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Abstract. A saturated fusion system consists of a finite p-group S, together with
a category which encodes “conjugacy” relations among subgroups of S, and which
satisfies certain axioms which are motivated by properties of the fusion in a Sylow
p-subgroup of a finite group. We describe here new ways of constructing abstract
saturated fusion systems, first as fusion systems of spaces with certain properties,
and then via certain graphs.

A saturated fusion system consists of a finite p-group S, together with a category
F whose objects are the subgroups of S, whose morphisms are group monomorphisms
between those subgroups, and which satisfies certain axioms modelled on the fusion
category for the p-subgroups of a finite group. The precise definition of a saturated
fusion system is due to Puig [Pu], and our version of that definition is given in Section
1. Saturated fusion systems mimic in several ways the structure of finite groups and
their classifying spaces. Examples have been known for some time of “exotic” saturated
fusion systems — systems which do not arise from the fusion in any finite group — but
the construction of such examples is very complicated, and we are looking for simpler
and more systematic ways to construct them. One consequence of the main result in
this paper is a way of constructing a variety of examples of saturated fusion systems.
Of the examples constructed using this technique, some are then shown by other means
to be exotic.

The definition of a fusion system over a p-group S is simple, and in most cases it is
clear whether or not a given category satisfies it. In contrast, it is much harder to check
whether a given fusion system is saturated. For example, for any map f : BS −−−−→ X ,
where S is a finite p-group and X is a topological space, the fusion system of X
over (S, f) is a category FS,f(X) whose objects are the subgroups of S, and where
MorFS,f (X)(P,Q) is the set of all monomorphisms ϕ ∈ Hom(P,Q) such that (f |BP ) ◦

Bϕ ≃ (f |BQ). This is always a fusion system in the sense of Definition 1.1, but is not
in general saturated.

The central result in this paper is Theorem 2.1, where we list some conditions on the
map f which ensure that the fusion system FS,f(X) is saturated. These conditions also
ensure that FS,f(X) has an associated linking system (see Definition 1.3), and hence
that X , S, and f define a p-local finite group. Afterwards, we construct more concrete
examples using that theorem, and show in many cases that they are “exotic” in the
sense of not coming from any finite group. For example, in Theorem 4.2, in certain
cases when G is an amalgamated free product of finite groups, we apply our theorem
to BG∧

p to show that the fusion system of G (taken over a maximal p-subgroup of G) is

1991 Mathematics Subject Classification. Primary 55R35. Secondary 55R40, 20D20.
Key words and phrases. Classifying space, p-completion, finite groups, fusion.
C. Broto is partially supported by MEC grant MTM2004-06686.
R. Levi is partially supported by EPSRC grant GR/M7831.
B. Oliver is partially supported by UMR 7539 of the CNRS.
All of the authors have been supported by the EU grant nr. HPRN-CT-1999-00119.

1



2 CARLES BROTO, RAN LEVI, AND BOB OLIVER

saturated. This result, which is stated in terms of trees of groups, was discovered and
first proved as a special case of Theorem 2.1, but we also include a more elementary,
purely graph theoretic proof here.

The paper is organized as follows. In Section 1, we give the definitions of abstract
fusion and linking systems, as well as definitions of fusion and linking systems of groups
and spaces and some background results about them. Our main theorem is proven in
Section 2. In Section 3, we describe conditions under which the main theorem can be
applied to the space BG∧

p for an infinite discrete group G, to prove that the fusion
system of G with respect to some finite p-subgroup is saturated (Theorem 3.3). A
special case of this is then studied in Section 4 — the case where G acts on a tree
with finite isotropy subgroups — and this in turn is applied in Section 5 to construct
concrete examples of fusion systems, some of which are then shown to be “exotic”. We
hope to find other applications of our main Theorem 2.1 in the future which allow us
to construct a still wider variety of examples.

We would like to give our thanks to Michael Aschbacher and Andy Chermak, whose
construction of the Solomon fusion systems in [AC] gave us the idea of restating the
results in Section 3 terms of amalgamated free products.

1. A survey of fusion systems

We first recall some definitions, mostly from [BLO2].

Definition 1.1 ([Pu] and [BLO2, Definition 1.1]). A fusion system over a finite p-
group S is a category F , where Ob(F) is the set of all subgroups of S, and which
satisfies the following two properties for all P,Q ≤ S:

• HomS(P,Q) ⊆ HomF(P,Q) ⊆ Inj(P,Q); and

• each ϕ ∈ HomF(P,Q) is the composite of an isomorphism in F followed by an
inclusion.

Fusion systems as defined above are too general for our purposes, and some additional
definitions and conditions are needed so that they more closely model the fusion in finite
groups. If F is a fusion system over a finite p-subgroup S, then two subgroups P,Q ≤ S
are said to be F -conjugate if they are isomorphic as objects of the category F .

Definition 1.2 ([Pu], see [BLO2, Definition 1.2]). Let F be a fusion system over a
p-group S.

• A subgroup P ≤ S is fully centralized in F if |CS(P )| ≥ |CS(P
′)| for all P ′ ≤ S

which is F-conjugate to P .

• A subgroup P ≤ S is fully normalized in F if |NS(P )| ≥ |NS(P
′)| for all P ′ ≤ S

which is F-conjugate to P .

• F is a saturated fusion system if the following two conditions hold:

(I) For all P ≤ S which is fully normalized in F , P is fully centralized in F and
AutS(P ) ∈ Sylp(AutF(P )).

(II) If P ≤ S and ϕ ∈ HomF(P, S) are such that ϕP is fully centralized, and if we
set

Nϕ = {g ∈ NS(P ) |ϕcgϕ
−1 ∈ AutS(ϕP )},

then there is ϕ ∈ HomF (Nϕ, S) such that ϕ|P = ϕ.
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If G is a finite group and S ∈ Sylp(G), then the category FS(G) defined in the
introduction is a saturated fusion system (see [BLO2, Proposition 1.3]).

An alternative, simplified pair of axioms for a fusion system being saturated has
been given by Radu Stancu [St].

We now turn to centric linking systems associated to abstract fusion systems. When-
ever F is a fusion system over a finite p-group S, a subgroup P ≤ S is called F-centric
if CS(P

′) = Z(P ′) for all P ′ ≤ S which are F -conjugate to P . We let F c ⊆ F denote
the full subcategory whose objects are the F -centric subgroups of S. If F = FS(G) for
some finite group G, then P ≤ S is F -centric if and only if P is p-centric in G; i.e., if
and only if Z(P ) ∈ Sylp(CG(P )).

Definition 1.3 ([BLO2, Definition 1.7]). Let F be a fusion system over the p-group
S. A centric linking system associated to F is a category L whose objects are the F-
centric subgroups of S, together with a functor π : L −−−−−−→ F c, and “distinguished”

monomorphisms P
δP−−→ AutL(P ) for each F-centric subgroup P ≤ S, which satisfy

the following conditions.

(A) π is the identity on objects. For each pair of objects P,Q ∈ Ob(L), Z(P ) acts freely
on MorL(P,Q) by composition (upon identifying Z(P ) with δP (Z(P )) ≤ AutL(P )),
and π induces a bijection

MorL(P,Q)/Z(P )
∼=

−−−−−−→ HomF(P,Q).

(B) For each F-centric subgroup P ≤ S and each x ∈ P , π(δP (x)) = cx ∈ AutF(P ).

(C) For each f ∈ MorL(P,Q) and each x ∈ P , f ◦ δP (x) = δQ(πf(x)) ◦ f .

A p-local finite group is defined to be a triple (S,F ,L), where S is a finite p-group,
F is a saturated fusion system over S, and L is a centric linking system associated to
F . The classifying space of the triple (S,F ,L) is the p-completed nerve |L|∧p .

In the following definition, recall that a (possibly infinite) group G is p-perfect if it
has no normal subgroup of index p; or equivalently, if Hom(G,Z/p) contains only the
trivial homomorphism. Clearly, if G is generated by p-perfect subgroups, then it is
itself p-perfect. Hence any group G contains a maximal p-perfect subgroup, which is
normal.

Definition 1.4. Fix any pair S ≤ G, where G is a (possibly infinite) group and S is
a finite p-subgroup.

(a) Define FS(G) to be the category whose objects are the subgroups of S, and where

MorFS(G)(P,Q) = HomG(P,Q)
def
=

{
cg ∈ Hom(P,Q)

∣∣ g ∈ G, gPg−1 ≤ Q
}

∼= NG(P,Q)/CG(P ).

Here cg denotes the homomorphism conjugation by g (x 7→ gxg−1), and NG(P,Q) =
{g ∈ G | gPg−1 ≤ Q} (the transporter set).

(b) For each P ≤ S, let C ′
G(P ) be the maximal p-perfect subgroup of CG(P ). Let L

c
S(G)

be the category whose objects are the FS(G)-centric subgroups of S, and where

MorLc
S
(G)(P,Q) = NG(P,Q)/C

′
G(P ).

Let π : LcS(G) →FS(G) be the functor which is the inclusion on objects and sends
the class of g ∈ NG(P,Q) to conjugation by g. For each FS(G)-centric subgroup
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P ≤ G, let δP : P → AutLc
S
(G)(P ) be the monomorphism induced by the inclusion

P ≤ NG(P ).

It is clear from the definitions that FS(G) is a fusion system for any S and G, and
just as clear that it is not always saturated. When G is finite and S ∈ Sylp(G), then
FS(G) is always saturated (see [Pu], or [BLO2, Proposition 1.3]), and LcS(G) is a centric
linking system associated to FS(G). Thus in this case, (S,FS(G),L

c
S(G)) is a p-local

finite group, with classifying space |LcS(G)|
∧
p ≃ BG∧

p (see [BLO1, Proposition 1.1]).

When G is infinite, we note the following condition for LcS(G) to be a centric linking
system.

Lemma 1.5. Fix any pair S ≤ G, where G is a (possibly infinite) group and S is a
finite p-subgroup, and set F = FS(G). Assume, for each F-centric subgroup P ≤ S,
that H i(CG(P )/Z(P );Fp) = 0 for i = 1, 2. Then LcS(G) is a centric linking system
associated to F .

Proof. Conditions (B) and (C) in Definition 1.3 hold by definition of LcS(G), the pro-
jection functor π, and the distinguished monomorphisms δP . Also, for each pair of
objects P,Q, CG(P ) acts freely on NG(P,Q) by right multiplication, so CG(P )/C

′
G(P )

acts freely on MorLc
S
(G)(P,Q) with orbit set HomF (P,Q). So to prove that LcS(G)

is a centric linking system associated to F , it remains only to show that for each
F -centric subgroup P ≤ S, the inclusion Z(P ) ≤ CG(P ) induces an isomorphism
Z(P ) ∼= CG(P )/C

′
G(P ).

The assumption H1(CG(P )/Z(P );Fp) = 0 implies that CG(P )/Z(P ) is p-perfect.
Since H2(CG(P )/Z(P );Fp) = 0 and Z(P ) is a finite p-group, the exact sequences in
group cohomology for extensions of modules show that H2(CG(P )/Z(P );Z(P )) = 0,
and hence that CG(P ) splits as a product Z(P ) × H for a normal subgroup H ⊳

CG(P ). Thus H ∼= CG(P )/Z(P ) is the maximal p-perfect subgroup of CG(P ), and so
CG(P )/C

′
G(P ) = CG(P )/H ∼= Z(P ). �

Fusion systems and linking systems can also be defined for spaces. In the following
definition, if H : X × I −−−→ Y is a homotopy (where I = [0, 1]), then [H ] denotes its
homotopy class among maps X×I −−−→ Y whose restriction to X×{0, 1} is the same
as that of H . In other words, if we regard H as a path in Map(X, Y ) by adjunction,
then [H ] denotes the homotopy class of that path rel endpoints.

For any p-group P and any g ∈ P , let Hg : BP × I −−→ BP be the homotopy from
IdBP to Bcg induced by the natural transformation of functors B(G) −−→ B(G) which
sends the unique object oG in B(G) to the morphism ǧ corresponding to g ∈ G.

Definition 1.6. Fix a space X, a finite p-group S, and a map f : BS −−→ X.

(a) Define FS,f(X) to be the category whose objects are the subgroups of S, and whose
morphisms are given by

HomFS,f (X)(P,Q) =
{
ϕ ∈ Inj(P,Q)

∣∣ f |BP ≃ f |BQ ◦Bϕ
}

for each P,Q ≤ S.

(b) Define F ′
S,f(X) ⊆ FS,f(X) to be the subcategory with the same objects as FS,f(X),

and where MorF ′
S,f

(X)(P,Q) (for P,Q ≤ S) is the set of all composites of restrictions

of morphisms in FS,f(X) between FS,f(X)-centric subgroups.
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(c) Define LcS,f(X) to be the category whose objects are the FS,f(X)-centric subgroups
of S, and whose morphisms are defined by

MorLc
S,f

(X)(P,Q) =
{
(ϕ, [H ])

∣∣ϕ ∈ Inj(P,Q), H : BP × I −−−→ X,

H|BP×0 = f |BP , H|BP×1 = f |BQ ◦ Bϕ
}
.

The composite in LcS,f(X) of morphisms

P
(ϕ,[H])
−−−−−−→ Q

(ψ,[K])
−−−−−−→ R ,

where H : BP × I → X and K : BQ× I → X are homotopies as described above,
are defined by setting

(ψ, [K]) ◦ (ϕ, [H ]) = (ψ ◦ ϕ, [(K ◦ (Bϕ× Id)) ·H ]),

where · denotes composition (juxtaposition) of homotopies. Let

π : LcS,f(X) −−−−−−→ FS,f(X)

be the forgetful functor: it is the inclusion on objects, and sends a morphism (ϕ, [H ])
to ϕ. For each FS,f(X)-centric subgroup P ≤ S, let

δP : P −−−−−−→ AutLc
S,f

(X)(P )

be the “distinguished homomorphism” which sends g ∈ P to (cg, [f |BP ◦Hg]).

Equivalently, via adjunction, a morphism from P to Q in LcS,f(X) can be thought of
as a pair (ϕ, [H ]), where ϕ ∈ Hom(P,Q),H is a path in the mapping space Map(BP,X)
from f |BP to f |BQ ◦ Bϕ, and [H ] is the homotopy class of the path H rel endpoints.

The categories F ′
S,f(X) ⊆ FS,f(X) are always fusion systems over S, but are not

in general saturated. However, in certain situations we consider, F ′
S,f(X) will be a

saturated fusion system, even though FS,f(X) might not be (see Example 3.4).

Theorem A of [5a1] says that if all morphisms in a fusion system are obtained as
composites of restrictions of morphisms between centric subgroups, then it is saturated
if the saturation conditions (I) and (II) hold on centric subgroups. Thus it makes sense,
for a general abstract fusion system F , to define the subsystem F ′ ⊆ F over the same
p-group S to be the subcategory with the same objects, but with only those morphisms
which are obtained as composites of restrictions of morphisms in F between F -centric
subgroups. One particularly well behaved situation is that in which F ′ has no more
centric subgroups than those already centric in F . In this case, it clearly follows that
the full subcategories of centric objects in F and in F ′ are equal, and hence that one
can check conditions (I) and (II) in either subcategory.

These arguments are collected in the following proposition.

Proposition 1.7. Fix a space X, a finite p-group S, and a map f : BS −−−→ X. If all
FS,f(X)-centric subgroups P ≤ S satisfy conditions (I) and (II) in Definition 1.2, and
if all F ′

S,f(X)-centric subgroups of S are FS,f(X)-centric, then F ′
S,f(X) is a saturated

fusion system.

In the situation of Proposition 1.7, there could possibly be a F ′
S,f(X)-centric sub-

group P ≤ S which is not FS,f(X)-centric, because it is FS,f(X)-conjugate to a sub-
group which is not centric in S. When this is the case, [5a1, Theorem 2.2] cannot be
applied to prove the above proposition, since we’ve changed the set of centric subgroups
in question. This is why we need to assume that the two fusion systems have the same
centric subgroups.
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Our main theorem will give some conditions on a map BS
f

−−−−→ X which ensure
that a triple (S,F ′

S,f(X),LcS,f(X)) is a p-local finite group. More generally, however,
without any extra hypotheses, the category LcS,f(X) does satisfy most of the axioms
for being a centric linking system associated to FS,f(X).

In the following lemma, for any f : BS −−−→ X as above, and any P ≤ S, we let

ωP : BZ(P ) −−−−−−→ Map(BP,X)f |BP

be the map which is adjoint to the composite

BZ(P )× BP
Bµ

−−−−−→ BS
f

−−−−−→ X,

where µ : Z(P )× P −−−→ S is multiplication.

Lemma 1.8. Fix a space X, a finite p-group S, and a map f : BS −−−→ X. Then the
category LcS,f(X), together with the functor

π : LcS,f(X) −−−−−−→ FS,f(X)

and the distinguished homomorphisms δP : P −−−→ AutLc
S,f

(X)(P ), satisfy axioms (B)

and (C) in Definition 1.3. If in addition,

Z(P )
π1(ωP )
→ π1

(
Map(BP,X), f |BP

)
is an isomorph. ∀ FS,f(X)-centric P ≤ S, (∗)

then LcS,f(X) is a linking system associated to FS,f(X).

Proof. Proving this means essentially repeating the proof of [BLO2, Theorem 7.5]. Set
F = FS,f(X) and L = LcS,f(X) for short. Condition (B) in Definition 1.3 clearly holds.

For g ∈ P ≤ S, set Ĥg = f |BP ◦ Hg: a homotopy BP × I → X from f |BP to

f |BP ◦ Bcg. Thus the distinguished homomorphism P
δP−−−−→ AutL(P ) is defined by

sending g ∈ P to (cg, [Ĥg]).

Condition (C) means showing, for each (ϕ, [H ]) ∈ MorL(P,Q) and each g ∈ P , that
the following square commutes:

P
(ϕ,[H])

→ Q

P

(cg,[Ĥg])
↓

(ϕ,[H])
→ Q.

(cϕ(g),[Ĥϕ(g)])
↓

Here, H : BP × I −−−→ X is a homotopy from f |BP to f |BQ ◦ Bϕ. Clearly, ϕ ◦ cg =
cϕ(g) ◦ ϕ. It remains to check that the two juxtaposed homotopies described in the
following diagram are homotopic among homotopies from f |BP to f |BQ ◦B(ϕ ◦ cg):

f |BP
H

f |BQ ◦ Bϕ

f |BP ◦Bcg

Ĥg

H◦(Bcg×Id)
f |BQ ◦B(ϕ ◦ cg).

Ĥϕ(g)◦(Bϕ×Id)

The map

F : BP × I × I −−−−→ X defined by F (x, s, t) = H
(
Hg(x, t), s

)
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defines a homotopy between them, since

F (x, s, 0) = H(x, s),

F (x, 1, t) = (f |BQ ◦Bϕ ◦Hg)(x, t) = Ĥϕ(g)(Bϕ(x), t),

F (x, 0, t) = f |BP ◦Hg(x, t) = Ĥg(x, t), and

F (x, s, 1) = H(Bcg(x), s).

It remains to prove (A) while assuming that (∗) holds. For any F -centric subgroup
P ≤ S, we identify π1(Map(BP,X), f |BP ) as a subgroup of AutL(P ): the subgroup of
elements of the form (Id, [H ]) when H is a homotopy from f |BP to itself. Under this
identification, δP restricts to the homomorphism from Z(P ) to π1(Map(BP,X), f |BP )

which sends g ∈ Z(P ) to [Ĥg], where Ĥg is now regarded as a loop in Map(BP,X). By
definition of F and L, for any other F -centric subgroup Q ≤ S, π1(Map(BP,X), f |BP )
acts freely on MorL(P,Q) with orbit set HomF(P,Q). So to prove (A), we must show

that the isomorphism π1(ωP ) of (∗) sends g ∈ Z(P ) to [Ĥg].

Let [1] be the category with two objects 0, 1, and one nonidentity morphism 0→ 1.
Fix g ∈ Z(P ), and consider the composite functor

Ψ: B(P )× [1]
Id×ψ
−−−−−−→ B(P )× B(Z(P ))

B(µ)
−−−−−−→ B(P ),

where ψ : [1] →B(Z(P )) sends 0→ 1 to the morphism g, and where B(µ) is induced
by multiplication. Then

|Ψ| : BP × I −−−−−→ BP

is induced by the natural homomorphism of functors from IdB(P ) to itself defined by
sending the object oP to the morphism corresponding to g, and is thus the homotopy
Hg of Definition 1.6. By definition, π1(ωP )(g) is the homotopy class of f ◦ |Ψ|, when

regarded as a loop in Map(BP,X), and is thus equal to [f ◦Hg] = [Ĥg]. This finishes
the proof of (A), and hence of the lemma. �

We will refer several times to the following classical result.

Proposition 1.9. For any pair of discrete groups H and G, the natural map

Rep(H,G)
def
= Hom(H,G)/ Inn(G) −−−−−−→ [BH,BG]

is a bijection. For each ρ ∈ Hom(H,G), the homomorphism CG(ρ(H))×H → G is
adjoint to a homotopy equivalence

BCG(ρ(H))
≃

−−−−−−→ Map(BH,BG)Bρ.

Proof. See, for example, [BrK, Proposition 7.1]. �

2. A new topological characterization of fusion systems

In this section, we show, for a p-complete space X , a p-group S, and a map f : BS →
X , that the triple (S,F ′

S,f(X),LcS,f(X)) is a p-local finite group if X , S, and f satisfy
certain conditions listed in Theorem 2.1 below.

When S is a p-group, a map f : BS −−→ X will be called Sylow if every map
BP −−→ X , for a p-group P , factors through f up to homotopy. A map f : X −−→ Y
between arbitrary spaces is called centric if the induced map

Map(X,X)Id
f◦−

−−−−−−→ Map(X, Y )f



8 CARLES BROTO, RAN LEVI, AND BOB OLIVER

is a homotopy equivalence.

In [BLO2, Theorem 7.5], we showed that a p-complete spaceX is the classifying space
of some p-local finite group if and only if there is a pair (S, f), where S is a p-group and
f : BS → X is a map, such that (a) FS,f(X) is saturated, (b) X ≃ |LcS,f(X)|∧p , and (c)
f |BP is a centric map for each FS,f(X)-centric subgroup P ≤ S. The following theorem
is similar in nature, although aimed at finding conditions for (S,FS,f(X),LcS,f(X)) to
be a p-local finite group rather than for X to be the classifying space of a p-local finite
group. The main new result here is the geometric condition for the fusion system
FS,f(X) to be saturated.

Theorem 2.1. Fix a space X, a p-group S, and a map f : BS −−→ X. Assume that

(a) f is Sylow;

(b) f |BP is a centric map for each FS,f(X)-centric subgroup P ≤ S; and

(c) every F ′
S,f(X)-centric subgroup of S is also FS,f(X)-centric.

Then the triple
(
S,F ′

S,f(X),LcS,f(X)
)
is a p-local finite group.

Proof. For each FS,f(X)-centric subgroup P ≤ S, (b) implies that composition with
f |BP induces a homotopy equivalence Map(BP,BP )Id → Map(BP,X)f . Also, by
Proposition 1.8, Map(BP,BP )Id ≃ BZ(P ), and the resulting homotopy equivalence

BZ(P )
η

≃
→ Map(BP,X)f is adjoint to the composite

BZ(P )× BP
Bµ

−−−−−→ BS
f

−−−−−→ X,

where µ : Z(P ) × P −−−→ S is multiplication. Thus ωP = η, where ωP is the map of
Lemma 1.8, and hence is a homotopy equivalence.

Condition (∗) of Lemma 1.8 thus holds, and so LcS,f(X) is a linking system associated
to FS,f(X) by that lemma. It remains only to prove that F ′

S,f(X) is saturated. This
proof is based on two lemmas which will be stated and proven later in this section.

Write L = LcS,f(X), F = FS,f(X), and F ′ = F ′
S,f(X) for short. By Proposition

1.7 and (c), in order to prove that F ′ is saturated, it suffices to show that conditions
(I) and (II) in Definition 1.2 hold for all F ′-centric subgroups P ≤ S. If P ≤ S is
F ′-centric, then it is also F -centric by (c), and hence f |BP is a centric map by (b).

We first prove condition (I). Assume P ≤ S is F ′-centric and fully normalized in
F ′. Since P is F ′-centric, it is fully centralized, and it remains only to show that
AutS(P ) ∈ Sylp(AutF ′(P )). We identify P with δP (P ) ≤ AutL(P ). Since L is a
centric linking system associated to F or F ′, the homomorphism

πP,P : AutL(P ) −−−−−−→ AutF (P ) = AutF ′(P )

induced by the functor π : L → F is surjective with kernel Z(P ). Also, πP,P (P ) =
Inn(P ) is normal in AutF(P ), and thus P ⊳ AutL(P ). By axiom (B) for a linking
system, πP,P sends g ∈ AutL(P ) to cg ∈ Aut(P ), and thus

CAutL(P )(P ) = Ker(πP,P ) = Z(P ). (1)

By Lemma 2.2, f |BP extends up to homotopy to a map f̂ : BAutL(P ) −−→ X (by
definition, AutL(P ) = AutLc

P,f
(X)(P )). If T is any Sylow p-subgroup of AutL(P ), then

T ≥ P since P ⊳ AutL(P ), f̂ |BT factors through BS by condition (a), and thus
there is a homomorphism ϕ : T −−→ S such that ϕ|P ∈ HomF ′(P, S). In particular,
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ϕ|P is a monomorphism. Hence since Z(T ) ≤ CT (P ) ≤ P by (1), Ker(ϕ) ∩ Z(T ) ≤
Ker(ϕ) ∩ P = 1; and (since a nontrivial normal subgroup intersects nontrivially with
the center) this implies that ϕ is a monomorphism. Hence |NS(ϕ(P ))| ≥ |T | since
NS(ϕ(P )) ≥ ϕ(T ); and also |NS(P )| ≥ |NS(ϕ(P ))| since P is fully normalized. Since
P is centric in S,

|AutS(P )| = |NS(P )|/|Z(P )| ≥ |NS(ϕ(P ))|/|Z(P )| ≥ |T/Z(P )| ;

and thus AutS(P ) ∈ Sylp(AutF ′(P )) since AutF ′(P ) ∼= AutL(P )/Z(P ) and T ∈
Sylp(AutL(P )).

It remains to prove condition (II). Fix a morphism ϕ ∈ HomF ′(P, S), and set

N = Nϕ = {g ∈ NS(P ) |ϕcgϕ
−1 ∈ AutS(ϕ(P ))}

as usual. Consider the diagram

BP
Bϕ

//

incl
��

BS

f
��

BN
f |BN

//

Bϕ′
99
r

r

r

r

r

X .

The square commutes up to homotopy since ϕ is a morphism in F ′, and condition (1)
in Lemma 2.3 holds by definition of N . Thus, by Lemma 2.3, there is a homomorphism
ϕ′ ∈ Hom(N, S) such that Bϕ′ makes both triangles in the above diagram commute up
to homotopy. The commutativity of the lower triangle means that ϕ′ ∈ HomF ′(N, S).
The commutativity of the upper triangle implies that ϕ′|P = ϕ ◦ cg for some g ∈ P

(Proposition 1.9), and thus ϕ
def
= ϕ′

◦c−1
g is an extension of ϕ which lies in HomF ′(N, S).

This finishes the proof of (II). �

It remains to state and prove the technical lemmas used in the proof of Theorem
2.1.

Lemma 2.2. Fix a space X, a p-group P , and a centric map f : BP −−→ X. Set
L = LcP,f(X) for short. Then f extends (up to homotopy) to a map

f : B AutL(P ) −−−−−−→ X.

Proof. We first consider the following abstract situation. Fix a space Y , a basepoint
y0 ∈ Y , and a finite group G with a right action on Y . Consider the following commu-
tative diagram

Ω(Y ×G EG) → G
ι1
→ Y ×EG → Y ×G EG

F

pr1 ≃
↓

→ G

wwwww
ι2
→ Y .

≃
↓

Here, ι1 and ι2 are defined by the action at the basepoints: ι1(g) = (y0g, g
−1) and

ι2(g) = y0g. Also, F is the “standard” homotopy fiber of ι2:

F =
{
(g,H)

∣∣ g ∈ G, H : I → Y, H(0) = y0, H(1) = y0g
}
. (I = [0, 1])

This is an H-space, via the product (g′, H ′)(g,H) = (g′g, (Rg ◦ H ′) · H), where Rg

denotes the right action of g on Y and “·” denotes composition of paths in Y . We can
also regard Ω(Y ×G EG) as the standard homotopy fiber of ι1. Then pr1 is defined
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by projecting a path in Y × EG to the first factor, and is a map of H-spaces and a
homotopy equivalence. In particular, it induces an isomorphism of groups

π1(Y ×G EG) ∼= π0(Ω(Y ×G EG))
π0(pr1)−−−−−−→ π0(F ) . (1)

Set F = FP,f(X) for short. We apply the above remarks to the space Y =
Map(BP,X)f , the point y0 = f , and the group G = AutF(P ), where α ∈ AutF(P )
acts on Y via right composition by Bα. Thus after replacing paths in Y by homotopies,

F =
{
(ϕ,H)

∣∣ϕ ∈ AutF(P ), H : BP × I −−−→ X, H|BP×0 = f, H|BP×1 = f ◦ Bϕ
}
,

and AutL(P ) = π0(F ) by definition. Also, since f is centric,

Y = Map(BP,X)f ≃ Map(BP,BP )Id ≃ BZ(P ),

where the last equivalence follows from Proposition 1.9. Then Y ×GEG is also aspher-
ical, and so Y ×G EG ≃ BAutL(P ) by (1).

Since Bϕ fixes the base point of BP for all ϕ ∈ Aut(P ), the evaluation map

Y = Map(BP,X)f
eval

−−−−−−→ X

is AutF (P )-equivariant (with respect to the trivial action onX). It thus factors through
the orbit space, or alternatively through the Borel construction:

f : BAutL(P ) ≃ Map(BP,X)f ×AutF (P ) E AutF(P )
eval

−−−−−−−→ X .

It remains to show that f |BP ≃ f , where BP is included into BAutL(P ) via the
distinguished monomorphism δP . By the naturality of these maps, it suffices to do this

when X = BP and f = Id. In this case, that means showing that π1(f |BP ) = IdP . Fix
g ∈ P , and let Hg : BP × I −−−→ BP be as in Definition 1.6. We also regard Hg as a
path in Map(BP,BP )Id from IdBP to Bcg, whose restriction to the basepoint of BP is
by definition the loop in BP representing g. By the above construction, g ∈ π1(BP )
corresponds to the class

[Hg, φ] ∈ π1
(
Map(BP,X)f ×AutF (P ) EAutF (P )

)
,

where φ is any path in EP ⊆ E AutF(P ) from the vertex Id to the vertex c−1
g . Hence

upon evaluating this at the basepoint of BP , we see that eval([Hg, φ]) is the loop in

BP representing g, and thus that π1(f)(g) = g. �

It remains to prove the existence of certain homotopy liftings.

Lemma 2.3. Fix a finite group H, a normal p-subgroup P ⊳ H, a p-group S, and a
monomorphism ϕ : P −−→ S such that CS(ϕ(P )) = Z(ϕ(P )). Let X be a space, and
let f : BS −−→ X be such that f ◦Bϕ is centric. Assume that

for each x ∈ H , ϕcxϕ
−1 ∈ AutS(ϕ(P )). (1)

Let s : BH −−→ X be such that the square in the following diagram commutes up to
homotopy:

BP
Bϕ

//

incl
��

BS

f
��

BH
s

//

Bϕ′
99
r

r

r

r

r

X .

(2)

Then there is a homomorphism ϕ′ ∈ Hom(H,S) such that the two triangles in diagram
(2) commute up to homotopy.
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Proof. We identify BP with EH/P and BH with
(
E(H/P )× EH

)/
H = E(H/P )×H/P EH/P.

Thus the inclusion BP ⊆ BH is induced by the inclusion of an orbit H/P ⊆ E(H/P ).
Let

Φ̂ : EH/P −−−−−→ BS and ŝ : E(H/P )×H/P EH/P −−−−−→ X

be maps homotopic to Bϕ and s under these identifications.

By (1), the connected component Map(EH/P,BS)Bϕ is invariant under the action
of H/P induced by the action of the group on EH/P . We thus get the following square
of equivariant maps between spaces with (H/P )-action

H/P
v

//

incl
��

Map(EH/P,BS)Φ̂

f◦−≃
��

E(H/P )
u

//

ũ

55
❦

❦
❦

❦
❦

❦
❦

❦

Map(EH/P,X)f◦Φ̂ .

(3)

Here, u is adjoint to ŝ (when regarded as a map defined on E(H/P )×EH/P ); and v

is defined by setting v(gP )(xP ) = Φ̂(xgP ) for x ∈ EH . The square in (3) commutes
up to equivariant homotopy by the commutativity of the square in (2).

Now, Map(EH/P,BS)Bϕ ≃ BCS(ϕ(P )) ≃ BZ(P ) by Proposition 1.9, and since
ϕ(P ) is centric in S by assumption. Also, Map(EH/P,X)f◦Φ̂ ≃ BZ(P ) since f ◦Bϕ is

a centric map by assumption. Thus the map (f ◦−) is H/P -equivariant and a homotopy
equivalence. Since theH/P -action on E(H/P ) is free, there is an equivariant lifting ũ of
u as in the above diagram which makes both triangles in (3) commute up to equivariant
homotopy. This is adjoint to an H/P -equivariant map from E(H/P )×EH/P to BS,
which (since H/P acts trivially on BS) factors through

s̃ : BH = E(H/P )×H/P EH/P −−−−−−→ BS

which makes the two triangles in (2) commute up to homotopy. Finally, s̃ ≃ Bϕ′ for
some ϕ′ ∈ Hom(H,S) by Proposition 1.9 again, and this finishes the proof. �

3. Fusion systems of completed classifying spaces of groups

In order to apply Theorem 2.1 to a space X , we must have good control over the
mapping spaces Map(BP,X) for finite p-groups P . One interesting case where we can
do this is when X = BG∧

p for certain infinite groups G. This is based on a theorem of
Broto and Kitchloo [BrK].

When G is an infinite group, we say that a subgroup S ≤ G is a Sylow p-subgroup
if S is a finite p-subgroup, and if all other finite p-subgroups of G are conjugate to
subgroups of S.

Proposition 3.1. Fix a prime p and a discrete group G. Assume there is an Fp-acyclic
G-complex X with finitely many orbits of cells and with finite isotropy subgroups. Let
S ≤ G be any finite p-subgroup, and let f : BS −−−→ BG∧

p be the inclusion. Then the
following hold.

(a) FS,f(BG
∧
p ) = FS(G).

(b) If S is a Sylow p-subgroup of G, then the map f is Sylow.
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(c) For any P ≤ S, f |BP is a centric map if and only if H i(CG(P )/Z(P );Fp) = 0 for
all i > 0.

Proof. In the notation of [BrK], K1X is a class of topological groups which includes
all discrete groups which act on Fp-acyclic complexes with finitely many orbits of cells
and with finite isotropy subgroups. (The definition in [BrK] also requires that the fixed
point set of any finite p-group be Fp-acyclic, but this follows from Smith theory, since
the complex is finite dimensional.) In particular, this class includes G. Hence by [BrK,
Corollary 3.3], for any finite p-group P , the natural map

Rep(P,G)
def
= Hom(P,G)/ Inn(G)

∼=
−−−−−−→ [BP,BG∧

p ] (1)

is a bijection. Also, for each ρ ∈ Hom(P,G), the homomorphism P×CG(ρ(P ))
(ρ,incl)
−−−−→ G

induces a homotopy equivalence

BCG(P )
∧
p

≃
−−−−−−→ Map(BP,BG∧

p )Bρ. (2)

Point (a) follows immediately from (1).

Assume S is a Sylow p-subgroup of G. If P is any finite p-group and s : BP → BG∧
p

is a map, then s ≃ Bϕ for some ϕ ∈ Hom(P,G) by (1), ϕ(P ) is G-conjugate to some
Q ≤ S since S is Sylow, and thus Bϕ ≃ f ◦ Bϕ′ for some ϕ′ ∈ Hom(P, S). Thus the
map f is Sylow, and this proves (b).

By (2), for any P ≤ S, f |BP is a centric map if and only if the inclusion of BZ(P )
into BCG(P )

∧
p is a homotopy equivalence, or equivalently, if the inclusion of BZ(P )

into BCG(P ) is an Fp-homology isomorphism. Since Z(P ) is central in CG(P ), this
last condition is equivalent to requiring that H i(CG(P )/Z(P );Fp) = 0 for all i > 0,
and this proves (c). �

Before stating our theorem, we need one more definition.

Definition 3.2. Fix a prime p.

(a) If H ≤ G are finite groups, then H is strongly embedded in G at p if p
∣∣|H|, but

H ∩ gHg−1 has order prime to p for all g ∈ GrNG(H).

(b) If G is a finite group and S ∈ Sylp(G), a subgroup P ≤ S is essential if either
P = S, or P is p-centric in G and OutG(P ) has a strongly embedded subgroup at
p.

By Goldschmidt’s version of Alperin’s fusion theorem [Gd, Theorem 3.3], for any
finite group G and any S ∈ Sylp(G), each morphism in FS(G) is a composite of
restrictions of morphisms between subgroups of S which are essential in G. Note that
each essential subgroup is also radical — OutG(P ) has no strongly embedded subgroup
if Op(OutG(P )) 6= 1.

A finite group G has a strongly embedded subgroup H if and only if the poset of
nontrivial p-subgroups of G is disconnected (cf. [As, 46.6]), in which case the stabilizer
of a connected component is strongly embedded.

The following theorem is a first application of Theorem 2.1.

Theorem 3.3. Fix a prime p and a discrete group G. Let X be an Fp-acyclic G-
complex with finitely many orbits of cells and with finite isotropy subgroups. Fix a
vertex x∗ ∈ X, let G∗ be the isotropy subgroup of x∗, choose S ∈ Sylp(G∗), and set
F = FS(G) and L = LcS(G). Assume the following hold:



A GEOMETRIC CONSTRUCTION OF SATURATED FUSION SYSTEMS 13

(a) For each finite p-subgroup P ≤ G, XP contains at least one point in the orbit Gx∗.

(b) If P ≤ S is F-centric, then XP/CG(P ) is Fp-acyclic.

(c) If P ≤ S is a Sylow p-subgroup of the isotropy subgroup of an edge of X, or an
essential p-subgroup of the isotropy subgroup of a vertex, then P is F-centric.

Then F is a saturated fusion system over S, and L is a centric linking system associated
to F .

Proof. If f : BS −−−→ BG∧
p is the map induced by the inclusion, then F = FS,f(BG

∧
p )

by Proposition 3.1(a). For any finite p-subgroup P ≤ G, there is g ∈ G such that
gx∗ ∈ XP by point (a) above, and hence P is contained in the isotropy subgroup
gG∗g

−1 of gx∗. Since gSg−1 ∈ Sylp(gG∗g
−1), this shows that P is G-conjugate to a

subgroup of S. Thus S is a Sylow p-subgroup of G; and hence by Proposition 3.1(b),
the map f is Sylow.

By Theorem 2.1, to prove that F = FS(G) is saturated, it remains only to check
condition 2.1(b), and to show that F = F ′

S,f(BG
∧
p ). (This last claim also implies

condition 2.1(c).) In Step 1, we prove condition 2.1(b), and also prove that L = LcS(G)
is a centric linking system associated to F . In Step 2, we prove that F = F ′

S,f(BG
∧
p );

i.e., that F is generated by morphisms between F -centric subgroups.

Step 1: Fix an F -centric subgroup P ≤ S. Thus CS(P
′) = Z(P ′) for each P ′ ≤ S

which is G-conjugate to P . If Q ≤ CG(P ) is a finite p-subgroup, then PQ is a finite
p-group, so gPQg−1 ≤ S for some g ∈ G, and Q ≤ Z(P ) by the above remark applied
to P ′ = gPg−1. Thus Z(P ) is maximal among finite p-subgroups of CG(P ).

Set CG(P ) = CG(P )/Z(P ) for short. For each x ∈ XP , Gx is a finite group which
contains P , so CGx

(P )/Z(P ) is finite of order prime to p, and hence its classifying
space is Fp-acyclic. Consider the projection maps

BCG(P )
pr1←−−−−−− ECG(P )×CG(P )

XP pr2−−−−−−→ XP/CG(P ) = XP/CG(P )

associated to the Borel construction on XP . All fibers (point inverses) of pr1 are
homeomorphic to XP , and thus Fp-acyclic by Smith theory (X is Fp-acyclic and finite
dimensional). For each x ∈ XP with orbit x̄ ∈ XP/CG(P ) and with stabilizer subgroup
Gx,

pr−1
2 (x̄) ∼= ECG(P )/CGx

(P ) ≃ B(CGx
(P )/Z(P ))

is Fp-acyclic. Hence by a spectral sequence argument (or by an appropriate version of
the Vietoris mapping theorem), pr1 and pr2 are both Fp-homology equivalences. Since

XP/CG(P ) is Fp-acyclic by assumption, this implies that BCG(P ) is Fp-acyclic.

Thus H i(CG(P );Fp) = 0 for all i > 0. Hence by Proposition 3.1(c), the map f |BP is
centric, and this finishes the proof of condition 2.1(b). By Lemma 1.5, this also shows
that L = LcS(G) is a centric linking system associated to F .

Step 2: Fix any ϕ = cg ∈ HomF(P,Q) in F . Then P ≤ S and gPg−1 ≤ S, so P is
contained in the isotropy subgroups of both x∗ and g

−1(x∗). Choose a path φ in the 1-
skeleton of XP from x∗ to g−1(x∗). Let v0 = x∗, v1, . . . , vm = g−1(x∗) be the successive
vertices in the path φ, let ei be the edge connecting vi−1 to vi, and set Hi = Gei and
Ki = Gvi. Thus by construction, P ≤ Hi, and Ki−1 ≥ Hi ≤ Ki for all 1 ≤ i ≤ m.
Also, S ∈ Sylp(K0) and Km = g−1K0g.
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Fix Sylow subgroups Pi ∈ Sylp(Hi) such that P ≤ Pi. Choose Qi, Q
′
i ∈ Sylp(Ki) such

that Q′
i−1 ≥ Pi ≤ Qi, and let ki ∈ Ki be such that Q′

i = kiQik
−1
i . We also assume that

Q0 = S and Q′
m = g−1Sg. Finally, since S is Sylow in G, there are elements gi ∈ G

such that Qi ≤ giSg
−1
i . In particular, when i = m, since

g−1Sg = Q′
m = kmQmk

−1
m ,

we can choose gm = k−1
m g−1.

Consider the following diagram, where all subgroups are contained in S:

P
ψ0
→ P k0 ϕ1

→ P g1 ψ1
→ P k1g1 ϕ2

→ P g2 P km−1gm−1
ϕm
→ P gm ψm

→ P kmgm

· · ·

P k0
1

↓
ϕ1
→ P g1

1

↓

P k1g1
2

↓
ϕ2
→ P g2

2

↓

P km−1gm−1
m

↓
ϕm
→ P gm

m .
↓

Here, we use the standard notationHg = g−1Hg. Also, ψi is conjugation by g−1
i k−1

i gi ∈
Kgi
i (where g0 = 1), and ϕi and ϕi are conjugation by g−1

i ki−1gi−1. All of these
subgroups are contained in S by construction. Also, by the above choice of gm, ψm is
conjugation by ggm. Thus the composite of these morphisms ψi and ϕi is conjugation
by

(ggm)(g
−1
m km−1gm−1)(g

−1
m−1k

−1
m−1gm−1) · · · (g

−1
2 k1g1)(g

−1
1 k−1

1 g1)(g
−1
1 k0g0)(g

−1
0 k−1

0 g0) = g.

(Recall that g0 = 1.)

By (c), each subgroup of S which is conjugate to any Pi is F -centric. Each ψi
is a morphism in the fusion system of Kgi

i , and hence a composite of restrictions of
morphisms between essential p-subgroups of this group [Gd, Theorem 3.3]. Since all
such subgroups are F -centric by (c), this finishes the proof. �

We finish the section with two very simple examples which illustrate why some of
these assumptions are needed. The first example shows why condition (c) is needed in
Theorem 3.3. It also shows why we cannot take F ′ = F in Theorem 2.1.

Example 3.4. Let S be an abelian p-group, T � S a proper subgroup of order > 2,
and H ≤ Aut(T ) a nontrivial subgroup of order prime to p. Set G = S ∗

T
(T⋊H).

Then G acts on a tree with isotropy subgroups all G-conjugate to S, T , or T⋊H. This
action satisfies conditions (a) and (b) in Theorem 3.3, but not condition (c); and the
inclusion map f : BS −−−→ BG∧

p satisfies all of the hypotheses (a)–(c) in Theorem 2.1.
The fusion system FS(G) = FS,f(BG

∧
p ) is not saturated. The fusion system F ′

S,f(BG
∧
p )

is equal to FS(S), and is thus a proper subsystem of FS(G) and is saturated.

Proof. By [Se, Theorem I.9], G acts freely on a tree X with isotropy subgroups conju-
gate to S and T⋊H on vertices, and to T on edges, and with fundamental domain an
interval. Since S does not fix any edges (and XS must be a tree), XS is a point, and
hence XS/CG(S) is also a point. Since T has index prime to p in T⋊H , XP contains
elements in the orbit G/S for each finite p-subgroup P ≤ G. Thus the action of G on
X satisfies conditions 3.3(a) and 3.3(b). Conditions (a)–(c) in Theorem 2.1 then follow
using Proposition 3.1.

The fusion system F = FS(G) is not saturated, since the automorphisms in the
group AutF(T ) ∼= H do not extend to automorphisms in AutF(S). �
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The next example shows that condition (b) in Theorem 2.1 and condition (b) in
Theorem 3.3 must be assumed (in each theorem) for all F -centric subgroups: it does
not suffice to assume them when P = S.

Example 3.5. Set p = 2, S = D8 × C
2
2 , T = C4 × C

2
2 , and H = C4 × A4, with the

obvious inclusions of T in S and H. Set G = S ∗
T
H. Then G acts on a tree with

all isotropy subgroups G-conjugate to S, T , or H. This action satisfies conditions (a)
and (c) in Theorem 3.3 as well as conditions (a) and (c) in Theorem 2.1, but does not
satisfy condition (b) in either theorem. The inclusion map f : BS −−−→ BG∧

p is Sylow
and centric, but the inclusion map f |BT : BT −−→ BG∧

p is not centric. Neither fusion
system FS(G) = FS,f(BG

∧
p ) nor F

′
S,f(BG

∧
p ) is saturated.

Proof. Set F = FS,f(BG
∧
p ) and F

′ = F ′
S,f(BG

∧
p ) for short. As in the last example, G

acts on a tree X with isotropy subgroups as described, and with fundamental domain
an interval, by [Se, Theorem I.9]. Since any action of a finite group on a tree has a
fixed point, every finite subgroup of G is contained in an isotropy subgroup, and thus
in a subgroup G-conjugate to S or H . This shows that S is a Sylow 2-subgroup of G,
and hence (by Proposition 3.1(b)) that f is Sylow. Thus both conditions 2.1(a) and
3.3(a) hold. Also, f is centric by Proposition 3.1(c), since CG(S) = Z(S).

Since S is a 2-group and H has a normal Sylow 2-subgroup, their only radical 2-
subgroups (hence their only essential 2-subgroups) are S and T , respectively. Since
both are centric in S, condition 3.3(c) holds. As seen in Step 2 of the proof of Theorem
3.3, this implies that F ′ = F , and thus that condition 2.1(c) also holds.

Now, T is normal in G, since it is normal in S and H , and G/T ∼= (S/T )∗(H/T ) ∼=
C2∗C3. Hence

CG(T )/T ∼= Ker[C2∗C3 −−−→ C2 × C3],

and this is a free group (since it acts freely on a tree). In particular, H1(CG(T )/T ;F2) 6=
0; and (since CG(T )/T acts freely on the tree XT ) XT/CG(T ) ≃ B(CG(T )/T ) is not
F2-acyclic. So by Proposition 3.1(c), f |BT is not a centric map; and this shows that
conditions 2.1(b) and 3.3(b) both fail.

Now, AutF(C4 × C
2
2)
∼= C2 × C3, but OutF(D8 × C

2
2)
∼= 1 (and the same for F ′).

The automorphism of C4 ×C
2
2 of order 3 thus fails to extend to S, so axiom (II) fails,

and F is not saturated. �

4. Fusion systems of trees of groups

Let (G, T ) be a tree of groups in the sense of [Se, §I.4.4]. Thus T is a tree; and
G assigns groups G(v) and G(e) to each vertex v ∈ T 0 and each edge e ∈ T 1, and
a monomorphism G(e) → G(v) for each pair (e, v) where v is an endpoint of e. For
any such tree of groups (G, T ), we let GT denote the amalgamated free product of the
groups G(v) over the G(e), as described in [Se, §I.4.4]. Thus GT is the free product of
the groups G(v) for all vertices v ∈ T 0, modulo the relations given by the inclusions of
groups G(e) for e ∈ T 1 into the groups of the endpoints of e.

Alternatively, one can regard T as a category whose set of objects is the disjoint
union of T 0 and T 1, and with a pair of morphisms w ← e → v for each edge e ∈ T 1

with endpoints v, w. Then G is a functor from T to the category Gr
+ of groups and

monomorphisms, and GT = colim−−−→T
(G).
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In this paper, we will be considering only finite trees of finite groups; i.e., pairs
(G, T ) where T is a finite tree, and G(v) is a finite group for each v ∈ T 0. Our goal
in this section is to find some conditions on G and T which ensure that the group GT
gives rise to a saturated fusion system and associated centric linking system.

If (G, T ) is a tree of groups, and G = GT , then we let T̃ denote the graph with vertex
and edge sets

T̃ 0 =
{
(gG(v), v)

∣∣ v ∈ T 0, g ∈ G
}
=

∐

v∈T 0

(
G/G(v)× {v}

)

T̃ 1 =
{
(gG(e), e)

∣∣ e ∈ T 1, g ∈ G
}
=

∐

e∈T 1

(
G/G(e)× {e}

)

(with the obvious choices of endpoints). Equivalently, T̃ = hocolim−−−−−→T
(G/−). By [Se,

Theorem I.9, p. 38], T̃ is a tree upon which G acts with orbit graph T , with fundamen-
tal domain which can be identified with T (the subtree spanned by vertices (1G(v), v)),
and with isotropy subgroups on the fundamental domain given by G.

For any pair of groups H,G, let Rep(H,G) = Hom(H,G)/ Inn(G), and let [α] ∈
Rep(H,G) be the class of α ∈ Hom(H,G). If (G, T ) is a tree of groups, and H is any
finite group, we let Rep(H,G) be the graph with vertex and edge sets

Rep(H,G)0 =
{
(v, [α])

∣∣ v ∈ T 0, [α] ∈ Rep(H,G(v))
}

Rep(H,G)1 =
{
(e, [α])

∣∣ e ∈ T 1, [α] ∈ Rep(H,G(e))
}
.

When α ∈ Hom(H,G(x)), where x is a vertex or edge in T , we write (x, [α]) for the
pair (x, [α]), where [α] is the class of α in Rep(H,G(x)). Alternatively, if we regard T
as a category, then

Rep(H,G) = hocolim−−−−−→
T

Rep(H,G(−)).

Lemma 4.1. Fix a finite tree of finite groups (G, T ). Set G = GT = colim−−−→(G), and

let T̃ be as above. Then the following hold for any vertex v∗ of T and any subgroup
H ≤ G(v∗):

(a) The connected component of Rep(H,G) which contains (v∗, [incl
G(v∗)
H ]) is isomorphic

(as a graph) to T̃ H/CG(H).

(b) The natural map

ΦH : π0
(
Rep(H,G)

) ∼=
−−−−−→ Rep(H,G)

is a bijection. In particular, for x a vertex or edge of T and α ∈ Hom(H,G(x)),

(x, [α]) lies in the connected component of the vertex (v∗, [incl
G(v∗)
H ]) if and only if

α ∈ HomG(H,G(x)).

Proof. When x is a vertex or edge of T , we write Gx = G(x) for short: the isotropy
subgroup at x of the G-action, when we regard T as a subtree (a fundamental domain)

of T̃ .

If K ≤ G and gK ∈ (G/K)H , then H ≤ gKg−1, and so we can regard c−1
g : x 7→

g−1xg as a homomorphism from H to K whose class in Rep(H,K) depends only on
the coset gK. Hence it makes sense to define

fH : T̃ H −−−−−→ Rep(H,G)
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by sending each vertex (gGv, v) to the pair (v, [c−1
g ]) and each edge (gGe, e) to the pair

(e, [c−1
g ]). We claim the following hold:

(i) Im(fH) is the connected component of (v∗, [incl
Gv∗

H ]) in Rep(H,G).

(ii) A vertex (v, [α]), for α ∈ Hom(H,Gv), lies in Im(fH) if and only if the composite

H
α
→ Gv ≤ G is G-conjugate to the inclusion.

(iii) fH induces an isomorphism of graphs (T̃ H)/CG(H) ∼= Im(fH).

Point (ii) is immediate.

If (e, [α]) is an edge of Rep(H,G) with endpoint fH(gGv, v) = (v, [c−1
g ]), then v is

an endpoint of e, and [α] = [c−1
g ] ∈ Rep(H,Gv). Thus α = c−1

h c−1
g = c−1

gh for some
h ∈ Gv, and (e, [α]) = fH(ghGe, e). So an edge of Rep(H,G) lies in Im(fH) if one
of its endpoints lies in Im(fH), and thus Im(fH) is a union of connected components

of Rep(H,G). Since T̃ H is a tree by [Se, §I.6.1], Im(fH) is nonempty and connected,
hence is a connected component of Rep(H,G), and this finishes the proof of (i).

Two vertices (gGv, v) and (hGw, w) are sent to the same vertex of Rep(H,G) if and
only if v = w and [c−1

g ] = [c−1
h ] in Rep(H,Gv). This last condition is equivalent to saying

that h ∈ CG(H)gGv; i.e., that (gGv, v) and (hGw, w) are in the same CG(H)-orbit; and
thus (iii) holds. Points (i) and (iii) together imply (a).

By (ii), for any α ∈ Hom(H,G), ΦH sends the connected component of a vertex
(v, [β]) in Rep(H,G) to [α] if and only if (v, [βα−1]) ∈ Im(fα(H)). Hence by (i), Φ−1

H ([α])
contains exactly one connected component. This shows that ΦH is a bijection, and
proves (b). �

We originally discovered the following theorem as a special case of Theorem 2.1 (and
of Theorem 3.3), and it was certainly motivated by those results. However, since it also
has a more elementary proof which does not use certain deep theorems in homotopy
theory, we give both proofs here.

Theorem 4.2. Fix a prime p and a finite tree of finite groups (G, T ). Fix a vertex v∗
of T , set G∗ = G(v∗) for short, and choose S ∈ Sylp(G∗). Set G = GT = colim−−−→(G),
F = FS(G), and L = LcS(G). Assume the following hold:

(a) For each vertex v 6= v∗ of T , if e is the edge adjacent to v in the (unique) minimal
path from v to v∗, then [G(v) : G(e)] is prime to p.

(b) If P ≤ S is F-centric (equivalently, if Z(P ) is a maximal p-subgroup of CG(P )),
then the component of (v∗, [incl

G∗

P ]) in the graph Rep(P,G) is a tree.

(c) If some P ≤ S is G-conjugate to an essential p-subgroup of G(v) for any vertex v,
then P is F-centric.

Then F is a saturated fusion system over S, and L is a centric linking system associated
to F .

Proof. Let T̃ be as defined above: the tree upon which G acts with orbit space and
fundamental domain T . When x is a vertex or edge of T , we write Gx = G(x) for
short.
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We first show how the theorem follows as a special case of Theorem 3.3, applied to

the action of G on T̃ . Condition 3.3(b) follows from condition (b) here, together with
Lemma 4.1(a); while condition 3.3(c) follows from condition (c) here.

It remains to describe how condition 3.3(a) follows from condition (a) here. Let

P ≤ G be any finite p-subgroup; we must show that T̃ P contains some vertex in the

orbit of (1G∗, v∗) in T̃ . Since T̃ is a tree, the fixed point set of the P -action is also
a tree, and hence its image in the orbit tree T is nonempty and connected. Let v be
the vertex in that image which is closest to v∗. If v 6= v∗, then there is some g ∈ G
such that gGv ∈ (G/Gv)

P , and hence g−1Pg ≤ Gv. Let e be the edge adjacent to v on
the minimal path from v to v∗; then [Gv : Ge] is prime to p by (a), and hence there is

g′ ∈ G such that g′−1Pg′ ≤ Ge. Then the edge (g′Ge, e) is in T̃ P , which contradicts
the original assumption about v. This shows that v = v∗, and thus that some vertex
of the form (gG∗, v∗) is in T̃

P .

Since this theorem also has a more elementary algebraic proof, we give that here.
We first note that the argument just given also shows:

(a′) For each vertex v in T and each p-subgroup P ≤ Gv, P is G-conjugate to a
subgroup of S.

By a proof identical to Step 2 in the proof of Theorem 3.3, we show (using (c)) that
every morphism in F is a composite of restrictions of morphisms between F -centric
subgroups. Hence by [5a1, Theorem 2.3], F is saturated if it satisfies axioms (I) and
(II) in Definition 1.2 for all F -centric subgroups P ≤ S. So it remains to prove (I) and
(II) for F -centric subgroups, and to prove that L is a centric linking system associated
to F .

For any H ≤ G∗, let Rep(H,G)∗ be the connected component of (v∗, [incl
G∗

H ]) in
Rep(H,G). By Lemma 4.1(b), if x is any vertex or edge in T , and ϕ ∈ Hom(H,Gx),
then (x, [ϕ]) lies in Rep(H,G)∗ if and only if ϕ ∈ HomG(H,Gx).

Proof of (I) for F -centric subgroups. Let P ≤ S be any subgroup which is F -
centric and fully normalized in F . By Lemma 4.1, there is a bijection π0(Rep(P,G)) ∼=
Rep(P,G) which sends Rep(P,G)∗ to [inclGP ], and which is equivariant with respect to
the Aut(P )-action on both sets. Thus AutF(P ) = AutG(P ) is the isotropy subgroup
of Rep(P,G)∗ ∈ π0(Rep(P,G)) under the Aut(P )-action. In particular, AutF (P ) leaves
Rep(P,G)∗ invariant. Since Rep(P,G)∗ is a tree by (b), and since every action of
a finite group on a tree has a fixed point, there is a vertex (v, [α]) in Rep(P,G)∗
which is fixed by AutF(P ). Thus α ∈ HomG(P,Gv). Set P ′ = α(P ) ≤ Gv, so that
AutGv

(P ′) = αAutF(P )α
−1. Fix Q′ ∈ Sylp(NGv

(P ′)). By (a′), there is Q ≤ S which is
G-conjugate to Q′. Fix β ∈ IsoG(Q

′, Q), and set P ′′ = β(P ′). Then

|AutS(P )| =
|NS(P )|

|Z(P )|
≥
|NS(P

′′)|

|Z(P ′′)|
≥
|Q′|

|Z(P ′)|
= |AutQ′(P ′)| ;

where the first inequality holds since P ′′ is G-conjugate (hence F -conjugate) to P and P
is fully centralized in F . Since AutQ′(P ′) ∈ Sylp(AutG(P

′)) and AutG(P
′) ∼= AutG(P ),

this proves that AutS(P ) ∈ Sylp(AutG(P )), and finishes the proof of (I).

Proof of (II) for F -centric subgroups. Fix ϕ ∈ HomF(P, S) where P is F -centric,
and set

Nϕ = {g ∈ NS(P ) |ϕcgϕ
−1 ∈ AutS(ϕ(P ))} and K = AutNϕ

(P ).
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We claim that

Im
[
Rep(Nϕ,G)∗

Res
−−−−→ Rep(P,G)∗

]
= Rep(P,G)∗

K . (1)

Clearly, if x is a vertex or edge in T , then the restriction of any β ∈ Rep(Nϕ, Gx) lies
in Rep(P,Gx)

K , so the problem is to prove that Rep(P,G)∗
K lies in the image. By (b),

Rep(P,G) is a tree, and hence the fixed point set of the finite group K is also a tree.
So to prove (1), it suffices to show, for any edge (e, [α]) in Rep(P,G)∗

K and any vertex
(v, [β]) in Rep(Nϕ,G)∗ such that (v, [β|P ]) is an endpoint of (e, [α]), that (e, [α]) also
lies in the image of the restriction map.

In this situation, v is an endpoint of e, and we regard Ge as a subgroup of Gv as
usual. Then β|P = cg ◦α for some g ∈ Gv. Set P

′ = α(P ) and K ′ = αKα−1 ≤ Aut(P ′)
for short, and consider the subgroup

Ne = {a ∈ NGe
(P ′) | ca ∈ K

′}.

Fix Q ∈ Sylp(Ne). Then AutNe
(P ′) = K ′ since (e, [α]) is fixed by K, and AutQ(P

′) =
K ′ since K ′ is a p-group. Also, since β|P = cg ◦ α, gQg−1 ≤ β(Nϕ)·CGv

(β(P )). Since
β(P ) is p-centric in Gv, gQg

−1 and β(Nϕ) are both Sylow p-subgroups of this last group.
Hence there is h ∈ CGv

(β(P )) such that hgQg−1h−1 = β(Nϕ). Set α = c−1
hg ◦ β ∈

Iso(Nϕ, Q). Then α|P = c−1
g ◦ β|P = α since h centralizes β(P ), so Res((e, [α])) =

(e, [α]). Also, (v, [α]) = (v, [β]) is an endpoint of (e, [α]) since hg ∈ Gv, so [e, α] is an
edge in Rep(Nϕ,G), and this finishes the proof of (1).

Now, (v∗, [ϕ]) ∈ Rep(P,G)∗ by Lemma 4.1(b), and is fixed by the K action by defi-
nition of Nϕ. So by (1), there is ψ ∈ Hom(Nϕ, G∗) such that (v∗, [ψ]) is in Rep(Nϕ,G)∗
and [ψ|P ] = [ϕ] in Rep(P,G∗). Thus ψ ∈ HomG(Nϕ, G∗), and ψ|P = cg ◦ ϕ for some
g ∈ G∗. By axiom (II) for the saturated fusion system FG∗

(S), c−1
g = ϕ ◦ (ψ|P )

−1

extends to some χ ∈ HomG∗
(ψ(Nϕ), S), and hence ϕ

def
= χ ◦ ψ ∈ HomG(Nϕ, S) extends

ϕ. This finishes the proof of (II) for F -centric subgroups.

L is a centric linking system. If P is F -centric, then by point (b) and Lemma 4.1,

CG(P )/Z(P ) acts on the tree T̃ P with orbit space a tree. Furthermore, since Z(P ) is
maximal among finite p-subgroups of CG(P ), all isotropy subgroups of this action are
finite of order prime to p. Hence by I.10, p.39]Serre, CG(P )/Z(P ) is an amalgamated
product of finite groups of order prime to p taken over a finite tree. Such a group is
clearly p-perfect (it is generated by elements of order prime to p); and Mayer-Vietoris
sequences for the homology of amalgamated products (cf. [Bw, §VII.9]) show that
H i(CG(P )/Z(P );Fp) = 0 for all i > 0. So by Lemma 1.5, L = LcS(G) is a centric
linking system associated to F . �

The most difficult hypothesis to check in the above theorem is (b). For this reason,
we give here some equivalent formulations. The equivalence of the first three conditions
is implicit in the above proof, but we make them more explicit here.

Lemma 4.3. Fix a finite tree of finite groups (G, T ), and set G = GT = colim−−−→(G).
Choose a vertex v∗ of T , and a subgroup H ≤ G(v∗). Then the following three conditions
are equivalent:

(1) The abelianization of CG(H) is finite.

(2) CG(H) is a finite amalgamated product of finite groups.

(3) The component of (v∗, [incl
G(v∗)
H ]) in the graph Rep(H,G) is a tree.
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Furthermore, if (1)–(3) hold, then:

(4) There is a vertex v ∈ T 0 and an element x ∈ G, such that xHx−1 ≤ G(v) and
AutG(xHx

−1) = AutG(v)(xHx
−1).

Proof. Let T̃ be the tree upon which G acts with orbit space and fundamental domain
T , as in Lemma 4.1. Again, when x is a vertex or edge of T , we write Gx = G(x) for

short. By Lemma 4.1, the component of Rep(H,G) which contains (v∗, [incl
Gv∗

H ]) can

be identified with T̃ H/CG(H). If this orbit graph is a tree, then by [Se, Theorem I.10,
p.39], CG(H) is an amalgamated product of finite groups taken over a finite tree; and

in particular, its abelianization is finite. If the orbit graph T̃ H/CG(H) is not a tree,
then by [Se, Corollary 1, p. 55], there is a surjection of CG(H) onto its fundamental
group, an infinite free group, and hence the abelianization of CG(H) is not finite and
CG(H) is not a finite amalgamated product of free groups. This proves the equivalence
of (1), (2), and (3).

Now assume that (3) holds, and thus (by Lemma 4.1) that T̃ H/CG(H) is a tree. The
finite group AutG(H) ∼= NG(H)/CG(H) acts on this tree, and hence fixes some vertex
(cf. [Se, §I.6.1]). Assume the orbit of the vertex (a−1Gv, v) is fixed by AutG(H); in
particular, aHa−1 ≤ Gv since aGv ∈ (G/Gv)

H . Also, each α ∈ AutG(H) is of the form

α = cg for some g ∈ NG(H) which fixes the vertex (a−1Gv, v) in T̃ H , which implies
that aga−1 ∈ Gv. This shows that AutG(aHa

−1) = AutGv
(aHa−1), and thus that (4)

holds. �

As shown in [AC], the fusion systems FSol(q) constructed in [LO] by the second and
third authors are the fusion systems of certain amalgamated products Spin7(q)∗

B
K,

where B is the normalizer in Spin7(q) of a certain elementary abelian 2-subgroup of
rank 2, and K contains B with index 3. The proof in [LO] that these fusion systems
are saturated is very long and technical, and so it is natural to wonder whether or not
this could be shown as an application of Theorem 4.2. As seen in [LO] or [AC], when
F = FSol(q) and S ∈ Sylp(Spin7(q)), then there is an elementary abelian 2-subgroup
E ≤ S of rank 4 such that AutF (E) = Aut(E) ∼= GL4(2). Hence if the saturation of
F could be proven using Theorem 4.2, then by Lemma 4.3(4), some vertex of the tree
defining the amalgamated product would be fixed by an extension of E by Aut(E),
and this is not the case. More precisely, this shows that condition (b) in Theorem 4.2
fails to hold for this amalgamated product. So Theorem 4.2 cannot be applied in this
case.

5. Examples

We now look at some applications of Theorem 4.2, to produce explicit exotic fusion
systems. These examples will all be based on Proposition 5.1 below, which in turn is
a special case of Threorem 4.2.

For any fusion system F0 over a p-group S, any collection of subgroups Q1, . . . , Qm ≤
S, and outer automorphism groups ∆i ≤ Out(Qi) containing OutF0(Qi), let

〈F0; ∆1, . . . ,∆m〉

denote the fusion system over S generated by F0 and restrictions of automorphisms in
the ∆i to subgroups of Qi. In other words, F = 〈F0; ∆i, . . . ,∆m〉 is the fusion system
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over S such that for all P,Q ≤ S, HomF(P,Q) is the set of composites

P = P0
ϕ1
−−−→ P1

ϕ2
−−−→ P2 −−−→ · · · −−−→ Pk−2

ϕk−1
−−−→ Pk−1

ϕk−−−→ Pk = Q

such that each j, either ϕj lies in HomF0(Pj−1, Pj), or for some 1 ≤ i ≤ m, Pj−1, Pj ≤ Qi

and ϕj is the restriction of some αi ∈ Aut(Qi) such that [αi] ∈ ∆i.

The following proposition is also a generalization of [BLO2, Proposition 9.1].

Proposition 5.1. Fix a finite group G, a Sylow p-subgroup S ≤ G, and subgroups
Q1, . . . , Qm ≤ S such that no Qi is G-conjugate to a subgroup of Qj for i 6= j. For
each i, set Ki = OutG(Qi), and fix subgroups ∆i ≤ Out(Qi) which contain Ki. Set
F = 〈FS(G);∆1, . . . ,∆m〉. Assume for each i that

(1) p ∤ [∆i:Ki];

(2) Qi is p-centric in G, but no proper subgroup P � Qi is F-centric or an essential
p-subgroup of G; and

(3) for all α ∈ ∆irKi, Ki ∩ αKiα
−1 has order prime to p.

Then F is a saturated fusion system over S, and has an associated centric linking
system.

Proof. For each i, set Hi = NG(Qi) and Ti = Op(CG(Qi)). Then Ti has order prime to
p since Qi is p-centric in Hi; and thus Qi·CG(Qi) = QiTi ∼= Qi× Ti and Ki

∼= Hi/QiTi.

We first construct a finite group Gi ≥ Hi such that Hi has index prime to p in Gi,
Qi ⊳ Gi, and OutGi

(Qi) = ∆i. By (3), Ki ∩ αKiα
−1 has order prime to p for all

α ∈ ∆irKi; and hence the restriction homomorphism

Hj(∆i;Z(Qi)) ∼= Hj(Ki;Z(Qi))

is an isomorphism for all j > 0 by the description in of the image in terms of stable
(or G-invariant) elements (cf. [AM, Theorem II.6.6] or [Bw, Theorem III.10.3]). When
j = 3, the injectivity of the restriction map tells us that the obstruction to the existence
of an extension

1 −−−→ Qi −−−−−→ G′
i −−−−−→ ∆i −−−→ 1

vanishes [McL, Theorem IV.8.7], since its restriction to Ki ≤ ∆i vanishes. When j = 2,
the group H2(∆i;Z(Qi)) ∼= H2(Ki;Z(Qi)) acts freely and transitively on the sets of
all such extensions of Qi by ∆i or by Ki [McL, Theorem IV.8.8], and thus G′

i can be
chosen to contain the group Hi/Ti.

Now let Ti ≀Ki and Ti ≀∆i be the “regular” wreath products: the semidirect products
Ti

|Ki|⋊Ki and Ti
|∆i|⋊∆i where Ki and ∆i permute the factors Ti freely and transitively.

There is an obvious embedding of Ti ≀Ki into Ti ≀∆i; and by [Hu, I.15.9], there is an
embedding of Hi/Qi (as an extension of Ti by Ki) into Ti ≀ Ki. We can thus regard
Hi/Qi as a subgroup of Ti ≀∆i. So if we define Gi to be the pullback of the maps

G′
i −−−−−→ ∆i ←−−−−− Ti ≀∆i,

then Gi sits in an extension

1 −−−→ Qi × Ti
|∆i| −−−−−→ Gi −−−−−→ ∆i −−−→ 1;

and we can identify Hi (regarded as a pullback of Hi/Ti and Hi/Qi over Ki) as a
subgroup of Gi with index prime to p. Also, Qi ⊳ Gi and ∆i = OutGi

(Qi).

We will apply Theorem 4.2 to the tree which has m + 1 vertices v∗, v1, . . . , vm and
edges ei connecting v∗ to vi, and to the functor G(v∗) = G, G(vi) = Gi, and G(ei) = Hi.
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Let Ĝ denote the amalgamated product of this tree of groups. Then F = FS(Ĝ), and it
remains only to check that conditions (a), (b), and (c) in Theorem 4.2 hold. Condition
(a) holds by (1).

We next check condition 4.2(c). By definition of F , for any subgroup P ≤ S which p-
centric in G, P is F -centric unless there is some P ′ ≤ S which is F -conjugate to P but
not G-conjugate, in which case P must be G-conjugate to a proper subgroup P ′ � Qi

for some i. For each i, any Sylow p-subgroup of Hi, or any essential p-subgroup (hence
radical p-subgroup) of Gi, must contain Op(Hi) ≥ Qi; and the Qi are all p-centric in
G (hence F -centric) by assumption. Any essential p-subgroup P of G is p-centric in
G; and hence is F -centric since by (b) again, no essential p-subgroup of G is properly
contained in any Qi. This finishes the proof of (c) in Theorem 4.2.

It remains to check condition 4.2(b). Fix an F -centric subgroup P ≤ S; we must
show that the component Γ of (v∗, [incl

G
P ]) in Rep(P,G) is a tree. The edges in Rep(P,G)

adjacent to (v∗, [incl
G
P ]) are of the form (ei, [α]), for α ∈ HomG(P,Hi). For any such

edge, its other vertex (vi, [α]) is the endpoint of a second edge (ei, [β]) only if β = cg ◦α
for some g ∈ GirHi. In particular, α(P ) and gα(P )g−1 are both contained in Hi, and
thus α(P ) ≤ Hi ∩ g

−1Hig. By (3), (Hi ∩ g
−1Hig)/Qi has order prime to p, and hence

α(P ) ≤ Qi. Since Qi is a minimal F -centric subgroup, this implies that α(P ) = Qi.
Since no two of the Qi are G-conjugate, this can occur for at most one i. We thus have
two possibilities:

• P is not G-conjugate to any Qi. In this case, every edge in Γ is adjacent to the
vertex (v∗, [incl

G
P ]), and Γ is a tree.

• P is G-conjugate to Qj for some fixed j ∈ {1, . . . , m}. In this case, let Γ0 ⊆ Γ
be the subgraph of all vertices sitting over v∗ or vj , and all edges sitting over ej.
Each vertex of Γ not in Γ0 sits over vi for some i 6= j, and by the above remarks
is connected to Γ0 by a unique edge. Thus Γ0 is a deformation retract of Γ. Each
edge in Γ0 has the form (ej, [α]) for some α ∈ Iso(P,Qi). If two edges (ej, [α]) and
(ej , [α

′]) have the same vertex (v∗, [α]) = (v∗, [α
′]), then α′ = cg ◦α for some g ∈ G,

so g ∈ NG(Qi) = Hi, and the edges (ej, [α]) and (ej , [α
′]) are equal. Thus no vertex

in Γ0 over v∗ can be attached to two edges, and this proves that Γ0 (and hence Γ)
is a tree.

This finishes the proof of condition 4.2(b), and hence of the proposition. �

Note that (3) implies (1) in the above proposition; condition (1) has been kept for
emphasis.

Condition (3) means that the subgroup Ki is strongly embedded in ∆i at the prime
p (see Definition 3.2). This puts fairly restrictive conditions on Ki and ∆i, especially
when p = 2. By a theorem of Bender [Be], if ∆ has a strongly embedded subgroup
at p = 2, then either its Sylow 2-subgroups are cyclic or quaternion, or there is a
normal series A ⊳ B ⊳ ∆ where A and ∆/B have odd order, and B/A is isomorphic
to PSL2(q), Sz(q), or PSU3(q) for q some power of 2. The severe restrictions which
this places on the groups involved when applying Proposition 5.1 with p = 2 help to
explain why it seems unlikely that we could construct an exotic fusion system at the
prime 2 using this proposition, although we are not yet able to completely exclude that
possibility.

The following lemma is a refinement of [BLO2, Lemma 9.2], and will be used to show
that certain fusion systems are not fusion systems of finite groups. When F is a fusion
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system over the p-group S, a subgroup P ≤ S is strongly closed if no element of P is
F -conjugate to an element of SrP . The subgroup P is normal in F if each morphism
in F extends to a morphism between subgroups containing P which sends P to itself.
If P is normal in F , then it is strongly closed, but not conversely.

As usual, a finite group G is almost simple if it contains a normal, nonabelian simple
subgroup L ⊳ G such that CG(L) = 1. In otherwords, G can be identified with a
subgroup of Aut(L), and G/L with a subgroup of Out(L).

Lemma 5.2. Let F be a fusion system over a nonabelian p-group S. Assume, for each
subgroup 1 6= P ≤ S which is strongly closed in F , that

(a) P is centric in S (i.e., CS(P ) = Z(P ));

(b) P is not normal in F ; and

(c) P does not factorize as a product of two or more subgroups which are permuted
transitively by AutF(P ).

Then if F is the fusion system of a finite group, it is the fusion system of a finite
almost simple group.

Proof. Assume that F = FS(G) for some finite group G with S ∈ Sylp(G), and that
G is a subgroup of minimal order with this property. Let 1 6= L ⊳ G be a minimal
nontrivial normal subgroup. Set P = L ∩ S ∈ Sylp(L); then P is strongly closed in
F . If P = 1 (i.e., L has order prime to p), then F is also the fusion system of G/L,
which contradicts the minimality assumption. If L = P is an abelian p-group, then
it is normal in F , which contradicts (b). Thus, since L is minimal, it is a product of
nonabelian simple groups isomorphic to each other (cf. [Go, Theorem 2.1.5]); and these
must be permuted transitively by NG(L) = G since otherwise L is not minimal. Then
L must be simple by (c). Also, CG(L) ∩ S ≤ CS(P ) ≤ P by (a). Since CG(L) ⊳ G,
this means it must have order prime to p (otherwise it would intersect every Sylow
p-subgroup nontrivially); and this implies CG(L) = 1 by the minimality assumption
(again since CG(L) ⊳ G). Thus G is almost simple; i.e., L ⊳ G ≤ Aut(L). �

We next focus attention on cases where Proposition 5.1 can be applied with Qi
∼= C2

p

(for p an odd prime). By [Hu, Satz III.14.23], a p-group S contains a centric subgroup
of order p2 if and only if it has maximal class; i.e., if and only if it has nilpotence class
n−1 when |G| = pn. For odd p, the structure of p-groups of maximal class is described
in detail in [Hu, §III.14], and include the following examples when p = 3.

Example 5.3. Set p = 3, and let S be one of the following groups of order 34:

S ′ =
〈
a, b, x

∣∣ a9 = b3 = x3 = [a, b] = 1, xax−1 = ab, xbx−1 = ba−3
〉
.

S ′′ =
〈
a, b, x

∣∣ a9 = b3 = x3 = [a, b] = 1, xax−1 = ab, xbx−1 = ba3
〉
.

Let ω, η ∈ Aut(S) be the automorphisms

ω(a) = a−1, ω(b) = x−1bx =

{
ba3 if S = S ′

ba−3 if S = S ′′,
ω(x) = x−1

η(a) = a−1, η(b) = b−1, η(x) = x.

For i = 0, 1, 2, set

Ri = 〈xa
ibi, a3〉 and Qi = 〈Ri, b〉.
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Then Ri
∼= C2

3 if S = S ′ or if i = 0, and Ri
∼= C9 if S = S ′′ and i = 1, 2. Also,

Qi is extraspecial of order 27, and has exponent 3 if S = S ′ or i = 0 and exponent
9 otherwise. All of these subgroups are invariant under ω, while η leaves R0 and Q0

invariant and switches R1 and R2.

When S = S ′′, then the following fusion systems over S

〈FS(S⋊〈ω〉);SL(R0)〉 and 〈FS(S⋊〈ω, η〉);GL(R0)〉

are both saturated, and not fusion systems of any finite group. When S = S ′, then the
following table describes different fusion systems over S via the automorphism groups
OutF(P ) for P = S, Ri, or Qi, and where an asterisk marks those which are not fusion
systems of any finite group:

OutF(S) AutF(R0) OutF (Q0) AutF (R1) AutF (R2) group

〈ω〉 SL2(3) — SL2(3) SL2(3) L±
3 (q) (v3(q ∓ 1) = 2)

〈ω〉 — — SL2(3) SL2(3) ∗

〈ω〉 SL2(3) — — — ∗

〈η, ω〉 GL2(3) — SL2(3) L±
3 (q)⋊C2 (v3(q ∓ 1) = 2)

〈η, ω〉 — GL2(3) SL2(3)
3D4(q) (v3(q

2 − 1) = 1)

〈η, ω〉 — — SL2(3) ∗

〈η, ω〉 GL2(3) — — ∗

Here, L+
n (q) = PSLn(q) and L

−
n (q) = PSUn(q). Also, for any prime power q, 3D4(q) is

the fixed subgroup of a certain “triality” graph automorphism of order 3 on Spin8(q
3).

Proof. That these fusion systems are all saturated is a special case of Proposition 5.1,
applied with G = S⋊〈ω〉 or G = S⋊〈η, ω〉 as appropriate.

Let F be any of these fusion systems, and assume P ⊳ S is a proper strongly closed
subgroup. Then P ≥ 〈a3〉 (any normal subgroup contains the center). If F contains
SL(Ri) for some i, then P ≥ Ri since 〈a

3〉 is F -conjugate to the other subgroups of
order 3 in Ri; and hence P ≥ Qi (the normal closure of Ri in S). By similar reasoning,
if F contains SL(Qi) for some i, then either P = 〈a3〉, or P ≥ Qi. Thus in all cases
listed above, the only nontrivial subgroups strongly closed in F are S, and possibly
one of the Qi. Hence by Lemma 5.2, if F is the fusion system of a finite group, then it
is the fusion system of a finite almost simple group G, which contains a normal simple
group L ⊳ G with Sylow 3-subgroup S or Qi. If L contains a Sylow 3-subgroup Qi,
then 3

∣∣|G/L|
∣∣|Out(L)|, and this is impossible by Lemma 5.4 below.

It remains to consider the case where [G : L] is prime to 3, and thus where S ∈
Syl3(L). By [GLS, Tables 5.3 & 5.6.1], none of the sporadic simple groups has Sylow
3-subgroup of order 34 and rank 2. If v3(|An|) = 4, then n = 9, 10, 11, and rk3(An) = 3.
By [GLS, Table 2.2], the only simple groups of Lie type in characteristic 3 whose Sylow
3-subgroups have order 34 are the groups B2(3), and these also have 3-rank equal to 3.
Finally, using [GLS, Table 2.2] and [GL, 10-1 & 10-2], one checks that the only simple
groups of Lie type whose Sylow 3-subgroups have order 34 and rank 2 are the groups
L3(q) when v3(q − 1) = 2, U3(q) when v3(q + 1) = 2, and 3D4(q) when v3(q

2 − 1) = 1.
The precise fusion systems of these groups (and the fact that their Sylow subgroups
are isomorphic to S ′) is determined directly, or with the help of the lists of maximal
subgroups in [GLS, Theorem 6.5.3] (for L±

3 (q)) and [Kl] (for 3D4(q)). For example, by
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[Kl], there are subgroups

32·SL2(3) ≤
3D4(q) and 31+2

+ ·GL2(3) ≤ SL±
3 (q)·S3 ≤

3D4(q)

(when q ≡ ±1 (mod 3)), and this determines the structure of the fusion system of
3D4(q). �

It remains to prove the following lemma, which will also be used later.

Lemma 5.4. There is no pair (L, p), where L is a finite simple group, p is an odd
prime, the Sylow p-subgroups of L are extraspecial of order p3, and p

∣∣|Out(L)|.

Proof. If L is a sporadic or alternating group, then |Out(L)| is a power of 2, so this
is impossible. Thus L is of Lie type, and hence by [Ca, Theorem 12.5.1], Out(L) is
generated by field, graph, and diagonal automorphisms. We refer to [Ca, 9.4.10, 10.2.4–
5, 14.3.2] for the orders of the simple groups of Lie type. The only simple groups with
graph automorphisms of odd order are the groups D4(q) (with graph automorphisms
of order 3), and |D4(q)| = q12(q8 + q4 + 1)(q6 − 1)(q2 − 1) is a multiple of 34 for all q.
If L has a field automorphism of order p, where p is an odd prime, then L is defined
over a field of order qp for some prime power q; if qpn ± 1 is divisible by p then it is
divisible by p2, and the list of orders of groups of Lie type makes it clear that this
case is impossible. So if there is a pair (L, p) as above, then L must have a diagonal
automorphism of order p.

The only simple groups of Lie type with diagonal automorphisms of order p ≥ 3 are
PSLn(q) (for p|(n, q − 1)), PSUn(q) (for p|(n, q + 1)), E6(q) (for p = 3|q − 1), and
2E6(q) (for p = 3|q + 1). Of these, the only cases where the simple group has p-rank
≤ 2 occur when p = 3, and L = PSL3(q) (where 3|(q−1) and |L| =

1
3
q3(q2−1)(q3−1))

or PSU3(q) (where 3|(q + 1) and |L| = 1
3
q3(q2 − 1)(q3 + 1)). In both of these cases,

v3(|L|) = 2v3(q ± 1) 6= 3. �

For the rest of the section, we let p be any odd prime, and consider the group

S =
〈
a, b, c, x

∣∣ ap = bp = cp = xp = [a, b] = [a, c] = [b, c] = 1,

xax−1 = a, xbx−1 = ab, xcx−1 = bc
〉
.

Set A = 〈a, b, c〉, Q = 〈a, b, x〉, and R = 〈a, x〉. Set

Ω =
(
GL2(p)× F×

p

)/{
(uI, u−2)

∣∣ u ∈ F×
p

}
,

and let [B, u] denote the class of the pair (B, u) for B ∈ GL2(p) and u ∈ F×
p . Define

an action χ : Ω → Aut(A) as follows. Identify A with the additive group S2(p) of
symmetric 2 × 2 matrices by setting a =

(
2 0
0 0

)
, b =

(
1 1
1 0

)
, and c =

(
0 0
0 1

)
; and let

[B, u] ∈ Ω act by sending M to u·BMBt. These identifications are chosen so that the

action of X
def
=

[(
1 1
0 1

)
, 1
]
on A is precisely the action of x ∈ S by conjugation. We

can thus identify S as a Sylow p-subgroup of G
def
= A⋊Ω. Then Ω is the normalizer

in Aut(A) ∼= GL3(p) of the orthogonal group GO3(p), for an appropriate choice of
quadratic form on A.

For a given pair of fusion systems F ′ ⊆ F over the same p-group S, we say that F ′

has index prime to p in F if AutF ′(P ) ≥ Op′(AutF(P )) for all P ≤ S [5a2, Definition
3.1]. In [5a2, §5], we prove that for any saturated fusion system F , there is a unique
minimal fusion subsystem Op′(F) ⊆ F of index prime to p. This terminology provides
a convenient framework for describing the next result.
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Example 5.5. Fix an odd prime p, and let S be the group of order p4 defined above,
with subgroups A,Q,R ≤ S. Then the following hold.

(a) There are unique saturated fusion systems FQ and FR over S such that

OutFQ
(S) ∼= Cp−1 × Cp−1, AutFQ

(A) = Ω, OutFQ
(Q) = Out(Q) ∼= GL2(p)

OutFR
(S) ∼= Cp−1 × Cp−1, AutFR

(A) = Ω, AutFR
(R) = Aut(R) ∼= GL2(p) ;

and Q is not FR-radical.

(b) Op′(FQ) has index 2 in FQ, OutOp′(FQ)(Q) is the unique subgroup of index 2 in

Out(Q) ∼= GL2(p), and

AutOp′ (FQ)(A) =
{
[B, 1]

∣∣B ∈ GL2(p)
}
.

For all p, FQ is the fusion system of Aut(PSp4(p)) = PSp4(p)⋊C2 (the extension
by diagonal automorphisms), and Op′(FQ) is the fusion system of PSp4(p).

(c) Op′(FR) has index (4, p−1) in FR, AutOp′(FR)(R) is the unique subgroup of index

(4, p−1) in Aut(Q) ∼= GL2(p), and

AutOp′(FR)(A) =
{
[B, u] ∈ Ω

∣∣ det(B)·u−1 ∈ F×4
p

}
.

When p = 3, FR is the fusion system of Σ9 and O
3′(FR) is the fusion system of A9.

When p = 5, FR is the fusion system of PΣL5(16) ∼= PSL5(16)⋊C4 (the extension
by field automorphisms), and O5′(FR) is the fusion system of PSL5(16). When
p ≥ 7, no fusion subsystem of index prime to p in FR is the fusion system of a
finite group.

Proof. Set G = A⋊Ω, and identify S with A⋊〈X〉 ≤ G. Since NΩ(〈X〉) is gener-
ated by X =

[(
1 1
0 1

)
, 1
]
together with elements

[(
u 0
0 v

)
, w

]
for u, v, w ∈ F×

p , and since[(
u 0
0 u

)
, u−2

]
= 1,

OutFQ
(S) = OutFR

(S) = OutG(S) = {[ηuωv] | u, v ∈ F×
p }
∼= Cp−1 × Cp−1,

where [ηu] and [ωv] are the classes modulo Inn(S) of the automorphisms

ηu = c
([(

1 0
0 u

)
, 1
])

: a 7→ a b 7→ bua−(u−1)/2 c 7→ cu
2

x 7→ x1/u

ωv = c
([
I, v

])
: a 7→ av b 7→ bv c 7→ cv x 7→ x

for all u ∈ F×
p . Here, c(g) denotes conjugation by g (a 7→ gag−1). Note also the relation

c
([(

u 0
0 u−1

)
, 1
])

= c
([(

1 0
0 u−2

)
, u2

])
= ωu2η1/u2 = ω2

uη
−2
u .

It follows that

OutG(Q) = 〈ηu|Q, ωu|Q〉 = NOut(Q)(OutG(Q)).

So we can apply Proposition 5.1 with m = 1 and Q1 = Q (and with G as above), to
prove that the fusion system FQ is saturated. Similarly,

AutG(R) = 〈ηu|R, ωu|R〉 = NAut(R)(AutG(R)),

and so FR is saturated by Proposition 5.1 again.

We next calculate Op′(FQ). Let Op′

∗ (FQ) ⊆ FQ be the fusion subsystem gener-
ated by the automorphism groups Op′(AutF(P )) for P ≤ S. Consider the subgroup
Out0FQ

(S) ⊳ OutFQ
(S) as defined in [5a2, §5.1]:

Out0FQ
(S) =

〈
α ∈ OutFQ

(S)
∣∣α|P ∈ Mor

Op′

∗ (FQ)
(P, S), some FQ-centric P ≤ S

〉
.
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For u, v ∈ F×
p , (ηuωv)|Q ∈ Op′(AutFQ

(Q)) ∼= SL2(p) if and only if v = 1; while

(ηuωv)|A ∈ Op′(AutFQ
(A)) = Ω0 if and only if v = 1/u ∈ F×2

p . Thus Out0FQ
(S) =

{ηuωv2}. This shows that Op′(FQ) has index 2 in FQ, and has the form described in
(b).

A similar argument shows that Op′(FR) has index (4, p−1) in FR, and has the form
described in (c).

Thus for all F -centric subgroups P ′ ≤ S, AutF (P
′) contains Op′(AutFP

(P ′)) (P = Q
or R). Hence F has index prime to p in FP , and by [5a2, Theorem 5.4], Op′(FP ) ⊆
F ⊆ FP .

It is straightforward to check that the finite groups listed in (b) and (c) have the
automorphism groups as indicated, and we have seen that this determines their fusion
system. So it remains to show that the fusion systems in (c) are not fusion systems of
finite groups for p ≥ 7.

Let F be any of these fusion systems. If 1 6= P ⊳ S is strongly closed in F , then it
must contain Z(S) = 〈a〉 (any nontrivial normal subgroup intersects nontrivially with
Z(S)); hence contains A (since the subgroups AutF (A)-conjugate to 〈a〉 generate A
in all cases); and hence is equal to S since either Q or R is F -radical. So by [BLO2,
Lemma 9.2], if F is the fusion system of a finite group, it must be the fusion system
of a finite almost simple group. More precisely, F = FS(G) for some G with normal
simple subgroup L ⊳ G of index prime to p such that CG(L) = 1. By a direct check
through the list of finite simple groups, one sees that the following are the only simple
groups which have Sylow p-subgroup isomorphic to S:

• (any p) PSp4(p)

• (p = 3) PSL4(q) (q ≡ 4, 7 (mod 9)), PSU4(q) (q ≡ 2, 5 (mod 9)), PSp6(q) (q ≡
±2,±4 (mod 9)), Ω7(q) (q ≡ ±2,±4 (mod 9)), An (n = 9, 10, 11).

• (p = 5) PSL5(q) (q ≡ 6, 11, 16, 21 (mod 5)), PSU5(q) (q ≡ 4, 9, 14, 19 (mod 5)),
Co1.

By elimination, none of the FR,i for p ≥ 7 is the fusion system of a finite group. �

In fact, in the above situation, if F is any saturated fusion system over S such that
A is F -radical but not normal in F , then F is isomorphic to a fusion system F ′ over
S which has index prime to p in one of the fusion systems FQ or FR. To see this, set
Γ = AutF(A) ≤ GL3(p) for short, and let Γ′ be the image of Γ ∩ SL3(p) in PSL3(p).
If Γ′ has a nontrivial normal subgroup of order prime to p, then either the action on A
is decomposable (which is impossible since the action of AutS(A) is indecomposable),
or A splits as a sum of three subspaces which are permuted by Γ. The latter case
implies that Γ ≤ Cp−1 ≀ Σ3, and thus is possible only if p = 3 and Γ ⊳ C2 ≀ Σ3 = Ω.
Otherwise, if Γ′ has no nontrivial normal subgroups of prime power order, then by
[Bl, Theorem 1.1], Γ′ must be isomorphic to PSL2(p) or PGL2(p); and conjugate
to the indecomposable representation of these groups described in [Bl, Lemma 6.3].
Hence up to conjugacy, Γ ∩ SL3(p) contains Ω0 as a normal subgroup, and hence that
Γ ≤ NGL3(p)(PSL2(p)) = Ω.

In particular, every proper subgroup P � S not contained in A is either F -conjugate
to Q or R; or else p = 3 and P is cyclic or extraspecial of exponent 9 (in which case
P cannot be F -radical). Hence since A is not normal in F , one of the subgroups Q or
R must be F -radical. If P = Q or R is F -radical, then OutF(P ) ≤ Out(P ) ∼= GL2(p)
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contains at least two subgroups of order p; any two such subgroups generate SL2(p);
and thus OutF (P ) ≥ SL2(p).

When p ≥ 5, there are also saturated fusion systems over S where A is not radical,
but is not normal either. Fix any subset I ⊆ {0, . . . , p − 1} with |I| ≥ 2, and choose
Pi = 〈a, b, c

ix〉 or 〈a, cix〉 for each i ∈ I. Let FI be the fusion system over S generated by
OutFI

(S) = 〈ηu, ωu〉 ∼= C2
p−1 (where ηu and ωu are defined as above), and OutFI

(Pi) =
Out(Pi) for all i ∈ I. (This depends not just on I but also on the choice of the Pi.)
These are saturated fusion systems by Proposition 5.1, and have no proper strongly
closed subgroups. So by the list of simple groups with Sylow subgroup S given above,
these systems are all exotic.

We look more closely only at the case where |I| = 1 and Pi ∼= R. In this case, there
is a proper strongly closed subgroup.

Example 5.6. Fix an odd prime p, and let S be the group of order p4 defined above.
For u = 1, . . . , p− 1, let ωu, ηu ∈ Aut(S) be the automorphisms

ωu(a) = au, ωu(b) = bu, ωu(c) = cu, ωu(x) = x;

ηu(a) = a, ηu(b) = bua−(u−1)/2, ηu(c) = cu
2

, ηu(x) = x1/u.

Set

Γ = {ωuηv | u, v = 1, . . . , p− 1} and Γ0 = {ωuηu | u = 1, . . . , p− 1}.

Set R = 〈x, a〉 ∼= C2
p ; a subgroup invariant under each ωi and ηi. Then the fusion

systems

F = 〈FS(S⋊Γ);GL(R)〉 and F0 = 〈FS(S⋊Γ0);SL(R)〉

are both saturated, and neither is the fusion system of a finite group.

Proof. The fusion systems F and F0 are saturated by Proposition 5.1, applied with
G = S⋊Γ or S⋊Γ0, respectively.

If P 6= 1 is strongly closed in F or F0, then P ≥ 〈a〉 = Z(S) (since any nontrivial
normal subgroup intersects nontrivially with the center), hence P ≥ R, and hence
P ≥ Q = 〈a, b, x〉 since bx is S-conjugate to x. Thus P = Q or S. Hence by Lemma
5.2, if F or F0 is the fusion system of a finite group G, then we can assume that there
is a normal simple subgroup L ⊳ G such that CG(L) = 1 (so G/L ≤ Out(L)), and such
that L ≥ S or L∩S = Q. If L∩S = Q, then p

∣∣|G/L|
∣∣|Out(L)|, and this is impossible

by Lemma 5.4. Thus S ∈ Sylp(L).

In the proof of Example 5.5, we listed all simple groups L with Sylow p-subgroup
isomorphic to S for some odd p. In all cases, the (unique) abelian subgroup of index p
in S is radical in L, and thus FS(L) is not contained in F . �
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