(S/TAy) =TA/TA,. (3)
[S,S] is abelian, and [S, S] = (A, [y, T]) for each y € S\TA. (4)
[S,8]=A = VgeS\Cs(W), Cra(g)-A=TAand |Cra(g)| =1|T]. (5)
Point (3) and the first statement in (4) are shown in Lemma B.3(c,d). Since [S,S] >

A by Lemma B.3(a), S = (A, T,y) for y € S\TA, and T is abelian, [S,S]
([A,S], [y, T]) = (A, [y, T]). This proves the last statement in (4).

To see (5), fix g € S\Cs(W) and t € T. By (2), gag~! = a**~! for some k € Z.
Also, t71gt = a’g for some j since [S,S] = A, and j is even (a/ € Ap) since TAy < S
by (3). Choose i such that i(1 —2k) = (j/2) (mod |A]). Then a’ga~% = a’g = t1gt, so
ta® € Cra(g). This proves the first statement in (5), and the second then follows since
CTA(g) NA= C’A(g) =7Z=TnA.

Set S = S/TAy (TA;, < S by (3)). We write g = gTAy € S for g € S, and
Q = QTAy/TA, for Q@ < S: the images of g and @ in S.

Fixz € S\TA. Upon replacing x by bx if necessary, we can assume x € Cs(W)\TA.

Also, zbx~! = a’b for some odd j by (1), and upon replacing z by an appropriate ele-
ment of zA, we can assume zbr~! = ab. By (2), zar™! = a' for some i € 1 +4Z. Then

22bxr~% = a't1b where i + 1 € 2+4Z; 2*> € TA since S/TA = S/Z(S) = C? by (3); and
hence 22 € T Aga. To summarize,

S=(TAbz), Cs(W)=(TAzx), zbz'=ab, z*=aecs. (6)
Assume F is a reduced fusion system over S, and let £ be the set of F-essential
subgroups of S. Define
bOISC, blzb, bQIbl’, HZ:<TA,bl>, EZ:{PEE‘PSHZ}

for i = 0,1,2. Thus Hy = Cg(W) and H;, = TA. We will prove the following
statements.

E=EUEUE, and P €& = the normal closure of P is H;. (7)
& # 9 = S is wreathed. (8)

E# o = [S,5] =A,3b* € TAby s.t. (A, %) dihedral or quaternion.  (9)
Eo=9 = & # 3T, E # T, and S is dihedral or semidihedral. (10)

The proposition then follows from (8) and (10).

Points (7), (8), and (9) will be shown in Steps 1 and 2: essential subgroups of index
two in S will be handled in Step 1, and the others in Step 2. It is in Step 2 that
Theorem 4.6 plays a crucial role. Point (10) will be shown in Step 3.

Step 1: Fix P € £ such that [S:P] = 2. Thus P > [S, 5] > A.

We consider seven cases. In the first four, we show P cannot be F-essential using
Lemma 1.5 applied with © one of the following characteristic subgroups ©; < P:

0, =Z(P), ©,=(g¢ P| [P:Cp(g)] <2), or O3=(B(A) ‘ B € Aut(P)) .
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By Lemma 1.5, P ¢ £ if for some i = 1,2,3 and some g € S\P, [g, P] < ©,Fr(P) and

Since P > A, either P % T, or P is one of the H,. In the first two cases below,
P # T, and we set Ty = PN T, choose t* € T\Ty C S\ P, and let t,t € {1,¢°} be

such that P = (TyA, bty, xty). Since [zty, bty] = [z,b] = a, [xty, bt1] € [S, S] N T Aga.
e P} T, [t,P] < AZ(S), and ® = ©; = Z(P). Then P = S, so Z(P) <
Z(8) =TAby (3), and Z(P) < TA. Thus [t*, Z(P)] < [t*, TA] < Ay < Fr(P).
Also, [t*, P] < [t*,S] < T'Ap since t* € TAy < S by (3). So by assumption
(and since Z(S5) < Cs(Ao) =1T), [t*, P] < TANAZ(S) = Z(S)Ay < O:Fr(P).
Thus P ¢ £.

e P T, [t,P] £ AZ(S), and ® = ©,. Then [t*,P] < TA;N[S,S] since
t* € TAy < S. Since [t*, TA] = [t*, A] < Ag (recall (T,b) is abelian) and
t*,P] £ AZ(S), [t*,z] = [t*,ats] = sa® for some s € To~AZ(S). Then
[s, A] = 1 since sa® € [S,S], A < [S,5], and [S, S] is abelian by (4). Hence
[s,TA] =1, and [s, g] # 1 for g € S\TA since s ¢ Z(5).

Now, s € © since Cp(s) = TAN P. Also, [t*,TA] < Ay 95, so [t*, P] <
(Ao, [t*, z]) = (Ao, s) < OFr(P). For all g € PNTA, Cp(g) < (THA, g) since
Cz(9) = (a,g), and this inclusion is strict since [s,g] # 1. Thus g € ©. So
© < TA, and hence [t*,0] < [t*, TA] < Ay < Fr(P). Thus P ¢ £.

e P € {Hy,H>} and ® = ©3 < TA. Then b € S\P, [b,P] < A < O since
bA € Z(S/A), and [b,0] < [b,TA] < Ay < Fr(P). Thus P ¢ .

e P=H,,[S,S]=A,and ® = O3 < TA. Thenz € S\P and [z, P| <[5, 5]
A < ©O. Also, since TA = Z(S) and hence [S,TA] < TAy, [x,0] < [S,TA]
ANTAy = Ay < Fr(P). Thus P ¢ £.

e P=H, [S,S] > A, and ©3 < TA. We will see later that we don’t need to
consider this case separately.

e P = H,, and O3 £ TA. Since O3 £ TA, there is § € Aut(P) such that
B(A) £ TA. Set u = B(a) € PN\TA =TAxz and U = (u) = $(A) < P. Then
u € {z,ar}, so u?> = a by (6), and u* = ta’ where t € T and i is odd. Set
C =ANU and 2™ = [A:C] = [U:C], so [A,U] < C, C = (a®") = (u*"), and
AU/C = (Cym)?. Then t*" = (w?a )" = u?"a " = a*" (mod C)
since 7 is odd, so 2" = a*2""" for some odd k, a*?""' € ANT = Z has order
at most two, and hence |a| = 2". Thus C' =1, and AU 2 A x A~ (Cym)?.

Now, [T,u?] < [T, TA] < A, and [T,u?] < U since U < P. Hence [T,u?] =1,
and [T, A] = [T,a'] = 1 since u? = ta’ for i odd. Thus [A, P| = [A,TAU| = 1,
U, P] = B([A,P]) =1, and so P = TAU is abelian. Also, T" < Z(S) since
S = (P,b) and [T,b] = 1. Hence [S,S] = A by (4).

Thus [S, S] = A is cyclic and Hy = P is abelian of index two in S, so we are
in the situation of Proposition 2.5. Since S > AU = Ax A, S is not dihedral or
semidihedral, and hence is wreathed.

e P c {H,H,} and O3 £ TA. Let i = 1,2 be such that P = H; = (TA,b;).

Since ©3 £ T A, there is § € Aut(P) such that 3(a) ¢ TA. Set b* = 3(a); thus
b* € TAb; C S\Cs(W), so b*ab*~! = @’ for some j € —1 + 47 by (2). Then

IA I

B(A) = B(la, P]) = [b*, P] > [b*, A] = (a”) = Ao
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since A > [A, P]. Also [B(A):Ag] = 2 since |B(A)| = |A|, and so b*? = a** for
some odd ¢. Thus a* = b*a?b*~! = a*, so j =1 (mod |al). Since j = 3 (mod
4), this proves that |a| = [b*] = 4, [b°,a] = a?, and thus (A, b*) = (a,b®) = Qs.
Also, A=W ,so [A,T] =1, and TA is abelian.

If P=Hy = (TA,bx), then [b°,T] < ((0*)NTA) = Z since (b*) = 5(A) Q P,
b* ¢ TA, and Z = Ay < B(A). Hence [S,S] = (A, [b°,T]) = A by (4).

To summarize, if P € £ has index two in S, then either P = Hy and S is wreathed,
or P = Hyand [S,S5] = A, or P = H;. Also, if P € {Hy,H,} and [S,S] = A, then
P =TA" for some Qg = A* I P, and P = Cp4(A®)A® by (5). So this proves (7), (8),
and (9) for essential subgroups of index two in S.

Step 2: Now assume P € & where [S:P] > 2. If |[Ng(P)/P| > 2, then by Lemma
1.6, rk([g,P/Fr( )]) > 2 for all g € Ng(P)\P. For each i € Z, [a', S] = (a*), so @' 6
Ng(P) if a* € P, in which case a’ € P since [a’, S] is cyclic while rk([a’, P/Fr(P)]) >
if a' ¢ P. Thus A < P by induction on |AN P|, so Ay < Fr(P). Fort € T, [t, TA]
[t, A] < Ay < S, and since S = (TA,z), [t, 5] < Ao{[t,z]). Thus rk([t, P/Fr( )]) <
if t € Nrp(P), so Nrp(P) = P (recall TA < 5), and TA < P by Lemma A.1. Hence
P =TA since [S:P] > 4, so [b, P] = (a*) < Fr(P) (and b € Ng(P)), which contradicts
Lemma 1.6. We conclude that |Ng(P)/P| = 2.

In particular, P is not normal in S. By Theorem 4.6(b,c) (applied with P playing
the role of P;), and since [S, S] is abelian by (4), P is of the type described in Theorem
4.6(a) with S, = S. Write U®, A® for the groups U;, A in that theorem. By Theorem
4.6(a.ii), P = Cs(U*)U*. By Theorem 4.6(a.i), U* = C3 or g, and the normal closure
A* of U® in S is dihedral of order at least 8 or quaternion of order at least 16. Let
A®* < A® be the unique cyclic subgroup of index two, and fix * € U*~A®*. Thus
A® = (A*b%).

Since A® and A® are both normal in S, the coset A®b®* = A*~A*® is a union of S-
conjugacy classes, and its elements are all conjugate since otherwise [b*,S] = [b®, A°]
has index two in A® and the normal closure of U* is strictly contained in A®. Hence

A*=[b*,S] < [S, 5] < TA

(recall that S/TA = C7 is abelian by (3)). We claim that A®* £ TA, and hence
b* ¢ TA. Assume otherwise: then Z(A®) < [A®*,A®] < [TATA] < A, so Z(A*) = Z,
and the dihedral group A®/Z(A®) is generated by elements of order two in TA/Z.
Since each element of order two in TA/Z = (A/Z) x (T/Z) lies in TW/Z by (2), A®
is contained in the abelian group T'W, which is impossible.

Thus b* € HNTA = TAb; for some unique i = 0,1,2. Since b* ¢ TA, b* is not
central in S 2 Dy (see (3)), so C(b*) = (b*,a) = H,. Hence Cs(b*) < H; = (TA,b°),
so P =Cg(U®)-U* < Cg(b*)A* § H;, and P € &,;. Since the normal closure of P has
index two in S = S, by Theorem 4.6(a) again, it must be equal to H;. This proves (7).

Assume i = 0 (so b* € TAz), or i = 2 (so b* € TAbzx). Since [b, TA] = Ay = (a*) and
[z,b] = a, we get ([b°*,b]) = A in all cases. Thus A®* = [b*,S] > A, A* =[S, S] = A, and
hence A®* = A. (If A* > A, then since both are cyclic, they could not have the same
nontrivial image in any quotient group.) So A® = (A,b*). Also, since S = (T'A,b°) in
these cases, (4) implies that

[S,S] = (A, [b°,T]) = A.
Together with Step 1, this proves (9).
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The subgroup W < A® = A of order four is central in Hy and not central in A®. Thus
P ¢ &. Together with Step 1, this finishes the proof of (8): & = @ or & = {H,}, and
in the latter case, S is wreathed.

Step 3:  We have now proven (7), (8), and (9), and it remains to prove (10). So
assume & = &. Then & # @ and & # @ by (7) and Lemma 2.2, and [S,S] = A by
(9). It remains to prove that S is dihedral or semidihedral.

Fix P, = Cs(U*)U® € & with normal closure Hs, as described in Step 2. Choose
b* € U*~\ A, so that <A b*) is the normal closure of U® and is dihedral or quaternion.
Thus b* € T Abzx, and A (A,b,0°) < S is dihedral, semidihedral, or quaternion by
Lemma B.3(e). Also, TA = (TA,b,0°) = S. Let A < A be the cyclic subgroup of
index two (so A = (A,b), [A:A] =2, and A < S).

If S contains an abelian subgroup of index two, then since [S,S] = A is cyclic, S
is dihedral, semidihedral, or wreathed by Proposition 2.5. Since [S,S] = A is strictly
contained in the larger cyclic subgroup fAl, S cannot be wreathed.

Assume S does not contain an abelian subgroup of index two. Thus TAis nonabelian,

so [T, A] # 1 (T and A are both abelian), and the homomorphism c¢: T —— Aut(A)
induced by conjugation is nontrivial. Also, Im(c) is cyclic (each t € T acts via (a — a’

for i € 1447 by (2)), and Cr(A) = Ker(c ) = Z(S) since S = (TA,b), [T,T] = [T, b] =
1, and T % Cs(Ag) > Z(S). Also, Cp(A {t eT|le(t)] < 2} since for ¢ € 4Z + 1,
i =1 (mod |A]) if and only if > = 1 (mod |A]). So [Cr(A):Cr(A)] = 2. Thus

Cs(A)/Z(S) = Cr(A)A/Cp(A) = (Cp(A)/Cr(A)) x (A)Z) = Cy x (A)Z)

since [Cr(A), A] = Z, so Aut(Cs(A)/Z(S)) is a 2-group by Corollary A.3(a). Hence
each element of odd order in Autz(S) induces the identity on Cs(A)/Z(S), and so
the action of the odd order group Outz(S) on S* = S/A induces the identity on
Cs(A)/2(5)A

We want to apply Proposition 2.3(b), with U = Z = [S,S] N Z(S). For each P < S
of index two, 1 # [P, P] < [5,5] = A, so [P,P] = Z since A is cyclic. Choose
go € Cr(A)NCr(A), and let g; be such that g; A = [Tacoutr(s) @(90A). Since Outz(S)
acts trivially on Cg(A)/Z(S)A, g1 = gk (mod Z(S)A), Where k = |Outz(9)| is odd,
and we can assume ¢g; € T and g; = g§ (mod Z(S)). Thus |e(g1)| = |e(gh)| = 2 since
k is odd and [go, A] = Z,s0 g1 & Z. Fix g € (g1) such that g ¢ Z but g*> € Z. Then

lc(g)] < 2,50 [g,5] = [g,A] < Z. By construction, every element of Autz(.S) sends gA
to itself.

Thus F is not reduced by Proposition 2.3, applied with U = Z and g as above. [J

We now prove some other versions of Proposition 5.1, by listing different hypotheses
which give the same conclusion.

Proposition 5.2. Let S be a finite nonabelian 2-group which satisfies at least one of
the following conditions.

(a) There is an abelian subgroup A < S of index two.
(b) [S,S] is cyclic.

(c) There is an abelian subgroup Q < S such that [Ns(Q)/Q| = 2 and Outs(Q) £
O2(0ut(Q)).
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(d) There is a subgroup Q@ = Z(Q)U in S, where U = Qs, |Ns(Q)/Q] = 2, and
Outg(Q) exchanges two of the three abelian subgroups of index two in Q.

(e) There is a subgroup Q@ < S such that |Q| < 16, |Ns(Q)/Q| = 2, and Outs(Q) £
O3 (Out(Q)).

Then either S s dihedral, semidihedral, or wreathed, or there is no reduced fusion
system over S.

Proof. Assume there is a reduced fusion system F over S, and let £ be the set of all F-
essential subgroups. Let DSV be the class of all dihedral, semidihedral, and wreathed
2-groups; we must show S € DSW.

(a) Let A < S be an abelian subgroup of index two. If R € £ and R # A, then R £ A
since R is centric in 5, and so AR = S. So there is ¢ € AN Ng(R)\R, and [g, R] is
cyclic, generated by |[g, h] for any h € RN A. Hence by Lemma 1.6, |[Ng(R)/R| = 2.

For each z € S\NA, Cs(x) = (Ca(x),z) is abelian. Hence
R<S, R4 A = Cg(R) is abelian. (1)

By Theorem 4.6(b,c), and since [S,S] < A is abelian, each R € £ either has index
two in S, or has the form described in Theorem 4.6(a) with S, = S. In the latter case,
there is A <.S which is dihedral of order at least 8 or quaternion of order at least 16,
and the noncyclic subgroups of index two in A are S-conjugate since A is the normal
closure of a subgroup U; = C% or Qg. Also, for Ay < A dihedral or quaternion of
order 8, Cs(4) is abelian by (1). The hypotheses of Proposition 5.1 thus hold, and
so S € DSW.

We are left with the case where each R € £ has index two in S. If all F-essential

subgroups are abelian, then S has at least two abelian subgroups of index two (Lemma
2.2), so |[S,S]| = 2 by Lemma A.6(c), and S € DSW by Proposition 2.5.

Assume R € £ is nonabelian. If AN R is the only abelian subgroup of index two in
R, then it is characteristic in R. For g € ANR, [g, R] < RN A, [g, RNA] =1, and this
contradicts Lemma 1.5 (applied with © = RN A).

Thus by Lemma A.6(b,c), R has three abelian subgroups of index two, [R:Z(R)]| = 4,
and |[R, R]| = 2. Set Z = [R,R] < Z(R), and fix a generator z € Z. Fix g € A\NR
and h € RNA, and set y = [h, g]. Thus [g, R] = (y), and

hgh™ =gy = g="N’gh™ = gy(hyh™) = [h,yl = hyh™'y~

y?
If y> = 1, then [h,y] = 1, so [g,R] = (y) < Z(R), g, Z(R)] = 1 since Z(R) <A
this again contradicts Lemma 1.5 (applied with © = Z(R)). Thus y* = [h,y]~
soy? =z € [R, R], and [S, R] = (y,[R, R]) = (y) is cyclic.

By Lemma 2.4(a.ii) (and since R is nonabelian), there are Ry < R and Outg(R) <
[’y < Outz(R) such that Ry = Qs, Autz(R) sends R to itself, and I'; = X3 acts
faithfully on R;/Fr(R;). Thus Ry < S, Autg(R) exchanges two of the three subgroups
of index two in Ry, and Cg(R;) is abelian by (1). Hence S € DSW by Proposition 5.1.

(b) Assume [S,S] is cyclic, and let Z < [S, S] be the subgroup of order two. If some
P € € has index > 4 in its normalizer, then rk([s, P/Fr(P)]) > 2 for each s € Ng(P)\P
by Lemma 1.6, which is impossible since [S, S] is cyclic. If P € £ is nonabelian, then
1 # [P,P] < [S,5], and Z = ([P, P]) is characteristic in P. So if each P € &
is nonabelian, then Z is characteristic in S and in each P € &, hence Z < F by
Proposition 1.3, and F is not reduced.

1

, and
Uz
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Thus some R € & is abelian and has index two in its normalizer. If [S:R] = 2,
then the result follows from (a). Otherwise, by Theorem 4.6, there is A < .S which is
dihedral of order at least 8 (R # Qs since it is abelian), and the noncyclic subgroups
of index two in A are S-conjugate since A is the normal closure of a subgroup U; = C?
in R. Also, for Ag < A dihedral of order 8 containing Uy, Cs(Ag) < Cs(Uy) < R is
abelian. The hypotheses of Proposition 5.1 thus hold, and so .S € DSW.

(c) If S contains an abelian subgroup of index two, then S € DSW by (a). If
there is an abelian subgroup ¢ < S which satisfies the assumptions in (c¢) and is not
normal, then by Lemma B.5(a), there are subgroups Ay < A < S such that A is
dihedral, Ag = Dg, Cs(Ag) < @ is abelian, and the noncentral involutions in A are all
S-conjugate. Then S € DSW by Proposition 5.1.

(d) Fix Q@ = Z(Q)U < S, where U = Qs, |Ns(Q)/Q| = 2, and Outg(Q) exchanges
two abelian subgroups A; and A, of index two in Q. Set Z = Z(U) = [Q, Q] = Cy, let
2 € Z be the generator, choose u; € A;NU of order four, and set uy = zu;x~! € A, for
some z € Ng(Q)\Q. Then u2 = u? = z since [z,2] = 1, us ¢ Z(Q), and so [uy, us] = 2
and (u1,ug9) = Qs. So upon replacing U by (uq, us), we can assume U < Ng(Q).

Set S, = Cs(Z), and let A be the normal closure of U in S.. Then /7 is abelian,
and [Ng,,z(Q/Z):Q/Z] = 2 since [Ng(Q):Q] = 2 and Ng,(Q) = Ng(Q). Also, U/Z =
C% is a direct factor in Q/Z, and [Ng(Q)/Z,U/Z] # 1 since Outg(Q) exchanges two of
the abelian subgroups of U.

If A > U, then A/Z is dihedral by Lemma B.5(b), and all involutions in A/Z are
S,-conjugate to elements of U/Z. Hence there are no involutions in ANZ, and A is
quaternion.

Set R = Neg1)(Z(Q)). Since conjugation by each y € Ng(Q)\(Q exchanges A; and
Ay, Cs(U)NNs(Q) < Q. Also, R normalizes Z(Q)U = @, so R < Cs(U)NNs(Q) < Q.
Hence R < Cy(U) = Z(Q), so Cs(U) = Z(Q)) by Lemma A.1.

If S, < S, then choose y € Ng(S,)\S;, and set 8 = ¢, € Aut(S,). Thus 5(Z) # Z,
and AN B(A) =1 since Z and 5(Z) contain the only elements of order two in A and
B(A), respectively. So [A, B(A)] < AN B(A) =1 since both subgroups are normal in
Sy, which is impossible since Cs(A) < Cs(U) = Z(Q) is abelian. Thus S, = S.

If A = U, then by assumption, Autg(Q) exchanges two of the abelian subgroups
of index two in Q = Z(Q)U, and hence exchanges two of the index two subgroups of
U=A. If A > U, the two noncyclic subgroups of index two in A are S-conjugate
since A is generated by the S-conjugates of U < A. Since Cs(U) = Z(Q) is abelian,
S € DSW by Proposition 5.1, applied with Ag = U.

(e) Assume @ < Sissuch that |Q| < 16, |[Ns(Q)/Q] = 2, and Outs(Q) % O2(Out(Q)).
In particular, Out(Q) is not a 2-group. By Corollary A.3(a), Q* 2 Cy x (s, so either
Q is abelian or Q" is elementary abelian. If Q) is abelian, then S € DSW by (c), so we
assume () is nonabelian. By Corollary A.3(b,c), @ is not one of the groups Dg, D1g, Q16,
or SDjg, or Cy x Dg. So by the list of groups of order 16 (cf. [Bu, § 74]), @ is isomorphic
to Qs, Cy X Qg, or Cy X, Qg. In each of these cases, by Lemma A.2 applied to the
chain 1 < Fr(Q) < Z(Q) < @, O2(Aut(Q)) contains all o € Aut(Q) which act trivially
on Q/Z(Q). Since Autg(Q) £ O2(Aut(Q)), Auts(Q) acts nontrivially on Q/Z(Q) and
hence contains elements which exchange two of the three abelian subgroups of index
two in ). So S € DSW by (d). O



28 KASPER K. S. ANDERSEN, BOB OLIVER, AND JOANA VENTURA

Each reduced fusion system over a dihedral, semidihedral, or wreathed 2-group is
isomorphic to the fusion system of PSLy(q) for ¢ = £1 (mod 8), or of PSUs(q) or
PSLs(q) for ¢ = 1 (mod 4). Fusion systems over dihedral and semidihedral 2-groups
have been listed by several people; cf. [AOV, §4.1] for the reduced case. For wreathed
2-groups, this was shown in Proposition 3.1. The fusion systems (at the prime 2) of
PSUs(q) and PSL3(q) for ¢ = 3 (mod 4) also have this form (see, e.g., [BMO, Theorem
A(d)]).

Proposition 5.2(e) has as an easy consequence:

Theorem 5.3. Let F be a reduced fusion system over a nontrivial finite 2-group S of
order at most 32. Then S is dihedral, semidihedral, or wreathed, and F is isomorphic
to the fusion system of PSLy(q) for ¢ = £1 (mod 8), or that of PSL3(q) for q odd.

Proof. By Lemma 2.2, there exists an F-essential subgroup @ < S. Then |Q| < 16, and
|INs(Q)/Q| = 2, since otherwise |S| > |Ng(Q)| > 64 by Lemma 1.6. Since Outz(Q)
contains a strongly 2-embedded subgroup, Os(Out#(Q)) = 1 (cf. [AKO, Proposition
A.7(c)]). Hence Outg(Q) £ O2(Out(Q)), so S is dihedral, semidihedral or wreathed
by Theorem 5.2(e). The description of F follows from the above remarks. OJ

We finish with a slightly less easy consequence of the results in this section and in
Section 4: a list of those groups of order 64 which support reduced fusion systems. For
all n and ¢, UT,(q) denotes the group of strictly upper triangular matrices over F, (i.e.,
those with 1’s on the diagonal). A fusion system over a p-group S is indecomposable if
it is not isomorphic to a product of fusion systems over nontrivial subgroups of S.

Theorem 5.4. Let F be a reduced, indecomposable fusion system over S, where |S| =
64. Then S is isomorphic to one of the groups Dgs, SDes, UTy(2), UT5(4), or to a
Sylow 2-subgroup of M.

Proof. Fix F and S, and let £ be the set of F-essential subgroups of S. Assume S is
neither dihedral nor semidihedral; it cannot be wreathed since |S| is a power of 4.

Case 1: Assume there is P € & such that P 4 .S and |Ng(P)/P| = 2. Then |P| < 16,
Outg(P) £ O9(Out(P)) since P is essential, and this is impossible by Proposition
5.2(e).

Case 2: Assume that there is P € £ such that |Ng(P)/P| > 4. By Lemma 1.6,
rk(P/Fr(P)) > 4. Thus P = Cy and P < S. Using Bender’s classification of groups
with strongly 2-embedded subgroups [Bd, Satz 1], we see that either Autz(P) > As, or
Autz(P) = C5xCy, C15xCy, or C2x Cy. Also, there are exactly two conjugacy classes
of subgroups isomorphic to A in GLy(2) = Ag (cf. [Ta, Corollary 6.7]), corresponding
to the As-orbits As/Ay4 and As/Dp.
Case 2A: Assume A; < Autx(P), acting via the reduced permutation action (i.e., the
permutation action on F3 modulo its fixed subspace). Then Autg(P) = C3 permutes
freely a basis for P = C, and in particular, the extension of P by S/P splits.

For 1 <i < j <4, lete; € UTy(2) be the elementary matrix with off diagonal entry
1 in position (7, 7). Set B = (e13, €23, €14, €24) and C' = (e12, e34). Then UTy(2) = BC,
B < UTy(2), BN C =1, and the C-orbit of ey3 is a basis for B = C3. Thus there is
an isomorphism UTy(2) —= S which sends B to P and C to a complement of P.

Case 2B: Assume A; < Autz(P), acting via the canonical action of A5 = SLy(4)
on F%. By Proposition 1.4, there is a finite group G such that S € Syl,(G), P < G,
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Ce(P)=P,G/P = A5, and G/P = Autg(P) < Autx(P). By [GH, Lemma I1.2.6], G
splits as a semidirect product: G = C4 x A, is thus isomorphic to a maximal parabolic
subgroup of PSL3(4), and hence S = UT3(4).

Case 2C: Assume Autg(P) = S/P = (Cy, and fix x € S such that S = (P, z). Thus
Autz(P) =2 Cs x Cy, Ci5 x Cy, or C3 x1 Cy. In the first two cases, S/P acts on P via
the Galois action of Cy on Fy4, and hence freely permutes a basis by the normal basis
theorem (cf. [Bb, §V.10.9, Théoreéme 6]). In the third case, P = P, P, where the P; are
irreducible Fo[C%]-modules of rank two, zPx~! = P;_;, and ¢,z acts nontrivially on
each P;. Thus in each case, there is a basis {a, as, as, a4} for P such that ra; w7t = a4
(with indices taken modulo 4). In particular, S splits over P, so we can assume x was
chosen with z* = 1.

Set U = [22, P] = (ay1a3,asa4) < S. If Q < S has index two, then either Q = (P, x?),
in which case [Q,Q] = U, or QP = S and Q N P = (a;a;|i# j), in which case
Q, Q] = [zr,QNP] = U. In particular, U is characteristic in S. Since |Fr(S)/[S, S]| = 2,
each a € Aut(S) sends the coset 2%[S,S] to itself. So by Proposition 2.3(b) applied
with g = 22, 22 ¢ foc(F), and F is not reduced.

Case 3: We are left with the case where each F-essential subgroup has index two
in S. Since |£] > 2 by Lemma 2.2, we can choose distinct Py, P, € £. By Theorem
4.5, we can choose G; > S < Gy and T' < P, = P; N P, which satisfy conditions
(x) at the beginning of Section 4, with P = S and Autg,(P;) < Autg(F;). Thus
Autg, (T) < Autx(T).

Case 3A: Assume T is not centric in S. Let U and Z = TN U be as in Theorem 4.5;
[T, U] =1 in all cases. There are six cases to consider, listed in Table 4.1.

(1) (U, Z) = (Dg,l) or (QlG,CQ) and S = TU. Thus § 2 T x Dg or T' Xy Q167
and so |T| = 8. The first is impossible by [O1, Theorem B] (and since F is
indecomposable), and the second by Proposition 5.2(b) ([S,S] = [U, U] is cyclic).

(2) (U, Z) = (Ds,1) or (Qg,Ca), [S:TU] = 2, and S/T = Dg x Cy. Thus |T| = 4,
UT' =T x Dgor T x¢, Qe, and S = (UT, z) for some x such that 27 € Z(S/T)
and z?> € T. Also, U < S by Theorem 4.5. If U = Dg, then S = U x (T, x)
since S/T = (UT/T) x («T) and UNT = Z = 1, and this is impossible by [O1,
Theorem B] again. Hence U = Qyq, [z, U] < TNU = Z since [z,S] < T and
U<S, and [x,T] < Z since [T:Z] =2 and Z < S. Thus [S,S] = [U,U] is cyclic,
and this is impossible by Proposition 5.2(b).

(3) U=Cy1Cy Z =1,and S = UT. Then S = U x C5 has an abelian subgroup of
index two, which is impossible by Proposition 5.2(a).

(4) S/T is of type Aut(Us(3)), so T'= 1 and S is of type Aut(Us(3)). By the de-
scriptions of this amalgam in [Gd2, Table 1 & (3.7)], S is isomorphic to a Sylow
2-subgroup of M.

(5) S/T is of type Myy. Since |S| =2% T =1 and S is of type M.
(6) S/T is of type Aut(Mis), so |S/T| = 27, which is impossible.

In the remaining cases, we assume T is centric in S. Set S = Outg(T), G; =
Oute, (T), G = (G, Gs) < Outx(T), and P; = Outp,(T). Thus S € Syl,(G) by the
Sylow axiom since T" < S (hence T is fully normalized). By Proposition 1.4, there is
a finite group I' such that S € Syl,(I'), T < T', Cr(T) < T, and Autp(T) = Autz(T).
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Let G <T be such that T < G and Outg(T) = G. Thus
SeSyL(G), T<G, Cq(T)<T, and G = Outg(T).

Case 3B: Assume [S:T] = 4. Thus § = S/T = C2 by (x), T = P, B/T = Cy is
normal in G; & G, ;/T with quotient group G; i/ P; = Ds,., and hence G; = Oy x Doy,

contains an element of order 2p;. Also, G acts faithfully on T/Fr(T) by Lemma 4.2(e),
GL4(2) = Ag contains no element of order 2p; for primes p; > 5, and GL3(2) contains
no element of order 6. It follows that rk(7/Fr(T)) =4, so T = C3, and p; = py = 3.

Set PAL = 02(62-) = (5. It is not hard to see, by examining normalizers of subgroups
of order three in GL4(2) = Ag, that there are exactly two conjugacy classes of subgroups
Cy x Y3 in GL4(2). Hence for some decomposition T = V; x V,, where V; & C%, the
action of @1 >~ (y x X3 on T has the following form: either

(i) X3 acts faithfully on each V;, and Cy switches the two factors; or

(ii) X3 acts faithfully on V; and trivially on V5, and Cs acts faithfully on V5 and
trivially on Vj.

In case (i), S acts by permuting freely a basis of 7', and hence S = UTy(2) as seen
earlier.

In case (ii), there is a basis of 7" permuted by S in two orbits of length two. Hence
the three involutions in S cannot be conjugate in G SO .FA(G) is the fusion system of
S = C2. Thus [G G]OS = 1 by the focal subgroup theorem (cf. [G, Theorem 7.3.4]), s
there is H <G of odd order and index : four. Also, P < G for ¢ = 1,2, where P 02
and G Cy X X3, 80 G1 -+ G2 Thus G = (Gl, G2> contalns two distinct subgroups of
order 3, they are contamed in H and hence |H | > 3. Also, H cannot contain a normal
subgroup K < H of order 7, since that would imply G < Naueer) (K ) >~ Cr x Cs.
Since |GLy(2)| = 26-32.5-7, H contains C2 or Cs, and in either case, C7(H) = 1. Let
H < G be such that H > T and Auty(T) = H. By Lemma A.8, applied to the triple

T <4 H <G, G (and hence S) splits as a semidirect product over T'. Thus S = Dg x Dsg,
which is impossible by [O1, Theorem B] again (F is indecomposable).

Case 3C: Now assume [S:T] > 8. Since S acts faithfully on T/Fr(T), tk(T/Fr(T)) >
3,s0T = C’g’, |S| |S/T| =8, and S = Dy since this is a Sylow 2-subgroup of GLs(2).
Neither P, nor P, can be cyclic of order four, since the normalizer in Aut(T) = GL3(2)
of such a subgroup has order 8. Hence p = C2 for i = 1,2, E=>} (the normalizer
in Aut(T) = GL3(2) of P), and G = (G, Gy) = Aut(T). Thus G is an extension of
C3 by GL3(2). By [GH, Lemma I1.3.4], either the extension is split and S = UT},(2),
or it is not split and S is a Sylow 2-subgroup of Mj,. U

APPENDIX A. BACKGROUND ON GROUPS

We list here some elementary results about finite groups which are needed throughout
the paper, beginning with a well known property of p-groups.

Lemma A.1. If Q < P are finite p-groups for some prime p, then Q) < Np(Q).

Proof. See, e.g., [Sz1, Theorem 2.1.6]. O



FUSION SYSTEMS AND AMALGAMS 31

We next look at automorphisms of finite p-groups.

Lemma A.2. Fiz a prime p, a finite p-group P, a subgroup Py < Fr(P), and a sequence
of subgroups
PP Q- QP =P
Set
A={a€Aut(P) |2z 'a(z) € Py, allz € P alli=1,...,k} < Aut(P):

the group of automorphisms which leave each P; invariant, and which induce the identity
on each quotient group P;/P,_y. Then A is a p-group. If the P, are all characteristic
in P, then A < Aut(P), and hence A < O,(Aut(P)).

Proof. See, for example, [G, Theorems 5.1.4 & 5.3.2]. O

As an easy exercise, Lemma A.2 implies the following corollary, which contains a
list of some 2-groups whose automorphism groups are 2-groups. Note, in the last case,
that P = Cy x Dg contains a unique (hence characteristic) subgroup @ = Cy x Cy, so
that Fr(P) < Z(P) < @ < P is a chain of characteristic subgroups.

Corollary A.3. For a finite 2-group P, Aut(P) is a 2-group if at least one of the
following hold:

(a) P/[P, P] = Coy X Cory X -+ X Cor,, where ky, ..., k. are pairwise distinct.

(b) P is dihedral of order at least 8, or semidihedral or quaternion of order at least
16.

(C) PgCQ XDg.

The next two results involve the intersection of a Sylow subgroup with the commu-
tator subgroup.

Lemma A.4. For any finite group G with S € Syl (G), SNOP(G) < SN |G, G], with
equality if G/OP(Q) is abelian.

Proof. Set G’ =[G, G]. Since G /G is abelian, its largest p-group quotient G /OP(G)G’
is isomorphic to its Sylow p-subgroup SG’/G' = S/(S N G') (and the isomorphism is
induced by the inclusion S < G). Hence SNG' = SN OP(G)G’, and so S NOP(G) <
S NG’ with equality if G' < OP(G). O

The following proposition goes essentially back to Schur [Sch, IX-X].
Proposition A.5. Fiz a finite group G with S € Syl (G). Let Z < Z(G) be a p-
subgroup. Then Z N [G,G] =Z NS, S].

Proof. This follows as an application of the transfer in (co)homology. See, e.g., [Hu,
Satz IV.2.2]. O

The next lemma describes nonabelian 2-groups with abelian subgroup of index two.

Lemma A.6. Let S be a finite nonabelian 2-group containing an abelian subgroup
A S of index two. Then the following hold.

(a) [S,S] = A/Z(S), and all elements of (S/Z(S))N(A/Z(S)) have order two.

(b) If|[S,S]| = 2, then S/Z(S) = C3, and S contains exactly three abelian subgroups
of index two.
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(c) If|[S,S]| > 4, then |S/Z(S)| > 8, and A is the unique abelian subgroup of index
two in S.

(d) If S contains three abelian subgroups of index two which are permuted transitively
by some automorphism of S, then either Z(S) is not a direct factor of A, or
[S, 5] < Fr(Z(9)).

Proof. (a) For each x € S\NA, 2% € Cua(x) = Z(S), and thus £Z(S) has order two
in S/Z(S). Also, [S,S] = [z, A] is the image of Id—c, as a homomorphism from A to
itself, and Z(9) is its kernel. Hence [S,S] = A/Z(95).

(b) Assume |[S,S]| = 2. Then by (a), |S/Z(S)| = 4 and S/Z(S) = C3. Each abelian
subgroup of index two in S contains Z(S), and since |S:Z(S)| = 4, each subgroup
of index two in S which contains Z(.S) is abelian. So there are exactly three abelian
subgroups of index two in S.

(c) Now assume |[S,S]| > 4, so |S/Z(S)| > 8 by (a). If B # A is another abelian
subgroup of index two in S, then AB = S, so Z(S) > AN B, and |S/Z(S)| < 4, a
contradiction. Thus A is the only abelian subgroup of index two.

(d) Assume S contains three abelian subgroups A = A;, Ay, A; of index two which are
permuted transitively by some automorphism of S. Thus |[S, S]| = 2 and S/Z(S) = C3
by (b,c). Fix a generator z € [S,S]. If Z(S) is a direct factor of A = A;, then it is
a direct factor of each A; since Aut(S) acts transitively on the A;, and there are
elements a; € A;\Z(S) of order two. Then ajasas € Z(S) since the a; represent the
three nonidentity elements in S/Z(S) = C3, [a;, a;] = 2 for distinct ¢, j € {1,2,3} since
S = (a;,a;, Z(S)) is nonabelian, and so (ajasaz)? = z* = z. Thus z € Fr(Z(9)). O

The following result about actions on abelian 2-groups is very useful in certain situ-
ations.

Lemma A.7. Fiz a finite abelian 2-group A and a subgroup G < Aut(A) with Sylow
subgroup S € Syly(G) of order two. Assume S £ Z(G), and [S, A] = Con for some
n > 1. Then there are unique factorizations A = Ay X Ay and G = Gy x G such
that |Gyl is odd, Gy = X3, A1 = Con X Con, and fori = 1,2, G; sends A; to itself and
centralizes (i.e., acts trivially on) As_;.

Proof. See, e.g., |O1, Proposition 2.3]. O

Lemma A.8. Fiz a prime p, and a finite group G with subgroups A < B < @G,
both normal in G, such that A is an abelian p-group, B/A has order prime to p, and
Ca(B) = 1. Then G splits as a semidirect product G = A x H, where H = G /A.

Proof. By the spectral sequence for the extension 1 — B/A — G/A — G/B —
1, H(G/A;A) = 0 for each i > 0 since H°(B/A;A) = Ca(B) = 0 (and since
(|B/A|,|A|) = 1). In particular, G = A x (G/A).

Alternatively, since |B/A| is prime to |A|, by the Schur-Zassenhaus theorem [G,
Theorem 6.2.1], there is K < B such that KA = B and K N A = 1, and each such
subgroup is B-conjugate, and hence A-conjugate, to K. So G = ANg(K) by a Frattini
argument, and since Na(K) = C4(K) =1, Ng(K) is a complement to A in G. O
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APPENDIX B. FINITE 2-GROUPS WITH NORMAL DIHEDRAL OR QUATERNION
SUBGROUPS

We prove here some elementary results about certain finite 2-groups which have
normal dihedral or quaternion subgroups, and their automorphisms. We begin by
stating the following general proposition about automorphisms of products of p-groups.

Proposition B.1 ([O1, Proposition 3.2(a)]). Fiz a pair of finite p-groups Si and
Sy, set S = S1 X Sy, and let pr; € Hom(S,S;) be the projection. Let a € Aut(S)
be such that o(2(Z(S1))) = U(Z(S1)). Then for i = 1,2, pr;(a(S;) = S; and
04(51Z(53,l)) = SzZ(Sisz)

We next look at semidirect products with normal dihedral subgroup.

Lemma B.2. Fix a finite 2-group S, and subgroups A < S and T < S. Assume that
S=TA, TNA =1, A is dihedral of order at least 8, and [T, Ao] = 1 for some dihedral
subgroup Ay < A of order 8. Let A, Ay, Ay < A be the three subgroups of index two
where A is cyclic, and let Ag = [A, A] be the subgroup of index two in A. Set Z = Z(A)
for short. Fix b € Ag\A.

(a) Assume ¢ € Hom(A, S) is such that o(Z) = Z and p(A) < S. Then ¢(Ag) = Ao,
©(A) <TA, and ¢(b) € T Ab.

(b) Assume a € Aut(S) is such that a(Z) = Z. Then either a sends each of the
subgroups TA, and T Ay to itself or it exchanges them.

Proof. Fix a generator a € A; thus Ay = (a?). Since A < S and A is characteristic
in A, A< S. ForallteT, [t Ay =1 by assumption, so [t,b] = 1, and [t,a*] = 1 if
la*| < 4. Hence tat™* = a*¥*! for some j, so [t,a] € (a*). Thus [T, A] < (a*), and so
(T,a*) < °S.

(a) Assume ¢ € Hom(A,S) is such that ¢(Z) = Z and ¢p(A) < S. Since Ay = [A, A
©(Ag) < [S,S5] < TAp. If (Ag) < (T,a*), then there are distinct elements a’ # @’ in
Ayg such that ¢(a'), p(a?) € Ta* for some k. Then 1 # a7 and ¢(a'~7) € T, which is
impossible since Z < (a'7) and p(Z) =Z £ T.

Thus ¢(a®) ¢ (T,a?), and the image of p(a) in S/(T,a*) = Dg has order four.
Hence ¢(a) = ta’ for some t € T and some odd i. Also, the image of ¢(b) in S/{(T,a")
must invert that of p(a), and so ¢(b) € TAb. Since p(A) < S, b(ta’)b™' = ta™, and
(ta™")"'ta’ = a*, we have a* € p(A). Thus Ay = (a*) < p(A), so p(Ag) = Ag. This
finishes the proof of (a).

(b) Now assume « € Aut(.S) is such that a(Z) = Z. By (a), applied with ¢ = a|a,
a(A) < TA and a(Ay) = Ag. Hence a((a?)) = (a*), and a induces an automorphism
a of S/{(a*) = T x Dg which sends Z(A/{a%)) = Ay/(a*) to itself. By Proposition
B.1, a(TAy/{a*)) = TAy/(a"), and thus a(T'Ag) = T Ay. Since a(TA) = TA, it now
follows that a either sends the two subgroups T'A; /T Ag of S/T Ay = C% to themselves
(1 =1,2) or switches them. O

The next lemma involves a similar situation.

Lemma B.3. Fiz a finite 2-group S with a normal dihedral or quaternion subgroup
A < S of order at least 8. Assume two of the three subgroups of index two in A are
S-conjugate. Let Ay < A be a dihedral or quaternion subgroup of order 8, and set
T = Cs(Ag). Let A <A be the cyclic subgroup of index two: the one which is normal
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in S if A= Qs. Fir a generator a € A, and choose b € AgNA. Let Z < Ag < A be

the subgroups of order two and index two, respectively. Then the following hold.

(a) A<IS,S].

(b) [S:TA] =2. For each g € S, gbg™ = a'b where i is even if g € TA and i is odd
if g € S\NTA.

(C) TAO Sl S, S/TAO = Dg, and Z(S/TA()) = TA/TAO

(d) If T is abelian, then [S,S] is abelian.

(e) Assume by, by € S are in distinct cosets of TA, [by, A] = Ag = [be, A], b? € A, and
(A, b;) <S. Then (A, by, by) is dihedral, semidihedral, or quaternion.

(f) Assume that A is dihedral and Z is a direct factor of T. Let o € Aut(S) be such
that o* € Inn(S), a(Z) = Z, and a(TA) # TA. Set A = a(A)-A. Then A is
dihedral, A< S, [A:A] =2, TNA =2, and TA = 8.

Proof. By assumption, A < S. Hence A < § since A is characteristic in A, except
when A = Qg in which case A was chosen to be the unique subgroup of index two in
A normal in S.

(a) By assumption, the subgroups (Ag, b) and (Ag, ba) are S-conjugate. Hence there is
z € S such that ¢, (bAg) = baAy, so zbx~! = ba’ for some odd i, and A = (a’) < [S, S].
(b) By definition (and since A = (a) < 95),
T =Cs(Ao) ={g € S|gbg" =b, gag™' =a”"" some j}. (1)
Hence
TA={geS|c, € Autr(A)In(A)} ={ge S | gbg~" = a'b some i =0 (mod 2)}.

Since A < S, this proves that gbg~! = a’b with i odd whenever g € S\TA. Also,
TA < S since (Ag, b) and (Ag, ab) are S-conjugate, and hence [S:TA] = 2.
(c) If A=Ay has order 8, then TAy =T = Cs(A) is normal in S since A < 5. So
assume |A| > 8. Since A < S, 1 # {(a') < S. Also, [T, A] < (a?) by (1), and hence
TA/{a') = (T/Z)x Dg. For x € S, c,(TA) = TA by (b), so c,(TAg/{a*)) = T A/ {a?)
by Proposition B.1 applied with o = ¢, € Aut(T'A/{a*)). Thus T4y < S.
Throughout the rest of the proof of the lemma, we set S = S /T Ap, and let P<S
or g € S be the image of P < S or g € S. Thus TA = {(a,b) = C3.

For z € S\TA, ¢;(a) = a and cx(b) = ab by (b). Thus S = Dg, with center
(a)y = TA.
(d) Assume T is abelian. Since A is cyclic, Aut(A) is abelian, and hence [S, 5] is in
the kernel of the map S —— Aut(A) induced by conjugation. Thus [S, S] < Cg(A).

Also, [5, 5] < T'A since T'A is normal of index four in S. Since T is abelian, Cr4(A) is
also abelian, and so is [S, S].

(e) Fix by, by as above, and set A; = (A,b;) < S and A = A;A,. Then AJA = (2
since the A; are normal and distinct and contain A with index two. Also, (blbig)2 =q
since S = Dg and b, and b, are in distinct nonidentity cosets of A = Z(S) and have
order two in S. Slnce (b1bs)? € A (recall AJA = 6’2), we have (b1by)? = @’ for some
odd j. Thus AL (blb2> is cyclic of index two in A, conjugation by b; inverts the
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subgroup A of index two in X, and hence A is dihedral, semidihedral, or quaternion

(cf. [G, Theorem 5.4.4]).

(f) Now assume that A is dihedral, and that 7" = TyZ where Ty N Z = 1. Let
a € Aut(S) be such that o? € Inn(S), a(Z) = Z, and a(TA) # TA. Set A* = a(A),
and A = AA*. Since A and A* are both normal in S and are exchanged by « (since
a? € Inn(S)), A is normal in 3.

Set a, = a(a) and b, = a(b). By (c), TAy < S, and S = S/T Ay is dihedral of order
8 with center T'A/T Ay.

Since A < [S,S] by (a), a(A) < [S,S] < TA. If b, € TA, then a(A) < TA,
and by Lemma B.2(a) (applied with ¢ = a|a and T replaced by Ty), b. € ToAb. So
b, € {b,ab}. Since [T,b] = 1 (recall b € Ag), [(T),b,] = 1, so o(T) < (a,b) = TA.
Thus o(T) < TA, so a(TA) = TA, and this contradicts our original assumption about
a.

Thus b, ¢ TA. Hence by (b), bbb, = a'b for some odd i. Set @ = b,b; then a* = a',
and thus (b.,b) = (a,b) is a dihedral group which contains A with index two. Since
a? € Inn(S), a(b,) = a?(b) = a’b for some j, and so a(a) = a’bb, = a?(b,b)™! = a/a!
is in (a). So a, € (a), (by,b) = AA* is dihedral, and it contains A with index two.
Also, TA = S since [S:TA] = 2 and A « TA, and TNA = TNA = Z since
TANA = A. O

This will now be applied to prove the following lemma.

Lemma B.4. Fiz a finite 2-group S, and subgroups T, Ag < S such that Aq is dihedral
of order 8, TNAg =1, and [T, Ao] = 1. Let U,V < Aq be the two noncyclic subgroups
of order four, and set Z = U NV = Z(Ay). Assume Ng(TU) = TAg, Ns(Ag) > T Ay,
and either Z < Z(S) or T contains no subgroup isomorphic to Ds. Let A < S be
the normal closure of Ag in S. Then A is dihedral, TN A =1, [S:TA] = 2, and all

noncentral involutions in A are S-conjugate.

Proof. Case 1:  Assume first that Z < Z(S). Set A_; = U. We will construct
subgroups Ag < Ay < -+ < A, < S, all normalized by T, such that [S:TA,,] = 2,
and such that for each 0 <17 < m,

(i) A; is dihedral of order 23%7;

(ll) TN Al =1 and TAl = NS(TAifl) = NS(Aifl); and
(i) Ng(A;) > TA,.

To simplify notation, we set S; = T'A; whenever A; has been defined.

When ¢ = 0, the only condition which is not immediate from the hypotheses is
that TAy = Ng(U). One inclusion is clear: Ng(U) > TAq since [U,T] = 1 and
U QA If g € Nngw)(T'Ap), then since g normalizes U and T'Ag and Cra,(U) = TU,
g € Ns(TU) = TAy. Thus Nyyun(TAg) = TAy, and so Ng(U) = TAy by Lemma
Al

Assume, for some ¢ > 0, that we have constructed A; which satisfies (i)-(iii). If
[S:S;] = 2 (recall S; = TA,;), then A; < S since Ng(4A;) > S;. For g € S\S;,
g ¢ Ng(A;_1) = S; implies that g exchanges the two conjugacy classes of noncentral

involutions in A;, and hence the noncentral involutions in A; are all S-conjugate. If
1 > 0, then the normal closure of Ag in A; is A;_; which is not normal in S, and thus
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A,; is the normal closure of Ay in S (this is trivial if ¢ = 0). So the subgroup A = A;
satisfies the conditions in the statement of the lemma.

Now assume [S:S;] > 4. Set S;y1 = Ng(4A;) > S;. Let A; 1 and Af | be the
two dihedral subgroups of index two in A;. Since S; = Ng(A; 1) and A; < S;1q,
conjugation by any element of S;;1\.5; exchanges A;_; with A ;. The product of any
two elements of S;,1\.S; thus lies in S;, so [S;;1:5;] =2, and S; < 5,41 < S.

For each = € Ng(S;), since ¢,(Z) = Z by assumption (Z < Z(S5)), Lemma B.2(b)
implies that c, either leaves TA;_; and TA} , invariant or exchanges them; and leaves
them invariant only if x € Ng(TA; 1) = S;. Thus [Ng(S;):S;] = 2. Since S; < S; 11
with index two, this implies Ng(S;) = Siy1.

Choose any g € Ng(Si+1)~Si41 such that ¢* € S;i1, and set a = ¢, € Aut(S;41).
Then a(Z) = Z since Z < Z(S), and «(S;) # S; since g ¢ Siy1 = Ng(S;). Also,
Cs(Ag) = TZ since Ng(U) = TAg by (ii) when ¢ = 0 (and since Cg(Ay) < Cg(U) <
Ns(U)). The hypotheses of Lemma B.3(f) thus hold (but where 7" in Lemma B.3
corresponds to T'Z here). So if we define A1 = Aja(4;), then Ay <S4 is
dihedral, [A;41:A;] =2, TN A =1, and TA;41 = S;11. Thus (i) and (ii) hold, (iii)
holds since g € Ng(A;41), and this finishes the induction step in the proof.

Case 2: Now assume Z £ Z(S), and set S, = Cs(Z) < S. By Case 1, S, has the
form described in the lemma: it contains a normal dihedral subgroup A < S, (the
normal closure of Ay in S,), TNA =1, and [S,:T'A] = 2. We prove that T' contains a
subgroup isomorphic to Dg, contradicting the assumptions.

Choose any g € Ng(S,)~\S, such that g*> € S,, and set § = ¢, € Aut(S,). Then
B(Z) # Z. Assume first that S(A) £ TA, and choose © € S(A)NTA. Let A < A be
the cyclic subgroup of index two (A < S,), and choose b € UNZ. (Recall C3 = U <
Ag.) If ¢, (b) € ANA is A-conjugate to b, then ¢,,(U) = U for some a € A, which is
impossible since we showed in the proof of Case 1 that Ng(U) = TA,. Thus b is not
A-conjugate to xbx ™1, so [x,b] generates A, and hence A < B(A) since z € S(A) < S,.
Since A is cyclic of order at least four, this is possible only if 5(A) = A, which is
impossible since 5(Z) # Z.

Thus S(A) < TA. Let ¢» € Hom(A, T') be the composite A TA — TA/A =
T. Since B(Z) # Z and B(Z) < Z(TA), B(Z) £ A, and hence Z £ Ker(¢)). Since any
nontrivial normal subgroup of A contains Z, this implies that 1 is injective, and thus
that T contains a subgroup isomorphic to Dsg. O

We also need the following corollary to Lemma B.4.

Lemma B.5. Fiz a finite 2-group S, and an abelian subgroup P < S such that
INs(P)/P| =2 and P 4 S. Assume either

(a) Autg(P) £ Oz(Aut(P)), or
(b) there is a direct factor U < P such that U = C3 and 1 # [Ns(P),U] < U.

Then there are subgroups Ag < A S such that A is dihedral, Ao = Dg, Cs(Ag) < P,
and the noncentral involutions in A are all S-conjugate. In case (b), A can be taken
to be the normal closure of U in S.

Proof. Set P = Ng(P) < S, fix # € Ng(P)~P such that 22 € P, and set Q = zPz".
Set Z = [P, P]. Since P is nonabelian, and P, are distinct abelian subgroups of
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index two, Lemma A.6(c,a) implies that |Z] = 2, and Z(ﬁ) = PN @ has index two in
P and in Q. Also, Z < Z(P).

We first show that (a) implies (b). Consider the subgroups

©1 = {a € Aut(P) | [o, P] < Fr(P)} and O = {a € Aut(P) | alg,p) =1d}.

Both are normal in Aut(P), and they are 2-subgroups by Lemma A.2 and [G, The-
orem 5.2.4], respectively. Thus @1@2 < Oy(Aut(P)). Since Auts(P) = Autg(P) £
Oz(Aut(P)) by assumption Aut (P) £ ©,0,. Hence for y € P\P, Z = [y, P] £
Fr(P) and Z(P) y) # (P

Thus there is g € P\Z(P) such that |g| = 2 and P = Z(P) x <(g), and also T" < Z(P)

such that Z(ﬁ) =7Z xT (T = Ker(f) for any f: Z(P ) Z(P )/Fr( (P )) — Oy with
Z ¢ Ker(f)). Set U =(Z,g). Then U = C3, P=TU, and TNU = 1. So (b) holds.

Now assume (b). Thus P = TU where U = C2, TNU = 1, U £ Z(P), and
Z =[P, P] < U. In particular, Z = UNZ(P), and Z y e Fr(Z(P)) since UNFr(P) = 1.
Hence Z(]3) =T* x Z for some T*, so P = Z(]3)U =T* x U, and so we can assume
T =T+ < Z(P).

Set V = Uz~ and Ay = UV. Then V £ P since z normalizes Z(P) but not
P = Z(P)U. Thus [U, V] =27, s0 Ay = Dg since U =V = C3. Also, TN Ay =
™nZzZ=1,1T A <|[T, P] = 1since T' < Z(P) Ng(TU) = Ng(P) = P =TA, and
Ns(Ag) > TAg since x € Ng(Ag)NT'Ag. Since T' is abelian, it contains no subgroup

isomorphic to Dg. So by Lemma B.4, the normal closure A of Ay in S is dihedral, and
all noncentral involutions in A are S-conjugate.

Set R = NCS(AO)(Z(ﬁ)). Then R normalizes Z(ﬁ)U = P, so R < Ng(P) = P.
Hence R < Cp(Ay) = Z(P), so by Lemma A.1, Cs(Ay) = Z(P) < P. O
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