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Abstract. We study homotopy equivalences of p-completions of classifying spaces
of finite groups. To each finite group G and each prime p, we associate a finite
category Lc

p
(G) with the following properties. Two p-completed classifying spaces

BG∧

p
and BG′∧

p
have the same homotopy type if and only if the associated categories

Lc
p
(G) and Lc

p
(G′) are equivalent. Furthermore, the topological monoid Aut(BG∧

p
)

of self equivalences is determined by the self equivalences of the associated category
Lc
p
(G).

Throughout this paper, let p denote a fixed prime. For any finite group G, we write
BG∧

p to denote the Bousfield-Kan p-completion of BG. The main results in this paper
are algebraic conditions for the existence of homotopy equivalences between BG∧

p and
BG′∧

p , for any pair of finite groups G and G′, and a description of the space of self
homotopy equivalences of BG∧

p .

Spaces of the form BG∧
p for G finite are not generally aspherical. In general, if

G = π1(X) is finite, then π1(X
∧
p )
∼= G/Op(G), where Op(G) ⊳ G is the smallest

normal subgroup of p-power index in G (see Proposition A.2). Thus if G is p-perfect

(if G = Op(G)), then BG∧
p is simply connected, but H̃∗(BG∧

p ;Fp) ∼= H̃∗(BG;Fp)
vanishes only if G has order prime to p, and so BG∧

p is contractible only in this
case. In fact, BG∧

p has non-vanishing higher homotopy groups in arbitrarily high
dimensions whenever Op(G) has order a multiple of p. For a general discussion of
BG∧

p for G finite we refer to [Lev].

This work originated as a study by the first two authors of the space of self equiv-
alences of BG∧

p , which was motivated by the problem of classifying fibrations with
BG∧

p as fiber. Some of their work on this subject appears in [BL]. A possibly more
general motivation for the project is the analogy with compact Lie groups. For com-
pact connected simple Lie groups G the space of self maps of BG was studied by
Jackowski, McClure and Oliver [JMO]. In their study homology decompositions for
classifying spaces were used to provide a description of the corresponding mapping
spaces. Homology decompositions are one of the most important tools in the study of
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2 Homotopy equivalences of p-completed classifying spaces

classifying spaces and maps between them. Our approach however is different. Cen-
tral to our study are certain centric linking categories Lcp(G), defined for any finite
group G and any prime p, which we proceed by describing.

A p-subgroup P ≤ G is p-centric if its center Z(P ) is the Sylow p-subgroup of its
centralizer CG(P ). Equivalently, the centralizer of such a subgroup splits naturally
as a cartesian product CG(P ) ∼= Z(P ) × Op(CG(P )), where the second factor has
order prime to p (see Lemma A.4). The objects of Lcp(G) are the p-centric subgroups
P ≤ G. For any pair of such subgroups P,Q ≤ G,

MorLc
p(G)(P,Q) = NG(P,Q)/O

p(CG(P )),

where NG(P,Q) = {x ∈ G | xPx
−1 ≤ Q}.

Our first theorem is the following:

Theorem A. For any prime p and any pair G,G′ of finite groups, the p-completed
classifying spaces BG∧

p and BG′∧
p are homotopy equivalent if and only if the centric

linking categories Lcp(G) and L
c
p(G

′) are equivalent.

To prove Theorem A, we first show that there is an equivalence |Lcp(G)|
∧
p ≃ BG∧

p

which is natural in G. This proves the “if” part of the theorem. The converse
is then proven by constructing a certain category Lcp(X) associated to any space
X , and then showing that the categories Lcp(BG

∧
p ) and Lcp(G) are equivalent. The

objects in this linking category Lcp(X) consist of pairs (P, α), where P is a p-group and

BP
α
−−−→ X is a “centric monomorphism” in a certain sense defined later. Morphisms

between objects consist of monomorphisms between the p-groups, together with paths
in certain mapping spaces. The precise definition of Lcp(X) is given in Section 2
(Definition 2.5).

The work in [BL] was motivated in part by the paper [MP], where the authors
claim an algebraic condition for determining whether or not two distinct p-completed
classifying spaces have the same homotopy type. In the course of trying to compare
this claim to their own work, the authors of this article were led to the discovery of
an error in [MP], which invalidates the proof of the main theorem there (stated below
as Conjecture D). Our attempts to fix this error led to Theorem A, which gives a
different algebraic criterion for the existence of an equivalence.

We next consider the self homotopy equivalences of BG∧
p . For any space X , let

Aut(X) denote the topological monoid of (unpointed) self homotopy equivalences
of X , and let Out(X) denote the group of components π0(Aut(X)). For any small
category C, let Aut(C) denote the strict monoidal category (with strictly associative
operation given by composition) whose objects are self equivalences F : C → C and
whose morphisms are natural isomorphisms of functors. Note that every morphism
in Aut(C) is invertible, making it into a groupoid. Let Out(C) denote the group of
components of Aut(C), namely the set of equivalence classes obtained by identifying
two functors F ′, F ′′ ∈ Aut(C) if they are naturally isomorphic. These uses of the
notation Out(−) are motivated by the observation that Out(BG) ∼= Out(B(G)) ∼=
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Out(G) for any discrete group G (where B(G) is the category with one object and
morphism group G).

The linking categories Lcp(G) come equipped with natural forgetful functors λG from
Lcp(G) to the category of groups. A self equivalence ψ of the category Lcp(G) is called
isotypical if the functor λG and the composite functor λG ◦ψ are naturally isomorphic.
The full subcategory Auttyp(L

c
p(G)) of Aut(Lcp(G)) whose objects are all isotypical

self equivalences of Lcp(G) inherits a monoidal structure. We let Outtyp(L
c
p(G)) ≤

Out(Lcp(G)) denote the subgroup of classes of isotypical self equivalences. Our next
theorem gives a description of Out(BG∧

p ).

Theorem B. For any prime p and any finite group G, there is an isomorphism of
groups

Outtyp(L
c
p(G))

∼=
−−−−−−→ Out(BG∧

p ).

The homotopy groups of a small category C can be defined purely algebraically
or equivalently as the homotopy groups of the geometric realization of its nerve.
Theorem B claims in fact that Out(BG∧

p ) = π0(Aut(BG
∧
p )) is isomorphic as a group to

π0(Auttyp(L
c
p(G))). The next theorem generalizes Theorem B by showing that in fact

the groupoid Auttyp(L
c
p(G)) completely describes the homotopy type of Aut(BG∧

p ).
The proof makes use of the fact, proven in [BL], that each component of Aut(BG∧

p )
is aspherical. For a small category C let |C| denote the geometric realization of the
nerve of C.

Theorem C. For any prime p and any finite group G, there is a weak homotopy
equivalence

Aut(BG∧
p ) ≃ |Auttyp(L

c
p(G))|.

Moreover, these spaces are weakly equivalent as topological monoids, in the sense that
their classifying spaces are also weakly homotopy equivalent.

Theorem C is stated in terms of weak equivalences rather than homotopy equiva-
lence because of the usual problem of whether or not a mapping space between two
CW complexes has itself the homotopy type of a CW complex. If one is willing to work
simplicially, i.e. replace spaces by their singular simplicial sets and mapping spaces by
the respective simplicial mapping spaces, then one may replace “weak equivalence”
by “equivalence” in the statement of the theorem. Throughout the paper we shall not
distinguish between homotopy equivalences and weak homotopy equivalences, but the
above comment should be kept in mind.

The identity component of Aut(BG∧
p ) was shown in [BL] to have the homotopy type

of BZ(Ḡ), where Ḡ = G/Op′G, the quotient of G by its maximal normal subgroup
of order prime to p.

Theorem A will be proven in a more precise form as Theorem 2.9 below. Theorems
B and C will be proven together as Theorem 4.5.

Let G and G′ be finite groups, with Sylow p-subgroups S ≤ G and S ′ ≤ G′.

An isomorphism ϕ : S
∼=
−−→ S ′ is called fusion preserving if for any P,Q ≤ S, a
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group isomorphism α : P
∼=
→ Q is induced by conjugation in G if and only if the

corresponding isomorphism ϕαϕ−1 : ϕ(P )→ ϕ(Q) is induced by conjugation in G′.

The claim of the main theorem in [MP] can be reformulated in these terms. How-
ever, an error in its proof occurs on [MP, p.129], where a certain functor fails to
be well defined on morphisms. Recently, the third author has found a proof of this
result, but one which is far beyond the scope of this paper. Hence we restate it here
as the following:

Conjecture D (Martino-Priddy [MP]). For any prime p and any pair G,G′ of finite
groups, BG∧

p ≃ BG′∧
p if and only if there is a fusion preserving isomorphism between

their Sylow p-subgroups.

The proof of Conjecture D when p is odd is given in [Ol]; the proof for p = 2 is still
in preparation.

Theorem A gives a different purely algebraic condition for the spaces BG∧
p and

BG′∧
p to be homotopy equivalent. However, the condition in the Martino-Priddy

Conjecture is simpler to check in practice. It is easier in general to construct an
isomorphism between Sylow subgroups and show that it preserves fusion, than to
construct an equivalence between centric linking categories.

In Section 6, we study the relation between Conjecture D and our Theorem A. Let
Ocp(G) be the centric orbit category of G: the category whose objects are the p-centric
subgroups of G, and for which

MorOc
p(G)(P,Q) = Q\NG(P,Q) ∼= MapG(G/P,G/Q).

Let ZG be the contravariant functor from Ocp(G) to finite abelian p-groups which
sends P to its center Z(P ). Let G be a finite group with a Sylow p-subgroup S.
Let Outfus(S) denote the quotient of the group of fusion preserving automorphisms
of S by the normal subgroup of all automorphisms induced by conjugation in G. The
following theorem is an algebraic analogue of [BL, Theorem 1.6].

Theorem E. For any prime p and any finite group G, there is an exact sequence

0 −−−→ lim1

Oc
p(G)

(ZG)
λG−−−−−→ Outtyp(L

c
p(G))

µG
−−−−−→ Outfus(S)

ωG−−−−−→ lim2

Oc
p(G)

(ZG),

where λG and µG are group homomorphisms, and where exactness at Outfus(S) means
that Im(µG) = ω−1

G (0).

The lim1 term in the theorem is known not to vanish in general. The lim2 term is the
group containing the obstructions for lifting fusion preserving outer automorphisms
of S to isotypical outer automorphisms of Lcp(G).

Recently, this lim2 obstruction group has been shown to vanish for all finite groups
G, and it is this vanishing result by the third author which implies Conjecture D.
The proof of this result is, however, still very long and complicated, and uses the
classification theorem for finite simple groups. For this reason, it is still useful to
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have more elementary proofs of this result in certain specialized cases. In this paper,
we show (in Corollary 6.4) that lim2(ZG) = 0 whenever rkp(G) < p2. In particular,
this implies the following theorem (see Theorem 6.5 below):

Theorem F. For any prime p and any pair of finite groups G and G′, Conjecture D
is true if rkp(G) < p2.

The paper is organized as follows. In Section 1, we define the centric linking
categories and discuss some of their basic properties. In Section 2, we construct the
categories Lcp(X) for an arbitrary space X and prove Theorem A. Sections 3 and 4
are devoted to the proof of Theorems B and C. In Sections 5 and 6, we discuss fusion
preserving isomorphisms between Sylow subgroups, and higher limits obstructions
to the existence and uniqueness of a lift of a given fusion preserving isomorphism
to a homotopy equivalence between the respective classifying spaces. In particular,
Theorems E and F are proven in Section 6. Finally, in Section 7, we give some
examples to demonstrate the use of these methods to describe Out(BG∧

p ) in certain
cases.

The three of us would like to express our gratitude to Hans-Werner Henn, John Mar-
tino, Stewart Priddy and Peter Webb for many useful conversations and exchanges
of e-mail. We would particularly like to thank Bill Dwyer and Jesper Grodal who
have expressed a strong interest in this work since its early stages. We have greatly
benefited from talking to them. We are also very grateful to the referee for doing a
very thorough and careful job of reading our paper.

1. From groups to categories

Fix a finite group G and a prime p. We begin by defining the transporter category

L̃p(G) and the linking category Lp(G) which will play a central role throughout this
paper. These are both special cases of the “localité” categories defined by Puig [Pu].

An object in L̃p(G) is a p-subgroup P ≤ G. For each pair of p-subgroups P,Q ≤ G,
we define

MorL̃p(G)(P,Q) = NG(P,Q)
def
= {x ∈ G | xPx−1 ≤ Q}

(the transporter). The morphism from P to Q corresponding to x ∈ NG(P,Q) will
be denoted x̂. Composition is given by x̂ ◦ ŷ = x̂y.

As usual, for any finite group H , Op(H) denotes the maximal normal p-perfect
subgroup of H ; equivalently the minimal normal subgroup of p-power index (see the
appendix). We define the linking category Lp(G) to be the category with the same

objects as L̃p(G), and with morphism sets

MorLp(G)(P,Q) = NG(P,Q)/O
p(CG(P )).

In other words, we have divided out by the action of Op(CG(P )) on NG(P,Q) given

by right multiplication. The morphism P → Q corresponding to the class of
x ∈ NG(P,Q) will also be denoted x̂.
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To see that composition in Lp(G) is well defined, note first that for all P,Q ≤ S and
g ∈ NG(P,Q), g

−1CG(Q)g ≤ CG(P ) since gPg
−1 ≤ Q, and hence g−1Op(CG(Q))g ≤

Op(CG(P )) by Lemma A.1. Thus, for any R ≤ S, and any h ∈ NG(Q,R), x ∈
Op(CG(P )), and y ∈ O

p(CG(Q)),

(hy)(gx) = hg·(g−1yg)x ∈ hg·Op(CG(P )),

and hence ĥy ◦ ĝx = ĥ ◦ ĝ.

Our goal here is to construct a category, depending on G and p, which reflects the
structure of BG∧

p in a way which will be made clear later. In order to do this, we

must further restrict the categories L̃p(G) and Lp(G). Following the terminology of
Dwyer, we call a subgroup H ≤ G centric if CG(H) ≤ H (i.e., if CG(H) = Z(H)). A
p-subgroup P ≤ G is p-centric if Z(P ) ∈ Sylp(CG(P )); or equivalently (Lemma A.4)
if

CG(P ) = Z(P )×Op(CG(P ))

and Op(CG(P )) has order prime to p. For such subgroups, we write C ′
G(P )

def
=

Op(CG(P )) for short. We let L̃cp(G) ⊆ L̃p(G) and Lcp(G) ⊆ Lp(G) denote the full
subcategories whose objects are the p-centric subgroups of G. In particular, for any
p-centric P,Q ≤ G,

MorLc
p(G)(P,Q) = NG(P,Q)/C

′
G(P ).

For any finite group G, let B(G) denote the category with one object oG and
morphism group G. The morphism in B(G) corresponding to x ∈ G will be denoted
x̃, and x̃ ◦ ỹ = x̃y. We identify the classifying space BG with the (realization of the)
nerve of B(G). Let

α̃G : |L̃p(G)| −−−−−−→ |B(G)| = BG

be the nerve of the functor L̃p(G) →B(G) which sends each object of L̃p(G) to oG,

and which sends a morphism P
x̂
−−→ Q (for x ∈ NG(P,Q)) to x̃ ∈ AutB(G)(oG). The

main result of this section is the following:

Proposition 1.1. For any finite group G, the maps

α̃G : |L̃
c
p(G)| −−−−−→ BG and |π| : |L̃cp(G)| −−−−−→ |L

c
p(G)|

are both Fp-homology equivalences. Hence there is a homotopy equivalence

αG : |L
c
p(G)|

∧
p

≃
−−−−−→ BG∧

p ,

unique up to homotopy, such that the following triangle of homotopy equivalences
commutes up to homotopy:

|L̃cp(G)|
∧
p

|π|∧p

≃
//

(α̃G)∧p

≃

!!❇
❇❇

❇❇
❇❇

❇

|Lcp(G)|
∧
p

αG

≃

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

BG∧
p .
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Proof. This follows from Lemmas 1.2 and 1.3 below. Lemma 1.2 says that α̃G is
an Fp-homology equivalence, and hence induces a homotopy equivalence (α̃G)

∧
p af-

ter p-completion. Lemma 1.3 implies as a special case that the projection functor

π : L̃cp(G) → Lcp(G) induces an Fp-homology equivalence between the nerves, and
hence a homotopy equivalence between their p-completions. The other statements
are then clear. �

The rest of the section is devoted to the proofs of Lemmas 1.2 and 1.3. For any
set C of subgroups of G closed under conjugation, let KC denote the category whose

set of objects is C, and with a unique morphism P → Q whenever P ≤ Q. Recall
[Dw] that a family C of p-subgroups of G (closed under conjugation) is called ample

if the projection EG ×G |KC| → BG is an Fp-homology equivalence. Here, |KC|
denotes the realization of the nerve of the poset C, and the action of G is induced
by conjugation. In particular, the family of p-centric subgroups of G is ample by

[Dw, §8]. In general we will denote by L̃C
p(G) ⊆ L̃p(G) and L

C
p(G) ⊆ Lp(G) the full

subcategories whose objects are in C.

Lemma 1.2. For any finite group G, any prime p, and any ample family C of p-
subgroups of G, α̃G restricts to an Fp-homology equivalence

α̃C
G : |L̃

C
p(G)| −−−−−→ BG.

Proof. Let E(G) be the category whose objects are the elements of G, and with a
unique morphism between each pair of objects (i.e., the category whose nerve is the
universal free G-space EG). Let

γ : E(G)×G KC −−−−−→ L̃
C
p(G)

be the functor which sends a pair of objects (g, P ) to gP = gPg−1, and which sends
a pair of morphisms (g → xg, P≤Q) to x̂ : gP → xgQ. This clearly induces bijections
on objects and on morphisms, and hence a homeomorphism

|γ| : EG×G |KC|
∼=

−−−−−→ |L̃C
p(G)|.

Let δ : E(G) ×G KC →B(G) be the functor which sends all objects to oG, and
which sends a morphism (g → xg, P≤Q) to x̃ ∈ AutB(G)(oG). The following triangle
of categories and functors

E(G)×G KC
γ

//

δ
##❍

❍❍
❍❍

❍❍
❍❍

L̃C
p(G)

α̃C

G��⑦⑦
⑦⑦
⑦⑦
⑦

B(G)



8 Homotopy equivalences of p-completed classifying spaces

commutes by definition, and hence induces a commutative triangle of spaces

EG×G |KC|
|γ|

∼=
//

|δ|
##●

●●
●●

●●
●●

|L̃C
p(G)|

|α̃C

G|
~~⑥⑥
⑥⑥
⑥⑥
⑥

BG .

Since |δ| is an Fp-homology equivalence (by definition of “ample”), |α̃C
G| is also an

Fp-homology equivalence. �

The following lemma implies as a special case that the projection from |L̃cp(G)| to
|Lcp(G)| is an Fp-homology equivalence.

Lemma 1.3. Fix a prime p. Let ψ : C −−→ C′ be any functor between small categories
which has the following properties:

(i) ψ is bijective on isomorphism classes of objects and is surjective on morphism
sets.

(ii) For each object c in C, the subgroup

K(c)
def
= Ker

[
AutC(c) −−−→ AutC′(ψ(c))

]

is finite of order prime to p.

(iii) For each pair of objects c and d, and each f, g : c → d in C, ψ(f) = ψ(g) if and
only if there is some σ ∈ K(c) such that g = f ◦ σ (i.e., MorC′(ψ(c), ψ(d)) ∼=
MorC(c, d)/K(c)).

Then for any functor F : C′ → Spaces, the induced map

hocolim
C

(F ) −−−−→ hocolim
C′

(F ◦ ψ)

is an Fp-homology equivalence, and hence induces a homotopy equivalence between the
p-completions. Also, for any functor T : C′op → Z(p)-mod,

lim
C

∗(T ) ∼= lim
C′

∗(T ◦ ψ).

Proof. We can assume that ψ is bijective on objects (not just on isomorphism classes).
If not, then replace C′ by the equivalent category C′′ whose objects are those of C,
and where MorC′′(c1, c2) = MorC′(ψ(c1), ψ(c2)).

Let C-mod and C′-mod denote the categories of functors Cop → Ab and C′op → Ab.
We proceed by showing that the functor ψ∗ : C′-mod→ C-mod given by composition
on the right with ψ has a left adjoint, which is a useful observation in proving our
claim. Define (−)K : C-mod → C′-mod by

DK(c
′) = D(c)K(c)

def
= Z⊗ZK(c) D(c) = H0(K(c);D(c))

for any D in C-mod, and any c′ ∈ C′ and c = ψ−1(c′). Note that c is uniquely defined
by the assumption that ψ is bijective on objects. To see that DK is well defined
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as a (contravariant) functor on C′, let f ′ : ψ(c) → ψ(d) be any morphism and let
f : c → d be a lift to C. Then for any τ ∈ K(d) there exists, by (iii) above (applied
with g = τ ◦ f), some σ ∈ K(c) such that f ◦ σ = τ ◦ f , and any other lift of f ′ differs
from f by an element of K(c).

By construction, for any D in C-mod and D′ in C′-mod,

HomC′-mod(DK , D
′) ∼= HomC-mod(D,D

′
◦ ψ), (1)

and we have thus shown that (−)K is left adjoint to ψ∗. In particular, this shows that
DK is C′-mod-projective if D is C-mod-projective. So if

· · · −−→ P2 −−→ P1 −−→ P0 −−→ Z −−→ 0

is any C-mod projective resolution of the constant functor Z, then

· · · −−→ (P2)K −−→ (P1)K −−→ (P0)K −−→ Z −−→ 0

is a chain complex of C′-mod-projectives which is exact (a resolution) after localiza-
tion at p (the groups K(c) all being finite of order prime to p). Since

lim
C
(T ◦ ψ) ∼= HomC-mod(Z, T ◦ ψ),

we have

lim
C

∗(T ◦ ψ) ∼= Ext∗C-mod
(Z, T ◦ ψ) ∼= H∗

(
HomC-mod(P∗, T ◦ ψ)

)
.

Similarly, since T (c) is a Z(p)-module for all c in C′,

lim
C′

∗(T ) ∼= Ext∗C′-mod
(Z, T ) ∼= H∗

(
HomC-mod((P∗)K , T )

)
.

So lim
C

∗(T ◦ ψ) ∼= lim
C′

∗(T ) by (1).

The Fp-homology equivalence between homotopy colimits now follows from the
isomorphisms

lim
C

∗H∗(F ◦ ψ(−);Fp) ∼= lim
C′

∗H∗(F (−);Fp),

together with the spectral sequence for the cohomology of a homotopy colimit. �

Remark 1.4. According to [Dw], any ample family C of p-subgroups of a finite
group G gives rise to an Fp-homology equivalence

hocolim
FC

p (G)
EG/CG(−) −−−−−→ BG

where FC
p (G) is the fusion category whose objects are the subgroups in C and whose

morphisms are homomorphisms induced by conjugation in G. That is,

MorFC
p (G)(P,Q) ∼= NG(P,Q)/CG(P ) .

By the same methods, we can obtain another Fp-homology equivalence

hocolim
LC
p(G)

EG/Op(CG(−)) → BG.

The relationship between these two decompositions can be described as moving in-
formation from the functor in the first decomposition to the indexing category in the
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second. When C is the family of p-centric subgroups of G, then EG/Op(CG(P )) ≃
BOp(CG(P )) is Fp-acyclic for all P ∈ C, which explains the existence of the homo-

topy equivalence αG : |L
c
p(G)|

∧
p

≃
→ BG∧

p of Proposition 1.1 in terms of the above
Fp-homology equivalences. This shows that we get a similar result if we replace the
family of p-centric subgroups by that of all p-subgroups P ≤ G for which Op(CG(P ))
has order prime to p, and explains why we do not expect a similar equivalence to be
true for families of subgroups which are larger than that.

2. From spaces to categories

In this section we introduce linking categories for spaces: homotopy theoretic ana-
logues of the linking categories Lp(G) for finite groups G. The remarkable feature

of this construction is that Lp(BG) ≃ L̃p(G) and Lp(BG
∧
p ) ≃ Lp(G). The following

proposition suggests a way of doing this. For any pair of groups G,H , we set

Rep(G,H) = Hom(G,H)/ Inn(H) :

the set of homomorphisms G →H modulo conjugacy in H .

Proposition 2.1. For any finite p-group P and any finite group G, the p-completion
map BG → BG∧

p induces a (weak) homotopy equivalence

Map(BP,BG)∧p
≃

−−−−−−→ Map(BP,BG∧
p ).

In particular, the maps

Rep(P,G)
B

−−−−−→
∼=

[BP,BG]
κ∗−−−−−→
∼=

[BP,BG∧
p ],

where B sends a homomorphism ρ : P → G to Bρ, are bijections. Also, for each

ρ : P → G, the induced product map CG(ρ) × P → G induces (after taking
adjoints) a homotopy equivalence

BCG(ρ) −−−−−→ Map(BP,BG)Bρ

and a weak homotopy equivalence

BCG(ρ)
∧
p −−−−−→ Map(BP,BG∧

p )Bρ .

Proof. The description of Map(BP,BG) is classical, and in fact holds for any pair of
discrete groups. The fact that Map(BP,BG∧

p ) is the p-completion of Map(BP,BG)
(when P is a p-group and G is finite) is shown in [BL, Proposition 2.1]. �

Proposition 2.1 suggests replacing a homomorphism P → G, for a p-group P , by

a map BP →X . We next state a homotopy theoretic condition which corresponds
to a homomorphism being injective. There could be several natural choices for such
a condition. The following definition of a homotopy monomorphism seems to be the
most useful for our purposes here.
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Definition 2.2. A map f : X → Y is said to be a homotopy monomorphism at
p if H∗(X ;Fp) is a finitely generated module over H∗(Y ;Fp) via the induced map
f ∗. For any space X and any prime p, a subgroup of X at p (a p-subgroup of X)

is a pair (G,α) where G is a group (a p-group) and α : BG → X is a homotopy
monomorphism.

This definition of homotopy monomorphisms at p is motivated by the following
lemma.

Lemma 2.3. Let G and G′ be two finite groups and f : G → G′ a homomorphism.
Then Bf : BG → BG′∧

p is a homotopy monomorphism at p if and only if Ker(f)
has order prime to p.

Proof. This statement is implicit in [Sw]. Assume first that f : G → G′ is a
monomorphism, and fix an embedding G′ ⊆ U(n) for some n. The composite
G → G′ → U(n) induces a fibration

U(n)/G −−−→ BG −−−→ BU(n),

and the E2-term of the spectral sequence for this fibration is finitely generated as
a module over H∗(BU(n);Fp). Hence, since H∗(BU(n);Fp) is noetherian, the E∞-

term is also finitely generated. The composite BG → BG′ → BU(n) thus
makes H∗(G;Fp) into a finitely generated H∗(BU(n);Fp)-module; and hence a finitely
generated H∗(G′;Fp)-module.

If f : G → G′ is such that K = Ker(f) has order prime to p, then H∗(G;Fp) ∼=
H∗(G/K;Fp) by the Serre spectral sequence for the fibration BK → BG→ B(G/K).
So H∗(G;Fp) is finitely generated as an H∗(G′;Fp)-module in this case also.

Conversely, assume that H∗(G;Fp) is finitely generated over H∗(G′;Fp), and again
set K = Ker(f). Since K ≤ G, H∗(K;Fp) is a finitely generated H∗(G;Fp)-module,

and thus a finitely generated H∗(G′;Fp)-module. Since f |K : K → G′ is trivial,

Im[H∗(G′;Fp) → H∗(K;Fp)] = Fp; and hence dimFp
(H∗(K;Fp)) < ∞. By [Sw,

Corollary 1], this implies that |K| is prime to p. �

We also need to define p-centric subgroups of a space. Recall (Proposition 2.1) that
for any finite group G and any p-subgroup P ≤ G, BCG(P ) ≃ Map(BP,BG)incl and
BCG(P )

∧
p ≃ Map(BP,BG∧

p )incl. This motivates the following definition, originally
due to Dwyer and Kan [DK].

Definition 2.4. A map f : X → Y is centric if the induced map

(f ◦−) : Map(X,X)id → Map(X, Y )f

is a homotopy equivalence, and is p-centric if (f ◦−) is an Fp-homology equivalence.

A p-subgroup (P, α) of a space X is p-centric if the map α : BP → X is p-centric.
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We are now ready to define the linking category, and centric linking category, of a
space.

Definition 2.5. Fix a space X. Define Lp(X) to be the category whose objects are
the p-subgroups (P, α) of X, and whose morphisms from (P, α) to (Q, β) are the pairs

(ϕ, η), where ϕ : P → Q is a homomorphism and η is a homotopy class of paths
in Map(BP,X) from α to β ◦ Bϕ. The identity morphism of an object (P, α) is
(IdP , Cα), where Cα is the homotopy class of the constant path at α. The composite
of two morphisms

(P, α)
(ϕ,η)

−−−−−−→ (Q, β)
(ψ,θ)

−−−−−−→ (R, γ)

is the morphism
(
ψ ◦ϕ, (θ ◦Bϕ)·η

)
, where (−)·(−) denotes the composite (from right

to left) of two homotopy classes of paths. Let Lcp(X) be the full subcategory of Lp(X)
whose objects are the p-centric subgroups of X.

If f : X → Y is a homotopy monomorphism at p, then there is an induced func-
tor Lp(f) : Lp(X) →Lp(Y ), and this correspondence satisfies the usual functorial
properties. In order to obtain similar functoriality properties for the construction Lcp
we need maps to preserve p-centricity; that is, for (P, j) a p-centric subgroup of X
we need that (P, f ◦ j) is also p-centric in Y . This happens only under very restric-
tive conditions. One relevant case of interest to us is that of the p-completion map
BG → BG∧

p , for a finite group G. This is clearly a homotopy monomorphism at p
and by Proposition 2.1, preserves p-centricity. It therefore induces functors

Lp(κ) : Lp(BG) →Lp(BG
∧
p ) and Lcp(κ) : L

c
p(BG) →Lcp(BG

∧
p ) .

For any finite group G, any p-subgroups P,Q ≤ G, and any x ∈ NG(P,Q), we let

cx : P → Q denote the homomorphism cx(g) = xgx−1. Also, ηx : BP × I → BG
denotes the homotopy (i.e., path in Map(BP,BG)) induced by the natural transfor-
mation oP 7→ x̃ ∈ AutB(G)(oG) between the functors B(incl),Bcx : B(P ) →B(G).

Proposition 2.6. For any finite group G and any prime p, let

β̃G : L̃p(G) −−−−−→ Lp(BG)

be the functor defined as follows. For any p-subgroup P ≤ G, set β̃G(P ) = (P, iP ),

where iP : BP → BG denotes the inclusion. For any pair of p-subgroups P,Q ≤ G,
and any x ∈ NG(P,Q), set

β̃G(x̂) = (cx, ηx) : (P, iP ) −−−−−→ (Q, iQ).

Then β̃G is an equivalence of categories, and restricts to an equivalence

βcG : L̃
c
p(G) −−−−−→ L

c
p(BG).

Proof. By Proposition 2.1, [BP,BG] ∼= Rep(P,G) for any finite group P . By Lemma

2.3, a homomorphism ρ : P → G is injective if and only if Bρ : BP → BG
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is a homotopy monomorphism. This shows that β̃G induces a bijection between

isomorphism classes of objects in L̃p(G) and in Lp(BG).

By Proposition 2.1 again, for any p-subgroup P ≤ G, (P, iP ) is p-centric in the

sense of Definition 2.4 if and only if the inclusion BZ(P ) → BCG(P ) is an Fp-
homology equivalence. Since Z(P ) is central in CG(P ), the spectral sequence of the
fibration

BZ(P ) −−−−−→ BCG(P ) −−−−−→ B(CG(P )/Z(P ))

shows that this inclusion is an Fp-homology equivalence if and only if B(CG(P )/Z(P ))
is Fp-acyclic. Finally, by Lemma 2.3 (applied with G′ = 1), B(CG(P )/Z(P )) is Fp-
acyclic if and only if CG(P )/Z(P ) has order prime to p; i.e., P is p-centric in G. This

shows that β̃cG also induces a bijection between isomorphism classes of objects.

It remains to show, for all P,Q ≤ G, that β̃G induces a bijection

MorL̃p(G)(P,Q) → MorLp(BG)((P, iP ), (Q, iQ)).

For any x ∈ NG(P,Q) (i.e., any morphism x̂ : P → Q in L̃p(G)), β̃G(x̂) = (cx, ηx),

and by construction the restriction of ηx : BP × I → BG to the basepoint of BP
is a loop which represents the element x ∈ π1(BG) ∼= G. This proves that the map
from MorL̃p(G)(P,Q) to MorLp(BG)((P, iP ), (Q, iQ)) is injective. So it remains only to

show that these morphism sets have the same order.

By definition, MorLp(BG)((P, iP ), (Q, iQ)) consists of pairs (ρ, η) where ρ : P → Q
is a homomorphism and η represents a homotopy class of paths in Map(BP,BG)
from iP to iQ ◦ Bρ. For any fixed ρ, π1(Map(BP,BG)iP )

∼= CG(P ) acts freely and
transitively on the set of homotopy classes of paths of Map(BP,BG) from iP to iQ◦Bρ.
Hence π1(Map(BP,BG)iP )

∼= CG(P ) acts freely on MorLp(BG)((P, iP ), (Q, iQ)) and
orbits are in one to one correspondence with all homomorphism P → Q induced
by conjugation; that is, NG(P,Q)/CG(P ). In particular,

|MorLp(BG)((P, iP ), (Q, iQ))| =
∣∣NG(P,Q)

/
CG(P )

∣∣·|CG(P )| =
= |NG(P,Q)| = |MorL̃p(G)(P,Q)| . �

We next show that the categories Lcp(G) and L
c
p(BG

∧
p ) are equivalent for any finite

group G. This uses the description in Proposition 2.1 of maps BP → BG∧
p for

p-groups P .

Proposition 2.7. The composite functor

L̃p(G)
β̃G

−−−−−→ Lp(BG)
Lp(κ)
−−−−−→ Lp(BG

∧
p )

factors through an equivalence of categories

βG : Lp(G) −−−−−→ Lp(BG
∧
p ),

which restricts to an equivalence of subcategories

βcG : L
c
p(G) −−−−−→ L

c
p(BG

∧
p ).
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Proof. Define βG on objects by setting βG(P ) = (P, iP ) for any p-subgroup P ≤ G,
where iP now denotes the p-completion BP → BG∧

p of the map induced by inclusion.
Since [BP,BG∧

p ]
∼= [BP,BG] for any p-group P (Proposition 2.1), this induces a

bijection between isomorphism classes of objects in Lp(G) and those in Lp(BG
∧
p ).

Also, iP is p-centric as a map to BG∧
p if and only if it is p-centric as a map to BG

(Proposition 2.1 again), and this holds if and only if P is p-centric by Proposition
2.6.

It remains to show, for any pair of p-subgroups P,Q ≤ G, that there is a (unique)
bijection βG(P,Q) which makes the following square commute:

NG(P,Q) =MorL̃p(G)(P,Q)
β̃G(P,Q)

∼=
→MorLp(BG)((P, iP ), (Q, iQ))

NG(P,Q)/O
p(CG(P )) =MorLp(G)(P,Q)

↓↓
βG(P,Q)

→MorLp(BG∧
p )((P, iP ), (Q, iQ)).

κ(P,Q)↓↓
(1)

The same argument as that used in the proof of Proposition 2.6 shows that the
group π1(Map(BP,BG∧

p )BiP ) acts freely on MorLp(BG∧
p )((P, iP ), (Q, iQ)) with orbit

set NG(P,Q)/CG(P ), the same as the orbit set of the action of π1(Map(BP,BG)BiP )
on MorLp(BG)((P, iP ), (Q, iQ)). Furthermore, the map κ(P,Q) is equivariant via the
induced map of fundamental groups

π1(Map(BP,BG)BiP ) −−−−−−→ π1(Map(BP,BG∧
p )BiP ) . (2)

By Propositions 2.1 and A.2,

π1
(
Map(BP,BG∧

p )iP
)
∼= π1(BCG(P )

∧
p )
∼= CG(P )/O

p(CG(P )), (3)

and homomorphism (2) is just the projection of CG(P ) onto CG(P )/O
p(CG(P )). Thus

both vertical maps in diagram (1) involve dividing out by a free action of Op(CG(P )).

More precisely, for any x, y ∈ NG(P,Q) such that cx = cy ∈ Hom(P,Q), ηx and
ηy are homotopic as paths in Map(BP,BG∧

p ) from iP to iQ ◦Bcx if and only if ηxη
−1
y

is trivial in π1
(
Map(BP,BG∧

p )iP
)
. By (3), this is the case if and only if xy−1 ∈

Op(CG(P )), or equivalently x̂ = ŷ in MorLp(G)(P,Q). This shows that βG(P,Q) is
well defined and a bijection. Since βG takes p-centric objects to p-centric objects, its
restriction to Lcp(G) is also an equivalence of categories. �

Upon combining Propositions 2.6 and 2.7 with Lemma 1.3, we get the following:

Corollary 2.8. For any finite group G, the functor Lcp(κ) : L
c
p(BG) →Lcp(BG

∧
p )

induces an Fp-homology equivalence on nerves.

We are now ready to prove Theorem A, which we restate as

Theorem 2.9. For any pair G,G′ of finite groups, BG∧
p and BG′∧

p are homotopy
equivalent if and only if the categories Lcp(G) and L

c
p(G

′) are equivalent.
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Proof. A homotopy equivalence BG∧
p → BG′∧

p induces an equivalence of categories

Lcp(BG
∧
p ) →Lcp(BG

′∧
p ), and hence an equivalence Lcp(G)

≃
−−→ Lcp(G

′) by Proposi-
tion 2.7. Conversely, if the categories Lcp(G) and Lcp(G

′) are equivalent, then their
nerves are homotopy equivalent, and hence BG∧

p ≃ BG′∧
p by Proposition 1.1. �

3. Spaces of equivalences

We now turn to the proofs of Theorems B and C. They will first be reduced, in
Lemma 3.1, to a problem of comparing two “categories of automorphisms”: one of
the space BG∧

p , and the other of the category Lcp(G). We begin by defining these
categories of automorphisms.

For any category C, we denote by Aut(C) the category whose objects are the equiv-
alences of categories ψ : C → C, and whose morphisms are the natural isomorphisms
Ψ : ψ → ψ′ between equivalences. We think of an equivalence between categories
either as a functor which is invertible modulo natural isomorphisms of functors, or
equivalently as a functor which induces bijections on isomorphism classes of objects
and on all morphism sets. Analogously, for any CW complex X , we denote by Aut(X)
the fundamental groupoid of Aut(X); i.e., the category whose objects are the self ho-

motopy equivalences ϕ : X
≃
→ X , and where MorAut(X)(ϕ, ϕ

′) is the set of homotopy
classes of paths from ϕ to ϕ′ in the mapping space. All of these categories Aut(−)
are given the discrete topology. In both cases, we write Out(−) = π0(Aut(−)). Thus,
Out(C) is the group of self equivalences of C up to natural isomorphisms of functors,
and Out(X) is the group of homotopy classes of self homotopy equivalences of X .

In general, we write C
≃
→D to indicate that a functor is an equivalence of

categories, and ψ ∼= ψ′ to denote that two functors ψ and ψ′ are naturally isomorphic.

When functors ψ, ψ′ : C → D are already defined, a natural isomorphism ψ
Φ
→ ψ′

will be described as a function which sends each object c ∈ Ob(C) to an isomorphism
Ψc in D, satisfying the obvious naturality properties.

Recall that a natural morphism ψ
Φ
→ ψ′ of functors C → D is equivalent to

a functor Φ̂ : C × [1] →D, where [1] is the category with to objects 0, 1 and one

non-identity morphism (0→ 1). For each c ∈ Ob(C), Φ̂ sends (c, 0) to ψ(c) and (c, 1)

to ψ′(c), while for each morphism c
f
→ d,

Φ̂(f, Id0) = ψ(f), Φ̂(f, Id1) = ψ′(f), and Φ̂(f, 0→ 1) = Φd ◦ ψ(f) = ψ′(f) ◦ Φc.

Each of these categories Aut(−) is a strict monoidal category, in the sense that
composition defines a strictly associative functor

Aut(−)×Aut(−) −−−−−−→ Aut(−)

with strict identity. The nerve of each Aut(−) is thus a simplicial monoid, and
|Aut(−)| is a topological monoid.
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For any space X , let S•X denote its singular simplicial set, and let π(X) denote
its fundamental groupoid. Let

X
evX←−−−−−−− |S•X|

σX−−−−−−−→ |π(X)|

denote the evaluation map, and the map which takes each simplex to its homotopy
class, respectively. More precisely, σX is the realization of the map of simplicial sets
which is the identity on vertices (the elements of X in both cases), and sends a

singular simplex ∆n φ
−−−→ X to the image under φ of the sequence of edges in ∆n

which connects the successive vertices.

The following lemma shows that Aut(BG∧
p ) = π(Aut(BG∧

p )) and Aut(BG∧
p ) have

the same homotopy type, and hence that it suffices from now on to work with the
former.

Lemma 3.1. For any finite group G,

Aut(BG∧
p )

ev
←−−−−−−−

≃
|S• Aut(BG

∧
p )|

σ
−−−−−−−→

≃
|Aut(BG∧

p )|

are homotopy equivalences of topological monoids.

Proof. Both maps are clearly morphisms of topological monoids. The first is a (weak)
homotopy equivalence (cf. [GJ, Theorem I.11.4]), and the second is a homotopy
equivalence since by [BL, Theorem 1.1], Aut(BG∧

p ) is aspherical. �

It now remains to compare Aut(BG∧
p ) with Aut(Lcp(G)). But in fact, we do not

deal with all self equivalences of the category Lcp(G), but only certain “isotypical”
equivalences.

Definition 3.2. Let C and D be two categories equipped with functors C
γ
→ Gr

and D
δ
→ Gr to the category of groups. A functor ψ : C → D is isotypical if γ

is naturally isomorphic to δ ◦ ψ. When γ is understood, Auttyp(C) denotes the strict
monoidal category of isotypical self-equivalences and natural isomorphisms between
them, and Outtyp(C) denotes the monoid of isotypical self-equivalences of C modulo
natural isomorphisms of functors.

We emphasize that the definition of an isotypical functor does not include the

natural isomorphism γ
∼=
→ δ ◦ ψ as part of the data, but only requires that such an

isomorphism exists. Thus, if we think of a category together with a functor to groups
as a “diagram of groups”, then an equivalence between diagrams of groups defines an
isotypical equivalence, but the isotypical equivalence contains less information than
the equivalence between diagrams.

The following lemma is immediate, and shows for example that Outtyp(C) is always
a group.

Lemma 3.3. Let C and D be categories equipped with functors C
γ
→ Gr and

D
δ
→ Gr, and let ψ : C → D be an isotypical functor. Then any functor
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ψ′ : C → D naturally isomorphic to ψ is isotypical, and any right inverse to ψ

up to natural isomorphism (i.e., any D
ψ∗

→ C such that ψ ◦ ψ∗ ∼= IdD) is isotypical.
In particular, Outtyp(C) is a group. �

The categories L̃p(G), Lp(G), Lp(X) and all their variations are examples of such
diagrams of groups, where the functors

λG : Lp(G) −−−−−−→ Gr and λX : Lp(X) −−−−−−→ Gr,

are the obvious forgetful functors

λG
(
P

x̂
→ Q

)
=

(
P

cx
→ Q

)
and λX

(
(P, α)

(ϕ,η)
→ (Q, β)

)
=

(
P

ϕ
→ Q

)
.

(Recall that cx is the homomorphism g 7→ xgx−1.)

For the categories Lcp(G), there is an alternative criterion for a functor being isotyp-
ical, which is more useful in concrete situations. For each p-centric subgroup P ≤ G,
let DP (G) denote the “distinguished subgroup” of AutLc

p(G)(P ) given by

DG(P ) = {ĝ | g ∈ P} ⊆ AutLc
p(G)(P ) ∼= NG(P )/C

′
G(P ).

Since C ′
G(P ) has order prime to p, DG(P ) ∼= P , and we can identify these two groups.

The next lemma says that an equivalence ψ : Lcp(G)
≃
→Lcp(G

′) is isotypical if and
only if it sends distinguished subgroups isomorphically to distinguished subgroups.

Lemma 3.4. Fix finite groups G and G′, and an equivalence ψ : Lcp(G) →Lcp(G
′).

Then ψ is isotypical if and only if

ψP,P : AutLc
p(G)(P )

∼=
−−−−−−→ AutLc

p(G
′)(ψ(P ))

sends DG(P ) isomorphically to DG′(ψ(P )) for each p-centric P ≤ G. In this case, if

P
ψP
→ ψ(P ) denotes the restriction of ψP,P under the identifications P = DG(P ) and

ψ(P ) = DG′(ψ(P )), then (P 7→ ψP ) is a natural isomorphism of functors λG
∼=
→ λG′◦

ψ.

Proof. To simplify notation, we write P ′ = ψ(P ) for any P in Lcp(G). Assume first

that ψ is isotypical, and let Λ: λG
∼=
→ λG′ ◦ ψ be a natural isomorphism. Fix P , let

g ∈ P be any element, and set x̂ = ψP,P (ĝ), where x ∈ NG′(P ′). Then Λ sends P to
an isomorphism ΛP ∈ Iso(P, P ′) of groups, and

cΛP (g) ◦ ΛP = ΛP ◦ cg = cx ◦ ΛP :

the first equality holds when ΛP is replaced by any homomorphism P → P ′, and

the second holds by the naturality of Λ with respect to (P
ĝ
→ P ). Thus cΛP (g) = cx,

so x−1ΛP (g) ∈ CG′(P ′), and we can assume that x−1ΛP (g) ∈ Z(P
′) without changing

the class x̂ = x·C ′
G′(P ′). It follows that x ∈ P ′, i.e. that ψP,P (ĝ) ∈ DG′(P ′), and thus

ψP,P (DG(P )) ⊆ DG′(P ′). Finally, these two sets are equal, since the distinguished
subgroups are abstractly isomorphic (and ψP,P is an isomorphism).
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Now assume that ψP,P (DG(P )) = DG′(P ′) for each P , and let ψP : P
∼=
→ P ′ be

the restriction of ψP,P under our identifications. We must show that (P 7→ ψP ) is

natural as an isomorphism of functors λG → λG′ ◦ ψ; i.e., that

ψQ ◦ cx = cy ◦ ψP ∈ Hom(P,Q′) (1)

for any morphism P
x̂
→ Q in Lcp(G), where ŷ = ψP,Q(x̂). For any g ∈ P , ψ sends

x̂ ◦ ĝ = x̂g ◦ x̂ in Lcp(G) to

ŷ ◦ ψ̂P (g) = ψ̂Q(xg) ◦ ŷ ∈ MorLc
p(G

′)(P
′, Q′) = NG′(P ′, Q′)/C ′

G′(P ′),

where CG′(P ′) = Z(P ′)×C ′
G′(P ′) and the second factor has order prime to p. Hence

there is h ∈ C ′
G′(P ′) such that yψP (g) = ψQ(xgx

−1)yh,

yhy−1 = ψQ(xgx
−1)−1yψP (g)y

−1 ∈ Q′

(since yP ′y−1 ≤ Q′), and h = 1 since it has order prime to p. Thus, ψQ(xgx
−1) =

yψP (g)y
−1 for all g ∈ P , and this proves (1). �

From now on, for any isotypical equivalence Lcp(G)
ψ

≃
→Lcp(G

′), and any p-centric

P ≤ G, we let ψP : P
∼=
→ ψ(P ) denote the isomorphism obtained by restricting

ψP,P .

We next define functors

Aut(BG∧
p )

L
−−−−−−−→←−−−−−−−

R

Auttyp(L
c
p(G)),

which will later be seen to be inverses up to natural isomorphism. Very roughly, R is
defined to be the realization functor fromAuttyp(L

c
p(G)) to Aut(|L

c
p(G)|

∧
p ) followed by

an equivalence of categories induced by the homotopy equivalence |Lcp(G)|
∧
p ≃ BG∧

p ;
while L is induced by the functor L(−) toAuttyp(L

c
p(BG

∧
p )) followed by an equivalence

induced by Lcp(BG
∧
p ) ≃ L

c
p(G).

More precisely, for any category C, let

Aut(C)
|−|

−−−−−→ Aut(|C|) and Aut(C)
|−|∧p
−−−−−→ Aut(|C|∧p )

denote the functors which take a self equivalence of C to its geometric realization
(before or after p-completion), and which take a natural isomorphism, interpreted as
a functor from C× [1] to C, to the homotopy class of its geometric realization. For any

finite group G, let |Lcp(G)|
∧
p

αG
→ BG∧

p be the homotopy equivalence of Proposition
1.1, and fix a homotopy inverse

α∗ : BG∧
p −−−−−−→ |L

c
p(G)|

∧
p .

Let
cα : Aut(|Lcp(G)|

∧
p ) −−−−−→ Aut(BG

∧
p )

denote the functor “conjugation by α”, defined on objects and morphisms by setting

cα(f) = α∗
◦ f ◦ αG and cα(F ) = α∗

◦ F ◦ (αG × I)
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for any f ∈ Aut(|Lcp(G)|
∧
p ) and any homotopy F . We now define the realization

functor

R = RG : Auttyp(L
c
p(G))

|−|∧p
−−−−−−−−−−→ Aut(|Lcp(G)|

∧
p )

cα−−−−−→
≃

Aut(BG∧
p ).

The first functor in this composite preserves the monoidal structures of the categories,
but cα does not in general.

For any space X , define a functor

LX : Aut(X) −−−−−→ Auttyp(L
c
p(X))

as follows. On objects, LX sends a self equivalence X
f
→ X to Lcp(f). If F :

X × I → X is a homotopy, representing a morphism in Aut(X) from f to f ′, then
LX(F ) is defined to be the natural isomorphism of functors which sends an object
(P, α) to the morphism (IdP , [F ◦ (α × I)]). (Note that this only depends on the
homotopy class of F , as a path in Aut(X) from f to f ′.) One easily checks that LX
preserves compositions of homotopies and of homotopy equivalences, and is thus a a
well defined functor of monoidal categories.

Since βcG : Lcp(G) →Lcp(BG
∧
p ) is an inclusion and an equivalence of categories

(Proposition 2.7), it has a left inverse β∗, defined by sending any object (P, α) in
Lcp(BG

∧
p ) not in the image of βcG to some Q ≤ G such that (Q, iQ) = βcG(Q) is

isomorphic to (P, α) in Lcp(BG
∧
p ). Also, βcG is isotypical since λG = λBG∧

p
◦ βcG, and

hence β∗ is isotypical by Lemma 3.3. Let

Auttyp(L
c
p(BG

∧
p ))

cβ
−−−−−−→←−−−−−−

c∗
β

Auttyp(L
c
p(G))

denote the equivalences induced by composition with βcG and β∗. Thus

cβ
(
Lcp(BG

∧
p )

ρ
−→ Lcp(BG

∧
p )
)
= β∗

◦ ρ ◦ βcG and c∗β
(
Lcp(G)

ψ
−→ Lcp(G)

)
= βcG ◦ ψ ◦ β∗,

and similarly for morphisms. Note that c∗β preserves the monoidal structures of these
categories (since β∗

◦ βcG = Id by assumption), while cβ does not in general preserve
them. Let L = LG to be the composite

L = LG : Aut(BG
∧
p )

LBG∧
p

−−−−−−−→ Auttyp(L
c
p(BG

∧
p ))

cβ
−−−−−→

≃
Auttyp(L

c
p(G)).

It remains to show that the maps induced by R and L on nerves are mutual inverses
up to natural isomorphism of functors, thus proving Theorems B and C. We first show
that L ◦R ∼= Id.

For each p-centric subgroup P ≤ G, let tP : B(P ) →Lcp(G) denote the functor
which sends the unique object oP to P , and sends each morphism x̃ in B(P ) to x̂ ∈
AutLc

p(G)(P ). For each pair of p-centric subgroups P,Q ≤ G and each x ∈ NG(P,Q),
let

H(x) : tP −−−−−→ tQ ◦ B(cx)
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be the natural morphism of functors B(P ) →Lcp(G) which sends the object oP to

the morphism P
x̂
→ Q. This induces a homotopy

|H(x)| : BP × I = |B(P )× [1]| −−−−−−→ |Lcp(G)|;

i.e., a path in the mapping space Map(BP, |Lcp(G)|). Define

ΓG : L
c
p(G) −−−−−−→ L

c
p(|L

c
p(G)|)

to be the functor which sends an object P to the pair (P, |tP |), and which sends a

morphism P
x̂
−−−→ Q in Lcp(G) (for x ∈ NG(P,Q)) to ΓG(x̂) = (cx, |H(x)|).

The next two lemmas explore some of the features of ΓG.

Lemma 3.5. For any finite group G, the following square

Lcp(G)
βc
G →Lcp(BG

∧
p )

Lcp(|L
c
p(G)|)

ΓG

↓
Lc
p(κ)
→Lcp(|L

c
p(G)|

∧
p )

Lc
p(BG

∧
p )

↑

commutes up to natural isomorphism of functors.

Proof. Consider the following commutative diagram

Lcp(BG)
Lc
p(κ)

// Lcp(BG
∧
p )

L̃cp(G)
Γ̃G

//

β̃G
66❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

π

��

Lcp(|L̃
c
p(G)|)

Lc
p(κ)

//

L(α̃G)

OO

L(|π|)

��

Lcp(|L̃
c
p(G)|

∧
p )

≃ L((α̃G)∧p )

OO

≃ L(|π|∧p )

��

Lcp(G)
ΓG

// Lcp(|L
c
p(G)|)

Lc
p(κ)

// Lcp(|L
c
p(G)|

∧
p )

of functors between categories. Here Γ̃G is defined in a way analogous to ΓG. Since

L((α̃G)
∧
p )
∼= L(αG) ◦ L(|π|∧p )

by Proposition 1.1, this shows that the two composites

L̃cp(G)
π

−−−−−→ Lcp(G)
Lc
p(αG)◦Lc

p(κ)◦ΓG

−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−→
βc
G

Lcp(BG
∧
p )

are naturally isomorphic. Finally, since π induces a bijection on objects and a sur-
jection on morphisms, any natural isomorphism of functors after composition with π

(when regarded as a map from Ob(L̃cp(G)) = Ob(Lcp(G)) to Mor(Lcp(BG
∧
p ))) is also a

natural isomorphism before composition. �

The second property we need of the functors ΓG is their naturality with respect to
isotypical equivalences.
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Lemma 3.6. For any isotypical equivalence ψ : Lcp(G)→ L
c
p(G), the following square

Lcp(G)
ΓG
→Lcp(|L

c
p(G)|)

Lcp(G)

ψ
↓

ΓG
→Lcp(|L

c
p(G)|);

Lc
p(|ψ|)
↓

(1)

commutes up to a natural isomorphism of functors

W (ψ) : Lcp(|ψ|) ◦ ΓG
∼=

−−−−−→ ΓG ◦ ψ,

which is itself natural in the sense that the following square commutes for any natural

isomorphism Ψ: ψ
∼=
→ ψ′:

Lcp(|ψ|) ◦ ΓG
W (ψ)
→ ΓG ◦ ψ

Lcp(|ψ
′|) ◦ ΓG

Lc
p(|Ψ|)◦ΓG

↓
W (ψ′)
→ ΓG ◦ ψ′.

ΓG◦Ψ
↓

(2)

Proof. We first claim that

W (ψ) : Lcp(|ψ|) ◦ ΓG −−−−−−→ ΓG ◦ ψ,

defined by sending an object P in Lcp(G) to the morphism

(ψP , CP ) ∈ MorLc
p(|L

c
p(G)|)((P, |ψ| ◦ |tP |), (P

′, |tP ′|)),

is a natural isomorphism of functors. Here, P ′ = ψ(P ) for short, and CP denotes
the constant homotopy. Note first that the objects are correct: Lcp(|ψ|)(ΓG(P )) =
(P, |ψ| ◦ |tP |) and ΓG(ψ(P )) = (P ′, |tP ′|) by definition. Also, (ψP , CP ) is a morphism
between these objects, since

|ψ| ◦ |tP | = |ψ ◦ tP | = |tP ′ ◦ B(ψP )| = |tP ′| ◦BψP

by definition of ψP . To show thatW (ψ) is natural, we must check, for each morphism

x̂ : P → Q in Lcp(G), with ŷ = ψ(x̂) and Q′ = ψ(Q), that the following square
commutes:

(P, |ψ| ◦ |tP |)
(ψP ,CP )
→ (P ′, |tP ′|)

(Q, |ψ| ◦ |tQ|)

(cx,|ψ|◦|H(x)|)
↓

(ψQ,CQ)
→ (Q′, |tQ′|)

(cy ,|H(y)|)
↓

in Lcp(|L
c
p(G)|). By Lemma 3.4, (P 7→ ψP ) is a natural isomorphism of functors

λG
∼=
→ λG ◦ψ, and thus cy ◦ψP = ψQ ◦ cx. So it remains to show that |H(y)| ◦(BψP ×

I) = |ψ| ◦ |H(x)|; and this follows since both are induced by the natural isomorphism
(oP 7→ ŷ) of functors B(P ) −−→ Lcp(G).



22 Homotopy equivalences of p-completed classifying spaces

It remains to check that square (2) commutes for all Ψ : ψ
∼=
→ ψ′. This means

showing, for each p-centric P ≤ G, and z such that ẑ = ΨP ∈ IsoLc
p(G)(ψ(P ), ψ

′(P )),

that the following square commutes in Lcp(|L
c
p(G)|):

(P, |ψ| ◦ |tP |)
(ψP ,CP )

→ (ψ(P ), |tψ(P )|)

(P, |ψ′| ◦ |tP |)

(IdP ,|Ψ|◦|tP |)
↓

(ψ′

P ,CP )
→ (ψ′(P ), |tψ′(P )|).

ΓG(ΨP ) =(cz , |H(z)|)
↓

The square of group homomorphisms commutes (cz ◦ ψP = ψ′
P ) since for each g ∈ P ,

the square

ψ(P )
ψ̂P (g)=ψP,P (ĝ)

→ ψ(P )

ψ′(P )

ΨP=ẑ ∼=
↓

ψ̂′

P
(g)=ψ′

P,P
(ĝ)
→ ψ′(P )

∼= ΨP=ẑ
↓

commutes by naturality of Ψ. Since the CP are constant homotopies, it remains to
check that |Ψ| ◦ |tP | and |H(ΨP )| ◦ (BψP × I) are homotopic as paths in the space
Map(BP, |Lcp(G)|) from |ψ|◦|tP | = |tψ(P )|◦BψP to |ψ′|◦|tP | = |tψ′(P )|◦Bψ

′
P — and this

holds since both are induced by the natural isomorphism of functors B(P ) →Lcp(G)
which sends the object oP to the morphism ΨP . �

We are now ready to show:

Proposition 3.7. For any finite group G, the composite

Auttyp(L
c
p(G))

R
−−−−−−→ Aut(BG∧

p )
L

−−−−−−→ Auttyp(L
c
p(G))

is naturally isomorphic to the identity.

Proof. Fix an isotypical equivalence ψ : Lcp(G) →Lcp(G), and consider the following
diagram:

Lcp(G)
ψ

//

ΓG

zz✉✉
✉✉
✉✉
✉✉
✉ βc

G

≃
##❋

❋❋
❋❋

❋❋
❋

Lcp(G)

ΓG

$$■
■■

■■
■■

■■

Lcp(|L
c
p(G)|)

Lc
p(κ) $$■

■■
■■

■■
■■

Lcp(BG
∧
p )

Lc
p(R(ψ))

//

≃

Lc
p(α

∗){{①①
①①
①①
①①

Lcp(BG
∧
p )

≃

β∗
;;✇✇✇✇✇✇✇✇✇

Lcp(|L
c
p(G)|)

Lc
p(κ)zz✉✉

✉✉
✉✉
✉✉
✉

Lcp(|L
c
p(G)|

∧
p )

Lc
p(|ψ|

∧
p )

// Lcp(|L
c
p(G)|

∧
p ).

≃

Lc
p(αG)

cc●●●●●●●●

Here, α∗ and β∗ are the inverses (up to homotopy or natural isomorphism) of αG and
βcG used to define R and L. In particular, L ◦R(ψ) = β∗

◦Lcp(R(ψ)) ◦ βcG, and proving
the proposition means showing that the upper trapezoid commutes up to natural
isomorphism of functors. This follows since the two squares in the diagram commute
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up to natural isomorphism by Lemma 3.5, the large hexagon by Lemma 3.6, and the
lower trapezoid (commutes precisely) by definition of R.

To make this more precise, fix natural isomorphisms of functors

U : Lcp(α
∗) ◦ βcG −−−−−→ L

c
p(κ) ◦ ΓG

and

V : β∗
◦ Lcp(αG) ◦ Lcp(κ) ◦ ΓG −−−−−→ Id

(chosen independently of ψ), and let

W∧
p (ψ) : L

c
p(|ψ|

∧
p ) ◦ Lcp(κ) ◦ ΓG −−−−−→ L

c
p(κ) ◦ ΓG ◦ ψ

be the natural isomorphism of Lemma 3.6 after composing with completion at p.
Define A(ψ) : L ◦ R(ψ) → ψ to be the composite of natural isomorphisms

L ◦R(ψ)
def
= β∗

◦ Lcp(Rψ) ◦ βcG = β∗
◦ Lcp(αG) ◦ Lcp(|ψ|

∧
p ) ◦ Lcp(α

∗) ◦ βcG
(−)◦U
−−−−−−→ β∗

◦ Lcp(αG) ◦ Lcp(|ψ|
∧
p ) ◦ Lcp(κ) ◦ ΓG

(−)◦W∧
p (ψ)

−−−−−−−−−→ β∗
◦ Lcp(αG) ◦ Lcp(κ) ◦ ΓG ◦ ψ

V ◦ψ
−−−−−−→ ψ.

To see that A : L ◦ R → Id is an isomorphism of functors, it remains only to
check its naturality with respect to morphisms in Auttyp(L

c
p(G)). Since U and V

are independent of ψ, the naturality of A follows from the naturality of W∧
p (ψ) with

respect to isomorphisms Ψ : ψ → ψ′, as shown in Lemma 3.6. �

It remains to show that R ◦L is naturally equivalent to the identity functor. Notice
that the map LG is defined as the composite cβ ◦ LBG∧

p
. Thus, to prove this claim,

it suffices to show that the functor |LBG∧
p
| induces a monomorphism on homotopy

groups. One way to do this is via a homology decomposition of BG, using standard
techniques to construct maps on a homotopy colimit. However, we give a different
argument in the next section: one which uses the techniques already developed in
this paper.

4. Proof of Theorems B and C

We now finish the proof that Aut(BG∧
p ) has the homotopy type of |Auttyp(L

c
p(G))|,

by showing that Aut(BG∧
p )

L
→Auttyp(L

c
p(G)) is homotopy split injective. This

could be done more directly if there were natural “evaluation” maps Lcp(X) → X ,

induced by evaluating each BP → X at the basepoint of BP . Since there are
no such natural maps, we instead define a simplicial space Mc

•
(X), whose topological

realization |Mc
•
(X)| has the mod-p homotopy type of |Lcp(X)| when X = BG or BG∧

p ,
and which is equipped with a natural evaluation map to X . Note that we use | − |
to denote both the topological realization of a simplicial space and the topological
realization of the nerve of a category.
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To help motivate this construction, note the following analogy between Lp(X) and
the fundamental groupoid π(X), which can be thought of as the full subcategory of
Lp(X) whose objects are the trivial subgroups (pt→ X). The realization |π(X)| does

not have a (natural) evaluation map toX , but there is an obvious map |S•(X)|
ev
→X

defined on the realization of the singular simplicial set. There is also a natural map

|S•(X)|
σX−−−→ |π(X)| (defined at the beginning of Section 3), which sends a singular

simplex (∆n → X) to the sequence of paths obtained by restriction to the edges
[vi, vi+1]; and this map is a homotopy equivalence if X is aspherical. By analogy,
Mc

•
(X) should be a simplicial space whose n-simplices are maps on ∆n which send

each point to some mapping space Map(BP,X) with appropriate continuity condi-
tions. In practice, it is simpler to define Mc

•
(X) using certain spaces ∆(P) defined as

follows.

For any sequence

P =
(
P0

ϕ1

→ P1
ϕ2

→ · · ·
ϕn
→ Pn

)

of finite p-groups and monomorphisms, define the space ∆(P) inductively as fol-

lows. Set ∆(P0) = BP0, let ∆(P0
ϕ1

−−→ P1) be the mapping cylinder of the map

BP0
Bϕ1

→ BP1, and in general let ∆(P) be the mapping cylinder of the map from
∆(P0 → · · · → Pn−1) to BPn induced by the Bϕi. Upon identifying the n-simplex
∆n with the mapping cylinder of (∆n−1 → pt), the inclusions of basepoints into the
BPi and the projections to points induce maps

∆n ιP−−−−−−→ ∆(P)
ωP−−−−−−→ ∆n.

Let {v0, . . . , vn} denote the vertices of ∆n, and write BPi×vi (∼= BPi) to denote
ω−1
P
(vi).

Equivalently, for P as above, we can define

∆(P) =
( n∐

i=0

(BPi ×∆n−i)
)/
∼,

where the equivalence relation is defined by

(x, d0(t)) ∼ (Bϕi(x), t) for all x ∈ BPi−1, t ∈ ∆n−i.

Here, d0 : ∆
n−i → ∆n−i+1 is the face map which sends the vertex vj (for 0 ≤ j ≤

i−1) to vj+1. Under this identification, ∆n ιP
→ ∆(P) is induced by the inclusion

of the basepoint in BP0, and ∆(P)
ωP

→ ∆n is induced by projection to the second
factor followed by the face maps ∆n−i →∆n which send vj to vj+i.

Alternatively, ∆(P) can be regarded as the homotopy colimit of the sequence

BP0 → BP1 → · · · → BPn,
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regarded as a functor on the poset category [n] = {0 < 1 < · · · < n}. Or it can be
thought of as the realization of the simplicial space ∆•(P), where

∆k(P) =
∐

0≤i0≤···≤ik≤n

BPi0 ,

with the obvious face and degeneracy maps.

Definition 4.1. For any space X, let Mc
•
(X) be the simplicial space defined as fol-

lows. The vertices in Mc
•
(X) are the p-centric subgroups (P, α) in X. An n-simplex

η ∈Mc
n(X) is a map

η : ∆(P) −−−−−−→ X,

for some sequence P =
(
P0 → · · · → Pn

)
of finite p-groups and monomorphisms,

such that η|(BPi×vi) is a p-centric subgroup of X for each i. This n-simplex spans
the vertices (Pi, η|(BPi×vi)) for i = 0, . . . , n. The set of vertices Mc

0(X) is given the
discrete topology. The set of n-simplices spanning a given set of vertices (Pi, αi) and
based on a given sequence of monomorphisms P has the compact-open topology, and
is open in the space of all n-simplices.

The face and degeneracy maps in Mc
•
(X) are described as follows. For any P =(

P0 → · · · → Pn
)
and any morphism m

γ
→ n in the simplicial category, let γ∗P

denote the sequence Pγ(0) → · · · → Pγ(m), and let

∆(γ,P) : ∆(γ∗P) −−−−−→ ∆(P)

denote the map defined by sending (BPγ(i) × vi) to (BPγ(i) × vγ(i)) (for i = 0, . . . , m)

and extending linearly. Then Mc
n(X)

γ∗

→Mc
m(X) sends an n-simplex ∆(P)

η
→X

to the m-simplex η ◦ ∆(γ,P).

In fact, wherever Mc
•
(X) is used throughout this section, it will be necessary to

replace it by its “levelwise” singular simplicial set S•M
c
•
(X). In other words, this is

the bisimplicial set where each space Mc
n(X) is replaced by its singular simplicial set

S•M
c
n(X). In general, this replacement goes through without problems; we make a

few comments at key points in the arguments where this can make a difference in
statements or definitions.

For each n-simplex ∆(P) = ∆(P0 → · · · → Pn)
η
→ X inMc

•
(X), the restriction of

η to each mapping cylinder ω−1
P
(〈vi, vi+1〉) ∼= ∆(Pi → Pi+1) determines a morphism

in Lcp(X). The n-simplex η thus determines an n-simplex in the nerve of Lcp(X),
regarded as a simplicial space. This induces a map of simplicial spaces

τX : Mc
•
(X) −−−−−−→ N•(L

c
p(X)),

where N•(−) denotes the nerve of the category (as opposed to its topological realiza-
tion).

In the following lemma, the simplicial space Mc
•
(−) must in fact be replaced by

S•M
c
•
(−) to get a “genuine” (not just weak) homotopy equivalence. This will be

important in the proof of Proposition 4.4 (see the explanation after diagram (1) in
that proof).
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Lemma 4.2. If X = BG or BG∧
p for a finite group G, then |Mc

•
(X)|

|τX |
→ |Lcp(X)|

is a homotopy equivalence.

Proof. When X = BG or BG∧
p , then for any p-centric subgroup BP

α
→ X ,

Map(BP,X)α is aspherical by Proposition 2.1. We claim that |τX | is a homotopy
equivalence for any X with this property.

Fix a set of vertices (Pi, αi), and a sequence of monomorphisms P =
(
P0

ϕ1

−−→

· · ·
ϕn
−−→ Pn

)
. Let ∆0(P) be the union of the mapping cylinders of the Bϕi, regarded

as a subspace of ∆(P) (i.e., ∆0(P) =
⋃n

i=1(ω
−1
P
[vi−1, vi])). Let Y denote the space of

maps ∆(P)
η
→X such that η|BPi×vi = αi for each i, and let Y0 denote the space of

maps ∆0(P) → X with the same property. Since ∆0(P) is a deformation retract

of ∆(P), the restriction map Y → Y0 is a homotopy equivalence. Also, π0(Y0) is
the set of sequences of morphisms in Lcp(X) of the form

(P0, α0)
(ϕ1,η1)
−−−−−→ (P1, α1)

(ϕ2,η2)
−−−−−→ · · ·

(ϕn,ηn)
−−−−−→ (Pn, αn).

In other words, the set of n-simplices in the nerve of Lcp(X) is the set of connected
components of the space of n-simplices in Mc

•
(X) (this holds for any X), and it re-

mains only to show that each component in Y0 is contractible. But Y0 is the product
over all i of the spaces of paths in Map(BPi, X) from αi to αi+1 ◦Bϕi+1; and the con-
nected components of these spaces are contractible since Map(BPi, X)αi

is aspherical
by assumption.

This shows that τX , as a map of simplicial spaces, is a homotopy equivalence in
each degree. So |τX | is a homotopy equivalence by [GJ, Proposition IV.1.7]. �

For any X , define maps

evX,n : M
c
n(X)×∆n −−−−−−→ X,

for each n ≥ 0, by setting

evX,n(η, t) = η(ιP(t))

for each ∆(P)
η
→ X in Mc

n(X) and each t ∈ ∆n. In other words, this is the map

defined by restriction to basepoints in the BPi (recall that ∆
n ιP
→∆(P) is induced

by inclusions of basepoints). The evX,n are continuous and commute with all face
and degeneracy maps, and hence combine to define an evaluation map

evX : |Mc
•
(X)| −−−−−−→ X.

Lemma 4.3. If X = BG or BG∧
p for some finite group G, then |Mc

•
(X)|

evX
→ X is

an Fp-homology equivalence.
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Proof. Assume first that X = BG, and consider the following diagram:

|L̃cp(G)|
βc
G

≃
//

α̃G ≃

��

|Lcp(BG)|

ǫ1

��

|Mc
•
(BG)|

|τBG|

≃
oo

ǫ2

��

evBG

((❘
❘❘❘

❘❘❘
❘❘❘

BG.

|B(G)|
γG

≃
// |π(BG)| |Stop

•
(BG)|

|τ ′|

≃
oo

ǫ3

≃

55❧❧❧❧❧❧❧❧❧

(1)

Here, Stop
•

(BG) is the singular simplicial set for BG, but topologized so that the set

of vertices is discrete, but the set of n-simplices ∆n → BG with any given set of
vertices is given the compact-open topology. The maps ǫ1 and ǫ2 are both defined by

restricting maps BP → BG to the basepoint (in the case of ǫ2 via composition with
ιP), while ǫ3 is the evaluation map for singular simplices in BG. Also, τ ′ is defined
by sending each vertex in Stop

•
(BG) (i.e., each point of BG) to itself considered as

an object in π(BG), and by sending each singular simplex σ : ∆n → BG to its
homotopy class regarded as a sequence of paths in BG (i.e., an n-simplex in the nerve
of π(BG)). Finally, γG is induced by regarding B(G) as a subcategory of π(BG) — the
full subcategory with object the basepoint ∗ of BG. The triangle in (1) commutes by
definition of evBG, and both squares are induced by commutative squares of categories
and functors or of simplicial spaces.

Now, |τ ′| is a homotopy equivalence since τ ′ is a map of simplicial spaces which
is a homotopy equivalence at each level (the components of the space of n-simplices
in Stop

•
(BG) are contractible since BG is aspherical). The evaluation map ǫ3 is also

a homotopy equivalence, since Stop
n (BG) is homotopy equivalent to BG for each n.

Also, |τBG| is a homotopy equivalence by Lemma 4.2, βcG and α̃G are homotopy
equivalences by Propositions 2.6 and 1.1, and γG is an equivalence since it is induced
by an equivalence of categories. The commutativity of the diagram now proves that
evBG is a homotopy equivalence.

To see that evBG∧
p
is an Fp-homology equivalence, consider the following diagram,

where the vertical maps are all induced by p-completion:

|Lcp(BG)| ←
|τBG|

|Mc
•
(BG)|

evBG
→ BG

|Lcp(BG
∧
p )|

Lc
p(κ)↓

←
|τBG∧

p
|

|Mc
•
(BG∧

p )|

M
c
•(κ)↓

evBG∧
p
→ BG∧

p .

κ
↓

The squares commute by naturality of τ and ev. Also, |Lcp(κ)| is an Fp-homology
equivalence by Corollary 2.8, and κ is clearly an equivalence. We have just shown
that evBG is a homotopy equivalence, and |τBG| and |τBG∧

p
| are homotopy equivalences

by Lemma 4.2. So evBG∧
p
is also an Fp-homology equivalence. �

All of the definitions and results so far in this section were developed to prove the
following result:
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Proposition 4.4. For any finite group G, the map

|LBG∧
p
| : |Aut(BG∧

p )| −−−−−→ |Auttyp(L
c
p(BG

∧
p ))|

induces a split monomorphism on πi for all i ≥ 0.

Proof. For any pair of spaces X and Y , let Eqv(X, Y ) denote the groupoid whose

objects are the mod-p-equivalences X → Y , and whose morphisms are homotopy
classes of homotopies. Clearly, composition with homotopy equivalences induces ho-
motopy equivalences between the nerves of such categories.

To shorten the notation, we write Mc
•
= Mc

•
(BG∧

p ) and Lcp = Lcp(BG
∧
p ). We will

construct a functor ξ : Aut(BG∧
p ) →Aut(Mc

•
) which makes the following diagram

commute (precisely, not just up to natural isomorphism):

Aut(BG∧
p )

LBG∧
p

//

ξ

��

−◦ev

≃
xxqq
qq
qq
qq
qq

Aut(Lcp)
|−|

&&▼
▼▼

▼▼
▼▼

▼▼
▼

Eqv
(
|Mc

•
|∧p , BG

∧
p

)
Aut(|Lcp|

∧
p )

−◦|τ |

≃

xxrr
rr
rr
rr
rr

Aut(|Mc
•
|∧p )

|τ |◦−

≃
//

ev◦−

≃
ff▼▼▼▼▼▼▼▼▼▼

Eqv
(
|Mc

•
|∧p , |L

c
p|

∧
p

)

(1)

The lemma then follows immediately, since the maps labeled “≃” are all induced
by composition with homotopy equivalences (and hence themselves induce homotopy
equivalences on nerves).

In fact, when carrying out this argument, it is essential to replace |Mc
•
(BG∧

p )| by
|S•M

c
•
(BG∧

p )| in the above diagram. This is necessary to guarantee that the maps

BG∧
p

|τ |
←−−−−−− |S•M

c
•
(BG∧

p )|
∧
p

|ev|
−−−−−−→ |Lcp(BG

∧
p )|

∧
p

are homotopy equivalences (not just weakly), and hence that composition with |τ | or
|ev| is a homotopy equivalence.

We define ξ as follows. On objects, ξ sends a homotopy equivalence BG∧
p

f
→ BG∧

p

to the induced functor |Mc
•
(BG∧

p )|
ξ(f)

=|Mc
•(f)|
→ |Mc

•
(BG∧

p )|, defined via composition with

f . So it remains to define ξ(F ) : |Mc
•
| × I → |Mc

•
| for each homotopy F : BG∧

p ×

I → BG∧
p . To do this, we regard I as the realization of the simplicial set [1], where

[1]n is the set of sequences σ = (σ(0) ≤ · · · ≤ σ(n)) taking values in {0, 1}. For any

such σ, we let ∆n |σ|
→ I denote the affine map which sends vi to σ(i). Let

ξ•(F ) : M
c
•
× [1] →Mc

•
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be the map of simplicial spaces which sends the n-simplex (∆(P)
η
→ BG∧

p , σ) in
Mc

•
× [1] to the n-simplex

F (η, σ) : ∆(P)
(Id,|σ|◦ωP)
−−−−−−−→ ∆(P)× I

η×I
−−−−−→ BG∧

p × I
F

−−−−−→ BG∧
p ,

where ωP : ∆(P) → ∆n is the map defined at the beginning of the section. The
F (η, σ) are easily seen to be continuous and to commute with face and degeneracy
maps, and hence define a homotopy ξ(F ) = |ξ•(F )|.

Note that an obvious modification in the above definition of ξ gives a functor which
takes values in the automorphism category Aut(|S•M

c
•
(BG∧

p )|
∧
p ).

The commutativity of (1) follows from the commutativity of the following squares,

for any homotopy F : BG∧
p × I → BG∧

p :

BG∧
p × I ←

ev×I
|Mc

•
(BG∧

p )| × I
τ×I
→ |Lcp(BG

∧
p )| × I

BG∧
p

F
↓

←
ev

|Mc
•
(BG∧

p )|

ξ•(F )
↓

τ
→ |Lcp(BG

∧
p )| ,

LBG∧
p
(F )

↓

and this is easily checked. �

We are now ready to prove Theorems B and C. In particular, we want to show that
Aut(BG∧

p ) and |Aut(Lcp(G))| are homotopy equivalent, and moreover equivalent as
monoids. There is no obvious way to construct a map between these two spaces which
is both a homotopy equivalence and a morphism of monoids, so instead we connect
them via a sequence of maps. Here S•X , for any space X , denotes the (discrete)
singular simplicial set of X .

Theorem 4.5. For any finite group G and any prime p, Aut(BG∧
p ) has the homotopy

type of |Auttyp(L
c
p(G))|. More precisely:

(a) R and L induce isomorphisms

Outtyp(L
c
p(G))

π0L←−−−−−−−−−−−−→
π0R

Out(BG∧
p )

between the groups of components.

(b) The following maps are morphisms of topological monoids and homotopy equiva-
lences:

Aut(BG∧
p )

ev
←−−−−−−

≃
|S• Aut(BG

∧
p )|

σ
−−−−−−→

≃
|Aut(BG∧

p )|

|LBG∧
p
|

−−−−−−→
≃

|Auttyp(L
c
p(BG

∧
p ))|

|c∗
β
|

←−−−−−−
≃

|Auttyp(L
c
p(G))|,

where σ is the map defined in Section 3. In particular,

BAut(BG∧
p ) ≃ B(|Auttyp(L

c
p(G))|).
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Proof. Consider the maps

|Auttyp(L
c
p(G))|

|L|
←−−−−−−−−−−−−→

|R|
|Aut(BG∧

p )|

defined in Section 4. By Proposition 3.7, L ◦ R is naturally isomorphic to the iden-
tity on Auttyp(L

c
p(G)); while |L| (equivalently |LBG∧

p
|) is split injective on homo-

topy groups by Proposition 4.4. So R and L induce homotopy equivalences be-
tween these nerves; and in particular an isomorphism of groups between Out(BG∧

p ) =
π0(|Aut(BG

∧
p )|) and Outtyp(L

c
p(G)) = π0(|Auttyp(L

c
p(G))|).

All four of the above maps in (b) are morphisms of monoids by construction,
and ev and σ are homotopy equivalences by Lemma 3.1. Also, |c∗β| is a homotopy
equivalence since it is induced by composition with equivalences between the two
categories involved. Finally, |LBG∧

p
| induces surjections on all homotopy groups by

Proposition 3.7, and injections by Proposition 4.4.

The last statement now follows since a morphism of monoids which is a homotopy
equivalence induces a homotopy equivalence between the classifying spaces, using [GJ,
Proposition IV.1.7]. �

5. Fusion preserving isomorphisms

Let G and G′ be finite groups with Sylow p-subgroups S and S ′ respectively, and

assume S ∼= S ′. Recall that an isomorphism S
f
→ S ′ is called fusion preserving if

given subgroups P,Q ≤ S and an isomorphism P
α
→ Q between them, α is induced

by conjugation in G if and only if f(P )
fαf−1

→ f(Q) is induced by conjugation in G′.

Let Fp(G) denote the fusion category of G: the category whose objects are the
p-centric subgroups of G, and with MorFp(G)(P,Q) = NG(P,Q)/CG(P ) (regarded as
a subset of Hom(P,Q)). Martino and Priddy in [MP] defined an isotypical equivalence
of fusion categories to be an equivalence ψ : Fp(G) →Fp(G

′) together with isomor-

phisms P
∼=
→ ψ(P ) which are natural with respect to all morphisms in Fp(G). This

is clearly the same as an isotypical equivalence in the sense of Definition 3.2. Martino
and Priddy then showed [MP, Corollary 1.2] that there is an isotypical equivalence
between Fp(G) and Fp(G

′) if and only if there is a fusion preserving isomorphism
between the Sylow p-subgroups of G and G′.

What we now want is to understand the relationship between, on the one hand
fusion preserving isomorphisms between Sylow subgroups, and on the other hand
isotypical equivalences between linking categories. The first lemma describes how to
do this in one direction.

Throughout this section and the next, for any functor ψ : C → C′ and any objects
c, d in C, we let ψc,d denote the induced map from MorC(c, d) to MorC′(ψ(c), ψ(d)).
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Lemma 5.1. Fix finite groups G and G′, and an isotypical equivalence

ψ : Lcp(G) −−−−−−→ L
c
p(G

′)

of categories. Let S ≤ G be a Sylow p-subgroup. Then S ′ def
= ψ(S) is a Sylow p-

subgroup of G′, and

NG(S)/C
′
G(S) = AutLc

p(G)(S)
ψS,S

−−−−−−→
∼=

AutLc
p(G

′)(S
′) = NG′(S ′)/C ′

G′(S ′)

restricts to a fusion preserving isomorphism ψS : S
∼=
→ S ′. Furthermore:

(a) ψ is naturally isomorphic to an equivalence ψ′ which agrees with ψ on AutLc
p(G)(S)

and hence on S (thus ψ′
S = ψS), and which sends inclusions of subgroups of S to

inclusions of subgroups of S ′. In other words, for any P ≤ S, ψ′(P
1̂
→ S) =

(ψ′(P )
1̂
→ S ′).

(b) Assume that ψ sends inclusions of subgroups of S to inclusions of subgroups of S ′.
Then for any p-centric P ≤ S, ψ(P ) = ψS(P ), and ψP,P sends ĝ ∈ AutLc

p(G)(P )

to ψ̂S(g) ∈ AutLc
p(G

′)(ψ(P )) for all g ∈ P .

Proof. Since S ⊳ NG(S)/C
′
G(S) and S ′ ⊳ NG′(S ′)/C ′

G′(S ′) are (unique) Sylow p-

subgroups, ψS,S restricts to an isomorphism ψS : S
∼=
→ S ′. We prove that ψS is

fusion preserving as point (c) below.

(a) For each p-centric P ≤ G, define a subgroup ψ′(P ) ≤ S ′ and an isomorphism

αP : ψ(P )
∼=
→ ψ′(P ) in Lcp(G

′) as follows. If P � S, let y ∈ NG′(ψ(P ), S ′) be such

that ψP,S(P
1̂
−→ S) = ŷ, and set ψ′(P ) = y(ψ(P ))y−1 (the “image” of ψP,S(1̂)) and

αP = ŷ. Otherwise, set ψ′(P ) = ψ(P ) and αP = Id.

Now let ψ′ be the functor which sends P to ψ′(P ), and where

ψ′
P,Q

(
P

x̂
→ Q

)
=

(
ψ′(P )

α(Q)◦ψ(x̂)◦α(P )−1

→ ψ′(Q)
)
.

Then ψ′ is well defined as a functor, α is a natural isomorphism from ψ to ψ′, and
ψ′ sends inclusions into S to inclusions into S ′. Notice that ψ′ is automatically an
isotypical equivalence.

(b) Now assume ψ sends inclusions to inclusions. Fix a p-centric subgroup P ≤ S,
and set P ′ = ψ(P ) ≤ S ′ for short. For any element g ∈ P , the following square
commutes in Lcp(G

′)

P ′ ψ(ĝ)=ĥ
→ P ′

S ′

1̂
↓

ψ(ĝ)=ψ̂S(g)
→ S ′

1̂
↓
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(for some h ∈ NG′(P ′)) since it is the image under ψ of a commutative square in

Lcp(G). Thus h ≡ ψS(g) (mod C ′
G′(P ′)), so ψS(g) ∈ NG′(P ′), and ψP,P (ĝ) = ψ̂S(g).

In particular, since ψ is isotypical, this shows that P ′ = ψS(P ).

(c) It remains to show that ψS is fusion preserving. This is an easy consequence of
Alperin’s fusion theorem in the form [Al, Theorem 5.1]; but since our result is much
more elementary we give a direct proof.

For each P , let P
θP

∼=
→ P ′ be the restriction of ψP,P to P ≤ NG(P )/C

′
G(P ). By

Lemma 3.4, this defines a natural isomorphism of functors θ : λG
∼=
→ λG ◦ψ. Thus ψS

may be identified with θS : S → S ′. By (a), we can assume that ψ sends inclusions of
subgroups in S to inclusions of subgroups in S ′. It follows that θP : P → P ′ is given
by the restriction of θS to P . If P,Q ≤ S are p-centric in G and α = cx : P → Q
is a group isomorphism with x ∈ NG(P,Q) then

ψSαψ
−1
S = θQαθ

−1
P = ψ(α) = cx′

for some x′ ∈ NG′(P ′, Q′). Hence fusion is preserved among p-centric subgroups of S
and S ′.

Fix a subgroup P ≤ S which is not p-centric. We may assume inductively that
ψS preserves fusion among all subgroups of strictly larger order. Let P be the set of
subgroups of S which are G-conjugate to P . We may assume that NS(P ) is a Sylow
p-subgroup of NG(P ) (replace P by some other subgroup in P if necessary).

Let P ≤ S be a Sylow p-subgroup of CG(P )·P . Then

P � P ≤ NG(P ) (1)

since P is not p-centric, and we claim that

NG(P ) =
(
NG(P ) ∩NG(P )

)
·CG(P ). (2)

To see this, notice first that the right hand side is clearly a subgroup of NG(P ). The
other inclusion follows because if x ∈ NG(P ), then xc ∈ NG(P̄ ) for some c ∈ CG(P ).

For any x ∈ NG(P ), cx = cy ∈ Aut(P ) for some y ∈ NG(P ) ∩ NG(P ) by (2);

ψS sends cy ∈ Aut(P ) to cy′ ∈ Aut(ψS(P )) for some y′ by (1) and the induction
hypothesis; and hence sends cx ∈ Aut(P ) to cy′ ∈ Aut(ψS(P )). So fusion is preserved
for automorphisms of P .

Now let Q be any other subgroup in P, and set R = NS(Q) (	 Q) for short.
Since NS(P ) is a Sylow p-subgroup of NG(P ), there is x ∈ NG(Q,P ) such that
xRx−1 ≤ NS(P ). By the induction hypothesis, there is x′ ∈ G′ such that ψS sends

R
cx

∼=
→ xRx−1 to ψS(R)

cx′

∼=
→ ψS(xRx

−1). But then x′ ∈ NG(ψS(Q), ψS(P )), and so

ψS(Q) and ψS(P ) are conjugate in G′.

This shows that ψS sends fusion among subgroups of S to fusion among subgroups
of S ′. The same argument applied to ψ−1

S shows the converse, and thus that ψS is
fusion preserving. �
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The isomorphism ψS : S → S ′ of Lemma 5.1 will be referred to as the underlying
fusion preserving isomorphism of the equivalence ψ : Lcp(G) →Lcp(G

′).

Martino and Priddy [MP, Corollary 1.2] showed that if BG∧
p ≃ BG′∧

p , then there
is a fusion preserving isomorphism between Sylow p-subgroups of G and of G′; this
is a consequence of the description of [BP,BG∧

p ] (shown here as Proposition 2.1).
By Theorem A, an equivalence BG∧

p ≃ BG′∧
p determines an equivalence of categories

Lcp(G) ≃ L
c
p(G

′), and Lemma 5.1 gives an algebraic explanation of why this determines
a fusion preserving isomorphism.

In the next section, we will describe the obstructions to constructing an isotypical
equivalence of categories Lcp(G) →Lcp(G

′) which has a given isomorphism between
Sylow p-subgroups as its underlying fusion preserving isomorphism. The following
lemma plays a key role in that construction.

Lemma 5.2. Let G and G′ be finite groups with Sylow p-subgroup S and S ′ respec-
tively. Let f : S → S ′ be a fusion preserving isomorphism. Then for any P,Q ≤ S
p-centric in G, there is a map

ΦP,Q : NG(P,Q) −−−−−→ NG′(f(P ), f(Q))

which satisfies the following three conditions for all x ∈ NG(P,Q) (all x such that
xPx−1 ≤ Q):

(a) The following square commutes (in the category of groups):

P
cx

→ Q

f(P )

f
↓

cx′ → f(Q),

f
↓

where x′ = ΦP,Q(x).

(b) ΦP,Q(gx) = f(g)ΦP,Q(x) for all g ∈ Q.

(c) ΦP,Q induces a bijection

Φ̂P,Q : NG(P,Q)/C
′
G(P )

∼=
−−−−−→ NG′(f(P ), f(Q))/C ′

G′(f(P )).

Proof. To simplify notation, for any P ≤ S we write P ′ = f(P ) ≤ S ′. Conditions (a)
and (c) mean that there is a commutative diagram of the following form

NG(P,Q) ։NG(P,Q)/C
′
G(P ) ։ NG(P,Q)/CG(P ) ⊆ Hom(P,Q)

NG′(P ′, Q′)

ΦP,Q
↓

։ NG′(P ′, Q′)/C ′
G′(P ′)

Φ̂P,Q
∼=
↓

։ NG′(P ′, Q′)/CG′(P ′)

∼=
↓

⊆Hom(P ′, Q′),

f∗ ∼=
↓

where f∗ is the bijection between homomorphism sets induced by the isomorphisms
P ∼= P ′ and Q ∼= Q′. The restriction of f∗ to NG(P,Q)/CG(P ) is defined and bijective
by the assumption that f is fusion preserving.
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Let X ⊆ NG(P,Q) be a set of orbit representatives for the left action of Q and the
right action of C ′

G(P ). For each x ∈ X , choose an arbitrary element x′ = ΦP,Q(x) such
that cx′ = f∗(cx). Extend this to all of NG(P,Q) by setting ΦP,Q(gxa) = f(g)ΦP,Q(x)
for all x ∈ X , g ∈ Q, and a ∈ C ′

G(P ). Then ΦP,Q satisfies (a) and (b) above, and

induces a map Φ̂P,Q which makes the above diagram commute. Furthermore, Φ̂P,Q is
bijective, since the third column of the diagram is obtained by dividing out by the
free action of Z(P ) ∼= Z(P ′) on the second column. �

6. Higher limit obstructions

We now look more closely at ways of constructing isotypical equivalences between
linking categories Lcp(G) and L

c
p(G

′) of finite groups. We construct obstructions to the
existence and uniqueness of such equivalences which “extend” given fusion preserving
isomorphisms between Sylow p-subgroups. This is then used to prove Conjecture D
whenever G has p-rank less than p2.

For any small category C and any contravariant functor C → Ab, let C∗(C;F )
denote the chain complex

Cn(C;F ) =
∏

c0→···→cn

F (c0),

with differentials φ ∈ Cn−1(C;F )
d
→ Cn(C;F ) defined by

dφ(c0
f
−→ c1 → · · · → cn) = f ∗φ(c1 → · · · → cn) +

n∑

k=1

(−1)kφ(c0 → · · · ĉk · · · → cn).

Then lim
C

∗(F ) ∼= H∗(C∗(C;F ), d) (cf. [GZ, Appendix II, Proposition 3.3], applied

withM = Abop).

Recall the notation used in Section 4 for objects and maps in orbit categories.
For any finite G, Ocp(G) is the category whose objects are the p-centric subgroups
P ≤ G, and where MorOc

p(G)(P,Q) = Q\NG(P,Q) for any objects P,Q ≤ G. The

morphism corresponding to x ∈ NG(P,Q) is denoted
◦

x, and corresponds to the G-map
G/P → G/Q which sends gP to gx−1Q in the usual definition of Ocp(G).

Define

ZG : O
c
p(G) −−−−−−−→ Z(p)-mod

to be the functor defined by setting ZG(P ) = Z(P ). If P,Q ≤ G are p-centric and

x ∈ NG(P,Q), then we let ZG(
◦

x) be the restriction to Sylow p-subgroups of the
homomorphism

CG(Q)
c−1
x−−−−−−→ CG(P )

induced by g 7→ x−1gx. Since this clearly depends only on the coset Qx, ZG is well
defined as a functor on the orbit category.
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For any element g in a finite group G, we let gp ∈ G denote its “p-part”. This is the
unique element of p-power order in the cyclic subgroup 〈g〉 such that |g−1gp| is prime
to p. Equivalently, it is the unique element of p-power order in G for which there is an
element g′ ∈ G of order prime to p such that [gp, g

′] = 1 and g = gp·g
′. In particular,

for any p-centric subgroup P ≤ G, the projection of CG(P ) = Z(P )×C ′
G(P ) to Z(P )

sends each g ∈ CG(P ) to gp ∈ Z(P ).

Proposition 6.1. Fix finite groups G and G′, and Sylow p-subgroups S ≤ G and
S ′ ≤ G′. Let f : S → S ′ be any fusion preserving isomorphism. Then there is
an element ωG(f) ∈ lim2

Oc
p(G)

(ZG) with the following property: there is an isotypical

equivalence of categories

ψ : Lcp(G)
∼=

−−−−−→ Lcp(G
′)

with ψS = f , if and only if ωG(f) = 0.

Proof. Again, for any P ≤ S we write P ′ = f(P ) ≤ S ′. Let LcS(G) ⊆ L
c
p(G)

and OcS(G) ⊆ O
c
p(G) denote the full subcategories whose objects are the p-centric

subgroups of G contained in S, and similarly for LcS′(G′) ⊆ Lcp(G
′). All three of

these inclusions are equivalences of categories, since every p-centric subgroup of G
is conjugate to a subgroup of S. It follows that lim∗

Oc
S
(G)

(ZG) ∼= lim∗

Oc
p(G)

(ZG). Also, any

equivalence ψ : LcS(G)→ L
c
S′(G′) extends to an equivalence Lcp(G)→ L

c
p(G

′). So we
can restrict our attention to these subcategories.

We define ψ on objects by setting ψ(P ) = P ′ for all P ≤ S p-centric in G. By
Lemma A.5, any P ≤ S is p-centric in G if and only if each Q ≤ S which is G-
conjugate to P contains its centralizer in S. Hence P ′ is p-centric in G′ if and only
if P is p-centric in G; and so ψ defines a bijection between objects in LcS(G) and
LcS′(G′). The problem is to define ψ on morphisms. Thus, our goal is to construct
the obstruction class ωG(f), and show that ψ can be well defined on morphisms if
and only if ωG(f) = 0.

Given a choice of the ΦP,Q, for all p-centric P,Q ≤ S, satisfying conditions (a), (b),
and (c) of Lemma 5.2, we now define an element

ωΦ ∈ C
2(OcS(G);ZG) =

∏

P→Q→R

ZG(P )

as follows. For each x ∈ NG(P,Q) and y ∈ NG(Q,R),

f∗(cy)f∗(cx) = f∗(cyx),

where f∗ is as in Lemma 5.2. Hence ΦP,R(yx)
−1ΦQ,R(y)ΦP,Q(x) ∈ CG′(P ′). Define

ω′
Φ(y, x)

def
=

(
ΦP,R(yx)

−1ΦQ,R(y)ΦP,Q(x)
)
p
∈ Z(P ′).

For each P
◦
x
−→ Q

◦
y
−→ R in OcS(G), set

ωΦ(y, x) = ωΦ

(
P

◦
x
−→ Q

◦
y
−→ R

) def
= f−1

(
ω′
Φ(y, x)) ∈ Z(P ).
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To show that this is well defined we must show that ω′
Φ(hy, gx) = ω′

Φ(y, x) for any
g ∈ Q and any h ∈ R. Indeed

ΦP,R(hygx) = f(hygy−1)ΦP,R(yx), ΦQ,R(hy)ΦP,Q(gx) = f(h)ΦQ,R(y)f(g)ΦP,Q(x),

and hence

ΦP,R(hygx)
−1ΦQ,R(hy)ΦP,Q(gx)

= ΦP,R(yx)
−1f(yg−1y−1)ΦQ,R(y)f(g)ΦP,Q(x)

= ΦP,R(yx)
−1(f(yg−1y−1)ΦQ,R(y)f(g)ΦQ,R(y)

−1)ΦQ,R(y)ΦP,Q(x).

But f(ygy−1) = ΦQ,R(y)f(g)ΦQ,R(y)
−1 by (a). Hence

ΦP,R(hygx)
−1ΦQ,R(hy)ΦP,Q(gx) = ΦP,R(yx)

−1ΦQ,R(y)ΦP,Q(x),

and ω′
Φ(hy, gx) = ω′

Φ(y, x) as claimed.

To see that ωΦ is a 2-cocycle, we must show, for each sequence

P
◦
x
−−→ Q

◦
y
−−→ R

◦
z
−−→ T

in OcS(G), that

d(ωΦ)(P
◦
x
−→ Q

◦
y
−→ R

◦
z
−→ T )

def
=

(
x−1ω(z, y)x

)
·ω(z, yx)−1ω(zy, x)ω(y, x)−1 = 1.

For any g ∈ Z(Q),

f(x−1gx) ≡ ΦP,R(yx)
−1ΦQ,R(y)f(g)ΦQ,R(y)

−1ΦP,Q(yx)

by condition (a) (applied to the squares for y and yx); so it suffices to show that

ΦP,R(yx)
−1ΦQ,R(y)f(ω(z, y))ΦQ,R(y)

−1ΦP,R(yx)·f
(
ω(z, yx)−1ω(zy, x)ω(y, x)−1

)
= 1.

This follows immediately by substitution and cancellation.

Now set ωG(f) = [ωΦ] ∈ lim2

Oc
S
(G)

(ZG). We claim that ωG(f) depends only on the

isomorphism f : S → S ′, and that f extends to an isotypical equivalence ψ : LcS(G)→
LcS′(G′) of categories (i.e., ψS = f) if and only if ωG(f) = 0. Clearly, the ΦP,Q induce

a functor ψ : LcS(G) → L
c
S′(G′) by taking the corresponding bijections Φ̂P,Q if and

only if ωΦ = 0. Also, for any isotypical equivalence ψ : LcS(G) →LcS′(G′) with
ψS = f which sends inclusions in S to inclusions in S ′, the maps ΦP,Q defined by ψ
between morphism sets satisfy conditions (a) and (b) above by Lemma 5.1(b). So it
remains to show that

(1) for any two choices of maps ΦP,Q and Φ′
P,Q, the corresponding 2-cycles ωΦ and

ωΦ′ differ by a coboundary, and

(2) all coboundaries can be realized in this way.
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To prove point (1), fix maps ΦP,Q and Φ′
P,Q satisfying conditions (a), (b), and (c)

of Lemma 5.2. For each morphism P
x
→ Q in LcS(G), one has ΦP,Q(x)

−1Φ′
P,Q(x) ∈

CG′(P ′) by condition (a). Set

A(x)
def
= ΦP,Q(x)

−1Φ′
P,Q(x); and α(x)

def
= f−1((A(x))p) ∈ Z(P ). (1)

Then α(x) does not depend of the choice of the lifts ΦP,Q and Φ′
P,Q. Also, α(x)

depends only on the class
◦

x ∈ MorOc
S
(G)(P,Q) by condition (b). So

α ∈ C1(OcS(G);ZG) =
∏

P→Q

Z(P ).

Write ax = α(x) for short. For each sequence P
◦
x
−→ Q

◦
y
−→ R in OcS(G), repeated

application of condition (a) gives

f
(
ωΦ′(y, x)

)

=
(
Φ′(yx)−1Φ′(y)Φ′(x)

)
p

=
(
A(yx)−1(Φ(yx)−1Φ(y)Φ(x))(Φ(x)−1A(y)Φ(x))A(x)

)
p

= f(ayx)
−1ω′

Φ(y, x)
(
Φ(x)−1A(y)Φ(x)

)
p
f(ax)

= ω′
Φ(y, x)[Φ(x)

−1f(ay)Φ(x)]f(ayx)
−1f(ax)

= ω′
Φ(y, x)f((x

−1ayx)a
−1
yx ax)

= f
(
ωΦ(y, x)

)
·f
(
dα(P

◦
x
−→ Q

◦
y
−→ R)

)
.

Thus ωΦ′ = ωΦ + dα.

Finally to see point (2), notice that any 1-cochain α can be realized as the difference
between Φ and some Φ′, since one can use (1) to define Φ′. This completes the proof
of the proposition. �

Given a fusion preserving isomorphism f between Sylow p-subgroups of G and G′,
one can try directly to construct a homotopy equivalence

BG∧
p ≃

(
hocolim
P∈Oc

p(G)
(EG/P )

)
∧
p −−−−−−−→ BG′∧

p .

Maps EG/P → BG′∧
p are determined up to homotopy by f , and the obstruction to

extending them to a map defined on the homotopy colimit lies precisely in lim2

Oc
p(G)

(ZG).

It was this observation — that one finds the same obstruction group to constructing
an equivalence of categories Lcp(−) and to constructing an equivalence of spaces —
which first suggested Theorem A to us.

Just as the obstruction to realizing a fusion preserving isomorphism as the underly-
ing isomorphism of an equivalence of categories Lcp(−) lies in lim2(ZG), the obstruction

to the uniqueness of such a realization lies in lim1(ZG). To simplify this discussion,
we restrict attention to automorphisms of Lcp(G). Recall that Outtyp(L

c
p(G)) denotes



38 Homotopy equivalences of p-completed classifying spaces

the group of isotypical self equivalences modulo natural isomorphism. By analogy, we
let Autfus(S), for any Sylow p-subgroup S ≤ G, denote the group of fusion preserving
automorphisms of S, and set

Outfus(S) = Autfus(S)/{cx | x ∈ NG(S)}.

We are now ready to restate and prove Theorem E. As pointed out in the introduc-
tion, this is an algebraic version of the exact sequence of [BL, Theorem 1.6], where
Outtyp(L

c
p(G)) is replaced by Out(BG∧

p ).

Theorem 6.2. For any finite group G, there is an exact sequence

0 −−−→ lim1

Oc
p(G)

(ZG)
λG−−−−−→ Outtyp(L

c
p(G))

µG−−−−−→ Outfus(S)
ωG−−−−−→ lim2

Oc
p(G)

(ZG),

Here, λG and µG are group homomorphisms, µG sends the class of an isotypical
equivalence to the class of its underlying fusion preserving isomorphism, and ωG sends
the class of a fusion preserving isomorphism f to the obstruction ωG(f) of Proposition
6.1. Exactness at Outfus(S) means that Im(µG) = ω−1

G (0).

Proof. As in the proof of Proposition 6.1, we replace Lcp(G) and Ocp(G) by their
equivalent subcategories LcS(G) and O

c
S(G): the full subcategories whose objects are

the subgroups of S which are p-centric in G.

Let ωG be the obstruction map of Proposition 6.1, and let µG be the map which
sends ψ ∈ Auttyp(L

c
p(G)) to ψS. If ψ and ψ′ are naturally isomorphic, by a natural

isomorphism which sends S to x̂ ∈ AutLc
S
(G)(S), then ψS and ψ′

S differ by conjugation
by x ∈ NG(S). So µG is well defined, and the sequence is exact at Outfus(S) by
Proposition 6.1.

A 1-cocycle α ∈ Z1(OcS(G);ZG) is a collection of maps MorOc
S
(G)(P,Q)

αP,Q
→ Z(P )

such that (
x−1α(y)x

)
·α(yx)−1·α(x) = 1 (1)

for all
(
P

◦
x
→ Q

◦
y
→ R

)
. In particular, α(

◦

g) = α(IdP ) = 1 for all g ∈ P . For any

such α, set λG(α) = [ψα], where ψα(P ) = P for all objects P , and ψα(x̂) = x̂α(x).
Then ψα is a functor by (1). If β is a 0-cochain, then the elements β(P ) ∈ Z(P )
define a natural isomorphism Id → ψdβ . One easily checks that ψα+α′ = ψα ◦ ψ′

α;
and this shows that λG is a well defined homomorphism.

It is straightforward to show that Im(λG) = Ker(µG). To see that λG is injective,
fix [α] ∈ Ker(λG), and let β : Id → ψα be a natural isomorphism. This consists

of a choice of β̂(P ) ∈ AutLc
p(G)(P ) for each P , where β(P ) ∈ N(P ). Naturality with

respect to automorphisms P
ĝ
→ P for g ∈ P implies that β(P ) ∈ Z(P ) for each P

(since ψα(ĝ) = ĝ). Thus β ∈ C0(OcS(G);ZG), and α = dβ. �

A priori, the obstruction map ωG defined above, from Outfus(S) to lim2(ZG), need
not be a homomorphism. Rather, one can show directly that its behavior with respect
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to composition of fusion preserving automorphisms is twisted by an action of the group
Outfus(S) on lim2(ZG). However, recent results have made this observation irrelevant,
since the third author has recently shown that lim2

Oc
p(G)

(ZG) = 0 for all primes p and all

finite groups G.

However, as noted in the introduction, the proof of this result is sufficiently long
and complicated that we still feel it useful to have more elementary proofs of special
cases. Recall that the p-rank rkp(G) of a finite group G is the rank of the largest
elementary abelian p-subgroup of G. We will show that limr

Oc
p(G)

(ZG) = 0 whenever

rkp(G) < pr. This, together with Proposition 6.1, will then imply Theorem F as
special case.

We first discuss more generally the vanishing of higher limits groups over orbit
categories. One way to compute higher limits of functors over orbit categories is to
filter the functor in a way so that each of the quotient functors vanishes except on one
isomorphism class of objects. In particular, if higher limits of the original functor are
non-vanishing, then they must also be non-vanishing for at least one of the quotient
functors. This motivated the definition of graded abelian groups Λ∗(G;M) in [JMO].
For any prime p, any finite group G, and any Z(p)[G]-module M ,

Λ∗(G;M)
def
= lim∗

Op(G)
(FM), where FM(P ) =

{
M if P = 1

0 otherwise.

These groups have the property [JMO, Lemma 5.4] that if F : Op(G)
op −−→ Z(p)-mod

is any functor which vanishes except on subgroups conjugate to P , then lim∗(F ) ∼=
Λ∗(N(P )/P ;F (P )).

The proof of the following proposition is based on the description by Grodal [Gr]
of these groups, in terms of the cohomology of certain posets, and the part about
rkp(G) was shown there by Grodal.

Proposition 6.3. For any finite group G, any finitely generated Fp[G]-module M ,
and any k ≥ 1 such that Λk(G;M) 6= 0, there is an elementary abelian p-subgroup
A ≤ G of rank k such that M |A contains the free module Fp[A] as a direct summand.
In particular,

rkp(G) ≥ k and dimFp
(M) ≥ pk.

Proof. Let Sp(G) denote the nerve of the poset of nontrivial p-subgroups of G, and let

C̃∗(Sp(G)) denote its reduced chain complex. Thus, C̃−1(Sp(G)) = Z, and C̃k(Sp(G))
(for k ≥ 0) is the free Z-module with basis the set of sequences 1 6= P0 � P1 � · · · �
Pk. The conjugation action of G on the basis makes this into a chain complex of
Z[G]-modules. By [Gr, Theorem 1.2], for any Z(p)[G]-module M ,

Λ∗(G;M) ∼= H∗−1
(
HomG(C̃∗(Sp(G)),M)

)
.
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Similarly, let Ap(G) denote the nerve of the poset of nontrivial elementary abelian

p-subgroups of G, and set C∗ = C̃∗(Ap(G);Fp). By [Qu], Ap(G) and Sp(G) are G-
homotopy equivalent, and so Λ∗(G;M) ∼= H∗−1(HomG(C∗,M)) for any Fp[G]-module
M . By [Wb2, Theorem 2.7.1], C∗ splits as a sum C∗ = D∗⊕P∗ of complexes of Fp[G]-
modules, where D∗ is exact (in fact, split exact), and where each Pk is projective. In
particular, Λ∗(G;M) is the cohomology of the complex HomG(P∗,M).

Assume that Λk(G;M) 6= 0. Then HomG(Pk−1,M) 6= 0 by the above remarks.
Since Pk−1 is Fp[G]-projective, the module HomFp

(Pk−1,M) is also Fp[G]-projective.
Notice that for any projective G-module P , the submodule of G-invariants is given
by

PG = {νG · x | x ∈ P},

where νG is the norm element
∑

g∈G g ∈ Fp[G]. The group G acts on HomFp
(Pk−1,M)

by (gφ)(x) = g · φ(g−1x), and

0 6= HomG(Pk−1,M) ∼=
(
HomFp

(Pk−1,M)
)G
.

Hence there is some φ : Pk−1 → M such that
∑

g∈G gφ 6= 0. By extension, we may
assume that φ with this property is defined on Ck−1 = Dk−1 ⊕ Pk−1.

The complex C∗ is generated as an Fp[G]-module in dimension k−1 by the (k−1)-
simplices of Ap(G), namely, by sequences of the form τ = (E1 � · · · � Ek). Hence
there exists such a simplex τ such that

∑

g∈G

(gφ)(τ) =
∑

g∈G

g · φ(g−1τ) 6= 0,

where φ is as above.

Let b1, . . . , br be a choice of right coset representatives for Ek in G. Notice that Ek
is contained in the stabilizer group of τ . Thus

0 6=
∑

g∈G

(gφ)(τ) =
∑

g∈Ek

r∑

i=1

gbiφ(b
−1
i τ).

Set x =
∑r

i=1 biφ(b
−1
i τ) ∈ M . Then

∑
g∈Ek

gx 6= 0. Notice that rkp(G) ≥ rkp(Ek) ≥
k.

Let ιx : Fp[Ek] →M denote the Ek-map sending 1 to x. Then Ker(ιx) does
not contain the norm element νEk

and hence is the zero ideal in the group ring (cf.
[Se, §8.3, Proposition 26]). Thus ιx is a monomorphism. Furthermore, since Fp[Ek]
is an injective Ek-module, the module M |Ek

contains Fp[Ek] as a split summand. In
particular, dimFp

(M) ≥ |Ek| ≥ pk. This completes the proof. �

The idea of the last part of the above proof was suggested to us by the proof of
[Wb1, 5.3].

The inequalities of Proposition 6.3 are in fact the best possible, as is shown by the
following examples. Let V denote the Fp[Σp+1]-module V = (Fp)p+1/(diag). Then



Carlos Broto, Ran Levi, and Bob Oliver 41

Λ1(Σp+1;V ) ∼= Fp by [JMO, Proposition 6.2(i)]. So for any k > 0,

Λk
(
(Σp+1)

k, V ⊗k
)
6= 0

by the Künneth formula in [JMO, Proposition 6.1(v)]; and

Λk
(
Σp+1 ≀Cp ≀ · · · ≀ Cp︸ ︷︷ ︸

(k − 1) times

, V pk−1)
6= 0

by a general formula Λi(G ≀ Cp;M
p) ∼= Λi−1(G;M) when p

∣∣|G| (unpublished). These
are thus two examples of pairs (G,M) for which Λk(G;M) 6= 0, rkp(G) = k, and
dimFp

(M) = pk.

When k = 1, a similar argument gives a much stronger result. If M is an Fp[G]-
module with Λ1(G;M) 6= 0, then for any Sylow p-subgroup S ≤ G, M |S contains a
summand isomorphic to Fp[S], and in particular dimFp

(M) ≥ |S|.

As an easy consequence of Proposition 6.3, we get:

Corollary 6.4. Fix a finite group G, and a functor F : Ocp(G)
op → Z(p)-mod which

takes values in finite abelian p-groups. Assume, for some k > 0, that limk

Oc
p(G)

(F ) 6= 0.

Then there is a p-centric subgroup P ≤ G such that rkp(F (P )) ≥ pk.

Proof. Extend F to a functor on Op(G) by setting F (P ) = 0 whenever P is not
p-centric. Since any p-subgroup of G which contains a p-centric subgroup is itself
p-centric, the chain complexes C∗(Op(G);F ) and C∗(Ocp(G);F ) are isomorphic. So
higher limits of F are the same whether taken over Op(G) or over O

c
p(G).

Now let P1, P2, . . . , Pk be conjugacy class representatives for p-centric subgroups of
G, arranged such that |P1| ≤ |P2| ≤ · · · . For 0 ≤ i ≤ k, let Fi be the functor

Fi(P ) =

{
0 if P ≥ xPjx

−1, some x ∈ G and j > i

F (P ) otherwise.

Thus, F0 = 0, Fk = F , and Fi is a subfunctor of Fi+1 for each i. By the exact
sequences of higher limits for extensions of functors, there is some 1 ≤ i ≤ k such
that limk(Fi/Fi−1) 6= 0. The functor Fi/Fi−1 vanishes except on subgroups conjugate
to Pi, and hence

Λk(N(Pi)/Pi;F (Pi)) ∼= limk

Op(G)
(Fi/Fi−1) 6= 0

by [JMO, Lemma 5.4]. Then Λk(N(P )/P ; pjF (P )/pj+1F (P )) 6= 0 for some j ≥ 0
(where P = Pi), so this module has rank at least pk by Proposition 6.3, and hence
rkp(F (P )) ≥ pk. �

We are now ready to prove Theorem F.

Theorem 6.5. Fix a prime p, and a finite group G such that rkp(G) < p2. Then for
any other finite group G′, BG∧

p ≃ BG′∧
p if and only if there is a fusion preserving

isomorphism between Sylow p-subgroups of G and of G′.
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Proof. If BG∧
p ≃ BG′∧

p , then there is an equivalence of categories

ψ : Lcp(G)
≃

−−−−−→ Lcp(G
′)

by Theorem A, and hence a fusion preserving isomorphism between the Sylow p-
subgroups by Lemma 5.1.

Conversely, if rkp(G) < p2 then rkp(Z(P )) < p2 for each p-centric P ≤ G, and
Corollary 6.4 implies that lim2(ZG) = 0. Here, as usual, ZG : Ocp(G) → Z(p)-mod is
the functor which sends P to Z(P ). So if there is a fusion preserving isomorphism
between Sylow p-subgroups of G and G′, then the categories Lcp(G) and Lcp(G

′) are
equivalent by Proposition 6.1, and so BG∧

p ≃ BG′∧
p by Theorem A. �

7. An example: BG∧
2 when G = PSL2(q) and q is odd

Throughout this section, we fix G = PSL2(q), where q = pe and p is an odd
prime. Set k = ν2(|G|), where in general 2ν2(n) is the highest power of 2 dividing n.
Then k ≥ 2, and q ≡ 2k ± 1 (mod 2k+1). Fix a Sylow 2-subgroup S ≤ G, and let
LcS(G) ⊆ L

c
2(G) denote the full subcategory whose objects are the 2-centric subgroups

of G which are contained in S. As usual, this inclusion is an equivalence of categories.

For a positive integer n, Cn denotes a cyclic group of order n; and (if n is even) Dn

denotes the dihedral group of order n.

Lemma 7.1. The Sylow 2-subgroup S in PSL2(q) is dihedral of order 2k. If k = 2
then NG(S) ∼= A4, while if k ≥ 3 then NG(S) = S. If k ≥ 3, and if T1 and T2 are
representatives for the two conjugacy classes of subgroups Ti ∼= C2

2 in S, then T1 and
T2 also represent the two conjugacy classes of such subgroups in G, and NG(Ti) ∼= Σ4.
If k ≥ 3, and z ∈ Z(S) is a generator, then CG(z) ∼= Dq−1 if q ≡ 1 (mod 8), and
CG(z) ∼= Dq+1 if q ≡ −1 (mod 8).

Proof. See, for example, [Sz, Theorems 3.6.25–26] or [Hu, Satz 8.27] for a complete
description of the subgroups of PSL2(q). �

The next lemma provides an explicit description of the morphism sets in LcS(G).

Lemma 7.2. Assume |S| ≥ 8, and let P,Q ≤ S be any pair of subgroups which are
2-centric in G. If P 6∼= C2

2 , then the map

NS(P,Q)
∼=

−−−−−−→ MorLc
S
(G)(P,Q)

sending x ∈ NS(P,Q) to x̂ is a bijection; while if P ∼= C2
2 , then there is a bijection

NS(P,Q)×NS(P ) NG(P )
∼=

−−−−−−→ MorLc
S
(G)(P,Q)

which sends a pair (x, g) to the composite x̂ ◦ ĝ.
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Proof. Since S is dihedral of order 2k ≥ 8, its centric subgroups consist of S itself,
the (unique) cyclic subgroup of index 2, and two S-conjugacy classes of dihedral
subgroups of each order 2m for 2 ≤ m < k. Here, by a dihedral subgroup of order 4
is meant a group isomorphic to C2

2 .

Let z ∈ Z(S) be the generator, and set D = CG(z) ∼= Dq±1 (Lemma 7.1). If
P, P ′ are two dihedral subgroups of the same order 2m ≥ 4, and gPg−1 = P ′ for
some g ∈ G, then either m = 2 and P, P ′ are S-conjugate by Lemma 7.1; or m ≥ 3,
Z(P ) = Z(P ′) = 〈z〉, and g ∈ CG(z) ∼= Dq±1. Thus P and P ′ areD-conjugate, and we
leave it as an exercise for the reader to check that this implies they are S-conjugate.

Hence for any 2-centric P,Q ≤ S, every morphism in MorLc
S
(G)(P,Q) has the form

x̂ ◦ ĝ for some g ∈ NG(P ) and some x ∈ NS(P,Q). Also, x̂ ◦ ĝ = x̂′ ◦ ĝ′ if and only if
there is some a ∈ NS(P ) such that x′ = xa and g′ = a−1g. Furthermore, since z ∈ P ,
CG(P ) ≤ CG(z) = D, and thus (since each noncyclic subgroup of a dihedral group
contains its centralizer) C ′

G(P ) = 1 if P is noncyclic. Also, if P is cyclic of index 2 in
S, then NG(P ) = D, and hence NG(P )/C

′
G(P )

∼= NS(P ) = S. It follows that for all
2-centric subgroups P,Q ≤ S,

MorLc
p(G)(P,Q) ∼= NS(P,Q)×NS(P )

(
NG(P )/C

′
G(P )

)

∼=

{
NS(P,Q)×NS(P ) NS(P ) ∼= NS(P,Q) if P is cyclic

NS(P,Q)×NS(P ) NG(P ) otherwise.

If P is dihedral of order ≥ 8, then z ∈ P is the unique central element of order
2, so NG(P ) ≤ CG(z) = D. We again leave it to the reader to check that ND(P ) =
NS(P ); and thus that NG(P ) = NS(P ) in this case. Hence NS(P,Q)×NS(P )NG(P ) ∼=
NS(P,Q), and this finishes the proof of the lemma. �

We also need the following elementary lemma about isomorphisms between groups
isomorphic to Σ4.

Lemma 7.3. Assume G ∼= G′ ∼= Σ4, fix Sylow 2-subgroups S ≤ G and S ′ ≤ G′, and
let T ⊳ G and T ′ ⊳ G′ be the normal subgroups of order 4. Then any isomorphism

θ : S −−→ S ′ such that θ(T ) = T ′ extends to an isomorphism θ̂ : G −−→ G′. If θ̂ and

θ̂′ are two such extensions, then there is x ∈ Z(S) such that θ̂′ = θ̂ ◦ cx.

Proof. Fix an isomorphism ψ : G′
∼=
−−→ G such that ψ(S ′) = S. Clearly, ψ(T ′) = T .

Then ψ ◦ θ ∈ Aut(S) and ψ ◦ θ(T ) = T . This implies that ψ ◦ θ is the identity on
S/Z(S), and all such automorphisms are inner. Hence ψ ◦ θ extends to an inner
automorphism ϕ ∈ Inn(G), and ψ−1

◦ ϕ ∈ Iso(G,G′) extends θ.

By [Sz, 3.2.17], all automorphisms of Σ4 are inner. So if θ̂ ∈ Aut(G) is the identity
on S, then it must be conjugation by an element of CG(S) = Z(S). The last statement
now follows. �
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As a first consequence of Lemmas 7.1, 7.2 and 7.3, we determine which of the spaces
BPSL2(q)

∧
2 are homotopy equivalent to each other.

Proposition 7.4. Let q and q′ be odd prime powers, and set G = PSL2(q) and
G′ = PSL2(q

′). Set k = ν2(|G|) and k
′ = ν2(|G

′|). Then BG∧
2 ≃ BG′∧

2 if and only if
k = k′.

Proof. If BG∧
2 ≃ BG′∧

2 , then their Sylow 2-subgroups must have the same order (see
Proposition 2.1), and hence k = k′.

Conversely, assume k = k′, let S ≤ G and S ′ ≤ G′ be Sylow 2-subgroups, and fix an
isomorphism θ : S → S ′ (both are dihedral of order 2k = 2k

′

). If k = 2, then S ∼= C2
2 is

the only object in LcS(G), and θ extends to an isomorphism NG(S)
∼=
−−→ NG′(S ′) ∼= A4,

and hence to an equivalence of categories LcS(G)
∼=
−−→ LcS′(G′).

Now assume k ≥ 3. To simplify the notation in the following argument, we write
P ′ = θ(P ) for any P ≤ S, and g′ = θ(g) for any g ∈ S. Let T1, T2 ≤ S be
representatives for the two conjugacy classes of subgroups Ti ∼= C2

2 in S. For i =

1, 2, Ri
def
= NS(Ti) ∼= D8 is a Sylow 2-subgroup in NG(Ti) ∼= Σ4. By Lemma 7.3,

θ|Ri
: Ri → R′

i extends to an isomorphism θi : NG(Ti) →NG′(T ′
i ). Now, for each

subgroup T ≤ S such that T ∼= C2
2 , define

θT : NG(T ) −−−−−−→ NG′(T ′)

by setting, for some x ∈ NS(T, Ti) (where i = 1, 2 is the unique choice such that Ti is
conjugate to T ),

θT (g) = x′−1·θi(xgx
−1)·x′ .

To see that this is independent of the choice of x, let y ∈ NS(T, Ti) is another element,
and set a = yx−1 ∈ NS(Ti) (so y = ax). Then

y′−1·θi(ygy
−1)·y′ = x′−1·(a′−1θi(a))·θi(xgx

−1)·(θi(a)
−1a′)·x′ = θT (g)

since θi(a) = θ(a) = a′ by assumption.

For each pair of subgroups P,Q ≤ S which are 2-centric in G, define maps

ΘP,Q : MorLc
S
(G)(P,Q) −−−−−−−→ MorLc

S′(G
′)(P

′, Q′)

as follows. If P 6∼= C2
2 , then ΘP,Q(ĝ) = ĝ′ for all g ∈ NS(P,Q). If P ∼= C2

2 , then for all

g ∈ NS(P,Q) and all x ∈ NG(P ), set ΘP,Q(ĝ◦x̂) = ĝ′ ◦ θ̂P (x). Since θP |NS(P ) = θ|NS(P ),
these maps are well defined by Proposition 7.2.

Now define Θ: LcS(G) −−→ L
c
S′(G′) by setting Θ(P ) = P ′ for all P ≤ S p-centric

in G, and by letting ΘP,Q be defined as above. This is clearly a functor, and an
isomorphism of categories. Thus

Lcp(G) ≃ L
c
S(G)

∼= LcS′(G′) ≃ Lcp(G
′),

and so BG∧
2 ≃ BG′∧

2 by Theorem A. �
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We now want to study the group Out(BG∧
2 )
∼= Outtyp(L

c
S(G)), using methods

similar to those of Proposition 7.4 to construct equivalences of categories. To do this,
we first define a group X(G) which is motivated by the proof of Proposition 7.4 above.

Set

T = {T ≤ S | T ∼= C2
2} .

Let X(G) be the set of all (θ; {θT}T∈T ), where θ ∈ Aut(S), θT ∈ Iso(NG(T ), NG(θT ))
for each T ∈ T , and such that the relations

θT |NS(T ) = θ|NS(T ) and θT ′ ◦ cg = cθ(g) ◦ θT (7.5)

hold for all T, T ′ ∈ T and all g ∈ NS(T, T
′). We define the group structure on X(G)

by setting

(ψ; {ψT}T∈T ) · (θ; {θT}T∈T ) = (ψ ◦ θ; {ψθT ◦ θT }T∈T ).

This clearly defines a group structure, with identity (IdS, {IdNG(T )}T∈T ), and with
inverses

(θ; {θT}T∈T )
−1 = (θ−1; {θθ−1T

−1}T∈T ).

Let XS(G) ≤ X(G) be the subgroup

XS(G) =
{
Cx

def
= (cx; {cx}T∈T )

∣∣x ∈ S
}
.

It is not hard to see that this is a normal subgroup. More precisely, using relations
(7.5), one shows that conjugation by (θ; {θT}T∈T ) sends Cx to Cθx.

Proposition 7.6. If k ≥ 3, then there is an isomorphism of groups

Λ: Outtyp(L
c
S(G))

∼=
−−−−−−→ X(G)/XS(G)

with the following property: for any Θ ∈ Auttyp(L
c
S(G)) which sends inclusions to

inclusions,

Λ(Θ) = (ΘS,S; {ΘT,T}T∈T ).

Proof. Let Aut1typ(L
c
S(G)) denote the monoid of isotypical equivalences of LcS(G) to

itself which send inclusions to inclusions. This is, in fact, a group: any isotypical
equivalence of LcS(G) which sends inclusions to inclusions must be bijective on objects
(see Lemma 5.1(b)), and hence is an isomorphism of categories.

By Lemma 5.1(a), each isotypical equivalence of LcS(G) is naturally isomorphic to
an element of Aut1typ(L

c
S(G)). Thus,

Outtyp(L
c
S(G))

∼= Aut1typ(L
c
S(G))/Aut

1
0(L

c
S(G)),

where Aut10(L
c
S(G)) denotes the subgroup of those equivalences which are naturally

isomorphic to the identity. We must show Λ is well defined on this quotient.

The above formula clearly defines a homomorphism from Aut1typ(L
c
S(G)) to X(G).

If Θ ∈ Aut10(L
c
S(G)) — if Θ is naturally isomorphic to the identity by a natural

isomorphism Id
α
−−−→ Θ — then set α(S) = x̂ and α(T ) = x̂T for T ∈ T . Here,
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x ∈ NG(S) = S, and xT ∈ NG(T,Θ(T )). The naturality of α implies that the
following squares commute for each T ∈ T and each g ∈ NG(T ):

T
1̂
→ S

Θ(T )

x̂T
↓

1̂
→ S

x̂
↓

T
ĝ
→ T

Θ(T )

x̂T
↓

ΘT,T (ĝ)
→ Θ(T )

x̂T
↓

This shows that xT = x and ΘT,T (ĝ) = cx(ĝ) for each T ∈ T , and hence that
Λ(Θ) = Cx ∈ XS(G). Thus, Λ is well defined as a homomorphism on Outtyp(L

c
S(G)).

If Θ ∈ Aut1typ(L
c
S(G)), and if ΘS,S, ΘT1,T1, and ΘT2,T2 are all conjugation by some

fixed element x ∈ S, then Θ is naturally isomorphic to the identity by the natural

isomorphism Id
∼=
−−−→ Θ which sends each object to the morphism x̂. Thus [Θ] = 1

in Outtyp(L
c
S(G)), and this shows that Λ is injective.

It remains to show that Λ is surjective, and this follows by exactly the same argu-
ment as that used to construct an equivalence in the proof of Proposition 7.4. �

We now look at the groups

Out(BG∧
2 )
∼= Outtyp(L

c
p(G))

∼= X(G)/XS(G).

The first equivalence is a consequence of Theorem B, and the second follows from
Proposition 7.6. We want to compare these groups with the group Out(G) of outer
automorphisms. We first recall the well known description of this group.

Recall that q = pe where p is prime. We regard Aut(Fq) ∼= Ce as a subgroup of
Aut(G): each ϕ ∈ Aut(Fq) acts on G by sending a matrix A = (ai,j) to the matrix
ϕ(A) = (ϕ(ai,j)).

Lemma 7.7. Let ω ∈ Aut(G) be any automorphism induced by conjugation by an ele-
ment γ ∈ PGL2(q)rPSL2(q); i.e., γ = [A] for some A ∈ GL2(q) whose determinant
is not a square in (Fq)∗. Then

Out(G) = 〈ω〉 × Aut(Fq) ∼= C2 × Ce.

Proof. See [Ctr, Theorem 12.5.1]. Note that ω is called the “diagonal automorphism”,
and the elements coming from Aut(Fq) the “field automorphisms”. �

We next compare the group Outtyp(L
c
S(G)) to a certain quotient of Aut(S). The

statement of the following lemma should be compared with [BL, Theorem 1.7(3)].

In order to simplify the notation for elements of X(G), we fix subgroups T1, T2 ∈ T
which represent the two (S- or G-) conjugacy classes, and write elements of X(G) as
triples (θ; θ1, θ2) for θ ∈ Aut(S) and θi ∈ Iso(NG(Ti), NG(θ(Ti))) such that θi|NS(Ti) =
θ|NS(Ti). Any such triple extends to a unique element (θ; {θT}T∈T ) via the defining
relations (7.5) for X(G). Also, for any such triple, we write [θ; θ1, θ2] to denote its
class in X(G)/XS(G).
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Lemma 7.8. Let AutG(S) denote the group of automorphisms of S induced by con-
jugation in G. Let

σ : Out(BG∧
2 )
∼= Outtyp(L

c
S(G)) −−−−−−→ Aut(S)/AutG(S)

be the homomorphism defined by restricting an automorphism of the category to its
action on AutLc

S
(G)(S) = NG(S) = S.

(a) If k = 2 (so S ∼= C2
2), then σ is an isomorphism, and Aut(S)/AutG(S) ∼=

Σ3/C3
∼= C2.

(b) Assume k ≥ 3 (so S ∼= D2k), and let z ∈ S be the central element of order 2.
Then σ is surjective, and

Aut(S)/AutG(S) = Out(S) ∼= C2 × C2k−3 .

Also, Ker(σ) has order 2, and under the identification of Proposition 7.6 is gen-
erated by the element [IdS; IdT1 , cz].

Proof. The surjectivity of σ (for arbitrary k) follows as in the proof of Proposition
7.4, by using Lemma 7.3 to show that each θ ∈ Aut(S) extends to a triple (θ; θ1, θ2).

If k = 2 (if q ≡ ±3 (mod 8)), then S ∼= C2
2 , and NG(S) ∼= A4 by Lemma 7.1. Then

σ is injective since S is the only object in LcS(G).

If k ≥ 3, then fix generators α, β ∈ S ∼= D2k , where |α| = 2k−1 and |β| = 2. Then

Aut(D2k) ∼= C2k−1 ⋊Aut(C2k−1),

where the normal cyclic subgroup is generated by the automorphism α 7→ α and
β 7→ αβ; and where the second factor is the subgroup of automorphisms fixing β.
Also, AutG(S) = Inn(S) since NG(S) = S. It now follows easily that

Aut(S)/AutG(S) = Out(D2k) ∼= C2 × Aut(C2k−1)/{±1} ∼= C2 × C2k−3 ,

and it remains to calculate the kernel of σ.

Under the identification of Outtyp(L
c
p(G)) with X(G)/XS(G) given in Proposition

7.6, an element in Ker(σ) is of the form [IdS; θ1, θ2], where θi ∈ Aut(NG(Ti)) for
i = 1, 2 are such that θi|NS(Ti) = Id. By Lemma 7.3, the only nontrivial automorphism
of NG(Ti) ∼= Σ4 which is the identity on a Sylow 2-subgroup D8 is conjugation by
the central element of that subgroup. Thus, each θi is the identity or conjugation
by z ∈ Z(S). The element [IdS; cz, cz] is equal to Cz ∈ XS(G); while the element
[IdS; Id, cz] is not in XS(G). It follows that |Ker(σ)| = 2. �

By Lemma 7.7, Out(G) is a finite abelian group. We let Out(G)(2) denote its Sylow
2-subgroup We are now ready to determine the group Out(BG∧

2 ) and compare it to
Out(G)(2).

Proposition 7.9. Fix q = pe, where p is an odd prime and e ≥ 1, and set G =
PSL2(q). Then the natural homomorphism

B : Out(G)(2) −−−−−→ Out(BG∧
2 )
∼= C2 × C2k−2
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is always injective, and is an isomorphism if and only if p ≡ ±3 (mod 8).

Proof. We first fix Sylow 2-subgroups S ≤ G = PSL2(q) and Ŝ ≤ PGL2(q), such

that S ≤ Ŝ has index 2, as follows. If q ≡ 1 (mod 4), then let S and Ŝ be the

subgroups generated by diagonal matrices, together with the matrix β
def
=

(
0 1
−1 0

)
.

If q ≡ 3 (mod 4), then identify (Fq)2 with Fq2 , regarded as a 2-dimensional Fq-vector
space, and set H = 〈(Fq2)∗, β〉, where β ∈ Aut(Fq2) is the automorphism of order 2.

Let Ĥ be the image of H in PGL2(q), let Ŝ be the Sylow 2-subgroup of Ĥ which

contains β, and set S = Ŝ ∩ PSL2(q).

In either case, Ŝ ∼= D2k+1 and S ∼= D2k are both dihedral groups. Fix γ ∈ Ŝ which
generates the cyclic subgroup of index 2. By Lemma 7.7, conjugation by γ generates
the first factor in Out(G) ∼= C2 × Aut(Fq).

We must compare the following maps,

Out(G)(2)

B

��

ρ

&&▼
▼▼

▼▼
▼▼

▼▼
▼

Out(BG∧
2 )

σ
// // Out(S),

(1)

where σ is surjective by Lemma 7.8.

Case 1: Assume first that q 6≡ 1 (mod 8). Then e is odd (q is not a square), and
so Out(G)(2) = 〈cγ〉 has order 2. Also, cγ /∈ Ker(ρ) ((cγ)|S /∈ Inn(S)) by the above

description of γ ∈ Ŝ. So B is injective since ρ is, and B is an isomorphism if and only
if |Out(BG∧

2 )| = 2, if and only if k = 2 (q ≡ ±3 (mod 8)) by Lemma 7.8.

Case 2: Now assume that q ≡ 1 (mod 8). Set α = γ2 = [diag(v, v−1)], where
v ∈ (Fq)∗ has order 2k. Then S = 〈α, β〉 ∼= D2k , and conjugation by γ sends α to α
and β to αβ. So

Out(S) = 〈ρ(cγ)〉 × (Aut(C2k−1)/{±1}),

where the second factor operates on 〈α〉 while fixing β. If q is not a square, then
|Aut(Fq)| is odd, Out(G)(2) is generated by conjugation by γ, and so ρ (and hence
B) are injective.

Assume now that q = (q1)
2 is a square. Since q ≡ 2k + 1 (mod 2k+1), we have

q1 ≡ 2k−1 ± 1 (mod 2k). Let ϕ1 ∈ Aut(Fq) ≤ Aut(G) denote the automorphism
of order 2: ϕ1(a) = aq1 for a ∈ Fq. Since v has order 2k in (Fq)∗, this shows that
ϕ1(v) = −v or −v−1. In particular, ϕ1(α) = α or α−1 (where α = diag(v, v−1)), so
ϕ1|S ∈ Inn(S), and ϕ1 ∈ Ker(ρ). Furthermore, Ker(ρ) is generated by ϕ1, since any
automorphism ϕ2 ∈ Aut(Fq) of order 4 is of the form (a 7→ aq2) where q2 ≡ 2k−2 ± 1
(mod 2k−1).

Let G1 ≤ G = PSL2(q) be the subgroup of elements fixed by ϕ1; i.e., the group
of classes (mod ±I) of matrices A ∈ SL2(q) such that ϕ1(A) = ±A. This subgroup
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clearly contains PSL2(q1), and [G1:PSL2(q1)] = 2. From the formulas

|PSL2(q)| =
1
2
q(q2 − 1) = 1

2
q21(q

2
1 − 1)(q21 + 1) and |PSL2(q1)| =

1
2
q1(q

2
1 − 1),

we see that G1 has odd index in G, and hence that we can assume S ≤ G1. Also,
this shows that S ∩ PSL2(q1) is a dihedral subgroup of index 2 in S, and hence that
it contains the subgroups in just one of the conjugacy classes in T . Assume they are
labelled so that T1 ≤ PSL2(q1) and T2 � PSL2(q1).

In particular, NG(T2) ∼= Σ4 is not contained in G1, since it has no subgroup of
index 2 containd in PSL2(q1). We claim that NG(T1) ≤ G1. If k ≥ 4 (|S| ≥ 16),
then NG(T1) is contained in PSL2(q1) by Lemma 7.1, and hence is contained in
G1. If k = 3 (|S| = 8), then NPSL2(q1)(T1)

∼= A4 by Lemma 7.1 again, and T1 ∈
Syl2(PSL2(q1)). For any g ∈ G1rPSL2(q1), gT1g

−1 is another Sylow subgroup, so
there is a ∈ PSL2(q1) such that ag ∈ NG1

(T1), and thus NG1
(T1) = NG(T1).

Since G1 is by definition the fixed subgroup of ϕ1, it now follows that ϕ1 is the
identity on S and on NG(T1), but not on NG(T2). So by Lemma 7.8(b), Bϕ1 is the
nontrivial element in Ker(σ). We have already seen that the class of ϕ1 generates
Ker(ρ), and hence this finishes the proof that B is injective.

To see when B is an isomorphism, note first that

|Out(BG∧
2 )| = 2·|Out(S)| = 2k−1 and |Out(G)(2)| = 2m+1 (m = ν2(e))

by Lemmas 7.7 and 7.8. So B is an isomorphism if and only if p has order 2k−1 = 2m+1

in (Z/2k+1)∗; and this is the case if and only if p ≡ ±3 (mod 8). In particular, since

BG∧
2 ≃ BPSL2(5

2k−2

)∧2 by Proposition 7.4,

Out(BG∧
2 )
∼= Out(BPSL2(5

2k−2

)∧2 )
∼= Out(PSL2(5

2k−2

)) ∼= C2 × C2k−2 . �

Appendix A. Op(G) and p-centric subgroups

For any finite group G, Op(G) is defined to be the smallest normal subgroup of
p-power index in G. Equivalently, Op(G) is the largest p-perfect subgroup of G,
where a group K is p-perfect if it is generated by commutators and p-th powers, or
equivalently if H1(K;Fp) = 0. We first note that this subgroup is natural with respect
to group homomorphisms.

Lemma A.1. For any prime p and any homomorphism ϕ : G −−→ H of finite groups,
f(Op(G)) ≤ Op(H).

Proof. Since Op(G) is p-perfect and H/Op(H) is a p-group, the composite homomor-
phism from Op(G) to H/Op(H) is trivial. �

One way in which Op(−) occurs in this paper is in the formula for the fundamental
group of a p-completed space.
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Proposition A.2. For any connected complex X such that π1(X) is finite,

π1(X
∧
p )
∼= π1(X)/Op(π1(X)).

Proof. This is well known, but doesn’t seem to be explicitly stated in [BK]. Set

G = π1(X) and π = G/Op(G) for short. Let X̂ be the covering space of X with

fundamental group Op(G). Since π1(X̂) is p-perfect, X̂∧
p is simply connected by [BK,

VII.3.2]. Also, Bπ is p-complete since π is a p-group. Hence the sequence

X̂∧
p −−−−−−→ X∧

p −−−−−−→ Bπ

is a fibration sequence by [BK, II.5.2(iv)], and so π1(X
∧
p )
∼= π. �

The other way in which the subgroups Op(−) occur in this paper is in the definition
of the linking categories Lp(G), and when working with p-centric subgroups of a finite
group.

Definition A.3. A p-subgroup P of a finite group G is p-centric if Z(P ) is a Sylow
p-subgroup of CG(P ).

The following lemma is important when defining centric linking categories.

Lemma A.4. Fix a finite group G and a p-subgroup P ≤ G. Then P is p-centric in
G if and only if CG(P ) ∼= Z(P )×Op(CG(P )) and O

p(CG(P )) has order prime to p.

Proof. Assume P is p-centric in G. Then Z(P ) is a normal Sylow p-subgroup of
CG(P ), and so CG(P )/Z(P ) has order prime to p. Thus H2(CG(P )/Z(P );Z(P )) = 0,
and so CG(P ) splits accordingly as a semidirect product. Furthermore, Z(P ) is central
in CG(P ), and hence must be a direct factor. So Op(CG(P )) has trivial intersection
with Z(P ), hence has order prime to p, and CG(P ) ∼= Z(P )× Op(CG(P )).

The converse is clear. �

When P is p-centric in G, we write C ′
G(P )

def
= Op(CG(P )) for short; thus CG(P ) ∼=

Z(P )× C ′
G(P ) in this case.

We will also need the following characterization of p-centric subgroups.

Lemma A.5. Let G be a finite group, and fix S ∈ Sylp(G). Then a p-subgroup P ≤ S
is p-centric in G if and only if for all Q ≤ S which is G-conjugate to P , CS(Q) ≤ Q.

Proof. If P ≤ S is p-centric in G, then so is each Q ≤ S which is G-conjugate to
P . Hence Z(Q) is a normal Sylow p-subgroup of CG(Q), and hence contains all
p-subgroups of CG(Q). In particular, CS(Q) ≤ Z(Q) ≤ Q.

If P is not p-centric in G, then choose x ∈ G such that x−1Sx contains a Sylow
p-subgroup of P ·CG(P ). Set Q = xPx−1. Then Q ≤ S, and CS(Q) is a Sylow p-
subgroup of CG(Q). Since P is not p-centric in G, neither isQ, and so CS(Q) � Q. �
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Lemma A.5 makes it clear that the Sylow p-subgroups of a finite group G are all
p-centric in G, and that if P is p-centric in G then so are all other p-subgroups which
contain P .
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