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The main result of this paper is the determination, for any given finite group G not
of prime power order, of exactly which smooth manifolds can be fixed point sets of
smooth G-actions on disks or on euclidean spaces. General techniques for constructing
smooth actions on disks with fixed point set of a given homotopy type were developed
in [O1], and the procedure for constructing actions on euclidean spaces is similar (but
simpler). What is new here is a way of constructing a G-vector bundle over a G-complex
of given homotopy type which extends a given G-bundle over the fixed point set. Such
a G-bundle can then be used to control the process of “thickening up” the G-complex to
get a manifold with smooth G-action; and in particular to control the diffeomorphism
type of the fixed point set. Here “G-complex” always means G-CW complex: a complex
built up of orbits G/H×Dn of cells (where G acts trivially on the disk Dn).

The main technical result for constructing G-bundles, for a finite group G not of
prime power order, is given in Theorem 2.4. Let P(G) denote the set of subgroups of
G of prime power order. Very roughly, given a finite G-complex X , a G-vector bundle

η over XNP def
= ∪H/∈P(G)X

H , and P -vector bundles ξP ↓X for all P ∈ P(G), Theorem
2.4 gives conditions for being able to combine η and the ξP (after stabilization) to get
a G-bundle over a G-complex X ′ of the same (nonequivariant) homotopy type as X ,
and with (X ′)NP = XNP . This result can then be combined with the equivariant
thickening theorem of Edmonds & Lee [EL] and Pawa lowski [Pa2] (see Theorem A.12
below), to construct manifolds with smooth G-action having given homotopy type and
given tangential structure on the fixed point sets. Note that this procedure does not (di-
rectly) apply to construct closed manifolds with G-action, but only open (noncompact)
manifolds, or compact manifolds with boundary.

Instead of trying to formulate a general (and very messy) theorem about the con-
struction of manifolds with smooth actions, we concentrate our applications here to
the case of smooth actions on disks and euclidean spaces. The study of this problem
goes back to P. A. Smith [Sm], who showed that the fixed point set of any continuous
action of a p-group (for any prime p) on a finite dimensional Fp-acyclic space is itself
Fp-acyclic. A converse to Smith’s theorem was proven by Lowell Jones [Jo], who showed
among other things that any compact smooth stably complex Fp-acyclic manifold can
be the fixed point set of a smooth action of the group of order p on a disk. Thus, if
G is any nontrivial p-group, then a compact smooth manifold can be the fixed point
set of a smooth G-action on a disk if and only if it is stably complex and Fp-acyclic.
A similar (but simpler) construction can be used to prove the corresponding result for
smooth p-group actions on euclidean spaces.
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Later examples by various authors (cf. [Br, §I.8]) showed that when G does not have
prime power order, then the situation is much less rigid. For example, one can find
a smooth action of any such G on some euclidean space with fixed point set having
the homotopy type of any given countable finite dimensional complex. However, the
situation for actions on disks is more complicated. The main result in [O1] says that
there is an integer nG ≥ 0 with the property that a finite CW complex F is homotopy
equivalent to the fixed point set of some smooth G-action on a disk if and only if
χ(F ) ≡ 1 (mod nG). The results here now make it possible to determine exactly which
manifolds can be fixed point sets of smooth actions on disks or on euclidean spaces;
and also to describe (at least stably) the possibilities for the normal bundle of the fixed
point set. These results are summarized in the following theorem:

Theorem 0.1. Let G be any finite group not of prime power order. Fix a smooth
manifold F and a G-vector bundle η↓F satisfying the following three conditions:

(1) η is nonequivariantly a product bundle;

(2) for each prime p
∣∣|G| and each p-subgroup P ⊆ G, [η|P ] is infinitely p-divisible in

K̃OP (F )(p) (where K̃OP (F ) = KOP (F )/KOP (pt)); and

(3) ηG ∼= τ(F ) (the tangent bundle of F ).

Then there is a smooth action of G on a contractible manifold M such that MG = F ,
and such that τ(M)|F ∼= η ⊕ (V×F ) for some G-representation V with V G = 0. If
∂F = ∅, then M can be chosen to be a euclidean space. If F is compact and χ(F ) ≡ 1
(mod nG), then M can be chosen to be a disk.

Conditions (1)–(3) in Theorem 0.1 are also necessary: if G acts smoothly on any
contractible manifold M , then they hold for the pair (F, η) = (MG, τ(M)|MG). Note in

particular point (2): [η|P ] is infinitely p-divisible in K̃OP (F ) since η|P is the restriction

of a P -bundle over the Fp-acyclic manifold MP (hence the group K̃OP (MP ) is uniquely
p-divisible).

Theorem 0.1 still leaves it rather unclear exactly which manifolds can be the fixed
point set of a G-action on a disk or euclidean space. In order to make this more precise,
we first need some definitions. Let MC ⊇ MC+ ⊇ MR be the classes of finite groups
for which there exist G-representations V and W which are complex, self-conjugate, or
real, respectively, such that V |P ∼= W |P for any P ⊆ G of prime power order, and such
that dim(V G) = 1 and dim(WG) = 0. By Lemma 3.1 below, G ∈ MC if and only if
it contains an element not of prime power order, G ∈ MC+ if and only if it contains
an element not of prime power order which is conjugate to its inverse, and G ∈ MR

if and only if it contains a subquotient which is dihedral of order 2n for some n not a
prime power. (This condition for a group to be inMR was pointed out to me by Erkki
Laitinen.)

In the following theorem, for any abelian group A, we let qdiv(A) (the subgroup
of “quasidivisible” elements) denote the intersection of all kernels of homomorphisms
from A into free abelian groups. When A is finitely generated, this is just the torsion
subgroup of A. Also, the standard induction and forgetful maps between the groups of
real, complex, and quaternion vector bundles over a space X are denoted as follows:

K̃O(X) w

c
u r

K̃(X)
wq

u

c′

K̃Sp(X).

2



Theorem 0.2. Let G be a finite group not of prime power order. Let Fix(G) be
the class of smooth manifolds F (without action) for which there is a G-bundle η↓F
satisfying conditions (1)–(3) in Theorem 0.1. Then a smooth manifold F is the fixed
point set of a smooth action of G on a euclidean space if and only if F ∈ Fix(G) and
∂F = ∅; while F is the fixed point set of a smooth action of G on a disk if and only if
F is compact, F ∈ Fix(G), and χ(F ) ≡ 1 (mod nG). Furthermore, Fix(G) is described
as follows (where Syl2(G) is a Sylow 2-subgroup of G):

F∈Fix(G)⇐⇒ Syl2(G) 6⊳ G Syl2(G) ⊳ G

G∈MR

(A)

(no restriction) ———

G∈MC+rMR

(B)

c([τ(F )]) ∈ c′(K̃Sp(F ))+qdiv(K̃(F )) ———

(C) (D)

[τ(F )] ∈ r(K̃(F ))G∈MCrMC+ [τ(F )] ∈ r(K̃(F ))+qdiv(K̃O(F ))
(F is stably complex)

G6∈MC

(E)

[τ(F )] ∈ qdiv(K̃O(F ))
(F)

[τ(F )] ∈ r
(
qdiv(K̃(F ))

)

This theorem extends results of Edmonds & Lee [EL, Theorem A] and Pawa lowski
[Pa2, Theorems 5.6 & 5.9]. However, all of their constructions give fixed point sets with
stably complex tangent bundle, and the possibility of having other fixed point sets (when
Syl2(G) 6⊳ G) is new. Note that if G /∈MC, then all connected components of the fixed
point set of a G-action on a disk or euclidean space must have the same dimension;
while if G ∈ MCrMR then the dimensions of the components can be different but
must have the same parity (see [Pa1, Theorem A]). In contrast, if G ∈ MR, then the
components of the fixed point set can have arbitrary dimensions.

Examples of groups in the above classes include: (A) D(2n), (B) Q(4pa), (C)
D(2pa)×Cqb , (D) Cn, (E) D(2pa), (F) F2i ⋊ Cpa where pa|2i − 1. Here, in all cases,
n denotes any integer not a prime power, p and q denote distinct odd primes; and Cm,
D(m), and Q(m) denote cyclic, dihedral, and quaternion groups of order m.

The conditions on F in cases (B) and (C) above are very similar, and it is not
immediately clear that they give distinct classes Fix(G). To see that they do, set
X = S5∪η2e

8: the complex obtained by attaching an 8-cell to S5 via the nontrivial

element η2 ∈ π7(S5). We leave it as an exercise to check that K̃O(X) ∼= Z, and that
the maps

K̃O(X)
c

−−−−→
∼=

K̃(X)
c′

←−−−−
∼=

K̃Sp(X)

are isomorphisms. Thus, if F is a compact manifold with the homotopy type of X such

that [τ(F )] generates K̃O(F ), then F ∈ Fix(G) for G of type (B), but not for G of type
(C).

So far, we have only discussed the case of actions of finite groups. If G is a compact
Lie group with identity component G0 which acts smoothly on a contractible manifold
M with fixed point set F , then one can show (using [JO, Proposition 4.6] and the
definition of Fix(−)) that F ∈ Fix(G/G0). More precisely, (τ(M)|F )G0 is a G/G0-
bundle which satisfies conditions (1)–(3) in Theorem 0.1. In particular, if G is connected
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and nonabelian, then F can be the fixed point set of a smooth action of G on a disk
if and only if it is stably parallelizable (see [O2, Theorems 3 & 5]). This is, however,
still far from answering the question of which manifolds can be fixed point sets, since in
general more homotopy types can occur as fixed point sets of G-actions on disks than
of G/G0-actions on disks.

Since the numbers nG play such a key role in the above theorem, we summarize here
their computation in [O1, Corollary to Theorem 5] and [O3, Theorem 7]. Let G1 be
the class of all finite groups G which contain a normal subgroup P ⊳ G of prime power
order such that G/P is cyclic. For each prime p, let Gp denote the class of all finite
groups G which contain a normal subgroup in G1 of p-power index.

Theorem 0.3. Fix a finite group G not of prime power order. For any prime p, p|nG
if and only if G ∈ Gp. Thus, nG = 0 if and only if G ∈ G1, and nG = 1 if and only
if G /∈ ∪pG

p. In general, nG is equal to 0, 1, a product of distinct primes, or 4; and
nG = 4 if and only if

(1) G lies in an extension 1 −→ Cm −→ G −→ C2k −→ 1, where Cm is cyclic of odd order
m and C2k is cyclic of order 2k,

(2) G /∈ G1, but its subgroup of index 2 does lie in G1, and

(3) there is no unit u ∈ (Zζm)∗ such that α(u) = −u, where ζm is a primitive m-th root
of unity, and α ∈ Gal(Qζm/Q) is induced by the conjugation action of a generator
of G/Cm ∼= C2k .

As another special case of Theorem 0.1, we note the the following theorem about
tangential representations at isolated fixed points. This generalizes results of Edmonds
& Lee [EL, Theorem B] and Pawa lowski [Pa3, Theorem 1]:

Theorem 0.4. Let G be any group not of prime power order. Let V0, V1, . . ., Vm be
(real) G-representations such that V0|P ∼= V1|P ∼= · · · ∼= Vm|P for any P ⊆ G of prime
power order, and such that V Gi = 0 for all i. Then there exists a G-representation W
with WG = 0, and a smooth action of G on a euclidean space (or a disk if nG|m) with
exactly m+1 fixed points x0, . . ., xm, such that the tangential representation at xi is
Vi⊕W .

The paper is organized as follows. In Section 1, a space B∗
GO is constructed which

has the following property (Proposition 1.3): for any finite G-complex X , [X,B∗
GO]G

is (roughly) the inverse limit of the groups KOP (X)(p), taken over all p-subgroups

P ⊆ G and all primes p
∣∣|G|. The problem of lifting maps X −→ B∗

GO to BGO is then
handled in Section 2, and this leads to a general criterion (Theorem 2.4) for constructing
G-bundles over G-complexes of given (nonequivariant) homotopy type and with given
fixed point data. The proofs of Theorems 0.1 and 0.2, and some examples, are then
given in Section 3. Finally, in an appendix, some technical results are listed, most of
which are well known but seem hard to find in the literature. The equivariant thickening
theorem in the version of Pawa lowski is also stated there (Theorem A.12).

The proof of these results — more precisely the constructions in Section 1 — were to
a great extent motivated by my joint work with Stefan Jackowski on vector bundles over
classifying spaces of compact Lie groups [JO]. The connections with [JO] have largely
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disappeared while this work has evolved, but it probably would not have been possible
without the discussions we had while writing that paper.

1. An approximation to the classifying spaces for G-bundles

Throughout this section, G will be a fixed finite group. Let O(G) denote the orbit
category of G: the category whose objects are the orbits G/H for all subgroups H ⊆ G,
and where MorO(G)(G/H,G/K) is the set of all G-maps G/H −→ G/K. For each prime
p, Op(G) ⊆ O(G) will denote the full subcategory whose objects are the orbits G/P for
p-subgroups P ⊆ G. Also, O1(G) denotes the full subcategory with one object G/1.

For any full subcategory C ⊆ O(G), we define

EC = hocolim−−−−−→
G/H∈C

(
G/H

)
.

This can be regarded as the nerve of the category whose objects are the cosets aH
for G/H ∈ C, and where there is one morphism from aH to bK for each C-morphism
G/H −→ G/K which sends aH to bK. (In particular, there is at most one morphism
between any pair of objects.) From this definition, EC is seen to be a G-complex all of
whose orbit types lie in C. Also, ECH is contractible for any G/H in C, since it is the
nerve of a category with initial object the coset eH. In particular, EO1(G) ∼= EG. More
generally, by equivariant obstruction theory, EC is “universal” among G-complexes with
orbits in C: for any such X there is aG-mapX −→ EC which is unique up toG-homotopy.

In the appendix, BGO is defined to be the infinite mapping cylinder of maps
BGO(0) −→ BGO(d) −→ BGO(2d) −→ . . . , where d = |G|, where BGO(n) is the
base space of the universal n-dimensional G-bundle, and where the maps are sta-
bilization by the regular representation RG. Bundle direct sum defines product
maps BGO(n)×BGO(m) −→ BGO(n+m), and these combine to define a G-map
BGO×BGO −→ BGO which makes BGO into a G-equivariant H-space. Alternatively,

one can define BGO as the identity component of the loop space ΩB
(∐∞

n=0BGO(n)
)

(once the BGO(n) have been defined precisely enough to make their disjoint union into
a topological monoid); and then the H-space structure on BGO is automatic.

We will also have need for the p-localization BGO(p) of BGO, for any prime p
∣∣|G|.

One elementary way to define this is as the infinite mapping cylinder of the maps

BGO
·n1−−→ BGO

·n2−−→ BGO
·n3−−→ BGO

·n4−−→ . . . ,

where BGO
·n
−→ BGO is multiplication by n (using the H-space structure), and where

n1, n2, . . . is any sequence of positive integers prime to p such that each prime dif-
ferent from p divides infinitely many of the ni. Thus, for any finite G-complex X ,
[X,Z(p)×BGO(p)]

G ∼= KOG(X)(p). We regard BGO as a subcomplex of BGO(p) via
inclusion into the first term of the cylinder. By construction, for each subgroup H ⊆ G,
(BGO(p))

H is the p-localization of (BGO)H (where the group of components has also
been p-localized). Hence by equivariant obstruction theory, it is immediate that the
equivariant H-space structure on BGO extends to an equivariant H-space structure on
BGO(p).
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Definition 1.1. Define the G-space B∗
GO to be the pullback in the diagram:

B∗
GO w

u

∏

p||G|

map(EOp(G), BGO(p))

u

map(EO1(G), BGO) w

diag
∏

p||G|

map(EO1(G), BGO(p)),

where the right hand vertical map is induced by restriction to EO1(G) (regarded as a
subspace of EOp(G)). Let

LG : BGO −֒−−−→ B∗
GO

be the G-equivariant map induced by inclusions into constant maps in the above square.

By the homotopy extension property for inclusions of simplicial complexes, the right
hand vertical map in the above square satisfies the equivariant homotopy lifting prop-
erty. Thus, B∗

GO is also a homotopy pullback of that square.

We want to study maps from finite G-complexes to B∗
GO. The following lemma, a

special case of a theorem of [JM], will be needed to handle the higher inverse limits
which arise as obstructions.

Lemma 1.2. For any finite G-complex X and any prime p
∣∣|G|,

lim←−
j

G/P∈Op(G)

(
KOG(G/P×X)(p)

)
= 0 for all j > 0.

Proof. A contravariant functor F : Op(G) −→ Ab is called a Mackey functor if there is
a covariant functor F∗ : Op(G) −→ Ab which takes the same values on objects, and such
that any pullback square

k∐

i=1

G/Ki w

α1

u

α2

G/H1

u

β1

G/H2 w

β2 G/H

induces a commutative square

k⊕

i=1

F (G/Ki) w

F∗(α1)
F (G/H1)

F (G/H2) w

F∗(β2)

u

F (α2)

F (G/H).

u

F (β1)
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By a theorem of Jackowski and McClure [JM, Proposition 5.14], for any Mackey functor

F : Op(G) −→ Z(p)-mod, lim←−
j(F ) = 0 for all j > 0.

Now let F be the contravariant functor F (G/P ) = KOG(G/P × X)(p). Then any
map f : G/P −→ G/P ′ in O(G) induces a homomorphism F∗ : F (G/P ) −→ F (G/P ′):
defined by sending a G-bundle ξ↓(G/P ×X) to the G-bundle ξ′↓(G/P ′ ×X) such that
the fiber over any (a′, x) ∈ G/P ′ ×X is

⊕
a∈f−1a′ ξ(a,x). This makes F into a Mackey

functor; and hence its higher limits over Op(G) vanish by [JM]. �

It will be convenient, when X is a (finite) G-complex, to write KOG(X) =
[X,BGO]G; i.e., the group of virtual G-bundles which have virtual dimension zero over
all connected components of X . We are now ready to prove the following proposition,
which describes how to construct maps from a finite G-complex X to B∗

GO.

Proposition 1.3. For any finite G-complex X , the square

[X,B∗
GO]G w

u

∏

p||G|

(
lim←−

G/P∈Op(G)

KOP (X)(p)

)

u

KO(X)G w

∏

p||G|

(
KO(X)(p)

)G

(1)

is a pullback square. Here, functoriality on the right is induced by the identification

KOP (X) ∼= KOG(G/P×X); and the right hand vertical arrow is induced by restricting
the limit to the subcategory O1(G) ⊆ Op(G) and identifying lim←−O1(G)

(−) with (−)G.

Proof. The basic idea of the proof is to regard mapG(X,B∗
GO) as the homotopy inverse

limit, over an appropriate category, of the spaces mapP (X,BGO(p)) (for p-subgroups

P ⊆ G) and map(X,BGO). We want to show that [X,B∗
GO]G is the inverse limit of the

corresponding sets of components; and this follows upon showing that certain higher
inverse limits vanish. The argument given here is a more direct version of this idea; and
is similar to the approach used by Wojtkowiak [Wo] to describe maps from a homotopy
direct limit to a space.

Square (1) above is equivalent to the diagram

[X,B∗
GO]G w

ΦX S(X) w

u

∏

p||G|

lim←−
Op(G)

[−×X,BGO(p)]
G

u

lim←−
O1(G)

[G×X,BGO]G w

∏

p||G|

lim←−
O1(G)

[G×X,BGO(p)]
G,

(2)

where S(X) is defined to be the pullback. We must show that ΦX is a bijection. In
Step 1, certain cochain complexes D∗(X, n) are defined, and their homology groups are

7



shown to vanish. And in Step 2, the obstructions to constructing maps X −→ B∗
GO (or

to constructing a homotopy between two such maps) are shown to be homology groups
of the D∗(X, n).

Step 1: For any category C and any contravariant functor F : C −→ Ab, let C∗(C;F )
denote the cochain complex

C∗(C;F ) =
(

0 −→
∏

c

F (c) −→
∏

c0−→c1

F (c0) −→
∏

c0−→c1−→c2

F (c0) −→ . . .
)
,

where the differentials are alternating sums of face maps. The homology groups of
C∗(C;F ) are the higher limits lim←−

∗(F ) (cf. [O4, Lemma 2]).

For each n ≥ 1, FXn : O(G) −→ Ab will denote the functor

FXn (G/H) = Coker
[
KOG(G/H×Dn+1×X)

restr.
−−−→ KOG(G/H×Sn×X)

]

∼= K̃OH(Σn(X+)).

Let D∗(X, n) be the cochain complex defined via the short exact sequence

0 −→ D∗(X, n) −−−−→ C∗(O1(G);FXn )⊕
∏

p||G|

C∗
(
Op(G);FXn (−)(p)

)

−−−−→
∏

p||G|

C∗
(
O1(G);FXn (−)(p)

)
−→ 0.

(3)

For all j > 0, lim←−
j

Op(G)
FXn (−)(p) = 0 by Lemma 1.2 (applied to the G-complexes

Sn×X and X). Also, a functor M : O1(G) −→ Ab is the same as a Z[G]-module, and
lim←−

∗
O1(G)

M ∼= H∗(G;M). Since Hj(G;M) ∼=
∏
p||G|H

j(G;M(p)) for any Z[G]-module

M , the long exact cohomology sequence for (3) reduces to an exact sequence

0 −→ H0
(
D(X, n)

)
−−→ K̃O(Σn(X+))G⊕

∏

p||G|

lim←−
0

Op(G)

K̃OP (Σn(X+))(p)

ϕ
−−−→

∏

p||G|

(
K̃O(Σn(X+))(p)

)G
−−→ H1

(
D(X, n)

)
−→ 0;

(4)

and Hj
(
D(X, n)

)
= 0 for all j ≥ 2.

For any P ⊆ G, the composite

K̃O(Σn(X+))
transfer
−−−−−→ K̃OP (Σn(X+))

restr.
−−−→ K̃O(Σn(X+))

is the norm homomorphism for the action of P , and in particular sends any x ∈

K̃O(Σn(X+))G to |P |·x. Here, the transfer map sends a vector bundle over Σn(X+) to
the direct sum of its translates under the action of P (considered as a P -bundle). Thus,
if pm is the highest power of p dividing |G|, then

Im
[

lim←−
0

Op(G)

K̃OP (Σn(X+)) −−−→ K̃O(Σn(X+))G
]
⊇ pm·K̃O(Σn(X+))G.

8



Since K̃O(Σn(X+))G maps onto the sum of the Z/pm⊗K̃O(Σn(X+))G, this shows that
the map ϕ in (4) is surjective, and hence that H1

(
D(X, n)

)
= 0.

Step 2: We now consider maps from X to B∗
GO. For each 0 ≤ n ≤ ∞, let Un(X) be

the space defined by the pullback square

Un(X) w

u

∏

p||G|

map(EOp(G)(n)×X,BGO(p))

u

map(EO1(G)(n)×X,BGO) w

diag
∏

p||G|

map(EO1(G)(n)×X,BGO(p)).

(5)

Here, EC(n) (for C = Op(G) or O1(G)) denotes the n-skeleton of the complex

EC =

(∐

n≥0

( ∐

G/H0−→...−→G/Hn

(G/H0×∆n)
))/

∼, (6)

with the usual identifications induced by face and degeneracy maps. By Definition 1.1,
U∞(X) ≃ map(X,B∗

GO).

By the pullback square in (2), an element of S(X) corresponds to a choice of G-
maps G×X −→ BGO, and G/P×X −→ BGO(p) for all p and all p-subgroups P ⊆ G:
maps which agree up to homotopy with respect to morphisms in Op(G). In other
words, by (6), we can identify S(X) with Im[π0(U1(X)) −→ π0(U0(X))]. To show that
ΦX : [X,B∗

GO]G −→ S(X) is onto, we must thus show that any element of U1(X) can
be lifted to an element of U∞(X) which has the same image in π0(U0(X)).

Fix an element f1 ∈ U1(X), and consider the obstructions to lifting it to
U2(X). By (6) again, a 2-simplex in EOp(G) corresponds to a sequence of maps
G/P0−→G/P1−→G/P2 in Op(G), and the obstruction to extending f1 to that 2-simplex
lies in the group

Coker
[
KOG(G/P0×D

2×X)(p) −−→ KOG(G/P0×S
1×X)(p)

]
= FX1 (G/P0)(p).

Similarly, the obstruction to extending f1 to any 2-simplex in EO1(G) lies in FX1 (G/1).
These individual obstructions combine to give an element α2 ∈ D

2(X, 1) as the total
obstruction to lifting f1 to some f2 ∈ U2(X). This element is easily seen to be a cocycle,
and hence is a coboundary by Step 1. And if α1 = δ(β1) for β1 ∈ D

1(X, 1), then f1
can be changed on 1-simplices (in a way specified by β1) to remove the obstruction;
after which the “modified” map can be lifted to an element f2 ∈ U2(X). (Note that
the co-H-space structure on the suspensions induces the usual addition on the groups

K̃OP (Σ(X+)).) Upon continuing this process, we see that at each stage the obstruction
to lifting fn ∈ Un(X) to fn+1 ∈ Un+1(X) (while allowing fn to be changed on n-
simplices) lies in Hn+1(D∗(X, n)), which again vanishes by Step 1.

This shows that ΦX : [X,B∗
GO]G −→ S(X) is onto. To show that it is injective, we

start with two elements f, f ′ ∈ mapG(X,B∗
GO) ∼= U∞(X), together with a homotopy
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F0 ∈ U0(X×I), and then lift the homotopy one step at a time. For each n ≥ 0, the
obstruction to lifting a homotopy Fn ∈ Un(X×I) to Un+1(X×I) (while taking a given
value on X×{0, 1}) lies in Hn+1(D∗(X, n+1)). And this again vanishes by Step 1. �

Proposition 1.3 does not in general hold for infinite G-complexes. But it does hold
for countable complexes with fixed G-action.

The following corollary to Proposition 1.3 will be needed in Section 3.

Corollary 1.4. B∗
GO can be given the structure of a G-equivariant H-space in a way

such that LG : BGO −→ B∗
GO is an H-space homomorphism. Also, for any finite G-

complex X , [X,B∗
GO]G is an abelian group with the property that (Z/n)⊗ [X,B∗

GO]G

is finite for all n > 0.

Proof. The H-space structure on B∗
GO, and LG being an H-space homomorphism,

follow immediately from the pullback square in Definition 1.1, together with the H-
space structures on BGO and its localizations (see the discussion before Definition 1.1).
By Proposition 1.3, for any finite G-complex X , there is an exact sequence

0 −→ [X,B∗
GO]G −→ KO(X)G ⊕

∏

p||G|

(
lim←−

Op(G)

KOP (X)(p)

)
−→

∏

p||G|

(
KO(X)(p)

)G
. (1)

So [X,B∗
GO]G is abelian, and (Z/n)⊗ [X,B∗

GO]G is finite for any n > 0 since (Z/n)⊗−
and Tor(Z/n,−) are finite for the other two terms in (1). �

2. Construction of G-bundles

Proposition 1.3 describes a procedure for constructing G-maps from a finite G-
complex X to B∗

GO. What we really are interested in is the construction of G-maps from
X to BGO. In general, of course, G-maps from B∗

GO cannot be lifted to BGO (LG is not
a G-homotopy equivalence). To get around this, we prove a rather complicated lifting
result (Proposition 2.3); and then apply it in Theorem 2.4 to construct G-vector bundles
by “pasting together” bundles over certain subcomplexes and for certain subgroups.

The first step is to compare the homotopy groups of fixed point sets in B∗
GO with

those in BGO. Let RO(G) ∼= KOG(pt) denote the orthogonal representation ring of G,

and let IRO(G) = Ker[RO(G)
dim
−−→ Z] ∼= KOG(pt) be its augmentation ideal.

Lemma 2.1. Let G be any finite group, and let LG : BGO −→ B∗
GO be the map of

Definition 1.1. Then the following hold.

(a) LG is (nonequivariantly) a homotopy equivalence.

(b) Fix a prime p
∣∣|G| and a p-subgroup 1 6= P ⊆ G. Then π0((B∗

GO)P ) ∼= IRO(P )(p),

and π0(LPG) is isomorphic to the inclusion of IRO(P ) into IRO(P )(p). For each x ∈

(BGO)P ,
πi(L

P
G, x) : πi

(
(BGO)P , x

)
−−−−→ πi

(
(B∗

GO)P , LG(x)
)

is an isomorphism for i = 1; and for i > 1 its kernel and cokernel are torsion prime to
p with the additional property that their m-torsion subgroups are finite for all m.

10



Proof. Fix a prime p
∣∣|G| and a p-subgroup P ⊆ G. By Proposition 1.3 (applied with

X = G/P ) there is a pullback square

[G/P,B∗
GO]G ∼=π0((B∗

GO)P ) w

u

∏

q||G|

(
lim←−

G/Q∈Oq(G)

KOQ(G/P )(q)

)

u

KO(G/P )G w

∏

q||G|

(
KO(G/P )(q)

)G
.

(1)

Similarly, for any i > 0, Proposition 1.3 yields a pullback square

[Σi(G/P+), B∗
GO]G

[pt, B∗
GO]G

πi((B
∗
GO)P )∼= w

u

∏

q||G|

(
lim←−

G/Q∈Oq(G)

KO−i
Q (G/P )(q)

)

u

KO−i(G/P )G w

∏

q||G|

(
KO−i(G/P )(q)

)G
.

(2)

For any i ≥ 0 and any Q ⊆ G,

KO−i
Q (G/P ) ∼= KO−i

G (G/P ×G/Q) ∼= KO−i
P (G/Q).

In general, if FP is any contravariant functor from P -complexes to abelian groups such
that FP (X∐Y ) = FP (X)⊕FP (Y ), then

lim←−
G/Q∈Oq(G)

FP (G/Q) ∼= lim←−
Oq(P )

(FP ) ∼=

{
FP (pt) if q = p(
FP (P )

)
P if q 6= p.

(3)

The first isomorphism holds since for each P -orbit P ·gQ in any G/Q, there is an Oq(G)-
morphism G/Q′ −→ G/Q (where Q′ = P∩gQg−1) which sends the P -orbit P/Q′ in
Oq(P ) isomorphically to P ·gQ. Also, Oq(P ) has a final object if p = q, and contains
only the free orbit if p 6= q.

If we now apply (3) with FP = KOP (−)(q), then square (1) is reduced to an isomor-
phism

π0
(
(B∗

GO)P
) ∼=
−−−−→ KOP (pt)(p) ∼= IRO(P )(p)

(note that KO(G/P ) = [G/P,BO] = 0). Thus, π0(LPG) is isomorphic to the inclusion

of IRO(P ) into IRO(P )(p). And if (3) is applied with FP = KO−i
P (−)(q), then square

(2) reduces to a pullback square

πi((B
∗
GO)P ) w

u

KO−i
P (pt)(p)

u

KO−i(pt) wKO−i(pt)(p).

(4)
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When P = 1, this shows that πi(B
∗
GO) ∼= KO−i(pt) ∼= πi(BGO) for all i > 0, and hence

that LG is nonequivariantly a homotopy equivalence.

Now set Mi = Ker
[
KO−i

P (pt)
forget

−−−−−։ KO−i(pt)
]
. The forgetful map is a surjec-

tion: split by regarding a bundle over Si as a P -bundle with trivial action. So by (4),
the kernel and cokernel of the homomorphism

KO−i
P (pt) ∼= πi

(
(BGO)P

) πi(L
P
G)

−−−−−→ πi
(
(B∗

GO)P
)

are given by

Ker(πi(L
P
G)) ∼= Ker

[
Mi−→Mi(p)

]
and Coker(πi(L

P
G)) ∼= Coker

[
Mi−→Mi(p)

]
. (5)

In particular, since Mi is finitely generated, Ker
(
πi(L

P
G)

)
and Coker

(
πi(L

P
G)

)
are torsion

of order prime to p, and have finite m-torsion for any m > 0.

It remains to show that π1(LPG) is an isomorphism. By Proposition A.2(b),

KO−1
P (pt) ∼= π1((BGO)P ) is a sum of one copy of Z/2 for each irreducible P -

representation of real type. So if p = 2, then π1(LPG) is an isomorphism by (5), since M1

is a finite 2-group. If p is odd, then the only irreducible P -representation of real type is
the trivial one (see Proposition A.1(c)); so KO−i

P (pt) ∼= KO−i(pt) ∼= Z/2, M1 = 0, and
π1(LPG) is again an isomorphism. �

When f : X −→ Y is a given map between spaces, we will frequently write πi(Y,X, x)
(for x ∈ X) to denote the relative homotopy group πi(Zf , X, x). Here, Zf is the mapping
cylinder of f . Also, we write πi(Y,X) when X is connected and the basepoint need not
be specified.

The next lemma will provide the induction step in our construction of G-bundles.

Lemma 2.2. Fix a finite group G and a prime p. Let X
α
−→ Z

β
−→ Y be G-maps, where

(1) X and Y are countable finite dimensional (nonempty) G-complexes;

(2) Z and Y are connected, π1(Y, Z) = 1, π2(Y, Z) is abelian, and πi(Y, Z)⊗Z(p) = 0
for all i ≥ 2; and

(3) for any nontrivial p-subgroup 1 6= P ⊆ G, (βα)P : XP −→ Y P is an Fp-homology
equivalence.

Then there exist a countable finite dimensional G-complex X ⊇ X and an extension

α : X −→ Z of α, such that G acts freely on XrX and such that βα : X −→ Y is an
Fp-homology equivalence. If in addition,

(4) X and Y are finite G-complexes,

(5) Ker(π1(β)) has finite n-torsion for all n, and

(6) χ(XH) = χ(Y H) for all cyclic subgroups H ⊆ G of order prime to p,

then X can be chosen to be a finite G-complex.

Proof. Finite case: Assume that all points (1)–(6) hold. By attaching some finite
number of free orbits of 1-cells to X if necessary (and extending α accordingly), we can
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assume that X is connected and that π1(βα) : π1(X) ։ π1(Y ) is onto. Set

KX = Ker
[
π1(X)

π1(βα)
−−−−−։ π1(Y )

]
and KZ = Ker

[
π1(Z)

π1(β)
−−−−։ π1(Y )

]
.

Since π1(X) and π1(Y ) are both finitely presented, KX is finitely generated as a normal
subgroup of π1(X) (cf. [Ro, Lemma 1.43(i)]). By (2), KZ is abelian and torsion prime to

p, and by (5) its n-torsion subgroup is finite for any n. Then Im[KX
α∗−→ KZ ] is finite (it

has bounded torsion since KX is finitely generated); and hence Im[π1(X)
π1α−−→ π1(Z)] is

finitely presented (an extension of one finitely presented group by another). So by [Ro]
again, Ker(π1(α)) is finitely generated as a normal subgroup of π1(X). We can thus
attach finitely many free orbits of 2-cells to X , to obtain a finite G-complex X1 ⊇ X
and a map α1 : X1 −→ Z extending α, such that π1(α1) is injective, and Ker(π1(βα1))
is finite abelian of order prime to p.

Set d = max{dim(X), dim(Y ), 2}. We next construct a sequence of finite complexes

X1 ⊆ X2 ⊆ X3 ⊆ · · · ⊆ Xd,

together with G-maps αm : Xm −→ Z extending α1, such that each Xm (for 2 ≤
m ≤ d) is constructed from Xm−1 by attaching free orbits of m-cells, and such that

πi(Z̃, X̃m)⊗Z(p) = 0 for each i ≤ m. Assume that Xm−1 has been constructed. Then
by Lemma A.7,

πm(Z̃, X̃m−1)⊗ Z(p)
∼= πm(Ỹ , X̃m−1)⊗ Z(p)

is finitely generated as a Z(p)[π1(Xm−1)]-module. We can thus attach some finite number
of free orbits of m-cells to Xm−1 (while extending αm−1) to get a new complex Xm such

that πm(Z̃, X̃m)⊗Z(p)
∼= πm(Ỹ , X̃m)⊗Z(p) = 0.

Now consider the sequence of maps Xd
αd−→ Z

β
−→ Y . By assumption,

πi(Y,Xd)⊗Z(p) = 0 for all i ≤ d = dim(Xd) ≥ dim(Y ). Also, by Lemma A.7, ap-
plied to the pairs (Y,Xd) and (Y, Z), Hi(Y,Xd;Z(p)) ∼= Hi(Z,Xd;Z(p)) = 0 for all
i ≤ d, and the Hurewicz homomorphism

πd+1(Z,Xd)⊗Z(p)
∼= πd+1(Y,Xd)⊗Z(p) −−−−−։ Hd+1(Y,Xd;Z(p))

is surjective. By Lemma A.10, together with conditions (3) and (6), Hd+1(Y,Xd;Fp) is
free as an Fp[G]-module. We can thus choose elements of πd+1(Z,Xd) which represent
a basis of Hd+1(Y,Xd;Fp), and attach accordingly free orbits of (d + 1)-cells to Xd,

extending αd, to get a finite G-complex X ⊇ Xd and a map α : X −→ Z which is an
Fp-homology equivalence.

Countable case: The proof is similar in the countable case (i.e., when we only
assume conditions (1)–(3)), but much simpler. All homotopy groups of Y and the Xi

are countable by Lemma A.6. So at each stage, the relevant homotopy elements can be
eliminated by attaching only countably many cells. And in the last step, Hd+1(Y,Xd;Fp)
is stably free as a countably generated projective Fp[G]-module by Lemma A.10, and
so free orbits of d- and (d+1)-dimensional cells can be attached to Xd to construct the

Fp-homology equivalence X −→ Z. �

We are now ready lift maps from B∗
GO to BGO.
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Proposition 2.3. Assume that G is a finite group not of prime power order. Let

X w

f

u

ϕ

BGO

u

LG

Y w

fY B∗
GO

(1)

be a homotopy commutative square of G-maps, where X and Y are countable finite
dimensional G-complexes. Assume, for each prime p

∣∣|G| and each p-subgroup 1 6= P ⊆
G, that

Im
[
π0(Y P )

(fP
Y )∗

−−−→ π0((B∗
GO)P )

]
⊆ Im

[
π0((BGO)P )

(LP
G)∗

−−−−→ π0((B∗
GO)P )

]
. (2)

Then there is a countable finite dimensional G-complex X ⊇ X such that all isotropy

subgroups of XrX have prime power order, and extensions ϕ : X −→ Y of ϕ and

f : X −→ BGO of f such that ϕ is (nonequivariantly) a homotopy equivalence and

fY ◦ϕ ≃ LG◦f . If, furthermore,

(3) X and Y are finite G-complexes with XG 6= ∅ and Y connected,

(4) χ(XH) = χ(Y H) for all H ⊆ G not of prime power order, and

(5) χ
(
(ϕ−1Y Pi )H

)
= χ

(
(Y Pi )H

)
for each prime p

∣∣|G|, each p-subgroup 1 6= P ⊆ G, each

connected component Y Pi of Y P , and each cyclic subgroup 1 6= H/P ⊆ N(P )/P of
order prime to p,

then X can be chosen to be a finite G-complex.

Proof. We concentrate on the proof in the case where X and Y are finite complexes and
conditions (3)–(5) hold. The proof in the finite dimensional case is simpler, and some
remarks will be made afterwards as to how it differs from that for finite complexes.

Define Z to be the (G-equivariant) homotopy pullback in the following square:

Z w

γ

u

β

BGO

u

LG

Y w

fY B∗
GO.

(6)

Lemma 2.1(b) and Condition (2) imply that for any P ⊆ G of prime power order,

π0(ZP )
π0(β

P )
−−−−→

∼=
π0(Y P ) and π1(ZP , x)

π1(β
P )

−−−−։
onto

π1(Y P , β(x)) ∀x ∈ ZP . (7)

By the homotopy commutativity of (1), there is a G-map α : X −→ Z such that β◦α ≃ ϕ
and γ ◦ α ≃ f .

Finite case: Step 1: Let P1, . . ., Pk be conjugacy class representatives for all
subgroups 1 6= P ⊆ G of prime power order, ordered from largest to smallest (i.e.,
i ≤ j if Pi contains a subgroup conjugate to Pj). We first construct finite G-complexes

14



X = X0 ⊆ X1 ⊆ · · · ⊆ Xk, together with maps αi : Xi −→ Z (where α0 = α), satisfying
the following conditions for all 1 ≤ i ≤ k:

(a) XirXi−1 contains only orbits of type G/Pi,

(b) αi|Xi−1 = αi−1, and

(c) (β◦αi)
Pi : (Xi)

Pi −→ Y Pi is an Fpi-homology equivalence, where pi is the prime
such that Pi is a pi-group.

Fix some 1 ≤ i ≤ k, and assume that Xi−1 and αi−1 have been constructed. Consider
the maps

(Xi−1)Pi
(αi−1)

Pi

−−−−−→ ZPi
βPi

−−−−→ Y Pi .

After restricting to any connected component of Y Pi (and to those connected compo-
nents of ZPi and (Xi−1)Pi which map into it), these maps satisfy hypotheses (2)–(6)
of Lemma 2.2, applied with the action of the group N(Pi)/Pi. Note in particular that
conditions (2) and (5) in Lemma 2.2 follow from (7) and Lemma 2.1 (and the pullback
square (6)), that condition (3) follows from the assumptions on Xi−1, and that condition
(6) follows from condition (5) here. So by Lemma 2.2, there is a finite N(Pi)/Pi-complex
W ⊇ (Xi−1)Pi , and an equivariant map α̂ : W −→ ZPi which extends (αi−1)Pi , such that
βPi◦α̂ is an Fpi-homology equivalence. And if we set Xi = Xi−1∪G×(incl)(G×N(Pi)W )
and αi = αi−1∪(G×α̂), then the pair (Xi, αi) satisfy conditions (a), (b), and (c) above.

Step 2: It remains to deal with the free orbits. Note that β : Z −→ Y is (nonequiv-
ariantly) a homotopy equivalence since LG is (by Lemma 2.1). Since Xk and Y are both
finite, we can attach free orbits of cells to Xk, eliminating all relative homotopy groups
πi(Y,Xk) ∼= πi(Z,Xk) for small i, until we get a new finite G-complex X ′ ⊇ Xk and a
map α′ : X ′ −→ Z extending αk, such that Hi(Y,X

′) = 0 for all i ≤ dim(X ′) ≥ dim(Y ).
Set d = dim(X ′) + 1.

By Lemma A.11 below, Hd(Y,X
′) ∼= Hd(Z,X

′) is a projective Z[G]-module; and
there exists a finite G-complex T such that TH = pt for all H ⊆ G not of prime power

order, and such that for some m, T is (m − 1)-connected and H̃∗(T ) = Hm(T ) ∼=
Hd(Y,X

′) as Z[G]-modules. Upon replacing T by an appropriate suspension, we can
assume that m ≥ d, and that m−d is even. Set X ′′ = X ′∨T (recall (X ′)G = XG 6= ∅),
and extend α′ to α′′ : X ′′ −→ Z by sending T to a point. Then H∗(Y,X ′′) ∼= H∗(Z,X ′′)
vanishes except in dimensions d and m + 1, and Hd(Y,X

′′) ∼= Hm+1(Y,X ′′) as Z[G]-
modules. Since Y and Z are connected, we can now attach (finitely many) free orbits

of cells G×Di to X ′′, for d + 1 ≤ i ≤ m + 1, to obtain a G-map α : X −→ Z which
is a (nonequivariant) homotopy equivalence. By construction, all isotropy subgroups of

XrX have prime power order.

Countable case: The main difference in the proof when X and Y are countable
and finite dimensional is that since we are working with countably generated modules,
the group Hd(Y,X

′) is stably free by Lemma A.11. So the last part of Step 2, and in
particular the replacement of X ′ by a wedge product, are not needed. �

Note that the condition XG 6= ∅ in Proposition 2.3 is needed only in the last step
of the construction, when removing the projective obstruction to making X ′ −→ Y a
homotopy equivalence. If XG is empty, the calculations of projective obstructions in
[OP, §4] provide other conditions under which the lemma still holds.
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The main technical theorem on the construction of G-vector bundles can now be
shown.

Theorem 2.4. Assume that G is a finite group not of prime power order. Let ϕ : X −→
Y be a G-map, where X is a finite G-complex and Y is countable and finite dimensional.
Fix a G-bundle η↓X , and a P -vector bundle ξP ↓Y for each subgroup P ⊆ G of prime
power order, such that the following conditions hold:

(1) For each prime p, the ξP (for p-subgroups P ⊆ G) are p-locally “consistent up to
isomorphism” with respect to morphisms in Op(G); i.e., they define an element in
the inverse limit

lim←−
G/P∈Op(G)

KOP (Y )(p) = lim←−
G/P∈Op(G)

KOG(G/P×Y )(p).

(2) If 1 6= P ⊆ G is a p-subgroup, then [ϕ∗(ξP )] = [η|P ] in KOP (X)(p).

(3) [ξ1] ∈ KO(Y )G, and ϕ∗(ξ1) ∼= η (as nonequivariant vector bundles over X).

Then there is a countable finite dimensional G-complex X ⊇ X such that all isotropy

subgroups of XrX have prime power order, a G-map ϕ : X −→ Y which extends ϕ and

is a homotopy equivalence, a G-vector bundle η↓X, and a (real) G-representation V , so

that η|X ∼= η ⊕ (V×X) as G-vector bundles; and such that [η] = [ϕ∗(ξP )⊕ (V×X)] in

KO(X) (if P = 1) or in KOP (X)(p) (if P ⊆ G is a p-subgroup). If, furthermore,

(4) X and Y are finite G-complexes with XG 6= ∅ and Y connected,

(5) χ(XH) = χ(Y H) for all H ⊆ G not of prime power order, and

(6) χ
(
(ϕ−1Y Pi )H

)
= χ

(
(Y Pi )H

)
for each prime p

∣∣|G|, each p-subgroup 1 6= P ⊆ G, each

connected component Y Pi of Y P , and each cyclic subgroup 1 6= H/P ⊆ N(P )/P of
order prime to p,

then X can be chosen to be a finite G-complex.

Proof. Let f : X −→ BGO be the classifying map for η (Lemma A.3). Write Y = ∪∞i=1Yi,
where Y1 ⊆ Y2 ⊆ · · · ⊆ Y are finite G-subcomplexes. By Proposition 1.3 (and Lemma
A.3 again), for each i, the ξP combine to define a G-map f ′

i : Yi −→ B∗
GO which is

unique up to G-homotopy. In particular, f ′
i |Yi−1 ≃ f ′

i−1 for all i, and hence the f ′
i

combine to give a map fY : Y −→ B∗
GO. Since X is a finite G-complex, conditions (2)

and (3) (and Proposition 1.3 again) show that fY ◦ϕ ≃ LG◦f . These maps satisfy all of
the appropriate hypotheses of Proposition 2.3. Note in particular that condition (2) in
Proposition 2.3 is satisfied since the ξP are actual bundles (see Lemma 2.1(b)).

Proposition 2.3 now applies to give a countable finite dimensional (or finite) G-

complex X ⊇ X , and G-maps ϕ : X −→ Y and f : X −→ BGO extending ϕ and f , such

that ϕ is a homotopy equivalence, such that LG◦f ≃ fY ◦ϕ, and such that all isotropy

subgroups of XrX have prime power order. It remains to check that f is induced

by a G-bundle. For all H ⊆ G not of prime power order, Im(π0(fH)) = Im(π0(fH))
is finite since f is induced by an actual bundle. If P ⊆ G has prime power order,

then Im(π0(fP )) is finite since the composite X
f
−→ BGO −→ BPO(p) is P -homotopic to
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the classifying map for the P -bundle (ϕ)∗ξP (and π0((BGO)P ) ∼= IRO(P ) injects into

π0((BPO(p))
P ) by Proposition A.2). Thus, by Lemma A.3, f factors through BGO(n)

for some n, and hence is the classifying map of some G-bundle η↓X, whose restriction to
X is stably isomorphic to η, and which is P -equivariantly stably isomorphic to ϕ∗(ξP )
for each prime p

∣∣|G| and each p-subgroup P ⊆ G. �

Theorem 2.4 can easily be combined with Theorem A.12 below, to allow the construc-
tion of smooth G-manifolds with various properties. But since it seems quite difficult to
formulate such a theorem in the greatest possible generality, we limit the applications
to the case of actions on disks and euclidean spaces described in the next section.

3. Smooth actions on disks and euclidean spaces

We are now ready to describe the fixed point sets, and the tangent bundles over fixed
point sets, for actions of a finite group not of prime power order on a disk or euclidean
space. We first recall the definition of the number nG which determines which homotopy
types can occur among fixed point sets of actions of G on disks.

Consider the set {χ(XG)−1 |X a finite contractible G-complex} ⊆ Z. This is a
subgroup of Z (as seen by taking wedge products and suspensions of G-complexes),
and hence has the form nG·Z for some unique nG ≥ 0. Thus, by definition, for any
k ∈ Z, there is a finite contractible G-complex X such that χ(XG) = k if and only if
k ≡ 1 (mod nG); and the main theorem in [O1] says that any finite complex F with an
“allowable” Euler characteristic can be realized as a fixed point set in this way. This is
also a special case of Theorem 2.4 above: if Y is a finite contractible G-complex, and
if χ(F ) = χ(Y G), then that theorem describes how to construct a finite contractible

G-complex X with XG = F (while taking all maps to BGO and B∗
GO to be trivial).

Proof of Theorem 0.1. By assumption, F is a smooth manifold, and η↓F is a G-

bundle such that (1) η is nonequivariantly a product bundle, (2) [η|P ] ∈ K̃OP (F ) is
infinitely p-divisible for all primes p and all p-subgroups P ⊆ G, and (3) ηG ∼= τ(F ).
Let V be the fiber over any point of F (regarded as a G-representation).

Finite case: Assume that F is compact and χ(F ) ≡ 1 (mod nG). If F = ∅, then
nG = 1, and G has a fixed point free action on a disk by [O1, corollary to Theorem 3].
So we can assume F 6= ∅. By the above definition of nG, there is a finite contractible
G-complex Y with χ(Y G) = χ(F ) (and Y G 6= ∅). Set X = F ∨ (Y/Y G), let ϕ : X −→ Y
be any G-map, extend η to a G-bundle η↓X by letting it be trivial over Y/Y G, and set
ξP = (V |P )×Y for each P . Then χ(XH) = χ(Y H) for all H ⊆ G, and Y P is acyclic
and hence connected for each P ⊆ G of prime power order. By Theorem 2.4, there

is a finite contractible complex X ⊇ X and a G-bundle η↓X such that η|X is stably
isomorphic to η. In particular, by condition (1) above, (η|F )G is stably isomorphic to
τ(F ); and so by Theorem A.12 there is a smooth action of G on a compact contractible
manifold M with fixed point set F and with τ(M)|F stably isomorphic to η. By the
h-cobordism theorem (cf. [Mi]), M is a disk if its boundary is simply connected. So
if M is not itself a disk, then we can replace it by M×D(V ) for any G-representation
V 6= 0 with V G = 0.

Countable case: Let f : F −→ BGO be the classifying map for [η] − [F×V ]. By
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Proposition 1.3 (and the assumptions on η), (LG◦f)|F ′ ≃ ∗ for any finite subcomplex
F ′ ⊆ F . In particular, the image of LG◦f is contained in the identity connected compo-
nent of (B∗

GO)G. By Corollary 1.4, (B∗
GO)G is an H-space, and (Z/n)⊗[ΣX, (B∗

GO)G]
is finite for any finite complex X and any n > 0. Hence Lemma A.9 applies to show
that there is a countable finite dimensional Z/|G|-acyclic complex Y ⊇ F and a map
fY : Y −→ (B∗

GO)G which extends LG◦f .

Recall that LG : BGO −→ B∗
GO and the forgetful map BGO −→ BO are both nonequiv-

ariantly homotopy equivalences: the first by Lemma 2.1(a) and the second by Propo-
sition A.2(b). Let ξ↓Y be any bundle which is classified by fY : Y −→ B∗

GO ≃ BO.
Then ξ|F is a (stably) product bundle, since η↓F is by assumption a product bun-
dle. Let ξ′↓(Y/F ) be an inverse bundle to ξ (Y is finite dimensional), consider it as
a G-bundle over Y with trivial G-action, and let ψ : Y −→ Y/F −→ (BGO)G be its
classifying map. We can now replace [fY ] by [fY ] + [LG◦ψ] (LG is a homomorphism of
H-spaces by Corollary 1.4), and thus arrange that fY : Y −→ B∗

GO be nonequivariantly
nullhomotopic.

By Proposition 2.3, applied with X = F and ϕ : X −→ Y the inclusion, there is a

countable finite dimensional G-complex X ⊇ F , together with extensions ϕ : X −→ Y

and f : X −→ BGO of ϕ and f , such that XG = F and ϕ is nonequivariantly a

homotopy equivalence. In particular, X is Z/|G|-acyclic; and so by Smith theory (cf.

[Br, Theorem III.7.11]), XP is Fp-acyclic for each prime p
∣∣|G| and each p-subgroup

P ⊆ G. Set d = dim(X), and consider the d-skeleton of the join X*EG. By Lemma

A.11, Hd

(
(X*EG)(d)

)
is Z[G]-stably free, and so free orbits of d- and (d+ 1)-cells can

be attached to produce a countable finite dimensional contractible G-complex Z ⊇ X .

By construction, all orbits in ZrX are free. Since X*EG is contractible, the inclusion

of the d-skeleton extends to a map ψ : Z −→ X*EG
(d+1).

We next show, inductively on n, that there are G-maps fn : X*EG
(n) −→ BGO for

all n ≥ 0 which extend f : X −→ BGO. Since fY is (nonequivariantly) nullhomotopic

and LG : BGO −→ B∗
GO is a homotopy equivalence, f is also nullhomotopic. So we can

construct f0 : X*EG
(0) −→ BGO.

Now assume, for some n ≥ 1, that fn−1 : X*EG
(n−1) −→ BGO has been constructed.

The obstruction to extending fn−1 to X*EG
(n) is an element

ǫn ∈ C
n
(
EG; K̃O(ΣnX)

) def
= HomZG

(
Cn(EG), K̃O(ΣnX)

)
.

We can regard K̃O(ΣnX) as the set of homotopy classes of maps of pairs

(Dn, Sn−1) −−−−→
(

map(X,BGO) , (constant maps)
)

;

and under this identification addition is given by juxtaposition of disks. This view-

point makes it clear that ǫn is a cocycle, and hence is a coboundary since K̃O∗(X)

is uniquely |G|-divisible (X is Z/|G|-acyclic). And if ǫn is the coboundary of αn−1 in
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Cn−1
(
EG; K̃O(ΣnX)

)
, then αn−1 provides the “recipe” for changing fn−1 on (n−1)-

simplices in EG to obtain a map which can be extended to X*EG
(n).

By Lemma A.3, fd+1◦ψ : Z −→ BGO induces a G-bundle η↓Z, and η|(F=ZG) is
stably isomorphic to η. Theorem A.12 can now be applied to construct a smooth G-
action on a contractible manifold M with fixed point set F , such that τ(M)|F is stably
isomorphic to η. If ∂F = ∅, then we may assume that ∂M = ∅ (otherwise just replace
M by its interior). If dim(M) ≥ 5, then by [St, Theorem 5.1], M is a euclidean space if
it is simply connected at infinity; in particular, if there is a sequence K1 ⊆ K2 ⊆ · · · of
compact subspaces whose union is M and such that each MrKi is simply connected.
And if M does not satisfy this property, then M×R does; and so we can get a euclidean
space by replacing M by M×V for any G-representation V 6= 0 with V G = 0. �

It remains to prove Theorem 0.2; and in particular to characterize which smooth
manifolds have G-vector bundles which satisfy the hypotheses of Theorem 0.1.

In the proofs of the next three lemmas, a pair of (real or complex) G-representations
(V,W ) will be called a “P-matched pair” of type n if V |P ∼= W |P for all P ⊆ G of prime
power order, and dim(V G) − dim(WG) = n. In these terms, MC ⊇ MC+ ⊇ MR are
the classes of finite groups for which there exist a P-matched pair (V,W ) of complex,
self-conjugate, or real G-representations, respectively, of type 1. If we only assume that
V |P ∼= W |P for p-subgroups P ⊆ G (for some given prime p), then (V,W ) will be called
a p-matched pair.

Lemma 3.1. The following hold for any finite group G not of prime power order.

(a) G ∈ MC if and only if G contains an element not of prime power order; and
G ∈ MC+ if and only if G contains an element not of prime power order which is
conjugate to its inverse.

(b) G ∈ MR if and only if there are subgroups K ⊳ H ⊆ G such that H/K is
dihedral of order 2n for some n not a prime power.

Proof. (a) Assume g ∈ G has order n = km, where k,m > 1 and (k,m) = 1. For any
n-th root of unity ψ, we let Cψ be the 1-dimensional 〈g〉-representation where g acts
via multiplication by ψ. Set α = exp(2πi/k) and β = exp(2πi/m), and define

V = IndG〈g〉
(
C1 ⊕ Cαβ

)
and W = IndG〈g〉

(
Cα ⊕ Cβ

)
.

Then (V,W ) is a P-matched pair of type 1, and so G ∈ MC. If g is conjugate to g−1,
then V and W are self-conjugate — the character of any G-representation induced from
〈g〉 is real valued by the formula for the character of an induced representation (cf. [Se,
§7.2, Proposition 20]) — and so G ∈MC+.

If G ∈ MC, let (V,W ) be a P-matched pair of complex representations of type 1.
Then V 6∼= W , but the characters of V and W agree on elements of prime power order.
So G must contain an element not of prime power order.

Now assume that G ∈ MC+. Recall that a subgroup H ⊆ G is p-elementary (for
a prime p) if it is a product of a p-group with a cyclic group; and is 2-R-elementary
if it is a semidirect product H = Cn ⋊ P , where Cn is cyclic of order n, P is a 2-
group, and each element of P centralizes Cn or acts on it via (g 7→ g−1). For each
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H ⊆ G, let IP(H)+ ⊆ R(H) be the subgroup of self-conjugate elements which vanish
upon restriction to prime power order subgroups of H; or equivalently the subgroup of
elements whose characters are real valued and vanish on elements of prime power order.
Then IP(H)+ is a module over RO(G), where multiplication by [V ] is induced by tensor
product with C⊗RV (or by multiplication with its character). Also, the IP(H)+ are
preserved under induction and restriction maps (by the formula for the character of an
induced representation again). Since RO(G) is generated by induction from subgroups
which are p-elementary or 2-R-elementary [Se, §12.6, Theorem 27], it now follows by
Frobenius reciprocity that IP(G)+ is also generated by induction from such subgroups
(cf. [Lam, Theorem 3.4(III)]). Hence, since induction leaves unchanged the dimensions
of fixed point sets, there is some p-elementary or 2-R-elementary subgroup G′ ⊆ G
and a P-matched pair (V,W ) of self-conjugate G′-representations of type a with 2∤a.
In particular, G′ contains elements not of prime power order, and so G′ ∈ MC. Thus,
there exist P-matched pairs of self-conjugate G′-representations of type 2; hence of type
a for any a ∈ Z; and so G′ ∈MC+.

Now note that Syl2(G′) 6⊳ G′: since otherwise

dim(V G
′

) ≡ dim(V Syl2(G
′)) = dim(W Syl2(G

′)) ≡ dim(WG′

) (mod 2).

(The representations V Syl2(G
′)/V G

′

and W Syl2(G
′)/WG′

of the odd order group

G′/ Syl2(G′) both split as sums U ⊕ U , and hence are even dimensional, by Propo-
sition A.1(c)). Hence G′ is 2-R-elementary but not 2-elementary. Write G′ = Cn ⋊ P ,
where Cn = 〈g〉 is cyclic of odd order n and P is a 2-group. We must show that G′

contains an element not of prime power order conjugate to its inverse, and g is such
an element if n is not a prime power. If n > 1 is an odd prime power, and if |P | ≥ 4,
then write g′ = gx for any element x ∈ Z(P ) of order 2 which centralizes g; and g′ has
order 2n and is conjugate to its inverse. And the remaining possibilities — |P | = 2 and
n a prime power, or n = 1 — both contradict the above observation that G′ contains
elements not of prime power order.

(b) Assume first that G is dihedral of order 2n, where n is not a prime power. Then
G ∈ MC by (a). Also, every CG-representation has the form C ⊗ RV for some RG-
representation V (this holds for any dihedral group). Thus, there is a P-matched pair
(C ⊗ RV,C ⊗ RW ) of complex G-representations of type 1, so (V,W ) is a P-matched
pair of real G-representations of type 1, and G ∈MR.

Clearly, G ∈ MR if any quotient group of G lies in MR. And if H ⊆ G and (V,W )

is a P-matched pair of real H-representations of type 1, then (IndGH(V ), IndGH(W )) is a
P-matched pair of real G-representations of type 1.

Conversely, assume that G ∈MR. We must show that G contains a dihedral subquo-
tient of order 2n for some n not a prime power. The same argument as that used in (a)
shows that G contains a 2-R-elementary subgroup which is not 2-elementary and which
lies in MR. Upon replacing G by this subgroup, we may assume that G ∼= Cn ⋊ P ,
where n is odd and P is a 2-group, where P0 = P ∩CG(Cn) has index 2 in P , and where
elements in PrP0 act on Cn via (a 7→ a−1). Then G/P0 is dihedral of order 2n, and we
are done if n is not a prime power. If P is not cyclic, then let Fr(P ) denote its Frattini
subgroup (generated by squares and commutators in P ); P/Fr(P ) is elementary abelian
of order at least 4 (cf. [Go, Corollary 5.1.2 & Theorem 5.1.3]), and so G/Fr(P ) contains
a subgroup which is dihedral of order 4n.
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It remains to consider the case where P is cyclic; i.e., where

G =
〈
a, b

∣∣apk = 1 = b2
m

, bab−1 = a−1
〉
.

We must show that G /∈ MR. Assume otherwise: let (V,W ) be a P-matched pair of
RG-representations of type 1. Decompose V and W as sums

V = V11⊕V1x⊕Vx1⊕Vxx and W = W11⊕W1x⊕Wx1⊕Wxx,

where V11⊕V1x = V 〈a〉 and V11⊕Vx1 = V 〈b2〉 (and similarly for W ). Thus, for example,
Vxx and Wxx are the sums of those irreducible components where neither a nor b2 acts
trivially. Then 4| dim(Vxx) and 4| dim(Wxx): each irreducible real G-representation on
which neither a nor b2 acts trivially is 4-dimensional (and of complex or quaternion
type). Since dim(V ) = dim(W ) and dim(V 〈a〉) = dim(W 〈a〉) by assumption, this shows

that dim(Vx1) ≡ dim(Wx1) (mod 4). And since dim(V
〈b〉
x1 ) = 1

2 dim(Vx1) (b acts on each
irreducible representation in Vx1 with equally many eigenvalues +1 and −1), we now
see that

dim(V G) = dim(V 〈b〉)−
1

2
dim(Vx1) ≡ dim(W 〈b〉)−

1

2
dim(Wx1) = dim(WG) (mod 2).

And this contradicts the assumption that dim(V G)− dim(WG) = 1. �

The condition in Lemma 3.1(b) for G to lie in MR was pointed out to me by Erkki
Laitinen.

Recall that Fix(G) denotes the class of smooth manifolds F for which there is a G-

vector bundle η such that η is nonequivariantly a product, [η|P ] ∈ K̃OP (F ) is infinitely
p-divisible for all primes p

∣∣|G| and all p-subgroups P ⊆ G, and ηG ∼= τ(F ). We are
now ready to start proving necessary and sufficient conditions for a manifold F to lie
in Fix(G), for a given group G.

The standard induction and forgetful maps between the groups of real, complex, and
quaternion vector bundles over F are denoted here as follows:

K̃O(F ) w

c
u r

K̃(F )
wq

u

c′

K̃Sp(F ).

As usual, F is called stably complex if [τ(F )] ∈ r(K̃(F )); or equivalently if τ(F )⊕Rk

has a complex structure for some k. Note that this requires that the dimensions of the
connected components of F all have the same parity.

Recall that for any abelian group A, qdiv(A) denotes the intersection of the kernels
of all homomorphisms from A to free abelian groups. In particular, qdiv(A) = tors(A)
if A is finitely generated.

Lemma 3.2. Fix a finite group G not of prime power order, and a smooth manifold
F . Then the following hold.

(a) F ∈ Fix(G) if G ∈MR, or if G ∈ MC and F is stably complex.

(b) F ∈ Fix(G) if G ∈MC+ and c([τ(F )]) ∈ c′(K̃Sp(F )) + qdiv(K̃(F )).
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(c) F ∈ Fix(G) if [τ(F )] ∈ r
(
qdiv(K̃(F ))

)
, or if Syl2(G) 6⊳ G and τ(F ) ∈

qdiv(K̃O(F )).

Proof. For any F ∈ Fix(G), we let TgG(F ) denote the class of G-bundles over F satis-
fying conditions (1)–(3) in Theorem 0.1.

(a) Assume first that G ∈ MR, and let (V,W ) be a P-matched pair of real G-
representations such that dim(V G) = 1 and WG = 0. If F is any compact manifold, let
τ(F ) and ν(F ) denote the tangent and normal bundles, and set

η =
(
τ(F )⊗V

)
⊕
(
ν(F )⊗W

)
(1)

(as a real G-bundle over F ). Then η|P is a product P -vector bundle for any P ⊆ G of
prime power order, and ηG ∼= τ(F ). Thus η ∈ TgG(F ), and so F ∈ Fix(G). If G ∈ MC

and F is stably complex, then the same construction as in (1), but with complex bundles
and representations, again produces a bundle η ∈ TgG(F ).

(b) Assume G ∈ MC+ and c([τ(F )]) ∈ c′(K̃Sp(F )) + qdiv(K̃(F )). By (a), there are
elements g, x ∈ G such that |g| is not a prime power and xgx−1 = g−1. Set G′ = 〈g, x〉.
We can choose a subgroup K ⊳ G′ such that G′/K is either dihedral of order 2n where
n is not a prime power, or quaternion of order 4p for some odd prime p. In the first
case, G ∈ MR by Lemma 3.1(b), and so F ∈ Fix(G) by (a). So we are reduced to the
case where G′/K is quaternion of order 4p.

Fix a ∈ G′ which generates the cyclic subgroup of order 2p in G′/K, and set H =
〈a,K〉 ⊳ G′. Set ζ = exp(2πi/p). Then there are RG-representations V ′,W ′ and
HG-representations V ′′,W ′′ such that

C⊗RV
′ ∼= IndGH(C1), C⊗RW

′ ∼= IndGH(Cζ), V ′′|C ∼= IndGH(C−ζ),

W ′′|C ∼= IndGH(C−1).

Here Cψ denotes the 1-dimensional H/K-representation where a acts via multiplication
by ψ. Set

V = (C⊗RV
′)⊕(V ′′|C) and W = (C⊗RW

′)⊕(W ′′|C).

Then (V,W ) is a self-conjugate P-matched pair of G-representations of type 1; and
(V ′,W ′) and (V ′′,W ′′) are 2-matched pairs of G-representations of types 1 and 0,
respectively.

Set τ = τ(F ), and let ν be a normal bundle for F . By assumption on F , there are
H-bundles τ ′′ and ν′′ such that τ ′′⊕ν′′ is a product H-bundle, and such that [τ ′′|C] =

[C⊗Rτ ] ∈ K̃(F )/(qdiv). Since all infinitely 2-divisible elements in K̃(F )+ (the elements
invariant under complex conjugation) are in the image of infinitely 2-divisible elements

in K̃Sp(F ) (see Lemma A.5(a)), we can assume that the difference [τ ′′|C]− [C⊗Rτ ] is
infinitely p-divisible for all odd primes p

∣∣|G| (Lemma A.5(b)). Set

η = (τ⊗RV
′)⊕(τ ′′⊗HV

′′)⊕(ν⊗RW
′)⊕(ν′′⊗HW

′′).

By construction, [η|P ] = 0 ∈ K̃OP (F ) for any 2-subgroup P ⊆ G. Also,

C⊗Rη = ((C⊗Rτ)⊗C(C⊗RV
′))⊕(τ ′′⊗CV

′′)⊕((C⊗Rν)⊗C(C⊗RW
′))⊕(ν′′⊗CW

′′)

≡ (C⊗Rτ)⊗CV ⊕ (C⊗Rν)⊗CW
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modulo elements which are infinitely p-divisible for all odd primes p
∣∣|G|. So for each

such p and each p-subgroup P ⊆ G, 2·[η|P ] = r([C⊗Rη|P ]) is infinitely p-divisible,
and hence [η|P ] is infinitely p-divisible by Lemma A.5(a). Thus, η ∈ TgG(F ), and so
F ∈ Fix(G).

(c) Assume first that G has the property that for each prime p, there is a p-matched
pair (Vp,Wp) of real G-representations of type 1. We can assume that dim((Vp)

G) = 1

and (Wp)
G = 0. Let F be such that [τ(F )] ∈ qdiv(K̃O(F )). By Lemma A.5(b), we can

write [τ(F )] =
∑
p||G|[τp], where each [τp] is infinitely q-divisible for all primes q

∣∣|G|
different from p. Choose νp such that each τp⊕νp is a product bundle. Set

η =
⊕

p||G|

(
(τp⊗Vp)⊕ (νp⊗Wp)

)
.

Then η ∈ TgG(F ), and so F ∈ Fix(G).

If τ(F ) ∈ r
(
qdiv(K̃(F ))

)
, and if there is for each prime p a p-matched pair of complex

representations of type 1, then the same construction (taken with complex bundles) gives
a G-bundle η ∈ TgG(F ).

It remains to show that for each prime p, G has a p-matched pair (Vp,Wp) of complex
representations of type 1, and a p-matched pair of real representations of type 1 if
Syl2(G) 6⊳ G. The complex representations are easily constructed: let g ∈ Gr1 be any
element of order m prime to p, let C1 and Cζ be the 1-dimensional 〈g〉-representations
where g acts via multiplication by 1 or ζ = exp(2πi/m), and set

Vp = IndG〈g〉(C1) and Wp = IndG〈g〉(Cζ). (2)

Also, if 2
∣∣|G| and g is any element of order 2, then Vp = IndG〈g〉(R

+) andWp = IndG〈g〉(R
−)

form for any odd prime p a p-matched pair of real representations of type 1.

If G is dihedral of order 2m, where m > 1 is odd, and if g generates the subgroup
of index 2, then the representations in (2) are induced from a 2-matched pair of real
G-representations. So to finish the proof, we need only show that any group G such that
Syl2(G) 6⊳ G contains a subquotient of that form. Upon dividing out by the intersection
O2(G) of the Sylow 2-subgroups, we can assume that this intersection is trivial. Let S
be any conjugacy class of elements of order 2 in G. By [Go, Theorem 3.8.2], either S
generates a normal 2-subgroup of G (which is clearly not the case), or some pair x, y of
elements in S generates a subgroup not of 2-power order. And then 〈x, y〉 is dihedral,
and contains a dihedral subgroup of order 2m for some odd m > 1. �

Lemma 3.2 gave sufficient conditions for a manifold to be contained in Fix(G). It
remains to show that these conditions are also necessary.

Lemma 3.3. Fix a finite group G not of prime power order, and assume that F ∈
Fix(G).

(a) If Syl2(G) ⊳ G, then F is stably complex.

(b) If G 6∈ MC, then τ(F ) ∈ qdiv(K̃O(F )), and τ(F ) ∈ r
(
qdiv(K̃(F ))

)
if Syl2(G) ⊳

G.
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(c) If G 6∈ MR, then c([τ(F )]) ∈ c′(K̃Sp(F )) + qdiv(K̃(F )). If G 6∈ MC+, then

[τ(F )] ∈ r(K̃(F ))+qdiv(K̃O(F )).

Proof. Fix some F ∈ Fix(G). Let η↓F be a G-vector bundle which satisfies conditions

(1)–(3) in Theorem 0.1: ηG ∼= τ(F ), [η] = 0 in K̃O(F ), and η|P is infinitely p-divisible

in K̃OP (F ) for each prime p
∣∣|G| and each p-subgroup P ⊆ G.

(a,b) If all elements in G have prime power order, then R(G) is detected by re-

striction to the Sylow subgroups, and so c([η]) = [C⊗Rη] lies in qdiv(K̃G(F )) ∼=

qdiv(K̃(F ))⊗R(G). Since r◦c([η]) = 2·[η], it now follows that [η] ∈ qdiv(K̃OG(F )),

and in particular that [ηG] = [τ(F )] lies in qdiv(K̃O(F )).

Now assume that Syl2(G) ⊳ G, and write G2 = Syl2(G) for short. Then [ηG2 ]

is infinitely 2-divisible in K̃O(F ), and hence is the image of the infinitely 2-divisible

element c
(
1
2 ·[η

G2 ]
)
∈ K̃(F ). In particular, [ηG2 ] ∈ r

(
qdiv(K̃(F ))

)
. Let V0 = R, V1, . . .Vk

be the distinct irreducible real representations of G/G2. Write

ηG2 = η0 ⊕ η1 ⊕ · · · ⊕ ηk,

where each fiber in ηi is a sum of copies of Vi (in particular, η0 = ηG). Since |G/G2|
is odd, each representation V1, . . ., Vk can be given a complex structure by Proposition
A.1(c), and hence (by Proposition A.1(a)) each ηi has the form ηi ∼= ξi⊗CVi for some
complex bundle ξi↓F . Thus [ηi] is a complex bundle for each i ≥ 1, and so τ(F ) ∼= η0
is a stably complex bundle. If, in addition, all elements of G have prime power order,

then we have seen that [η] ∈ qdiv(K̃OG(F )), so [ξi] ∈ qdiv(K̃(F )) for all 1 ≤ i ≤ k,

and [ηi] ∈ r
(
qdiv(K̃(F ))

)
for each i ≥ 1. Also, [ηG2 ] ∈ r

(
qdiv(K̃(F ))

)
as seen above;

and hence [τ(F )] = [η0] lies in r
(
qdiv(K̃(F ))

)
.

(c) Note first that G ∈ MR (G ∈ MC+) if there is a P-matched pair (V,W ) of real
(self conjugate complex) representations of type a for any odd a. To see this, note first
that if there is such a P-matched pair, then G has an element not of prime power order,
and hence G ∈ MC by Lemma 3.1(a). This implies that there is a P-matched pair of
real G-representations of type 2; and hence a P-matched pair of real (or self conjugate)
G-representations of type 1.

Let T : K̃(F ) −→ Z be any conjugation invariant homomorphism (i.e., T (ξ) = T (ξ));
and let TG denote the induced homomorphism

TG = T⊗ Id : K̃G(F ) ∼= K̃(F )⊗R(G) −−−−→ R(G).

We first analyze TG(C⊗Rη). Let V0, V1, . . ., Vn be the distinct irreducible RG-
representations, where V0 ∼= R is the trivial representation, and where Vi has real type
for 0 ≤ i ≤ k, has complex type (with given complex structure) for k + 1 ≤ i ≤ m, and
has quaternion type (with given structure) for m+ 1 ≤ i ≤ n. Then

η ∼=
( k⊕

i=0

ξi⊗RVi

)
⊕
( m⊕

i=k+1

ξi⊗CVi

)
⊕

( n⊕

i=m+1

ξi⊗HVi

)
,
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(Proposition A.1(a)), where the ξi are real, complex, or quaternion vector bundles,
respectively, and where ξ0 ∼= τ(F ). For convenience, we write T (ξi) = T ([C⊗Rξi]) if
i ≤ k, T (ξi) = T ([ξi]) if k+1 ≤ i ≤ m, and T (ξi) = T ([ξi|C]) if m+ 1 ≤ i ≤ n. Then

TG([C⊗Rη]) =
k∑

i=0

T (ξi)·c([Vi]) +
m∑

i=k+1

T (ξi)·
(
[Vi] + [V i]

)

+

n∑

i=m+1

T (ξi)·c
′([Vi]) ∈ R(G).

(1)

Since (for given T ) the TG commute with restriction of subgroups, we see that
TG([C⊗Rη])|P = 0 for any P ⊆ G of prime power order. Thus TG([C⊗Rη]) = [V ]− [W ],
where (V,W ) is a P-matched pair of self-conjugate G-representations of type T (ξ0).

Assume that [τ(F )] = [ξ0] /∈ r(K̃(F ))+qdiv(K̃O(F )). Then c([ξ0]) is not a multiple

of 2 in K̃(F )/〈[ξ] | [ξ⊕ξ] ∈ (qdiv)〉. So by Lemma A.5(c), we can choose T such that
T (ξ0) is odd. Then TG([C⊗Rη]) = [V ] − [W ] where (V,W ) is a P-matched pair of
self-conjugate G-representations of type T (ξ0), and G ∈MC+ by the above remarks.

If c([τ(F )]) = c([ξ0]) /∈ c′(K̃Sp(F )) + qdiv(K̃(F )), then q◦c([ξ0]) is not a multiple of

2 in K̃Sp(F )/(qdiv). By Lemma A.5(c) again, we can choose T to be a composite of

the form K̃(F )
q
−→ K̃Sp(F ) −→ Z, and such that T (ξ0) is odd. In particular, T (ξi) ∈ 2Z

for m+ 1 ≤ i ≤ n (the quaternion case). By (1), TG([C⊗Rη]) = c([V ]− [W ]), where

[V ]− [W ] =

k∑

i=0

T (ξi)·[Vi] +

m∑

i=k+1

T (ξi)·r([Vi]) +

n∑

i=m+1

T (ξi)

2
·r◦c′([Vi]);

and (V,W ) is a P-matched pair of real G-representations of type T (ξ0). It follows that
G ∈MR. �

We now get immediately:

Proof of Theorem 0.2. If F = MG for any contractible manifold M with smooth
G-action, then the G-vector bundle η = τ(M)|F satisfies conditions (1)–(3) in Theorem
0.1, and so F ∈ Fix(G). Also, χ(F ) ≡ 1 (mod nG) if M is a disk. Conversely, by
Theorem 0.1, if F ∈ Fix(G), then F is the fixed point set of a smooth G-action on a
euclidean space if ∂F = ∅, and F is the fixed point set of a smooth G-action on a disk
if F is compact and χ(F ) ≡ 1 (mod nG).

The necessary and sufficient conditions for F to be in Fix(G) were shown in Lemmas
3.2 and 3.3. Note in particular case (C) in Theorem 0.2. If G ∈ MCrMC+ and

Syl2(G) 6⊳ G, then F ∈ Fix(G) if [τ(F )] ∈ r(K̃(F )) (Lemma 3.2(a)) or if [τ(F )] ∈

qdiv(K̃O(F )) (Lemma 3.2(c)). So from the definition of Fix(G), it follows that F ∈

Fix(G) if [τ(F )] ∈ r(K̃(F )) + qdiv(K̃O(F )). �

The following example shows how Theorem 0.2 applies in the case of a dihedral or
quaternion group acting on a disk.
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Example 3.4. If G is dihedral of order 2n or quaternion of order 4n, where n is not a
prime power, then a compact manifold F is the fixed point set of a G-action on some
disk if and only if χ(F ) is odd. If G is dihedral of order 2pa for some odd prime p, then
a compact manifold is the fixed point set of a G action on a disk if and only if χ(F ) = 1

and [τ(F )] is torsion in K̃O(F ). If G is quaternion of order 4pa for some odd prime
p, then a compact manifold is the fixed point set of a G action on a disk if and only
if χ(F ) = 1, and there is an H-vector bundle ξ↓F such that c([τ(F )]) ≡ c′([ξ]) modulo

torsion in K̃(F ).

Proof. If G is dihedral of order 2n or quaternion of order 4n, then by Theorem 0.3,
nG = 2 if n is not a prime power, and nG = 0 if n is a power of an odd prime. The rest
of the corollary follows from Lemma 3.1 and Theorem 0.2. �

As another example, note that for G = A4×Σ3, any compact smooth manifold F can
be the fixed point set of a smooth G-action on a disk. This is in fact the smallest group
with that property (see [O1, Theorem 8]).

Appendix

We collect here some results which are well known, but which either are hard to find
in the literature, or which have been used often enough to state here explicitly.

Real G-vector bundles and their classifying spaces

We start with the following proposition, which describes some of the basic structure
of real G-vector bundles and real G-representations.

Proposition A.1. Fix a finite group G. Let V0, V1, . . ., Vk be the distinct irreducible
RG-representations, where V0 ∼= R with the trivial G-action. For each i, set Di =
EndRG(Vi) (∼= R, C, or H).

(a) Let X be space with trivial G-action, and let ξ↓X be a real G-vector bundle.

Then ξ ∼=
⊕k

i=0(Vi⊗Di
ξi), where each ξi is a (nonequivariant) Di-vector bundle over

X .

(b) Let V be any orthogonal G-representation, and let OG(V ) be the group of G-
equivariant orthogonal self maps of V . Then

V ∼=

k⊕

i=0

(Vi)
ni implies OG(V ) ∼=

k∏

i=0

O(ni, Di),

where we write O(n,R) = O(n), O(n,C) = U(n), and O(n,H) = Sp(n).

(c) If |G| is odd, then Di ∼= C for all i 6= 0.

Proof. For each i, EndRG(Vi) is a division algebra over R by Schur’s lemma (cf. [Ad,
Lemma 3.22]), and hence is isomorphic to R, C, or H. Part (b) also follows from Schur’s
lemma, and part (c) from [Se, Exercise 13.12].
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To see part (a), set ξi = HomRG(Vi, ξ) (defined fiberwise) for each i. Then ξi is a
Di-bundle, and the evaluation maps define an isomorphism

k⊕

i=0

Vi⊗Di
HomRG(Vi, ξ)

∼=
−−−−→ ξ. �

An irreducible RG-representation V will be said to have real, complex, or quaternion
type, depending on whether EndRG(V ) is isomorphic to R, C, or H.

For each n ≥ 0, BGO(n) will denote the classifying space for n-dimensional G-vector
bundles: constructed using either infinite joins (cf. [tD, §I.8]), or Grassmannians of
n-dimensional subspaces in an appropriate infinite dimensional G-representation. It
has a universal G-vector bundle EnG↓BGO(n) with respect to which pullback defines a
bijection between [X,BGO(n)]G and the set of locally trivial n-dimensional orthogonal
G-bundles over X , for any countable G-complex X (cf. [tD, Theorem I.8.12], where
the classifying space is denoted B(G,O(n))). Note that BGO(n) is connected for all n,
since π0(BGO(n)) contains just one element: the class of the product bundle G×Rn↓G.

For each orthogonal G-representation V , and each m ≥ 0, direct sum with V defines
a G-map

⊕V : BGO(m) −−−−→ BGO(m+ dim(V )),

which is well defined up to G-homotopy. We define BGO to be the homotopy direct
limit (i.e., infinite mapping cylinder, or mapping telescope)

BGO = hocolim−−−−−→

(
BGO(0)

⊕RG−−−→ BGO(d)
⊕RG−−−→ BGO(2d)

⊕RG−−−→ . . .
)
,

where RG denotes the regular representation and d = dim(RG) = |G|. For each n, we
let

ιn : BGO(nd) −→ BGO

denote the inclusion of the n-th stage into this telescope.

If X is any finite G-complex, then any map X −→ BGO factors through some finite
stage BGO(nd) in the mapping telescope, and similarly for homotopies between maps.
Hence

[X,BGO] ∼= lim−→

(
[X,BGO(0)]

⊕RG−−−→ [X,BGO(d)]
⊕RG−−−→ [X,BGO(2d)]

⊕RG−−−→ . . .
)

∼= lim−→

(
VectR,G0 (X)

⊕RG−−−→ VectR,Gd (X)
⊕RG−−−→ VectR,G2d (X)

⊕RG−−−→ . . .
)

(d = |G|)

∼= Ker
[
KOG(X)

dim
−−→ Z

]
;

Here, VectR,Gm (X) denotes the set of isomorphism classes of m-dimensional orthogonal
G-vector bundles over X ; and the last step holds since any G-vector bundle over X
is a summand of a product bundle RGk×X for some k (since any G-representation is
contained in some multiple of the regular representation RG). In particular, this shows
that Z×BGO is the classifying space for the equivariant K-theory functor KOG(−).

We next look more closely at the fixed point sets (BGO)H and (BGO(n))H .
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Proposition A.2. Fix a finite group G and a subgroup H ⊆ G.

(a) For each n ≥ 0,

(BGO(n))H ≃
∐

[V ]∈RepR
n(H)

BOH(V )

where RepR

n(H) is the set of isomorphism classes of n-dimensional orthogonal H-
representations.

(b) Let V0, V1, . . ., Vk be the distinct irreducible orthogonal H-representations. Then

(BGO)H ≃ IRO(H)×
k∏

i=0

Bi,

where IRO(H) = Ker[RO(H)
dim
−−→ Z] is the augmentation ideal, and where Bi ∼= BO,

BU , or BSp depending on whether EndRG(Vi) ∼= R, C, or H.

(c) For any n > 0, ιHn :
(
BGO(nd)

)H
−→ (BGO)H (d = |G|) sends the component(

BGO(nd)
)H
V

corresponding to the representation V to the component of (BGO)H cor-
responding to [V ]− [RGn] ∈ IRO(H); and the map between this pair of components is
m-connected if each irreducible H-representation occurs in V with multiplicity at least
m.

(d) For any finite H-complex X ,

πi
(
mapH(X,BGO)

)
∼=

{
KO−i

H (X) if i > 0

Ker
[
KOH(X)

dim
−−→ Z

]
if i = 0.

Proof. Consider the H-equivariant maps BGO(n)
f1
−→ BHO(n)

f2
−→ BGO(n), where f1

classifies the universal bundle EnG↓BGO(n) regarded as an H-bundle, and where f2
classifies the G-bundle (G×HE

n
H)↓(G×HBHO(n)). These are easily checked to be H-

homotopy inverses; and show that BGO(n) is H-equivariantly homotopy equivalent to
BHO(n). So BGO is H-homotopy equivalent to BHO. In particular, it suffices to prove
the proposition when H = G.

(a) For any n,

π0((BGO(n))G) ∼= VectR,Gn (pt) ∼= RepR

n(G).

Let
(
BGO(n)

)
G
V denote the component corresponding to the representation V . For any

X (without group action),

[X, (BGO(n))G] ∼= [X,BGO(n)]G ∼= VectR,Gn (X);

and so [X, (BGO(n))GV ] is the set of isomorphism classes of G-vector bundles over X
with fiber V . The structure group for such bundles is OG(V ), and hence (BGO(n))GV ≃
BOG(V ).
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(b,c) The descriptions of the components of (BGO)G, and of ιGn : (BGO(nd))G −→
(BGO)G, follow from part (a) and Proposition A.1(b), upon taking limits with respect
to direct sum with the regular representation RG. Note in particular that

IRO(G) ∼= lim−→

(
RepR

0 (G)
⊕RG−−−→ RepR

d (G)
⊕RG−−−→ RepR

2d(G)
⊕RG−−−→ . . .

)
.

And the last statement in (c) follows since the inclusions BO(m) −→ BO, BU(m) −→ BU ,
and BSp(m) −→ BSp are m-connected for all m.

(d) We have already seen that [X,BGO]G ∼= Ker[KOG(X)
dim
−−→ Z] when X is a finite

G-complex. And for any i > 0,

πi
(
mapG(X,BGO)

)
∼= [Σi(X+), BGO]G∗

∼= KO−i
G (X). �

As was noted above, any map from a finite G-complex X to BGO factors through
some ιn : BGO(nd) −→ BGO, and hence induces (stably) a G-bundle over X . This does
not hold in general for finite dimensional G-complexes, but the next lemma describes
conditions under which maps X −→ BGO do induce G-bundles.

Lemma A.3. Fix a countable finite dimensional G-complex X . Then for each n ≥ 0,
pullback of the universal bundle EnG↓BGO(n) defines a bijection between [X,BGO(n)]G

and the set of isomorphism classes of n-dimensional G-bundles over X . Also, a G-map
f : X −→ BGO factors through ιm : BGO(md) −→ BGO for some m (where d = |G|)
if and only if Im(π0(fH)) ⊆ π0((BGO)H) is finite for all H ⊆ G. And any two liftings
fm, f

′
m : X −→ BGO(md) of f are homotopic after some finite stabilization; i.e., the

induced G-bundles over X are stably isomorphic.

Proof. The bijection between n-dimensional G-bundles over X and [X,BGO(n)]G is a
special case of [tD, Theorem I.8.12].

If f : X −→ BGO factors through some BGO(md), then Im(π0(fH)) must be finite for
all H since (BGO(md))H has only finitely many connected components (corresponding
to the finite set of m-dimensional H-representations). Conversely, set n = dim(X),
and assume that Im(π0(fH)) is finite for all H ⊆ G. For each H, we can choose some
mH ≥ 0 large enough so that the image of fH is contained in components of (BGO)H

corresponding to some family of virtual H-representations vi = [Vi]−[RGmH ] ∈ IRO(H)
(1 ≤ i ≤ k), and such that each irreducible H-representation occurs in each Vi with
multiplicity at least n. Thus, the image of any connected component of XH is lies in
one of the components (BGO)Hvi , which is in the image of (BGO(mH ·d))HVi

; and the
inclusion of those components is n-connected by Proposition A.2(c). Hence, if we set
m = max{mH |H ⊆ G}, then f : X −→ BGO factors through BGO(md). �

Divisible and quasidivisible subgroups

The purpose of the following two lemmas is to set up some notation and results to
work with cohomology andK-theory groups of countably infinite CW complexes. Hence,
we concentrate on the class of what we call PFG-groups (“pro-finitely generated”):
abelian groups which are products of the form lim←−(Mi) × lim←−

1(M ′
i), where Mi and M ′

i

are two inverse systems of finitely generated abelian groups. We first note that the lim←−
1

factor is divisible (i.e., n-divisible for all n > 0).
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Lemma A.4. Fix a sequence
(
· · · −→ M2 −→ M1 −→ M0

)
of abelian groups. Then

for any n > 0, lim←−
1(Mi) is n-divisible if Mi/nMi is finite for all i. In particular, if the

Mi are all finitely generated, then lim←−
1(Mi) is divisible, and hence injective.

Proof. Since lim←−
1 is right exact, the sequence

lim←−
i

1(Mi)
·n

−−−−→ lim←−
i

1(Mi) −−−−→ lim←−
i

1(Mi/nMi) −→ 0

is exact for all n > 0, and lim←−
1(Mi/nMi) = 0 if the Mi/nMi are finite. So lim←−

1(Mi) is
n-divisible in this case. �

For any abelian group A, we define qdiv(A) to be the smallest possible kernel of a
homomorphism from A to a product of copies of Z. Clearly, all elements in A which
are infinitely p-divisible for any prime p are contained in qdiv(A). So by Lemma A.4,
if A = lim←−(Mi) × lim←−

1(M ′
i) where Mi and M ′

i are inverse systems of finitely generated

abelian groups, then qdiv(A) = lim←−(tors(Mi))× lim←−
1(M ′

i).

Lemma A.5. If X is a countable CW complex, and if h∗ is any (representable) coho-
mology theory such that hi(pt) is finitely generated for all i, then hi(X) is a PFG-group

for all i. In particular, K̃(X), K̃O(X), and K̃Sp(X) are all PFG-groups. Furthermore,
the following hold for any PFG-group A:

(a) If x ∈ A is divisible, i.e., if x ∈ nA for all n > 0, then x is “sequentially divisible” in
that for any sequence n1, n2, . . . of positive integers there is a sequence x = x0, x1, x2, . . .
in A such that nixi = xi−1 for all i. Similarly, if x ∈ A is infinitely p-divisible for any
prime p, then there is a sequence x = x0, x1, x2, . . . such that pxi = xi−1 for all i. And
if nx is infinitely p-divisible for any prime p∤n, then x is also infinitely p-divisible.

(b) For any n, and any x ∈ qdiv(A), we can write x =
∑
p|n xp, where each xp is

infinitely q-divisible for all primes q 6= p dividing n.

(c) If x ∈ A, and x /∈ 2A+qdiv(A), then there is a homomorphism ϕ : A −→ Z such
that ϕ(x) is odd.

Proof. Fix a countable CW complex X , and write X = ∪∞i=1Xi, where X1 ⊆ X2 ⊆
X3 ⊆ · · · are finite subcomplexes. Then for any representable cohomology theory h∗,
there is for each j a short exact sequence

0 −→ lim←−
i

1
(
h̃j−1(Xi)

)
−−−−→ hj(X) −−−−→ lim←−

i

(
hj(Xi)

)
−→ 0;

where the hj(Xi) and h̃j−1(Xi) are all finitely generated. The extension splits, since
the first term is injective by Lemma A.4, and so hj(X) is a PFG-group.

Now assume A is a PFG-group, and write A = lim←−(Mi)×lim←−
1(M ′

i), where the Mi and

M ′
i are all finitely generated. Point (a) follows upon noting that the divisible elements

in A are precisely those in lim←−
1(M ′

i), and that the p-divisible elements (for any prime

p) are those in lim←−

(
p′-tors(Mi)

)
× lim←−

1(M ′
i). Point (b) is immediate. Point (c) follows

upon noting that if x /∈ 2A + qdiv(A), then the image of x in some Mi/(tors) is not
a multiple of 2. And then there is a homomorphism Mi/(tors) −→ Z which sends the
image of x to an odd integer. �
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Homotopy and homology groups

We collect here some miscellaneous lemmas on homotopy and homology groups and
the Hurewicz map.

Lemma A.6. All homotopy groups of a countable CW complex are countable.

Proof. The homotopy groups of a finite simply connected complex are finitely generated
(cf. [Hu, Corollary X.8.3]). The fundamental group of a countable complex is countably
generated and hence countable. So the homotopy groups of the universal cover of a
countable complex are countable direct limits of finitely generated groups, and hence
are countable. �

The following version of the relative Hurewicz theorem is needed in Section 2 when
constructing spaces and maps. For convenience, when a map f : X −→ Y is understood,
we write π∗(Y,X) for π∗(Zf , X) (where Zf denotes the mapping cylinder), and similarly
for H∗(Y,X).

Lemma A.7. Fix a prime p and n ≥ 2. Assume that f : X −→ Y is a map between
connected complexes such that π1(f) is onto, such that Ker(π1(f)) is abelian and torsion

prime to p, and such that πi(Ỹ , X̃)⊗Z(p) = 0 for all i < n. Here, X̃ and Ỹ denote
the universal covers. Then Hi(Y,X)⊗Z(p) = 0 for all i < n, and the Hurewicz map

πn(Ỹ , X̃)⊗Z(p) ։ Hn(Y,X ;Z(p)) is onto. If, furthermore, X and Y are finite complexes

and Ker(π1(f)) is finite, then πn(Ỹ , X̃)⊗Z(p) is finitely generated as a Z(p)[π1(X)]-
module.

(Note that π2(Ỹ , X̃) ∼= Im[π2(Y ) −→ π2(Y,X)], and πi(Ỹ , X̃) = πi(Y,X) for i > 2. The

lemma is formulated using πi(Ỹ , X̃) rather than πi(Y,X) to allow the possibility that
π2(Y,X) is not abelian.)

Proof. Let F be the homotopy fiber of f : X −→ Y , and let F̃ be its universal cover (F
is connected by assumption). Then

πi(F̃ )⊗Z(p)
∼= πi+1(Y,X)⊗Z(p) = 0 for all 2 ≤ i < n−1.

So by the generalized Hurewicz theorem (cf. [Hu, Theorem X.8.1]), applied to the class
of torsion abelian groups of order prime to p,

Hi(F̃ ;Z(p)) = 0 for all i < n−1 and Hn−1(F̃ ;Z(p)) ∼= πn−1(F̃ )⊗Z(p). (1)

Set

Γ = π2(Ỹ , X̃) ∼= Im
[
π2(Y ) −−→ π2(Y,X)∼=π1(F )

]
= Ker

[
π1(F ) −→ π1(X)

]
,

and let F = F̃ /Γ be the covering of F with fundamental group Γ. By Lemma A.8

below, Γ acts trivially on H∗(F̃ ). If n ≥ 3, then Γ is abelian and torsion prime to p, by

assumption, and the spectral sequence for the fibration F̃ −→ F −→ BΓ gives

H∗(F ;Z(p)) ∼= H0(Γ;H∗(F̃ ;Z(p))) ∼= H∗(F̃ ;Z(p)).
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Together with (1), this shows that

πi(F )⊗Z(p)
∼= Hi(F ;Z(p)) for all i ≤ n− 1 (2)

whenever i ≥ 2, and this clearly also holds for i = 1.

Since Hi(F ;Z(p)) = 0 = Hi(F̃ ;Z(p)) for i < n−1 by (1) and (2), the spectral sequence

for the fibration F −→ X̃ −→ Ỹ shows that

Hi(Ỹ , X̃;Z(p)) = 0 for i < n and Hn(Ỹ , X̃;Z(p)) ∼= Hn−1(F ;Z(p)). (3)

And this together with (2) shows that the p-local Hurewicz homomomorphism for the

pair (Ỹ , X̃) is a composite of isomorphisms:

πn(Ỹ , X̃)⊗Z(p)
∼= πn−1(F )⊗Z(p)

∼= Hn−1(F ;Z(p)) ∼= Hn(Ỹ , X̃;Z(p)). (4)

Set K = Ker(π1(f)). By assumption, K is abelian and torsion prime to p. Hence

H∗(Ỹ , X̃/K;Z(p)) ∼= H0(K;H∗(Ỹ , X̃;Z(p))). Since Hi(Ỹ , X̃;Z(p)) = 0 for i < n by (3),

the spectral sequence for the fibration (Ỹ , X̃/K) −→ (Y,X) −→ π1(Y ) shows that

Hi(Y,X ;Z(p)) ∼= H0

(
π1(Y );Hi(Ỹ , X̃/K;Z(p))

)
∼= H0(π1(X);Hi(Ỹ , X̃;Z(p)))

for all i ≤ n. Together with (3) and (4), this shows that Hi(Y,X ;Z(p)) = 0 for i < n,

and that the Hurewicz homomorphism sends πn(Ỹ , X̃)⊗Z(p) onto Hn(Y,X ;Z(p)).

Now assume that X and Y are finite complexes, and that Ker[π1(X) ։ π1(Y )] is fi-
nite. The kernel has order prime to p, by assumption, and so any projective Z(p)[π1(Y )]-
module is also projective as a Z(p)[π1(X)]-module. Each term in the relative cellular

chain complex C∗ = C∗(Ỹ , X̃;Z(p)) is thus a finitely generated projective Z(p)[π1(X)]-

module. Since C∗ has no homology below dimension n, Zn
def
= Ker[Cn

∂
−→ Cn−1] is a

direct summand of Cn and hence finitely generated. So Hn(Ỹ , X̃;Z(p)) = Zn/∂(Cn+1)

is also finitely generated over Z(p)[π1(X)]; and is isomorphic to πn(Ỹ , X̃)⊗Z(p) by (4).
�

It remains to prove the following lemma, which says in particular that the homotopy
fiber of a map between connected and 1-connected spaces is simple.

Lemma A.8. Let F −→ X
f
−→ Y be a fibration of path connected spaces such that F

has a universal cover F̃ ; and set Γ = Ker[π1(F ) −→ π1(X)]. Then the translation action

of any element of Γ on F̃ is homotopic to the identity. In particular, Γ acts trivially on

π∗(F̃ ) and on H∗(F̃ ).

Proof. Fix a basepoint x0 ∈ F ⊆ X , and set y0 = f(x0) ∈ Y . Let γ : I −→ F be
any loop (γ(0) = γ(1) = x0) which represents an element of Γ, and choose a homotopy
G : I×I −→ X such that G(t, 0) = γ(t), and G(t, s) = x0 if s = 1 or t ∈ {0, 1}. Then
[f ◦G] ∈ π2(Y ), and ∂([f ◦G]) = [γ].
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Define α = f ◦ G ◦ proj : F×I×I −→ B. By the homotopy lifting property for the
fibration, there exists a map A : F×I×I −→ X such that A(x, t, s) = x if s = 1 or
t ∈ {0, 1}. Let β : F×I −→ F be the map β(x, t) = A(x, t, 0). Then β(−, 0) = β(−, 1) =

IdF , and so β can be lifted to a unique homotopy β̃ : F̃×I −→ F̃ such that β̃(−, 0) = Id.

Also, the loop β(x0,−) is homotopic to γ by construction, so β̃(−, 1) is the covering
transformation induced by γ, and is thus homotopic to the identity. �

The next lemma is much more technical. It is needed in the proof of Theorem 0.1,
to handle fixed point sets not of finite homotopy type.

Lemma A.9. Fix n > 0, and let B be a connected H-space with the property that
(Z/n) ⊗ [ΣK,B] is finite for any finite CW complex K. Let X be a countable finite
dimensional complex, and let f : X −→ B be a map which is nullhomotopic on all finite

subcomplexes of X . Then f factors as a composite X →֒ X
f
−→ B, for some countable

finite dimensional Z/n-acyclic complex X ⊇ X .

Proof. Write X = ∪∞i=1Xi, where X1 ⊆ X2 ⊆ X3 ⊆ · · · are all finite subcomplexes. By
assumption, [f ] ∈ [X,B] lies in the image of the first term in the short exact sequence

0 −→ lim←−
1[Σ(Xi), B] −−−−→ [X,B] −−−−→ lim←−[Xi, B] −→ 0.

By Lemma A.4, the group lim←−
1[Σ(Xi), B] is n-divisible, and so there is a sequence of

maps f = f0, f1, f2, . . . : X −→ B such that n·[fi] = [fi−1] for each i. Hence f factors as
a composite

X
f̂

−−−−→ B̂ −−−−→ B,

where B̂ is the homotopy inverse limit of the sequence
(
. . .

·n
−→ B

·n
−→ B

·n
−→ B

)
.

We next claim that B̂ is Z/n-acyclic. To see this, note that each map B
·n
−→ B

induces multiplication by n in homotopy groups, and so all homotopy groups of B̂ are
uniquely n-divisible. Hence, via spectral sequences for the fibrations, it will suffice to

show that H̃∗(K(M, i);Z/n) = 0 for all i ≥ 1 and all Z[ 1
n

]-modules M . It suffices (by

taking direct limits) to show this for finitely generated M ; and hence for M = Z[ 1n ]

and M finite of order prime to n. The latter case is clear. When M = Z[ 1
n

], then

K(M, 1) is a Z[ 1n ]-Moore space (and hence Z/n-acyclic); and its deloopings are seen to
be Z/n-acyclic using the usual spectral sequences.

It remains to show that f̂ extends to a countable finite dimensional Z/n-acyclic com-

plex X ⊇ X . To see this, first replace B̂ by a CW complex (of the same weak homotopy
type) which contains X as a subcomplex. Since homology is supported by finite com-

plexes, there is a sequence X = X0 ⊆ X1 ⊆ X2 ⊆ · · · of countable subcomplexes of B̂
such that each inclusion Xi−1 ⊆ Xi is trivial in Z/n-homology. Set X∞ = ∪∞i=1Xi. Then
X∞ is countable and Z/n-acyclic, but need not be finite dimensional. Set d = dim(X),

and consider the free abelian group Bd(X∞)
def
= Ker[Hd((X∞)(d)) −→ Hd(X∞)]. Every

element in Bd(X∞) is in the image of the Hurewicz homomorphism for (X∞)(d). So

there is a (d + 1)-dimensional complex X with the same d-skeleton as X∞, such that

33



the inclusion X(d) ⊆ X∞ extends to X, and such that Hi(X) ∼= Hi(X∞) for i ≤ d and

Hi(X) = 0 for i > d. Then H̃∗(X) is uniquely n-divisible, so X is Z/n-acyclic, and we
are done. �

Projective and stably free homology of G-complexes

The following lemma is basically taken from [O1], although not stated there explicitly.

Lemma A.10. Let G be any finite group, and let f : X −→ Y be a map between
countable finite dimensional G-complexes. Set n = max{dim(X), dim(Y )}. Assume,

for some prime p, that H̃i(Zf , X ;Fp) = 0 for all i ≤ n, and that fP : XP −→ Y P is
an Fp-homology equivalence for all p-subgroups 1 6= P ⊆ G. Then Hn+1(Zf , X ;Fp)
is projective as an Fp[G]-module, and hence is stably free as a countably generated
Fp[G]-module. If in addition, X and Y are finite complexes, and χ(XH) = χ(Y H) for
any cyclic subgroup 1 6= H ⊆ G of order prime to p, then Hn+1(Zf , X ;Fp) is a free
Fp[G]-module.

Proof. By replacing Y with the mapping cone of f , we can assume that X is a point
(and dim(Y ) ≤ n+1). Throughout the proof, for any subcomplex Y ′ ⊆ Y , we let
C∗(Y, Y ′;Fp), denote the cellular chain complex of (Y, Y ′): the complex whose n-th
degree term is the free Fp-module with one generator for each n-cell in Y not in Y ′.

Fix a Sylow p-subgroup S ⊆ G, and let Ys be the union of the fixed point sets
Y P taken over all nontrivial subgroups 1 6= P ⊆ S. Then Ys is a union of Fp-acyclic
subcomplexes such that all intersections are also Fp-acyclic. Hence Ys is itself Fp-acyclic
(seen using Mayer-Vietoris sequences). We thus get an exact sequence

0 −→ Hn+1(Y ;Fp) −→ Cn+1(Y, Ys;Fp) −→ Cn(Y, Ys;Fp) −→ . . . −→ C0(Y, Ys;Fp) −→ 0,

and each term Ci(Y, Ys;Fp) is free as an Fp[S]-module since S acts freely on YrYs.
Thus, Hn+1(Y ;Fp) is stably free as an Fp[S]-module; and hence is projective as an
Fp[G]-module (cf. [Rim, Corollary 2.4 & Proposition 4.8]). And by the “Eilenberg
swindle”, any countably generated projective module M is stably free in the category of
countably generated modules: we can write M ⊕N ∼= F for some countably generated
free module F , and then

M ⊕ F∞ ∼= M ⊕ (N⊕M)⊕ (N⊕M)⊕ · · · ∼= (M⊕N)⊕ (M⊕N)⊕ · · · ∼= F∞.

Assume now that X and Y are finite complexes, and that χ(Y H) = 1 for any cyclic
subgroup 1 6= H ⊆ G of order prime to p. We want to show that Hn+1(Y ;Fp) is Fp[G]-
free. In general, by [Se, §16.1], two projective Fp[G]-modules M1 and M2 are isomorphic
if and only if [M1] = [M2] ∈ RFp

(G) (the representation ring of all finitely generated
Fp[G]-modules modulo short exact sequences). By [Se, §18.2], this is the case if and
only if M1 and M2 have the same modular character, where the modular character of an
Fp[G]-module is a complex valued function defined on the set of elements of G of order
prime to p. Thus, a projective Fp[G]-module M is free if and only if M ∼= (Fp[G])s for

s = rkFp
(MG), if and only if M |G| ∼= (Fp[G])r for r = rkFp

(M), if and only if M is free
as a Fp[H]-module for each cyclic subgroup H ⊆ G of order prime to p. And for any
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such H, since χ(Y K) = 1 for all 1 6= K ⊆ H by assumption, a count of the numbers of
H-orbits of cells in Y shows that in RFp

(H),

(−1)n[Hn+1(Y ;Fp)] =
n∑

i=0

(−1)i[Ci(Y, pt;Fp)] ≡ 0 (mod 〈free〉). �

The next lemma provides an analogous result for integral homology.

Lemma A.11. Let G be any finite group, and let f : X −→ Y be a map between
countable finite dimensional G-complexes. Set n = max{dim(X), dim(Y )}. Assume

that H̃i(Zf , X ;Z) = 0 for all i ≤ n, and that fP : XP −→ Y P is an Fp-homology
equivalence for all primes p

∣∣|G| and all p-subgroups 1 6= P ⊆ G. Then Hn+1(Zf , X ;Z)
is Z[G]-projective, and hence is stably free as a countably generated Z[G]-module. If in
addition X and Y are finite complexes, and χ(XH) = χ(Y H) for all 1 6= H ⊆ G, then
there is a finite G-complex T such that TH = pt for all H ⊆ G not of prime power

order, and such that for some d, T is (d−1)-connected and H̃∗(T ;Z) = Hd(T ;Z) ∼=
Hn+1(Zf , X ;Z) as Z[G]-modules.

Proof. By Lemma A.10, Hn+1(Zf , X ;Fp) = Z/p⊗Hn+1(Zf , X) is Fp[G]-projective for
all primes p

∣∣|G|. Also, Hn+1(Zf , X ;Z) is Z-free, since dim(Zf ) = n+1. In particular,
Hn+1(Zf , X ;Z) is G-cohomologically trivial; and hence is Z[G]-projective by Rim’s
theorem [Rim, Theorem 4.11]. And by the “Eilenberg swindle” again, this implies that
Hn+1(Zf , X ;Z) is Z[G]-stably free in the category of countably generated Z[G]-modules.

Now assume that X and Y are finite complexes. Let Cf denote the mapping cone
of f : X −→ Y , so Hn+1(Cf ) ∼= Hn+1(Zf , X) is Z[G]-projective. Let CNP

f be the set of
elements x ∈ Cf whose isotropy subgroup Gx does not have prime power order. Then
χ((CNP

f )H) = 1 for all H ⊆ G (since χ(XH) = χ(Y H) when H 6= 1, and all free

orbits have been removed). Hence, by [O2, Proposition 5], there is a finite contractible
G-complex Z ⊇ CNP

f such that all isotropy subgroups of ZrCNP
f have prime power

order. By [O2, Lemma 11], applied to the inclusion Z ⊆ Z∪CNP
f

Cf , there exists a finite

contractible G-complex Z ′ ⊇ Cf such that all isotropy subgroups of Z ′rCf have prime
power order. If we now set T = Z ′/Cf , then T ≃ Σ(Cf ) (nonequivariantly); and so T

is (n+1)-connected and H̃∗(T ) = Hn+2(T ) ∼= Hn+1(Zf , X).

Since this last argument is rather indirect, we now outline a more direct argument
to help explain what is really going on. The details are similar to those used in [O1, §3]
to study fixed point sets. For any G-complex X , XNP ⊆ X denotes the union of fixed
point sets of subgroups not of prime power order. A finite G-complex X will be called
simple if χ(XH) = 1 for all H ⊆ G. A finite G-complex X will be called a G-resolution
if X is n-dimensional and (n−1)-connected for some n, and Hn(X) is Z[G]-projective.

For any G-resolution X , set γG(X) = (−1)n[Hn(X)] ∈ K̃0(Z[G]) (n = dim(X)). Let

B0(G) ⊆ K̃0(Z[G]) be the subset of all γG(X) for G-resolutions X such that XNP is a
point. Using direct geometric constructions, one now shows that B0(G) is a subgroup,
and that there is a well defined function

ΓG : {finite simple G-complexes} −−−−→ K̃0(Z[G])/B0(G)
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which sends X to γG(X) for any G-resolution X such that XNP ∼= XNP . Also, ΓG(X)
depends only on the G-homotopy type of X , and ΓG is additive in the sense that
ΓG(Y/X) = ΓG(Y ) − ΓG(X) for any pair X ⊆ Y . It is now straightforward to show
that any such function from finite simple G-complexes to an abelian group is trivial.
And when applied to the mapping cone Cf defined above (more precisely, to CNP

f ), this

shows that [Hn+1(Zf , X)] ∈ B0(G). �

An equivariant thickening theorem

The procedure for constructing manifolds with smooth G-action, starting with a G-
vector bundle over a countable finite dimensional G-complex, is based on the following
equivariant thickening theorem. As has been seen, it provides a good tool when con-
structing smooth G-actions on disks and euclidean spaces. In contrast, it cannot be
used (at least not directly) to construct smooth actions on closed manifolds.

Theorem A.12. [Pawa lowski] Fix a finite group G, a countable finite dimensional G-
complex X , and a G-vector bundle ξ↓X . Assume that F = XG is given the structure
of a smooth manifold, and that (ξ|F )G is stably isomorphic to the tangent bundle
τ(F ). Then there is a smooth manifold M with smooth G-action, containing X as a
G-deformation retract, such that MG is diffeomorphic to F , and such that τ(M)|X is
stably G-isomorphic to ξ (i.e., (τ(M)|X)⊕(V×X) ∼= ξ⊕(W×X) for some pair of G-
representations V and W ). If X is a finite G-complex, then M can be chosen to be
compact.

Proof. See [Pa2, Theorems 2.4 & 3.1] (where the result is stated more precisely). The
idea of the proof is the following. After adding a product bundle to ξ, we can assume
that ξG↓F ∼= τ(F )⊕(Rk×F ) for some k; and that

dim((ξx)H) > 2·dim(XH) + k and dim((ξx)H)− dim((ξx)>H) > dim(XH)

for all H $ G and all x ∈ XH . Here, (ξx)>H denotes the union of the fixed point sets
of subgroups of Gx strictly containing H.

Choose G-invariant subcomplexes F = X0 ⊆ X1 ⊆ X2 ⊆ · · ·X , such that X =
∪Ni=0Xi (where N ≤ ∞), and such that each Xi is obtained from Xi−1 by attaching
one orbit of cells G/H × Dj for some H and j. Manifolds M0 ⊆ M1 ⊆ M2 ⊆ · · ·
are now constructed such that for each i, (Mi)

G = F , Xi ⊆ Mi and (∂Mir∂F ) ⊆
(MirXi) are G-deformation retracts, and τ(Mi)|Xi⊕(Rk×Xi) ∼= ξ|Xi. To start the
procedure, let M0 be the disk bundle of (ξ|F )/(ξG). The induction step is carried out
using standard (nonequivariant) embedding theorems, and theorems about destabilizing
vector bundles and isomorphisms between them. The manifold M = ∪Ni=0Mi now
satisfies the conclusions of the theorem. �
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