
DISCRETE MODELS FOR THE p-LOCAL HOMOTOPY THEORY
OF COMPACT LIE GROUPS AND p-COMPACT GROUPS

CARLES BROTO, RAN LEVI, AND BOB OLIVER

Abstract. We define and study a certain class of spaces which includes p-completed
classifying spaces of compact Lie groups, classifying spaces of p-compact groups,
and p-completed classifying spaces of certain locally finite discrete groups. These
spaces are determined by fusion and linking systems over “discrete p-toral groups” —
extensions of (Z/p∞)r by finite p-groups — in the same way that classifying spaces
of p-local finite groups as defined in [BLO2] are determined by fusion and linking
systems over finite p-groups. We call these structures “p-local compact groups”.

In our earlier paper [BLO2], we defined and studied a certain class of spaces which
in many ways behave like p-completed classifying spaces of finite groups. These spaces
occur as “classifying spaces” of certain algebraic objects called p-local finite groups.
The purpose of this paper is to generalize the concept of p-local finite groups to what
we call p-local compact groups. The motivation for introducing this family comes from
the observation that p-completed classifying spaces of finite and compact Lie groups,
as well as classifying spaces of p-compact groups [DW], share many similar homotopy
theoretic properties, but earlier studies of these properties usually required different
techniques for each case. Moreover, while p-completed classifying spaces of finite and,
more generally, compact Lie groups arise from the algebraic and geometric structure
of the groups in question, p-compact groups are purely homotopy theoretic objects.
Unfortunately, many of the techniques used in the study of p-compact groups fail for
p-completed classifying spaces of general compact Lie groups. With the approach pre-
sented here, we propose a framework general enough to include p-completed classifying
spaces of arbitrary compact Lie groups as well as p-compact groups.

The new idea here is to replace fusion systems over finite p-groups, as handled in
[BLO2], by fusion systems over discrete p-toral groups. A discrete p-toral group is a
group which contains a discrete p-torus (a group of the form (Z/p∞)r for finite r ≥ 0)
as a normal subgroup of p-power index. A p-local compact group consists of a triple
(S,F ,L), where S is a discrete p-toral group, F is a saturated fusion system over S
(a collection of fusion data between subgroups of S arranged in the form of a category
and satisfying certain axioms), and L is a centric linking system associated to F (a
category whose objects are a certain distinguished subcollection of the object of F ,
and of which the corresponding full subcategory of F is a quotient category). The
linking system L allows us to define the classifying space of this p-local compact group
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to be the p-completed nerve |L|∧p . If S is a finite p-group, then the theory reduces to
the case of p-local finite groups as studied in [BLO2].

We hope that working with this setup will make it possible to prove results of in-
terest in a uniform fashion for the entire family. In this paper (Theorem 7.1), we give
a combinatorial description of the space of self equivalences of |L|∧p in terms of auto-
morphisms of the category L, and a description of the group Out(|L|∧p ) of homotopy
classes of self equivalences in terms of “fusion preserving automorphisms” of S. We also
show that a p-local compact group (S,F ,L) is determined up to isomorphism by the
homotopy type of its classifying space |L|∧p . One future goal is to show that the mod
p cohomology of the classifying space |L|∧p of a p-local compact group (S,F ,L) can
always be described in terms of the fusion system F , as a ring of “stable elements” in
the cohomology of S. Other goals are to define connected p-local compact groups, and
understand their properties and their relation to connected p-compact groups; and to
characterize algebraically (connected) p-compact groups among all (connected) p-local
compact groups. Finally, a more general question which is still open is whether the
p-completion of the classifying space of every finite loop space is the classifying space
of a p-local compact group.

As one might expect, passing from a finite to an infinite setup introduces an array of
problems one must deal with in order to produce a coherent theory. Some of the basic
properties of fusion systems over discrete p-toral groups are analogous or even identical
to the finite case, whereas other aspects are more delicate. Once the definition of a
saturated fusion system over a discrete p-toral group is given and their basic properties
are studied, one defines associated centric linking systems and p-local compact groups
in a fashion more or less identical to the finite case. However, while in the finite
case, any finite group G gives rise automatically to a saturated fusion system and
an associated centric linking system, the corresponding construction for compact Lie
groups is less obvious. Similar complications present themselves when dealing with the
fusion system and the centric linking system associated to a p-compact group. It is
for that reason that the only aims of this paper are to establish the setup, study some
basic properties, and prove that the classifying spaces which are the obvious candidates
to give rise to p-local compact groups indeed do so.

We proceed by describing the contents of the paper in some detail. In Section 1,
we define and list some properties of discrete p-toral groups. We show why this class
of groups is a natural one to consider for our purposes, and study some of its useful
properties. Then in Section 2, we define saturated fusion systems over discrete p-toral
groups. The definitions in this section are very similar to those given in [BLO2] for the
finite case, but some modifications are needed due to having given up finiteness.

Much of the work on p-local finite groups makes implicit use of the fact that the
categories one works with are finite. If S is an infinite discrete p-toral group, then any
fusion system over it will have infinitely many objects. In Section 3 we show that any
saturated fusion system F over a discrete p-toral group S contains a full subcategory
with finitely many objects, which in the appropriate sense determines F completely.
More precisely, we show that F contains only finitely many objects which are both
centric and radical, and then prove the appropriate analog of Alperin’s fusion theorem.
The latter, roughly speaking, says that in a saturated fusion system, every morphism
can be factored into a sequence of morphisms each of which is the restriction of an
automorphism of a centric radical subgroup.
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Linking systems associated to fusion systems over discrete p-toral groups are defined
in Section 4. In fact, the definition is identical to that used when working over a finite
p-group, and the proof that the nerve |L| of a linking system is p-good is essentially
identical to that in the finite case. The connection between linking systems associated
to a given fusion system F and rigidifications of the homotopy functor P 7→ BP on
the orbit category Oc(F) is then studied.

Higher limits over the orbit category of a fusion system are investigated in Section
5. We first describe how to reduce the general problem to one of higher limits over
a finite subcategory, and then show how those can be computed with the help of the
graded groups Λ∗(Γ;M) introduced in [JMO]. These general results are then applied
to prove the acyclicity of certain explicit functors whose higher limits appear later as
obstruction groups.

Spaces of maps Map(BQ, |L|∧p ) are studied in Section 6, when Q is a discrete p-toral
group and |L|∧p is the classifying space of a p-local compact group, and the space of self
equivalences of |L|∧p is handled in Section 7. In both cases, the descriptions we obtain
in this new situation (in Theorems 6.3 and 7.1) are the obvious generalizations of those
obtained in [BLO2] for linking systems over finite p-groups. We also prove (Theorem
7.4) that a p-local compact group is determined by the homotopy type of its classifying
space: if (S,F ,L) and (S ′,F ′,L′) are p-local compact groups such that |L|∧p ≃ |L

′|∧p ,
then they are isomorphic as triples of groups and categories.

We finish with three sections of examples: certain infinite locally finite groups in
Section 8, including linear torsion groups; compact Lie groups in Section 9; and p-
compact groups in Section 10. In all cases, we show that the groups in question fit
into our theory: they have saturated fusion systems and associated linking systems,
defined in a unique way (unique up to isomorphism at least), and the classifying spaces
of the resulting p-local compact groups are homotopy equivalent to the p-completed
classifying spaces of the groups in the usual sense.

The first and third authors would like to thank the University of Aberdeen for it’s
hospitality during several visits; in particular, this work began when we got together
there in January 2002. All three authors would like to thank the Mittag-Leffler Insti-
tute, where this work was finished over a period of several months.

1. Discrete p-toral groups

When attempting to generalize the theory of p-local finite groups to certain infinite
groups, the first problem is to decide which groups should replace the finite p-groups
over which we studied fusion systems in [BLO2]. The following is the class of groups
we have chosen for this purpose. Let Z/p∞ ∼= Z[1

p
]/Z denote the union of the cyclic

p-groups Z/pn under the obvious inclusions.

Definition 1.1. A discrete p-toral group is a group P , with normal subgroup P0 ⊳ P ,
such that P0 is isomorphic to a finite product of copies of Z/p∞, and P/P0 is a finite
p-group. The subgroup P0 will be called the identity component of P , and P will be

called connected if P = P0. Set π0(P )
def
= P/P0: the group of components of P .

The identity component P0 of a discrete p-toral group P can be characterized as the
subset of all infinitely p-divisible elements in P , and also as the minimal subgroup of
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finite index in P . Define rk(P ) = k if P0
∼= (Z/p∞)k, and set

|P |
def
= (rk(P ), |π0(P )|) = (rk(P ), |P/P0|) .

We regard the order of a discrete p-toral group as an element of N2 with the lexico-
graphical ordering. Thus |P | ≤ |P ′| if and only if rk(P ) < rk(P ′), or rk(P ) = rk(P ′)
and |π0(P )| ≤ |π0(P

′)|. In particular, P ′ ≤ P implies |P ′| ≤ |P |, with equality only if
P ′ = P .

The obvious motivation for choosing this class is the role they play as “Sylow p-
subgroups” in compact Lie groups and p-compact groups. But in fact, it seems dif-
ficult to construct fusion systems with interesting properties over any larger class of
subgroups. The reason for this is that discrete p-toral groups are characterized by
certain finiteness properties, which are needed in order for fusion systems over them
to be manageable, and for related homotopy theoretic phenomena to be controled by
p-local information.

A group G is locally finite if every finitely generated subgroup of G is finite, and is a
locally finite p-group if every finitely generated subgroup of G is a finite p-group. The
class of locally finite (p-)groups is closed under subgroups and quotient groups. It is
also closed under group extensions, since finite index subgroups of finitely generated
groups are again finitely generated.

A group G is artinian (satisfies the minimum condition in the terminology of [W]) if
every non-empty set of subgroups of G, partially ordered by inclusion, has a minimal
element. Equivalently, G is artinian if its subgroups satisfy the descending chain con-
dition. The class of artinian groups is closed under taking subgroups, quotients, and
extensions. Every artinian group is a torsion group (since an infinite cyclic group is
not artinian). If G is artinian and ϕ ∈ Inj(G,G) is an injective endomorphism of G,
then ϕ is an automorphism, since otherwise {ϕn(G)} would be an infinite descending
chain. This is just one example of why it will be important that the groups we work
with are artinian; the descending chain condition will be used in other ways later.

It is an open question whether every artinian group is locally finite (see [KW, pp.
31–32] for a discussion of this). If one restricts attention to groups all of whose elements
have p-power order for some fixed prime p, then artinian groups are known to be locally
finite if p = 2 [KW, Theorem 1.F.6], but this seems to be unknown for odd primes.
However, any counterexample to these questions would probably be far too wild for
our purposes. Hence it is natural to restrict attention to locally finite groups, and since
we are working with local structure at a prime p, to locally finite p-groups. The next
proposition tells us that in fact, this restricts us to the class of discrete p-toral groups.
It is included only as a way to help motivate this choice of groups to work with.

Proposition 1.2. A group is a discrete p-toral group if and only if it is artinian and
a locally finite p-group.

Proof. The group Z/p∞ is clearly a locally finite p-group and artinian. Since both of
these properties are preserved under extensions of groups, they are satisfied by every
discrete p-toral group.

Conversely, assume that G is artinian and a locally finite p-group. By [KW, Theorem
5.8], every locally finite artinian group is a Černikov group; in particular, it contains a
normal abelian subgroup with finite index. By [Fu, Theorems 25.1 & 3.1], every abelian
artinian group is a finite product of groups of the form Z/qm where q is a prime and
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m ≤ ∞. Thus G is an extension of the form

1 −−−→ A −−−−−→ G −−−−−→ π −−−→ 1,

where π is a finite p-group, and A is a finite product of groups Z/pm for m ≤ ∞. The
subgroup of A generated by the factors Z/p∞ is the subgroup of infinitely p-divisible
elements, thus a characteristic subgroup of A, and a normal subgroup of G of p-power
index. It follows that G is a discrete p-toral group. �

We next note some of the other properties which make discrete p-toral groups con-
venient to work with.

Lemma 1.3. Any subgroup or quotient group of a discrete p-toral group is a discrete
p-toral group. Any extension of one discrete p-toral group by another is a discrete
p-toral group.

Proof. These statements are easily checked directly. They also follow at once from
Proposition 1.2, since the classes of locally finite p-groups and artinian groups are both
closed under these operations. �

Clearly, the main difficulty when working with infinite discrete p-toral groups, in-
stead of finite p-groups, is that they have infinitely many subgroups and infinite au-
tomorphism groups. We next investigate what finiteness properties these groups do
have.

Lemma 1.4. The following hold for each discrete p-toral group P .

(a) For each n ≥ 0, P contains finitely many conjugacy classes of subgroups of order
pn.

(b) P contains finitely many conjugacy classes of elementary abelian p-subgroups.

Proof. Clearly, for each n, P0 contains finitely many subgroups of order pn, since they
are all contained inside the pn-torsion subgroup of P0 which is finite. So to prove (a),

it suffices, for each finite subgroup A ≤ P0 and each subgroup B = B̃/P0 ≤ P/P0, to
show that there are finitely many P -conjugacy classes of subgroups Q ≤ P such that

Q∩P0 = A and QP0 = B̃. Let Q be the set of all such subgroups, and assume Q 6= ∅.
Then Q ∈ Q if and only if Q/A ∩ P0/A = 1 and QP0/P0 = B; and this implies that

A ⊳ QP0 = B̃ and that Q/A is the image of a splitting of the extension

1 → P0/A → B̃/A → B → 1.

In other words, Q is in one-to-one correspondence with the set of splittings of this
extension. The set of P0-conjugacy classes of such splittings (if there are any) is in
one-to-one correspondence with the elements of H1(B;P0/A) (see [Bw, Proposition
IV.2.3]). Since this cohomology group is finite, so is the set of conjugacy classes of
such extensions.

This proves point (a). Point (b) follows from (a), together with the observation that
for any elementary abelian subgroup E ≤ P , rk(E) ≤ rk(P ) + rkp(P/P0). �

We next check what can be said about finiteness in automorphism groups.

Proposition 1.5. Let P be a discrete p-toral group.

(a) Any torsion subgroup of Aut(P ) is an extension of an abelian group by a finite
group.
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(b) Any torsion subgroup of Out(P ) is finite.

(c) For each Q ≤ P , OutP (Q) is a finite p-group.

Proof. Assume first that P ∼= (Z/p∞)r: a discrete p-torus of rank r ≥ 0. Then

Aut(P ) ∼= GLr(Ẑp), and it is well known that the subgroup (1 + p2Mr(Ẑp))× of ma-
trices which are congruent modulo p2 to the identity is torsion free. This follows, for
example, from the inverse bijections

(1 + p2Mr(Ẑp))
×

log
−−−−−−→←−−−−−−

exp
p2Mr(Ẑp)

defined by the usual power series: while log is not a homomorphism, it does satisfy the
relation log(Xr) = r log(X). So if H is a torsion subgroup of Aut(P ) (equivalently, of

GLr(Ẑp)), then the composite

H −−−−−→ GLr(Ẑp)
/p2

−−−−−→ GLr(Z/p
2)

is injective, and thus H is finite.

Now let P be an arbitrary discrete p-toral group with connected component P0 and
group of components π = P/P0. There is an exact sequence

0 −−−−→ H1(π;P0) −−−−→ Aut(P )/AutP0(P ) −−−−→ Aut(P0)× Aut(π)

(cf. [Sz, 2.8.7]), where AutP0(P ) = {cx ∈ Aut(P ) | x ∈ P0}. We have just seen that
every torsion subgroup of Aut(P0) is finite, and H

1(π;P0) and Aut(π) are clearly finite.
Hence every torsion subgroup of Aut(P )/ InnP0(P ) is finite. This proves (b); and also
proves (a) (every torsion subgroup of Aut(P ) is an extension of an abelian group by a
finite group) since AutP0(P ) is abelian. Point (c) follows immediately from (b), since
P is a torsion group all of whose elements have p-power order. �

In the next section (in Definition 2.2), we will need some more precise bounds on
the size of normalizers and centralizers.

Lemma 1.6. Let S be any discrete p-toral group, and set N = |π0(S)|rk(S)+1. Then
for all P ≤ S,

|π0(CS(P ))| ≤ N, |π0(NS(P )/P )| ≤ N, and |π0(NS(P ))| ≤ N ·|π0(P )|.

Proof. Set T = S0 for short, and set Q = PT/T . Let NQ : T → T be the norm map
for the Q action: NQ(x) =

∏
gT∈Q gxg

−1. The image of NQ is connected and centralizes

P , and thus Im(NQ) ≤ CS(P )0 = CT (P )0. If x ∈ CT (P ), then

x|Q| = NQ(x) ∈ CT (P )0.

Thus every element in CT (P )/CT (P )0 has order dividing |Q|, and it follows that

|π0(CT (P ))| = |CT (P )/CT (P )0| ≤ |Q|
rk(S) ≤ |π0(S)|

rk(S).

Thus |π0(CS(P ))| ≤ |π0(CT (P ))|·|S/T | ≤ N .

If x ∈ NT (P ), then

x|Q| = NQ(x)·
∏

gT∈Q

[x, g] ∈ CT (P )0·P ≤ NT (P )0·P.

Thus ∣∣NT (P )
/(
NT (P )0·(T ∩ P )

)∣∣ ≤ |Q|rk(S) ≤ |π0(S)|rk(S),
and hence |π0(NS(P )/P )| ≤ N , by the same arguments as those used for π0(CS(P )).
The last inequality is now immediate. �
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Note that discrete p-toral groups are all solvable, but (in contrast to finite p-groups)
need not be nilpotent. For instance, the infinite dihedral group, a split extension of
Z/2∞ by Z/2, is a discrete 2-toral group which is not nilpotent (since the nilpotency
class of D2n is n− 1).

The following lemma contains some generalizations of a standard theorem about
automorphisms of finite p-groups: if α ∈ Aut(P ) is the identity on Q ⊳ P and on
P/Q, then it has p-power order.

Lemma 1.7. The following hold for any discrete p-toral group P and any automor-
phism α ∈ Aut(P ).

(a) Assume, for some Q ⊳ P , that α|Q = IdQ and α ≡ Id (mod Q). Then every
α-orbit in P is finite of p-power order. If, in addition, [P : Q] < ∞, then α has
finite order.

(b) α has finite order if and only if α|P0 has finite order.

(c) Set P(1) = {g ∈ P0 | gp = 1}. If α|P(1)
= Id and α ≡ Id (mod P0), then each orbit

of α acting on P has p-power order.

Proof. (a) The proof is identical to the proof for finite p-groups (see [Go, Theorem
5.3.2]), and in fact applies whenever all elements of Q have p-power order. For any
g ∈ P , α(g) = gx for some x ∈ Q (since α ≡ Id (mod Q)), and α(x) = x since α|Q = Id.

Thus αn(g) = gxn for all n, and αp
k

(g) = g if pk = |x|. Since the order of {αi(g)}
depends only on the coset gQ, this also shows that |α| is finite (and a power of p) if
P/Q is finite.

(b) If α|P0 has finite order, then there is n ≥ 1 such that αn|P0 = Id and αn ≡ Id
(mod P0). Then α

n has finite order by (a), so α also has finite order.

(c) For each m ≥ 1, let P(m) ≤ P0 be the pm-torsion in P0. Fix g ∈ P , and set
x = g−1α(g), pk = |x|, and Q = 〈g, P(k)〉. The P(m) are all α-invariant, and so Q is also
α-invariant since g−1α(g) ∈ P(k). Also, α acts via the identity on P(1) by assumption,
hence on P(i)/P(i−1) for all 1 ≤ i ≤ k, and also on Q/P(k). So by (a) (and since Q
is a finite group), α|Q has p-power order. In particular, the α-orbit of g has p-power
order. �

The next lemma is another easy generalization of a standard result about finite
p-groups.

Lemma 1.8. If P � Q are distinct discrete p-toral groups, then P � NQ(P ).

Proof. When [Q:P ] < ∞, this follows by the same proof as for finite p-groups. More
precisely, when Q/P is finite, the action of P on Q/P (defined by x(gP ) = xgP for
x ∈ P and g ∈ Q) factors through a finite quotient group P/N of P . Also, P/N is a
p-group since P is a p-torsion group. Thus

|NQ(P )/P | = |(Q/P )
P/N | ≡ |Q/P | ≡ 0 (mod p),

and so NQ(P )/P 6= 1.

Now assume that [Q:P ] is infinite; i.e., that P0 � Q0. For each n, set An = {x ∈
Q0 | xp

n

= 1}. Then An ⊳ Q, and in particular is normalized by P . For n large
enough, An � P , so P � PAn ≤ Q, P � NPAn(P ) since [PAn:P ] < ∞, and thus
P � NQ(P ). �



8 Discrete models for the p-local homotopy theory of compact Lie groups and p-compact groups

We will also need the following well known result about finite subgroups of discrete
p-toral groups.

Lemma 1.9. For any discrete p-toral group P , there is a finite subgroup Q ≤ P
such that P = QP0. There is also an increasing sequence Q1 ≤ Q2 ≤ Q3 ≤ · · · of
finite subgroups of P such that P =

⋃∞
n=1Qn. More generally, for any finite subgroup

K ≤ Aut(P ), the Qi can be chosen to be K-invariant.

Proof. Fix any (finite) setX of coset representatives for P0 in P , and setQ = 〈α(g) |α ∈
K, g ∈ X〉. Then Q is K-invariant, Q is finite since P is locally finite, and P = QP0

by construction. For each n ≥ 1, let Pn ≤ P0 be the pn-torsion subgroup, and set
Qn = QPn. Then the Qn are also finite and K-invariant, and P =

⋃∞
n=1Qn. �

To finish the section, we consider maps between the p-completed classifying spaces
of discrete p-toral groups. This following lemma is implicit in [DW] and [DW2] (the
spaces in question are classifying spaces of p-compact groups). But it does not seem
to be stated explicitly anywhere there.

Lemma 1.10. For any pair P,Q of discrete p-toral groups,

B : Rep(P,Q) −−−−−−−→ [BP ∧
p , BQ

∧
p ]

is a bijection. In particular, any homotopy equivalence BP ∧
p

≃
−−→ BQ∧

p is induced by an
isomorphism P ∼= Q. Also, for any homomorphism ρ : P −−→ Q, the homomorphism

CQ(ρ(P ))× P
(incl,ρ)
−−−−→ Q induces a homotopy equivalence

BCQ(ρ(P ))
∧
p

≃
−−−−−−→ Map(BP ∧

p , BQ
∧
p )Bρ.

Proof. For any pair G,H of discrete groups,

[BG,BH ] ∼= Rep(G,H) and Map(BG,BH)Bρ ≃ BCH(ρ(G))

for each ρ ∈ Hom(G,H). See, for example, [BKi, Proposition 7.1] for a proof.

By [DW2, Proposition 3.1], the homotopy fiber of the map BQ −−→ BQ∧
p is aK(V, 1)

for some Q̂p-vector space V . Using this, together with standard obstruction theory and

the fact that H̃∗(BQ;Q) = 0, one checks that

[BP ∧
p , BQ

∧
p ]
∼= [BP,BQ] ∼= Rep(P,Q).

Now fix some ρ ∈ Hom(P,Q). By [DW, Propositions 5.1 & 6.22], Map(BP ∧
p , BQ

∧
p )Bρ

is the classifying space of some p-compact group X , and in particular is p-complete.
Since Map(BP,BQ)Bρ ≃ CQ(ρ(P )) (P and Q are both discrete), we will be done upon
showing that the completion map

Map(BP,BQ)Bρ −−−−−→ Map(BP,BQ∧
p )Bρ (1)

is a mod p homology equivalence.

Fix a sequence of finite subgroups P1 ≤ P2 ≤ · · · whose union is P . Since Q is
artinian, CQ(ρ(Pn)) = CQ(ρ(P )) for n sufficiently large. Also, Map(BP,BQ∧

p )Bρ is the
homotopy inverse limit of the mapping spaces Map(BPn, BQ

∧
p )Bρ. So if (1) is a mod

p equivalence upon replacing P by Pn for each n, it is also a mod p equivalence for P .
In other words, it suffices to prove this when P is a finite p-group.

LetX be the homotopy fiber of the completion map BQ −−−→ BQ∧
p . As noted above,

X is a K(V, 1) where V is a rational vector space. Since the map from Map(BP,BQ)
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to Map(BP,BQ∧
p ) is a bijection on components, the homotopy fiber of the map in (1)

is XhP for a proxy action of P on X (in the sense of [DW]) induced by ρ.

Consider the fibration sequence

XhP −−−−−→ Map(BP,XhP ){1}
pr ◦−
−−−−−→ Map(BP,BP )Id,

where pr denotes the projection of XhP to BP , and the total space is the set of all maps
f : BP −−−→ XhP such that pr ◦f ≃ Id. Since XhP is the total space of a fibration over
BP with fiber X , it is a K(π, 1) where V ⊳ π and π/V ∼= P . Since P is a finite p-group
and V is a rational vector space, this extension splits, and the splitting is unique up
to conjugacy by elements of V .

It follows that

[BP,XhP ]
∼=Rep(P,π)

−−−−−→ [BP,BP ]
∼=Rep(P,P )

is a bijection. Also, the induced map

π1(Map(BP,XhP ){1})
∼=Cπ(P )

−−−−−→ π1(Map(BP,BP )Id)
∼=Z(P )

is surjective, and its kernel V P (where the action of P on V is induced by the action
on X) is a rational vector space.

Thus XhP ≃ K(V P , 1). It follows that XhP is mod p acyclic, and hence that (1) is
a mod p equivalence. This finishes the proof. �

2. Fusion systems over discrete p-toral groups

We now define saturated fusion systems over dicrete p-toral groups and study their
basic properties. The definitions are almost identical to those in the finite case ([BLO2,
§1]).

Definition 2.1. A fusion system F over a discrete p-toral group S is a category whose
objects are the subgroups of S, and whose morphism sets HomF (P,Q) satisfy the fol-
lowing conditions:

(a) HomS(P,Q) ⊆ HomF(P,Q) ⊆ Inj(P,Q) for all P,Q ≤ S.

(b) Every morphism in F factors as an isomorphism in F followed by an inclusion.

Two subgroups P, P ′ ≤ S are called F-conjugate if IsoF(P, P
′) 6= ∅.

Definition 2.2. Let F be a fusion system over a discrete p-toral group S.

• A subgroup P ≤ S is fully centralized in F if |CS(P )| ≥ |CS(P ′)| for all P ′ ≤ S
which is F-conjugate to P .

• A subgroup P ≤ S is fully normalized in F if |NS(P )| ≥ |NS(P
′)| for all P ′ ≤ S

which is F-conjugate to P .

• F is a saturated fusion system if the following three conditions hold:

(I) For each P ≤ S which is fully normalized in F , P is fully centralized in F ,
OutF (P ) is finite, and OutS(P ) ∈ Sylp(OutF (P )).
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(II) If P ≤ S and ϕ ∈ HomF(P, S) are such that ϕ(P ) is fully centralized, and if we
set

Nϕ = {g ∈ NS(P ) |ϕcgϕ
−1 ∈ AutS(ϕ(P ))},

then there is ϕ ∈ HomF (Nϕ, S) such that ϕ|P = ϕ.

(III) If P1 ≤ P2 ≤ P3 ≤ · · · is an increasing sequence of subgroups of S, with
P∞ =

⋃∞
n=1 Pn, and if ϕ ∈ Hom(P∞, S) is any homomorphism such that ϕ|Pn ∈

HomF(Pn, S) for all n, then ϕ ∈ HomF(P∞, S).

By Lemma 1.6, there is a global upper bound for |π0(CS(P ))| and |π0(NS(P ))|, taken
over all subgroups P of any given S. In particular, for any given subgroup P ≤ S,
|CS(P ′)| and |NS(P

′)| take on maximal values among all P ′ which are F -conjugate
to P . This proves that the conjugacy class of P always contains fully centralized
subgroups and fully normalized subgroups.

It is very convenient, in the above definition, to be working with a class of groups
where the concept of “order” of subgroups is defined. However, there are other ways to
define fully normalized and fully centralized subgroups in a fusion system, and hence
to define saturation; and this property was not a factor in our decision to restrict
attention to fusion systems over discrete p-toral groups. The crucial properties of these
groups, which seem to be needed frequently when developing the theory, are that they
are artinian and locally finite.

When F is a saturated fusion system over the discrete p-toral subgroup S, then by
(I), OutF (P ) = AutF(P )/ Inn(P ) is finite for fully normalized P ≤ S, and hence for all
P ≤ S. Since Inn(P ) is discrete p-toral (being a quotient group of P ), AutF (P ) inherits
many of the properties of discrete p-toral groups. In particular, it is artinian, locally
finite, and contains a unique conjugacy class of maximal discrete p-toral subgroups.
This condition that OutF(P ) be finite does simplify slightly the definition of a saturated
fusion system, but it is in fact unnecessary, as is shown by the following proposition.

Proposition 2.3. Let F be a fusion system over the discrete p-toral group S. Assume
that axiom (II) in Definition 2.2 holds, and that (I) holds for all finite fully normalized
subgroups of S. Then OutF(P ) is finite for all P ≤ S.

Proof. Fix P ≤ S. For all m ≥ 1, set P(m) = {g ∈ P0 | gp
m

= 1}. By Proposition
1.5(b), to show that OutF (P ) is finite, it suffices to show that AutF (P ) is a torsion
group.

Fix α ∈ AutF(P ). We want to show that α has finite order; by Lemma 1.7(b),
it suffices to do this when P = P0 is connected. After replacing α by αn for some

appropriate n ≥ 1, we can assume that α|P(1)
= Id. Then by Lemma 1.7(c), αm

def
=

α|P(m)
has p-power order for all m. For each m, there is ϕm ∈ HomF (P(m), S) such

that ϕm(P(m)) is fully normalized, and by (I), ϕm(P(m)) is fully centralized, and ϕm
can be chosen such that ϕmαmϕ

−1
m ∈ AutS(ϕm(P(m))). Also, ϕm can be extended to

ϕm ∈ HomF(S0, S) by (II), so ϕm(P(m)) ≤ S0, and hence |AutS(ϕm(P(m)))| ≤ |S/S0|.
Thus (αm)

|S/S0| = IdP(m)
for each m, so α|S/S0| = IdP , and α has finite order. �

In fact, one can show that in the definition of a saturated fusion system, it suffices
to require that (I) holds for all finite fully normalized subgroups P ≤ S; it then follows
that (I) holds for all fully normalized subgroups.

When F is a (saturated) fusion system over a discrete p-toral group S, we think of
the identity component S0 as the “maximal torus” of the fusion system, and think of
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AutF (S0) as its “Weyl group”. The following lemma describes how morphisms between
subgroups of the maximal torus are controlled by the Weyl group.

Lemma 2.4. Let F be a saturated fusion system over a discrete p-toral group S with
connected component T = S0. Then the following hold for all P ≤ T .

(a) For every P ′ ≤ S which is F-conjugate to P and fully centralized in F , P ′ ≤ T ,
and there exists some w ∈ AutF(T ) such that w|P ∈ IsoF(P, P

′).

(b) Every ϕ ∈ HomF(P, T ) is the restriction of some w ∈ AutF(T ).

Proof. We first prove the following statement.

(c) For each ϕ ∈ HomF(P, S) such that P ′ def
= ϕ(P ) is fully centralized in F , there

exists w ∈ AutF(T ) such that w|P = ϕ.

By assumption, P ≤ T ≤ CS(P ). By condition (II) in Definition 2.2, there is ϕ ∈
HomF (CS(P ), S) such that ϕ|P = ϕ. Then ϕ(T ) ≤ T since T is connected (infinitely

p-divisible), and so ϕ(T ) = T since T is artinian. Thus w
def
= ϕ|T ∈ AutF(T ) is such

that w|P = ϕ. This proves (c), and also proves (a) since P ′ = w(P ) ≤ T .

Now fix any ϕ ∈ HomF(P, T ). Let Q be a fully centralized subgroup of S in the
F -conjugacy class of P and ϕ(P ), and choose ψ ∈ IsoF(ϕ(P ), Q). By (c), there are
elements u, v ∈ AutF(T ) such that u|P = ψ ◦ ϕ and v|ϕ(P ) = ψ. So if we set w = v−1u,
then w|P = ϕ. �

By Proposition 2.3, OutF(P ) is finite for every subgroup P ≤ S. The following
lemma extends this statement.

Lemma 2.5. Let F be a saturated fusion system over a discrete p-toral group S. Then

for all P,Q ≤ S, the set RepF (P,Q)
def
= Inn(Q)\HomF(P,Q) is finite.

Proof. As just noted, OutF(P ) is finite for all P ≤ S. Also, if ϕ, ϕ′ ∈ HomF(P,Q) and
Im(ϕ) = Im(ϕ′), then ϕ′ = ϕ ◦ α for some α ∈ AutF(P ) by condition (b) in Definition
2.1. So there is a bijection

RepF(P,Q)/OutF(P )
∼=

−−−−−→
{
P ′ ≤ Q

∣∣P ′ F -conjugate to P
}/

(Q-conjugacy), (1)

which sends the class of a homomorphism to the conjugacy class of its image.

By Lemma 2.4, the F -conjugacy class (P0) of P0 is just its orbit under the action
of AutF(S0), and hence a finite set. By Lemma 1.4(a), for any given Q ∈ (P0),
there are only finitely many NS(Q)/Q-conjugacy classes of subgroups of order |P/P0|
in NS(Q)/Q. Hence there are only finitely many S-conjugacy classes of subgroups
P ′ ≤ S which are F -conjugate to P and such that P ′

0 = Q. This shows that the target
set in (1) is finite, and hence that RepF(P,Q) is also finite. �

The definitions of centric and radical subgroups in a fusion system over a discrete
p-toral group are essentially the same as those in the finite case.

Definition 2.6. Let F be a fusion system over a discrete p-toral group S. A subgroup
P ≤ S is called F -centric if P and all its F-conjugates contain their S-centralizers. A
subgroup P ≤ S is called F -radical if Op(OutF(P )) = 1; i.e., if OutF (P ) contains no
nontrivial normal p-subgroup.
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Notice that any F -centric subgroup is fully centralized. Conversely, if P ≤ S is fully
centralized and centric in S; that is, Z(P ) = CS(P ), then it is F -centric. The next
proposition says that the set of F -centric subgroups is closed under overgroups.

Proposition 2.7. Let F be a saturated fusion system over the discrete p-toral group
S, and let P ≤ Q ≤ S be such that P is F-centric. Then Q is also F-centric.

Proof. Fix any Q′ which is F -conjugate to Q, choose ϕ ∈ IsoF(Q,Q
′), and set P ′ =

ϕ(P ). Then
CS(Q

′) ≤ CS(P
′) ≤ P ′ ≤ Q′,

where the second inequality holds since P is F -centric. So Q is also F -centric. �

The next proposition gives another important property of F -centric subgroups; one
which is much less obvious.

Proposition 2.8. Let F be a saturated fusion system over the discrete p-toral group
S. Then for each P ≤ Q ≤ S such that P is F-centric, and each ϕ, ϕ′ ∈ HomF(Q, S)
such that ϕ|P = ϕ′|P , there is some g ∈ Z(P ) such that ϕ = ϕ′

◦ cg.

Proof. The hypothesis implies that ϕ ◦ ϕ′−1|ϕ′(P ) = Idϕ′(P ), and we must show that
ϕ ◦ϕ′−1 = Idϕ′(Q). It thus suffices to prove, for P ≤ Q ≤ S and ϕ ∈ HomF(Q, S) where
P is F -centric, that ϕ|P = IdP implies ϕ = cg for some g ∈ Z(P ).

Assume first that P ⊳ Q. Then for each x ∈ Q, cϕ(x)|P = cx|P . Thus ϕ(x) ≡ x (mod
CS(P )), and CS(P ) ≤ P since P is F -centric. In particular, this shows that ϕ(Q) = Q,
and thus that ϕ ∈ AutF(Q). It also shows that ϕ induces the identity on Q/P . Since
Q/P has finite order, ϕ has p-power order by Lemma 1.7(a).

Without loss of generality, we can replace Q by any other subgroup in its F -
conjugacy class. In particular, we can assume that Q is fully normalized, and hence
that OutS(Q) ∈ Sylp(OutF(Q)). So every p-subgroup of AutF(Q) is conjugate to a
subgroup of AutS(Q). Thus there is χ ∈ AutF (Q) such that χ ◦ ϕ ◦ χ−1 = cy for some
y ∈ NS(Q). Since ϕ|P = IdP , cy acts as the identity on ϕ(P ), which is also F -centric,
hence y ∈ CS(ϕ(P )) = ϕ(Z(P )). Set x = χ−1(y); then ϕ = cx.

Now assume P is not normal in Q. Let Q be the set of subgroups Q′ ≤ Q containing
P such that ϕ|Q′ = cg|Q′ for some g ∈ Z(P ). If P ≤ Q′ � Q and Q′ ∈ Q, then
NQ(Q

′) 	 Q′ by Lemma 1.8, and NQ(Q
′) ∈ Q since the proposition holds for the

normal pair Q′ ⊳ NQ(Q
′). Hence if Q contains a maximal element, it must be Q itself.

Let Q1 ≤ Q2 ≤ · · · be any increasing chain in Q, and set Q∞ =
⋃∞
n=1Qn. Let

gn ∈ Z(P ) be such that ϕ|Qn = cgn|Qn. Since P is F -centric, so are the Qn, and thus
Z(Q1) ≥ Z(Q2) ≥ · · · is a decreasing sequence of subgroups. Since S is artinian, there
is some k such that Z(Qn) = Z(Qk) for all n ≥ k. This shows that gn ≡ gk (mod
Z(Qk)) for all n ≥ k, hence that ϕ|Q∞

= cgk |Q∞
, and hence that Q∞ ∈ Q. Thus

by Zorn’s lemma, Q contains a maximal element, so Q ∈ Q, and this finishes the
proof. �

3. A finite retract of a saturated fusion system

A fusion system F over a discrete p-toral group S generally has infinitely many
isomorphism classes of objects. In this section, we construct a subcategory F• of
F with only finitely many isomorphism classes of objects, together with a retraction
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functor from F to F• which is a left adjoint to the inclusion. This means that in
many cases, it will suffice to work over the “finite” subcategory F• rather than the full
fusion system F . As a first application, we show that Ob(F•) contains all F -centric
F -radical subgroups, and hence that there are only finitely many conjugacy classes
of such subgroups. A second application is Alperin’s fusion theorem in this setting:
restriction to F• allows us to repeat the same inductive argument as that used for
fusion systems over a finite p-group.

Following the group theorists’ usual notation, whenever Γ is a group of automor-
phisms of a group G and H ≤ G, we write

CΓ(H) = {γ ∈ Γ | γ|H = IdH}.

The following definitions were motivated by some constructions of Benson [Be], which
he in fact used to prove a version of Alperin’s fusion theorem for compact Lie groups.

Definition 3.1. Let F be a saturated fusion system over a discrete p-toral group S, let
T = S0 be the identity component of S, and set W = AutF (T ) = OutF (T ) (the “Weyl
group”). Set

pm = exp(S/T )
def
= min{pk | xp

k

∈ T ∀ x ∈ S}.

(a) For each P ≤ T , set

I(P ) = TCW (P ) =
{
t ∈ T

∣∣w(t) = t ∀ w ∈ W such that w|P = IdP
}
;

and let I(P )0 be the identity component of I(P ).

(b) For each P ≤ S, let P [m] = 〈gp
m

| g ∈ P 〉 ≤ T , and set

P • = P ·I(P [m])0
def
= {gt | g ∈ P, t ∈ I(P [m])0}.

(c) Set

H(F) = {I(P )0 |P ≤ T}, and H•(F) = {P • |P ≤ S};

and let F• ⊆ F be the full subcategory with object set H•(F).

Thus for P ≤ T , I(P ) is the maximal subgroup of T such that for all w ∈ W , w|P =
Id if and only w|I(P ) = Id. In particular, for all v and w in W , v|P = w|P if and only if
v|I(P ) = w|I(P ). Together with Lemma 2.4(b), this implies that every ϕ ∈ HomF(P, T )
extends to a unique I(ϕ) ∈ HomF(I(P ), T ), which is obtained by first extending ϕ to
T and then restricting to I(P ). In other words, every F -isomorphism ϕ : P → Q
between subgroups of T extends to a unique F -isomorphism I(ϕ) : I(P )→ I(Q).

For an arbitrary subgroup P ≤ S, P [m] is a subgroup of T , and the above arguments
apply. Since P [m] ⊳ P , any x ∈ P normalizes P [m], and hence also normalizes I(P [m]).

Thus P normalizes I(P [m])0, and this shows that the subset P • def
= P ·I(P [m])0 is a

group.

More generally, for any k ≥ m, we could define subgroups P •k ≥ P for each P ≤ S
by setting P •k = P ·I(P [k]). This can be different from P •, but P 7→ P •k has all of
the same properties which we prove here for P •. However, the only way in which
this generalization might be needed would be if we wanted to compare these “bullet
functors” for two different fusion systems over two different discrete p-toral groups,
and that will not be needed in this paper.

Lemma 3.2. The following hold for every saturated fusion system F over a discrete
p-toral group S.
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(a) The set H(F) is finite, and the set H•(F) contains finitely many S-conjugacy
classes of subgroups of S.

(b) For all P ≤ S, (P •)• = P •.

(c) If P ≤ Q ≤ S, then P • ≤ Q•.

(d) If P ≤ S is F-centric, then Z(P •) = Z(P ).

Proof. Let T = S0 ⊳ S be the identity component, and set W = AutF(T ) and p
m =

exp(S/T ). Note that for any P ≤ Q ≤ T , CW (P ) ≥ CW (Q), and hence I(P ) ≤ I(Q).
Also, CW (I(P )) = CW (P ) by definition, and hence I(I(P )) = I(P ).

(a) By definition, each subgroup in H(F) has the form I(P )0 = (TK)0 for some
P ≤ T , where K = CW (P ) ≤ W . Since the finite group W = OutF(T ) has a
finite number of subgroups, this shows that H(F) is finite. Also, for any P ≤ S,
P0 ≤ P [m] ≤ I(P [m]), and so (P •)0 = I(P [m])0 ∈ H(F). In particular, there are only
finitely many possibilities for identity components of subgroups in H•(F).

Fix P ≤ S, and set K = CW (P [m]). Since P [m] is generated by all pm-powers in P
(and pm = exp(S/T )), P [m] ≤ T and

[P :P [m]] = [P :(P∩T )]·[(P∩T ):P [m]] ≤ |S/T |·pm· rk(T ).

Here, the last inequality holds since (P ∩ T )/P [m] is abelian with exponent at most pm

and rank at most rk(T ). Also, since P [m]·I(P [m])0 = P [m]·(TK)0 ≤ TK ,

|π0(P
•)| = |π0(P ·(T

K)0)| ≤ |π0(P
[m]·(TK)0)|·|P/P

[m]|

≤ |π0(T
K)|·|P/P [m]| ≤ |π0(T

K)|·|S/T |·pm· rk(T ).

We have already seen that (TK)0 is the identity component of P •, and we have just
shown that the number of components of P • is bounded by an integer which depends
only on K (and on S). Since NS((T

K)0)/(T
K)0 has only finitely many conjugacy

classes of finite subgroups of any given order (Lemma 1.4(a)), this shows that there are
only finitely many conjugacy classes of subgroups in H•(F) corresponding to any given
K ≤W ; and thus (since W is finite) only finitely many conjugacy classes of subgroups
in H•(F).

(b) Fix P ≤ S. Since P normalizes I(P [m])0, for any g ∈ P and any x ∈ I(P [m])0,
(gx)p

m

∈ gp
m

·I(P [m])0 ≤ P [m]·I(P [m])0. This proves the second inequality on the
following line:

P [m] ≤ (P •)[m] ≤ P [m]·I(P [m])0 ≤ I(P [m]),

and the others are clear. Since I(−) is idempotent and preserves order, this shows that
I((P •)[m]) = I(P [m]). Hence (P •)• = P •·I(P [m])0 = P •.

(c) If P ≤ Q, then P [m] ≤ Q[m], so I(P [m]) ≤ I(Q[m]), and hence P • ≤ Q•.

(d) For any P ≤ S, P ≤ P •. Thus if P is F -centric, then so is P •, and Z(P •) ≤ Z(P ).
To see that this is an equality, it suffices to show that every element in Z(P ) commutes
with I(P [m]). For all x ∈ Z(P ), cx (as an element of W = AutF(T )) lies in CW (P [m]),

hence commutes with all elements of I(P [m]) = TCW (P [m]), and in particular with all
elements of I(P [m])0. �

We are now ready to prove the main, crucial, property of these subgroups P •.
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Proposition 3.3. Let F be a saturated fusion system over a discrete p-toral group
S. Fix P,Q ≤ S and ϕ ∈ HomF(P,Q). Then ϕ extends to a unique homomorphism
ϕ• ∈ HomF (P

•, Q•); and this makes P 7→ P • into a functor from F to itself.

Proof. The functoriality of P 7→ P • and ϕ 7→ ϕ• (i.e., the fact that (IdP )
• = IdP • and

(ψ ◦ ϕ)• = ψ•
◦ ϕ•) follows immediately from the existence and uniqueness of these

extensions. So this is what we need to prove.

As usual, we set T = S0 and W = AutF(T ). For all Q ≤ T , CW (Q) = CW (I(Q)) by
definition of I(−). This will be used frequently throughout the proof.

We first check that there is at most one morphism ϕ• which extends ϕ. Assume that
ψ, ψ′ ∈ HomF(P

•, Q•) are two such extensions. By Lemma 2.4(b), there are elements
w,w′ ∈ W such that ψ|P [m]·I(P [m])0 = w|P [m]·I(P [m])0 and ψ′|P [m]·I(P [m])0 = w′|P [m]·I(P [m])0 .

Since w|P [m] = w′|P [m], w−1w′ ∈ CW (P [m]) = CW (I(P [m])), so w|I(P [m]) = w′|I(P [m]) as

well. It follows that ψ = ψ′, since they take the same values on P and on I(P [m])0.

It remains to prove the existence of ϕ•. By Lemma 3.2(c), it suffices to prove this
when ϕ ∈ IsoF(P,Q). Recall that P

• = P ·I(P [m])0. Fix u ∈ W = AutF(T ) such that
u|P [m] = ϕ|P [m]. Define ϕ• by setting, for all g ∈ P and all x ∈ I(P [m])0,

ϕ•(gx) = ϕ(g)u(x).

After two preliminary steps, we show in Step 3 that ϕ• is well defined and a homomor-
phism, and in Step 4 that it is a morphism in F .

Step 1: Fix A,A′ ≤ T , and w ∈ W such that w(A) = A′. We show here that

A ≤ B ≤ I(A), ψ ∈ HomF(B, T ), ψ|A = w|A =⇒ ψ = w|B; (1)

and also that

A ≤ B ≤ A·I(A)0, ψ ∈ HomF(B, S), ψ|A = w|A =⇒ ψ(B) ≤ T and ψ = w|B. (2)

If ψ(B) ≤ T , then ψ = w′|B for some w′ ∈ W by Lemma 2.4(b), w−1w′ ∈ CW (A) =
CW (I(A)), and thus ψ = w′|B = w|B. This proves (1).

Now assume B ≤ A·I(A)0. By Lemma 2.4(a), there is w′ ∈ W such that w′(B) is
fully centralized in F . It thus suffices to prove (2) when B is fully centralized. Set
B′ = ψ(B) for short.

Now, B′ ≥ A′ and B′ is abelian. So for all x ∈ B′, if we regard cx as an element of
W = AutF (T ), then cx ∈ CW (A′) = CW (I(A′)). Thus I(A′) = w(I(A)) ≤ CS(B

′). By
axiom (II) (and since B = ψ−1(B′) is fully centralized), ψ−1 extends to an F -morphism
defined on B′·CS(B′), and in particular to a morphism β ∈ HomF (B

′·I(A′), S). Since
β|A′ = w−1|A′ and β(I(A′)0) ≤ T , β|A′·I(A′)0 = w−1|A′·I(A′)0 by (1).

Thus for all x ∈ B′, β(x) = ψ−1(x) ∈ B ≤ A·I(A)0 = β(A′·I(A′)0). Since β is
injective, this shows that x ∈ A′·I(A′)0 ≤ T . So B′ ≤ T , and (2) now follows from (1).

Step 2: We next show that for all x ∈ I(P [m]) and all g ∈ P , the following identity
holds:

u(gxg−1) = ϕ(g)u(x)ϕ(g)−1; (3)

or equivalently that c−1
ϕ(g) ◦u◦cg(x) = u(x). Set w = c−1

ϕ(g) ◦u◦cg ∈ W for short. Then (3)

holds for x ∈ P [m] since ϕ|P [m] = u|P [m], and thus w|P [m] = u|P [m]. So w|I(P [m]) = u|I(P [m])

by (1), and this proves (3) for all x ∈ I(P [m]).
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Step 3: Recall that we defined ϕ•(gx) = ϕ(g)u(x) for all g ∈ P and x ∈ I(P [m])0.

By assumption, ϕ|P [m] = u|P [m]. Hence the restrictions of ϕ and u to P [m]·(P ∩I(P [m]
0 ))

are equal by (2), and this shows that ϕ• is well defined.

For all g, g′ ∈ P and all x, x′ ∈ I(P [m])0,

ϕ•((gx)(g′x′)) = ϕ(gg′)·u(g′−1xg′x′) = ϕ(gg′)·
(
ϕ(g′)−1u(x)ϕ(g′)

)
·u(x′)

= ϕ(g)u(x)ϕ(g′)u(x′) = ϕ•(gx)·ϕ•(g′x′),

where the second equality follows from Step 2. Thus ϕ• is a homomorphism.

Step 4: It remains to show that ϕ• ∈ IsoF(P
•, Q•); i.e., that ϕ• is a morphism

in the category F . By condition (III) in Definition 2.2, together with Zorn’s lemma,
there is a maximal subgroup P ′ ≤ P • containing P such that ϕ•|P ′ ∈ HomF(P

′, Q•).
Assume P ′ � P •; and set ϕ′ = ϕ•|P ′ and P ′′ = NP •(P ′) 	 P ′. By condition (II) in
Definition 2.2, ϕ′ extends to some morphism ψ ∈ HomF(P

′′, S) (the existence of the
homomorphism ϕ• shows that Nϕ′ ≥ P ′′). By (2) again, the restrictions of ψ, u, and
ϕ• to P ′′ ∩ (P [m]·I(P [m])0) are equal. Since P ′′ = P ·(P ′′ ∩ I(P [m])0), this shows that
ψ = ϕ•|P ′′. This contradicts the maximality assumption about P ′; so P ′ = P •, and we
are done. �

Note in particular that by Lemma 3.2(c), the functor F
(−)•

−−−→ F• of Proposition 3.3
sends inclusions of subgroups to inclusions.

Corollary 3.4. The functor (−)• is a left adjoint to the inclusion of F• as a full
subcategory of F .

Proof. Fix any P in F and any Q in F•. Since Q = Q• by Lemma 3.2(b), every
ϕ ∈ HomF (P,Q) extends to a unique ϕ• ∈ HomF(P

•, Q) by Proposition 3.3. The
restriction map

HomF (P
•, Q)

Res
−−−−−−→ HomF(P,Q)

is thus a bijection, and this proves adjointness. �

Corollary 3.4 will later be extended to orbit and linking categories associated to F
and F•.

Corollary 3.5. Let F be a saturated fusion system over a discrete p-toral group S.
Then all F-centric F-radical subgroups of S are in H•(F), and in particular there are
only finitely many conjugacy classes of such subgroups.

Proof. Assume P is F -centric and F -radical. We claim that I(P [m])0 ≤ P , and thus
that P = P • ∈ H•(F).

Assume otherwise. Then P • 	 P , and hence NP •(P ) 	 P by Lemma 1.8. Thus
NP •(P )/P 6= 1, and since P is F -centric, this group can be identified with a p-subgroup
of OutF(P ). By Proposition 3.3, any α ∈ AutF(P ) extends to an automorphism of
P •, and in particular to an automorphism of NP •(P ). This shows that NP •(P )/P ⊳

OutF(P ), which contradicts the assumption that P is F -radical.

The last statement now follows since H•(F) contains only finitely many conjugacy
classes by Lemma 3.2(a). �

As a third consequence of Proposition 3.3, we now prove Alperin’s fusion theorem
in our context. This theorem was originally formulated for finite groups in [Al], and
then for saturated fusion systems over finite p-groups by Puig [Pu] (see also [BLO2,
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Theorem A.10]). Our approach here (and our definition of P •) is modelled on Benson’s
proof of the theorem for fusion in compact Lie groups [Be].

Theorem 3.6 (Alperin’s fusion theorem). Let F be a saturated fusion system over
a discrete p-toral group S. Then for each ϕ ∈ IsoF(P, P

′), there exist sequences of
subgroups of S

P = P0, P1, . . . , Pk = P ′ and Q1, Q2, . . . , Qk,

and elements ϕi ∈ AutF(Qi), such that

(a) Qi is fully normalized in F , F-radical, and F-centric for each i;

(b) Pi−1, Pi ≤ Qi and ϕi(Pi−1) = Pi for each i; and

(c) ϕ = ϕk ◦ ϕk−1 ◦ · · · ◦ ϕ1.

Proof. For each P ≤ S, let ν(P ) be the number of F -conjugacy classes of subgroups
in H•(F) which contain P . We prove the theorem by induction on ν(P ). Using
Proposition 3.3, we can assume that P, P ′ ∈ H•(F). The claim is clear when ν(P ) = 1
(i.e., P = S).

Assume P � S. Let P ′′ ≤ S be any subgroup which is F -conjugate to P and fully
normalized in F , and fix ψ ∈ IsoF(P, P

′′). The theorem holds for ϕ ∈ IsoF(P, P
′) if it

holds for ψ and for ψ ◦ ϕ−1 ∈ IsoF(P
′, P ′′). So we are reduced to proving the theorem

when the target group P ′ is fully normalized in F .

Since P ′ is fully normalized, the p-subgroup ϕ◦AutS(P )◦ϕ
−1 of AutF(P

′) is conjugate
to a subgroup of AutS(P

′). Let χ ∈ AutF(P
′) be such that (χ◦ϕ)◦AutS(P )◦(χ◦ϕ)−1 ≤

AutS(P
′). By condition (II) in Definition 2.2, there is ϕ ∈ HomF(NS(P ), S) such that

ϕ|P = χ ◦ ϕ. Since NS(P ) 	 P (since P � S) and P ∈ H•(F), ν(NS(P )) < ν(P ), and
the theorem holds for ϕ (as an isomorphism to its image) by the induction hypothesis.
So it holds for ϕ if and only if it holds for χ. Hence it now remains only to prove it
when P = P ′ is fully normalized in F , P ∈ H•(F), and ϕ ∈ AutF(P ).

In particular, P is fully centralized in F . So if P is not F -centric, then by condition
(II) in Definition 2.2, ϕ extends to an automorphism ϕ ∈ AutF(CS(P )·P ). Since
ν(CS(P )·P ) < ν(P ), the theorem holds for ϕ by the induction hypothesis.

Now assume that P is not F -radical. Let K ≤ AutF(P ) be the subgroup such
that K/ Inn(P ) = Op(OutF(P )) 6= 1. Since P is fully normalized in F , OutS(P ) ∈
Sylp(OutF(P )), and so K ≤ AutS(P ). In particular,

NK
S (P )

def
=

{
g ∈ NS(P )

∣∣ cg|P ∈ K
}
	 P

since K 	 Inn(P ). Also, for each g ∈ NK
S (P ), ϕcgϕ

−1 ∈ K (since K ⊳ AutF(P )),
and hence ϕcgϕ

−1 = ch for some h ∈ NK
S (P ). So by condition (II) in Definition 2.2,

ϕ extends to an automorphism of NK
S (P ) 	 P , and the theorem again holds for ϕ by

the induction hypothesis.

Finally, if ϕ ∈ AutF(P ) and P ∈ H•(F) is a fully normalized F -centric F -radical
subgroup of S, then the theorem holds for trivial reasons. �
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4. Linking systems over discrete p-toral groups

We are now ready to define linking systems associated to a fusion system over a dis-
crete p-toral group, and to study the relationship between linking systems and certain
finite full subcategories.

Definition 4.1. Let F be a fusion system over the discrete p-toral group S. A centric
linking system associated to F is a category L whose objects are the F-centric subgroups
of S, together with a functor

π : L −−−−−−→ F c,

and “distinguished” monomorphisms P
δP−−→ AutL(P ) for each F-centric subgroup P ≤

S, which satisfy the following conditions.

(A) π is the identity on objects and surjective on morphisms. More precisely, for each
pair of objects P,Q ∈ L, Z(P ) acts freely on MorL(P,Q) by composition (upon
identifying Z(P ) with δP (Z(P )) ≤ AutL(P )), and π induces a bijection

MorL(P,Q)/Z(P )
∼=

−−−−−−→ HomF(P,Q).

(B) For each F-centric subgroup P ≤ S and each g ∈ P , π sends δP (g) ∈ AutL(P ) to
cg ∈ AutF(P ).

(C) For each f ∈ MorL(P,Q) and each g ∈ P , the following square commutes in L:

P
f
→ Q

P

δP (g)
↓

f
→ Q .

δQ(π(f)(g))
↓

More generally, if F0 ⊆ F c is any subcategory, then a linking system associated to F0

is a category L0, together with a functor L0
π0−−→ F0 and distinguished monomorphisms

P
δP−−→ AutL0(P ) for P ∈ Ob(F0) = Ob(L0), which satisfy conditions (A), (B), and

(C) above.

It is now clear, by analogy with the finite case, how to define p-local compact groups.

Definition 4.2. A p-local compact group is a triple (S,F ,L), where S is a discrete p-
toral group, F is a saturated fusion system over S, and L is a linking system associated
to F . The classifying space of such a triple (S,F ,L) is the p-completed nerve |L|∧p .

The following very basic lemma about linking systems extends [BLO2, Lemma 1.10]
to this situation.

Lemma 4.3. Fix a p-local compact group (S,F ,L), and let π : L −−→ F c be the pro-
jection. Fix F-centric subgroups P,Q,R in S. Then the following hold.

(a) Fix any sequence P
ϕ
−−→ Q

ψ
−−→ R of morphisms in F c, and let ψ̃ ∈ π−1

Q,R(ψ)

and ψ̃ϕ ∈ π−1
P,R(ψϕ) be arbitrary liftings. Then there is a unique morphism ϕ̃ ∈

MorL(P,Q) such that

ψ̃ ◦ ϕ̃ = ψ̃ϕ; (1)

and furthermore πP,Q(ϕ̃) = ϕ.
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(b) If ϕ̃, ϕ̃′ ∈ MorL(P,Q) are such that the homomorphisms ϕ
def
= πP,Q(ϕ̃) and ϕ′ def

=
πP,Q(ϕ̃

′) are conjugate (differ by an element of Inn(Q)), then there is a unique
element g ∈ Q such that ϕ̃′ = δQ(g) ◦ ϕ̃ in MorL(P,Q).

Proof. Part (a) is an easy application of axiom (A) for a linking system. Part (b) is
first reduced to the case where ϕ = ϕ′ using axiom (B), and this case then follows from
(A) and (C). For more detail, see the proof of [BLO2, Lemma 1.10]. �

We next show that the nerve of a linking system is p-good, and hence that the
classifying space of a p-local compact group is p-complete.

Proposition 4.4. Let (S,F ,L) be any p-local compact group at the prime p. Then |L|
is p-good. Also, the composite

S
π1(θ)

−−−−−−−−→ π1(|L|) −−−−→ π1(|L|
∧
p ),

induced by the inclusion BS
θ
−−−→ |L|, factors through a surjection π0(S) −։ π1(|L|∧p ).

Proof. For each F -centric subgroup P ≤ S, fix a morphism ιP ∈ MorL(P, S) which
lifts the inclusion (and set ιS = IdS). By Lemma 4.3(a), for each P ≤ Q ≤ S, there is

a unique morphism ιQP ∈ MorL(P,Q) such that ιQ ◦ ιQP = ιP .

Regard the vertex S as the basepoint of |L|. Define

ω : Mor(L) −−−−−→ π1(|L|)

by sending each ϕ ∈ MorL(P,Q) to the loop formed by the edges ιP , ϕ, and ιQ (in
that order). Clearly, ω(ψ ◦ ϕ) = ω(ψ)·ω(ϕ) whenever ψ and ϕ are composable, and

ω(ιQP ) = ω(ιP ) = 1 for all P ≤ Q ≤ S. Also, π1(|L|) is generated by Im(ω) since any
loop in |L| can be split up as a composite of loops of the above form.

By Theorem 3.6 (Alperin’s fusion theorem), each morphism in F , and hence each
morphism in L, is (up to inclusions) a composite of automorphisms of fully normalized
F -centric subgroups. Thus π1(|L|) is generated by the subgroups ω(AutL(P )) for all
fully normalized F -centric P ≤ S.

Let K ⊳ π1(|L|) be the subgroup generated by all infinitely p-divisible elements. For
each fully normalized F -centric P ≤ S, AutL(P ) is generated by its Sylow subgroup
NS(P ) together with elements of order prime to p. Hence π1(|L|) is generated by K
together with the subgroups ω(NS(P )); and ω(NS(P )) ≤ ω(S) for each P . This shows
that ω sends S surjectively onto π1(|L|)/K, and hence (since the identity component
of S is infinitely divisible) factors through a surjection of π0(S) onto π1(|L|)/K. In
particular, this quotient group is a finite p-group.

Set π = π1(|L|)/K for short. Since K is generated by infinitely p-divisible elements,
the same is true of its abelianization, and hence H1(K;Fp) = 0. Thus, K is p-perfect.
Let X be the cover of |L| with fundamental group K. Then X is p-good and X∧

p is
simply connected since π1(X) is p-perfect [BK, VII.3.2]. Also, since π is a finite p-group,
it acts nilpotently on Hi(X ;Fp) for all i. Hence X∧

p −−→ |L|
∧
p −−→ Bπ is a fibration

sequence and |L|∧p is p-complete by [BK, II.5.1]. So |L| is p-good, and π1(|L|∧p )
∼= π is

a quotient group of π0(S). �

Recall, from Section 3, that for any saturated fusion system F , we defined a finite
subcategory F• such that the inclusion F• ⊆ F has a left adjoint (−)•. We next show
that we can do the same on the level of linking systems.
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Proposition 4.5. Let F be a saturated fusion system over a discrete p-toral group
S, and let F c• ⊆ F c be the full subcategory whose objects are the F-centric subgroups
contained in H•(F).

(a) Let L be a centric linking system associated to F , and let L• ⊆ L be the full
subcategory with Ob(L•) = Ob(F c•). Then the inclusion L• →֒ L has a left adjoint,
which sends P to P • for each F-centric P ≤ S. In particular, the inclusion |L•| ⊆
|L| is a homotopy equivalence.

(b) Let L• be a linking system associated to F c•. Let L be the category whose objects
are the F-centric subgroups of S, and where

MorL(P,Q) =
{
ϕ ∈ MorL•(P •, Q•)

∣∣π•(ϕ)(P ) ≤ Q};

and let δP : P −−−→ AutL(P ) be the restriction of ∆P •. In other words, L is the
pullback category in the following square:

L → L•

F c

π
↓

(−)•

→F c• .

π•

↓

Then L is a centric linking system associated to F .

Proof. (a) For each F -centric subgroup P ≤ S, fix a morphism ιP ∈ MorL(P, S)
such that π(ιP ) is the inclusion (and such that ιS = IdS). For any pair of F -centric
subgroups P ≤ Q ≤ S, the same group Z(P ) acts freely and transitively on the sets of
morphisms in L covering the inclusions P ⊆ Q and P ⊆ S, and hence there is a unique
morphism ιQP ∈ MorL(P,Q) such that ιQ ◦ ιQP = ιP .

Now let ϕ ∈ HomF(P,Q) be any morphism in F c. By Proposition 3.3, ϕ has a unique
extension to ϕ• ∈ HomF(P

•, Q•). Also, by Lemma 3.2(d), Z(P •) = Z(P ). Hence by
condition (A) in the definition of a linking system, restriction sends the morphisms in
π−1(ϕ•) bijectively to the morphisms in π−1(ϕ). Thus for any ψ ∈ MorL(P,Q) such
that π(ψ) = ϕ, there is a unique “extension” ψ• ∈ MorL(P

•, Q•) of ψ; i.e., a unique

morphism such that ψ•
◦ ιP

•

P = ιQ
•

Q ◦ ψ.

Thus, if we define θ : L −−→ L• by setting θ(P ) = P • and θ(ψ) = ψ•, then θ is well
defined. This also shows that MorL(P,Q) = MorL(P

•, Q) when Q = Q•, and thus that
θ is a left adjoint functor to the inclusion. Since the inclusion has a left adjoint, it
follows that it induces a homotopy equivalence |L•| ≃ |L|.

(b) Since Z(P ) = Z(P •) for all F -centric P ≤ S (Lemma 3.2(d) again), axiom (A)
for L follows from the same axiom applied to L•. Axioms (B) and (C) for L follow
immediately from axioms (B) and (C) for L• by restriction. �

We finish the section with a description of the relation between linking systems
associated to a given fusion system F0, and rigidifications of the homotopy functor
B : Oc(F0) −−−→ hoTop defined by setting B(P ) = BP . Each linking system L0 in-
duces a rigidification of B, which in turn defines a decomposition of |L0| as a homotopy
colimit. More precisely, by a “rigidification of the homotopy functor B” in the following

proposition is meant a functor B̃ : O(F0) −−−→ Top together with a natural homotopy

equivalence of functors (in hoTop) from B to ho ◦ B̃; i.e., a natural transformation of

functors to hoTop which defines a homotopy equivalence BP −−−→ B̃(P ) for each P . A
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natural homotopy equivalence of rigidifications from B̃ to B̃′ is a natural transformation

B̃
κ

−−−−−→ B̃′

of functors to Top such that ho(κ) commutes with the functors from B. Two rigidifica-

tions B̃1 and B̃2 are equivalent if there is a third rigidification B̃0 and natural homotopy
equivalences B̃1 −−−→ B̃0 ←−−− B̃2; this is seen to be an equivalence relation by taking
pushouts.

By a linking system L0 in the following proposition is always meant the category
L0 together with the projection to the associated fusion system and the distinguished
monomorphisms. Hence an isomorphism of linking systems means an isomorphism of
the categories which is natural with respect to these other structures.

Proposition 4.6. Fix a saturated fusion system F over a discrete p-toral group S,
and let F0 ⊆ F c be any full subcategory. Then there are mutually inverse bijections




linking systems
associated to F0

up to isomorphism





ke
−−−−−−−→←−−−−−−−

ls





rigidifications O(F0) → Top

of the homotopy functor B
up to natural homotopy equivalence



 .

More precisely, the following hold for any linking system L0 associated to F0 and any

rigidification B̃ of the homotopy functor B on O(F0).

(a) The left homotopy Kan extension ke(L0) of the constant functor L0
∗
−−→ Top along

the projection π̃0 : L0 −−→ O(F0) is a rigidification of B, and there is a homotopy
equivalence

|L0| ≃ hocolim−−−−−→
O(F0)

(ke(L0)) . (1)

(b) There is a linking system ls(B̃) associated to F0, and a natural homotopy equiva-
lence of functors

ke(ls(B̃))
≃

−−−−−→ B̃.

Furthermore, if B̃′ is another rigidification of B, any natural homotopy equiva-

lence of rigidifications κ : B̃ −−→ B̃′ induces an isomorphim κ♯ : ls(B̃) −−→ ls(B̃′)
of linking systems.

(c) There is an isomorphism L0
∼= ls(ke(L0)) of linking systems associated to F0.

We define ke([L0]) = [ke(L0)] for each L0, and ls([B̃]) = [ls(B̃)] for each B̃.

Proof. The left homotopy Kan extension is natural with respect to isomorphisms
L0 −−→ L′

0 of linking systems. Thus ke sends isomorphic systems to natural homotopy
equivalent functors O(F0) −−→ Top, these are rigidifications of B by (a), and hence ke
is well defined. Point (b) implies that ls is well defined, and it also implies that ls ◦ke

is the identity. Finally, (c) implies that ke ◦ ls is the identity. Hence the Proposition
follows once we prove (a), (b), and (c).

(a) Fix L0, and set B̃ = ke(L0) for short. Recall that we write RepF(P,Q) =

MorO(F)(P,Q). By definition, for each P in F0, B̃(P ) is the nerve (homotopy colimit
of the point functor) of the overcategory π̃0↓P , whose objects are pairs (Q,α) for Q in
L0 and α ∈ RepF(Q,P ), and where

Morπ̃0↓P
(
(Q,α), (R, β)

)
=

{
ϕ ∈ MorL(Q,R)

∣∣α = β ◦ π̃0(ϕ)
}
. (2)

Since |L0| ∼= hocolim−−−−−→L0
(∗), (1) holds by [HV, Theorem 5.5].
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It remains to show that B̃ is a rigidification of the homotopy functor B. Fix a
section σ̃ : Mor(O(F0)) −−→ Mor(L0) of π̃0 which sends identity morphisms to identity
morphisms. For each P , let B(P ) be the category with one object oP and morphism
group P (so |B(P )| ∼= BP ), and define functors

B(P )
θP−−−−−−→ π̃0↓P

ΨP−−−−−−→ B(P )

as follows. Let θP (oP ) = (P, Id), and θP (g) = δP (g) (as a morphism in π̃0↓P us-
ing (2)) for all g ∈ P . Set ΨP (Q,α) = oP ; and let ΨP send each morphism ϕ ∈
Morπ̃0↓P ((Q,α), (R, β)) to the unique element g ∈ P (unique by Lemma 4.3(b)) such
that the following square commutes:

Q
ϕ
→ R

P

σ̃(α)
↓

δP (g)
→ P .

σ̃(β)
↓

Clearly, ΨP ◦ θP = IdB(P ). As for the other composite, define f : Id −−→ θP ◦ ΨP by
sending each object (Q,α) to the morphism σ̃(α) ∈ MorL(Q,P ). This is clearly a
natural transformation of functors, and thus

B̃(P ) = |π̃0↓P | ≃ |B(P )| ≃ BP.

To finish the proof that B̃ is a rigidification of the homotopy functor B, we must
show, for any ϕ ∈ HomF(P,Q), that the following square commutes up to natural
transformation:

B(P )
θP → π̃0↓P

B(Q)

Bϕ
↓

θQ
→ π̃0↓Q .

ϕ◦−
↓

Here, [ϕ] ∈ RepF(P,Q) denotes the class of ϕ. This means constructing a natural

transformation F1
Φ
−−−→ F2 of functors B(P ) −−→ π̃0↓Q, where F1 = ([ϕ] ◦−) ◦ θP and

F2 = θQ ◦ Bϕ are given by the formulas

F1(oP ) = (P, [ϕ]), F1(g) = δP (g), and F2(oP ) = (Q, Id), F2(g) = δQ(ϕ(g)).

Let ϕ̃ ∈ MorL(P,Q) be any lifting of ϕ. Then by condition (C), Φ can be defined by
sending the object oP to the morphism ϕ̃ ∈ Morπ̃0↓P

(
(P, [ϕ]), (Q, Id)

)
.

(b) We first fix some notation. For any space X and any x, x′ ∈ X , π1(X ; x, x′) denotes
the set of homotopy classes of paths in X (relative endpoints) from x to x′. For any
u ∈ π1(X ; x, x′), u∗ denotes the induced isomorphism from π1(X, x) to π1(X, x

′). Also,
for any map of spaces f : X → Y , f∗ denotes the induced map from π1(X ; x, x′) to
π1(Y ; f(x), f(x

′)).

Now fix a rigidification B̃ : O(F0) → Top; we want to define a linking system

L0 = ls(B̃) associated to F . Since B̃ is a rigidification of the homotopy functor B,

we are given homotopy equivalences BP
ǫP−−−→ B̃(P ) such that the following square

commutes up to homotopy for each ϕ ∈ HomF (P,Q):

BP
ǫP
→ B̃(P )

BQ

Bϕ
↓

ǫQ
→ B̃(Q) .

B̃([ϕ])↓
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Here, [ϕ] ∈ RepF(P,Q) denotes the class of ϕ (mod Inn(Q)). For each P in F0, let

∗P ∈ B̃(P ) be the image under ǫP of the base point of BP , and let

γP : P
∼=

−−−−−−→ π1(B̃(P ), ∗P )

be the isomorphism induced by ǫP on fundamental groups.

Let L0 = ls(B̃) be the category with Ob(L0) = Ob(F0), and with

MorL0(P,Q) =
{
(ϕ, u)

∣∣ϕ ∈ RepF(P,Q), u ∈ π1(B̃(Q); B̃ϕ(∗P ), ∗Q)
}
.

Composition is defined by setting

(ψ, v) ◦ (ϕ, u) = (ψϕ, v · B̃ψ∗(u)),

where paths are composed from right to left. Let π0 : L0 −−→ F0 be the functor which
is the identity on objects, and which sends (ϕ, u) ∈ MorL0(P,Q) to the composite

P
γP−−−−→
∼=

π1(B̃(P ), ∗P )
B̃ϕ∗
−−−−→ π1(B̃(Q), B̃ϕ(∗P ))

u∗−−−−→ π1(B̃(Q), ∗Q)
γ−1
Q

−−−−→
∼=

Q.

Also, for each P , define

δP : P −−−−→ AutL0(P ) by setting δP (g) = (IdP , γP (g)).

Axioms (A), (B), and (C) for a centric linking system are easily seen to hold for L0.
For example, (C) follows as an immediate consequence of the definition of π0.

Now set B1 = ke(L0) = ke(ls(B̃)): the left homotopy Kan extension along the
projection π̃0 : L0 −−→ O(F0) of the constant point functor on L0. Thus B1(P ) =
|B1(P )| for each P , where B1(P ) is the category with objects the pairs (Q,α) for
α ∈ RepF(Q,P ), and with morphism sets

MorB1(P )

(
(Q,α), (R, β)

)
=

{
ϕ̂ ∈ MorL0(Q,R)

∣∣α = β ◦ π̃0(ϕ̂)
}

=
{
(ϕ, u)

∣∣ϕ ∈ RepF(Q,R), α = β ◦ ϕ, u ∈ π1(B̃(R); B̃ϕ(∗Q), ∗R)
}
.

We define a natural homotopy equivalence of functors Ψ: B1 −−−→ B̃ as follows. For

all P , maps ΨP : B1(P ) → B̃(P ) are defined inductively, one skeleton at a time, (and
simultaneously for all P ) as follows.

• Each vertex (Q,α) in B1(P ) = |B1(P )| is sent to B̃(α)(∗Q) ∈ B̃(P ).

• For each edge σ =
(
(Q,ϕ)

(ϕ,u)
−−−→ (P, Id)

)
in B1(P ), where

ϕ ∈ RepF(Q,P ) and u ∈ π1(B̃(P ); B̃ϕ(∗Q), ∗P ),

ΦP |σ = û for some path û in the homotopy class of u.

• For each edge σ =
(
(Q,ϕ)

(ϕ,u)
−−−→ (R, β)

)
in B1(P ), where β 6= IdP , write σ′ =

(
(Q,ϕ)

(ϕ,u)
−−−→ (R, Id)

)
(an edge in B1(R)), and set ΦP |σ = B̃(β) ◦ (ΨR|σ′).

• Consider a simplex of dimension m ≥ 2 in B1(P ) of the form

σ =
(
(Q0, α0) −−−→ (Q1, α1) −−−→ · · · −−−→ (Qm, αm)

)
.

If (Qm, αm) = (P, Id), then let ΨP |σ be any singular simplex in B̃(P ) whose bound-
ary is as already defined. Otherwise, let σ′ be the unique simplex in B1(Qm) rep-
resenting a chain ending in (Qm, Id) such that σ = B1(αm)(σ

′), and set ΨP |σ =

B̃(αm) ◦ (ΨQm|σ′).
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Since B1(P ) ≃ B̃(P ) ≃ BP (where P is given the discrete topology), the above con-
struction is always possible, and defines a homotopy equivalence. It induces the identity
on fundamental groups, under their given identifications with P . By construction, the

ΦP form a natural morphism of functors Ψ from B1 to B̃.

Let
(
B̃′, {ǫ′P}

)
be another rigidification of B, and let κ : B̃ −−−→ B̃′ be a natural

homotopy equivalence of rigidifications. We have already chosen our basepoint ∗P =
ǫP (∗), where ∗ ∈ BP is a fixed basepoint, and we now set ∗′P = ǫ′P (∗). Fix, for each
P , a homotopy HP between κP ◦ ǫP and ǫ′P . The restriction of HP to the base point of

BP provides a canonical path in B̃′(P ) from κP (∗P ) to ∗′P , whose homotopy class we

denote wP ∈ π1(P̃ ; κP (∗P ), ∗′P ). We now define

κ♯ : L0 −−−−−→ L
′
0

to be the identity on objects, and for (ϕ, u) ∈ MorL0(P,Q),

κ♯(ϕ, u) = (ϕ,wP · κQ∗(u) · B̃
′ϕ∗(wP )

−1) . (1)

It is straightforward to show that κ is a well defined isomorphim of linking systems;
i.e., an isomorphism of categories which is natural with respect to the projections to
F0 and the distinguished monomorphisms.

(c) Now assume that L0 is given; it remains to construct an isomorphism L0
∼=

ls(ke(L0)) of linking systems associated to F0. Set B̃ = ke(L0) and L1 = ls(B̃) for
short. By definition, L0 and L1 have the same objects, and a morphism in L1 from

P to Q is a pair (ϕ, u), where ϕ ∈ RepF(P,Q) and u ∈ π1(B̃(Q); B̃ϕ(∗P ), ∗Q). Also,

B̃(P ) = |π̃0↓P | where π̃0 is the projection of L0 onto O(F0); in particular, we choose
∗P to be the vertex of (P, Id). Define Ψ: L0 →L1 by sending each object to itself,
and by sending α ∈ MorL0(P,Q) to (π̃0(α), [α]), where [α] is the homotopy class of α,
regarded as an edge in |π̃0↓Q| from (P, π̃0(α)) = π̃0α(∗P ) to (Q, Id) = ∗Q. This is easily
checked to be an isomorphism of categories, and to commute with the distinguished
monomorphisms and the projections to F0. �

5. Higher limits over orbit categories

If F is any fusion system over a discrete p-toral group S, then O(F) will denote its
orbit category: the category whose objects are the subgroups of S, and where

MorO(F)(P,Q) = RepF(P,Q)
def
= Inn(Q)\HomF(P,Q).

Also, we write Oc(F) = O(F c) to denote the full subcategory of O(F) whose objects
are the F -centric subgroups of S; and more generally write O(F0) to denote the full
subcategory of O(F) corresponding to any full subcategory F0 of F .

By Lemma 2.5, the morphism sets in the orbit category are all finite. There is
a canonical projection functor F → O(F) which is the identity on objects and the
natural projection HomF(P,Q)→ RepF(P,Q) on morphisms.

Throughout this section, when C is a category, we frequently write C-mod to denote
the category of functors Cop −−−→ Ab. This notation will not be used in the statements
of results here, but it is used in several of the proofs.
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Lemma 5.1. Let F be a saturated fusion system over a discrete p-toral group S, and
let F0 ⊆ F be any full subcategory such that P ∈ Ob(F0) implies P • ∈ Ob(F0). Set
F•

0 = F0 ∩ F•. Then there are well defined functors

Oc(F)
(−)•

−−−−−−→←−−−−−−
incl

O(F c•) ,

where (−)• sends P to P • and [ϕ] to [ϕ•]. Also, (−)• is a left adjoint to the inclusion.

Proof. This follows from Corollary 3.4. The only thing to check is that (−)• is well
defined on morphisms in the orbit category. If ϕ1, ϕ2 ∈ HomF(P,Q) represent the
same morphism in the orbit category, then ϕ1 = cg ◦ϕ2 for some g ∈ Q, so ϕ•

1 = cg ◦ϕ•
2

by functoriality, and hence [ϕ•
1] = [ϕ•

2] in RepF(P
•, Q•). �

The following proposition shows that the problem of describing higher limits over
the orbit categories we are considering can always be reduced to one over a finite
subcategory.

Proposition 5.2. Let F be a saturated fusion system over a discrete p-toral group S.
Let F0 ⊆ F be any full subcategory such that P ∈ Ob(F0) implies P • ∈ Ob(F0), and
set F•

0 = F0 ∩F•. Then for any functor F : O(F0)
op −−→ Z(p)-mod, restriction to F•

0

induces an isomorphism

lim←−
∗

O(F0)

(F ) ∼= lim←−
∗

O(F•
0 )

(F |O(F•
0 )
) .

Proof. Consider the functors

O(F0)-mod
R

−−−−−−→←−−−−−−
T

O(F•
0 )-mod ,

where R is given by restriction and T by composition with the functor (−)•. Then T
is a left adjoint to R, since (−)• is a left adjoint to the inclusion by Lemma 5.1. Also,
T and R are both exact functors, and R sends injectives to injectives since it is right
adjoint to an exact functor.

Let Z be the constant functor on O(F•
0 ) which sends all objects to Z. Then T (Z) is

the constant functor on O(F0), and hence for any functor F on O(F0),

lim←−
O(F0)

(F ) = HomO(F0)-mod(T (Z), F ) ∼= HomO(F•
0 )-mod(Z, R(F )) = lim←−

O(F•
0 )

(R(F )) .

Since R is exact and sends injectives to injectives, it sends injective resolutions to in-
jective resolutions, and thus induces an isomorphism between higher limits over O(F0)
and over O(F•

0 ). �

We next want to show that the techniques which we have already developped for
handling higher limits over orbit categories in the finite case [BLO2, §3] also apply in
this new situation. The proof of this is similar to the proof in [BLO2] of the analogous
result for fusion systems over finite p-groups, and is in fact a special case of a very
general result which we prove here.

For any group Γ (not necessarily finite), and any set H of subgroups of Γ, we define
OH(Γ) to be the corresponding orbit category of Γ: the category with Ob(OH(Γ)) = H,
and with morphism sets

MorOH(Γ)(H,H
′) = H ′\NΓ(H,H

′) ∼= MapΓ(Γ/H,Γ/H
′).
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Here, NΓ(H,H
′) is the transporter set:

NΓ(H,H
′) = {g ∈ Γ | gHg−1 ≤ H ′}.

If 1 ∈ H, then for any Z[Γ]-module M , we define

Λ∗
H(Γ;M) = lim←−

∗

OH(Γ)

(FM),

where FM : OH(Γ)
op −−−→ Ab is the functor FM(H) = 0 if H 6= 1 and FM(1) =M .

It is important to distinguish between the orbit category of a group and the orbit
category of a fusion system. When G is a finite group and S ∈ Sylp(G), the orbit
category of the fusion system FS(G) is not the same as the orbit category OS(G) (the
orbit category of G with objects the subgroups of S).

Proposition 5.3. Fix a category C, a group Γ, a set H of subgroups of Γ such that
1 ∈ H, and a functor

α : OH(Γ) −−−−−−→ C.

Set c0 = α(1). For each object d in C, we regard the set MorC(c0, d) as a Γ-set via α
and composition. Assume that the following conditions hold:

(a) α sends Γ = AutOH(Γ)(1) bijectively to EndC(c0).

(b) For each d ∈ Ob(C) such that d 6∼= c0, all isotropy subgroups of the Γ-action on
MorC(c0, d) are nontrivial and conjugate to subgroups in H.

(c) For each ξ ∈ Mor(OH(Γ)), α(ξ) is an epimorphism in the categorical sense: ϕ ◦

α(ξ) = ψ ◦ α(ξ) implies ϕ = ψ.

(d) For any H ∈ H, any d ∈ Ob(C), and any ϕ ∈ MorC(c0, d) which is H-invariant,
there is some ϕ ∈ MorC(α(H), d) such that ϕ = ϕ ◦ α(inclH1 ).

Let

Φ : Cop −−−−−−→ Ab

be any functor which vanishes except on the isomorphism class of c0. Then the natural
map

lim←−
C

∗(Φ)
α∗

−−−−−−→
∼=

lim←−
∗

OH(Γ)

(Φ ◦ α) = Λ∗
H(Γ; Φ(c0))

is an isomorphism.

Proof. Consider the functors

OH(Γ)-mod
α∗

←−−−−−−−−−−−−→
Rα

C-mod,

where α∗ is composition with αop, and Rα is the right Kan extension of αop. Specif-
ically, for d ∈ Ob(C), let α↓d be the overcategory whose objects are pairs (H,ϕ)
for ϕ ∈ MorC(α(H), d), and where a morphism from (H,ϕ) to (K,ψ) is a morphism
χ ∈ MorOH(Γ)(H,K) such that ψ ◦α(χ) = ϕ. Let κd : α↓d −−−→ OH(Γ) be the forgetful
functor. Then (α↓d)op = d↓αop (the undercategory), and for F : OH(Γ)

op −−−→ Ab,
Rα(F ) is defined by setting

Rα(F )(d) = lim←−
(α↓d)op

(F ◦ κd
op).
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On morphisms, Rα(F ) sends f ∈ MorC(d, d
′) to the morphism induced by the functor(

α↓d
f◦−
−−−−→ α↓d′

)
. By [McL, §X.3, Theorem 1], Rα is right adjoint to α∗. In particular,

since α∗ preserves exact sequences, Rα sends injectives to injectives.

Fix H ∈ H and d ∈ Ob(C). Consider the map

µ : MorC(α(H), d) −−−−−−→ MorC(c0, d)

defined by composition with the “inclusion” morphism α(inclH1 ). This map is injective
by (c), and Im(µ) ⊇ MorC(c0, d)

H by (d). Also, Im(µ) is contained in MorC(c0, d)
H

since inclH1 ◦x = inclH1 for all x ∈ H . Thus µ induces a bijection

MorC(α(H), d)
µ0

−−−−−−→
∼=

MorC(c0, d)
H . (1)

Fix representatives {ϕdi }i∈Id for the Γ-orbits in MorC(c0, d), and let Γdi ≤ Γ be the
stabilizer subgroup of ϕdi . By (b), we can choose the ϕdi such that Γdi ∈ H for all i. By
(1), each ϕdi has a unique “extension” to ψdi ∈ MorC(α(Γ

d
i ), d); i.e., there is a unique

ψdi such that ϕdi = ψdi ◦ α(incl
Γd
i

1 ). Also, for any (H,χ) in α↓d, there is a unique i ∈ Id
and a unique morphism χ0 ∈ MorOH(Γ)(H,Γ

d
i ) such that χ = ψdi ◦ χ0. So each object

(Γdi , ψ
d
i ) is a final object in its connected component of the overcategory α↓d. Thus for

any F in OH(Γ)-mod,

Rα(F )(d) ∼=
∏

i∈Id

F (Γdi ). (2)

In particular, Rα is an exact functor.

Let Z denote the constant functor on Cop which sends each object to Z and each
morphism to the identity. Then α∗Z is the constant functor on OH(Γ)

op. If F :
Cop → Ab is any functor, then

lim←−
C

(F ) ∼= HomC-mod(Z, F );

and similarly for functors in OH(Γ)-mod.

Assume H ∈ H is such that α(H) ∼= α(1) = c0. Since all endomorphisms of c0 are
automorphisms (by (a)), MorC(c0, α(H)) contains only isomorphisms, and in particular
α(inclH1 ) is an isomorphism. Also, inclH1 ◦x = inclH1 for all x ∈ H , so α(x) = Idc0 for all
x ∈ H . By (a) again, this implies that H = 1.

The functor α∗Φ = Φ ◦ αop : OH(Γ)
op → Z(p)-mod thus sends the object 1 to

Φ(c0) (with the given action of Γ), and sends all other objects to 0. Then Rα sends an
injective resolution I∗ of α∗Φ to an injective resolution Rα(I∗) of Rα(α

∗Φ). It follows
that

Λ∗
H(Γ; Φ(c0))

def
= lim←−

∗

OH(Γ)

(α∗Φ) ∼= H∗
(
MorOH(Γ)-mod(α

∗Z, I∗)
)

∼= H∗
(
MorC-mod(Z, Rα(I∗))

)
∼= lim←−

C

∗(Rα(α
∗Φ)).

It remains only to show that Rα(α
∗Φ) ∼= Φ. For each d ∈ Ob(C), if d 6∼= c0, then

MorC(c0, d) is a disjoint union of orbits Γ/Γdi , where 1 6= Γdi ∈ H by (b). So by (2),

Rα(α
∗Φ)(d) = Rα(Φ ◦ α)(d) ∼=

∏

i

Φ(α(Hi)) = 0;

where the last equality holds since we already showed that H 6= 1 implies α(H) 6∼=
c0. If d ∼= c0, then MorC(c0, d) consists of one free orbit of Γ (by (a)), and hence
Rα(α

∗Φ)(d) ∼= Φ(α(1)) ∼= Φ(c0). This finishes the proof that Rα(α
∗Φ) ∼= Φ. �
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Our first application of Proposition 5.3 is to the case where C is the orbit category
of a saturated fusion system over a discrete p-toral group. As in [JMO] and [BLO2],
when Γ is finite and H is the set of p-subgroups of Γ (or the set of subgroups of a given
Sylow p-subgroup), we write Λ∗(Γ;M) = Λ∗

H(Γ;M) (and the prime p is understood).

Proposition 5.4. Let F be a saturated fusion system over S. Let

Φ : Oc(F)op −−−−−−→ Z(p)-mod

be any functor which vanishes except on the isomorphism class of some fixed F-centric
subgroup Q ≤ S. Then

lim←−
∗

Oc(F)

(Φ) ∼= Λ∗(OutF(Q); Φ(Q)).

Proof. It suffices to do this when Q is fully normalized. Set Γ = OutF(Q) and Σ =
OutS(Q) ∈ Sylp(Γ), and let H be the set of subgroups of Σ. Since Σ ∼= NS(Q)/Q,
each subgroup of Σ has the form OutP (Q) for some unique P ≤ NS(Q) containing Q.
Define

α : OΣ(Γ) −−−−−→ O
c(F)

on objects by setting α(OutP (Q)) = P for Q ≤ P ≤ NS(Q). If ϕ ∈ AutF(Q) is such
that [ϕ] ∈ NΓ(OutP (Q),OutP ′(Q)) (the set of elements which conjugate OutP (Q) into
OutP ′(Q)), then ϕ can be extended to some ϕ ∈ HomF(P, P

′) by axiom (II), the class
of ϕ in the orbit category is uniquely determined by ϕ by Proposition 2.8, and α sends
the class of [ϕ] to the class of ϕ.

We apply Proposition 5.3 to this functor α. Condition (a) is clear, (c) holds forOc(F)
by Proposition 2.8, and (d) holds by axiom (II) of a saturated fusion system. As for (b),
since every morphism in F is the composite of an isomorphism followed by an inclusion,
it suffices to prove that the stabilizer in Γ of an inclusion inclPQ ∈ HomF(Q,P ), where
Q � P , is a nontrivial p-subgroup. But the stabilizer is OutP (Q) ∼= NP (Q)/Q, which
is nontrivial by Lemma 1.8. All of the hypotheses of Proposition 5.3 thus hold, and
the result follows. �

Using the terminology of [BLO2], we say that a category C has bounded limits at p
if there is k > 0 such that for any functor Φ: Cop −−−→ Z(p)-mod, lim←−

i(Φ) = 0 for all
i > k. The following is a first corollary of Proposition 5.4.

Corollary 5.5. Let F be a saturated fusion system over a discrete p-toral group S,
and let F0 ⊆ F

c be a full subcategory such that P ∈ Ob(F0) implies P • ∈ Ob(F0).
Then the orbit category O(F0) has bounded limits at p.

Proof. By Proposition 5.2, it suffices to prove this when F0 ⊆ F•; in particular, when
F0 has only finitely many isomorphism classes. By [JMO2, Proposition 4.11], for each
finite group Γ, there is some kΓ such that Λi(Γ;M) = 0 for all Z(p)[Γ]-modules M
and all i > kΓ. Let k be the maximum of the kOutF (P ) for all P ∈ Ob(F0). Then by
Proposition 5.4, for each functor Φ : O(F0)

op −−−→ Z(p)-mod which vanishes except on

one orbit type, lim←−
i(Φ) = 0 for i > k. The same result for an arbitrary p-local functor

Φ on O(F0) now follows from the exact sequences of higher limits associated to short
exact sequences of functors. �

In practice, when computing higher limits over orbit categories Oc(F), it is useful
to combine Propositions 5.2 and 5.4, as illustrated by the following corollary.
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Corollary 5.6. Let F be a saturated fusion system over a discrete p-toral group S.
Let F : Oc(F)op → Z(p)-mod be a functor with the property that for each F-centric
subgroup P ∈ H•(F), Λ∗(OutF(P );F (P )) = 0. Then lim←−

∗(F ) = 0.

Proof. Let F0 : Oc(F•)op → Z(p)-mod be the restriction of F . By Proposition 5.2,

lim←−
∗

Oc(F)

(F ) ∼= lim←−
∗

Oc(F•)

(F0).

Assume first that F0 vanishes except on the conjugacy class of one subgroup P ∈
H•(F). Let F ′ be the functor on Oc(F) which takes the same value on the conjugacy
class of P and vanishes on all other subgroups. Then

lim←−
∗

Oc(F•)

(F0) ∼= lim←−
∗

Oc(F)

(F ′) ∼= Λ∗(OutF (P );F (P ))

by Propositions 5.2 and 5.4, and this is zero by assumption.

By Lemma 3.2(a), the category Oc(F•) contains only finitely many isomorphism
classes. Hence there is a sequence

0 = Φ0 ⊆ Φ1 ⊆ · · · ⊆ Φk = F0

of subfunctors defined on Oc(F•), with the property that for each i, Φi/Φi−1 vanishes
except on the conjugacy class of one subgroup P , and (Φi/Φi−1)(P ) ∼= F (P ). We have
just seen that lim←−

∗(Φi/Φi−1) = 0 for all i; and hence lim←−
∗(F0) = 0 by the relative long

exact sequences of higher limits. �

The following lemma will be useful in showing that certain functors on the orbit
category are acyclic. As usual, when F is a fusion system over S, a subgroup P ≤ S
will be called weakly closed in F if it is the only subgroup in its F -conjugacy class.

Lemma 5.7. Let F be any saturated fusion system over a discrete p-toral group S, and
let Q ⊳ S be any F-centric subgroup which is weakly closed in F . Set Γ = OutF (Q),
and let F≥Q ⊆ F c be the full subcategory whose objects are the subgroups which contain
Q. Define the functor

Θ: O(F≥Q)
op −−−−−−→ Op(Γ)

by sending an object P to OutP (Q) ≤ Γ, and by sending a morphism ϕ ∈ RepF(P, P
′)

to the class of ϕ|Q ∈ NΓ(Θ(P ),Θ(P ′)). Then for any pair of functors

F : Oc(F)op −−−−−−→ Z(p)-mod and Φ: Op(Γ)
op −−−−−−→ Z(p)-mod

such that Φ ◦ Θ ∼= F |O(F≥Q), and such that OutQ(P ) ∼= NPQ(P )/P acts trivially on
F (P ) for all P ≤ S,

lim←−
∗

Oc(F)

(F ) ∼= lim←−
∗

Op(Γ)

(Φ).

Proof. Define a functor

F ′ : Oc(F)op −−−−−−→ Z(p)-mod

by setting F ′(P ) = F (P ) if P ≥ Q and F ′(P ) = 0 otherwise. Regard F ′ as a quotient
functor of F , and set F ′′ = Ker[F −։ F ′].

If P ≤ S is F -centric and P � Q, then OutQ(P ) ∼= NPQ(P )/P 6= 1, and by
assumption this group acts trivially on F (P ) ∼= F ′′(P ). Hence the kernel of the action
of OutF(P ) on F ′′(P ) has order a multiple of p, and so Λ∗(OutF(P );F

′′(P )) = 0 by
[JMO, Proposition 5.5]. Thus lim←−

∗(F ′′) = 0 by Corollary 5.6, and hence

lim←−
∗

Oc(F)

(F ) ∼= lim←−
∗

Oc(F)

(F ′).
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Recall that Γ = OutF(Q). Since Q is fully normalized in F (it is the unique subgroup
in its F -conjugacy class), Θ(S) = OutS(Q) ∈ Sylp(Γ). Also, Θ defines a bijection
between subgroups of Θ(S) ∼= S/Q and subgroups of S which contain Q. For all
Q ≤ P, P ′ ≤ S,

RepF (P, P
′)

(−)|Q
−−−−−−−→ MorOp(Γ)(Θ(P ),Θ(P ′))

is injective by Proposition 2.8. If g ∈ NΓ(Θ(P ),Θ(P ′)) is any element in the trans-
porter, and g = [ϕ] for ϕ ∈ AutF(Q), then for all x ∈ P there is y ∈ P ′ such that
ϕcxϕ

−1 = cy as automorphisms of Q. Hence by condition (II) in Definition 2.2, ϕ
extends to a homomorphism ϕ ∈ HomF(P, P

′), and Θ sends [ϕ] ∈ RepF(P, P
′) to the

class of g.

This proves that Θ induces bijections on all morphism sets, and thus is an equivalence
of categories. Hence if Φ is such that Φ ◦ Θ ∼= F |O(F≥Q), then

lim←−
∗

Op(Γ)

(Φ) ∼= lim←−
∗

O(F≥Q)

(F |O(F≥Q)) ∼= lim←−
∗

Oc(F)

(F ′) ∼= lim←−
∗

Oc(F)

(F ). �

This can now be applied to prove the acyclicity of certain explicit functors.

Proposition 5.8. Let F be any saturated fusion system over a discrete p-toral group
S. Define

F1, F2 : O
c(F)op −−−−−−→ Z(p)-mod

on objects by setting F1(P ) = Z(P )0 and F2(P ) = π2(B(Z(P ))∧p ). On morphisms, each
Fi sends the class of ϕ ∈ HomF(P, P

′) to the homomorphism induced by the inclusion
of Z(P ′) into Z(ϕ(P )) followed by ϕ−1|Z(ϕ(P )). Then F1 and F2 are both acyclic.

Proof. Set T = S0 (the “maximal torus” in F), Q = CS(T ) ⊳ S, and Γ = OutF(Q).
Then Q is F -centric, and is weakly closed in F since T is. Let

Θ: O(F≥Q) −−−−−−→ Op(Γ)

be the functor of Lemma 5.7. For each p-subgroup Π ≤ Γ, regarded as a group of
automorphisms of Q, let NΠ be the norm map for the action of Π on T ; i.e., NΠ(t) =∏

γ∈Π γ(t) for t ∈ T . Define

Φ1(Π) = NΠ(T ) and Φ2(Π) = Hom(Z/p∞, T )Π.

These define functors Φi : Op(Γ)op → Z(p)-mod.

For each P ≤ S which contains Q, NP/Q(T ) is connected (i.e., infinitely p-divisible),
and has finite index in Z(P ) since Z(P ) ∩ T = T P and T P/NP/Q(T ) has exponent at
most |P/Q|. Hence NP/Q(T ) is equal to the identity component Z(P )0, and we have

F1(P ) = Z(P )0 = NP/Q(T ) = Φ1(Θ(P )).

In general, for any discrete p-toral group P ,

π2(BP
∧
p ) = [S2, BP ∧

p ]
∼= [BS1, BP ∧

p ]
∼= Hom(Z/p∞, P ).

Here, the last equivalence follows from Lemma 1.10, while the middle one follows by
obstruction theory (since πi(BP

∧
p ) = 0 for i > 2). Hence for any P ≤ S which contains

Q,

F2(P ) = π2(BZ(P )
∧
p )
∼= Hom(Z/p∞, Z(P )) ∼= Hom(Z/p∞, T )P/Q = Φ2(Θ(P )).
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Thus Φi ◦ Θ ∼= Fi|O(F≥Q) (for i = 1, 2). Also, for each P ≤ S, OutQ(P ) acts trivially
on Fi(P ) for i = 1, 2 since Q centralizes Z(P )0 ≤ T . So by Lemma 5.7,

lim←−
∗

Oc(F)

(Fi) ∼= lim←−
∗

Op(Γ)

(Φi).

The functors Φ1 and Φ2 are both Mackey functors on Op(Γ) (see [JM, Proposition 5.14]
or [JMO, Proposition 5.2]), and hence are acyclic. �

As in Section 4, when F is a saturated fusion system over S, we let B denote the
homotopy functor B(P ) = BP , and by extension let B∧

p denote the functor B∧
p (P ) =

BP ∧
p . The following proposition is a first application of Proposition 5.8. It shows that

there is a bijective correspondence between rigidifications of these two functors.

Proposition 5.9. Let F be a saturated fusion system over a discrete p-toral group S,

and let F0 ⊆ F
c be any full subcategory which contains F c•. Let B̂ : O(F0) −−−→ Top be

any rigidification of the homotopy functor B∧
p . Then there is a functor

B̃ : O(F0) −−−→ Top such that B̃(P ) ≃ BP for all P , together with a natural trans-

formation of functors B̃ → B̂ which is a homotopy equivalence after p-completion.
Moreover, there is a bijection between equivalence classes of rigidifications of B and
equivalence classes of rigidifications of B∧

p .

Proof. Let χ : B −−−→ B∧
p be the natural transformation of homotopy functors which

sends BP to BP ∧
p by the canonical map. We want to apply Theorem A.3, which is

a relative version of the Dwyer-Kan theorem [DK] for rigidifying centric homotopy
diagrams. We first check that χ is relatively centric in the sense of Theorem A.3. This
means showing, for each ϕ ∈ MorO(F0)(P,Q), that the square

Map(BP,BP )Id
Bϕ◦−

→Map(BP,BQ)Bϕ

Map(BP,BP ∧
p )χ(P )

χ(P )◦−
↓

Bϕ◦−
→Map(BP,BQ∧

p )χ(Q)◦Bϕ

χ(Q)◦−
↓

is a homotopy pullback. By a classical result, the top row is a homotopy equivalence,
and both mapping spaces have the homotopy type of BZ(P ) (cf. [BKi, Proposition
7.1]). By Lemma 1.10, the second row is also a homotopy equivalence, and both
mapping spaces have the homotopy type of BZ(P )∧p . So the square is a homotopy
pullback.

For each i ≥ 1, let βi : O(F0)
op −−−→ Ab be the functor defined in Theorem A.3,

where for each P ,

βi(P ) = πi

(
hofiber

(
Map(BP,BP )Id

BZ(P )

χ(P )◦−
−−−−−−→ Map(BP,BP ∧

p )χ(P )

BZ(P )∧p

))
.

By [DW2, Proposition 3.1], this homotopy fiber is a K(V, 1) for some Q̂p-vector space
V . In particular, the fiber is connected, β1(P ) is abelian for all P , and βi = 0 for all
i ≥ 2. Also, by the homotopy exact sequence for the fibration, there is a short exact
sequence of functors

0 −−−→ F2 −−−−−→ β1 −−−−−→ F1 −−−→ 0,

where F1 and F2 are the functors of Proposition 5.8. By Proposition 5.2, for all i ≥ 1
and j = 1, 2,

lim←−
i

O(F0)

(Fj) ∼= lim←−
i

O(F•)

(Fj) ∼= lim←−
i

Oc(F)

(Fj),
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where the last group vanishes by Proposition 5.8. Thus lim←−
i(β1) = 0 for all i ≥ 1.

The proposition now follows directly from Theorem A.3. �

In Section 8, we will also need to work with higher limits over orbit categories
of certain infinite groups. For any (discrete) group G, let Odpt(G) denote the orbit
category of G whose objects are the discrete p-toral subgroups of G; and define (for
any Z[G]-module M),

Λ∗
dpt(G;M) = lim←−

Odpt(G)

(FM) where FM(P ) =

{
M if P = 1

0 if P 6= 1.

We are now ready to give a second application of Proposition 5.3.

Lemma 5.10. Fix a group G, a discrete p-toral subgroup Q ≤ G, and a functor
Φ: Odpt(G)

op → Ab with the property that Φ(P ) = 0 except when P is G-conjugate
to Q. Let Φ′ : Odpt(NG(Q)/Q)

op → Ab be the functor Φ′(P/Q) = Φ(P ). Then

lim←−
∗

Odpt(G)

(Φ) ∼= lim←−
∗

Odpt(NG(Q)/Q)

(Φ′) ∼= Λ∗
dpt(NG(Q)/Q; Φ(Q)) . (1)

Proof. We apply Proposition 5.3, where C = Odpt(G), Γ = NG(Q)/Q, and H is the set
of discrete p-toral subgroups of Γ. A functor

α : Odpt(Γ) −−−−−→ Odpt(G)

is defined by setting α(P/Q) = P , and by sending the set (P ′/Q)\NΓ(P/Q, P
′/Q) to

P ′\NG(P, P
′) in the obvious way.

The hypotheses of Proposition 5.3 follow easily from the definition of the orbit cate-
gories, and so the isomorphisms between higher limits follow from the proposition. �

The following very general lemma will help in certain cases to reduce computations
of higher limits to those taken over finite subcategories.

Lemma 5.11. Let C be a (small) category, and let C1 ⊆ C2 ⊆ · · · be an increasing
sequence of subcategories of C whose union is C. Let F : Cop −−−→ Ab be a functor such
that for each k,

lim←−
i

1
(
lim←−
Ci

k(F |Ci)
)
= 0.

Then the homomorphism

lim←−
C

k(F )
∼=

−−−−−−→ lim←−
i

(
lim←−
Ci

k(F |Ci)
)

induced by the restrictions is an isomorphism for all k.

Proof. For any category D and any functor Φ: Dop → Ab, lim←−
∗(Φ) is the homology

of the chain complex (C∗(D; Φ), d), defined by setting

Cn(D; Φ) =
∏

c0→···→cn

Φ(c0),

where the product is taken over composable n-tuples of morphisms in D, and where

d(ξ)(c0
α
−→ c1 → · · · → cn+1) = α∗ξ(c1 → · · · → cn+1) +

n+1∑

i=1

ξ(c0 → · · · ĉi · · · → cn+1).
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See, for example, [GZ, Appendix II, Proposition 3.3] or [Ol, Lemma 2]. If D0 ⊆ D is a
subcategory, then the restriction homomorphism from lim←−

D

∗(Φ) to lim←−
D0

∗(Φ|D0) is induced

by the obvious surjections C∗(D; Φ) −−։ C∗(D0; Φ).

In the above situation, the chain complex (C∗(C;F ), d) is the limit of an inverse
system of chain complexes (C∗(Ci;F |Ci), d) with surjections, where the inverse system
of homology groups of these chain complexes has vanishing lim←−

1(−). Since lim←−
1(−)

vanishes for a (countable directed) inverse system with surjections, we conclude that
the cohomology of (C∗(C;F ), d) is isomorphic to the inverse limit of the cohomology
of the complexes (C∗(Ci;F |Ci), d). �

The next lemma describes how, in some cases, the computation of Λ∗
dpt(G;M) can

be reduced to the case where G is finite. When G is a finite group and M is a Z[G]-
module, we let Λ∗(G;M) denote the Λ-functor taken with respect to p-subgroups of
G.

Lemma 5.12. Let G be a locally finite group. Assume there is a discrete p-toral
subgroup S ≤ G such that every discrete p-toral subgroup of G is conjugate to a subgroup
of S. Fix a Z[G]-module M , and assume that for some finite subgroup H0 ≤ G,
Λ∗(H ;M) = 0 for all finite subgroups H ≤ G which contain H0. Then Λ∗

dpt(G;M) = 0.
In particular, Λ∗

dpt(G;M) = 0 if M is a Z(p)[G]-module and the kernel of the action of
G on M contains an element of order p.

Proof. By [JMO, Proposition 5.5], for any finite group H and any Z(p)[H ]-module M
such that the kernel of the H-action on M has order a multiple of p, Λ∗(H ;M) = 0.
Hence the last statement follows as a special case of the first.

Fix a Sylow p-subgroup S ∈ Sylp(G), and let OS(G) ⊆ Odpt(G) be the full subcate-
gory whose objects are the subgroups of S. Since each discrete p-toral subgroups of G
is G-conjugate to a subgroup of S, these categories are equivalent, and so we can work
over OS(G) instead. Define

FM : Cop −−−→ Ab by setting FM(P ) =

{
M if P = 1

0 if P 6= 1.

By definition, Λ∗
dpt(G;M) = lim←−

∗(FM), and we must show that this vanishes in all
degrees.

Step 1: To simplify the notation, we write C = OS(G), and let C0 ⊆ C be the full
subcategory whose objects are the finite subgroups of S. For each subgroup Q ≤ S
and each abelian group A, let IAQ in C-mod be the functor

IAQ(P ) = Map(MorC(Q,P ), A) ∼=
∏

MorC(Q,P )

A.

For any F in C-mod, HomC-mod(F, I
A
Q)
∼= HomZ(F (Q), A). Hence IAQ is injective if A

is injective as an abelian group, and each functor on C injects into a product of such
injectives. Also, when Q is finite,

lim←−
C0

(IAQ|C0)
∼= lim←−

C

(IAQ)
∼= A

(where the second isomorphism holds for arbitrary Q ≤ S).

Choose a sequence of functors

0 −−−→ FM
d0−−−−→ I0

d1−−−−→ I1
d2−−−−→ · · · , (1)
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where each Ik is a product of injective functors IAQ for finite subgroups Q ≤ S and
injective abelian groups A, and where (1) is exact after restriction to C0. We claim
that this is an injective resolution of FM . In other words, the sequence

0 −−−→ FM(P ) −−−−→ I0(P ) −−−−→ I1(P ) −−−−→ · · · , (2)

is exact for all finite P ≤ S, and we want to show it is exact for all P ≤ S. Fix
an infinite subgroup P ≤ S, and choose finite subgroups P1 ≤ P2 ≤ · · · such that
P =

⋃∞
j=1 Pj (Lemma 1.9). Then FM (P ) = 0 = lim←−

j

FM(Pj). For all finite Q ≤ S and

all A,

IAQ(P ) = Map(MorC(Q,P ), A) = lim←−
j

(
Map(MorC(Q,Pj), A)

)

since MorC(Q,P ) is the union of the MorC(Q,Pj); and furthermore this is an inverse
system of surjections. Hence (2) is the inverse limit of the corresponding exact se-
quences for the Pj, all restriction maps Ik(Pj+1) −−−→ Ik(Pj) are surjective, and so (2)
is also exact. Thus

Λ∗
dpt(G;M) = lim←−

C

∗(FM) ∼= H∗(lim←−
C

(Ik), dk) ∼= H∗(lim←−
C0

(Ik|C0), dk)
∼= lim←−

C0

∗(FM |C0). (3)

Step 2: Fix a sequence S1 ≤ S2 ≤ S3 ≤ · · · of finite subgroups of S such that
S =

⋃∞
j=1 Sj (Lemma 1.9). We first construct inductively a sequence of finite subgroups

H1 ≤ H2 ≤ · · · of G containing H0 such that for each j ≥ 1, Hj ≥ Sj, and Op(Hj)
contains the full subcategory with object set the p-subgroups of Hj−1. Fix j ≥ 1,
and assume that Hj−1 has been constructed. Let Cj be the full subcategory of Ofin

p (G)
whose objects are the p-subgroups of 〈Hj−1, Sj〉 (a finite group since G is locally finite).
Choose a finite set of morphisms in Cj which generate it, let Xj ⊆ G be a finite set of
elements which induce those morphisms, and set Hj = 〈Xj〉. Since G is locally finite,
Hj is a finite subgroup. By construction, Op(Hj) ⊇ Cj ; and hence contains both O(Sj)
and the full subcategory with the same objects as Op(Hj−1).

Set C′
def
=

⋃∞
j=1Op(Hj). This is a full subcategory of Ofin

p (G) which contains all finite

subgroups of S as objects. In particular, C′ is equivalent to C0, and hence lim←−
C0

∗(FM) ∼=

lim←−
C′

∗(FM |C′). Since lim←−
∗

Op(Hj)

(FM |Op(Hj)) = 0 for all j, lim←−
C′

∗(FM |C′) = 0 by Lemma 5.11. �

6. Mapping spaces

We now look at the spaces of maps from BQ to |L|∧p , when Q is a discrete p-toral
group and L is a linking system. In general, for any p-local compact group (S,F ,L)
and any discrete p-toral group Q, we define

Rep(Q,L) = Hom(Q, S)/∼,

where ∼ is the equivalence relation defined by setting ρ ∼ ρ′ if there is some χ ∈
HomF (ρ(Q), ρ

′(Q)) such that ρ′ = χ◦ρ. We want to show that [BQ, |L|∧p ]
∼= Rep(Q,L).

The following lemma will be needed to reduce this to the case where Q is finite. The
functor (−)• of Section 3 plays an important role when doing this.
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Lemma 6.1. Fix a discrete p-toral group Q, and let Q1 ≤ Q2 ≤ · · · ≤ Q be a sequence
of finite subgroups such that Q =

⋃∞
n=1Qn. Let (S,F ,L) be a p-local compact group.

Then the following hold.

(a) The natural map

R : Rep(Q,L)
∼=

−−−−−−→ lim←−
n

Rep(Qn,L) ,

induced by restriction, is a bijection.

(b) Assume Q ≤ S. Then for n large enough, Q•
n = Q• ≥ Q, and hence restriction

induces a bijection HomF(Q,P ) ∼= HomF(Qn, P ) for all P ∈ Ob(F•).

Proof. In general, for any homomorphism ϕ ∈ Hom(H,K), we let [ϕ] denote its class
in Rep(H,K).

(a) Assume first that ϕ, ψ ∈ Hom(Q, S) are such that R([ϕ]) = R([ψ]). Thus ϕ|Qn

and ψ|Qn are F -conjugate for each n; i.e., ψ|Qn = αn ◦ ϕ|Qn for some unique αn ∈
IsoF(ϕ(Qn), ψ(Qn)). In particular, Ker(ϕ)∩Qn = Ker(ψ)∩Qn for each n, so Ker(ϕ) =
Ker(ψ), and ψ = α ◦ ϕ for some unique α ∈ Iso(ϕ(Q), ψ(Q)). Then α|Qn = αn is in F
for each n, so α ∈ IsoF(ϕ(Q), ψ(Q)) by axiom (III), and [ψ] = [ϕ] ∈ Rep(Q,F).

This proves the injectivity of R, and it remains to prove surjectivity. Fix some

{[ϕn]}n≥1 ∈ lim←−
n

Rep(Qn,L).

Thus for each n, ϕn ∈ Hom(Qn, S), and ϕn+1|Qn is F -conjugate to ϕn. By Lemma
3.2(a), the set {ϕn(Qn)

• |n ≥ 1} contains finitely many conjugacy classes. Since for
all n, ϕn(Qn) is F -conjugate to a subgroup of ϕn+1(Qn+1), ϕn(Qn)

• is F -conjugate to
a subgroup of ϕn+1(Qn+1)

• by Lemma 3.2(b) and Proposition 3.3. Hence for some m,
ϕn(Qn)

• is F -conjugate to ϕm(Qm)
• for all n ≥ m.

We now construct inductively homomorphisms ϕ′
n ∈ Hom(Qn, S) for all n > m such

that [ϕ′
n] = [ϕn] in Rep(Qn,L), and ϕ′

n|Qn−1 = ϕ′
n−1. Assume ϕ′

n−1 has been con-
structed, and set αn = ϕn ◦ ϕ′

n−1
−1 ∈ HomF(ϕ

′
n−1(Qn−1), ϕn(Qn)). By Proposition 3.3

again, this extends to a unique morphism α•
n ∈ HomF(ϕ

′
n−1(Qn−1)

•, ϕn(Qn)
•), which

must be an isomorphism since it is injective and the two groups are abstractly isomor-
phic and artinian. Set ϕ′

n = (α•
n)

−1
◦ ϕn; then ϕ

′
n|Qn−1 = ϕ′

n−1. Let ϕ ∈ Hom(Q, S) be
the union of the ϕ′

n; then [ϕ] ∈ R−1({[ϕn]}), and this proves the surjectivity of R.

(b) Now assume Q ≤ S. By Lemma 3.2(a,b), for all n, Q•
n ≤ Q•

n+1 ≤ Q•, and the set
{Q•

n |n ≥ 1} is finite. Hence Q•
n ≥ Q for n sufficiently large, and this implies Q•

n = Q•.
If P = P • ≤ S, then every ϕ ∈ HomF(Qn, P ) extends to a unique ϕ• ∈ HomF(Q

•
n, P )

by Proposition 3.3, and thus HomF(Q,P ) ∼= HomF(Qn, P ) whenever Q
•
n = Q•. �

For any linking system L and any discrete p-toral group Q, we let LQ be the category
whose objects are the pairs (P, α) for P ∈ Ob(L) and α ∈ Hom(Q,P ), and where

MorLQ

(
(P, α), (P ′, α′)

)
=

{
ϕ ∈ MorL(P, P

′)
∣∣α′ = π(ϕ) ◦ α ∈ Hom(Q,P ′)

}
.

We next show that Map(BQ, |L|∧p ) ≃ |L
Q|∧p in this situation.

Proposition 6.2. Fix a p-local compact group (S,F ,L) and a discrete p-toral group Q.
Let F0 ⊆ F c be any full subcategory which contains all F-centric F-radical subgroups
of S, and such that P ∈ Ob(F0) implies P • ∈ Ob(F0). Let L0 ⊆ L and LQ0 ⊆ L

Q



36 Discrete models for the p-local homotopy theory of compact Lie groups and p-compact groups

be the full subcategories where Ob(L0) = Ob(F0), and Ob(LQ0 ) is the set of pairs
(P, α) ∈ Ob(LQ) such that P ∈ Ob(L0). Then there is a bijection

π0(|L
Q
0 |)

∼=
−−−−−−→ Rep(Q,L) (1)

which sends a vertex (P, α) to the class of α as a homomorphism to S. If, furthermore,

we define Φ: LQ0 × B(Q) −−−→ L0 by setting

Φ
(
(P, α), oQ

)
= P and Φ

(
(P, α)

ϕ
−−→ (P ′, α′) , x

)
= ϕ ◦ δP (α(x)) ,

then the map
|Φ|′ : |LQ0 |

∧
p −−−−−→ Map(BQ, |L0|

∧
p ) (2)

adjoint to |Φ| is a homotopy equivalence.

Proof. Every vertex (P, α) in |LQ0 | is connected by an edge to the vertex (S, inclSP ◦α).
Furthermore, by the assumption that F0 contains all F -centric F -radical subgroups,
together with Alperin’s fusion theorem (Theorem 3.6), two vertices (S, α) and (S, α′)

in |LQ0 | are in the same connected component if and only if α and α′ represent the same
element of Rep(Q,L). This proves (1).

Since Φ(ϕ, x) = ϕ ◦ δP (α(x)) = δP ′(α′(x)) ◦ ϕ by condition (C), Φ is a well defined
functor. It remains to prove the homotopy equivalence (2). Step 1, where we handle
the case Q is finite, is essentially the same as the corresponding proof in [BLO2]. In
Step 2, we extend this to the general case.

By assumption, for each P ∈ Ob(L0), P
• ∈ Ob(L0). So the functor (−)• of Propo-

sition 4.5 restricts to a functor from L0 to L•
0, and also induces a functor from LQ0 to

L•Q
0 . All of these are left adjoint to the inclusion functors, and hence induce homotopy

equivalences between their geometric realizations. Thus, without loss of generality, we
can assume that L0 = L•

0; i.e., that P = P • for all P in L0. This assumption will be
needed at the end of each of Steps 1 and 2 below.

Step 1: Assume that Q is a finite p-group. Let O(F0) ⊆ Oc(F) be the full subcate-
gory with Ob(O(F0)) = Ob(F0) = Ob(L0), and let π̃ : L0 −−→ O(F0) be the projection

functor. Let π̃Q : L
Q
0 −−→ O(F0) be the functor π̃Q(P, α) = P and π̃Q(ϕ) = π̃(ϕ). Let

B̃Q, B̃ : O(F0) −−−−−→ Top

be the left homotopy Kan extensions over π̃Q and π̃, respectively, of the constant
functors ∗. Then

|L0| ≃ hocolim−−−−−→
O(F0)

(B̃) and |LQ0 | ≃ hocolim−−−−−→
O(F0)

(B̃Q) (3)

(cf. [HV, Theorem 5.5]).

For each P in O(F0), B̃(P ) is the nerve of the overcategory π̃↓P , whose objects are
the pairs (R, χ) for R ∈ Ob(L0) = Ob(O(F0)) and χ ∈ RepF(R,P ), and where

Morπ̃↓P
(
(R, χ), (R′, χ′)

)
=

{
ϕ ∈ MorL0(R,R

′) |χ = χ′
◦ π̃(ϕ)

}
.

Let B′(P ) be the full subcategory of π̃↓P with the unique object (P, Id), and with
morphisms the group of all δP (g) for g ∈ P .

Similarly, B̃Q(P ) is the nerve of the category π̃Q↓P , whose objects are the triples
(R, α, χ) for R ∈ Ob(L0) = Ob(O(F0)), α ∈ Hom(Q,R), and χ ∈ RepF(R,P ); and
where

Morπ̃Q↓P

(
(R, α, χ), (R′, α′, χ′)

)
=

{
ϕ ∈ MorL0(R,R

′) |α′ = π(ϕ) ◦ α, χ = χ′
◦ π̃(ϕ)

}
.
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Let B′
Q(P ) be the full subcategory of π̃Q↓P with objects the triples (P, α, Id) for α ∈

Hom(Q,P ).

Fix a section σ̃ : Mor(O(F0)) −−→ Mor(L0) which sends identity morphisms to iden-
tity morphisms. Retractions

π̃↓P
Ψ
−−−→ B′(P ) and π̃Q↓P

ΨQ
−−−→ B′

Q(P )

are defined by setting

Ψ(R, χ) = (P, Id) and ΨQ(R, α, χ) = (P, πσ̃(χ) ◦ α, Id);

and by sending ϕ in Morπ̃↓P ((R, χ), (R
′, χ′)) or Morπ̃Q↓P ((R, α, χ), (R

′, α′, χ′)) to the
automorphism δP (g) ∈ AutL0(P ), where g ∈ P is the unique element such that σ̃(χ′) ◦

ϕ = δP (g) ◦ σ̃(χ) in MorL0(R,P ) (Lemma 4.3(b)). There are natural transformations

Idπ̃↓P −−−−−→ incl ◦Ψ and Idπ̃Q↓P −−−−−→ incl ◦ΨQ

of functors which send an object (R, χ) to χ ∈ Morπ̃↓P ((R, χ), (P, Id)) and similarly
for an object (R, α, χ). This shows that |B′(P )| ⊆ |π̃↓P | and |B′

Q(P )| ⊆ |π̃Q↓P | are
deformation retracts.

We have now shown that for all P ∈ Ob(L0),

B̃(P ) ≃ |B′(P )| ≃ BP and B̃Q(P ) ≃ |B
′
Q(P )| . (4)

All morphisms in B′
Q(P ) are isomorphisms, two objects (P, α, Id) and (P, α′, Id) are

isomorphic if and only if α and α′ are conjugate in P , and the automorphism group of
(P, α, Id) is isomorphic to CP (αQ). Thus

B̃Q(P ) ≃
∐

α∈Rep(Q,P )

BCP (αQ). (5)

Let B̃∧
p and B̃Q

∧
p be the p-completions of B̃ and B̃Q; i.e., (B̃

∧
p )(P ) = (B̃(P ))∧p and

(B̃Q
∧
p )(P ) = (B̃Q(P ))

∧
p . By (3), and since the spaces B̃(P ) and B̃Q(P ) are all p-good

by (4) and (5),

|L0|
∧
p ≃

(
hocolim−−−−−→

O(F0)

(B̃∧
p )
)
∧
p and |LQ0 |

∧
p ≃

(
hocolim−−−−−→

O(F0)

(B̃Q
∧
p )
)
∧
p .

Consider the commutative triangle

LQ0 × B(Q)
Φ

//

π̃Q◦pr1 ((PP
PP

PP
PP

PP
PP

L0

π̃yyrr
rr
rr
rr
rr
rr

O(F0) .

The left homotopy Kan extension over π̃Q ◦ pr1 of the constant functor ∗ is the functor

B̃Q × BQ, and so the triangle induces a natural transformation of functors

Φ′ : B̃Q × BQ −−−−−−→ B̃.

The map Φ̃: B̃Q −−→ Map(BQ, B̃) adjoint to Φ′ is also a natural transformation of
functors from O(F0) to Top, and induces a commutative diagram
(
hocolim−−−−−→

O(F0)

(B̃Q)
∧
p

)
∧
p

hocolim(Φ̃)
→

(
hocolim−−−−−→

O(F0)

Map(BQ, B̃∧
p )
)
∧
p

ω
→Map

(
BQ, hocolim−−−−−→

O(F0)

(B̃)∧p
)

|LQ0 |
∧
p

≃↓
|Φ|′

→Map(BQ, |L0|
∧
p ) .

≃
↓
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For each P ≤ S and Q0 ≤ Q, Lemma 1.10 (together with (4)) implies that each
component of Map(BQ0,B(P )∧p ) has the form BCP (ρ(Q0))

∧
p for some ρ ∈ Hom(Q0, P ).

So all such mapping spaces are p-complete and have finite mod p cohomology in each
degree. Also, O(F0) is a finite category (it has finitely many isomorphism classes of
objects by Lemma 3.2(a) and has finite morphism sets by Lemma 2.5), and it has
bounded limits at p by Corollary 5.5. Hence ω is a homotopy equivalence by [BLO2,
Proposition 4.2].

It remains only to show that Φ̃(P ) is a homotopy equivalence for each P ∈ Ob(L0).

By (4), this means showing that Φ̃(P ) restricts to a homotopy equivalence

Φ̃′(P ) : |B′
Q(P )| −−−−−−→ Map(BQ, |B′(P )|) .

Since |B′(P )| ∼= BP , and since Φ̃′(P ) is induced by the homomorphisms (incl ·α) from
CP (α(Q))×Q to P , this follows from (5).

Step 2: Now let Q be an arbitrary p-toral group. Let Q1 ≤ Q2 ≤ · · ·Q be an
increasing sequence of finite subgroups whose union is Q (Lemma 1.9). Then

π0(|L
Q
0 |)
∼= lim←−

n

π0(|L
Qn

0 |)
∼= lim←−

n

[BQn, |L0|
∧
p ] : (6)

the first bijection holds by Lemma 6.1 and (1), and the second by Step 1.

Fix ϕ ∈ Hom(Q, S), and set ϕn = ϕ|Qn. Let Map(BQ, |L0|∧p )ϕ̂ be the space of maps
f : BQ −−−→ |L0|∧p such that f |BQn ≃ Bϕn for each n. (This contains the connected

component of Bϕ, but could, a priori, contain other components.) Let (LQ0 )ϕ ⊆ L
Q
0

and (LQn

0 )ϕ ⊆ L
Qn

0 be the full subcategories with objects those (P, α) such that α is

F -conjugate to ϕ or to ϕn, respectively. Thus |(LQ0 )ϕ| is the connected component of

|LQ0 | which contains (S, ϕ), and |(LQn

0 )ϕ| is the connected component which contains
(S, ϕn).

Consider the following commutative diagram, for all n ≥ 1:

|(LQ0 )ϕ|
∧
p →Map(BQ, |L0|

∧
p )ϕ̂

|(LQn

0 )ϕ|
∧
p

↓
≃
→Map(BQn, |L0|

∧
p )ϕn .

↓
(7)

We want to show that the top row is a homotopy equivalence; the proposition then
follows by taking the union of such maps as ϕ runs through representatives of all
elements of Rep(Q,L). The bottom row is a homotopy equivalence by Step 1. So we
will be done if we can show that the vertical maps are homotopy equivalences for n
large enough.

By Lemma 6.1(b), there is some m such that for all n ≥ m, ϕ(Qn)
• = ϕ(Q)•, and

restriction induces a bijection RepF(ϕ(Q), P )
∼= RepF (ϕ(Qn), P ) for all P ∈ Ob(L0).

(Recall that we are assuming L0 = L•
0.) This implies that |(LQ0 )ϕ|

∼= |(L
Qn

0 )ϕ| for all
n ≥ m. Hence the components Map(BQn, |L0|∧p )Bϕn are all homotopy equivalent for
n ≥ m by Step 1, so Map(BQ, |L|∧p )ϕ̂ ≃ Map(BQn, |L|∧p )Bϕn for n ≥ m, and this proves
that the vertical maps in (7) are equivalences. �

The following theorem gives a more explicit description of the set [BQ, |L|∧p ] of
homotopy classes of maps, as well as of the individual components in certain cases.
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Theorem 6.3. Let (S,F ,L) be a p-local compact group, and let θ : BS −−→ |L|∧p be
the natural inclusion followed by completion. Then the following hold, for any discrete
p-toral group Q.

(a) The natural map

Rep(Q,L)
∼=

−−−−−−→ [BQ, |L|∧p ]

is a bijection. Thus each map BQ −−→ |L|∧p is homotopic to θ ◦ Bρ for some ρ ∈
Hom(Q, S). If ρ, ρ′ ∈ Hom(Q, S) are such that θ ◦ Bρ ≃ θ ◦Bρ′ as maps from BQ
to |L|∧p , then there is χ ∈ HomF(ρ(Q), ρ

′(Q)) such that ρ′ = χ ◦ ρ.

(b) For each ρ ∈ Hom(Q, S) such that ρ(Q) is F-centric, the composite

BZ(ρ(Q))× BQ
incl ·Bρ
−−−−−−→ BS

θ
−−−−−−→ |L|∧p

induces a homotopy equivalence

BZ(ρ(Q))∧p
≃

−−−−−→ Map(BQ, |L|∧p )θ◦Bρ.

(c) The evaluation map induces a homotopy equivalence

Map(BQ, |L|∧p )triv ≃ |L|
∧
p .

Proof. We refer to the category LQ, and to the homotopy equivalence

|Φ|′ : |LQ|∧p
≃

−−−−−−→ Map(BQ, |L|∧p )

of Proposition 6.2. Point (a) is an immediate consequence of point (1) in the propo-
sition, and (c) holds since the component of LQ which contains the objects (P, 1) is
equivalent to L.

If ρ ∈ Hom(Q, S) is such that ρ(Q) is F -centric, then the connected component of
|LQ| which contains the vertex (ρ(Q), ρ) contains as deformation retract the nerve of
the full subcategory with that as its only object. Since AutLQ

(ρ(Q), ρ) ∼= Z(ρ(Q)),
this component has the homotopy type of BZ(ρ(Q)), which proves point (b). �

7. Equivalences of classifying spaces

We next describe the monoid Aut(|L|∧p ) of self homotopy equivalences of |L|∧p (The-
orem 7.1); and also show that p-local compact groups which have homotopy equivalent
classifying spaces are themselves isomorphic (Theorem 7.4). There is some overlap
between the proofs in this section and those of the corresponding results for p-local
finite groups in [BLO2, Sections 8 & 7]; but they differ in some key respects, mostly
due to the fact that we do not have a way to recover the category L from the space
|L|∧p via a functor from spaces to categories.

We first recall some notation used in [BLO1] and [BLO2]. For any space X , Aut(X)
denotes the monoid of self homotopy equivalences of X , and Out(X) = π0(Aut(X)) is
the group of homotopy classes of self equivalences. For any discrete category C, Aut(C)
is the category whose objects are the self equivalences of C and whose morphisms are
the natural isomorphisms between self equivalences, and Out(C) = π0(|Aut(C)|) is the
group of isomorphism classes of self equivalences. We consider Aut(C) as a discrete
strict monoidal category, in the sense that composition defines a strictly associative
functor

Aut(−)×Aut(−) −−−−−−→ Aut(−)
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with strict identity. The nerve of Aut(C) is thus a simplicial monoid, and its realization
|Aut(C)| is a topological monoid.

Consider the evaluation functor

ev : Aut(C)× C −−−−−−→ C

which sends a pair of objects (Ψ, c) to Ψ(c) ∈ Ob(C), and which is defined on morphisms
by setting

ev
(
Ψ

χ
−−−→ Ψ′, c

ϕ
−−−→ d

)
=

(
Ψ(c)

Ψ′(ϕ)◦χ(c)
−−−−−−−−→
=χ(d)◦Ψ(ϕ)

Ψ′(d)
)
.

Upon taking geometric realizations, this defines a map of spaces from |Aut(C)|× |C| to
|C|, which is adjoint to a homomorphism of topological groups

ΩC : |Aut(C)| −−−→ Aut(|C|).

Recall that part of the structure of a centric linking system L associated to a fusion

system is a homomorphism P
δP−−−→ AutL(P ) for each P in L. We write Pδ = Im(δP ),

which we think of as a “distinguished subgroup” of AutL(P ) which can be identified

with P . For the purposes of this paper, an equivalence of categories L
Ψ
−−→ L will be

called isotypical if for each P , ΨP,P sends the subgroup Pδ ≤ AutL(P ) to the subgroup
Ψ(P )δ ≤ AutL(Ψ(P )). Let Auttyp(L) be the full subcategory of Aut(L) whose objects
are the isotypical equivalences, and set Outtyp(L) = π0(|Auttyp(L)|).

By [BLO2, Lemma 8.2], when L is a linking system over a finite p-group, an equiva-
lence Ψ: L −−−→ L is isotypical if and only if the triangle involving Ψ and the forgetful
functor from L to groups commutes up to natural isomorphism. The same proof ap-
plies for linking systems over discrete p-toral groups, although we won’t be using that
here.

Clearly, any equivalence which is naturally isomorphic to an isotypical equivalence
is itself isotypical, and any inverse to an isotypical equivalence (inverse up to natural
isomorphism of functors) is also isotypical. The subcategory Auttyp(L) is thus a union
of connected components of Aut(L), and Outtyp(L) is a subgroup of Out(L).

The main result of this section is the following theorem:

Theorem 7.1. Fix a p-local compact group (S,F ,L), and set Ω = ΩL. Then the
composite

Ω∧
p : |Auttyp(L)|

Ω
−−−−−→ Aut(|L|)

(−)∧p
−−−−−→ Aut(|L|∧p )

induces a homotopy equivalence of topological monoids from |Auttyp(L)|∧p to Aut(|L|∧p ).
In particular, if we let πi(BZ∧

p ) denote the functor Oc(F)op −−−→ Ab which sends P
to πi(BZ(P )

∧
p ) (each i ≥ 1), then

Out(|L|∧p )
∼= Outtyp(L) , πi(Aut(|L|

∧
p ))
∼= lim←−

0

Oc(F)

(πi(BZ
∧
p )) for i = 1, 2 ,

and πi(Aut(|L|∧p )) = 0 for i ≥ 3.

Proof. We prove the isomorphism between groups of components in Step 2, and the
homotopy equivalence between the individual components in Step 3. In Step 1, we
outline the general procedure for describing the mapping space Aut(|L|∧p ).

Assume we have fixed inclusion morphisms ιP ∈ MorL(P, S) for each P . If Ψ is
an isotypical self equivalence of L, then clearly Ψ(S) = S, and hence ΨS,S is an
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automorphism of AutL(S) which sends Sδ (= Im(δS)) to itself. Set

ψ = δ−1
S ◦ ΦS,S|Sδ

◦ δS ∈ Aut(S).

For each P ∈ Ob(L), axiom (C) and the functoriality of Ψ imply that the following
diagram commutes for all g ∈ P :

Ψ(P )
Ψ(ιP )

→ S

Ψ(P )

Ψ(δP (g)) ∈Ψ(P )δ
↓

Ψ(ιP )
→ S .

Ψ(δS(g))=δS (ψ(g))
↓

Hence π(Ψ(ιP ))(Ψ(P )) = ψ(P ) (by axiom (C) again). So Ψ(ιP ) = ιψ(P ) ◦ αP for a
unique αP ∈ IsoL(Ψ(P ), ψ(P )) by Lemma 4.3(a). Thus Ψ is naturally isomorphic to an
automorphism Ψ′ of L such that Ψ′

S,S = ΨS,S, and Ψ′(P ) = ψ(P ) and Ψ′
P,S(ιP ) = ιψ(P )

for each P . This shows that every object in Auttyp(L) is isomorphic to an isotypical
automorphism of L which sends inclusions to inclusions, and from now on we restrict
attention to such automorphisms.

Step 1: Consider the decomposition

pr : hocolim−−−−−→
Oc(F)

(B̃)
≃

−−−−−−→ |L|

of Proposition 4.6(a), where B̃ : Oc(F) −−→ Top is a rigidification of the homotopy

functor P 7→ BP . In the following constructions, we regard hocolim−−−−−→(B̃) as the union
of skeleta:

hocolim−−−−−→
Oc(F)

(n)(B̃) =
( n∐

i=0

∐

P0→···→Pn

B̃(P0)×D
i
)/
∼

where we divide out by the usual face and degeneracy relations.

Define functors Z,Z0 : Oc(F)op −−−→ Ab and BZ∧
p : O

c(F)op −−−→ Top by setting

Z(P ) = Z(P ), Z0(P ) = Z(P )0, and BZ∧
p (P ) = BZ(P )∧p ,

and by sending [ϕ] ∈ MorOc(F)(P,Q) to ϕ
−1|Z(Q) or B

(
ϕ−1|Z(Q)

)
∧
p . For any element

f =
(
fP

)
P∈Oc(F)

∈ lim←−
Oc(F)

[B−, |L|∧p ],

let Map(|L|∧p , |L|
∧
p )f be the union of the components of the mapping space which restrict

to f. By [Wo], the obstructions to this space being nonempty lie in the groups

lim←−
i+1

Oc(F)

(
πi(Map(B−, |L|∧p )f−)

)
∼= lim←−

i+1

Oc(F)

(πi(BZ
∧
p ))

for i ≥ 1; the functor vanishes for i > 2, and the higher limits vanish for i = 2 by
Proposition 5.8. Also, if Map(|L|, |L|∧p )f 6= ∅, then the filtration of the mapping space

Map(|L|∧p , |L|
∧
p ) ≃ Map

(
hocolim−−−−−→
Oc(F)

(B̃), |L|∧p

)

by the skeleta of the homotopy colimit defines a spectral sequence with E2-term

E2
−i,j = lim←−

i

Oc(F)

(
πj(Map(B−, |L|∧p )f−)

)
,

which converges to πj−i
(
Map(|L|, |L|∧p )f

)
.
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By Theorem 6.3(b),

πj(Map(B−, |L|∧p )f−)
∼= πj(BZ(−)

∧
p )
∼=





Z/Z0 if j = 1

π2(BZ∧
p ) if j = 2

0 if j ≥ 3.

Since π2(BZ∧
p ) is acyclic by Proposition 5.8, the only obstruction to Map(|L|∧p , |L|

∧
p )f

being nonempty lies in lim←−
2(Z/Z0); while the spectral sequence takes the form

E2
−i,j
∼=





lim←−
i(Z/Z0) if j = 1

lim←−
0(π2(BZ

∧
p )) if (i, j) = (0, 2)

0 otherwise.

Step 2: Let Autfus(S) be the group of fusion preserving automorphisms of S; i.e., the
group of those α ∈ Aut(S) which induce an automorphism of the fusion system F by
sending P to α(P ) and ϕ ∈ HomF(P,Q) to (α|Q) ◦ ϕ ◦ (α|P )−1 ∈ HomF(α(P ), α(Q)).

The proof that Out(|L|∧p )
∼= Outtyp(L) is based on the following diagram:

1 → lim←−
1(Z)

λ′

→ Outtyp(L)
µ′

→ Outfus(S)
ω′

→ lim←−
2(Z)

1 → lim←−
1(Z/Z0)

ω1
∼=
↓

λ
→ Out(|L|∧p )

π0(Ω∧
p )↓

µ
→ lim←− IRep(−,F)

ω2
∼=
↓

ω
→ lim←−

2(Z/Z0) .

ω3
∼=
↓

(1)

Here, IRep(P,F) ⊆ Rep(P,F) denotes the set of classes of injective homomorphisms.
All limits are taken over Oc(F), and ω1 and ω3 are induced by the natural surjec-
tion of functors from Z onto Z/Z0. They are isomorphisms since lim←−

i(Z0) = 0 for
all i ≥ 1 (Proposition 5.8). Also, ω2 is induced by the inclusion of Outfus(S) =
Autfus(S)/AutF (S) into IRep(S,F) = Aut(S)/AutF(S), and Im(ω2) = lim←− IRep(−,F)
(thus ω2 is a bijection) by definition of fusion preserving. It remains to define the two
rows, and prove that they are exact and the diagram commutes. It will then fol-
low immediately that π0(Ω

∧
p ) is an isomorphism. Note that this does not require us

to know that lim←− IRep(−,F) is a group or that ω′ is a homomorphism; only that
Im(µ) = ω−1(0), Im(µ′) = ω′−1(0), and the inverse image under µ of each element in
the target is a coset of Im(λ).

We first consider the top row, where µ′ is defined by restricting an isotypical equiva-
lence of L to the image of δS. Any fusion preserving automorphism α ∈ Autfus(S) de-
fines an isotypical automorphism α of F , and ω′(α) is the obstruction of [BLO2, Propo-
sition 3.1] to lifting α to an automorphism of L. (The proof in [BLO2] applies without
change to the case of a linking system over a discrete p-toral group.) Finally, the
description of Ker(µ′) is identical to that shown in [BLO1, Theorem 6.2]. More specifi-
cally, a reduced 1-cocycle ε ∈ Z1(Oc(F);Z) sends each morphism [ϕ] ∈ MorOc(F)(P,Q)
to ε(ϕ) ∈ Z(P ) (where ε(IdP ) = 1), and λ′([ε]) is represented by the automorphism
Aε ∈ Aut(L) defined by setting Aε(P ) = P for all P , and Aε(ψ) = ψ ◦ δP (ε([π(ψ)]))

−1

for all ψ ∈ MorL(P,Q). This proves the exactness of the top row.

As for the bottom row in (1), let µ be the homomorphism defined by restriction:

µ : Out(|L|∧p )
Res

−−−−−→ [BS, |L|∧p ]
∼= IRep(S,F).

We want to compare

Map(|L|∧p , |L|
∧
p ) ≃ Map

(
hocolim−−−−−→
Oc(F)

(B̃), |L|∧p

)
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with
lim←−

Oc(F)

[B(−), |L|∧p ]
∼= lim←−

Oc(F)

IRep(−,F).

By Step 1, the only obstruction to extending any given α in this last set to an automor-
phism of |L|∧p lies in lim←−

2(Z/Z0), while if there are liftings, then the set of homotopy

classes is in bijective correspondence with lim←−
1(Z/Z0). This proves the exactness of

the bottom row in the sense explained above.

The second square in (1) clearly commutes. To prove that the first square commutes,
fix some ε ∈ Z1(Oc(F);Z). Then λ′([ε]) = [Aε] where Aε ∈ Aut(L) is the automor-
phism defined above; and |Aε| ∈ Aut(|L|) sends each BP ⊆ B(AutL(P )) ⊆ |L| to |L|
by the inclusion. For each ϕ ∈ HomFc(P,Q), let Cϕ ⊆ L be the subcategory with two
objects P and Q, whose morphisms are those morphisms in L which get sent to [IdP ],
[IdQ], or [ϕ] in Oc(F). Then |Cϕ| ⊆ |L| is homeomorphic to the mapping cylinder of
Bϕ : BP −−−→ BQ; and |Aε| sends |Cϕ| to itself by a map which differs from the iden-
tity via a loop in Map(BP,BQ)Bϕ ≃ BZ(P ) which represents ε([ϕ]) ∈ Z(P ). After
taking the p-completion, this shows that [|Aε|∧p ] = λ([ε̄]), where ε̄ ∈ Z1(Oc(F);Z/Z0)
is the class of ε modulo Z0. This proves that the first square in (1) commutes.

Fix α ∈ Outfus(S), and let α̂ be the automorphism of the fusion system F induced
by α. Choose maps

MorL(P,Q)
α∗
P,Q

−−−−−→ MorL(α(P ), α(Q))

which lift those defined by α̂; then ω′(α) is the class of the 2-cocycle β ∈ Z2(Oc(F);Z)
which measures the deviation of the α∗

P,Q from defining a functor. These same liftings
α∗
P,Q allow us to define a map of spaces

α∗ : hocolim−−−−−→
Oc(F)

(1)(B̃) −−−−−→ |L|,

and the obstruction to extending this to hocolim−−−−−→
(2)(B̃) is precisely the class of the same

2-cocycle β: but regarded as a 2-cocycle with coefficients in

Z/Z0
∼= π1(Map(B−, |L|∧p )α).

This proves that the third square commutes, and finishes the proof that π0(Ω
∧
p ) is an

isomorphism.

Step 3: Set Z(F) = lim←−(Z), regarded as a subgroup of S. Let

λ : B(Z(F))× L −−−−−→ L

be the functor which sends (x, P
ϕ
−−−→ Q) to ϕ ◦ δP (x). This is adjoint to a functor

from B(Z(F)) to Aut(L), which in turn induces a map η′ : BZ(F) −−−→ |Aut(L)|Id
upon taking geometric realizations. On the other hand, if we first take geometric
realizations, then p-complete, and then take the adjoint, we get a map η from BZ(F)∧p
to Aut(|L|∧p )Id. These maps now fit together in the following commutative square:

BZ(F)
η′

≃
→ |Aut(L)|Id

BZ(F)∧p

(−)∧p ↓
η

≃
→ Aut(|L|∧p )Id .

Ω
↓

(2)

Since we are restricting attention to automorphisms of L (as opposed to working
with all equivalences), Aut(L) is a groupoid, and so π1(|Aut(L)|) is the group of
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natural isomorphisms of functors from IdL to itself. A natural equivalence α sends
each object P to an element α(P ) ∈ AutL(P ), such that for each ϕ ∈ MorL(P,Q),
ϕ ◦α(P ) = α(Q) ◦ϕ. In particular, upon restricting to the case P = Q and ϕ ∈ δP (P ),
we see that π(α(P )) = IdP for each P , and thus α(P ) ∈ δP (Z(P )) ∼= Z(P ). The
other relations are equivalent to requiring that α ∈ lim←−

0(Z) = Z(F). This proves that
π1(|Aut(L)|) ∼= Z(F); and since |Aut(L)|Id is aspherical, shows that η′ is a homotopy
equivalence.

The E2-term of the spectral sequence for maps defined on a homotopy colimit was
described in Step 1: it vanishes except for the row coming from lim←−

∗(Z/Z0), and the po-

sition E2
0,2
∼= lim←−

0(π2(BZ
∧
p )). Hence from the spectral sequence, one sees immediately

that for i ≥ 1,

πi(Aut(|L|
∧
p ))
∼= lim←−

Oc(F)

(πi(BZ
∧
p ))
∼= πi(BZ(F)

∧
p ).

By naturality, these isomorphisms are induced by η, and thus η is a homotopy equiva-
lence.

It now follows from (2) and from Step 1 that Ω∧
p induces a homotopy equivalence

Aut(|L|∧p ) ≃ |Auttyp(L)|
∧
p . �

We also note here the following result, which was shown while proving Theorem 7.1.

Proposition 7.2. For any p-local compact group (S,F ,L), there is an exact sequence

0 −−−→ lim←−
1

Oc(F)

(Z/Z0) −−−−−→ Out(|L|∧p ) −−−−−→ Outfus(S) −−−−−→ lim←−
2

Oc(F)

(Z/Z0),

where Z0 ⊆ Z : Oc(F)op −−−→ Ab are the functors Z(P ) = Z(P ) and Z0(P ) = Z(P )0.

In Section 9, we will show that for any compact Lie group G, there is a p-local
compact group (S,F ,L) = (S,FS(G),LcS(G)) such that |L|∧p ≃ BG∧

p . Hence when
G is connected, the exact sequence of Proposition 7.2 gives a new way to describe
Out(BG∧

p ), which is different from but closely related to the descriptions in [JMO] and
[JMO3].

We now turn our attention to maps between p-completed nerves of different linking
systems. We first look at the case where the linking systems in question are associated
to the same fusion system. As usual, when we talk about an isomorphism of linking
systems, we mean an isomorphism of categories which is natural with respect to the
projections to the fusion system and with respect to the distinguished monomorphisms.

Lemma 7.3. Let F be a saturated fusion system over a discrete p-toral group S, and
let F0 ⊆ F

c be any full subcategory which contains F c•. Let L0 and L′
0 be two linking

systems associated to F0. Assume that there is a map f : |L0|∧p −−−→ |L
′
0|

∧
p such that

the triangle

BS

✠�
�
�θ ❅

❅
❅
θ′

❘

|L0|
∧
p

f
→ |L′

0|
∧
p

is homotopy commutative. Here, θ and θ′ are the maps induced by the inclusion of
B(S) into L0 or L′

0. Then L0 and L′
0 are isomorphic linking systems associated to

F0. Furthermore, we can choose an isomorphism L0

∼=
−−−→ L′

0 of linking systems that
induces f on p-completed nerves.
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Proof. Let ke(L0) and ke(L′
0) be the left homotopy Kan extensions of the constant

point functors along the projections π̃0 : L0 −→ O(F0) and π̃′
0 : L

′
0 −→ O(F0) respec-

tively. Let κP : ke(L0)(P ) −→ |L0|∧p be induced by the forgetful functor from π̃0↓P to
L0, and similarly for κ′P : ke(L0)(P ) −→ |L′

0|
∧
p . Then θ and θ′ factor through κS and

κ′S, and we have a homotopy commutative diagram

ke(L0)(P ) // ke(L0)(S)
κS

// |L0|
∧
p

f

��

BP //

≃

99ssssssssssss

≃
%%❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑

BS

≃

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

≃
''❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

θ

33❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

θ′

++❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱

ke(L′
0)(P )

// ke(L′
0)(S)

κ′S
// |L′

0|
∧
p .

Hence the maps fP : ke(L0)(P ) −→ |L′
0|

∧
p and f ′

P : ke(L
′
0)(P ) −→ |L

′
0|
∧
p , defined as the

obvious composites shown in the above diagram satisfy:

(a) The composites BP
≃
−−→ ke(L0)(P )

fP−−→ |L′
0|

∧
p and BP

≃
−−→ ke(L′

0)(P )
f ′P−−→ |L′

0|
∧
p

are homotopic, and are centric after p-completion by Theorem 6.3(b).

(b) fQ ◦ ke(L0)(ϕ) ≃ fP and f ′
Q ◦ ke(L′

0)(ϕ) ≃ f ′
P for each morphism ϕ : P −→ Q of

O(F0).

Thus ke(L0)
∧
p and ke(L′

0)
∧
p are equivalent rigidifications of B∧

p by Corollary A.5; and
so ke(L0) and ke(L′

0) are equivalent rigidifications of B by Proposition 5.9. Hence by
Proposition 4.6, L0 and L′

0 are isomorphic linking systems associated to F0.

More precisely, there is a third rigidification B̃ of B, and a commutative diagram of
natural transformations between functors O(F0) −−−→ Top of the following form:

ke(L0)
ψ

→ B̃ ←
ψ′

ke(L′
0)

|L0|
∧
p

↓
f
→ |L′

0|
∧
p

f1

≃
→ X
↓
←

f2

≃
|L′

0|
∧
p .

↓

Here, ψ(P ) and ψ′(P ) are homotopy equivalences for each P ; X is some space homotopy
equivalent to |L′

0|
∧
p ; all functors in the bottom row of the diagram are constant functors

on O(F0) (sending all objects to the given space and all morphisms to the identity); and
f1 and f2 are homotopy equivalences. Upon taking homotopy colimits of the functors
in the top row, we get the homotopy commutative diagram:

hocolim−−−−−→
O(F0)

(
ke(L0)

) ≃
→ hocolim−−−−−→

O(F0)

(B̃)←
≃

hocolim−−−−−→
O(F0)

(
ke(L′

0)
)

|L0|
∧
p

≃
↓

f
→ |L′

0|
∧
p

f1

≃
→ X
↓
←

f2

≃
|L′

0|
∧
p .

≃
↓

Here, the left and right vertical maps are homotopy equivalences by Proposition 4.6(a).
This proves that f is a homotopy equivalence. The last statement (an isomorphism
L0
∼= L′

0 can be chosen to induce f) now follows since by Theorem 7.1, every homotopy
equivalence from |L′

0|
∧
p to itself is induced by some self equivalence of L′

0. �
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An isomorphism (S,F ,L) −−→ (S ′,F ′,L′) of p-local compact groups consists of a
triple (α, αF , αL), where

S
α

−−−−→ S ′, F
αF−−−−→ F ′, and L

αL−−−−→ L′

are isomorphisms of groups and categories which satisfy the following compatibility
conditions:

(a) αF (P ) = αL(P ) = α(P ) for all P ≤ S;

(b) αF and αL commute with the projections π : L −−→ F and π′ : L′ −−−→ F ′; and

(c) αL commutes with the distinguished monomorphisms δP : P −−→ AutL(P ) and
δ′P : P −−→ AutL′(P ).

We are now ready to show that the isomorphism class of a p-local compact group is
determined by the homotopy type of its classifying space. This was shown for p-local
finite groups in [BLO2, Theorem 7.4].

Theorem 7.4. If (S,F ,L) and (S ′,F ′,L′) are two p-local compact groups such that
|L|∧p ≃ |L

′|∧p , then (S,F ,L) and (S ′,F ′,L′) are isomorphic as p-local compact groups.

Proof. If |L|∧p
f
−−−→

≃
|L′|∧p is a homotopy equivalence, then by Theorem 6.3(a), there

are homomorphisms α ∈ Hom(S, S ′) and α′ ∈ Hom(S ′, S) such that the squares

BS
Bα
→ BS ′ Bα′

→ BS

|L|∧p

θ
↓

f
→ |L′|∧p

θ′

↓
f ′

→ |L|∧p

θ
↓

commute up to homotopy, where f ′ is any homotopy inverse to f . The composites
α′

◦ α and α ◦ α′ are F -conjugate to IdS and IdS′ by Theorem 6.3(a) again, and thus α
is an isomorphism.

By yet another application of Theorem 6.3(a), for any P,Q ≤ S,

HomF(P,Q) =
{
ϕ ∈ Inj(P,Q)

∣∣ θ|BQ ◦Bϕ ≃ θ|BP
}
.

From this, and the corresponding result for HomF ′(α(P ), α(Q)), we see that α induces
an isomorphism of categories from F to F ′.

Upon replacing S ′ and F ′ by S and F , we can now assume that L and L′ are two link-

ing systems associated to F , for which there is a homotopy equivalence |L|∧p
f
−−−→ |L′|∧p

such that f ◦ θ ≃ θ′. Then L ∼= L′ (as linking systems associated to F) by Lemma
7.3. �

8. Fusion and linking systems of infinite groups

We now want to find some general conditions on an infinite group G which guaran-
tee that we can associate to G a p-local compact group (S,FS(G),LcS(G)) such that
|LcS(G)|

∧
p ≃ BG∧

p . This will be done in as much generality as possible. For example,
we prove the saturation of the fusion system FS(G) in sufficient generality so that the
result also applies to the case where G is a compact Lie group.



Carles Broto, Ran Levi, and Bob Oliver 47

At the end of the section, to show that the theory we have built up does contain
some interesting examples, we show that it applies in particular to all linear torsion
groups in characteristic different from p.

We say that a group G “has Sylow p-subgroups” if there is a discrete p-toral subgroup
S ≤ G which contains all discrete p-toral subgroups of G up to conjugacy. For any
such G, we let Sylp(G) be the set of such maximal discrete p-toral subgroups.

Lemma 8.1. Fix a group G, a normal discrete p-toral subgroup Q ⊳ G, and a subgroup
K ≤ G such that G = QK. Assume that K has Sylow p-subgroups. Then G has Sylow
p-subgroups, and

Sylp(G) = {QS |S ∈ Sylp(K)}.

Proof. Let Syl′p(G) = {QS |S ∈ Sylp(K)}. All subgroups in Syl′p(G) are G-conjugate
since all subgroups in Sylp(K) are K-conjugate. If P ≤ G is an arbitrary discrete
p-toral subgroup, then QP is also discrete p-toral (since Q and QP/Q are discrete
p-toral), and

QP = QK ∩QP = Q·(K ∩QP ).

Thus P ≤ QP ≤ QS ∈ Syl′p(G) for any S ∈ Sylp(K) which contains K ∩ QP . This
shows that G has Sylow p-subgroups, and that they are precisely the subgroups in
Syl′p(G). �

We first establish some general conditions on an infinite group G with Sylow p-
subgroups, which imply that FS(G) is a saturated fusion system for S ∈ Sylp(G). The
following technical lemma will be needed when doing this.

Lemma 8.2. Fix a group G, and normal subgroups N,Q ⊳ G, with the following
properties:

(a) Q is a discrete p-toral group.

(b) G/QN is a finite group.

(c) For each H ≤ G such that H ≥ N and H/N is finite, H has Sylow p-subgroups.

(d) each coset gN ∈ G/N contains at least one element of finite order.

Then G has Sylow p-subgroups. For any discrete p-toral subgroup P ≤ G, P ∈ Sylp(G)
if and only if P ≥ Q, P ∩N ∈ Sylp(N), and PN/QN ∈ Sylp(G/QN).

Proof. Fix any G′ ≤ G such that G′ ≥ QN and G′/QN ∈ Sylp(G/QN). For every
discrete p-toral subgroup P ≤ G, PQN/QN is conjugate to a subgroup of G′/QN ,
hence P is G-conjugate to a subgroup of G′. Hence G has Sylow p-subgroups if G′

does, and in that case, Sylp(G
′) is the set of subgroups of G′ which are in Sylp(G). It

thus suffices to prove the lemma when G = G′; i.e., when G/QN is a finite p-group;
and we assume this from now on.

Step 1: Assume first that Q = 1, and thus that |G/N | is a finite p-group. Then G
has Sylow p-subgroups by (c). Throughout this step, we fix some S ∈ Sylp(G). We first
prove that NS = G (hence NS/N ∈ Sylp(G/N)) and S ∩ N ∈ Sylp(N). Afterwards,
we prove the converse: P ∩ N ∈ Sylp(N) and NP = G imply P is G-conjugate to S,
and hence P ∈ Sylp(G).

If NS � G, then NS/N � G/N , where the latter is a finite p-group. Since every
proper subgroup of a p-group is contained in a proper normal subgroup, there is a
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proper normal subgroup N̂ ⊳ G which contains NS. By (d), there is an element

g ∈ GrN̂ of finite order. Write |g| = mpk where p ∤ m, and set g′ = gm. Then

g′ ∈ GrN̂ since N̂ has p-power index, and |g′| = pk. This means that 〈g′〉 is a finite
p-subgroup of G which is not conjugate to a subgroup of S, which contradicts the
assumption that S ∈ Sylp(G). Thus NS = G.

For all S ′ ∈ Sylp(N), there are elements x ∈ G and y ∈ N such that xS ′x−1 ≤ S ∩N
and y(S ∩N)y−1 ≤ S ′. Thus (yx)S ′(yx)−1 ≤ S ′, and this must be an equality since S ′

is artinian. It follows that S ∩N = xS ′x−1 ∈ Sylp(N).

Now let P ≤ G be any subgroup such that P∩N ∈ Sylp(N) and PN = G. Fix x ∈ G
such that xPx−1 ≤ S. Then (xPx−1)N = xPNx−1 = G, xPx−1∩N = x(P ∩N)x−1 ≤
S ∩N , and this last must be an equality since P ∩N ∈ Sylp(N). It follows that

|G/N | = |xPx−1·N/N | = |xPx−1/(xPx−1 ∩N)| ≤ |S/(S ∩N)| = |SN/N | ≤ |G/N |;

so these are all equalities, and P = x−1Sx ∈ Sylp(G).

Step 2: Now consider the general case. By assumption, G/N is an extension
of the discrete p-toral group QN/N by the finite p-group G/QN , and hence is dis-
crete p-toral. So by Lemma 1.9, there is a finite p-subgroup G0/N ≤ G/N such that
(G0/N)·(QN/N) = G/N , and thus QG0 = G (since G0 ≥ N). Then G0 has Sylow
p-subgroups by (c). Hence G has Sylow p-subgroups by Lemma 8.1. Also, by Step 1
applied to the pair N ⊳ G0 (recall G0/N is a p-group),

P ∈ Sylp(G0) ⇐⇒ P ∩N ∈ Sylp(N) and PN = G0.

Let P ≤ G be any discrete p-toral subgroup which contains Q, and set P0 = P ∩G0.
In general, for any A,B ≤ G and C ⊳ G with C ≤ A, C·(A ∩ B) = A ∩ CB. Thus

QP0 = Q·(P ∩G0) = P ∩QG0 = P ∩G = P

P0N = (P ∩G0)·N = PN ∩G0 .
(1)

Also, by Lemma 8.1 again, Sylp(G) = {QS |S ∈ Sylp(G0)}. Hence

P ∈ Sylp(G) ⇐⇒ P0 = P ∩G0 ∈ Sylp(G0)

⇐⇒ P0 ∩N ∈ Sylp(N) and P0N = G0 (Step 1)

⇐⇒ P ∩N ∈ Sylp(N) and PN = G;

where the last equivalence holds by (1) and since P0∩N = P ∩ (G0∩N) = P ∩N . �

Let G be any group which has Sylow p-subgroups. For any S ∈ Sylp(G), we let
FS(G) be the fusion system over S with objects the subgroups of S and morphisms

HomFS(G)(P,Q) = HomG(P,Q) .

Proposition 8.3. Let G be a group for which the following conditions hold:

(a) For each discrete p-toral subgroup P ≤ G, each element of AutG(P ) is conjugation
by some x ∈ NG(P ) of finite order.

(b) For each discrete p-toral subgroup P ≤ G, and each finite subgroup H/CG(P ) ≤
NG(P )/CG(P ), H has Sylow p-subgroups.

(c) For each increasing sequence P1 ≤ P2 ≤ P3 ≤ · · · of discrete p-toral subgroups of
G, there is some k such that CG(Pn) = CG(Pk) for all n ≥ k.
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Then for each S ∈ Sylp(G), FS(G) is a saturated fusion system. Furthermore, the
following hold for each subgroup P ≤ S.

(1) CG(P ) has Sylow p-subgroups, and P is fully centralized in FS(G) if and only if
CS(P ) ∈ Sylp(CG(P )).

(2) NG(P ) has Sylow p-subgroups, and P is fully normalized in FS(G) if and only if
NS(P ) ∈ Sylp(NG(P )).

Proof. Note first that G has Sylow p-subgroups by (b), applied with P = 1.

Fix S ∈ Sylp(G), and let P ≤ S be any subgroup. By (a), AutG(P ) is a torsion
group, so OutG(P ) is a torsion group, and hence is finite by Proposition 1.5(b). We
first claim that

P ·CG(P ) ≤ Γ ≤ NG(P ) =⇒ Γ has Sylow p-subgroups; (3)

and that if we set S0 = S ∩ Γ, then

S0 ∈ Sylp(Γ) ⇐⇒ CS(P ) ∈ Sylp(CG(P )) and
S0·CG(P )

P ·CG(P )
∈ Sylp(Γ/P ·CG(P )). (4)

Points (3) and (4) follow from Lemma 8.2, applied with N = CG(P ) and Q = P .
Conditions (c) and (d) of Lemma 8.2 follow from conditions (b) and (a) above. Note
that Γ/QN is finite since OutG(P ) ∼= NG(P )/QN is finite.

We next prove (1) and (2). For all P ≤ S, (3) (applied with Γ = NG(P )) implies that
there is Q ∈ Sylp(NG(P )) such that NS(P ) ≤ Q ≤ NG(P ). Choose g ∈ G such that
gQg−1 ≤ S; then gQg−1 is a Sylow p-subgroup of gNG(P )g

−1 = NG(gPg
−1). Since

gQg−1 ≤ S, gQg−1 = S ∩ NG(gPg
−1) = NS(gPg

−1). Hence NS(gPg
−1) is a Sylow p-

subgroup of NG(gPg
−1). If P is fully normalized, then |NS(P )| ≥ |NS(gPg

−1)| = |Q|.
Since NS(P ) ≤ Q, this implies that NS(P ) = Q ∈ Sylp(NG(P )).

Conversely, suppose thatNS(P ) ∈ Sylp(NG(P )). Choose g ∈ G such that gPg−1 ≤ S
and is fully normalized in FS(G). Then NS(gPg

−1) ∈ Sylp(NG(gPg
−1)), so NS(P ) ∼=

NS(gPg
−1) since NG(P ) ∼= NG(gPg

−1), and P is also fully normalized.

This proves (2). The proof of (1) (the condition for P to be fully centralized) is
similar, except that CG(P ) has Sylow p-subgroups by (b).

We now prove that FS(G) is saturated.

(I) Assume that P ≤ S is fully normalized in FS(G). We have already seen that
OutG(P ) is finite (since it is a torsion group by (a)). Also, NS(P ) ∈ Sylp(NG(P ))
by (2). So by (4), applied with Γ = NG(P ), CS(P ) ∈ Sylp(CG(P )) (hence P is fully
centralized by (1)), and OutS(P ) ∈ Sylp(OutG(P )).

(II) Let P ≤ S be an arbitrary subgroup, and let g ∈ G be such that P ′ def
= gPg−1 ≤

S is fully centralized. Set Γ = NS(P
′)·CG(P ′), and define

N =
{
x ∈ NS(P )

∣∣ cg ◦ cx ◦ c−1
g ∈ AutS(P

′)
}
=

{
x ∈ NS(P )

∣∣ gxg−1 ∈ Γ
}
.

Then CS(P
′) ∈ Sylp(CG(P

′)) by (1), and so by (4), NS(P
′) is a Sylow p-subgroup of

Γ = NS(P
′)·CG(P ′) (S0·CG(P ) = Γ in the notation of (4)). Since gNg−1 is a discrete p-

toral subgroup of Γ, it is Γ-conjugate to a subgroup of NS(P
′). Thus there are elements

x ∈ NS(P
′) and y ∈ CG(P ′) such that (xyg)N(xyg)−1 ≤ NS(P

′). Then (yg)N(yg)−1 ≤
NS(P

′) ≤ S, and cyg ∈ HomG(N, S) is an extension of cg ∈ HomG(P, S).
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(III) Let P1 ≤ P2 ≤ P3 ≤ · · · be a sequence of subgroups of S, and set P∞ =⋃∞
n=1 Pn. Assume ϕ ∈ Hom(P∞, S) is a monomorphism such that ϕ|Pn ∈ HomG(Pn, S)

for each n. Fix elements gn ∈ G for each n such that ϕ(x) = gnxg
−1
n , for x ∈ Pn. Then

for all 1 ≤ k < n, g−1
n gk ∈ CG(Pk).

By (c), there is k such that CG(Pk) = CG(Pn) = CG(P∞) for all n ≥ k. Hence for all
n ≥ k and all x ∈ Pn, ϕ(x) = gnxg

−1
n = gkxg

−1
k , and thus ϕ = cgk ∈ HomG(P∞, S). �

In general, for any group G, we define a p-centric subgroup of G to be a discrete
p-toral subgroup P ≤ G such that Z(P ) is the unique Sylow p-subgroup of CG(P )
(i.e., every discrete p-toral subgroup of CG(P ) is contained in Z(P )). Equivalently, P
is p-centric if and only if CG(P )/Z(P ) has no elements of order p.

Proposition 8.4. Let G be any group which has Sylow p-subgroups, and fix S ∈
Sylp(G). Then a subgroup P ≤ S is FS(G)-centric if and only if P is p-centric in
G.

Proof. Assume that P is p-centric in G; i.e., that Z(P ) ∈ Sylp(CG(P )). For every
g ∈ G such that gPg−1 ≤ S, CS(gPg

−1) is a discrete p-toral subgroup of CG(gPg
−1) =

gCG(P )g
−1, and Z(gPg−1) = gZ(P )g−1 is a Sylow p-subgroup (hence the unique one)

of gCG(P )g
−1. It follows that Z(gPg−1) = CS(gPg

−1) for all such g, and so P is
FS(G)-centric.

Conversely, suppose that P ≤ S is FS(G)-centric. Let Q be any discrete p-toral sub-
group of CG(P ). Then QP is a discrete p-toral subgroup, and hence there is an element
g ∈ G such that g(QP )g−1 ≤ S. Thus gPg−1 ≤ S, and gQg−1 ≤ S ∩ CG(gPg−1) =
CS(gPg

−1). Since P is FS(G)-centric, this shows that gQg−1 ≤ Z(gPg−1), and thus
that Q ≤ Z(P ). In other words, every discrete p-toral subgroup of CG(P ) is contained
in Z(P ), and so P is p-centric in G. �

We now restrict attention to locally finite groups. For any such group G, for the
purposes of this section, we define Op(G) ⊳ G be the subgroup generated by all ele-
ments of order prime to p. This clearly generalizes the usual definition of Op(G) for
finite G (although it is not the only generalization).

Proposition 8.5. If G is locally finite, then a discrete p-toral subgroup P ≤ G is
p-centric if and only if CG(P ) = Z(P ) × Op(CG(P )) and all elements of Op(CG(P ))
have order prime to p.

Proof. By the above definition, a discrete p-toral subgroup P ≤ G is p-centric if and
only if CG(P )/Z(P ) has no elements of order p. So if P is not p-centric, then either
Op(CG(P )) has p-torsion, or CG(P ) is not generated by Z(P ) and Op(CG(P )).

Conversely, assume that P is p-centric, and thus that CG(P )/Z(P ) has no p-torsion.
Consider the universal coefficient exact sequence

0 −−−→ Ext
(
H1(CG(P )/Z(P )), Z(P )

)
−−−−→ H2(CG(P )/Z(P );Z(P ))

−−−−→ Hom
(
H2(CG(P )/Z(P )), Z(P )

)
−−−→ 0.

By assumption, all elements of CG(P )/Z(P ) have order prime to p, all elements of
Z(P ) have p-power order, and both groups are locally finite. Hence for i = 1, 2,
Hi(CG(P )/Z(P )) is a direct limit of finite abelian groups of order prime to p, and thus
a torsion group all of whose elements have order prime to p. This shows that all terms
in the above sequence vanish. Hence the central extension

1 −−→ Z(P ) −−−−→ CG(P ) −−−−→ CG(P )/Z(P ) −−→ 1
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splits, so CG(P ) ∼= Z(P )× (CG(P )/Z(P )), and all elements of the group Op(CG(P )) ∼=
CG(P )/Z(P ) have order prime to p. �

When working with fusion systems over discrete p-toral groups and their orbit cate-
gories, we are able to reduce certain problems to ones involving finite categories using
the functor (−)• constructed in Section 3. This is not a functor on the orbit category
of a group, and so we need a different way to make such reductions. For any group G
with Sylow p-subgroups, we let X = X(G) denote the set of all subgroups of G which
are intersections of (nonempty) subsets of Sylp(G). Since discrete p-toral groups are
artinian, it makes no difference whether we require finite intersections or allow infinite
intersections.

Lemma 8.6. Let G be a group such that for each discrete p-toral subgroup P ≤ G,
NG(P ) has Sylow p-subgroups. Assume, for every increasing sequence P(1) ≤ P(2) ≤
P(3) ≤ · · · of discrete p-toral subgroups of G, that the union of the P(i) is again a
discrete p-toral group, and that there is some k such that CG(P(n)) = CG(P(k)) for all
n ≥ k. Then the set X(G) contains finitely many G-conjugacy classes.

Proof. For each discrete p-toral subgroup P ≤ G, we let P ◦ ≥ P denote the intersection
of all Sylow p-subgroups of G which contain P . We first prove

(1) For each discrete p-toral subgroup P ≤ G, there is a finite subgroup P ′ ≤ P such
that P ′◦ = P ◦.

To see this, set pn = exp(π0(S)) for S ∈ Sylp(G). The discrete p-torus S0 is the
union of an increasing sequence of finite p-subgroups, and since centralizers stabilize
by assumption, there is a finite subgroup Q ≤ P0 such that CG(Q) = CG(P0). Set
Q′ = {x ∈ P0 | xp

n

∈ Q}: also a finite p-subgroup. By Lemma 1.9, there is a finite
subgroup P ′ ≤ P such that P ′ ≥ Q′ and P ′P0 = P .

Fix S ∈ Sylp(G) which contains P ′. Then S0 ≥ Q (since S ≥ Q′), and hence
S0 ≤ CG(Q) = CG(P0). Since S0 is a maximal discrete p-torus in G and S0·P0 is also a
discrete p-torus, this implies that S0 ≥ P0. Hence S ≥ P ′P0 = P . Since this holds for
all S ∈ Sylp(G) which contains P ′, we have shown that P ′◦ = P ◦; and this finishes the
proof of (1).

Let X(G) be the set of G-conjugacy classes of subgroups in X(G). We let (P )

denote the conjugacy class of the subgroup P , and make X(G) into a poset by setting

(P ) ≤ (Q) if P ≤ xQx−1 for some x ∈ G. Let P ⊆ X(G) be the set of all classes
(P ) which are contained in infinitely many other classes. We claim that P = ∅. Since

X(G) contains a smallest element which is contained in all the others (the class of the

intersection of all Sylow p-subgroups of G), P = ∅ implies that X(G) is finite, which
is what we want to prove.

Assume otherwise: assume P 6= ∅. We claim that P has a maximal element. For
any totally ordered subset P0 of P, upon restricting to those subgroups of maximal
rank, we obtain a sequence of subgroups P(1) ≤ P(2) ≤ P(3) ≤ · · · whose conjugacy
classes are cofinal in P0. If this sequence is finite, then P0 clearly has a maximal
element. Otherwise, set P(∞) =

⋃∞
i=1 P(i), and let P ′ ≤ P(∞) be a finite subgroup such

that P ′◦ = P(∞) (apply (1)). Then P ′ ≤ P(k) for some k, and so (P(k)) = (P(∞)) is a
maximal element in P0.

Thus by Zorn’s lemma, P contains a maximal element (Q), and clearly Q /∈ Sylp(G).
Since NG(Q) has Sylow p-subgroups, there is some S ∈ Sylp(G) such that every p-toral
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subgroup of G containing Q with index p is G-conjugate to a subgroup of NS(Q); and
hence by Lemma 1.4, there are finitely many G-conjugacy classes of such subgroups.

Hence since (Q) is contained in infinitely many classes in X(G), the same holds for (Q′)
for some Q′ ≤ G such that Q ⊳ Q′ with index p. Then (Q′◦) ∈ P, which contradicts
the maximality assumption about Q. So P contains no maximal element, hence must
be empty, and so X(G) has finitely many G-conjugacy classes. �

Now, for any discrete group G which has Sylow p-subgroups, let Lcp(G) be the cate-
gory whose objects are the p-centric subgroups of G, and where

MorLc
p(G)(P,Q) = NG(P,Q)/O

p(CG(P )).

For any S ∈ Sylp(G), let L
c
S(G) ⊆ L

c
p(G) be the equivalent full subcategory whose

objects are the subgroups of S which are p-centric in G.

It will be convenient, throughout the rest of this section, to use the term “p-group”
to mean any group each of whose elements has p-power order. It is not hard to show
that if G is locally finite, and has Sylow p-subgroups in the sense described above,
then every p-subgroup of G is a discrete p-toral subgroup. Hence there is no loss of
generality to assume this in the following theorem.

Theorem 8.7. Let G be any group which satisfies the following conditions:

(a) G is locally finite.

(b) Each p-subgroup of G is a discrete p-toral group.

(c) For any increasing sequence A(1) ≤ A(2) ≤ A(3) ≤ · · · of finite abelian p-subgroups
of G, there is some k such that CG(A(n)) = CG(A(k)) for all n ≥ k.

Then G has a unique conjugacy class Sylp(G) of maximal discrete p-toral subgroups.
For any S ∈ Sylp(G), (S,FS(G),L

c
S(G)) is a p-local compact group, with classifying

space |LcS(G)|
∧
p ≃ BG∧

p .

Proof. We first apply Proposition 8.3 to show that FS(G) is a saturated fusion system
over S. Once this has been checked, then it easily follows that LcS(G) is a centric linking
system associated to FS(G): condition (A) in Definition 4.1 holds by Propositions 8.5
and 8.4, and conditions (B) and (C) are immediate. It then will remain only to show
that |LcS(G)|

∧
p ≃ BG∧

p .

By [KW, Theorem 3.4], conditions (a) and (c) above imply that all maximal p-
subgroups of G are conjugate, and hence (by (b)) that G has Sylow p-subgroups. Since
these three conditions are carried over to subgroups of G, this also shows that each
subgroup of G has Sylow p-subgroups. This proves condition (b) in Proposition 8.3,
and condition (a) holds since G is locally finite.

It remains to prove condition (c) in Proposition 8.3, which we state here as:

(d) For any increasing sequence P(1) ≤ P(2) ≤ P(3) ≤ · · · of discrete p-toral subgroups
of G, there is some k such that CG(P(n)) = CG(P(k)) for all n ≥ k.

To see this, fix any such sequence, and let P(∞) be its union. Let A = (P(∞))0 be the
identity component, and set A(i) = A ∩ P(i) for all i. Let r be such that P(i) surjects
onto π0(P(∞)) for all i ≥ r; equivalently, P(i)·A = P(∞) for all i ≥ r. For each i, let
A′
i ≤ A(i) be the finite subgroup of elements of order at most pi. Then A =

⋃∞
i=1A

′
i;

and so by (c) there is r such that CG(A) = CG(A
′
r). Hence CG(A(i)) = CG(A(r)) for
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all i ≥ r (since A′
r ≤ A(r) ≤ A(i) ≤ A). We can assume that r is chosen large enough

so that P(r) surjects onto P(∞)/A; i.e., such that P(r)·A = P(∞). Then for all i ≥ r,
P(i) = A(i)·P(r),

CG(P(i)) = CG(A(i)) ∩ CG(P(r)) = CG(A(r)) ∩ CG(P(r)) = CG(P(r)),

and this finishes the proof of (d).

We have now shown that the hypotheses of Proposition 8.3 hold, and thus that
FS(G) is a saturated fusion system over S. We have already seen that LcS(G) is a
linking system associated to FS(G), and it remains only to show that |LcS(G)|

∧
p ≃ BG∧

p .

As in Section 5, for any discrete group G, we let Op(G) be the category whose objects
are the discrete p-toral subgroups P ≤ G, and where

MorOp(G)(P,Q) = Q\NG(P,Q) ∼= MapG(G/P,G/Q).

Let OX(G) ⊆ Op(G) be the full subcategory with object set X = X(G): the set of all
intersections of subgroups in Sylp(G). For each discrete p-toral subgroup P ≤ G, we let
P ◦ ∈ X denote the intersection of all subgroups in Sylp(G) which contain P . Clearly,
for any P and Q, NG(P,Q) ⊆ NG(P

◦, Q◦), and so this defines a functor (−)◦ from
Op(G) to OX(G). Since NG(P

◦, Q) = NG(P,Q) when Q ∈ X(G), the two functors

OX(G)
incl

−−−−−−−→←−−−−−−−
(−)◦

Op(G) (1)

are adjoint.

Step 1: Let I and Φ be the following functors from Op(G) to (G-)spaces:

I(P ) = G/P and Φ(P ) = EG×G I(P ) ∼= EG/P.

Then for any full subcategory C ⊆ Op(G),

hocolim−−−−−→
C

(I) =
( ∞∐

n=0

∐

G/P0→···→G/Pn

G/P0 ×∆n
)/
∼

is the nerve of the category whose objects are the cosets gP for all P ∈ Ob(C), and
with a unique morphism gP → hQ exactly when gPg−1 ≤ hQh−1. When C = OX(G),
this category has as initial object the intersection of all Sylow p-subgroups of G, and
hence hocolim−−−−−→OX (G)

(I) is contractible. Since the Borel construction commutes with

homotopy colimits in this situation (being itself a special case of a homotopy colimit),

hocolim−−−−−→
OX(G)

(Φ) ∼= EG×G
(
hocolim−−−−−→
OX(G)

(I)
)
≃ BG. (2)

Step 2: Fix some Q ∈ X which is not p-centric. For each i ≥ 0, consider the functor

F
[Q]
i : Op(G)

op → Ab where F
[Q]
i (P ) =

{
H i(BP ;Fp) if P is G-conjugate to Q

0 otherwise.

The subgroup CG(Q)·Q/Q ∼= CG(Q)/Z(Q) of AutOp(G)(Q) = N(Q)/Q acts trivially on

F
[Q]
i (Q), and contains an element of order p since Q is not p-centric. Hence by Lemmas

5.10 and 5.12,

lim←−
∗

OX (G)

(F
[Q]
i ) ∼= lim←−

∗

Op(G)

(F
[Q]
i ) ∼= Λ∗

(
NG(Q)/Q;F

[Q]
i (P )

)
= 0 for all i,

where the first isomorphism follows from the adjoint functors (1).
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Step 3: Now let OcX(G) ⊆ OX(G) be the full subcategory with objects the p-centric
subgroups which lie in X. Let P1, P2, . . . , Pm ≤ S be representatives for those G-
conjugacy classes in X(G) which are not p-centric (a finite set by Lemma 8.6). We
assume these are ordered such that |Pi| ≤ |Pi+1| for each i.

For each i ≥ 0, consider the functor Fi : Op(G)
op → Ab, defined by setting Fi(P ) =

H i(BP ;Fp) for all P . For all k = 0, . . . , m, define functors

Fi,k : OX(G)
op → Ab by setting Fi,k(P ) =

{
0 if P ∼

G
Pj, some j ≥ k

Fi(P ) otherwise.

Here, “∼
G
” means “G-conjugate”, and these are all defined to be quotient functors of

Fi|OX (G). In particular, Fi,0 = Fi|OX(G) and Fi,m = Fi|Oc
X
(G). Also, for all k,

Ker
[
Fi,k −−−։ Fi,k+1

]
∼= F

[Pk]
i |OX(G),

and the higher limits of this last functor vanish by Step 2. So there are isomorphisms

lim←−
∗

OX(G)

(Fi) = lim←−
∗

OX (G)

(Fi,0) ∼= lim←−
∗

OX(G)

(Fi,1) ∼= · · · ∼= lim←−
∗

OX(G)

(Fi,m) ∼= lim←−
∗

Oc
X
(G)

(Fi);

whose composite is induced by restriction from OX(G) to OcX(G).

The spectral sequence for the cohomology of a homotopy colimit now implies that the
inclusion of OcX(G) into OX(G) induces a mod p homology isomorphism of homotopy
colimits of Φ, and hence a homotopy equivalence

(
hocolim−−−−−→
Oc

X
(G)

(Φ)
)
∧
p

≃
−−−−−−→

(
hocolim−−−−−→
OX(G)

(Φ)
)
∧
p . (3)

Also, the adjoint functors in (1) restrict to adjoint functors between OcX(G) and O
c
p(G),

and hence induce a homotopy equivalence
(
hocolim−−−−−→
Oc

X
(G)

(Φ)
)
∧
p ≃

(
hocolim−−−−−→
Oc

p(G)

(Φ)
)
∧
p . (4)

Step 4: Let T cp (G) be the centric transporter category for G: the category whose
objects are the p-centric subgroups of G, and where the set of morphisms from P to Q
is the transporter NG(P,Q). By exactly the same argument as in [BLO1, Lemma 1.2],

hocolim−−−−−→
Oc

p(G)

(Φ) ≃ |T cp (G)|. (5)

The canonical projection functor T cp (G) →Lcp(G) satisfies all of the hypotheses of
the functor in [BLO1, Lemma 1.3], except that we only know that

K(P )
def
= Ker

[
AutT c

p (G)(P ) −−։ AutLc
p(G)(P )

]
= Op(CG(P ))

is a locally finite group all of whose elements have order prime to p (not necessarily
a finite group). But this suffices to ensure that coinvariants preserve exact sequences
of Z(p)[KP ]-modules, which is the only way this property of KP is used in the proof of
[BLO1, Lemma 1.3]. Hence the induced map

|T cp (G)| −−−−−−→ |L
c
p(G)|.

is a mod p homology equivalence. Together with (2), (3), (4), and (5), this shows that

|LcS(G)|
∧
p ≃ |L

c
p(G)|

∧
p ≃ |T

c
p (G)|

∧
p ≃ BG∧

p . �
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We now finish the section by exhibiting a more concrete class of groups which satisfy
the hypotheses of Theorem 8.7. A linear torsion group is a torsion subgroup of GLn(k),
for any positive integer n and any (commutative) field k. These are also referred
to as “periodic linear groups”, since their elements are all periodic transformations
(automorphisms of finite order) of a finite dimensional vector space.

The following facts about linear torsion groups are the starting point of our work
here.

Proposition 8.8. The following hold for every field k, and every linear torsion group
G ≤ GLn(k).

(a) G is locally finite.

(b) For p 6= char(k), every p-subgroup of G is a discrete p-toral group.

Proof. Point (a) is a theorem of Schur, and is shown in [W, Corollary 4.9]. By [W, 2.6],
every locally finite p-subgroup of GLn(k) is artinian (when p 6= char(k)), and hence is
discrete p-toral by Proposition 1.2. �

In order to apply Theorem 8.7, it remains only to check that centralizers of discrete
p-toral subgroups of linear torsion groups stabilize in the sense of Theorem 8.7.

Proposition 8.9. Let A1 ≤ A2 ≤ A3 ≤ . . . be an increasing sequence of finite abelian
p-subgroups of a linear torsion group G ≤ GLn(k), where char(k) 6= p. Then there is r
such that CG(Ai) = CG(Ar) for all i ≥ r.

Proof. Upon replacing k by its algebraic closure if necessary, we can assume that k
is algebraically closed. Hence any representation over k of a finite abelian p-group A
splits as a sum of 1-dimensional irreducible representations. Moreover, if A ≤ GLn(k),
and kn = U1 ⊕ · · · ⊕Um is the unique decomposition with the property that each Ui is
a sum of irreducible modules with the same character and different Ui correspond to
different characters of A, then

CGLn(k)(A)
∼=

m∏

i=1

Autk(Ui) ∼=

m∏

i=1

GLdi(k). (di = dim(Ui))

From this observation, it is clear that for any increasing sequence of such subgroups Ai,
the centralizers CGLn(k)(Ai) stabilize for i sufficiently large, and hence the stabilizers
CG(Ai) also stabilize. �

Propositions 8.8 and 8.9 show that linear torsion groups satisfy all of the hypotheses
of Theorem 8.7. So as an immediate consequence, we get:

Theorem 8.10. Fix a linear torsion group G, a prime p different than the defining
characteristic of G, and a Sylow subgroup S ∈ Sylp(G). Then (S,FS(G),LcS(G)) is a
p-local compact group, with classifying space |LcS(G)|

∧
p ≃ BG∧

p . �

9. Compact Lie groups

Throughout this section, we fix a compact Lie group G and a prime p. Our main
result is to show that G defines a p-local compact group whose classifying space has
the homotopy type of BG∧

p .
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A compact Lie group P is called p-toral if its identity component is a torus and if

its group of components is a p-group. The closure P of a discrete p-toral subgroup

P ≤ G is a p-toral group, since P0 is abelian and connected, hence a torus, and has

p-power index in P . We will generally denote p-toral groups (including tori) by P , Q ,
T , etc., to distinguish them from discrete p-toral groups P , Q, T , etc. Our first task
is to identify the maximal (discrete) p-toral subgroups of G.

Definition 9.1. (a) For any p-toral group P, Sylp(P) denotes the set of discrete p-
toral subgroups P ≤ P such that P ·P0 = P and P contains all p-power torsion in
P0.

(b) A discrete p-toral subgroup P ≤ G is snugly embedded if P ∈ Sylp(P ).

(c) Sylp(G) denotes the set of all p-toral subgroups S ≤ G such that the identity com-
ponent S0 is a maximal torus of G and S/S0 ∈ Sylp(N(S0)/S0).

(d) Sylp(G) denotes the set of all discrete p-toral subgroups P ≤ G such that P ∈

Sylp(G) and P ∈ Sylp(P ).

For any discrete p-toral subgroup P ≤ G, P0 is a torus, as noted above, and has

finite index in P . Hence P0 = (P )0, and π0(P ) ∼= P/P0. So P is snugly embedded in

G if and only if P0 is snugly embedded, and this holds exactly when rk(P ) = rk(P ).
As an example of a subgroup which is not snugly embedded, one can construct a rank
one subgroup P ∼= Z/p∞ which is densely embedded in a torus (S1)r for r > 1.

Clearly, when rk(P ) < rk(P ), we cannot expect BP ∧
p and BP ∧

p to have the same
homotopy type. But we do get a homotopy equivalence when P is snugly embedded.

Proposition 9.2. If P ≤ G is snugly embedded, then the inclusion of P in P induces

a homotopy equivalence BP ∧
p ≃ BP ∧

p .

Proof. This means showing that the inclusion of BP into BP induces an isomorphism
on mod p cohomology. See, for example, [Fe, Proposition 2.3]. �

The following proposition is well known. It says that Sylp(G) is the set of maximal p-
toral subgroups of G, that Sylp(G) is the set of maximal discrete p-toral subgroups of G,
and that each of these sets contains exactly one G-conjugacy class. Note in particular
the case where G = P is p-toral: there is a unique conjugacy class of discrete p-toral
subgroups snugly embedded in P , and every discrete p-toral subgroup of P is contained
in a snugly embedded subgroup.

Proposition 9.3. The following hold for any compact Lie group G and any p-toral
group P.

(a) Any two subgroups in Sylp(G) are G-conjugate, and each p-toral subgroup P ≤ G

is contained in some subgroup S ∈ Sylp(G).

(b) Any two subgroups in Sylp(G) are G-conjugate, and each discrete p-toral subgroup
P ≤ G is contained in some subgroup S ∈ Sylp(G).

Proof. (a) The subgroups in Sylp(G) are clearly all conjugate to each other, since

all maximal tori in G are conjugate. For any S ∈ Sylp(G) with identity component
the maximal torus T = S 0, χ(G/N(T )) = 1 (see [Br, Proposition 0.6.3]), and hence
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χ(G/S) is prime to p. If Q is an arbitrary p-toral subgroup of G, then χ((G/S)Q) is

congruent mod p to χ(G/S), so (G/S)Q 6= ∅, and hence Q ≤ gSg−1 ∈ Sylp(G) for
some g ∈ G.

(b) Assume first that G = P is p-toral. Set T = P 0, and let T ≤ T be the subgroup
of elements of p-power torsion. By definition, Sylp(P) is the set of all subgroups P ≥ T
such that P/T is the image of a splitting of the extension

1 −−→ T/T −−−→ P/T −−−→ P/T −−→ 1. (1)

The cohomology groups H i(P/T ;T/T ) vanish for all i > 0, since P/T is a p-group
and T/T is uniquely p-divisible. Hence the extension (1) is split, and any two splittings
are conjugate by an element ofT/T . Thus Sylp(P) 6= ∅, and its elements are conjugate
to each other by elements of T .

Now let Q ≤ P be an arbitrary discrete p-toral subgroup. Then QT is also a discrete
p-toral subgroup (since T ⊳ P), andQT/T is the image of a splitting of the extension of
T/T by QT/T . We have seen that any two such splittings are conjugate by elements
of T/T , and hence they all extend to splittings of the extension by P/T . In other
words, there is a subgroup P ∈ Sylp(P) which contains QT , and hence contains Q.

Now let G be an arbitrary compact Lie group. For any S, S ′ ∈ Sylp(G), S is G-

conjugate to S ′ by (a), so S = gS ′g−1 for some g ∈ G, and S, gS ′g−1 ∈ Sylp(S). We

have just shown that all subgroups in Sylp(S) are conjugate, and hence S and S ′ are

conjugate. If P ≤ G is an arbitrary discrete p-toral subgroup, then its closure P is a

p-toral subgroup, and hence contained in some maximal subgroup S ∈ Sylp(G) by (a)
again. So there is some S ∈ Sylp(S) ⊆ Sylp(G) which contains P . �

We next need some information about the outer automorphisms of (discrete) p-toral
subgroups of G.

Lemma 9.4. The following hold for all discrete p-toral subgroups P,Q ≤ G.

(a) If P ≤ Q, then Out
Q
(P ) is a finite p-group, and Out

Q
(P ) = OutQ(P ) if Q is

snugly embedded in G. In particular, Out
Q
(Q) = 1 if Q is snugly embedded in G.

(b) OutG(P ) and OutG(P ) are both finite.

(c) If Q is snugly embedded, then the natural map

RepG(P,Q)
∼=

−−−−−−→ RepG(P,Q)

is a bijection.

Proof. (a) Choose Q′ ≤ Q such that Q′ = Q and Q′ is snugly embedded. Then
OutQ′(P ) is a finite p-group by Proposition 1.5(c). The first statement thus follows
from the second.

Now assume Q is snugly embedded. We must show that Out
Q
(P ) = OutQ(P ); or

equivalently that Aut
Q
(P ) = AutQ(P ). Fix x ∈ NQ

(P ), and set |P | = pk.

Let Q/Q be the set of left cosets gQ for g ∈ Q, and let (Q/Q)P be the fixed point

set of the left P -action. Then for g ∈ Q, gQ ∈ (Q/Q)P if and only if g−1Pg ≤ Q. In

particular, xQ ∈ (Q/Q)P since x normalizes P and P ≤ Q. Since Q/Q = Q0/Q0 and
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the latter group is uniquely p-divisible (since Q is snugly embedded), there is y ∈ Q0

such that yp
k

∈ xQ and yQ ∈ (Q/Q)P .

Set
ŷ =

∏

a∈P

(aya−1) = yp
k

·
∏

a∈P

((y−1ay)·a−1) ∈ yp
k

Q = xQ;

where the inclusion holds since P ≤ Q and y−1Py ≤ Q. Then ŷ ∈ C
Q
(P ). Since x

was arbitrary, this proves that N
Q
(P ) = C

Q
(P )·NQ(P ), and finishes the proof that

Aut
Q
(P ) = AutQ(P ). In the case P = Q, this shows that Out

Q
(Q) = OutQ(Q) = 1.

(b) The kernel of the homomorphism

OutG(P ) −−−−−−→ OutG(P ) (1)

is Out
P
(P ). By (a), this is always finite, and is trivial if P is snugly embedded. If P

is snugly embedded, i.e., if P ∈ Sylp(P ), then NG(P ) = P ·NG(P ) (any subgroup of P

which is G-conjugate to P is also P -conjugate to P ), and hence the map in (1) is also

surjective. Thus in this case, OutG(P ) ∼= OutG(P ) ∼= NG(P )/P ·CG(P ) is a compact

Lie group, all torsion subgroups of which are finite by Theorem 1.5. Thus OutG(P )
is finite (since otherwise it would contain S1). If P is an arbitrary discrete p-toral
subgroup of G, then the kernel and the image of the map in (1) are finite, and hence
OutG(P ) is also finite in this case.

(c) Assume P,Q ≤ S, where Q is snugly embedded. We must show that the map

from RepG(P,Q) to RepG(P,Q) which sends a homomorphism to its unique continuous

extension is a bijection. For any ϕ ∈ HomG(P,Q), ϕ(P ) is Q-conjugate to a subgroup

of Q ∈ Sylp(Q), and hence ϕ is Q-conjugate to a homomorphism which sends P into Q.
This proves surjectivity. To prove injectivity, fix ϕ1, ϕ2 ∈ HomG(P,Q) which induce

the same class in RepG(P ,Q), and set Pi = Im(ϕi). Then ϕ2 = χ ◦ ϕ1 for some
χ ∈ Iso

Q
(P1, P2). We must show that χ ∈ IsoQ(P1, P2), and it suffices to do this when

χ ∈ Iso
Q0
(P1, P2). In this case, P1Q0 = P2Q0, so χ extends to χ ∈ Aut

Q0
(P1Q0).

Also, P1Q0 is snugly embedded since Q is, so Out
Q0
(P1Q0) = 1 by (b), and hence χ is

conjugation by an element of Q0 ∩ P1Q0 = Q0. �

The fusion system of a compact Lie group is defined exactly as in Section 8. For any
S ∈ Sylp(G), FS(G) is the fusion system over S where for P,Q ≤ S,

MorFS(G)(P,Q) = HomG(P,Q) ∼= NG(P,Q)/CG(P )

is the set of homomorphisms from P to Q induced by conjugation by elements of G.
Here, as usual,

NG(P,Q) = {x ∈ G | xPx
−1 ≤ Q}

denotes the transporter set.

Lemma 9.5. For each maximal discrete p-toral subgroup S ∈ Sylp(G), FS(G) is a
saturated fusion system over S. Also, a subgroup P ≤ S is fully centralized in FS(G)
if and only if CS(P ) ∈ Sylp(CG(P )).

Proof. We must show that conditions (a), (b), and (c) of Proposition 8.3 all hold.
For each discrete p-toral subgroup P ≤ G, OutG(P ) is finite by Lemma 9.4(b), so
AutG(P ) ∼= NG(P )/CG(P ) is a torsion group. Hence for each g ∈ NG(P ), 〈g〉·CG(P ) is
a finite extension of CG(P ), thus a closed subgroup, and so the coset gCG(P ) contains
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elements of finite order. Also, for each finite subgroup H/CG(P ) in NG(P )/CG(P ), H
is a closed subgroup of G, and hence has Sylow p-subgroups in the sense of Section 8.
If P1 ≤ P2 ≤ P3 ≤ · · · is an increasing sequence of discrete p-toral subgroups of G,
then the centralizers CG(Pi) form a decreasing sequence of closed subgroups of G, and
hence is constant for i sufficiently large.

Thus Proposition 8.3 applies: for any S ∈ Sylp(G), FS(G) is a saturated fusion
system over S, and a subgroup P ≤ S is fully centralized in FS(G) if and only if
CS(P ) ∈ Sylp(CG(P )). �

Recall from Section 8 that a discrete p-toral subgroup P ≤ G is called p-centric
in G if Z(P ) ∈ Sylp(CG(P )). By analogy with this definition, a p-toral subgroup

P ≤ G is called p-centric if Z(P) ∈ Sylp(CG(P)). We next note some conditions
which characterize p-toral and discrete p-toral subgroups of G which are p-centric.

Lemma 9.6. The following hold for any discrete p-toral subgroup P ≤ G.

(a) If P is p-centric in G, then NG(P )/P is finite, and CG(P )/Z(P ) is finite of order
prime to p.

(b) If P is p-centric in G, then P is p-centric in G.

(c) If P is p-centric in G and P is snugly embedded, then P is p-centric in G.

Proof. (a) Assume P is p-centric in G, and consider the groups

CG(P)/Z(P) ∼= P ·CG(P)/P and OutG(P) ∼= NG(P)/(P ·CG(P)).

The first group is finite of order prime to p since Z(P) is a maximal p-toral subgroup
of CG(P) which is also central. The second group is finite by Lemma 9.4(b). Hence
NG(P)/P is also finite.

(b) If P is p-centric in G, then Z(P ) ≤ Z(P ) is a maximal p-toral subgroup in

CG(P ) = CG(P ), and hence P is also p-centric in G.

(c) Assume P ∈ Sylp(P). If x ∈ Z(P) has p-power order, then since [x,P0] = 1, the
only elements of p-power order in xP0 are those in xP0. Since some element of xP 0

lies in P and has p-power order, this shows that x ∈ P , and hence that x ∈ Z(P ). In
other words, Z(P ) ∈ Sylp(Z(P)). So if P is p-centric in G, then Z(P ) is a maximal
discrete p-toral subgroup of CG(P ) = CG(P), and hence P is also p-centric in G. �

We want to apply Proposition 4.6, to construct a centric linking system LcS(G)
associated to FS(G), and to show that |LcS(G)|

∧
p ≃ BG∧

p . This means constructing
a rigidification of the homotopy functor B : P 7→ BP ; which by Proposition 5.9 is
equivalent to constructing a rigidification of the homotopy functor B∧

p : P 7→ BP ∧
p .

This last is closely related to the homotopy decomposition of BG constructed in [JMO].

For any S ∈ Sylp(G), we let OS (G) denote the category whose objects are the p-toral
subgroups of S , and where

MorOS (G)(P ,Q) = Q\NG(P ,Q).

Define B : OS (G) −−−→ Top by setting

B(P) = EG/P and B(P
Qx
−−−→ Q) = (EG/P

·x−1

−−−→ EG/Q).
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Let
Φ : hocolim−−−−−→

OS (G)

(B) −−−−−−→ EG/G = BG

be the map induced by the obvious surjections fromB(P) = EG/P ontoBG = EG/G.

Lemma 9.7. Fix a maximal p-toral subgroup S ∈ Sylp(G). Let OcS(G) ⊆ OS(G) be
the full subcategory whose objects are those p-toral subgroups of S which are p-centric
in G, and let

Bc : O
c
S(G) −−−−−→ Top and Φc : hocolim−−−−−→

Oc
S
(G)

(Bc) −−−−−→ BG

be the restrictions of B and Φ, respectively. Then Φc is a mod p homology equivalence.

Proof. Define

X =
{
P ≤ S p-toral

∣∣ |NG(P)/P | <∞, Op(NG(P)/P) = 1 or P is p-centric
}
.

Let OXS (G) ⊆ OS (G) be the full subcategory with object set X , and let

BX : OXS (G) −−−−−→ Top and ΦX : hocolim−−−−−→
OX

S
(G)

(BX) −−−−−→ BG

be the restrictions of B and Φ.

By [JMO, Theorem 1.4], ΦX is a mod p homology equivalence. So to prove the
proposition, we must show that the inclusion of hocolim−−−−−→(B c) in hocolim−−−−−→(BX) is a mod

p homology equivalence. Set F = H∗(BX(−);Fp), regarded as a functor on OXS (G)
op.

Let F0 ⊆ F be the subfunctor defined by setting F0(P) = 0 if P is p-centric in G and
F0(P) = F (P) otherwise. We claim that lim←−

∗(F0) = 0. Assuming this, we see that

lim←−
∗

OX
S
(G)

(H∗(BX(−);Fp)) ∼= lim←−
∗

OX
S
(G)

(F/F0) ∼= lim←−
∗

Oc
S
(G)

(H∗(B c(−);Fp));

the last step since there are no morphisms from any object of the subcategory to
any object not in the subcategory. This shows that the spectral sequences for the
cohomology of hocolim−−−−−→(BX) and hocolim−−−−−→(B c) have isomorphic E2-terms, and hence
that the inclusion is a mod p homology equivalence.

It remains to prove that lim←−
∗(F0) = 0. By [JMO, Proposition 1.6], X0 contains

finitely many G-conjugacy classes. Hence by [JMO, Proposition 5.4] and an appropri-
ate finite filtration of F0, it suffices to prove that Λ∗(NG(P)/P ;H∗(BP ;Fp)) = 0
for each p-toral subgroup P in OXS (G) which is not p-centric. For each such P ,
CG(P)·P/P ∼= CG(P)/Z(P) is a finite group of order a multiple of p which acts
trivially on H∗(EG/P ;Fp) ∼= H∗(BP ;Fp), and hence Λ∗(NG(P)/P ;H∗(BP ;Fp)) = 0
by [JMO, Proposition 5.5]. �

We are now ready to construct a rigidification of the homotopy functor B∧
p .

Proposition 9.8. Fix a maximal discrete p-toral subgroup S ∈ Sylp(G), and set F =
FS(G) for short. Let F cs ⊆ F c be the full subcategory of subgroups P ≤ S which are
p-centric in G and snugly embedded, and let Ocs(F) ⊆ Oc(F) be its orbit category.
Then there is a functor

B̂ : Ocs(F) −−−−−→ Top

which is a rigidification of the homotopy functor B∧
p , and a homotopy equivalence

Φ̂ :
(
hocolim−−−−−→
Ocs(F)

(B̂)
)
∧
p −−−−−−→ BG∧

p .
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Proof. Set S = S ∈ Sylp(G). We will construct orbit categories and functors as
indicated in the following diagram:

Ocs(F)
cl

//

Bcs

##❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍❍
❍

OcS (G)

Bc

��

OcS (G)
pr

oooo

Bc

{{✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈

Top ,

(1)

together with mod p homology equivalences

hocolim−−−−−→(Bcs)
cl∗

//

Φcs

''◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆

hocolim−−−−−→(B c)
ν

≃
//

Φc

��

hocolim−−−−−→(B c)

Φc

xx♣♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣

BG .

(2)

We then set B̂ = (Bcs)
∧
p .

The category OcS (G), together with B c and Φc, were already constructed in Lemma

9.7. We construct OcS (G), B c, and Φc in Step 1 (and prove the properties we need);
and then do the same for Ocs(F), Bcs, and Φcs in Step 2.

Step 1: Define OcS (G) by setting

Ob(OcS (G)) = Ob(OcS (G)) =
{
P ≤ S

∣∣P p-toral and p-centric in G
}
,

and

Mor
Oc

S
(G)

(P ,Q) = Q\NG(P ,Q)/CG(P) ∼= RepG(P ,Q).

Let B c be the left homotopy Kan extension of B c along the projection functor. Let

Φc be the composite of Φc with the standard homotopy equivalence

ν : hocolim−−−−−→
Oc

S
(G)

(B c)
≃

−−−−−→ hocolim−−−−−→
Oc

S
(G)

(B c)

of [HV, Proposition 5.5]. Thus Φc is a mod p homology equivalence by Lemma 9.7,

and it remains only to show that B c is a rigidification of B∧
p (after p-completion).

This means showing that the natural morphism of functors

B c −−−−−→ B c ◦ pr

(natural up to homotopy) is a mod p homology equivalence on all objects. By definition,
for each P ,

B c(P) = hocolim−−−−−→
pr ↓P

(B c ◦ ξ).

Here, pr ↓P is the overcategory whose objects are the morphisms Q
α
→ P in OcS (G),

and where a morphism from (Q , α) to (R, β) is a morphism ϕ ∈ MorOc
S
(G)(Q ,R) such

that α = β ◦ pr(ϕ). Also, ξ is the forgetful functor from pr ↓P to OcS (G).

Consider the spectral sequence

Ei,j
2
∼= lim←−

i

pr ↓P

(
Hj(B c ◦ ξ(−);Fp)

)
=⇒ H i+j(B c(P);Fp) . (3)
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For each Q in OcS (G), set

K(Q) = Ker
[
AutOc

S
(G)(Q)

prP−−−→ Aut
Oc

S
(G)

(Q)
]
∼= CG(Q)/Z(Q).

This is a finite group of order prime to p, and it acts trivially on H∗(EG/Q). Since
K(Q) acts trivially on the homology H∗(B c ◦ ξ(Q, α);Fp) = H∗(EG/Q ;Fp) for each
object (Q , α), this functor factors through the overcategory Id ↓P . The projection of
pr ↓P onto Id ↓P satisfies the hypotheses of [BLO1, Lemma 1.3] (in particular, the
target category is obtained from the source by dividing out by these automorphism
groups K(Q) of order prime to p), and hence

lim←−
i

pr ↓P

(
H∗(B c ◦ ξ(−);Fp)

)
∼= lim←−

i

Id ↓P

(
H∗(B c ◦ ξ(−);Fp)

)
∼=

{
H∗(B c(P);Fp) if i = 0

0 if i > 0.

Here, the last isomorphism holds since Id ↓P has final object (P , Id). The spectral

sequence (3) thus collapses, and hence H∗(B c(P);Fp) ∼= H∗(B c(P);Fp) (and the iso-

morphism is induced by the natural inclusion of B c(P) into B c(P)).

Step 2: The “closure functor”

Ocs(F)
cl

−−−−−−→ OcS (G),

is defined to send P to P . It induces a bijection between isomorphism classes of objects
by definition of F cs and Lemma 9.6(b,c), and induces bijections on morphism sets by
Lemma 9.4(c). So this is an equivalence of categories.

Set Bcs = B c ◦ cl. Since B c is (after p-completion) a rigidification of the homotopy

functor P 7→ BP∧
p by Step 1, and since BP ∧

p ≃ BP ∧
p when P is snugly embedded

(Proposition 9.2), Bcs is a rigidification of the homotopy functor B∧
p : P 7→ BP ∧

p (again,
up to p-completion).

Now let Φcs be the composite of Φc with the map

hocolim−−−−−→
Ocs(F)

(Bcs)
cl∗−−−−−→ hocolim−−−−−→

Oc
S
(G)

(B c)

induced by cl. Then hocolim−−−−−→(B c) ≃ hocolim−−−−−→(Bcs) since cl is an equivalence of cate-

gories, and thus Φcs is a mod p homology equivalence since Φc is by Step 1.

Now set B̂ = (Bcs)
∧
p and let

Φ̂ :
(
hocolim−−−−−→
Ocs(F)

(B̂)
)
∧
p ≃

(
hocolim−−−−−→
Ocs(F)

(Bcs)
)
∧
p

(Φcs)∧p
−−−−−−−−→ BG∧

p

be the completion of Φcs. Then B̂ is a rigidification of the homotopy functor B∧
p (see

Proposition 9.2), and Φ̂ is a homotopy equivalence. �

We also need the following result about snugly embedded subgroups:

Lemma 9.9. For each discrete p-toral subgroup P ≤ G, P • is snugly embedded.

Proof. Fix S ∈ Sylp(G), and set T = S0 and pm = exp(S/T ). By Definition 3.1,

P • = P ·I(Q), where Q = P [m] = 〈gp
m

| g ∈ P 〉 ≥ P0, and I(Q) = TCW (Q). Then

I(Q) contains all elements of p-power order in I(Q) = TCW (Q), and hence is snugly
embedded. Since [P • : I(Q)] is finite, P • is also snugly embedded. �
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We are now ready to prove the main result.

Theorem 9.10. Fix a compact Lie group G and a maximal discrete p-toral subgroup
S ∈ Sylp(G). Then there exists a centric linking system LcS(G) associated to FS(G) such
that (S,FS(G),LS(G)) is a p-local compact group with classifying space |LS(G)|

∧
p ≃

BG∧
p .

Proof. Set F = FS(G) for short; a saturated fusion system by Lemma 9.5. Let F cs ⊆
F c be the full subcategory with objects the set of all P ≤ S which are p-centric and
snugly embedded in G, and let Ocs(F) be its orbit category. By Lemma 9.9, F cs ⊇ F c•.

By Proposition 9.8, there is a functor

B̂ : Ocs(F) −−−−−→ Top

which is a rigidification of the homotopy functor B∧
p , and a homotopy equivalence

Φ̂ :
(
hocolim−−−−−→
Ocs(F)

(B̂)
)
∧
p −−−−−−→ BG∧

p .

By Proposition 5.9, there is a functor B̃ : Ocs(F) −−−→ Top which is a rigidification of

the homotopy functor B, and a natural transformation of functors χ : B̃ −−−→ B̂ such
that χ(P ) is homotopic to the completion map for each P . By Proposition 4.6, there is
a centric linking system LcsS (G) associated to F cs whose nerve has the homotopy type

of hocolim−−−−−→(B̃), and thus

|LcsS (G)|
∧
p ≃

(
hocolim−−−−−→
Ocs(F)

(B̃)
)
∧
p ≃

(
hocolim−−−−−→
Ocs(F)

(B̂)
)
∧
p ≃ BG∧

p .

Now define F c
Ψ
−−−→ F cs by setting Ψ(P ) = P ·(P 0)(p), where (P 0)(p) denotes the

subgroup of elements of p-power order in the torus P 0. By Lemma 9.4(c), for each
P ∈ Ob(F c) and Q ∈ Ob(F cs),

RepG(P,Q)
∼= RepG(P,Q)

∼= RepG(Ψ(P ), Q),

and thus Ψ is left adjoint to the inclusion. Also, for each P , CG(Ψ(P )) = CG(P ) =
CG(P ), and hence Z(Ψ(P )) = Z(P ). So if we define LcS(G) to be the pullback of
LcsS (G) and F c over F cs, then it is a centric linking system, and |LcS(G)| ≃ |L

cs
S (G)|.

(Compare this argument with the proof of Proposition 4.5(b).) �

The above construction of the linking system of G has the disadvantage that it seems
rather arbitrary. We know, by Theorem 7.4, that there is (up to isomorphism) at most
one linking system LcS(G) such that |LcS(G)|

∧
p ≃ BG∧

p , but we would really like to have
a more obvious algebraic connection between LcS(G) and the group G itself. We end
this section by showing that LcS(G) can, in fact, be obtained as a subquotient of the
transporter category of G — although not in a completely canonical way.

Fix a compact Lie group G, and choose S ∈ Sylp(G). The transporter category
T cS (G) of G over S is the category whose objects are the subgroups of S that are p-
centric in G, and where MorT c

S (G)(P,Q) = NG(P,Q), for each pair of objects P and Q
of T cS (G). Let CG : O

c(F)op −−−→ Ab be the functor which sends P to its centralizer.
For any subfunctor Φ ⊆ CG, T

c
S (G)/Φ denotes the quotient category with the same

objects as T cS (G), and where

MorT c
S
(G)/Φ(P,Q) = MorT c

S
(G)(P,Q)/Φ(P ) = NG(P,Q)/Φ(P ).

For example, in this notation, F cS(G) = T
c
S (G)/CG.
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For each P ∈ Ob(F c), there is a central extension

1 −−−→ Z(P ) −−−−−→ CG(P ) −−−−−→ CG(P )/Z(P ) −−−→ 1,

where Z(P ) is abelian and p-toral and CG(P )/Z(P ) is finite of order prime to p (by
definition of p-centric). Hence the set of elements of CG(P ) of finite order prime to
p forms a subgroup, which we denote here νp′(P ). Also, Z(P ) and νp′(P ) are both
normal subgroups of CG(P ), and the quotient group CG(P )/(Z(P ) × νp′(P )) is a Q-
vector space. As earlier, we write Z(P ) = Z(P ), and regard Z, νp′ , and Z × νp′ as
subfunctors of CG.

Lemma 9.11. The extension

T cS (G)/(Z × νp′)
pr

−−−−−−→ F c

is split, by a splitting which sends OutP (P ) to P/Z(P ) for each object P ; and such a
splitting is unique up to natural isomorphism of functors.

Proof. For all P,Q ∈ Ob(F c), choose maps

σP,Q : HomF (P,Q) −−−−−→ NG(P,Q)
/(
Z(P )× νp′(P )

)
= MorT c

S (G)/(Z×νp′ )
(P,Q)

which split the natural projection. This can be done in such a way that for each
ϕ ∈ HomF(P,Q) and each g ∈ Q, σP,Q(cg ◦ ϕ) = [g] ◦ σP,Q(ϕ) (define it first on orbit
representatives for the action of Inn(Q) and then extend it appropriately). Also, when
Q = P , we let σP,P (IdP ) be the class of 1 ∈ NG(P ).

The “deviation” of {σP,Q} from being a functor is a 2-cocycle with values in the
functor CG/(Z × νp′), and the assumption that they commute with the Inn(Q)-actions
implies that we get a cocycle over the orbit category Oc(F). If, furthermore, this
cocycle is a coboundary, then the σP,Q can be replaced by maps σ′

P,Q which define
a splitting functor. The obstruction to the existence of such a splitting thus lies in
lim←−

2

Oc(F)

(CG/(Z × νp′)). In a similar (but simpler) way, the obstruction to uniqueness is

seen to lie in lim←−
1

Oc(F)

(CG/(Z × νp′)).

We will show that both of these groups vanish, using Lemma 5.7 (and an argument
similar to that used to prove Proposition 5.8). Let F be the functor CG/(Z × νp′).
As in the proof of Proposition 5.8, set T = S0, Q = CS(T ), and Γ = OutF(Q). Set

M = T/(torsion), regarded as a Q[Γ]-module. Let

Φ: Op(Γ)
op −−−−−→ Z(p)-mod

be the functor Φ(Π) = MΠ for all p-subgroups Π ≤ Γ. Then F (P ) ∼= Φ(OutP (Q))
(functorially) for all P ≤ S containing Q, and OutQ(P ) acts trivially on F (P ) ∼=

Z(P )/(torsion) for each P . The hypotheses of Lemma 5.7 thus hold, and so

lim←−
i

Oc(F)

(F ) ∼= lim←−
i

Op(Γ)

(Φ)

for all i. Since Φ is a Mackey functor, these groups vanish for all i ≥ 1 by [JM,
Proposition 5.14]. �

We are now ready to construct a more explicit linking system LcS(G), and prove it
is isomorphic to the one already constructed in Theorem 9.10.
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Proposition 9.12. Let G be a compact Lie group, and choose S ∈ Sylp(G). Fix a

splitting s of T cS (G)/(Z × νp′)
pr
−−−→ F c, and define LcS(G) to be the pullback category

in the following pullback diagram

LcS(G)
s̄
→ T cS (G)/νp′

F cS(G)

π
↓

s
→ T cS (G)/(Z × νp′) .

pr
↓

Then LcS(G) is a centric linking system associated to F cS(G), and is isomorphic to the

centric linking system of Theorem 9.10. In particular, LcS(G)
s̄

−−−→ T cS (G)/νp′ describes
the linking system LcS(G) as a subquotient of the transporter catgeory.

Proof. We will first show that the pullback category LcS(G) is a centric linking system
associated to FS(G). Since s and pr are the identity on objects, we can as well assume
that the pullback category LcS(G) has the same objects, and that s̄ and π are the
identity on objects. Then for any pair of objects P,Q ≤ S p-centric in G, we have

MorLc
S
(G)(P,Q) ={
(ϕ, ψ)

∣∣ ϕ ∈ MorFc
S
(G)(P,Q), ψ ∈ MorT c

S
(G)/νp′

(P,Q), and π(ϕ) = pr(ψ)
}

Now, for each P ≤ S which is p-centric in G, we have P ≤ NG(P )/νp′(P ) and then we
can define distinguished homomorphisms

δP : P −−−−−→ AutLc
S(G)(P )

by setting δP (g) = (cg, g). Conditions (A), (B), and (C) in the definition of a centric
linking system are easily checked.

Next we will find a map |LcS(G)| −−→ BG∧
p that commutes with the respective nat-

ural maps from BS. To do this, we first lift LcS(G) to a subcategory L̃cS(G) of the
transporter category T cS (G), defined via the pullback square:

L̃cS(G)
incl
→ T cS (G)

LcS(G)
↓

s̄
→ T cS (G)/νp′

↓

We will then construct the maps in the following commutative diagram:

BS

ww♦♦♦
♦♦
♦♦
♦♦
♦♦
♦

�� &&▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼

|LcS(G)|
∧
p |L̃cS(G)|

∧
p≃

oo // BG∧
p .

We proceed in two steps.

(a) A map |L̃cS(G)| −−→ |L
c
S(G)| commuting with the respective natural maps from

BS is induced by the functor L̃cS(G) −−→ L
c
S(G). We will show that it is a mod p

homology equivalence.

By definition of L̃cS(G), for all P,Q ≤ S centric, we have that ν ′p(P ) acts freely on
MorL̃c

S(G)(P,Q) and the orbit set if MorLc
S(G)(P,Q). In particular,

ν ′p(P ) = Ker
[
AutL̃c

S(G)(P ) −−−−→ AutLc
S
(G)(P )

]
.
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Recall that νp′(P ) is the subgroup of elements of CG(P ) of finite order prime to p. It
sits in an extension νp′(P )

0 −→ νp′(P ) −→ C ′
G(P ), where νp′(P )

0 is the set of elements

of the maximal torus of Z(P ) of finite order prime to p and C ′
G(P ) = CG(P )/Z(P ).

Therefore νp′(P ) is locally finite and can be written as union
⋃
m≥0 νp′(P )

m of finite
groups of order prime to p. A generalized version of [BLO1, Lemma 1.3] now applies
to the constant functor defined on LcS(G) and the result follows.

In fact, [BLO1, Lemma 1.3] generalizes to allow that the kernels K(−) be countable
increasing unions of finite groups of order prime to p. Proving this requires showing,
for any such K, that H0(K;−) is an exact functor on the category of Z(p)[K]-modules.
But if K is the union of a sequence of subgroups K1 ≤ K2 ≤ · · · each of which is
finite, then H0(Ki;−) is exact for each i, H0(K;M) ∼= colim−−−→i

H0(Ki;M) for each M ,
and hence H0(K;−) is exact since direct limits of this type are exact.

(b) A map |LcS(G)| −−→ BG that commutes up to homotopy with the respective

maps from BS is defined as follows. Compose the inclusion L̃cS(G)
incl
−−−→ T cS (G) with

the functor T cS (G) −−→ B(G). Here, B(G) is the topological category with one object
and the Lie group G as morphisms (and all other categories are discrete), and the
functor sends the morphism g ∈ NG(P,Q) to g ∈ G for all objects P,Q of T cS (G).
The nerve of B(G) is the topological bar construction BG ≃ BG, and the composite

functor induces a map |L̃cS(G)| −−−→ |B(G)| ≃ BG.

Finally, Theorem 9.10 defines the centric linking system of G over S and shows that
the p-completed nerve is homotopy equivalent to BG∧

p . This combines with the map
constructed above, so that Lemma 7.3 implies that the pullback category LcS(G) is
isomorphic to the centric linking system of Theorem 9.10, and then, also, that the map

|L̃cS(G)| −−−→ BG constructed in step (b) is actually a homotopy equivalence after
p-completion. �

10. p-compact groups

A p-compact group is a p-complete version of a finite loop space. As defined by Dwyer
and Wilkerson in [DW], a p-compact group is a triple (X,BX, e), where X is a space
such that H∗(X ;Fp) is finite, BX is a pointed p-complete space, and e : X −−→ Ω(BX)
is a homotopy equivalence. If G is a compact Lie group such that the group of com-

ponents π0(G) is a finite p-group, then upon setting BĜ = BG∧
p and Ĝ = Ω(BĜ), the

triple (Ĝ, BĜ, Id) is a p-compact group. For general references on p-compact groups,
we refer to the original papers by Dwyer and Wilkerson [DW] and [DW2], and also to
the survey article by Jesper Møller [Mø].

When T ∼= (S1)r is a torus of rank r, then the p-completion T̂ = Ω(BT∧
p ) of T is

called a p-compact torus of rank r. Both BT̂ ≃ K((Ẑp)r, 2) and T̂ ≃ K((Ẑp)r, 1) are
Eilenberg-MacLane spaces. A p-compact toral group is a p-compact group (P̂ , BP̂ , e)

such that π1(BP̂ ) is a p-group, and the identity component of P̂ is a p-compact torus

with classifying space the universal cover of BP̂ .

If X is either a discrete p-toral group or a p-compact group, and Y is a p-compact
group, a homomorphism f : X → Y is by definition a pointed map Bf : BX → BY .
Two homomorphisms f, f ′ : X → Y are conjugate if Bf and Bf ′ are freely homotopic;
i.e., via a homotopy which need not preserve basepoints. Given a homomorphism
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f : X → Y , the homotopy fibre ofBf is denoted Y/f(X), or just Y/X if f is understood
from the context. With this notation, f is called a monomorphism if H∗(Y/f(X);Fp)
is finite. By [DW, Proposition 9.11], a homomorphism f is a monomorphism if and
only if H∗(BX ;Fp) is a finitely generated H∗(BY ;Fp)-module via H∗(f ;Fp).

If P̂ is an arbitrary p-compact toral group, a discrete approximation to P̂ is a pair
(P, f), where P is a discrete p-toral group and Bf : BP → BP̂ induces an isomorphism
in mod p cohomology. By [DW, Proposition 6.9], every compact p-toral group has a
discrete approximation. Each discrete p-toral group P is a discrete approximation of

(P̂ , BP̂ , Id), where BP̂ = BP ∧
p and P̂ = Ω(BP̂ ). Hence every monomorphism f : P →

X from a discrete p-toral group to a p-compact group factors as P → P̂
f̂
→ X :

a discrete approximation followed by a monomorphism of p-compact groups. Lemma
1.10 says, among other things, that any two discrete approximations of a p-compact
toral group are isomorphic.

If f : X → Y is a homomorphism of p-compact groups, the centralizer of f in Y is
defined to be the triple (CY (X, f), BCY (X, f), Id), where

BCY (X, f) = Map(BX,BY )Bf and CY (X, f) = Ω(BCY (X, f)).

Whenever f is understood, we simply write CY (X) for CY (X, f).

A discrete p-toral subgroup of a p-compact group X is a pair (P, f), where P is a

discrete p-toral group and P̂
f
→ X is a monomorphism. We write BCX(P, f) =

BCX(P̂ , f) = Map(BP,BX)Bf and CX(P, f) = CX(P̂ , f) for short. By [DW, §§5–
6], CX(P ) is a p-compact group, and the homomorphism CX(P ) −−→ X (induced by
evaluation at the basepoint of BP ) is a monomorphism. The subgroup (P, f) is called
central if this monomorphism CX(P ) −−→ X is an equivalence.

Proposition 10.1. Let X be any p-compact group.

(a) X has a maximal discrete p-toral subgroup S
f
−−→ X. If P

u
−−→ X is any other

discrete p-toral subgroup of X, then Bu ≃ Bf ◦ Bψ for some ψ ∈ Hom(P, S); and

(P, u) is maximal if and only if p ∤ χ(X/u(P̂ )). Here, Euler characteristics are
taken with respect to homology with coefficients in Fp.

(b) The centralizer CX(P, f) of any discrete p-toral subgroup P
f
−−→ X is again a p-

compact group, and a subgroup of X. Also, if P =
⋃∞
n=1 Pn, then BCX(P ) ≃

BCX(Pn) for n large enough.

(c) A discrete p-toral subgroup P
f
−−→ X is central if and only if there is a map BP ×

BX −−→ BX whose restriction to BP × ∗ is Bf and whose restriction to ∗ ×BX
is the identity. When this is the case, then P is abelian, and there is a fibration

sequence BP ∧
p

f
−−→ BX −−→ B(X/P ) where B(X/P ) is the classifying space of a

p-compact group X/P .

Proof. Point (a) follows mostly from [DW2, Propositions 2.10 & 2.14] together with

Lemma 1.10. If (P, u) is not maximal, then since u factors through S, χ(X/u(P̂ )) =

χ(X/f(Ŝ)) · χ(Ŝ/P̂ ), and the last factor is a multiple of p.

Point (b) is shown in [DW, Proposition 5.1 & Theorem 6.1]. In point (c), a central
subgroup is abelian by [DW2, Theorem 1.2], while the other two claims are shown in
[DW, Lemma 8.6 & Proposition 8.3]. �
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As in other contexts, the maximal discrete p-toral subgroups of a p-compact group
X will be referred to as Sylow p-subgroups of X .

The fusion system of a p-compact group is easily defined: it is just the fusion system
of the space BX , as defined in [BLO2, Definition 7.1].

Definition 10.2. For any p-compact group X with Sylow p-subgroup S
f
−−→ X, let

FS,f(X) be the category whose objects are the subgroups of S, and where for P,Q ≤ S,

MorFS,f (X)(P,Q) = HomX(P,Q)
def
=

{
ϕ ∈ Hom(P,Q)

∣∣Bf |BQ ◦ Bϕ ≃ Bf |BP
}
.

We next want to show that FS,f(X) is saturated. Before doing this, we need to define
and study normalizers of discrete p-toral subgroups of p-compact groups. We also need
to establish an “adjointness” relation which corresponds to the equivalence (for groups)
between homomorphisms Q −−−→ NG(P ) and homomorphisms P ⋊Q −−−→ G.

Fix a p-compact group X and a Sylow p-subgroup f : S −−−→ X . For any subgroup
P ≤ S and any discrete p-toral subgroup K ≤ AutX(P ), set

BNK
X (P ) =

(
EK ×K BCX(P )

)
∧
p ,

where K acts on BCX(P ) = Map(BP,BX)Bα via the action on P . Set NK
X (P ) =

Ω(BNK
X (P )). Since the action of K on BP fixes the basepoint, evaluation at the

basepoint of BP defines a map

ev : BNK
X (P ) =

(
EK ×K Map(BP,BX)Bf

)
∧
p −−−−−−→ BX.

If Q is any discrete p-toral group, and ρ ∈ Hom(Q,K), then any homomorphism

EQ×Q BP ∼= B(P ⋊ρ Q) −−−−−−→ BX

is adjoint to a Q-equivariant map

EQ −−−−−−→ Map(BP,BX)f |BP = BCX(P ) ,

where Q acts on BCX(P ) via the action on P defined by ρ (and via the trivial action
on BX). After taking the Borel construction, this defines a map

BQ −−−−−−→ BNK
X (P ) =

(
EK ×K BCX(P )

)
∧
p .

In particular, when Q is the group

NK
S (P ) = {g ∈ NS(P ) | cg ∈ K},

and

B(P ⋊NK
S (P )) −−−−−−→ BS

f
−−−−−−→ BX

is induced by the inclusions and f , then this construction is denoted

BγKP : BNK
S (P ) −−−−−−→ BNK

X (P ) .

Lemma 10.3. Fix a p-compact group X, a Sylow p-subgroup S
f
−→ X, and subgroups

P ≤ S and K ≤ AutX(P ) where K is discrete p-toral. Then the induced sequence

BCX(P ) −−−−−→ BNK
X (P )

τ
−−−−−→ BK∧

p (1)

is a fibration sequence. If Q is another discrete p-toral group, then for any homomor-
phism ρ : Q → NK

X (P ), there is a fibration sequence

Map(B(P ⋊ρ Q), BX)f,ρ → Map(BQ,BNK
X (P ))Bρ → Map(BQ,BK∧

p )Bρ ,

where ρ ∈ Hom(Q,K) is any homomorphism such that Bρ∧p ≃ τ ◦ Bρ, P ⋊ρ Q is the

semidirect product for the action Q
ρ
→K ≤ Aut(P ), and the fiber is the space of all
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maps B(P ⋊ρ Q) → BX which restrict (up to homotopy) to BP
Bf |P
→ BX and are

adjoint to Bρ in the sense described above.

Proof. The action of K on each cohomology group H i(BCX(P );Fp) factors through a
finite quotient group of K, thus through the p-group π0(K), and hence is nilpotent. So
by [BK, II.5.1], the usual fibration sequence

BCX(P ) −−−−−→ EK ×K BCX(P ) −−−−−→ BK

for the Borel construction over BK is still a fibration sequence after p-completion.
Thus (1) is a fibration sequence.

Since [BQ,BK∧
p ]
∼= [BQ,BK] ∼= Rep(Q,K) (Lemma 1.10), ρ ∈ Hom(Q,K) is

uniquely determined up to conjugacy by ρ.

For any fixed homomorphism ρ : Q →K, (1) induces a fibration sequence

BCX(P )
hQ → Map(BQ,BNK

X (P ))ρ̃ → Map(BQ,BK∧
p )Bρ∧p ,

where ρ̃ denotes the set of connected components of Map(BQ,BNK
X (P )) that map into

Map(BQ,BK∧
p )Bρ∧p ; and (if ρ̃ 6= ∅) BCX(P )

hQ is the homotopy fixed point set of the

action of Q induced by the pullback of (1) over BQ
Bρ∧p
−−−−→
≃τ◦Bρ

BK∧
p . We need to identify

this action of Q on BCX(P ) with that induced by the action of Q on P via ρ. This
follows by comparing the fibrations

BCX(P ) → EK ×K BCX(P ) → BK

BCX(P )

wwwww
→ BNK

X (P )

↓

→ BK∧
p ,

↓

since the action of Q on BCX(P ) induced by BQ
Bρ∧p
−−−−−→ BK∧

p in the bottom fibra-
tion coincides with that induced by ρ in the fibration sequence of the top row. By
construction, the action of K on BCX(P ) induced by the top row is just the action of
K on BCX(P ) = Map(BP,BX)Bf |P induced by the original action of K on P .

Now set fP = f |P : P −−−→ X for short. We can identify

BCX(P )
hQ =

(
Map(BP,BX)BfP

)hQ
= MapQ(EQ,Map(BP,BX)BfP )

≃ MapQ(BP ×EQ,BX)f̃ ≃ Map(BP ×Q EQ,BX)f̃ ≃ Map(B(P ⋊ρ Q), BX)f̃ ,

where f̃ is the set of connected components of maps whose restriction to BP is ho-
motopic to BfP . Here, BP ×Q EQ ≃ B(P ⋊ρ Q) because the action of Q in BP is
induced from the action described above of Aut(P ) on BP , and this has a fixed point,
providing a section of the fibration

BP → BP ×Aut(P ) E Aut(P ) → B Aut(P ) .

Finally, upon restricting to one component of Map(BQ,BNK
X (P ))ρ̃, we obtain the

fibration in the statement of the proposition. �

Notice that in the particular case where K = 1, Map(BQ,BK) is contractible, and
the fibration of Lemma 10.3 reduces to the equivalence

Map(BP ×BQ,BX) ≃ Map(BQ,Map(BP,BX)).
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Proposition 10.4. Let X be a p-compact group, let S
f
−−→ X be a Sylow p-subgroup,

and set F = FS,f(X) for short. Fix a subgroup P ≤ S, and a discrete p-toral group of
automorphisms K ≤ AutF(P ). Then the following hold.

(a) BNK
X (P ) is the classifying space of a p-compact group which we denote NK

X (P ),
and

NK
S (P )

γKP−−−→ NK
X (P )

is a discrete p-toral subgroup. Furthermore, the square

BNK
S (P )

BγKP→ BNK
X (P )

BS

B incl
↓

f
→ BX

ev
↓

(1)

commutes up to pointed homotopy.

(b) There is ϕ ∈ HomF (P, S) such that ϕ(P ) is fully ϕKϕ−1-normalized in F .

(c) P is fully K-normalized in F if and only if NK
S (P ) is a Sylow p-subgroup of NK

X (P ).

Proof. (a) By Lemma 10.3, BCX(P ) −−→ BNK
X (P ) −−→ BK∧

p is a fibration sequence.
The loop spaces of the fiber and base of this sequence have finite mod p cohomology,

so the same is true of NK
X (P )

def
= Ω(BNK

X (P )). Thus NK
X (P ) is a p-compact group.

The map

BNK
S (P )

BγKP−−−−→ BNK
X (P ) =

(
EK ×K Map(BP,BX)Bf |P

)
∧
p

is defined to be adjoint to the composite

B
(
P ⋊NK

S (P )
) B(incl⋊ incl)
−−−−−−−−−→ BS

f
−−−−→ BX. (2)

Hence the composite of BγKP with the evaluation map from Map(BP,BX)BfP to BX
(evaluation at the basepoint of BP ) is equal to the restriction of (2) to BNK

S (P ). This
proves that (1) is commutative.

If γKP factored through a quotient group NK
S (P )/R for some R 6= 1, then the re-

striction of Bf : BS −−−→ BX to BR would be homotopically trivial, but this cannot

happen. So if S0
f0
−−−→ NK

S (P ) is a maximal discrete p-toral subgroup, then γKP factors
through a monomorphism from NK

S (P ) to S0 (Proposition 10.1(a)), and thus γKP is
itself a monomorphism.

(b,c) By Lemma 10.3, any discrete p-toral subgroup BQ −−−→ BNK
X (P ) lifts to a

map B(P ⋊ Q) −−→ BX which factors through a homomorphism P ⋊ Q
β
−−→ S. Set

P ′ = β(P ⋊ 1) ≤ S, ϕ = β|P⋊1 ∈ IsoF(P, P
′), and K ′ = ϕKϕ−1 ≤ AutX(P

′). Then
β(Q) ≤ NK ′

S (P ′), and β|1⋊Q is injective since otherwise BQ −−→ BNK
X (P ) would factor

through a quotient group of Q and hence wouldn’t be a subgroup. Thus, the largest
possible K-normalizer NK ′

S (P ′) occurs when it is a Sylow p-subgroup of NK
X (P ), so P ′

is fully K ′-normalized in F , and P is fully K-normalized if and only if NK
S (P ) is a

Sylow p-subgroup of NK
X (P ). �

We are now ready to show that FS,f(X) is saturated.

Proposition 10.5. Let X be a p-compact group, and let S
f
−−→ X be a Sylow p-

subgroup. Then FS,f(X) is a saturated fusion system over S.
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Proof. Write F = FS,f(X) for short.

Proof of (I): Fix a subgroup P ≤ S which is fully normalized in F . LetK ≤ AutF(P )
be such that K ≥ AutS(P ) and K/ Inn(P ) ∈ Sylp(OutF(P )). Then P is fully K-

normalized, since it is fully normalized and NK
S (P ) = NS(P ). So by Proposition

10.4(c), NK
S (P ) is a Sylow p-subgroup of NK

X (P ).

Set K ′ = AutS(P ) for short, and consider the following commutative diagram of
connected spaces:

BCS(P )
∧
p → BNK

S (P )∧p → BK ′∧
p

BCX(P )

f1
↓

→ BNK
X (P )∧p

f2↓

→ BK∧
p .

f3
↓

Let Fi be the homotopy fiber of fi (for i = 1, 2, 3). Each row is a fibration se-
quence before p-completion; and the actions of K ′ on H∗(BCS(P );Fp) and of K on
H∗(BCX(P );Fp) factor through finite p-group quotients and hence are nilpotent. So
the rows are still fibration sequences after p-completion by [BK, II.5.1].

Each of the maps fi is a monomorphism of p-compact groups, and hence H∗(Fi;Fp) is
finite for each i. Since BCX(P ) is connected, π1(BN

K
X (P )∧p ) surjects onto π1(BK

∧
p )
∼=

π0(K), and hence π0(F2) surjects onto π0(F3). Thus F1 is the homotopy fiber of the
map F2 −−−→ F3, and so χ(F2) = χ(F1)·χ(F3).

Since NK
S (P ) ∈ Sylp(N

K
X (P )), χ(F2) is prime to p by Proposition 10.1(a). Thus

χ(F1) and χ(F3) are both prime to p, and hence CS(P ) ∈ Sylp(CX(P )) and (since K is
discrete p-toral) K ′ = K. Hence OutS(P ) = K/ Inn(P ) ∈ Sylp(OutF(P )). Also, since
CS(P ) ∈ Sylp(CX(P )), we can again apply Proposition 10.4(c) (this time with K = 1),
to show that P is fully centralized in F . This finishes the proof of (I).

Proof of (II): Fix P ≤ S and ϕ ∈ HomF(P, S), and set P ′ = ϕ(P ). Assume that P ′

is fully centralized in F . Set

Nϕ = {g ∈ NS(P ) |ϕcgϕ
−1 ∈ AutS(P

′)},

and set K = AutNϕ(P ), K
′ = ϕKϕ−1 ≤ AutS(P

′), and N ′
ϕ = NK ′

S (P ′). Then P ′ is
fully K ′-normalized in F , since it is fully centralized and K ′ ≤ AutS(P

′). Consider the
following diagram:

BNϕ
BγKP → BNK

X (P )
proj

→ BK∧
p

BN ′
ϕ

Bϕ

❄

........
BγK

′

P ′

→ BNK ′

X (P ′)

≃ Ecϕ×(ϕ∗)−1

↓
proj
→ BK ′∧

p .

∼= Bcϕ
↓

(1)

Here, the composites in the two rows are induced by the epimorphisms Nϕ

ω
−−։ K

and N ′
ϕ

ω′

−−։ K ′ (exactly, not just up to homotopy). By Proposition 10.4(c), N ′
ϕ is

a Sylow p-subgroup of NK ′

X (P ′) ≃ NK
X (P ), and hence there is a homomorphism ϕ ∈

Hom(Nϕ, N
′
ϕ) which makes the left hand square commute up to homotopy.

Since [BNϕ, BK
′∧
p ]
∼= Rep(Nϕ, K

′) (Lemma 1.10), the homotopy commutativity of
(1) implies that there is g ∈ K ′ such that cϕ ◦ ω = cg ◦ ω′

◦ ϕ. Since ω′ is onto, there
is g ∈ N ′

ϕ such that ω′(g) = g; and upon replacing ϕ by cg ◦ ϕ we can assume that
cϕ ◦ ω = ω′

◦ ϕ.
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Fix a homotopy H which makes the left hand square in (1) commute. Then the
composite proj ◦H is a loop in Map(BNϕ, BK

′∧
p ) based at B(ω′

◦ϕ), and this component
has the homotopy type of BCK ′(ω′

◦ϕ(Nϕ))
∧
p by Lemma 1.10 again. So after replacing

ϕ by cg′ ◦ ϕ for some appropriate g′ ∈ N ′
ϕ, and after modifying H using the homotopy

from Bϕ to B(cg′ ◦ϕ) determined by g′, we can arrange that proj ◦H is nullhomotopic in
Map(BNϕ, BK

′∧
p ). We can now apply Lemma 10.3, to show that the following diagram

commutes up to homotopy:

B(P ⋊Nϕ)
incl⋊ incl

→ BS
Bf

→ BX

B(P ′ ⋊N ′
ϕ)

B(ϕ⋊ϕ)
↓

incl⋊ incl
→ BS

Bf
→ BX .

wwwww

In particular, ϕ ∈ HomF(Nϕ, N
′
ϕ). Also, the two homomorphisms from P ⋊ Nϕ to S

induced by inclusions and by ϕ ⋊ ϕ have the same kernel {(g, g−1) | g ∈ P}, and this
implies that ϕ = ϕ|P .

Proof of (III): Fix P =
⋃∞
n=1 Pn, where P1 ≤ P2 ≤ · · · is an increasing sequence of

subgroups. Let ϕ ∈ Inj(P, S) be such that ϕ|Pn ∈ HomF(Pn, S) for all n. Thus for each
n, (Bf ◦ Bϕ)|BPn ≃ Bf |BPn . Also, by Proposition 10.1(b), Map(BPn, BX)Bf |BPn ≃
Map(BP,BX)Bf |BP for n sufficiently large. We can thus choose homotopies Hn from
(Bf ◦Bϕ)|BPn to Bf |BPn such that Hn = Hn+1|BPn×I , and set H =

⋃
Hn. This shows

that Bf ◦ Bϕ ≃ Bf |BP , and hence that ϕ ∈ HomF(P, S). �

In [CLN], a p-compact toral subgroup P of a p-compact group X is called centric if

the inclusion map BP
Bf
−−→ BX is a centric map; i.e., if

Map(BP,BP )Id
Bf◦−
−−−−−→ Map(BP,BX)Bf

is an equivalence. We must check that this is equivalent to the concept of F -centricity
(applied to discrete p-toral subgroups) used here.

Lemma 10.6. Let X be a p-compact group, and let S
f
−−−→ X be a Sylow p-subgroup.

Set F = FS,f(X). Then for any subgroup P ≤ S, Bf |BP : BP ∧
p −−−→ BX is a centric

map if and only if P is F-centric.

Proof. Assume P is F -centric. In particular, P is fully centralized in F . By Proposition
10.4(a,c) (applied with K = 1), CX(P ) is a p-compact group with Sylow p-subgroup
CS(P ) = Z(P ). Also, composition defines a map

Map(BP,BP )Id
≃BZ(P )

×Map(BP,BX)Bf |BP −−−−−−→ Map(BP,BX)Bf |BP .

So by Proposition 10.1(c), Z(P ) is central in CX(P ), and there is a p-compact group
CX(P )/Z(P ) whose Euler characteristic is prime to p and a fibration sequence

BZ(P )∧p −−−−−→ BCX(P ) −−−−−→ B(CX(P )/Z(P )) .

Then CX(P )/Z(P ) must be trivial, so B(CX(P )/Z(P )) ≃ ∗,

BZ(P )∧p ≃ Map(BP,BX)Bf |BP ,

and hence Bf |BP is a centric map.

Conversely, if Bf |BP is a centric map, then BCX(P ) ≃ BZ(P ) by Lemma 1.10, so
CS(P

′) = Z(P ′) for all P ′ ≤ S which is F -conjugate to P , and P is F -centric. �
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It remains to construct a linking system associated to FS,f(X) whose p-completed
nerve has the homotopy type of BX . This will be done using Proposition 4.6, together
with a construction by Castellana, Levi, and Notbohm in [CLN].

Theorem 10.7. Let X be a p-compact group, and let S
f
−−→ X be a Sylow p-subgroup.

Set F = FS,f(X)
def
= FS,Bf(BX) for short. Then there is a centric linking system

L = LcS,f(X) associated to F such that

|LcS,f(X)|∧p ≃ BX .

In other words, (S,F ,L) is a p-local compact group whose classifying space is homotopy
equivalent to BX.

Proof. By Proposition 10.5, the fusion system F is saturated.

In [CLN], the authors define a category Oc(F)+ by adding a final object to Oc(F);
i.e., the category Oc(F)+ consists of Oc(F) together with an additional object ∗, and a
unique morphism from each object in Oc(F) to ∗. (The actual category they work with
contains the same objects as Oc(F) by Lemma 10.6.) They then define a homotopy
functor

B+ : O
c(F)+ −−−−−−→ hoTop

by setting B+(P ) = BP ∧
p for all F -centric P ≤ S, and B+(∗) = BX (with the obvious

maps between them). By Lemmas 1.10 and 10.6, this is a centric diagram in the sense
of [DK]. Since Oc(F) has a final object, the Dwyer-Kan obstructions to rigidifying B+

to a functor to Top all vanish [DK] (see also Corollary A.4), and so this functor can be

lifted. In particular, this restricts to a functor B̂ from Oc(F) to Top, together with a

map from hocolim−−−−−→(B̂) to BX . (See also Corollary A.5.)

By [CLN, Theorem 8.5], this map from hocolim−−−−−→(B̂) to BX induces a homotopy
equivalence (

hocolim−−−−−→(B̂)
)
∧
p ≃ BX

(the collection of F -centric subgroups ofX is “subgroup ample”). Hence by Proposition

5.9, there is a functor B̃ : Oc(F) −−−→ Top which is a rigidification of the homotopy

functor B, and a natural transformation of functors χ : B̃ −−−→ B̂ which is the com-
pletion map on each object. Proposition 4.6 now applies to show that there is a centric
linking system L = LcS,f(X) associated to F such that

|L|∧p ≃
(
hocolim−−−−−→
Oc(F)

(B̃)
)
∧
p ≃

(
hocolim−−−−−→
Oc(F)

(B̂)
)
∧
p ≃ BX∧

p . �

In fact, one can show that there is a unique centric linking system L associated to
FS,f(X) such that |L|∧p ≃ BX∧

p , but we leave that for a later paper.

Appendix A. Lifting diagrams in the homotopy category

As elsewhere in the paper, we let Top denote the category of spaces, and hoTop
the homotopy category. Let ho : Top −−−→ hoTop be the forgetful functor. When C
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is a small category, a functor F from C to Top or hoTop is called centric if for each
morphism ϕ ∈ MorC(c, d), the natural map

Map(F (c), F (c))Id
F (ϕ)◦−
−−−−−−→

≃
Map(F (c), F (d))F (ϕ)

is a homotopy equivalence. In [DK], Dwyer and Kan identify the obstructions to

rigidifying a centric functor F : C −−→ hoTop to a functor F̃ : C −−→ Top; and also
describe the space of such rigidifications. We prove here a relative version of their
result which is needed in Section 5. This result can, in fact, be derived from the main
theorem in [DK], but that argument is so indirect that we find it helpful to give a more
direct, and also more elementary, proof.

More precisely, a rigidification of F is a functor F̃ : C −−−→ Top, together with a

natural transformation of functors F −−−→ ho ◦ F̃ which is a homotopy equivalence on

each object. Two rigidifications F̃ and F̃ ′ are equivalent if there is a third rigidifica-

tion F̃ ′′, together with natural transformations of functors F̃ −−−→ F̃ ′′ ←−−− F̃ ′ which
commute with the natural transformations from F , and hence which define homotopy

equivalences F̃ (c) ≃ F̃ ′′(c) ≃ F̃ ′(c) for each c ∈ Ob(C). This is easily seen to be an
equivalence relation by taking pushouts.

The main idea here is to construct a rigidification of F : C −−−→ hoTop by first
constructing a space which looks like a “homotopy colimit” of F , and then show that

this homotopy colimit automatically induces a rigidification F̃ . Recall that the nerve
of a small category C is defined by setting

BC =
(∐

n≥0

∐

x0→···→xn

∆n
)/
∼;

and that the homotopy colimit of any functor F : C −−→ Top is the space

hocolim−−−−−→
C

(F ) =
(∐

n≥0

∐

x0→···→xn

F (x0)×∆n
)/
∼.

Here, in both cases, we divide out by the usual face and degeneracy identifications.
Let pF : hocolim−−−−−→(F ) −−→ BC be the projection. It will be convenient to refer to the

“skeleta” of the homotopy colimit: let hocolim−−−−−→
(n)(F ) denote the union of the F (x0)×∆i

for all i ≤ n (and all x0 → · · · → xi in C).

Now assume that F : C −−→ hoTop is a functor to the homotopy category instead.
We assume that for each f : x −−→ y in C, a concrete map F (f) : F (x) −−→ F (y) has

been chosen. The 1-skeleton hocolim−−−−−→
(1)(F ) is defined in the same way as before: it is

the union of the mapping cylinders of the F (f) taken over all f ∈ Mor(C). It is also
straightforward to define the 2-skeletion; but it is convenient at this stage to replace

∆2 by a truncated triangle ∆2
t . More preciesely, for each sequence x0

f
−−→ x1

g
−−→ x2,

F (x0)×∆2
t is attached to hocolim−−−−−→

(1)(F ) via the following picture:

✡
✡
✡
✡
✡
✡
✡
✡
✡

❏
❏

❏
❏

❏
❏

❏
❏
❏

s s

s s
F (g) ◦ F (f)F (g ◦ f)

Id F (f)Id

Id F (f)
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where the small segment at the top is mapped using a homotopy between F (g ◦ f) and
F (g) ◦ F (f).

The first obstructions arise when constructing the 3-skeleton. For each x0 → · · · →
x3, we want to attach F (x0) × ∆3

t to hocolim−−−−−→
(2)(F ), where ∆3

t (the “truncated 3-
simplex”) is the cone over ∆2

t with its vertex cut off. The attachment map is easily
defined, except on the “top” surface resulting from truncating the cone vertex. Hence,
the obstruction to defining the attachment map lies in the group

π1

(
Map(F (x0), F (x3)) , F (x0 → x3)

)
.

At this point, it becomes necessary to switch from the intuitive picture to formal def-
initions, by replacing the truncated simplices ∆n

t by cubes In, and regarding simplices
as cubes modulo certain identifications. This correspondence will be made explicit
later.

Let ∆ be the simplicial category, with objects the sets [n] = {0, . . . , n} for n ≥ 0,
and morphisms the order preserving maps between sets. We let ∂i ∈ Mor∆([n−1], [n])
denote the i-th face map (with image [n]r{i}). Define a functor

I• : ∆ −−−−−−→ Top

by setting I•([n]) = In+1 (where I is the closed interval I = [0, 1]), and

I•(σ)(t0, . . . , tn) =
( ∏

i∈σ−1(0)

ti ,
∏

i∈σ−1(1)

ti , . . . ,
∏

i∈σ−1(m)

ti

)

for σ ∈ Mor∆j
([n], [m]). Here, the product over the empty set is always 1.

Let ∆1 ⊆∆0 ⊆∆ be the subcategories with the same objects, where

Mor∆0([m], [n]) = {σ ∈ Mor∆([m], [n]) | σ(0) = 0}

Mor∆1([m], [n]) = {σ ∈ Mor∆([m], [n]) | σ(0) = 0, σ(m) = n}.

For each n ≥ 0, let I•1 ([n]) ⊆ I•0 ([n]) ⊆ I•([n]) be the subspaces

I•0 ([n]) = {(0, x1, . . . , xn) ∈ I
•([n])} ∼= In

I•1 ([n]) = {(0, x1, . . . , xn−1, 0) ∈ I
•([n])} ∼= In−1 .

Then for each j = 0, 1, I•|∆j
restricts to a subfunctor I•j : ∆j −−−→ Top.

Throughout the rest of this section, C denotes a fixed small category. For each
n ≥ 0, define Morn = Morn(C) to be the set of all sequences c0 → c1 → · · · → cn of
composable morphisms in C. In particular, Mor0(C) = Ob(C) and Mor1(C) = Mor(C).
For σ ∈ Mor∆([n], [m]), σ∗ : Morm(C) −−−→ Morn(C) is defined as usual by taking
compositions, inserting identity morphisms, and (if σ /∈ Mor(∆1)) dropping morphisms
at one or both ends of the chain. For example, ∂∗i (from Morn(C) to Morn−1(C)) is
defined by composing two morphisms in the sequence, or by dropping one of them if
i = 0 or n. Also, for each ξ = (c0 → · · · → cn) in Morn(C) and each 0 ≤ i ≤ j ≤ n, we
write

ξij = (ci → · · · → cj) ∈ Morj−i(C),

let
◦

ξij ∈ MorC(ci, cj) denote the composite of this sequence of maps, and set
◦

ξ =
◦

ξ0n.

In order to simplify the notation in what follows, whenever F : C −−−→ hoTop is
a functor and ϕ ∈ Mor(C), we let F (ϕ) denote some chosen representative of the
homotopy class of maps defined by F , not the homotopy class itself.
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Definition A.1. Fix a functor F : C −−→ hoTop. An Rg∞-structure F on F consists

of a space F (c) and a homotopy equivalence F (c)
ν(c)
−−−→

≃
F (c), defined for each c ∈

Ob(C); together with maps

F (ξ) : In−1 = I•1 ([n]) −−−−−→ Map
(
F (c0), F (cn)

)
,

defined for each n ≥ 1 and each ξ = (c0 → c1 → · · · → cn) ∈ Morn(C), which satisfy
the following relations.

(a) For all ϕ ∈ MorC(c0, c1), F (c0
ϕ
−−→ c1) ◦ ν(c0) ≃ ν(c1) ◦ F (ϕ).

(b) For all m,n ≥ 1, σ ∈ Mor∆1([m], [n]), ξ ∈ Morn(C), and t ∈ Im−1,

F (σ∗ξ)(t) = F (ξ)(I•1 (σ)(t)).

(c) For all n ≥ 2, ξ ∈ Morn(C), 1 ≤ i ≤ n− 1, t1 ∈ I
i−1, and t2 ∈ I

n−i−1,

F (ξ)(t1, 0, t2) = F (ξin)(t2) ◦ F (ξ0i)(t1).

Schematically, relation (b) can be described via the following commutative diagram:

Im−1
I•1 (σ)

//

F (σ∗(ξ))

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆
In−1

F (ξ)

xx♣♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

Map(F (c0), F (cn))

while relation (c) can be described via the diagram:

I i−1 × In−i−1 t1,t2 7→ (t1,0,t2)
→ In−1

Map(F (c0), F (ci))×Map(F (ci), F (cn))

F (ξ0i)×F (ξin)↓
composition

→Map(F (c0), F (cn)) .

F (ξ)↓

These relations are more easily understood when one thinks of I•1 ([n])
∼= In−1 as the

space of all (t0, . . . , tn) ∈ I•([n]) ∼= In+1 such that t0 = 0 = tn. Each coordinate in
I•([n]) corresponds to one of the objects in the chain ξ = (c0 → · · · → cn). When
ti = 1 for some 0 < i < n, ti and ci can be removed, giving the face relation

F (ξ)(t1, . . . , ti−1, 1, ti+1, . . . , tn−1) = F (∂iξ)(t1, . . . , ti−1, ti+1, . . . , tn−1).

When ti = 0 for 0 < i < n, then F (ξ)(t) can be split as a composite at the object ci
(relation (c)). If one of the morphisms in ξ is an identity, then one can remove it and
multiply the coordinates corresponding to its two objects.

For instance, when m = 2 and n = 1 (and σ is one of the surjections), condition (b)
says that

F (c0
Id
−−→ c0

ϕ
−−→ c1) and F (c0

ϕ
−−→ c1

Id
−−→ c1)

are both the constant maps to F (ϕ). In particular, F (ϕ) ◦ F (Idc0) = F (ϕ) = F (Idc1) ◦

F (ϕ).

When n = 2, condition (c) says that F
(
c0

ϕ
−−→ c1

ψ
−−→ c2

)
is a homotopy from

F (ψ) ◦ F (ϕ) to F (ψ ◦ ϕ). More generally, when ξ ∈ Morn(C) for n ≥ 2,

F (ξ)(0, . . . , 0) = F (ξn−1,n) ◦ · · · ◦ F (ξ12) ◦ F (ξ01) and F (ξ)(1, . . . , 1) = F (
◦

ξ).



Carles Broto, Ran Levi, and Bob Oliver 77

At the other vertices of In−1, we get all of the other possible composites of the F (
◦

ξij).
An Rg∞-structure on F is thus a collection of higher homotopies connecting given
homotopies F (ψ) ◦ F (ϕ) ≃ F (ψ ◦ ϕ).

From this point of view, one sees that when defining an Rg∞-structure on F , it
suffices to define it on all nondegenerate sequences ξ ∈ Morn(C) (i.e., those containing

no identity morphisms), inductively for increasing n, where at each step F (ξ) has
already been defined on ∂In−1 and must be extended in some way to In−1. The starting

point can be any choice of maps F (ϕ), for all ϕ ∈ Mor(C), in the given homotopy class
determined by F (ϕ), such that

F (ϕ) ◦ F (Idc) = F (ϕ) = F (Idd) ◦ F (ϕ)

for each morphism ϕ ∈ MorC(c, d) in C.

If F and F ′ are both Rg∞-structures on F , then a morphism Θ: F −−−→ F ′ consists

of homotopy equivalences θ(c) : F (c)
≃
−−−→ F ′(c) (for each c ∈ Ob(C)) such that θ(c) ◦

ν(c) ≃ ν ′(c), and such that for each ξ = (c0 → · · · → cn) and each t ∈ In−1,

θ(cn) ◦ F (ξ)(t) = F ′(ξ)(t) ◦ θ(c0) ∈ Map(F (c0, F
′(cn)).

Two Rg∞-structures on F are equivalent if there is a third to which they both have
morphisms. One easily sees that (homotopy) pushouts exist for morphisms of Rg∞-
structures on F , and hence that this defines an equivalence relation among Rg∞-
structures.

For any given Rg∞-structure F on F : C −−→ hoTop, we define its “homotopy

colimit” Sp(F ) to be the space

Sp(F ) =
(∐

n≥0

∐

c0→···→cn

F (c0)× I
n
)/
∼ (In = I•0 ([n]))

where the following identifications are made for each n ≥ 1, each ξ = (c0 → · · · →

cn) ∈ Morn(C), and each x ∈ F (c0):(
x; I•0 (σ)(t)

)
[ξ]
∼

(
x; t

)
[σ∗ξ]

(σ ∈ Mor∆0([m], [n]), t ∈ Im)
(
x; (t1, 0, t2)

)
[ξ]
∼

(
F (ξ0i)(t1)(x); t2

)
[ξin]

(1 ≤ i ≤ n, t1 ∈ I i−1, t2 ∈ In−i.)

For example, in the case of a sequence ξ = (c0
f
−→ c1

g
−→ c2) in Mor2(C), the corre-

sponding square I•0 ([2]) is attached to the 1-skeleton in the following way:

s s

s s

F (g) ◦ F (f)F (g ◦ f)

Id F (f)Id

Id F (f)

(1,1) (0,1)

(1,0) (0,0)
F (ξ)

F (c0)×I
2 −−−−−−−→

✡
✡
✡
✡
✡
✡
✡
✡
✡

❏
❏

❏
❏

❏
❏

❏
❏
❏

s s

s

F (c0) F (c0)×I

F (c0)×I

F (c1)

F (c1)×I

F (c2)

The labels in the first picture describe the maps by which a vertex F (c0) or an edge

F (c0)×I is attached to the space represented by the second picture. Thus the trapezoid
in the earlier picture has now been replaced by a square.

One way to understand these relations and their connection with those in Definition
A.1 is to think of I•0 ([n])

∼= In as the subspace of all (n + 1)-tuples (0, t1, . . . , tn) in
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I•([n]) ∼= In+1. For ξ ∈ Morn(C), each coordinate in I•([n]) corresponds to one of the
objects in the chain ξ = (c0 → · · · → cn). When ti = 1 for 0 < i ≤ n, ti and ci can be
removed, giving the face relation

(
x; (t1, . . . , ti−1, 1, ti+1, . . . , tn)

)
[ξ]
∼

(
x; (t1, . . . , ti−1, ti+1, . . . , tn)

)
[∂iξ]

.

When ti = 0 for 0 < i ≤ n, then ξ splits as a composite at the object ci, we ap-

ply F (ξ0i)(t1, . . . , ti−1) to x, and get the second of the above relations. If one of the
morphisms in ξ is an identity, then we get a degeneracy relation by removing it and
multiplying the two corresponding coordinates.

Consider the maps σn : In −−→ ∆n defined by

σn(t1, . . . , tn) =
(
t1t2 · · · tn, (1− t1)t2 · · · tn, (1− t2)t3 · · · tn, . . . , (1− tn−1)tn, 1− tn

)
.

When F is a functor to Top and F is the corresponding locally constant Rg∞-structure

(i.e., for each ξ, F (ξ) is the constant map with value F (
◦

ξ)), then the σn define a home-

omorphism from Sp(F ) to the usual homotopy colimit hocolim−−−−−→(F ). More generally,

when F is an arbitrary Rg∞-structure, then there is a map

pr
F
: Sp(F ) −−−−−−→ |C|

defined on each subspace F (c0)× In by first projecting to the In and then to ∆n via
σn.

We now define a functor Rg(F ) : C −−→ Top by letting Rg(F )(c) be the pullback
space

Rg(F )(c) →Sp(F )

|C↓c|
↓

→ |C|

pr
F↓

(the ordinary pullback, not the homotopy pullback). A morphism ϕ ∈ MorC(c, d)
induces a map from |C↓c| to |C↓d| via composition with ϕ in the usual way, and hence

induces a map from Rg(F )(c) to Rg(F )(d). Equivalently,

Rg(F )(c) =
(∐

n≥0

∐

c0→···→cn→c

F (c0)× I
n
)/
∼ (In = I•0 ([n]))

where the identifications are analogous to those used to define Sp(F ). This clearly

makes Rg(F ) into a functor from C to Top.

For each c, F (c) can be identified as a subspace of Rg(F )(c): the inverse image under

the projection to |C↓c| of the vertex (c
Id
−→ c). The composite F (c)

ν(c)
−−−→

≃
F (c) ⊆

Rg(F )(c) defines a natural transformation F −−→ ho◦Rg(F ) of functors C −−→ hoTop.
The following proposition now shows that this is a natural equivalence, and hence that

Rg(F ) is a rigidification of F .

Proposition A.2. For any Rg∞-structure F on F : C −−−→ hoTop, for each c ∈

Ob(C), F (c) is a deformation retract of Rg(F )(c). Thus Rg(F ) is a rigidification
of F .
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Proof. Define Φ: Rg(F )(c)× I −−−→ Rg(F )(c) by setting

Φ
(
(x; t)[ξ→c], s

)
= (x; (t , s))

[ξ→c
Id−→ c]

for all ξ ∈ Morn(C), t ∈ In, and s ∈ I. Then Φ(u, 1) = u and Φ(u, 0) ∈ F (c) for all

u ∈ Rg(F )(c) by definition of Rg(F )(c). Furthermore, the homotopy is the identity

on F (c), and thus F (c) is a deformation retract. �

For any given F : C −−−→ hoTop, let Rigid(F ) be the set of equivalence classes of
rigidifications of F , and let Rg∞(F ) be the set of equivalence classes of Rg∞-structures
on F . A rigidification of F can be regarded as a “locally constant” Rg∞-structure on

F ; i.e., an Rg∞-structure F where each of the maps F (ξ) (for ξ ∈ Morn(C)) is constant
on In−1. We thus have maps

Rigid(F )
const

−−−−−−−→←−−−−−−−
Rg

Rg∞(F ).

One easily checks that for any rigidification F̃ , there is a natural transformation of

functors from Rg(const(F̃ )) to F̃ , and hence these are equal in Rigid(F ). We do not
know whether the other composite is the identity on Rg∞(F ), but that will not be
needed here.

A natural transformation χ : F −−−→ F ′ of functors F, F ′ : C −−−→ hoTop will be
called relatively centric if for each morphism ϕ ∈ MorC(c, d) in C, the homotopy com-
mutative square

Map(F (c), F (c))Id
F (ϕ)◦−

→Map(F (c), F (d))F (ϕ)

Map(F (c), F ′(c))χ(c)

χ(c)◦−
↓

F ′(ϕ)◦−
→Map(F (c), F ′(d))F ′(ϕ)◦χ(c)

χ(d)◦−
↓

is a homotopy pullback. For example, when F ′ is the functor which sends every object
to a point, then χ is relatively centric if and only if the functor F defines a centric di-
agram. Assume we are given a relatively centric natural transformation χ : F −−−→ F ′

where F ′ is a functor to Top, and assume furthermore that for each c ∈ Ob(C), the
homotopy fiber

Γ(c)
def
= hofiber

(
Map(F (c), F (c))Id

χ(c)◦−
−−−−→ Map(F (c), F ′(c))χ(c)

)

is connected. We claim that this determines functors

βi : C
op −−−−−−→ Ab (all i ≥ 1)

such that βi(c) ∼= πi(Γ(c)) for all c. To show this, we can assume without loss of general-
ity that χ(c) is a fibration for all c, and let Γ(c) be the space of all f ∈ Map(F (c), F (c))
such that χ(c) ◦ f = χ(c). Then Γ(c) is a monoid under composition, and in partic-
ular, π1(Γ(c)) is abelian. For each morphism ϕ ∈ MorC(c, d) in C, we can choose a
representative F (ϕ) such that the following square commutes:

F (c)
F (ϕ)
→ F (d)

F ′(c)

χ(c)
↓

F ′(ϕ)
→ F ′(d) .

χ(d)
↓
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Since χ is relatively centric, the fibers of the map

(χ(d) ◦−) : Map(F (c), F (d))F (ϕ) −−−−−−→ Map(F (c), F ′(d))F ′(ϕ)◦χ(c)

have the homotopy type of Γ(c) and hence are connected. Hence any two choices for
F (ϕ) differ by a path in the fiber over the point F ′(ϕ) ◦ χ(c); i.e., by a homotopy
{Ft(ϕ)}t∈I such that χ(d) ◦ Ft(ϕ) = F ′(ϕ) ◦ χ(c) for each t.

For each ϕ ∈ MorC(c, d), consider the following diagram:

Map(F (d), F (d))Id
−◦F (ϕ)

=w1
→Map(F (c), F (d))F (ϕ)←

F (ϕ)◦−

=w2
Map(F (c), F (c))Id

Map(F (d), F ′(d))χ(d)

χ(d)◦− =u1
↓

−◦F (ϕ)
→Map(F (c), F ′(d))χ(d)F (ϕ)

χ(d)◦− =u2
↓

←
F ′(ϕ)◦−

Map(F (c), F ′(c))χ(c)

χ(c)◦− =u3
↓

where the right hand square commutes by the assumption on F (ϕ) (and the other since
composition is associative). Set Γ(c) = u−1

3 (χ(c)) and βi(c) = πi(Γ(c), IdF (c)) (and
similarly for d). By assumption, w2 sends Γ(c) to u−1

2 (F ′(ϕ) ◦ χ(c)) by a homotopy
equivalence, and we let βi(ϕ) be the composite

πi(Γ(d), IdF (d))
=βi(d)

w1◦−−−−−−→ πi(u
−1
2 (F ′(ϕ) ◦ χ(c)), F (ϕ))

(w2◦−)−1

−−−−−−−→
∼=

πi(Γ(c), IdF (c))
=βi(c)

.

By the above remarks, this is independent of the choice of map F (ϕ). Hence this
defines a functor on Cop: the relations βi(ψ ◦ϕ) = βi(ψ) ◦ βi(ϕ) follow using any choice
of homotopy from F (ψ ◦ϕ) to F (ψ) ◦F (ϕ) which covers F ′(ψ ◦ϕ). (Recall that we are
assuming F ′ is a functor to Top, so F ′(ψ ◦ ϕ) = F ′(ψ) ◦ F ′(ϕ).)

The following theorem is our main result giving a relative version of the Dwyer-Kan
obstruction theory. The special case where F ′(c) is a point for all c ∈ Ob(C) is the case
shown by Dwyer and Kan in [DK].

Theorem A.3. Fix functors F : C −−−→ hoTop and F ′ : C −−−→ Top, and let

χ : F −−−→ ho ◦ F ′

be a relatively centric natural transformation of functors. For each c ∈ Ob(C), assume
that the homotopy fiber

Γ(c) = hofiber
(
Map(F (c), F (c))Id

χ(c)◦−
−−−−→ Map(F (c), F ′(c))χ(c)

)
;

is connected. Let βi : Cop −−−→ Ab (all i ≥ 1) be the functors defined above. Then the

obstructions to the existence of a rigidification F̃
χ̃

−−−−→ F ′ of F
χ

−−−−→ F ′ lie in the

groups lim←−
C

n+2(βn) for n ≥ 1; while the obstructions to the uniqueness of (F̃ , χ̃) up to

equivalence of rigidifications lie in lim←−
C

n+1(βn) for n ≥ 1.

Proof. We use here the description of the higher limits of a functor α : Cop −−−→ Ab as
the homology groups of the normalized cochain complex

Cn(C;α) =
∏

c0→···→cn

α(c0),
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where the product is taken over all composable sequences of nonidentity morphisms.

For ξ ∈ Cn(C;α), define

d(ξ)(c0
ϕ
−→ c1 → · · · → cn+1) = F (ϕ)(ξ(c1 → · · · → cn+1))+

n+1∑

i=1

(−1)iξ(c0 → · · · ĉi · · · → cn+1) .

Then lim←−
C

∗(α) ∼= H∗(C∗(C;α), d) (cf. [GZ, Appendix II, Proposition 3.3] or [Ol, Lemma

2].)

Proof of existence: As above, we replace each χ(c) by a fibration, and replace each
F (ϕ) (for ϕ ∈ MorC(c, d) by a map such that χ(d) ◦ F (ϕ) = F ′(ϕ) ◦ χ(c). We also

assume that F (Idc) = Id
F (c)

for each c. Then

Γ(c)
def
=

{
f ∈ Map(F (c), F (c)) |χ(c) ◦ f = χ(c)

}

is a topological monoid under composition, and is connected by assumption. So we
can ignore basepoints when working in the homotopy groups βi(c) = πi(Γ(c)).

We want to construct an Rg∞-structure F such that F (c) = F (c) for all c ∈ Ob(C),

F (ϕ) = F (ϕ) for all ϕ ∈ Mor(C), and such that for each n ≥ 2 and each ξ = (c0 →
· · · → cn) ∈ Morn(C), the following square commutes (exactly) for each t ∈ In−1:

F (c0)
F (ξ)(t)
→ F (cn)

F ′(c0)

χ(c0)
↓

F ′(
◦

ξ)
→ F ′(cn) .

χ(cn)
↓

(1)

By Proposition A.2, any such structure induces a rigidification F̃ of F , together with

a natural transformation of functors χ̃ from F̃ to F ′.

Assume, for some n ≥ 2, that F has been defined on Mori(C) for all i < n. Fix
ξ ∈ Morn(C), a composite of (nonidentity) maps from c0 to cn. Consider the following
commutative square, which is a homotopy pullback by assumption:

Map(F (c0), F (cn))
F (

◦

ξ)
←

F (
◦

ξ)◦−

=w
Map(F (c0), F (c0))Id

Map(F (c0), F
′(cn))

F ′(
◦

ξ)◦χ(c0)

χ(cn)◦− =u
↓

←
F ′(

◦

ξ)◦−
Map(F (c0), F

′(c0))χ(c0) .

χ(c0)◦−
↓

(2)

Conditions (b) and (c) in Definition A.1 determine a map F (ξ)0 from ∂In−1 to

Map(F (c0), F (cn))
F (

◦

ξ)
whose image lies in u−1(F ′(

◦

ξ) ◦χ(c0)). Hence the obstruction to

defining F (ξ) on In−1 is an element

η(ξ) ∈ πn−2

(
u−1(F ′(

◦

ξ) ◦ χ(c0)),
) w◦−
←−−−−

∼=
πn−2(Γ(c0)) = βn−2(c0).

If one of the morphisms in the sequence ξ is an identity morphism, then we define

F (ξ) using the appropriate formula in Definition A.1(b), and η(ξ) = 0. Thus η ∈

Cn(C; βn−2).
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We claim that dη = 0. Fix ω = (c0 → · · · → cn+1) ∈ Morn+1(C). Consider the face
maps on the n-cube

δti : I
n−1 −−−−−→ In where δti(t1, . . . , tn−1) = (t1, . . . , ti−1, t, ti, . . . , tn−1)

(for all i = 1, . . . , n and t = 0, 1). The conditions in Definition A.1(b,c) define a map

F •(ω) : (I
n)(n−2) −−−−−→ Map(F (c0), F (cn+1))F (

◦
ω)
≃ Aut(F (c0))1

= Map(F (c0), F (c0))Id,

and hence
n∑

i=1

(−1)i
(
[F •(ω) ◦ δ1i |∂In−1 ]− [F •(ω) ◦ δ0i |∂In−1 ]

)
= 0 ∈ π1(Aut(F (c0))1). (3)

Furthermore, F •(ω) extends to the faces δ0i (I
n−1) for 2 ≤ i ≤ n − 1 (again, by the

conditions in Definition A.1(c)), and so those terms vanish in (3). So we are left with
the equality

0 = [F •(ω) ◦ δ01|∂In−1 ] +

n∑

i=1

(−1)i[F •(ω) ◦ δ1i |∂In−1] + (−1)n+1[F •(ω) ◦ δ0n|∂In−1 ]

= F (ω01)
∗(η(∂0ω)) +

n+1∑

i=1

(−1)iη(∂iω) = dη(ω).

Thus dη = 0, and so [η] ∈ lim←−
C

n(βn−2).

If [η] = 0, then there is ρ ∈ Cn−1(C; βn−2) such that η = dρ. Similar (but simpler)

arguments to those used above now show that F can be “changed by ρ” on elements of

Morn−1(C), in a way so that the obstruction η vanishes. We can thus arrange that F can
be extended to Morn(C). Upon continuing this procedure, we obtain the Rg∞-structure

F .

Proof of uniqueness: Now assume that

F̃1
χ̃1−−−−−→ F ′ χ̃2←−−−−− F̃2

are two rigidifications of χ : F −−−→ F ′. In other words, we have a homotopy commu-
tative diagram

F
ν1
→ ho ◦ F̃1

❍❍❍❍❍❍❍❍

χ

❥
ho ◦ F̃2

ν2↓
ho(χ̃2)
→ ho ◦ F ′

ho(χ̃1)
↓

(4)

of functors C → hoTop and natural transformations between them. We can assume
that the maps χ̃(c) and χ̃′(c) are fibrations for each c ∈ Ob(C); otherwise we replace
them by fibrations using one of the canonical constructions.

For each c ∈ Ob(C), let θ(c) : F̃1(c) −−−→ F̃2(c) be any map such that θ(c) ◦ ν1(c) ≃

ν2(c) as maps from F̃1(c) to F̃2(c). Using the homotopy commutativity of (4), and
the homotopy lifting property for χ̃2(c), we can assume that χ̃2(c) ◦ θ(c) = χ̃1(c)

(exactly, not just up to homotopy). Let F̂ (c) be the mapping cylinder of θ(c), and let

χ̂(c) : F̂ (c) −−−→ F ′(c) be the projection induced by χ̃1(c) and χ̃2(c).

Regard F̃1(c) and F̃2(c) as subspaces of F̂ (c). We want to extend the locally finite

Rg∞-structures F̃ and F̃ ′ to an Rg∞-structure F̂ covering F ′. For each morphism
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ϕ ∈ MorC(c, d) in C, θ(d) ◦ F̃1(ϕ) ≃ F̃2(ϕ) ◦ θ(c), and hence F̃1(ϕ) and F̃2(ϕ) can be

extended to a map F̂ (ϕ) from F̂ (c) to F̂ (d). Using the homotopy lifting property again,

this can be chosen such that χ̂(d) ◦ F̂ (ϕ) = F ′(ϕ) ◦ χ̂(c).

Assume, for some n ≥ 2, that F̂ has been defined on Mori(C) for i < n in a

way so that (1) commutes (with F and F replaced by F̂ ) for each ξ. Then for each

ξ = (c0 → · · · → cn) in Morn(C), F̂ (ξ) has been defined on
(
(F̃1(c0) ∪ F̃2(c0))× I

n−1
)
∪
(
F̂ (c0)× ∂I

n−1
)
,

and must be extended to F̂ (c0)×In−1 while covering χ̂(cn)◦F̂ (
◦

ξ) ∈ Map(F̂ (c0), F
′(cn)).

So with the help of diagram (2) again, the obstruction to defining F̂ (ξ) is seen to be
an element τ(ξ) ∈ πn−1(Γ(c0)) = βn−1(c0). Together, these define a cochain τ ∈

Cn(C; βn−1). Just as in the proof of existence, one then shows that dτ = 0, and
hence that τ represents a class [τ ] ∈ lim←−

n(βn−1). If [τ ] = 0, then τ = dρ for some

ρ ∈ Cn−1(C; βn−1), and F̂ can be modified on Morn−1(C) using ρ in such a way that
it can then be extended to Morn(C). Upon continuing this procedure, we construct an

Rg∞-structure F̂ on F , together with a natural transformation to F ′ and morphisms
of Rg∞-structures

F̃1 −−−−−→ F̂ ←−−−−− F̃2.

So by Proposition A.2,

F̃1 ≃ Rg(F̃1) ≃ Rg(F̂ ) ≃ Rg(F̃2) ≃ F̃2. �

We finish the section with two corollaries to Theorem A.3. The first is the main
theorem of Dwyer and Kan in [DK]. It is the “absolute case” of Theorem A.3: the case
where F ′ is the constant functor which sends each object to a point.

A functor F from C to Top or hoTop will be called centric if for each morphism
ϕ ∈ MorC(c, d) in C, the induced map

Map(F (c), F (c)Id
ϕ◦−

−−−−−−→ Map(F (c), F (d))ϕ

is a homotopy equivalence. This is what Dwyer and Kan call a centric diagram.

Corollary A.4. Fix a centric functor F : C −−−→ hoTop. Define αi : C
op −−−→ Ab

(all i ≥ 1) by setting αi(c) = πi
(
Map(F (c), F (c))Id

)
and by letting αi

(
c

ϕ
→ d

)
be the

composite

πi
(
Map(F (d), F (d))Id

) (−◦F (ϕ))∗
→ πi

(
Map(F (c), F (d))F (ϕ)

)
←
(F (ϕ)◦−)∗

∼=
πi
(
Map(F (c), F (c))Id

)
.

Then the obstructions to the existence of a rigidification F̃ of F lie in the groups

lim←−
C

n+2(αn) for n ≥ 1; while the obstructions to the uniqueness of F̃ up to equivalence

of rigidifications lie in lim←−
C

n+1(αn) for n ≥ 1.

The second corollary is a generalization of [CLN, Proposition B], and follows upon
combining Corollary A.4 with an idea taken from the proof of that proposition.

Corollary A.5. Fix a space X, and a centric functor F : C −−−→ hoTop. We also let
X denote the constant functor X : C −−−→ Top which sends each object to X and each
morphism to IdX .
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(a) Assume there is a natural transformation of functors χ : F −−−→ ho ◦X such that
the map χ(c) : F (c) −−−→ X is centric for each c ∈ Ob(C). Then there is a rigidi-

fication F̃ of F , together with a rigidification χ̃ : F̃ −−−→ X of χ.

(b) Assume F̃1 and F̃2 are two rigidifications of F . Let ψi : F −−−→ ho ◦ F̃i be natural

equivalences, and let χ̃i : F̃i −−−→ X be natural transformations of functors such

that for all c ∈ Ob(C), χ̃i(c) ∈ Map(F̃i(c), X) is centric, and the square

F (c)
ψ1(c)

→ F̃1(c)

F̃2(c)

ψ2(c)↓
χ̃2(c)

→X

χ̃1(c)
↓

(1)

commutes up to homotopy. Then F̃1 and F̃2 are equivalent rigidifications. More

precisely, there is a third rigidification F̃0 of F , natural transformations of functors

F̃1
ψ̃1

−−−−−→ F̃0
ψ̃2

←−−−−− F̃2

such that ψ̃i(c) is a homotopy equivalence for each c ∈ Ob(C), a space X0 together

with a natural transformation χ̃0 : F̃0 −−−→ X0 to the constant functor, and homo-
topic homotopy equivalences f1 ≃ f2 : X −−−→ X0, such that the following diagram
commutes for each c ∈ Ob(C):

F̃1(c)
ψ̃1(c)

≃
→ F̃0(c)←

ψ̃2(c)

≃
F̃2(c)

X

χ̃1(c)
↓

f1
→ X0

χ̃0(c)
↓
←

f2
X .

χ̃2(c)
↓

(2)

Proof. Let C+ be the category C with an additional final object ∗ added. For any
functor α : C+op −−−→ Ab, lim←−

i(α) = 0 for all i ≥ 1 since C+op has an initial object.
A functor F+ : C+ −−−→ hoTop can be thought of as a triple F+ = (F,X, χ), where
F = F+|C is a functor from C to hoTop, X = F+(∗) is a space, and χ is a natural
transformation of functors from F to the constant functor X . Functors from C+ to Top

are described in an analogous way.

In the situation of (a), (F,X, χ) is a functor from C+ to hoTop. The obstruction

groups of Corollary A.4 vanish, and hence it has a rigidification (F̃ , X̃, χ̃). Upon

composing with an appropriate homotopy equivalence X̃
≃
−−−→ X , we can arrange that

X̃ = X .

In the situation of (b), (F̃1, X, χ̃1) and (F̃2, X, χ̃2) are two functors from C+ to Top

which are rigidifications of the same functor (F,X, χ̃1 ◦ ψ1) by the homotopy commu-
tativity of (1). Since the uniqueness obstructions of Corollary A.4 all vanish, there is a

third homotopy lifting (F̃0, X0, χ̃0), together with natural transformations of functors

(F̃1, X, χ̃1)
ψ̃1←−−−−− (F̃0, X0, χ̃0)

ψ̃2−−−−−→ (F̃2, X, χ̃2)

which induce homotopy equivalences on all objects. Thus upon setting fi = ψ̃i(∗), we
obtain the commutative diagram (2), where all horizontal maps are homotopy equiv-

alences. Finally, ψ̃1(∗) ≃ ψ̃2(∗), since they come from equivalences between liftings of
the same homotopy functor, and this finishes the proof of (b). �
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Math. 181 (1995), 119–157
[Fe] M. Feshbach, The Segal conjecture for compact Lie groups, Topology 26 (1987), 1–20
[Fu] L. Fuchs, Infinite abelian groups, vol. I, Academic Press (1970)
[GZ] P. Gabriel & M. Zisman, Calculus of fractions and homotopy theory, Springer-Verlag (1967)
[Go] D. Gorenstein, Finite groups, Harper & Row (1968)
[HV] J. Hollender & R. Vogt, Modules of topological spaces, applications to homotopy limits and

E∞ structures, Arch. Math. 59 (1992), 115–129
[JM] S. Jackowski & J. McClure, Homotopy decomposition of classifying spaces via elementary

abelian subgroups, Topology 31 (1992), 113–132
[JMO] S. Jackowski, J. McClure, & B. Oliver, Homotopy classification of self-maps of BG via G-

actions, Annals of Math. 135 (1992), 184–270
[JMO2] S. Jackowski, J. McClure, & B. Oliver, Homotopy theory of classifying spaces of compact Lie

groups, Algebraic topology and its applications, M.S.R.I. Publ. 27, Springer-Verlag (1994),
81–123

[JMO3] S. Jackowski, J. McClure, & B. Oliver, Self homotopy equivalences of classifying spaces of
compact connected Lie groups, Fundamenta Math. 147 (1995), 99–126

[KW] O. H. Kegel & B. A. F. Wehrfritz, Locally finite groups. North-Holland Mathematical Library,
Vol. 3. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co.,
Inc., New York, 1973. xi+210 pp.

[McL] S. Mac Lane, Categories for the working mathematician, Springer-Verlag (1971)
[Mø] J. Møller, Homotopy Lie groups, Bull. Amer. Math. Soc. 32 (1995), 413–428
[Ol] B. Oliver, Higher limits via Steinberg representations, Comm. in Algebra 22 (1994), 1381-1393
[Pu] L. Puig, Unpublished notes
[Seg] G. Segal, Categories and cohomology theories, Topology 13 (1974), 293–312
[Sz] M. Suzuki, Group theory I, Springer-Verlag (1982)
[W] B. A. F. Wehrfritz, Infinite linear groups. Ergebnisse der Matematik und ihrer Grenzgebiete,

Band 76. Springer-Verlag, New York-Heidelberg (1973)
[Wo] Z. Wojtkowiak, On maps from holim F to Z, Algebraic topology, Barcelona, 1986, Lecture

Notes in Math. 1298, Springer-Verlag (1987), 227–236



86 Discrete models for the p-local homotopy theory of compact Lie groups and p-compact groups
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