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Abstract. In a 2009 paper, Dave Benson gave a description in purely algebraic terms of
the mod p homology of Ω(BG∧p ), when G is a finite group, BG∧p is the p-completion of its
classifying space, and Ω(BG∧p ) is the loop space of BG∧p . The main purpose of this work is
to shed new light on Benson’s result by extending it to a more general setting. As a special
case, we show that if C is a small category, |C| is the geometric realization of its nerve, R is
a commutative ring, and |C|+R is a “plus construction” for |C| in the sense of Quillen (taken
with respect to R-homology), then H∗(Ω(|C|+R);R) can be described as the homology of a
chain complex of projective RC-modules satisfying a certain list of algebraic conditions that
determine it uniquely up to chain homotopy. Benson’s theorem is now the case where C is
the category of a finite group G, R = Fp for some prime p, and |C|+R = BG∧p .

Introduction

Let G be a finite group, and let BG∧p denote its classifying space after p-completion in the
sense of Bousfield and Kan [BK]. In general, the higher homotopy groups πi(BG∧p ) for i ≥ 2
can be nonvanishing, and hence the loop space Ω(BG∧p ) is interesting in its own right. These
spaces are the subject of several papers by the second author (e.g., [L, Theorem 1.1.4]). In
particular, the homology of Ω(BG∧p ) with p-local coefficients is known to have some very
interesting properties, as described in [CL, § 2]. This helped to motivate the question of
whether the homology of Ω(BG∧p ) admits a purely algebraic definition (e.g., in [CL, § 2.6]).

In [Be2], Benson answered this question by showing that H∗(Ω(BG∧p ); k), for a field k of
characteristic p, is isomorphic to the homology of what he called a “left k-squeezed resolution
for G”: a chain complex of projective kG-modules satisfying certain axioms. He also showed
that any two such complexes are chain homotopy equivalent, and hence have the same
homology. The k-homology of Ω(BG∧p ) is thus determined by the axioms of a squeezed
resolution.

Our original aim in this paper was to check whether Benson’s concept of a squeezed
resolution can be formulated in a more categorical context. This was motivated in part by
the problem of identifying p-compact groups in the sense of Dwyer and Wilkerson: loop
spaces with finite mod p homology and p-complete classifying spaces (see Section 5 for more
discussion). When doing this, we discovered that in fact, squeezed resolutions can be defined
in a much more general setting, where we call them Ω-resolutions to emphasize the connection
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to loop spaces. In this setting, Benson’s result can be generalized to a statement about plus
constructions (in the sense of Quillen) on nerves of small categories.

When C is a small category, we let |C| denote the geometric realization of the nerve of C.
If R is a commutative ring, then an RC-module is a (covariant) functor C −→ R-mod, and
a morphism of RC-modules is a natural transformation of functors. When π is a group, we
let B(π) be the category with one object ◦π and End(◦π) = π.

As usual, a group G is called R-perfect if H1(G;R) = 0. We say that G is strongly R-
perfect if it is R-perfect and Tor(H1(G;Z), R) = 0. Clearly, all R-perfect groups are strongly
R-perfect whenever R is flat as a Z-module.

If X is a connected CW complex and H E π1(X), then a plus construction for X with
respect to R and H means a space X+

R together with a map κ : X −→ X+
R such that π1(κ) is

surjective with kernel H and H∗(κ;M) is an isomorphism for each R[π1(X)/H]-module M .
In Proposition A.5, we modify Quillen’s construction to show that R-plus constructions exist
if and only if char(R) 6= 0 and H is R-perfect, or char(R) = 0 and H is strongly R-perfect.

Theorem A. Fix a commutative ring R, a small connected category C, a group π, and a
functor θ : C −→ B(π) such that π1(|θ|) : π1(|C|) −→ π is surjective. Set H = Ker(π1(|θ|)).
Assume that char(R) 6= 0 and H is R-perfect, or char(R) = 0 and H is strongly R-perfect.
Then there is an Ω-resolution

· · · ∂3−−−→ C2
∂2−−−→ C1

∂1−−−→ C0
ε−−−→ θ∗(Rπ) −→ 0

(a chain complex of RC-modules satisfying conditions listed in Definition 1.5 or Lemma
3.13), and H∗(C∗, ∂∗) ∼= H∗(Ω(|C|+R);R) for each such (C∗, ∂∗) and each plus construction
|C|+R for |C| with respect to R and H.

Theorem A will be stated in a more precise form as Theorem 4.5. Upon restricting to the
case where R = Fp for a prime p, C = B(G) for some finite group G, and π = G/Op(G) ∼=
π1(BG∧p ) (the largest p-group quotient of G), we recover Benson’s theorem, since BG∧p is a
plus construction on BG = |B(G)| with respect to the ring Fp and the subgroup Op(G).

As another special case of Theorem A, let (S,F ,L) be a p-local compact group in the
sense of [BLO, Definition 4.2]. Thus S is a discrete p-toral group (an extension of (Z/p∞)r

by a finite p-group), F is a saturated fusion system over S, and L is a centric linking system
associated to F . Set π = π1(|L|∧p ): a finite p-group by [BLO, Proposition 4.4]. By Theorem
4.7 or 4.5 applied with L in the role of C, H∗(Ω(|L|∧p );Fp) can be described in terms of
Ω-resolutions. As noted above, our original motivation for this work was the search for new
conditions sufficient to guarantee that Ω(|L|∧p ) has finite homology, and hence that |L|∧p is a
p-compact group in the sense of Dwyer and Wilkerson [DW]. We did not succeed in doing
this, but our attempt to do so is what led to this more general setting. Also, we do construct
some examples in Propositions 5.10, 5.16, and 5.21 of explicit Ω-resolutions of finite length
(in fact, of minimal length) for certain p-compact groups.

It turns out that Ω-resolutions can be defined in much greater generality than that needed

in Theorem A. Let
(
A

θ∗−−−→←−−−
θ∗

B
)
be an Ω-system: a pair of abelian categories and additive

functors such that θ∗ is left adjoint to θ∗, θ∗θ∗ ∼= IdB, and θ∗ is exact (Definition 1.1). In this
situation, for a projective objectX in B, anΩ-resolution ofX is a chain complex of projective
objects in A augmented by a morphism to θ∗(X) which satisfies certain axioms listed in
Definition 1.5. In particular, these axioms are minimal conditions needed to ensure the
uniqueness of Ω-resolutions up to chain homotopy equivalence (Proposition 1.7). However,
while each such X has at most one Ω-resolution up to homotopy, we have examples that
show that it need not have any in this very general situation. The examples in Theorem A
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are the special case where A = RC-mod, B = Rπ-mod, and θ∗ is left Kan extension with
respect to the functor θ. Another large family of examples, where we show that Ω-resolutions
exist but haven’t yet found a geometric interpretation of their homology, is described in the
following proposition (and in more detail in Proposition 3.6).

Proposition B. Let θ : C −→ D be a functor between small categories that is bijective on
objects and surjective on morphism sets, and which has the following property:

for each c, c′ ∈ Ob(C) and each ϕ, ϕ′ ∈ MorC(c, c′) such that θc,c′(ϕ) =
θc,c′(ϕ

′), there is α ∈ AutC(c′) such that θc(α) = Idθ(c′) and ϕ = αϕ′.

Then for each commutative ring R,
(
RC-mod

θ∗−−−−→←−−−−
θ∗

RD-mod
)

is an Ω-system, where

θ∗ is defined by left Kan extension. Furthermore, projective objects in RD-mod all have Ω-
resolutions if and only if Ker[θc : AutC(c) −→ AutD(θ(c))] is R-perfect for each c ∈ Ob(C).

We begin in Section 1 by defining Ω-resolutions in our most general setting and proving
their uniqueness. In Section 2, we find some necessary conditions, and some sufficient con-
ditions, for their existence. We then restrict in Section 3 to the special case of RC-modules,
and construct examples where Ω-resolutions do or do not exist (Propositions 3.6 and 3.15).
Our results connecting the homology of certain Ω-resolutions to the homology of loop spaces
are shown in Section 4, where Theorem A is stated and proved in a slightly more precise form
as Theorem 4.5. Afterwards, we look in Section 5 at some detailed examples of Ω-resolutions
arising from p-local compact groups in which the maximal torus is normal.

All three authors would like to thank the referee for carefully reading the paper and making
many helpful suggestions.
Notation: For each small category C, |C| denotes its geometric realization. When C

is a small category and R is a commutative ring, we let RC-mod denote the category of
“RC-modules”: covariant functors from C to R-mod. When C is an abelian category, we
write P(C) to denote the class of projective objects in C. For a group G, we write Gab =
G/[G,G] for the abelianization, and let B(G) denote the category with one object ◦G and
EndB(G)(◦G) ∼= G.

1. Ω-systems and Ω-resolutions

We begin by defining Ω-resolutions and proving their uniqueness in a very general setting.
We do not prove any results about the existence of Ω-resolutions in this section, but leave
that for Sections 2 and 4.

Definition 1.1. An Ω-system (A,B; θ∗, θ
∗) consists of a pair of abelian categories A and B,

together with additive functors

A
θ∗−−−−−−→←−−−−−−
θ∗

B

such that

(OP1) θ∗ is left adjoint to θ∗;

(OP2) θ∗ is a retraction in the sense that the counit of the adjunction b : θ∗ ◦ θ
∗ −→ IdB is

an isomorphism; and

(OP3) θ∗ sends epimorphisms in B to epimorphisms in A.

It will be important, in the situation of Definition 1.1, to know that θ∗(B) is a full sub-
category of A. In fact, this holds without assuming condition (OP3).



4 C. BROTO, R. LEVI, AND B. OLIVER

Lemma 1.2. Let A and B be a pair of categories, together with functors

A
θ∗−−−−−−→←−−−−−−
θ∗

B

such that θ∗ is left adjoint to θ∗, and such that the counit b : θ∗ ◦ θ
∗ −→ IdB of the adjunction

is an isomorphism of functors. Then the image θ∗(B) is a full subcategory of A.

Proof. For each B,B′ ∈ Ob(B),

θ∗B,B′ : MorB(B,B′) −−−−−→ MorA(θ∗(B), θ∗(B′)) ∼= MorB(θ∗θ
∗(B), B′)

is a bijection since θ∗θ∗ ∼= IdB. (Our thanks to the editor for pointing out this simple
argument.) �

The following is one family of Ω-systems to which we will frequently refer. More examples
will be given in Section 3.

Example 1.3. Fix a commutative ring R, a pair of groups G and π, and a surjective
homomorphism θ : G −→ π. Let RG-mod and Rπ-mod be the categories of (left) RG- and
Rπ-modules, respectively, and let

RG-mod
θ∗−−−−−−−→←−−−−−−−
θ∗

Rπ-mod

be the functors defined as follows. For each RG-module M , set θ∗(M) = Rπ ⊗RGM where
Rπ is regarded as a right RG-module via θ. For each Rπ-module N , set θ∗(N) = N regarded
as an RG-module via θ. Then (RG-mod, Rπ-mod; θ∗, θ

∗) is an Ω-system.

Proof. If M and N are RG- and Rπ-modules, respectively, then there is an obvious natural
bijection HomRG(M, θ∗(N)) ∼= HomRπ(θ∗(M), N). Thus (OP1) holds: θ∗ is left adjoint to
θ∗. Conditions (OP2) and (OP3) are clear. �

The following properties of Ω-systems follow easily from the basic properties of abelian
categories and adjoint functors (See, e.g., [Mac1, § IV-V].).

Lemma 1.4. The following hold for each Ω-system (A,B; θ∗, θ
∗).

(a) The functor θ∗ is exact, and θ∗ is right exact.

(b) The functor θ∗ sends projectives to projectives.

(c) A sequence in B is exact if and only if its image under θ∗ is exact in A. A morphism
in B is an isomorphism, an epimorphism, or a monomorphism if and only if the same
is true in A of its image under θ∗.

Proof. (a,b) Since θ∗ is left adjoint to θ∗, θ∗ is right exact and θ∗ is left exact. By (OP3), θ∗
also preserves epimorphisms, and hence is exact. Since θ∗ has a right adjoint that is exact,
it sends projectives to projectives.

(c) The exactness of θ∗ implies that it sends the kernel, cokernel, and image of each mor-
phism ψ in B to the kernel, cokernel, and image inA of θ∗(ψ). Also, if ϕ ∈ IsoA(θ∗(N), θ∗(N ′))
for N,N ′ in B, then since θ∗(B) is a full subcategory of A and θ∗θ∗ is naturally isomorphic
to the identity, ϕ = θ∗(ψ) for some ψ ∈ IsoB(N,N ′). Hence a sequence in B whose image
under θ∗ is exact in A is also exact in B, and if θ∗(ϕ) is a monomorphism or epimorphism
in A, then ϕ is a monomorphism or epimorphism, respectively, in B. This proves the “if”
statements, and the converse in all cases holds by the exactness of θ∗. �

We are now ready to define Ω-resolutions.
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Definition 1.5. Let (A,B; θ∗, θ
∗) be an Ω-system. For a projective object X in B, an Ω-

resolution of X with respect to (A,B; θ∗, θ
∗) is a chain complex

R =
(
· · · ∂3−−−−→ P2

∂2−−−−→ P1
∂1−−−−→ P0

ε−−−−→ θ∗(X) −−−→ 0
)

(1.6)

in A such that

(Ω-1) Pn is projective in A for all n ≥ 0;

(Ω-2) θ∗(R) is exact; and

(Ω-3) Hn(P∗, ∂∗) is isomorphic to an object in θ∗(B) for each n ≥ 0, and ε induces an
isomorphism H0(P∗, ∂∗) ∼= θ∗(X).

If an Ω-resolution R exists as above, then we set HΩ
∗ (A,B;X) = θ∗

(
H∗(P∗, ∂∗)

)
: the image

under θ∗ of the homology of the complex (P∗, ∂∗).

There are, in fact, many Ω-systems for which Ω-resolutions do not exist. In the situation
of Example 1.3, when R is a field and θ : G −→ π is a surjection of groups, we will see
in Example 2.16 that a nonzero projective object in B has an Ω-resolution if and only if
H1(Ker(θ);R) = 0. However, whenever X does have at least one Ω-resolution, the next
proposition implies that HΩ

∗ (A,B;X) is unique up to natural isomorphism.

Proposition 1.7. Let (A,B; θ∗, θ
∗) be an Ω-system. Let X and Y be projective objects in

B, and let f ∈ MorB(X, Y ) be a morphism. Let

· · · ∂2−−→ P1
∂1−−→ P0

ε−−→ θ∗(X) −→ 0 and · · ·
∂′2−−→ P ′1

∂′1−−→ P ′0
ε′−−→ θ∗(Y ) −→ 0

be chain complexes in A, where the first satisfies conditions (Ω-1) and (Ω-2) in Definition
1.5 and the second satisfies condition (Ω-3). Then there are morphisms fn ∈ MorA(Pn, P

′
n)

which make the following diagram commute:

· · · ∂3
// P2

∂2
//

f2

��

P1
∂1

//

f1

��

P0
ε
//

f0

��

θ∗(X) //

θ∗(f)

��

0

· · ·
∂′3

// P ′2
∂′2

// P ′1
∂′1

// P ′0
ε′
// θ∗(Y ) // 0

Furthermore, {fn}n∈N is unique up to chain homotopy.

Proof. For each i ≥ 0, θ∗(Pi) is projective in B by Lemma 1.4(b) and since Pi is projective.
Also, θ∗θ∗(X) ∼= X by (OP2), and X is projective in B by assumption. So by (Ω-2),
θ∗(P∗) −→ θ∗θ

∗(X)→ 0 is an exact sequence of projective objects in B, and hence splits in
each degree.

Existence of f∗: Since P0 is projective, and the augmentation ε′ : P ′0 −−−→ θ∗(Y ) is onto
by (Ω-3), θ∗(f) ◦ ε lifts to a homomorphism f0 : P0 −−−→ P ′0.

Assume, for some n ≥ 0, that fi has been constructed for all 0 ≤ i ≤ n, where fn−1 ◦

∂n = ∂′n ◦ fn. Then fn ◦ ∂n+1 sends Pn+1 into Ker(∂′n), and hence induces a homomorphism
χ : Pn+1 −−−→ Hn(P ′∗, ∂

′
∗). By assumption (Ω-3), Hn(P ′∗, ∂

′
∗)
∼= θ∗(B) for some B in B, and

hence there are natural bijections

MorA(Pi, Hn(P ′∗, ∂
′
∗))
∼= MorA(Pi, θ

∗(B)) ∼= MorB(θ∗(Pi), B)

for i = n, n+ 1, n+ 2. Since the complex (θ∗(P∗), θ∗(∂∗)) −→ θ∗(θ
∗X)→ 0 is exact and split

and χ ◦ ∂n+2 = 0 by construction, θ∗(χ) factors through Im(θ∗(∂n+1)) and extends to θ∗(Pn).
By adjointness, there is ϕ : Pn −−−→ Hn(P ′∗, ∂

′
∗) such that χ = ϕ ◦ ∂n+1.
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Since Pn is projective, ϕ lifts to a morphism ϕ̃ : Pn −−−→ Ker(∂′n). An easy diagram chase
now shows that Im((fn−ϕ̃)◦∂n+1) ≤ Im(∂′n+1). Hence, upon replacing fn by fn−ϕ̃, fn−1◦∂n =
∂′n ◦ fn still holds (where f−1 = f if n = 0) and Im(fn ◦ ∂n+1) ≤ Im(∂′n+1). Upon using the
projectivity of Pn+1 again, one can lift fn ◦ ∂n+1 to a homomorphism fn+1 : Pn+1 −−−→ P ′n+1

such that fn ◦ ∂n+1 = ∂′n+1 ◦ fn+1. We now continue inductively.

Uniqueness of f∗: Let f ′∗ and f ′′∗ be two homomorphisms covering f , and set t∗ =

f ′∗ − f ′′∗ . Thus t∗ : (P∗, ∂∗) −−−→ (P ′∗, ∂
′
∗) is a homomorphism covering X 0−−−→ Y , and we

must construct a chain homotopy D : P∗ −−−→ P ′∗ of degree +1 such that D ◦ ∂+ ∂′ ◦D = t∗.
Set D−1 = 0: θ∗(X) −−−→ P ′0. Since ε′ ◦ t0 = 0, and the sequence

P ′1
∂′1−−−−−−→ P ′0

ε′−−−−−−→ θ∗(Y ) −−−→ 0

is exact by condition (Ω-3), t0 lifts to a homomorphism D0 : P0 −−−→ P ′1. The rest of the
proof is carried out using arguments similar to those used to show existence. �

When (A,B; θ∗, θ
∗) is an Ω-system and X ∈P(B) has an Ω-resolution, there is a spectral

sequence that links the Ω-homology of X to higher derived functors of θ∗.

Proposition 1.8. Let (A,B; θ∗, θ
∗) be an Ω-system, and assume A has enough projectives.

Let X be a projective object in B that has an Ω-resolution. Then there is a first quadrant
spectral sequence Er

∗,∗ in B such that

E2
i,j
∼= (Liθ∗)

(
θ∗(HΩ

j (A,B;X))
)

and E∞i,j
∼=

{
X if (i, j) = (0, 0)

0 if (i, j) 6= (0, 0).

Proof. Let (P∗, ∂∗) be an Ω-resolution of X. Let
{
Qij

}
i,j≥0

be a proper projective resolution
of (P∗, ∂∗); i.e., a double complex of projective objects in A, where for each j, the sequences

(i) 0←− Pj ←− Q0,j ←− Q1,j ←− · · · ,
(ii) 0←− Hj(P∗)←− Hj(Q0,∗)←− Hj(Q1,∗)←− · · · , and
(iii) 0←− Zj(P∗)←− Zj(Q0,∗)←− Zj(Q1,∗)←− · · ·

are all projective resolutions (see [Be1, Definition 3.6.1]). Proper projective resolutions exist
by [Mac2, Proposition XII.11.6] (see also, [Be1, Lemma 3.6.2]).

Consider the two spectral sequences associated to the double complex θ∗(Q∗,∗). Since
each row Q∗,j is a projective resolution of the projective object Pj, θ∗(Q∗,j) is a resolution of
θ∗(Pj), and thus Ē1

0,j
∼= θ∗(Pj), while Ē1

i,j = 0 if i ≥ 1. Since P∗ is an Ω resolution of X, we
now obtain Ē2

0,0
∼= X, while Ē2

i,j = 0 if (i, j) 6= (0, 0).
Now consider the other spectral sequence Er

i,j, where we first take homology of the columns.
By (ii), Hj(Qi,∗) and Zj(Qi,∗) are projective for each i, j ≥ 0, so Bj(Qi,∗) is also projective,
and all sequences involved in the homology of Qi,∗ split. In other words,

E1
i,j = Hj(θ∗(Qi,∗)) ∼= θ∗(Hj(Qi,∗))

for all i, j ≥ 0. By (ii) again, the j-th row in the E1-page is obtained by applying θ∗ to a
projective resolution of Hj(P∗), and so

E2
i,j
∼= (Liθ∗)(Hj(P∗, ∂∗)) ∼= (Liθ∗)

(
θ∗(HΩ

j (A,B;X))
)
.

Since Ē∞i,j = 0 for all (i, j) 6= (0, 0), the two spectral sequences have isomorphic E∞-pages,
and this proves the proposition. �
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We finish the section with the following observation.

Remark 1.9. If (A,B; θ∗, θ
∗) and (B, C; η∗, η∗) are two Ω-systems, then their composite

(A, C; η∗θ∗, θ∗η∗) is easily seen to be an Ω-system. In other words, there is a category whose
objects are the small abelian categories and whose morphisms are isomorphism classes of Ω-
systems. One obvious question is whether there is a natural way to construct Ω-resolutions
for the composite Ω-system from Ω-resolutions for the two factors, and if so, what connection
there is (if any) between the homology groups of these three complexes.

2. The existence of Ω-resolutions

We saw in the last section that Ω-resolutions, when they exist, are unique up to chain
homotopy. The question of when they do exist is more complicated, and in this section,
we give some necessary conditions and some sufficient conditions for that to happen. When
doing this, the following more general form of Definition 1.5 will be needed.

Definition 2.1. Let (A,B; θ∗, θ
∗) be an Ω-system. For X ∈ P(B) and 1 ≤ n ≤ ∞, an

Ωn-resolution of X is a chain complex

Rn =

{(
Pn

∂n−−−−→ · · · ∂3−−−−→ P2
∂2−−−−→ P1

∂1−−−−→ P0
ε−−−−→ θ∗(X) −−−→ 0

)
if n <∞(

· · · ∂3−−−−→ P2
∂2−−−−→ P1

∂1−−−−→ P0
ε−−−−→ θ∗(X) −−−→ 0

)
if n =∞

(2.2)
in A such that

(Ωn-1) Pi ∈P(A) for all 0 ≤ i ≤ n (for all i ≥ 0 if n =∞);

(Ωn-2) θ∗(Rn) is exact;

(Ωn-3) Hi(P∗, ∂∗) is isomorphic to an object in θ∗(B) for each 0 ≤ i < n, and ε induces an
isomorphism H0(P∗, ∂∗) ∼= θ∗(X); and

(Ωn-4) if n < ∞, the inclusion Im(∂n) ≤ Pn−1 induces a monomorphism θ∗(Im(∂n)) −→
θ∗(Pn−1).

In particular, an Ω∞-resolution is the same as an Ω-resolution (Definition 1.5).

Lemma 2.3. Condition (Ωn-4) can be replaced by the following equivalent condition:

(Ωn-4′) If n <∞, the sequence θ∗(Ker(∂n))
θ∗(incl)−−−−−→ θ∗(Pn)

θ∗(∂n)−−−−−→ θ∗(Pn−1) is exact.

Proof. The sequence θ∗(Ker(∂n)) −→ θ∗(Pn) −→ θ∗(Im(∂n)) → 0 is exact since θ∗ is right
exact by Lemma 1.4(a). Hence the sequence in (Ωn-4′) is exact if and only if the inclusion
of Im(∂n) in Pn−1 induces a monomorphism θ∗(Im(∂n)) −→ θ∗(Pn−1). �

Lemma 2.4. Fix an Ω-system (A,B; θ∗, θ
∗), and a projective object X ∈P(B). Let Pm −→

· · · −→ P0 −→ X → 0 be an Ωm-resolution of X for some 1 < m ≤ ∞. Then for each
1 ≤ n < m, the truncation Pn −→ · · · −→ P0 −→ X → 0 is an Ωn-resolution of X.

Proof. Conditions (Ωn-1)–(Ωn-3) in Definition 2.1 follow immediately from (Ωm-1)–(Ωm-3),
so we need only prove that (Ωn-4) holds. Consider the following commutative diagram:

θ∗(Pn+1)
θ∗(∂n+1)

//

0 ..

θ∗(Pn)
θ∗(∂n)

//

θ∗(∂∗n)
'' ''

θ∗(Pn−1)

θ∗(Im(∂n))

θ∗(incl)

66

(2.5)
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where ∂∗n : Pn −→ Im(∂n) is the corestriction of ∂n. The row in (2.5) is exact by (Ωm-2) and
since m > n, and θ∗(∂

∗
n) is an epimorphism since θ∗ is right exact. Hence Ker(θ∗(∂∗n)) =

Ker(θ∗(∂n)) and θ∗(incl) is a monomorphism, and (Ωn-4) holds. �

Definition 2.6. When (A,B; θ∗, θ
∗) is an Ω-system, we say that θ∗(B) is closed under

subobjects in A if for each monomorphism A1 −→ A2 in A, A1 is isomorphic to an object
of θ∗(B) if A2 is. Similarly, we say that θ∗(B) is closed under extensions in A if for each
short exact sequence 0 → M ′ −→ M −→ M ′′ → 0 in A, M is isomorphic to an object in
θ∗(B) if M ′ and M ′′ are isomorphic to objects in θ∗(B).

We will show that for each Ω-system (A,B; θ∗, θ
∗) in which θ∗(B) is closed under subobjects

and extensions, all projectives in B have Ω-resolutions (Proposition 2.15).

Lemma 2.7. Let (A,B; θ∗, θ
∗) be an Ω-system, where A has enough projectives.

(a) The following are equivalent:

(a.i) θ∗(B) is closed under subobjects in A.
(a.ii) For each M in A, the unit morphism aM : M −→ θ∗θ∗(M) is an epimorphism.

(b) If either condition (a.i) or (a.ii) holds, then the following two conditions are equivalent:

(b.i) θ∗(B) is closed under extensions in A.
(b.ii) For each N in B, (L1θ∗)(θ

∗(N)) = 0.

(c) If 0 −→M ′ −→M −→M ′′ −→ 0 is an extension in A, where M ′ and M ′′ are in θ∗(B)
but M is not isomorphic to an object in θ∗(B), then (L1θ∗)(M

′′) 6= 0.

Proof. (a.i =⇒ a.ii) Fix an object M in A, and consider the unit morphism aM : M −→
θ∗θ∗(M). Since θ∗(B) is closed under subobjects, Im(aM) ∼= θ∗(B) for some B in B. Since
θ∗(B) is a full subcategory of A by Lemma 1.2, each morphism in MorA(θ∗(B), θ∗θ∗(M)) lies
in θ∗(B). Thus aM factors as a composite

aM : M
g−−−−−→ θ∗(B)

θ∗(ψ)−−−−−→ θ∗θ∗(M)

for some ψ ∈ MorB(B, θ∗(M)), where g is surjective and θ∗(ψ) is injective.
Let γ ∈ MorB(θ∗(M), B) be the morphism adjoint to g. Then ψ ◦ γ = Idθ∗(M) since aM is

adjoint to the identity, and thus ψ is surjective. So θ∗(ψ) is also surjective by (OP3), and
hence aM is surjective.

(a.ii =⇒ a.i) Now assume that M aM−−−→ θ∗θ∗(M) is an epimorphism for each M in A.
Let M1

f−−−→M2 be a monomorphism in A, where M2 is in θ∗(B) and hence aM2 is an
isomorphism. From the commutative square

M1
f

//

aM1

��

M2

aM2
∼=
��

θ∗θ∗(M1)
θ∗θ∗(f)

// θ∗θ∗(M2) ,

we see that θ∗θ∗(f) ◦ aM1 = aM2 ◦ f is a monomorphism, and hence that aM1 is a monomor-
phism. Since aM1 is also an epimorphism, we have M1

∼= θ∗θ∗(M1) ∈ Ob(θ∗(B)).
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(c) Let 0 → M ′ α−→ M
β−→ M ′′ → 0 be a short exact sequence in A, where M ′,M ′′ ∈

Ob(θ∗(B)) and M is not isomorphic to any object in θ∗(B). Consider the following commu-
tative diagram with exact rows:

0 // M ′ α
//

aM′ ∼=
��

M
β

//

aM
��

M ′′ //

aM′′ ∼=
��

0

θ∗θ∗(M
′)

θ∗θ∗(α)
// θ∗θ∗(M)

θ∗θ∗(β)
// θ∗θ∗(M

′′) // 0 .

Here, aM ′ and aM ′′ are isomorphisms since M ′ and M ′′ are in θ∗(B), while aM is not an
isomorphism since M is not isomorphic to any object in θ∗(B). Thus θ∗θ∗(α) is not injective
in A, so θ∗(α) is not injective in B (Lemma 1.4(c)), and (L1θ∗)(M

′′) 6= 0.

(b) The implication (b.ii =⇒ b.i) follows immediately from (c), and it remains to prove
the converse. So assume that (a.ii) holds, and that θ∗(B) is closed under extensions in A.
Fix M in θ∗(B), and let

0 −−−→ K
α−−−−−→ P

β−−−−−→M −−−→ 0

be a short exact sequence in A where P is projective. Set K0 = Ker(aK), and consider the
following commutative diagram:

0 // K/K0
α̂
//

âK ∼=
��

P/α(K0)
β̂

//

âP
����

M //

aM ∼=
��

0

0 // θ∗
(
(L1θ∗)(M)

)
// θ∗θ∗(K)

θ∗θ∗(α)
// θ∗θ∗(P )

θ∗θ∗(β)
// θ∗θ∗(M) // 0 .

(2.8)
Here, aM is an isomorphism since M is in θ∗(B), âK and âP are epimorphisms since aK and
aP are surjective by (a.ii), and âK is injective by construction. The top row is exact by
construction, and the bottom row since (L1θ∗)(P ) = 0 (P is projective) and θ∗ is exact.

Now, K/K0
∼= θ∗θ∗(K) and M are both isomorphic to objects of θ∗(B), and the same

holds for P/α(K0) since θ∗(B) is closed under extensions. Thus there is an object N in B,
a surjective morphism f : P −→ θ∗(N) with kernel α(K0), and a morphism ν : θ∗(N) −→
θ∗θ∗(P ) such that ν ◦ f = aP . Since θ∗(B) is a full subcategory of A (Lemma 1.2), ν = θ∗(χ)
for some χ ∈ MorB(N, θ∗(P )).

Let ϕ ∈ MorB(θ∗(P ), N) be adjoint to f . Then

P
aP

{{

f

""

θ∗θ∗(P )
θ∗(ϕ)

11 θ∗(N)
ν=θ∗(χ)

qq
is adjoint to

θ∗(P )
Idθ∗(P )

{{

ϕ

!!

θ∗(P )
ϕ

22 N ,
χ

qq

so θ∗(ϕ) ◦ aP = f and ν ◦ f = aP . Since f and aP are both surjective, ν and θ∗(ϕ) are
isomorphisms (and inverses to each other). So in diagram (2.8), âP is an isomorphism,
θ∗θ∗(α) is injective, and thus (L1θ∗)(M) = 0. �

The next proposition provides one tool for showing that Ω-resolutions do not exist in
certain cases. Recall that by Lemma 2.4, if a projective object has no Ω1-resolution, then it
has no Ω-resolution.

Proposition 2.9. For each Ω-system (A,B; θ∗, θ
∗) for which A has enough projectives, and

each X ∈P(B), there is an Ω1-resolution of X if and only if (L1θ∗)(θ
∗(X)) = 0.
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Proof. Assume that (L1θ∗)(θ
∗(X)) = 0. Let R1 =

(
P1

∂1−→ P0
ε−→ θ∗(X) → 0

)
be an exact

sequence in A, where P0, P1 ∈P(A). Then the sequence

0 −→ Im(∂1) −→ P0 −→ θ∗(X) −→ 0

is short exact, and since (L1θ∗)(θ
∗(X)) = 0, the induced morphism θ∗(Im(∂1)) −→ θ∗(P0) is

a monomorphism. So R1 is an Ω1-resolution of X, where (Ω1-2) holds since θ∗ is right exact.

Conversely, if R1 =
(
P1

∂1−→ P0
ε−→ θ∗(X) → 0

)
is an Ω1-resolution of X, then R1 is exact

by (Ωn-3). Since P0 ∈P(A), the sequence

0 −−−→ (L1θ∗)(θ
∗(X)) −−−−−→ θ∗(Im(∂1))

θ∗(incl)−−−−−→ θ∗(P0)
θ∗(ε)−−−−−→ θ∗(θ

∗(X)) −−−→ 0

is exact. Since θ∗(incl) is a monomorphism by condition (Ω1-4), (L1θ∗)(θ
∗(X)) = 0. �

The following lemma gives conditions for extending an Ωn-resolution to an Ωn+1-resolution.

Lemma 2.10. Fix an Ω-system (A,B; θ∗, θ
∗), where A has enough projectives, and let X

be a projective object in B. Let Rn =
(
Pn

∂n−→ Pn−1 −→ · · · −→ P0
ε−→ θ∗(X) → 0

)
be an

Ωn-resolution of X, for some 1 ≤ n <∞.

(a) The natural morphism f0 : θ∗(Ker(∂n)) −−−→ Ker(θ∗(∂n)) is a split epimorphism.

(b) If Pn+1 ∈ P(A), and ∂n+1 ∈ MorA(Pn+1, Pn) are such that ∂n ◦ ∂n+1 = 0, then the
complex Rn+1 =

(
Pn+1

∂n+1−−−→ Pn −→ · · ·
ε−→ θ∗(X) → 0

)
is an Ωn+1-resolution of X if

and only if
(b.i) Ker(∂n)/Im(∂n+1) is in B; and

(b.ii) the composite θ∗(Im(∂n+1))
θ∗(incl)−−−−−→ θ∗(Ker(∂n))

f0−−−→ Ker(θ∗(∂n)) is an isomor-
phism.

(c) The resolution Rn extends to an Ωn+1-resolution if and only if for some splitting s of
f0, the composite

a
[s]
Ker(∂n) : Ker(∂n)

aKer(∂n)−−−−−−−→ θ∗θ∗(Ker(∂n))
θ∗(χ[s])−−−−−→ θ∗

(
θ∗(Ker(∂n))/Im(s)

)
(where χ[s] is the natural projection) and the induced map

(L1θ∗)(a
[s]
Ker(∂n)) : (L1θ∗)

(
Ker(∂n)

)
−−−−−−→ (L1θ∗)

(
θ∗(θ∗(Ker(∂n))/Im(s))

)
are both epimorphisms.

(d) If Rn does extend to Rn+1 as in (b), then for some splitting s of f0, Im(∂n+1) =

Ker(a[s]
Ker(∂n)), and

θ∗
(
Hn(P∗, ∂∗)

) ∼= θ∗(Ker(∂n))/Im(s) ∼= Ker(f0) ∼= (L1θ∗)(Im(∂n)) . (2.11)

Proof. (a) Since θ∗ is right exact, we have the following commutative diagram in B

θ∗(Ker(∂n)) //

f0
��

θ∗(Pn) // θ∗(Im(∂n)) //

f1 ∼=
��

0

0 // Ker(θ∗(∂n)) // θ∗(Pn) // Im(θ∗(∂n)) // 0

(2.12)

with exact rows. By condition (Ωn-4), f1 is a monomorphism (hence an isomorphism), and so
f0 is an epimorphism. Also, Ker(θ∗(∂n)) ∈ P(B) since the sequence θ∗(P∗) −→ θ∗(X) → 0
is an exact sequence of projective objects, and hence f0 splits.
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(b) Assume that Rn+1 =
(
Pn+1

∂n+1−−−→ Pn −→ · · ·
)
is an Ωn+1-resolution of X, and set

J = Im(∂n+1) ≤ Ker(∂n). Consider the following commutative diagram

θ∗(Pn+1)
θ∗(∂∗n+1)

//

f3

'' ''

θ∗(J)

f4

��

θ∗(incl)
// θ∗(Ker(∂n))

f0
��

Im(θ∗(∂n+1)) Ker(θ∗(∂n)) ,

where ∂∗n+1 : Pn+1 −→ J is the corestriction of ∂n+1 and is surjective, and f3 is the core-
striction of θ∗(∂n+1). By condition (Ωn+1-4) on Rn+1, the morphism θ∗(J) −→ θ∗(Pn) is
a monomorphism. Hence f4 is a monomorphism, and is an isomorphism since f3 is an
epimorphism. This proves (b.ii), and (b.i) follows from condition (Ωn+1-3).

Conversely, assume that (b.i) and (b.ii) hold. In particular, Rn+1 satisfies (Ωn+1-3), and it
satisfies (Ωn+1-1) (Pn+1 is projective) by assumption. Condition (Ωn+1-4) (that θ∗(Im(∂n+1))
injects into θ∗(Pn)) follows from (b.ii).

It remains to prove (Ωn+1-2); i.e., the exactness of θ∗(Rn+1). Since θ∗(Rn) is exact, we
need only show that Im(θ∗(∂n+1)) = Ker(θ∗(∂n)). Consider the following diagram:

Pn+1

∂∗n+1
// //

aPn+1

��

Im(∂n+1)
i

//

aIm(∂n+1)

��

Pn

aPn

��

θ∗θ∗(Pn+1)
θ∗θ∗(∂∗n+1)

// //

θ∗θ∗(∂n+1)
33

θ∗θ∗(Im(∂n+1))
θ∗θ∗(i)

// θ∗θ∗(Pn)

where ∂∗n+1 is surjective by definition and θ∗θ∗(∂
∗
n+1) is surjective since θ∗θ∗ is right exact.

Hence Im(θ∗θ∗(∂n+1)) = Im(θ∗θ∗(i)), and so Im(θ∗(∂n+1)) = Im(θ∗(i)) by Lemma 1.4(c).
Finally, Im(θ∗(i)) = Ker(θ∗(∂n)) by the following diagram

θ∗(Im(∂n+1))
θ∗(i′)

//

θ∗(i)

,,

θ∗(Ker(∂n))
f0

//

θ∗(i′′)

((

Ker(θ∗(∂n))

incl
��

θ∗(Pn)

and since f0 ◦ θ∗(i
′) is an isomorphism by (b.ii).

(c,d) Assume first that Rn does extend to an Ωn+1-resolution

Rn+1 =
(
Pn+1

∂n+1−−−−→ Pn −−−→ · · ·
)
.

Set J = Im(∂n+1). By (b.i) and (b.ii), Ker(∂n)/J is isomorphic to an object in θ∗(B), and
the composite

θ∗(J)
θ∗(i2)

//

∼=
++

θ∗(Ker(∂n))
f0

// Ker(θ∗(∂n))
s

mm

is an isomorphism. Set s = θ∗(i2) ◦ (f0 ◦ θ∗(i2))−1: a splitting for f0.
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Consider the following commutative diagram:

0 // J
i2

//

aJ
��

Ker(∂n)
pr2

//

aKer(∂n)

��

ω

))

Ker(∂n)/J //

f2 ∼=
��

0

0 // θ∗θ∗(J)
θ∗θ∗(i2)

// θ∗θ∗(Ker(∂n))
θ∗θ∗(pr2)

// θ∗θ∗(Ker(∂n)/J) // 0 .

(2.13)

Here, f2 = aKer(∂n)/J is an isomorphism since Ker(∂n)/J is isomorphic to an object in θ∗(B) by
(b.i). The bottom row of (2.13) is exact since θ∗θ∗ is right exact and θ∗(i2) is a monomorphism
by (b.ii) (and θ∗ is left exact). Also, Im(θ∗(i2)) = Im(s), and hence(

Ker(∂n)
a
[s]
Ker(∂n)−−−−−−−→ θ∗

(
θ∗(Ker(∂n))/Im(s)

)) ∼= (Ker(∂n)
ω−−−−→ θ∗θ∗(Ker(∂n)/J)

)
∼=
(
Ker(∂n)

pr2−−−−→ Ker(∂n)/J
)
.

Thus a[s]
Ker(∂n) is an epimorphism, and (L1θ∗)(a

[s]
Ker(∂n))

∼= (L1θ∗)(pr2) is also an epimorphism
since θ∗(i2) is injective. This also proves that Im(∂n+1) = J = Ker(a[s]

Ker(∂n)), and proves
(2.11) except for the isomorphism Ker(f0) ∼= (L1θ∗)(Im(∂n)) which follows from (2.12). This
finishes the proof of (d), and the proof of the “only if” part of (c).

Conversely, assume, for some splitting s of f0, that a
[s]
Ker(∂n) and (L1θ∗)(a

[s]
Ker(∂n)) are both

epimorphisms. Set J = a−1
Ker(∂n)(θ

∗(Im(s))) ≤ Ker(∂n), and consider the following commuta-
tive diagram:

0 // J
i2

//

��

Ker(∂n)
pr2

//

aKer(∂n)

��

Ker(∂n)/J //

f3 ∼=
��

0

0 // θ∗(Im(s)) // θ∗θ∗(Ker(∂n))
χ[s]

// θ∗
(
θ∗(Ker(∂n))/Im(s)

)
// 0 .

(2.14)

The left square in (2.14) is a pullback square by definition of J , so f3 is a monomorphism,
and f3 is an epimorphism since χ[s] ◦ aKer(∂n) = a

[s]
Ker(∂n) is an epimorphism.

In particular, Ker(∂n)/J is isomorphic to an object in θ∗(B), and (b.i) holds. Also, f2

is an isomorphism in (2.13), and the bottom row in (2.13) is exact since (L1θ∗)(a
[s]
Ker(∂n))

is an epimorphism. Upon comparing (2.13) and (2.14), we see that Im(s) = θ∗(i2)(θ∗(J)),
and (b.ii) now follows since Im(s) is the image of a splitting of f0. So Rn extends to an
Ωn+1-resolution by (b). �

The next proposition is our most general result on the existence of Ω-resolutions.

Proposition 2.15. Fix an Ω-system (A,B; θ∗, θ
∗), where A has enough projectives. Assume

that θ∗(B) is closed under subobjects and extensions in A. Then each X ∈P(B) admits an
Ω-resolution. Furthermore, for n ≥ 0, each Ωn-resolution of X extends to an Ω-resolution
of X.

Proof. By Lemma 2.7(a,b) and since θ∗(B) is closed under subobjects and extensions in A,
aM is an epimorphism for eachM in A and (L1θ∗)(θ

∗(N)) = 0 for each N in B. In particular,
X ∈P(B) has an Ω1-resolution by Proposition 2.9.

Assume, for some n ≥ 1, that Rn = (Pi, ∂i)i≤n is an Ωn-resolution of θ∗(X). By
Lemma 2.10(a), the morphism f0 : θ∗(Ker(∂n)) −→ Ker(θ∗(∂n)) is a split epimorphism.
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Let s be a splitting of f0, and let χ[s] be the natural epimorphism from θ∗(Ker(∂n)) to
θ∗(Ker(∂n))/Im(s). Then the morphisms

a
[s]
Ker(∂n) : Ker(∂n)

aKer(∂n)−−−−−−−→ θ∗θ∗(Ker(∂n))
θ∗(χ[s])−−−−−−−→ θ∗

(
θ∗(Ker(∂n))/Im(s)

)
are epimorphisms: the first since aM is an epimorphism for all M and the second since θ∗

is exact. Also, (L1θ∗)(a
[s]
Ker(∂n)) is an epimorphism since (L1θ∗)(θ

∗(N)) = 0 for all N . So by
Lemma 2.10(c), Rn extends to an Ωn+1-resolution Rn+1. Since this argument applies for
all n ≥ 1, it follows that Rn extends to an Ω-resolution of θ∗(X). In particular, θ∗(X) has
Ω-resolutions since it has Ω1-resolutions. �

Under the assumptions of Example 1.3, we can now describe exactly under what conditions
there are Ω-resolutions. Recall, for a commutative ring R, that a group G is R-perfect if
H1(G;R) = 0.

Example 2.16. Fix a commutative ring R and a surjective homomorphism θ : G −→ π of
groups. Let (RG-mod, Rπ-mod; θ∗, θ

∗) be the Ω-system of Example 1.3. Then θ∗(Rπ-mod)
is closed under subobjects.

(a) If Ker(θ) is R-perfect, then θ∗(Rπ-mod) is closed under extensions in RG-mod. So by
Proposition 2.15, Ω-resolutions exist of all projective objects in Rπ-mod.

(b) If Ker(θ) is not R-perfect, then θ∗(Rπ-mod) is not closed under extensions, and for each
nonzero object X in Rπ-mod that is free as an R-module, (L1θ∗)(θ

∗(X)) 6= 0. So by
Proposition 2.9, no nonzero projective object in Rπ-mod that is free as an R-module
has an Ω-resolution.

Proof. Set K = Ker(θ), and note that an RG-module M is isomorphic to an object in
θ∗(Rπ-mod) if and only if K acts trivially on M . Thus θ∗(Rπ-mod) is closed under sub-
objects. If H1(K;R) = 0, then θ∗(Rπ-mod) is closed under extensions by Lemma A.1, and
the existence of Ω-resolutions follows from Proposition 2.15.

If H1(K;R) 6= 0, then for each nonzero object X in Rπ-mod that is free as an R-module,
(L1θ∗)(θ

∗(X)) ∼= H1(K; θ∗(X)) 6= 0 since H1(K;R) 6= 0 and K acts trivially on θ∗(X). Thus
θ∗(Rπ-mod) is not closed under extensions in RG-mod by Lemma 2.7(b). If in addition, X
is projective in Rπ-mod, Proposition 2.9 implies that it has no Ω-resolution. �

Note that the “squeezed resolutions” defined and studied by Benson [Be2] are Ω-resolutions
in the context of Example 2.16(a), when G is a finite group and K = Op(G).

Remark 2.17. Proposition 2.15 gives some general conditions for the existence of Ω-resolu-
tions: conditions which are satisfied by the Ω-systems of Example 1.3 (as just seen), and
also by the much larger family of examples to be described in Proposition 3.6(b). However,
they do not hold for the family of examples constructed in Proposition 3.15(a), even though
Ω-resolutions are shown to exist in those cases (at least for certain projective objects) in
Proposition 4.3. This suggests that there should be a more general existence result that
covers all of these cases.

In fact, there are two questions of this type that one can ask. First, of course, we want to
find conditions as general as possible on an Ω-system (A,B; θ∗, θ

∗) that imply the existence
of Ω-resolutions of all projectives in B. But we will see in Example 3.9 that there are Ω-
systems for which some nonzero projectives have Ω-resolutions and others do not, and so we
would also like to find more general conditions on a pair

(
(A,B; θ∗, θ

∗), X
)
, for X ∈P(B),

that imply the existence of an Ω-resolution of X.
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3. Ω-systems of functor categories

We next look at a large family of examples of Ω-systems and Ω-resolutions involving functor
categories; especially categories of RC-modules for a small category C and a commutative
ring R. At the end of the section, in Propositions 3.6 and 3.15, we give two large families of
examples of Ω-systems where we can say fairly precisely in which cases Ω-resolutions exist.

We refer to [Mac1, § II.6 and §X.3] for the definitions and properties of overcategories
and left Kan extensions. As usual, when A and C are categories and C is small, AC denotes
the functor category whose objects are the functors C −→ A, and whose morphisms are the
natural transformations of functors.

To simplify the statement of the next proposition, we define a functor θ : C −→ D between
small categories to be quasisurjective if it is surjective on objects and D is generated as a
category by the image of θ together with inverses of isomorphisms in the image of θ. As far
as we know, this concept has not been defined earlier, and does seem to be designed for this
very specialized situation.

Proposition 3.1. Let A be an abelian category with colimits, and let θ : C −→ D be a
quasisurjective functor between small categories. For each d in D, let I(θ↓d) be the full
subcategory of θ↓d with objects (c, ϕ) for ϕ ∈ IsoD(θ(c), d), and assume that all objects
(c, Idd) for c ∈ θ−1(d) lie in the same connected component of I(θ↓d). Let θ∗ : AD −→
AC be composition with θ, and let θ∗ : AC −→ AD be left Kan extension along θ. Then
(AC,AD; θ∗, θ

∗) is an Ω-system.

Proof. Conditions (OP1) and (OP3) are clear. So the only difficulty is to show that con-
dition (OP2) holds: that the counit b : θ∗θ

∗ −→ IdAD associated to the adjunction is an
isomorphism.

Fix a functor α : D −→ A and an object d in D, and let α(d) : θ↓d −→ A be the constant
functor sending all objects to α(d). Let αd : θ↓d −→ A be the functor that sends an object
(c, ϕ), where ϕ ∈ MorD(θ(c), d), to (θ∗α)(c) = α(θ(c)). Let α∗ : αd −→ α(d) be the natural
transformation of functors that sends (c, ϕ) to α(ϕ) ∈ MorA(αd(c, ϕ), α(d)). Then

b(α)(d) = colim
θ↓d

(α∗) : (θ∗θ
∗(α))(d) = colim

θ↓d
(αd) −−−−−−→ α(d) ,

and we must show that this is an isomorphism (for all α and d).

To see this, choose d̂ ∈ Ob(C) such that θ(d̂) = d. For each (c, ϕ) in θ↓d, let ι(c,ϕ) be the
natural morphism from αd(c, ϕ) = α(θ(c)) to the colimit. Set

β = ι(d̂,Idd) : α(d) = αd(d̂, Idd) −−−−−−→ colim(αd) = (θ∗θ
∗(α))(d).

Then b(α)(d) ◦ β = Idα(d), and it remains to show that β ◦ b(α)(d) is also the identity. This
means showing, for each object (c, ϕ) in θ↓d, that β ◦ b(α)(d) ◦ ι(c,ϕ) = ι(c,ϕ) . Since

b(α)(d) ◦ ι(c,ϕ) = α(ϕ) : αd(c, ϕ) = α(θ(c)) −−−−−−→ α(d) = αd(d̂, Idd),

we are reduced to showing, for each (c, ϕ), that

ι(d̂,Idd) ◦ α(ϕ) = ι(c,ϕ) . (3.2)

We now claim the following:

(i) Equation (3.2) holds for (d̂, Idd).

(ii) If there is χ ∈ Morθ↓d((c, ϕ), (c′, ϕ′)), then

(ii.1) if (3.2) holds for (c′, ϕ′), then it also holds for (c, ϕ); and
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(ii.2) if θ(χ) is an isomorphism, then (3.2) holds for (c, ϕ) if and only if it holds for
(c′, ϕ′).

(iii) If θ(c) = θ(c′) and ϕ ∈ MorD(θ(c), d), then (3.2) holds for (c, ϕ) if and only if it holds
for (c′, ϕ).

Point (i) is clear. If χ ∈ Morθ↓d((c, ϕ), (c′, ϕ′)), then ι(c′,ϕ′) ◦ α(θ(χ)) = ι(c,ϕ) by definition
of colimits, and (ii) follows immediately from this. Point (iii) follows from (ii.2) and the
assumption that (c, Idθ(c)) and (c′, Idθ(c)) are in the same connected component of I(θ↓θ(c)).

Now let (c, ϕ) be arbitrary. Since θ is quasisurjective, for some m ≥ 1, there are objects
θ(c) = d0, d1, . . . , dm = d in D and morphisms ϕi ∈ MorD(di−1, di) for 1 ≤ i ≤ m such that
ϕ = ϕm◦· · ·◦ϕ2◦ϕ1, and for each i, either ϕi ∈ θ(Mor(C)) or ϕi ∈ Iso(D) and ϕ−1

i ∈ θ(Mor(C)).
Since (3.2) holds for (d̂, Idd) by (i), it also holds for (c, Idd) for all c ∈ θ−1(d) = θ−1(dm) by
(iii). If ϕm ∈ θ(Mor(C)), then (3.2) holds for (c, ϕm) for some c ∈ θ−1(dm−1) by (ii.1), while
if ϕm ∈ Iso(D) and ϕ−1

m ∈ θ(Mor(C)), then (3.2) holds for (c, ϕm) for some c ∈ θ−1(dm−1) by
(ii.2). In either case, (3.2) holds for (c, ϕm) for all c ∈ θ−1(dm−1) by (iii). Upon continuing
this argument, we see by downward induction that for each 1 ≤ i ≤ m, (3.2) holds for
(c, ϕm ◦ · · · ◦ϕi) for all c ∈ θ−1(di−1). In particular, (3.2) holds for (c, ϕ) (the case i = 1). �

We now specialize to the case where A = R-mod: the category of modules over a com-
mutative ring R.

Definition 3.3. Let C be a small category, and let R be a commutative ring.

(a) An RC-module is a covariant functor M : C −−→ R-mod, and a morphism of RC-
modules is a natural transformation of functors. Let RC-mod denote the category of
RC-modules.

(b) Let θ : C → D be a functor between small categories. When M is an RC-module, let
θ∗(M) denote the left Kan extension of M along θ. When N is an RD-module, let
θ∗(N) = N ◦ θ be the RC-module induced by composition with θ.

(c) An RC-moduleM is locally constant on C if it sends all morphisms in C to isomorphisms
of R-modules.

(d) An RC-module M is essentially constant if M is isomorphic to a constant RC-module;
i.e., isomorphic to a functor C −→ R-mod that sends each object to the same R-module
V and each morphism to IdV .

The next lemma characterizes essentially constant modules in terms of an action of π1(|C|).

Lemma 3.4. Assume C is a small category, and let R be a commutative ring.

(a) If M is a locally constant RC-module, then for each object c0 in C, there is a unique
homomorphism

M# : π1(|C|, c0) −−−−−−→ AutR(M(c0))

satisfying the following condition: for each sequence

σ =
(
c0

f1−−−→ c1
f2←−−− c2

f3−−−→ · · · f2m←−−− c2m = c0

)
of morphisms in C (m ≥ 1), beginning and ending at c0, regarded as a loop in |C|,

M#([σ]) = M(f2m)−1 ◦M(f2m−1) ◦ · · · ◦M(f2)−1 ◦M(f1) ∈ AutR(M(c0)) .

(b) If C is connected, then a locally constant RC-module M is essentially constant if and
only if M# (as defined in (a)) is the trivial homomorphism for some object c0 in C.
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Proof. (a) Let Is(R-mod) be the category of R-modules with only isomorphisms as mor-
phisms, and regard M as a functor M : C −→ Is(R-mod). This induces a map between the
geometric realizations, and hence a homomorphism of fundamental groups

M# : π1(|C|, c0) −−−−−−→ π1(|Is(R-mod)|,M(c0)) ∼= AutR(M(c0)) .

For each sequence σ as described above, M# sends the class [σ] ∈ π1(|C|, c0) to

M(c0)
M(f1)−−−−→M(c1)

M(f2)←−−−−M(c2)
M(f3)−−−−→ · · ·

M(f2m)←−−−−−M(c2m) = M(c0) ,

regarded as a loop in |Is(R-mod)|, and this is homotopic to the composite

M(f2m)−1 ◦M(f2m−1) ◦ · · · ◦M(f1)−1 ◦M(f0) ∈ AutR(M(c0))

when also regarded as a loop in |Is(R-mod)|.

(b) If M is isomorphic to a constant functor, then it clearly sends all morphisms to isomor-
phisms, and sends a loop σ as above to a sequence whose composite is the identity. Thus
for each c0 in C, the homomorphism M# defined in (a) is trivial. It remains to prove the
converse.

Assume that M is locally constant, and that for some object c0 in C, the homomorphism
M# defined in (a) is trivial. Set MC = colim

C
(M). We claim that the natural morphism

ιc : M(c) −→ MC is an isomorphism for each object c. Once this has been shown, the ιc
define an isomorphism of functors from M to the constant functor with value MC.

For each pair of objects c, d and each ϕ ∈ MorC(c, d), we have ιc = ιd◦M(ϕ), whereM(ϕ) is
an isomorphism sinceM is locally constant. Thus Im(ιc) = Im(ιd) whenever MorC(c, d) 6= ∅,
and so Im(ιc) = Im(ιd) for each pair of objects c, d since C is connected. So ιc is surjective
for each c in C.

For each object d in C, since C is connected, there is a sequence

c0
f1−−−→ c1

f2←−−− c2
f3−−−→ · · · f2m←−−− c2m = d

(m ≥ 1) of morphisms in C connecting c0 to d. Set

ηd = M(f1)−1 ◦M(f2) ◦ · · · ◦M(f2m−1)−1 ◦M(f2m) : M(d)
∼=−−−−−−−→M(c0) .

Then ηd is independent of the choice of the fi since M# = 1. This independence of the
choice of sequence of morphisms also implies that for each pair of objects d and d′ and each
morphism ϕ ∈ MorC(d, d′), we have ηd′ ◦ M(ϕ) = ηd. We thus get a natural morphism
η : MC −→ M(c0) such that η ◦ ιd = ηd for each d, and ιd is injective for each d in C since
ηd is. We already showed that ιd is surjective for each d, so ι is a natural isomorphism of
functors from M to the constant functor MC. �

The following description of certain projective RC-modules will be needed later.

Lemma 3.5. Let R be a commutative ring, and let C be a small category. For each object c
in C, let FRC

c be the RC-module that sends an object d to R(MorC(c, d)) (the free R-module
with basis MorC(c, d)); and sends a morphism ϕ ∈ MorC(d, d′) to composition with ϕ. Then
FRC
c is projective, and for each RC-module M , evaluation at Idc ∈ FRC

c (c) defines a bijection
MorRC(FRC

c ,M) ∼= M(c).

Proof. The bijection MorRC(FRC
c ,M) ∼= M(c) holds by Yoneda’s lemma. In particular,

MorRC(FRC
c ,−) is an exact functor, and so FRC

c is projective. �
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We now restrict further to two different cases: one where θ : C −→ D is bijective on
objects, and the second where D is the category of a group. In each of these cases, we are
able to get much more precise results about the existence of Ω-resolutions.

3.1. Functors bijective on objects.
We begin with the case where θ is bijective on objects. When R is a commutative ring and

one additional technical assumption holds, we can say quite precisely in which cases there
always exist Ω-resolutions.

Proposition 3.6. Fix a commutative ring R. Let θ : C −→ D be a functor between small
categories that is bijective on objects and surjective on morphism sets. Then

(a) (RC-mod, RD-mod; θ∗, θ
∗) is an Ω-system, and the subcategory θ∗(RD-mod) is closed

under subobjects in RC-mod.

For each object c in C, set

Kc = Ker[θc : AutC(c) −−−→ AutD(θ(c))
]
,

and assume that θ has the following property:

for each pair of objects c, c′ in C, and each pair of morphisms ϕ, ϕ′ ∈ MorC(c, c′)
such that θc,c′(ϕ) = θc,c′(ϕ

′), there is some α ∈ Kc′ such that ϕ = αϕ′. (3.7)

Then the following hold.

(b) If Kc is R-perfect for each c ∈ Ob(C), then θ∗(RD-mod) is closed under extensions,
and hence all projectives in RD-mod have Ω-resolutions.

(c) If Kc is not R-perfect for some c ∈ Ob(C), then θ∗(RD-mod) is not closed under
extensions, and there is a projective object X in RD-mod that does not have an Ω-
resolution.

Proof. (a) Since θ is surjective on objects and morphisms, it is quasisurjective. Since it is
bijective on objects, the condition on I(θ↓d) in Proposition 3.1 holds for all objects d in D,
and so (RC-mod, RD-mod; θ∗, θ

∗) is an Ω-system by that proposition.
Since θ is bijective on objects and surjective on morphisms, an RC-moduleM is isomorphic

to an object in θ∗(RD-mod) if and only if it has the following property: if ϕ, ψ ∈ MorC(c, c′)
are such that θ(ϕ) = θ(ψ) (some c, c′ ∈ Ob(C)), then Mc,c′(ϕ) = Mc,c′(ψ). In particular,
θ∗(RD-mod) is closed under subobjects.

(b,c) Now assume that (3.7) holds. For each RC-module M , let MK be the RD-module
defined by setting, for each d ∈ Ob(D) and c ∈ θ−1(d),

(MK)(d) ∼= M(c)Kc
def
= M(c)

/〈
α(x)− x

∣∣x ∈M(c), α ∈ Kc

〉
.

For each morphism ϕ ∈ MorC(c, c′) and each α ∈ Kc, θc,c′(ϕ ◦α) = θc,c′(ϕ), so by (3.7), there
is β ∈ Kc′ such that ϕ ◦ α = β ◦ ϕ. Hence for each x ∈M(c), ϕ∗(x) and ϕ∗(α(x)) are in the
same orbit ofKc′ . It follows that ϕ∗ ∈ MorR(M(c),M(c′)) induces a homomorphism between
the quotient modulesMK(c) andMK(c′). So by (3.7) and since θ is surjective on morphisms,
there is a unique functor MK on D such that the natural surjections M(c) −→ MK(θ(c))
define a morphism of RC-modules M −→ θ∗(MK), and hence a morphism of RD-modules
θ∗(M) −→MK .

By (3.7) and the surjectivity of θ again, we have a natural bijection MorRC(M, θ∗N) ∼=
MorRD(MK , N) for each RC-module M and each RD-module N , and thus MK

∼= θ∗(M).
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We have now shown that
for each RC-module M and each c ∈ Ob(C), the natural morphism

aM : M(c) −−−−−−→ (θ∗θ∗M)(c) = (θ∗M)(θ(c))

induces an isomorphism M(c)Kc
∼= (θ∗M)(θ(c)).

(3.8)

(b) Assume Kc is R-perfect for each c ∈ Ob(C). Let 0 −→M ′ −→M −→M ′′ −→ 0 be an
extension of RC-modules such that M ′ and M ′′ are in θ∗(RD-mod). For each c ∈ Ob(C),
Kc acts trivially on M ′(c) and on M ′′(c), and hence also acts trivially on M(c) by Lemma
A.1. So M ∼= θ∗(θ∗(M)) by (3.8).

This proves that θ∗(RD-mod) is closed under extensions in RC-mod, and hence by Propo-
sition 2.15 that Ω-resolutions exist of all projectives in RD-mod.

(c) Assume, for some object c0 in C, that Kc0 is not R-perfect, and set d0 = θ(c0). Let FRC
c0

and FRD
d0

be the projective RC- and RD-modules defined in Lemma 3.5; thus

FRC
c0

(c) = R(MorC(c0, c)) and FRD
d0

(d) = R(MorD(d0, d))

for each c ∈ Ob(C) and d ∈ Ob(D). Since θ is surjective on morphisms, there is a natural sur-
jection of RC-modules χ : FRC

c0
−→ θ∗(FRD

d0
) that sends ϕ ∈ FRC

c0
(c) to θ(ϕ) ∈ θ∗(FRD

d0
)(c) =

FRD
d0

(θ(c)).
Set Q0 = Ker(χ), and consider the exact sequence

0 −→ (L1θ∗)(θ
∗(FRD

d0
)) −−−−→ θ∗(Q0) −−−−→ θ∗(F

RC
c0

) −−−−→ FRD
d0
−→ 0.

Here, θ∗(FRC
c0

) ∼= FRD
d0

by (3.8) and since MorC(c0, c)/Kc
∼= MorD(d0, θ(c)) for each c in

C by (3.7). Thus (L1θ∗)(θ
∗FRD

d0
) ∼= θ∗(Q0). We will show that θ∗(Q0)(d0) 6= 0; then

(L1θ∗)(θ
∗FRD

d0
) 6= 0, so FRD

d0
has no Ω-resolution by Proposition 2.15, and θ∗(RD-mod)

is not closed under extensions by Lemma 2.7(b).

Set End(1)
C (c0) = AutC(c0), and let End(2)

C (c0) be its complement (as a set) in EndC(c0).
Set End(i)

D (d0) = θc0(End
(i)
C (c0)) for i = 1, 2. Thus

EndC(c0) = End(1)
C (c0)q End(2)

C (c0) and EndD(d0) = End(1)
D (d0)q End(2)

D (d0) :

the first by definition, and the second by (3.7) and since θc0 is surjective. Set U (i)
C =

R(End(i)
C (c0)) and U

(i)
D = R(End(i)

D (d0)) (i = 1, 2), so that FRC
c0

(c0) = U
(1)
C ⊕ U

(2)
C and

FRD
d0

(d0) = U
(1)
D ⊕ U

(2)
D . Thus Q0(c0) = Q

(1)
0 ⊕ Q

(2)
0 where Q(i)

0 is the kernel of the sur-
jection U (i)

C −→ U
(i)
D .

By (3.8), we must show that Q0(c0)Kc0
∼= θ∗(Q0)(d0) 6= 0, and to do this, it suffices to show

that (Q
(1)
0 )Kc0 6= 0. Set A = R[AutC(c0)] ∼= U

(1)
C , and identify it with the group ring. We

can also identify Q(1)
0 = I: the 2-sided ideal in A generated as an R-module by the elements

g − h for g, h ∈ AutC(c0) such that gh−1 ∈ Kc0 . Then XKc0
= X/IX for each A-module X.

In particular, (Q
(1)
0 )Kc0

∼= I/I2.
Consider the short exact sequence 0→ I → A→ A/I → 0 of R[Kc0 ]-modules. Since A is

projective, this induces an isomorphism I/I2 ∼= H1(Kc0 ;A/I). SinceKc0 is not R-perfect and
acts trivially on the free R-module A/I ∼= R[AutD(d0)], we now conclude that I/I2 6= 0. �

Example 3.9. In the situation of Proposition 3.6(c), there can also be nonzero RC-modules
that do have Ω-resolutions. For example, fix a prime p, set R = Fp, and assume that
Ob(C) = Ob(D) = {x, y}, where EndD(x) = EndC(y) = EndD(y) = {Id} and EndC(x) ∼= Cp,
and each category has a unique morphism from x to y and none from y to x. Then the
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unique functor θ : C −→ D satisfies the hypotheses of Proposition 3.6, and Kx
∼= Cp is not

R-perfect while Ky = 1 is. Set X = FRD
y ; then θ∗(X) ∼= FRC

y is projective as an RC-module,
so X has as Ω-resolution the sequence 0 −→ FRC

y
ε−−−−→ θ∗(FRD

y ) −→ 0.

3.2. Categories over a group.
The other large family of examples we consider are those where D = B(π) (as defined in

the introduction) for a group π.

Definition 3.10. A category over a group π consists of a pair (C, θ), where C is a nonempty
small connected category, and θ : C −−−→ B(π) is a functor such that the homomorphism
π1(|C|) −→ π induced by θ is surjective.

For example, if G and π are groups, and θ : B(G) −→ B(π) is the functor induced by a
surjective homomorphism G −→ π, then (B(G), θ) is a category over π.

As another example, one that helped motivate this work, let (S,F ,L) be a p-local compact
group as defined in [BLO]. Set π = π1(|L|∧p ). Then π is a finite p-group, and there is a natural
functor θ : L −−−→ B(π) whose restriction to B(S) is surjective. It follows from properties of
linking systems that (L, θ) is a category over π. We refer to the introduction to Section 5
for more details.

Lemma 3.11. Let R be a commutative ring, and let (C, θ) be a category over π. Then

(a) the overcategory θ↓◦π is connected, (RC-mod, Rπ-mod; θ∗, θ
∗) is an Ω-system, and the

projection |θ↓◦π| −→ |C| is a covering space with covering group π.

For an RC-module M ,

(b) θ∗(M) ∼= colim
θ↓◦π

(M); and

(c) M ∼= θ∗(N) for some Rπ-module N if and only if M is locally constant on C and
essentially constant on θ↓◦π.

Proof. (a) Since π acts freely on |θ↓◦π| with orbit space |C|, the projection to |C| is a covering
space with covering group π. In particular, |θ↓◦π| is connected since π1(|C|) surjects onto π.
Also, θ is quasisurjective since π1(|C|) surjects onto π, and so (RC-mod, Rπ-mod; θ∗, θ

∗) is
an Ω-system by Proposition 3.1.

(b) By definition of left Kan extension, θ∗(M) = colim
θ↓◦π

(M).

(c) Assume M is locally constant on C and essentially constant on θ↓◦π. We claim that the
natural morphism aM : M −→ θ∗θ∗(M) is an isomorphism. This means showing, for each
c in C, that the natural morphism from M(c) to θ∗(M) is an isomorphism. By (b), this is
equivalent to showing that the natural morphism ξc : M(c) −→ colim

θ↓◦π
(M) is an isomorphism

for each c. But this holds since by assumption, the composite ofM with the forgetful functor
θ↓◦π −→ C is isomorphic to a constant functor.

Conversely, if M ∼= θ∗(N), then M is locally constant on C, and isomorphic to a constant
functor on θ↓◦π. �

Lemma 3.12. Let R be a commutative ring, let (C, θ) be a category over a group π, and set
H = Ker

[
π1(|θ|) : π1(|C|) −→ π

]
.

(a) If H is R-perfect, then (L1θ∗)(θ
∗X) = 0 for each Rπ-module X; and

(b) if H is not R-perfect, then (L1θ∗)(θ
∗X) 6= 0 for each Rπ-module X 6= 0 that (as an

R-module) contains R as a direct summand.
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Proof. For each Rπ-module X, (L1θ∗)(θ
∗X) ∼= (L1(colim

θ↓◦π
))(θ∗X) as R-modules by Lemma

3.11(b), and (L1(colim
θ↓◦π

))(θ∗X) ∼= H1(|θ↓◦π|;X) since the two sides are homology groups of

the same chain complex by [GZ, Appendix II, Proposition 3.3]. Here, the homology is with
untwisted coefficients since H ∼= π1(|θ↓◦π|) (Lemma 3.11(a)) acts trivially on the Rπ-module
X. Thus (L1θ∗)(θ

∗X) = 0 if and only if H1(|θ↓◦π|;X) = 0. Points (a) and (b) now follow
since H ∼= π1(|θ↓◦π|) is R-perfect if and only if H1(|θ↓◦π|;R) ∼= H1(H;R) = 0. �

Since a category over a group π gives rise to an Ω-system, we can now work with Ω-
resolutions in this situation.

Lemma 3.13. Let (C, θ) be a category over a group π, and let R be a commutative ring. A
complex of RC-modules

. . . −−−→ P2
∂2−−−→ P1

∂1−−−→ P0
ε−−−→ θ∗(Rπ) −−−→ 0

is an Ω-resolution of θ∗(Rπ) with respect to the Ω-system (RC-mod, Rπ-mod; θ∗, θ
∗) of

Proposition 3.1 if and only if

(1) Pn is a projective RC-module for each n ≥ 0;

(2) the complex θ∗(P∗) is acyclic, and ε induces an isomorphism H0(P∗)(c) ∼= Rπ for each
c ∈ Ob(C); and

(3) for each n ≥ 0, Hn(P∗) is locally constant on C and essentially constant on θ↓◦π.

Proof. By Lemma 3.11(c), (3) is equivalent to the first statement in (Ω-3) (that Hn(P∗, ∂∗)
is isomorphic to an object in θ∗(Rπ-mod)). The equivalence of (1) with (Ω-1), and of (2)
with (Ω-2) and the second part of (Ω-3) (that H0(P∗, ∂∗) ∼= X), is clear. �

By Proposition 1.7, if R is a commutative ring and (C, θ) is a category over a group π, and
there is at least one Ω-resolution of Rπ, then all Ω-resolutions are chain homotopy equivalent
to each other. This allows us to define “Ω-homology” in this situation.

Definition 3.14. Let (C, θ) be a category over a group π. For a commutative ring R, if
there is an Ω-resolution (P∗, ∂∗) of θ∗(Rπ) with respect to (C, θ), then we define

HΩ
∗ (C, θ;R) = θ∗

(
H∗(P∗, ∂∗)

)
.

The following proposition is a first step towards determining for which categories over π
the free module Rπ has an Ω-resolution. In the next section, we will show that Ω-resolutions
of Rπ do exist in many of the cases not excluded here. Recall that C is an EI-category if all
endomorphisms of objects in C are automorphisms.

Proposition 3.15. Fix a commutative ring R. Let (C, θ) be a category over a group π, and
set H = Ker

[
π1(|θ|) : π1(|C|) −→ π

]
. Thus (RC-mod, Rπ-mod; θ∗, θ

∗) is an Ω-system by
Lemma 3.11(a).

(a) Assume H is R-perfect. Then (L1θ∗)(θ
∗(X)) = 0 for each X in Rπ-mod, and θ∗(Rπ-mod)

is closed under extensions in RC-mod. If C = B(G) for a group G, then θ∗(Rπ-mod) is
closed under subobjects in RC-mod, and each projective Rπ-module has an Ω-resolution.
If C is an EI-category with more than one isomorphism class, then θ∗(Rπ-mod) is not
closed under subobjects in RC-mod.

(b) Assume H is not R-perfect. Then θ∗(Rπ-mod) is not closed under extensions in
RC-mod, and the projective Rπ-module Rπ does not have an Ω-resolution. More gen-
erally, if X is a nonzero projective Rπ-module that is free as an R-module, then X has
no Ω-resolution.



LOOP SPACE HOMOLOGY OF A SMALL CATEGORY 21

Proof. (a) Assume that H is R-perfect. Then (L1θ∗)(θ
∗(X)) = 0 for each Rπ-module X

by Lemma 3.12(a). Hence by Lemma 2.7(c), θ∗(Rπ-mod) is closed under extensions in
RC-mod. If C ∼= B(G) for some G, then θ is surjective on morphisms, H = Ker[G −→ π],
and θ∗(Rπ-mod) is closed under subobjects in RC-mod by Proposition 3.6(a).

Assume C is an EI-category with more than one isomorphism class, and let x, y ∈ Ob(C)
be a pair of nonisomorphic objects. At least one of the sets MorC(x, y) and MorC(y, x) must
be empty; we can assume that MorC(x, y) = ∅. Let R be the constant RC-module with
value R, and letM ≤ R be the submodule whereM(c) = 0 if MorC(x, c) = ∅ andM(c) = R
otherwise. Then M(c) = R and M(c′) = 0 imply that MorC(c, c′) = ∅; thus M is well
defined as a submodule of R. Also, M(x) = R so M 6= 0, and M(y) = 0 so M is properly
contained in R. Since C is connected, M is not locally constant, and hence not isomorphic
to an object in θ∗(Rπ-mod). So θ∗(Rπ-mod) is not closed under subobjects in RC-mod.

(b) Fix an object c0 in C, and set G = π1(|C|, c0) for short. Let η : G −→ π be the
homomorphism induced by |θ| : |C| −→ |B(π)| = Bπ. Thus η is surjective and H = Ker(η).

Assume H is not R-perfect. By Lemma 3.12(b), for each nonzero Rπ-module X that is
free as an R-module, (L1θ∗)(θ

∗X) 6= 0. So X has no Ω-resolution by Proposition 2.9, and it
remains to show that θ∗(Rπ-mod) is not closed under extensions in RC-mod.

Set N0 = Hab ⊗Z R ∼= H1(H;R), regarded as an R-module, and let χ : H −→ N0 be the
homomorphism χ(h) = [h] ⊗ 1. Since H is not R-perfect, N0 6= 0, and χ is not the trivial
homomorphism. Let M0 be the RH-module with underlying R-module N0 × N0, where
h ∈ H acts via the matrix

(
1 χ(h)
0 1

)
. Thus there is a submodule M ′

0 = {(x, 0) |x ∈ R} ≤ M0

such that H acts trivially on M ′
0 and on M0/M

′
0.

Now setM = RG⊗RHM0. ThusM is an RG-module, and contains a submoduleM ′ such
that M ′ and M/M ′ are both isomorphic to η∗(Rπ).

We now use this to construct a counterexample to θ∗(Rπ-mod) being closed under ex-
tensions. For each c ∈ Ob(C), choose a path φ̃c in |θ↓◦π| from (c0, Id) to (c, Id) (|θ↓◦π| is
connected by Lemma 3.11(a)), and let φc be its image in |C|. In particular, let φ̃c0 and φc0 be
the constant paths at (c0, Id) and c0, respectively. Define a functor θ̃ : C −→ B(G) by sending
each object in C to the unique object ◦G, and by sending each morphism ω ∈ MorC(c, c′) to
the class of the loop φc·ω·φ−1

c′ (where we compose paths from left to right). We claim that

(i) π1(|θ̃|) : π1(|C|, c0) −→ π1(B(G), ◦G) = G is the identity on G; and

(ii) θ = B(η) ◦ θ̃.

Point (i) is immediate from the definition of θ̃ (and since φc0 is the constant path). Point
(ii) holds since the paths φc all lift to |θ↓◦π| and hence are sent to trivial loops in B(π), and
since η : G −→ π is induced by θ.

Now, θ̃∗(M) is an RC-module with submodule θ̃∗(M ′), such that by (ii),

θ̃∗(M ′) ∼= θ̃∗(η∗(Rπ)) ∼= θ∗(Rπ) and θ̃∗(M)
/
θ̃∗(M ′) ∼= θ̃∗(M/M ′) ∼= θ∗(Rπ).

Thus θ̃∗(M ′) and θ̃∗(M)
/
θ̃∗(M ′) are both isomorphic to objects in θ∗(Rπ-mod). As for

θ̃∗(M), by (i), the homomorphism

(θ̃∗(M))# : G = π1(|C|, c0) −−−−−−→ AutR(θ̃∗(M)(c0)) = AutR(M)

of Lemma 3.4(a) is just the given action of G on the RG-module M . So its restriction
to H = π1(|θ↓◦π|) is nontrivial, and by Lemma 3.4(b), θ̃∗(M) is not essentially constant
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on θ↓◦π. By Lemma 3.11(c), it is not isomorphic to an object in θ∗(Rπ-mod), and thus
θ∗(Rπ-mod) is not closed under extensions in RC-mod. �

Note that Proposition 2.15 need not apply under the hypotheses of Proposition 3.15 when
H is R-perfect, although Ω1-resolutions (at least) exist by Proposition 2.9. For example,
if (C, θ) is a category over π where C is an EI-category with more than one isomorphism
class of objects, then θ∗(Rπ-mod) is not closed under subobjects in RC-mod by Proposition
3.15(a), and so Proposition 2.15 cannot be applied. In contrast, if C is the category of a
group, then Ω-resolutions always exist by Proposition 3.6(b). We will show in Theorem 4.5
that at least with one extra condition on R and H, Ω-resolutions of Rπ always exist when
the hypotheses of Proposition 3.15 hold and H is R-perfect.

Example 3.16. In the situation of Proposition 3.15(a), if C is not an EI-category, then
θ∗(Rπ-mod) can fail to be closed under subobjects even when C has only one object, and
can be closed under subobjects even when C has more than one isomorphism class of object:

(a) Set R = Z, π = Z, and C = B(N), and let θ : B(N) −→ B(π) be the inclusion. Then
(C, θ) is a category over π. Let N be the Rπ-module with underlying group Q, where
π = Z acts via n(x) = 2nx. Let M be the RN-module with underlying group Z, where
n ∈ N acts in the same way. Thus M is a submodule of θ∗(N), but is not isomorphic
to an object in θ∗(Rπ-mod).

(b) Let C be a category with two objects x and y, where EndC(x) = {0x, 1x}, EndC(y) =
{0y, 1y}, and there are unique morphisms 0xy ∈ MorC(x, y) and 0yx ∈ MorC(y, x).
Composition is defined by multiplication of the labels 0 or 1. Set π = Z, and let
θ : C −→ B(Z) be the functor that sends all endomorphisms to 0 and the other two
morphisms to 1 and −1, respectively. Via generators and relations, one checks that
θ induces an isomorphism π1(|C|) ∼= Z. We are thus in the situation of Proposition
3.15(a) with H = 1. An RC-moduleM is isomorphic to an object in θ∗(Rπ-mod) if and
only if all endomorphisms induce the identity, in which case the other two morphisms
induce inverse isomorphisms between M(x) and M(y). So θ∗(Rπ-mod) is closed under
subobjects in this case.

4. Homology of loop spaces of categories over groups

We next show, in the situation of Proposition 3.15(a), that Ω-resolutions of Rπ with
respect to (C, θ) and H E π1(|C|) do exist, at least whenever R-plus constructions exist for
(|C|, H), and that the homology of an Ω-resolution is the R-homology of the loop space of
that R-plus construction (Theorem 4.5). For example, when k is a field of characteristic p
for some prime p and π is a finite p-group, the homology of the Ω-resolution is isomorphic
to H∗(Ω(|C|∧p ); k) (Theorem 4.7).

Throughout this section, we work mostly with simplicial sets and their realizations, re-
ferring to [GJ, Chapter I] and [Cu] for the definitions and basic properties that we use. In
particular, Kan fibrations of simplicial sets (called “fibre maps” by Curtis) play an important
role here, and we refer to [GJ, § I.3] and [Cu, Definition 2.5] for their definitions. We let |K|
denote the geometric realization of a simplicial set K, let C∗(K) denote its simplicial chain
complex, and write H∗(K) = H∗(C∗(K)) (∼= H∗(|K|)). Thus |C| = |N (C)| when C is a small
category and N (C) is its nerve. Note that if f : E −→ K is a Kan fibration and µ : L −→ K
is a simplicial map, then the pullback of f along µ is also a Kan fibration.

For a small category C, a C-diagram of simplicial sets is a functor from C to simplicial sets,
and a morphism of C-diagrams is a natural transformation of such functors. Let K denote
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the constant C-diagram that sends each object to the simplicial set K, and let f : K −→ L
denote the morphism induced by a map f : K −→ L of simplicial sets.

Let EC denote the C-diagram of simplicial sets where EC(c) = N (IdC↓c), and where a
morphism ϕ in C induces a map between spaces EC(−) by composition with ϕ. Then |EC|
is a free C-CW complex (see [DL, Definition 3.2]) and |EC(c)| is contractible for each c in
C, so |EC| is the “C-CW-approximation” of the trivial (point) C-space in the sense of [DL,
Definitions 3.6 and 3.8]. The forgetful functors IdC↓c → C induce a natural transformation
η : EC → N (C).

For each Kan fibration f : K −→ N (C), let µ : Ef −→ EC denote the pullback of K along
η. Thus Ef is the C-diagram of simplicial sets that sends an object c in C to the pullback
Ef (c) of the system

K
f−−−−−→ N (C) ηc←−−−−− EC(c).

Lemma 4.1. Fix a commutative ring R and a small category C, and let f : K → N (C)
be a Kan fibration. Then for each n ≥ 0, the RC-module Cn(Ef ;R) is projective, and the
morphism ω : Ef −→ K induces an isomorphism colim

C

(
C∗(Ef ;R)

) ∼= C∗(K;R).

Proof. For each n ≥ 0 and each object c ∈ C, Cn(EC;R)(c) has as basis the set of all
chains (c0 → c1 → · · · → cn → c). So in the notation of Lemma 3.5, the RC-module
Cn(EC;R) is the direct sum of one copy of FRC

cn for each n-simplex (c0 → c1 → · · · → cn) in
N (C). In particular, it is projective, and since colim

C
(FRC

cn ) ∼= R, the natural transformation
η : EC −→ N (C) induces an isomorphism colim

C
(Cn(EC;R)) ∼= Cn(N (C);R).

This proves the lemma when f is the identity fibration, and the general case is similar.
An n-simplex in the pullback Ef (c) is a pair (σ, c0 → · · · → cn → c) where σ ∈ Kn is
such that f(σ) = (c0 → · · · → cn). Hence the RC-module Cn(Ef ;R) is the direct sum
of copies of FRC

cn , one for each pair (σ, c0 → · · · → cn) as above, hence is projective, and
colim
C

(Cn(Ef ;R)) ∼= Cn(K;R). �

We next define a generalized version of Quillen’s plus construction, which plays a central
role in this section.

Definition 4.2. Fix a commutative ring R, a connected CW complex X, and a normal
subgroup H E π1(X). An R-plus construction for (X,H) consists of a CW complex X+

R

together with a map κ : X −→ X+
R , such that π1(κ) is surjective with kernel H, and H∗(κ;N)

is an isomorphism for each R[π1(X)/H]-module N .

A different generalization of Quillen’s plus construction, based on Bousfield localization
with respect to a homology theory h∗, has been studied by Mislin and Peschke [MP], Jin-Yen
Tai [Ta], and others. In the special case when h∗ = H∗(−;R) for a commutative ring R,
Bousfield localization seems to be an example of a plus construction in our sense, although
we have been unable to find references that prove this.

A few results about R-plus constructions are collected in the appendix. For example, we
show there that (X,H) has an R-plus construction if and only if char(R) 6= 0 and H is
R-perfect, or char(R) = 0 and H is strongly R-perfect. (Recall that H is strongly R-perfect
if it is R-perfect and Tor(H1(H;Z), R) = 0.) Also, the R-completion of a space in the sense
of Bousfield and Kan is an R-plus construction under certain hypotheses.

For n ≥ 0, let ∆n denote the n-simplex as a simplicial set, and let v0, . . . , vn be its
vertices. For 0 ≤ k ≤ n, let Λn

k ⊆ ∆n be the simplicial subset whose realization is the union
of all proper (closed) faces in ∆n containing vk. Thus a Kan fibration is a simplicial map
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f : K −→ L with the following lifting property: for each 0 ≤ k ≤ n, each σ : ∆n −→ L, and
each τ : Λn

k −→ K such that f ◦ τ = σ|Λnk , there is a simplicial map σ̃ : ∆n −→ K such that
σ̃|Λnk = τ and f ◦ σ̃ = σ. A Kan complex is a simplicial set K for which the (unique) map to
∆0 is a Kan fibration; equivalently, a simplicial set for which each simplicial map Λn

k −→ K
extends to ∆n (see [GJ, § I.3], [Cu, Definition 1.12], or [GZ, § IV.3]). For example, for each
space X, the singular simplicial set S.(X) is a Kan complex [GJ, Lemma I.3.3].

For any connected simplicial set K with basepoint x0 ∈ K0, let P(K) = P(K, x0) be the
simplicial set of paths in K based at x0. Thus an n-simplex in P(K) is a map of simplicial
sets ∆1×∆n −→ K that sends {v0}×∆n to x0 (more precisely, to the image of x0 under the
degeneracy map K0 −→ Kn). Let e = eK : P(K) −→ K denote the path-loop fibration over
K: the simplicial map that sends an n-simplex ∆1 ×∆n −→ K to the image of {v1} ×∆n.
If K is a Kan complex, then eK : P(K) −→ K is a Kan fibration and |P(K)| is weakly
contractible (see [GJ, Lemma I.7.5]). Thus the fibre of eK over x0 is the loop simplicial set
Ω(K, x0) based at x0 [GJ, p. 31]. Using the fact that the realization of a Kan fibration is a
Serre fibration (see [GJ, Theorem I.10.10]), one can show that |Ω(K, x0)| is weakly equivalent
to Ω(|K|, x0).

If f : K −→ L is a Kan fibration, and χ : L̂ −→ L is an arbitrary simplicial map, then the
pullback f̂ : K̂ −→ L̂ is defined levelwise: K̂n is the pullback (as a set) of fn : Kn −→ Ln
along χn : L̂n −→ Ln. It is immediate from the definitions that f̂ is also a Kan fibration.
By [GZ, Theorem III.3.1], pullbacks commute with geometric realization; i.e., |K̂| is the
pullback of |K| −→ |L| along |L̂|. Note, however, that this requires that the pullbacks of
realizations be taken in the category of compactly generated Hausdorff spaces (called “Kelley
spaces” in [GZ]).

Proposition 4.3. Fix a group π and a commutative ring R. Let (C, θ) be a category over π,

and set H = Ker[π1(|C|) π1(|θ|)−−−→ π]. Assume that κ : |C| −→ |C|+R is an R-plus construction
for (|C|, H), and let κ̂ : N (C) −→ S.(|C|+R) be the simplicial map adjoint to κ. Fix an object
c0 in C, regarded as a vertex in N (C), set x0 = κ̂(c0), and let e = eS.(|C|+R) be the path-loop
fibration over S.(|C|+R) based at x0. Let ν : AC −→ N (C) be the pullback of e along κ̂, and let
µ : Eν −→ EC denote the fibration of C-diagrams of simplicial sets obtained as the pullback
of ν along η. We thus have, for each object c in C, the following diagram of simplicial sets
with pullback squares

Eν(c) //

µc

��

AC

ν

��

// P(S.(|C|+R), x0)

e

��

EC(c) ηc
// N (C) κ̂

// S.(|C|+R) .

(4.4)

Then the following hold, where we regard the C-diagram Eν as a θ↓◦π-diagram via the forgetful
functor θ↓◦π −→ C.
(a) For each n ≥ 0, Cn(Eν ;R) is a projective RC-module.

(b) The complex θ∗(C∗(Eν ;R)) ∼= colim
θ↓◦π

(C∗(Eν ;R)) is acyclic, and ε induces an isomor-

phism H0

(
θ∗(C∗(Eν ;R))

) ∼= Rπ.

(c) For each n ≥ 0, Hn(Eν ;R) is locally constant on C and essentially constant on θ↓◦π,
and hence Hn(Eν ;R) ∼= θ∗(Ĥn) for some Rπ-module Nn.

(d) For each object c in C, |Eν(c)| is weakly equivalent to Ω(|C|+R).

In particular, by (a)–(c), C∗(Eν ;R) is an Ω-resolution of Rπ with respect to (C, θ).
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Proof. We write C∗(−) = C∗(−;R) and H∗(−) = H∗(−;R) for short, and refer to diagram
(4.4), where by construction, µc, ν, and e are all Kan fibrations with fibre Ω(S.(|C|+R)) ∼=
S.(Ω(|C|+R)). Then AC is R-acyclic since P(S.(|C|+R), x0) is contractible and H∗(κ̂;N) is an
isomorphism for each Rπ-module N . Point (a) follows from Lemma 4.1, applied with AC
and ν in the roles of K and f , and point (d) holds since each EC(c) is the nerve of a category
with final object and hence contractible.

Let σ : θ↓◦π −→ C be the forgetful functor, and consider the following cubical diagram
(for each object (c, g) in θ↓◦π):

Eν̃(c, g) ∼=
//

**

��

Eν(c)

''

µc

��

ÃC //

ν̃

��

AC

ν

��

E(θ↓◦π)(c, g)

**

Eσ(c,g)

∼=
// EC(c)

ηc
''

N (θ↓◦π)
N (σ)

// N (C)

Here, ÃC, ν̃, and Eν̃ are defined so that all of the “vertical” squares in this diagram are
pullbacks. (Note that the bottom square, and hence also the top square, need not be
pullbacks.) Also, Eσ(c,g) is an isomorphism of simplicial sets since for each morphism ϕ ∈
MorC(c′, c) and each g ∈ π, there is a unique g′ ∈ π such that ϕ ∈ Morθ↓◦π((c′, g′), (c, g)).
Hence Eν̃(c, g) ∼= Eν(c). So by Lemma 3.11(b), and Lemma 4.1 applied with θ↓◦π in the
role of C,

H∗
(
θ∗(C∗(Eν))

) ∼= H∗
(
colim
θ↓◦π

σ∗(C∗(Eν))
) ∼= H∗

(
colim
θ↓◦π

C∗(Eν̃)
) ∼= H∗

(
C∗(ÃC)

) ∼= H∗(ÃC) .

But |θ↓◦π| is the covering space of |C| with fundamental group H and covering group π
(Lemma 3.11(a)), the image of π1(|AC|) in π1(|C|) is contained in H = Ker(π1(|κ|)) since it
vanishes in π1(|C|+R), and hence |ÃC| ∼= π × |AC|. Since |AC| is R-acyclic, this proves (b):
θ∗(C∗(Eν)) is acyclic and H0(θ∗(C∗(Eν))) ∼= Rπ.

For each object c in C, let F (c) = ν−1(c) be the fibre of ν over the vertex c in N (C). Via
homotopy lifting, this is extended to a homotopy functor F from C to simplicial sets, and
this in turn defines a locally constant graded RC-module M∗ = H∗(F ). For each c in C, the
action of π1(|C|, c) onM∗(c) = H∗(F (c)) described in Lemma 3.4(a) is the usual action of the
fundamental group of the base on the homology of a fibre, and since ν is a pullback of e, this
action factors through π1(|C|+R) ∼= π. SoM∗ is essentially constant on θ↓◦π by Lemma 3.4(b).
Also, since each EC(c) contracts to the vertex (c, Idc) in a natural way, where ηc(c, Idc) = c,
we have homotopy equivalences Eν(c) ' F (c) natural in C up to homotopy. So H∗(Eν) ∼= M∗
as RC-modules. Hence by Lemma 3.11(c), H∗(Eν) ∼= θ∗(N∗) for some graded Rπ-module
N∗, finishing the proof of (c).

Since θ∗ is right exact,

N0
∼= θ∗θ

∗(N0) ∼= θ∗(H0(Eν)) ∼= H0

(
θ∗(C∗(Eν))

) ∼= Rπ,

and so H0(Eν) ∼= θ∗(Rπ). This defines a surjective homomorphism ε : C0(Eν) −→ θ∗(Rπ),
and finishes the proof that (C∗(Eν), ∂∗) −→ θ∗(Rπ) −→ 0 is an Ω-resolution of Rπ. �

Upon combining Proposition 4.3 with Proposition A.5, we get the following theorem.
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Theorem 4.5. Fix a group π and a commutative ring R. Let (C, θ) be a category over π, set

H = Ker[π1(|C|) π1(|θ|)−−−→ π], and assume that char(R) 6= 0 and H is R-perfect, or char(R) = 0
and H is strongly R-perfect. Then

(a) (|C|, H) admits an R-plus construction;

(b) the free Rπ-module Rπ has an Ω-resolution with respect to (C, θ); and
(c) for each R-plus construction |C|+R for (|C|, H), HΩ

∗ (C, θ;R) ∼= H∗(Ω(|C|+R);R).

Proof. By Proposition A.5, (|C|, H) admits an R-plus construction. Fix such a space |C|+R,
and let Eν be the functor from C to simplicial sets constructed as a pullback in diagram (4.4)
of Proposition 4.3.

By Proposition 4.3, C∗(Eν ;R) is an Ω-resolution of Rπ with respect to (C, θ), and also
H∗(Eν ;R) ∼= θ∗(N∗) for some graded Rπ-module N∗. By point (d) in the same proposition,
for each c in C, |Eν(c)| is weakly equivalent to Ω(|C|+R) and hence

HΩ
∗ (C, θ;R)

def
= θ∗(H∗(Eν ;R)) ∼= θ∗θ

∗(N∗) ∼= N∗
∼= θ∗(N∗)(c) ∼= H∗(|Eν(c)|;R) ∼= H∗(Ω(|C|+R);R). �

In the special case where π = π1(|C|), this takes the form:

Corollary 4.6. Let C be a small, connected category, and set π = π1(|C|). Then there is
a functor θ : C −→ B(π) such that π1(|θ|) is an isomorphism. For such θ, and for any
commutative ring R, the 4-tuple (RC-mod, Rπ-mod; θ∗, θ

∗) is an Ω-system, the free module
Rπ has an Ω-resolution with respect to (RC-mod, Rπ-mod; θ∗, θ

∗), and

HΩ
∗ (C, θ;R) ∼= H∗(Ω(|C|);R).

The R-plus construction of (N (C), H) as defined in Definition 4.2 is not in general unique,
not even up to homotopy. However, in certain cases, we can choose it to be a completion
or a fibrewise completion of |C| in the sense of Bousfield and Kan. Recall [BK, III.5.1] that
for R ⊆ Q, a group π is R-nilpotent if it has a central series for which each quotient is an
R-module.

Theorem 4.7. Let (C, θ) be a category over a group π, and set H = Ker[π1(|C|) π1(|θ|)−−−→ π].

(a) Assume that R is a subring of Q or R = Fp for some prime p, and that H is R-perfect.
Let |C|∧ be the fibrewise R-completion of |C| over Bπ. Then

HΩ
∗ (C, θ;R) ∼= H∗(Ω(|C|∧);R).

(b) If R ⊆ Q is such that H is R-perfect, and π is R-nilpotent with nilpotent action on
Hi(|θ↓◦π|;R) for each i, then

HΩ
∗ (C, θ;R) ∼= H∗(Ω(|C|∧R);R),

where |C|∧R is the R-completion of |C|.
(c) If for some prime p, k is a field of characteristic p, π is a finite p-group, and H is

p-perfect, then
HΩ
∗ (C, θ; k) ∼= H∗(Ω(|C|∧p ); k)

where |C|∧p is the p-completion of |C|.

Proof. By Lemma A.8, the natural map from |C| to |C|∧, |C|∧R, or |C|∧p is an R- or k-plus
construction for (|C|, H) under the hypotheses of (a), (b), or (c), respectively. So this theorem
follows as a special case of Theorem 4.5(c). �
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The following corollary includes the case proven by Benson in [Be2]. Note that when G is
a finite group, its quotient by the maximal normal p-perfect subgroup is always a p-group.

Corollary 4.8. Fix a prime p. Let G be a (possibly infinite) discrete group, and let Op(G) be
the maximal normal p-perfect subgroup of G. Set π = G/Op(G), let χ : G −→ π be the natural
surjection, and assume that π is a finite p-group. Then for each field k of characteristic p,
H∗(Ω(BG∧p ); k) ∼= HΩ

∗ (B(G),B(χ); k): the homology of an Ω-resolution of kπ with respect to
(B(G),B(χ)) as a category over π.

Proof. This is just Theorem 4.7(c) when C = B(G). �

The results in this section lead in a natural way to the following question.

Question 4.9. Are there more general conditions on an Ω-system (A,B; θ∗, θ
∗) and X ∈

P(B) under which HΩ
∗ (A,B;X), or a functorial image, describes the homology of a space

(e.g., of a loop space)? In particular, can the homology of the Ω-resolutions of Proposition
3.6(b) be realized as the homology of some space determined by the Ω-systems?

5. Examples: Ω-resolutions for some p-local compact groups

One problem that motivated this work was that of finding a way to characterize the p-
compact groups among the more general p-local compact groups. As already noted in the
introduction, we did not succeed in doing so. The aim of this section is to give some very
simple examples that demonstrate how complicated this problem can be, for example, by
analyzing some p-local compact groups that are not p-compact. We also give some results,
and one explicit computation, that follow from knowing that Ω-resolutions determine the
homology of loop spaces without having to explicitly construct the resolutions themselves.

Throughout this section, we fix a prime p and a field k of characteristic p. We first recall
some definitions. A p-compact group consists of a loop space X and its classifying space
BX, such that X ' Ω(BX), H∗(X;Fp) is finite (in particular, Hn(X;Fp) = 0 for n large
enough), and BX is p-complete. This concept was first introduced by Dwyer and Wilkerson
[DW], and developed by them and others in several papers. If G is a compact Lie group
whose group of components π0(G) is a p-group, then Ω(BG∧p ) is a p-compact group, but this
need not be the case if π0(G) is not a p-group. Every p-compact group contains a maximal
torus with properties very similar to those of maximal tori in compact Lie groups.

A p-local compact group consists of a discrete p-toral group S (i.e., an extension of a
discrete p-torus (Z/p∞)r for some r ≥ 0 by a finite p-group), together with a fusion system
F over S and a linking system L associated to F . We refer to [BLO, Definitions 2.2 and 4.1]
for the precise definitions of fusion and linking systems in this context; here, we just note
that F and L are categories, Ob(F) is the set of subgroups of S, each morphism in F is a
homomorphism between subgroups, and there is a functor L −→ F that is an inclusion on
objects and surjective on each morphism set. The classifying space of such a triple (S,F ,L)
is the p-completed space |L|∧p . By [BLO, §§ 9–10], each compact Lie group G or p-compact
group X has a maximal discrete p-toral subgroup S (unique up to conjugacy), together with
a fusion system F and a linking system L such that |L|∧p is homotopy equivalent to BG∧p or
BX, respectively.

By [BLO, Proposition 4.4], for each p-local compact group (S,F ,L), the fundamental
group of the classifying space |L|∧p is a finite p-group. So as a special case of Theorem 4.7(c),
we get:
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Theorem 5.1. Let (S,F ,L) be a p-local compact group, and set π = π1(|L|∧p ). Then there
is θ : L −→ B(π) such that (L, θ) is a category over π and

H∗(Ω(|L|∧p );Fp) ∼= HΩ
∗ (L, θ;Fp).

If Γ is an extension of a discrete p-torus by a finite p-group, then BΓ∧p is the classifying
space of a p-compact group. In contrast, if Γ is an extension of a discrete p-torus by an
arbitrary finite group, then BΓ∧p need not be the classifying space of a p-compact group (nor
the p-completion of BG for a compact Lie group G), but it is always the classifying space of
a p-local compact group. For example, if p is an odd prime and r ≥ 2, and Γ = (Z/p∞)roC2

where C2 acts by inverting all elements of (Z/p∞)r, then Ω(BΓ∧p ) is not a p-compact group
since its mod p homology is nonvanishing in arbitrarily large degrees (see Example 5.20 for
the case r = 2).

What we want to do now is to give some explicit examples of such Ω-resolutions. We
focus on p-local compact groups associated to extensions of discrete p-tori by finite groups,
especially by those of order prime to p.

Proposition 5.2. Let T E Γ be a pair of groups such that T ∼= (Z/p∞)r for some r ≥ 1 and
Γ/T is finite. Let Op(Γ ) E Γ be the smallest normal subgroup containing T and of p-power
index in Γ , and set π = Γ/Op(Γ ). Then the following hold.

(a) The subgroup Op(Γ ) is p-perfect, the spaces BT∧p , BOp(Γ )∧p , and BΓ∧p are all p-complete,
and BT∧p ' K(Zp, 2)r and BOp(Γ )∧p are simply connected. The sequence BOp(Γ )∧p −→
BΓ∧p −→ Bπ is a homotopy fibration sequence, and so π1(BΓ∧p ) ∼= π.

(b) There is a p-local compact group (S,F ,L) associated to Γ , where T ≤ S ≤ Γ and
S/T ∈ Sylp(Γ/T ), and where |L|∧p ' BΓ∧p .

(c) If Ω(BΓ∧p ) is a p-compact group, then Op(Γ/T ) has order prime to p.

Proof. (a) A subgroup H ≤ Γ containing T has p-power index in Γ if and only if H/T has
p-power index in the finite group Γ/T . So Op(Γ )/T = Op(Γ/T ), and in particular, Op(Γ )/T
is p-perfect. Since T is also p-perfect (being p-divisible), Op(Γ ) is p-perfect.

Since T and Op(Γ ) are p-perfect, BT∧p and BOp(Γ )∧p are p-complete and simply connected
by [BK, Proposition VII.3.2]. Also, B(Z/p∞)∧p ' K(Zp, 2) by [BK, VI.2.1–2.2].

Now, BOp(Γ )∧p −→ BΓ∧p −→ Bπ is a homotopy fibration sequence by [BK, Example
II.5.2(iv)] (applied with R = Fp) and since π is a finite p-group, and so π1(BΓ∧p ) ∼= π. By
the same argument applied to the completed sequence, (BΓ∧p )∧p ' BΓ∧p , and so BΓ∧p is
p-complete.

(b) Embed T in GLr(C) as the subgroup of diagonal matrices of p-power order. Then via
induction, Γ embeds as a subgroup of GLr·|Γ/T |(C), and hence is a linear torsion group in
the sense of [BLO, § 8]. So by [BLO, Theorem 8.10], it has an associated p-local compact
group (S,F ,L), where T ≤ S ≤ Γ , S/T ∈ Sylp(Γ/T ), and BΓ∧p ' |L|∧p . Also, F = FS(Γ ):
the fusion system over S whose morphisms are those homomorphisms between subgroups of
S induced by conjugation in Γ .

(c) Now assume that Ω(BΓ∧p ) is a p-compact group; i.e., that H∗(Ω(BΓ∧p );Fp) is finite.
Let Op(Γ ) E Γ and π = Γ/Op(Γ ) be as in (a). Then BOp(Γ )∧p is the homotopy fibre of
the natural map BΓ∧p −→ Bπ, and hence is equivalent to the covering space of BΓ∧p with
covering group π. So Ω(BOp(Γ )∧p ) also has finite mod p homology. We can thus assume that
Γ = Op(Γ ), and hence is p-perfect by (a). In particular, Ω(BΓ∧p ) is connected. If we now
show that S = T , then Γ/T has order prime to p since S/T ∈ Sylp(Γ/T ).
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For a finite p-group Q, set Rep(Q,L) = Hom(Q,S)/∼, where ρ1 ∼ ρ2 if ρ1 = αρ2 for some
α ∈ IsoF(ρ2(Q), ρ1(Q)). In other words, it is the set of Γ -conjugacy classes in Hom(Q,S).
Let [BQ,BΓ∧p ] be the set of homotopy classes of unpointed maps BQ −→ BΓ∧p . By [BLO,
Theorem 6.3(a)], there is a bijection Rep(Q,L) −→ [BQ,BΓ∧p ] that sends the conjugacy
class of a homomorphism ρ to the homotopy class of Bρ.

By [DW, Proposition 5.6] and since Ω(BΓ∧p ) is connected, for each n ≥ 1 and each
f : BCpn −→ BΓ∧p , f extends (up to homotopy) to a map from BCpn+1 to BΓ∧p . Hence each
ρ ∈ Hom(Cpn , S) extends, up to Γ -conjugacy, to some ρ ∈ Hom(Cpn+1 , S). Since no element
of S r T is infinitely p-divisible (and they all have p-power order), this shows that S = T ,
and thus that Γ/T has order prime to p. �

In fact, whenever T E Γ are such that T is a discrete p-torus and Γ/T is finite, Ω(BΓ∧p )
is a p-compact group if and only if Op(Γ/T ) has order prime to p and AutOp(Γ/T )(T ) is
generated by pseudoreflections on T . The necessity of this last condition was shown by Dwyer
and Wilkerson [DW, Theorem 9.7.ii]. Conversely, Clark and Ewing [CE, Corollary, p. 426]
showed that if Op(Γ/T ) has order prime to p and its action is generated by pseudoreflections,
then H∗(BΓ∧p ;Fp) is a polynomial algebra over Fp, and hence the (co)homology of its loop
space is finite.

Remark 5.3. Assume T E Γ are as in Proposition 5.2, where in addition, p - |Γ/T |
and the conjugation action of Γ/T on T is faithful (i.e., CΓ (T ) = T ). Then S = T ,
Ob(L) = {T}, and AutL(T ) = Γ , so that L ∼= B(Γ ), π1(|L|) ∼= Γ , and π1(|L|∧p ) = 1 since
Γ is p-perfect. Thus by Proposition 3.15 and Theorem 4.7(b), the Ω-system associated to
(S,F ,L) is (kΓ -mod, k-mod; θ∗, θ

∗), where θ∗(M) = colim
Γ

(M) for a kΓ -module M and θ∗

sends a k-module N to the corresponding kΓ -module with trivial action; and H∗(Ω(|L|∧p ); k)
is the homology of an Ω-resolution of k.

Note also, in the situation of Remark 5.3, that since |Γ/T | has order prime to p, the
group T is uniquely |Γ/T |-divisible. Hence H i(Γ/T ;T ) = 0 for all i > 0, and Γ must be a
semidirect product: Γ ∼= T oH where H ∼= Γ/T .

We also note the following:

Remark 5.4. Let Γ be a linear torsion group: a subgroup of GLn(K), for some field K of
characteristic different from p, all of whose elements have finite order. By [BLO, Theorem
8.10], there is a p-local compact group (S,F ,L), where S ≤ Γ is a maximal discrete p-
toral subgroup and |L|∧p ' BΓ∧p . Set π = π1(BΓ∧p ) ∼= π1(|L|∧p ) (a finite p-group by [BLO,
Proposition 4.4]), and let θ : B(Γ ) −→ B(π) and η : L −→ B(π) be functors that induce
these isomorphisms. By Theorem 4.7(c), HΩ

∗ (B(Γ ), θ; k) ∼= HΩ
∗ (L, η; k); i.e., Ω-resolutions

with respect to these two different Ω-systems have the same homology.

Throughout the rest of the section, whenever Γ and π = Γ/Op(Γ ) are as in Proposition
5.2, we write “Ω-resolution of kπ with respect to Γ ” to mean an Ω-resolution of kπ with
respect to the category (B(Γ ), θ) over π or the Ω-system (kΓ -mod, kπ-mod; θ∗, θ

∗), where
θ : B(Γ ) −→ B(π) is the natural projection.

5.1. Ω-resolutions with respect to discrete p-tori.
Let T E Γ be a pair of groups, where T ∼= (Z/p∞)r is a discrete p-torus of rank r ≥ 1

and Γ/T is finite of order prime to p. Thus Γ = T o H for some finite subgroup H ≤ Γ
of order prime to p (see the paragraph after Remark 5.3). We regard the group ring kT as
a left kΓ -module, where for t ∈ T , h ∈ H, and x ∈ kT , t(x) = tx and h(x) = hxh−1. We
will construct complexes of projective kΓ -modules which, as complexes of kT -modules, are
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Ω-resolutions of k with respect to T . The kΓ -module structure on these complexes will be
used in the next two subsections.

Set V = Ω1(T ) ∼= (Cp)
r. For each n ≥ 1, set Tn = Ωn(T ) ∼= (Cpn)r (thus V = T1), and

regard kTn as a subring of kT . Let I(kT ) ≤ kT and I(kTn) ≤ kTn be the augmentation
ideals.

For each n ≥ 1, and each kTn-module M and proper submodule M0 < M , M/M0 has a
nontrivial quotient module with trivial Tn-action. Hence I(kTn)·(M/M0) < M/M0, and so
M0 + I(kTn)·M < M .

For each n ≥ 0, let ϕn : V −→ I(kTn)/I(kTn)2 be the map ϕn(t) = [t − 1]. This is a ho-
momorphism of groups, and extends to a kH-linear isomorphism k⊗Fp V

∼= I(kTn)/I(kTn)2.
Lift ϕn to an FpH-linear homomorphism ϕ̃n : V −→ I(kTn) (the ring FpH is semisimple
since p - |H|), and extend that to a kΓ -linear homomorphism

ϕn : kT ·V def
= kT ⊗Fp V −−−−−−→ kT

by setting ϕn(ξ ⊗ v) = ξ·ϕ̃n(v) for ξ ∈ kT and v ∈ V . Since ϕn induces an isomorphism
k ⊗ V ∼= I(kTn)/I(kTn)2 by assumption, ϕn(kTn·V ) + I(kTn)2 = I(kTn), and so

ϕn(kTn·V ) = I(kTn) (5.5)

by the last paragraph (applied with ϕn(kTn·V ) and I(kTn) in the roles ofM0 andM). Hence
Im(ϕn) = kT ·I(kTn).

In particular, for each n ≥ 1, Im(ϕn) ≤ I(kT )·Im(ϕn+1). Since kT ·V is projective as a
kΓ -module, there is a kΓ -linear homomorphism ψn : kT ·V −→ kT ·V such that

ϕn+1 ◦ ψn = ϕn. (5.6)

Note that
ψn(kT ·V ) ≤ I(kT )·V. (5.7)

Let Λm
R (M) denote the m-th exterior power over a commutative ring R of an R-module

M . Define, for each 0 ≤ m ≤ r and each n ≥ 1,

Dm = Λm
kT

(
kT ·V

) ∼= kT ⊗Fp Λm
Fp(V ) ,

regarded as a kΓ -module. In particular, D0 = kT . For each n ≥ 1 and each 1 ≤ m ≤ r,
define a boundary map ∂(n)

m : Dm −→ Dm−1 by setting

∂(n)
m

(
v1 ∧ v2 ∧ · · · ∧ vm

)
=

m∑
i=1

(−1)i−1ϕn(vi)·v1 ∧ · · · v̂i · · · ∧ vm

for v1, . . . , vm ∈ kT ·V . Then

D(n) def
= (D∗, ∂

(n)
∗ ) =

(
0 −→ Dr

∂
(n)
r−−−→ Dr−1 −−−→ · · · −−−→ D1

∂
(n)
1−−−→ kT −→ 0

)
is a chain complex of projective kΓ -modules, and

{
Λm(ψn)

}r
m=0

defines a morphism of chain
complexes Ψ(n) : D(n) −→ D(n+1) where Λ0(ψn) = IdkT .

Fix n ≥ 1, 0 ≤ m ≤ r, and x ∈ Dm = Λm
kT (kT ·V ) such that ∂(n)

m (x) = 0. For each v ∈ V ,

∂
(n)
m+1(x ∧ v) = ∂(n)

m (x) ∧ v + (−1)mϕn(v)·x = (−1)mϕn(v)·x.

Thus ϕn(v)·[x] = 0 in Hm(D(n)) for each v ∈ V , so Im(ϕn) annihilates H∗(D(n)). Since
Im(ϕn) ≥ I(kTn), we now conclude that

for each n ≥ 1, Tn acts trivially on the homology of D(n). (5.8)
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As usual, whenever ψ∗ : (C∗, ∂∗) −→ (C ′∗, ∂
′
∗) is a morphism of chain complexes, the map-

ping cone of ψ is the chain complex

Cψ =
(
· · ·

(
∂′4 −ψ3

0 ∂3

)
−−−−−−−→ C ′3 ⊕ C2

(
∂′3 ψ2

0 ∂2

)
−−−−−−→ C ′2 ⊕ C1

(
∂′2 −ψ1

0 ∂1

)
−−−−−−−→ C ′1 ⊕ C0

(∂′1,ψ0)
−−−−−→ C ′0

)
.

The signs are chosen so that C ′∗ ≤ Cψ as chain complexes, and Cψ/C
′
∗
∼= ΣC∗. See [We,

§ 1.5] for more details.
Let D be the mapping cone of the chain map

Ψ =
(
Id−⊕Ψ(n)

)
:
∞⊕
n=1

D(n) −−−−−−−−→
∞⊕
n=1

D(n)

(see [We, § 1.5]). More explicitly,

Ψ(x1, x2, x3, . . . ) = (x1, x2 −Ψ(1)(x1), x3 −Ψ(2)(x2), . . . ).

Since Ψ is injective, H∗(D) ∼= H∗(Coker(Ψ)), where Coker(Ψ) ∼= colim(D(n),Ψ(n)). So

H∗(D) ∼= colim
(
H∗(D(1))

H∗(Ψ(1))−−−−−→ H∗(D(2))
H∗(Ψ(2))−−−−−→ H∗(D(3)) −−−−→ · · ·

)
,

since colimits are exact. Also, T acts trivially on H∗(D) by (5.8).
Now, H∗(k ⊗kT D) is isomorphic to the homology of the cokernel of the chain map

Ψ =
(
Id−⊕Ψ(n)

)
:
∞⊕
n=1

k ⊗kT D(n) −−−−−−−−→
∞⊕
n=1

k ⊗kT D(n) .

Recall that D(n) =
(
Λm
kT (kT ·V ), ∂

(n)
m

)r
m=0

and Ψ(n) =
{

Λm(ψn)
}r
m=0

. Here, Λ0(ψn) = Id,
while by (5.7), (Λm(ψn))(Λm

kT (kT ·V )) ≤ I(kT )·Λm
kT (kT ·V ) for m > 0. So each Ψ(n) is zero

in positive degrees and the identity in degree 0, and hence the quotient complex Coker(Ψ)
is zero in positive degrees and isomorphic to k in degree 0. Thus k ⊗kT D is acyclic with
H0(k ⊗kT D) ∼= k. Also,

H0(D) ∼= k ⊗kT H0(D) ∼= H0(k ⊗kT D) ∼= k : (5.9)

the first isomorphism since T acts trivially on H0(D) and the second since (k⊗kT −) is right
exact.

We have now proven:

Proposition 5.10. For k, Γ , and D as above, D is a chain complex of length r + 1 of
projective kΓ -modules, and D ε−−→ k −→ 0 is an Ω-resolution of k with respect to T .

5.2. Ω-resolutions with respect to the Sullivan spheres.
We now restrict to the special case of Remark 5.3 where p is odd and r = 1. Thus T E Γ

where T ∼= Z/p∞, p - |Γ/T |, and CΓ (T ) = T . Then Aut(T ) ∼= (Zp)× ∼= Cp−1 ×Zp, and since
Γ/T is finite and acts faithfully on T , it must be cyclic of order dividing p − 1. Again, we
will construct explicit Ω-resolutions of k with respect to Γ .

Spaces BΓ∧p for Γ of this form are the simplest and oldest examples constructed of p-
compact groups (other than compact Lie groups). They were originally constructed from
the space K(Zp, 2) (' B(Z/p∞)∧p ), by taking the Borel construction B(p,m) of the faithful
action of a cyclic group Cm (for m|(p − 1)) on K(Zp, 2). The p-completion of B(p,m) is a
classifying space for the p-completed sphere (S2m−1)∧p , and hence B(p,m)∧p is the classifying
space of a p-compact group that is often referred to as a “Sullivan sphere”. What we will



32 C. BROTO, R. LEVI, AND B. OLIVER

show is that not only do these spaces have finite dimensional homology, but also that the
associated Ω-systems have Ω-resolutions of finite length.

Write Γ = T oH ∼= Z/p∞oH, where H is cyclic of order m|(p− 1). Let χ : H −→ F×p be
the injective homomorphism such that hth−1 = tχ(h) for all h ∈ H and all t ∈ V = Ω1(T ).
Set kT(1) = kT ·V = kT ⊗k V as a kΓ -module, which we identify with kT but with H-action
h(x) = χ(h)·hxh−1 for h ∈ H and x ∈ kT . More generally, for arbitrary j ≥ 0, we write

k(j) = V ⊗j and kT(j) = kT ⊗k k(j)

as kΓ -modules. Thus k(j)
∼= k and kT(j)

∼= kT as kT -modules, but h ∈ H acts on the
first via multiplication by χ(h)j and on the second via that and conjugation. We also write
kT = kT(0) and k = k(0) for short.

Let ϕn ∈ HomkΓ (kT(1), kT ) and ψn ∈ HomkΓ (kT(1), kT(1)) be as in Section 5.1, and set
µn = ϕn(1) and νn = ψn(1). Then for all n ≥ 1,

µn+1νn = µn and kTn·µn = I(kTn), (5.11)

the first since ϕn+1 ◦ ψn = ϕn by (5.6) and the second since ϕn(kTn·V ) = I(kTn) by (5.5).
Also,

h(µn) = χ(h)·µn (5.12)
for all n ≥ 1 and h ∈ H since ϕn is kΓ -linear.

The complex D of Proposition 5.10 has the form

D =
(

0 −−−→
∞⊕
n=1

kT(1)·an
∂2−−−−→

∞⊕
n=1

kT(1)·an ⊕
∞⊕
n=1

kT ·bn
∂1−−−−→

∞⊕
n=1

kT ·bn −−−→ 0
)
,

where

∂2(an) = −(an − νnan+1) + µnbn , ∂1(an) = µnbn , and ∂1(bn) = bn − bn+1.

Since
(⊕∞

n=1 kT ·bn
(bn 7→bn−bn+1)−−−−−−−−−−−→

⊕∞
n=1 kT ·bn

)
is injective with cokernel kT , the complex

D is equivalent to

D =
(

0 −−−→
∞⊕
n=1

kT(1)·an
∂2−−−−−−→

∞⊕
n=1

kT(1)·an
∂1−−−−−−→ kT(0)·a0 −−−→ 0

)
,

where this time
∂2(an) = an − νnan+1 and ∂1(an) = µna0.

By (5.11) and (5.12), ∂1 and ∂2 are kΓ -linear and ∂1 ◦ ∂2 = 0.
Recall that D is an Ω-resolution with respect to T . We now want to identify H1(D) more

precisely, and use this complex to construct an Ω-resolution with respect to Γ . To do this,
define elements σn (all n ≥ 1) and ν0 in kTn by setting

σn =
∑
t∈Tn

t (all n ≥ 1) and ν0 = σ1. (5.13)

To better understand the relation between the µn, νn, and σn, fix n ≥ 2 and a generator
tn ∈ Tn, and set X = tn−1 ∈ I(kTn). Then Xpn = tp

n

n −1 = 0 and {1, X,X2, . . . , Xpn−1} is a
basis for kTn, so kTn ∼= k[X]/(Xpn) as rings, and each ideal in kTn is a power of I(kTn) = (X).
Thus (µn) = (X), (µn−1) = (tpn − 1) = (X)p, and hence (νn−1) = (X)p−1 by (5.11). Also,
(σn) = (X)p

n−1 and (σn−1) = (X)p(p
n−1−1) (see (5.13)), so (νn−1σn−1) = (X)p

n−1 = k·σn.
Thus for each n ≥ 2, νn−1σn−1 = an·σn for some 0 6= an ∈ k. To simplify notation, we can
replace the µn (all n ≥ 2) and νn (all n ≥ 1) by appropriate scalar multiples, and arrange
that

for each n ≥ 1, νn−1σn−1 = σn . (5.14)
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Each element in Coker(∂2) is the class of ξ·an for some n and some ξ ∈ kTm, and we can
always arrange (modulo Im(∂2)) that m = n. If in addition, ∂1(ξ·an) = 0, then µnξ = 0,
so I(kTn)·ξ = 0 by (5.11), and hence ξ = a·σn for some a ∈ k. Thus H1(D) is generated
by the classes [σnan] for n ≥ 1, where for each n, [σnan] = [σnνnan+1] = [σn+1an+1] by the
definition of ∂2 and (5.14). Also, h(σn) = χ(h)σn in kT(1), so H1(D) ∼= k(1) as kΓ -modules.
To summarize,

H0(D) =
〈
[a0]
〉 ∼= k and H1(D) =

〈
[σ1a1]

〉 ∼= k(1) . (5.15)

Thus D is an Ω-resolution of k with respect to Γ if H = 1, but is not an Ω-resolution
if H 6= 1 since Γ acts nontrivially on H1(D) (i.e., condition (Ω-3) fails). In this case, we
construct an Ω-resolution by “pasting together” several copies of the above sequence.

Define a complex C∞ of projective kΓ -modules of infinite length

C∞ =
(
· · · −−−→

∞⊕
n=0

kT(3)·an
∂6−−−→

∞⊕
n=1

kT(3)·an
∂5−−−→

∞⊕
n=0

kT(2)·an
∂4−−−→

∞⊕
n=1

kT(2)·an
∂3−−−→

∞⊕
n=0

kT(1)·an
∂2−−−→

∞⊕
n=1

kT(1)·an
∂1−−−→ kT(0)·a0 −−−→ 0

)
,

where ∂1(an) = µna0 (as in D), and for i ≥ 2,

∂i(an) =

{
an − νnan+1 if i is even
µn(a0 + σ1a1 + σ2a2 + · · ·+ σn−1an−1) if i is odd.

Here, it is understood that a0 = 0 in the terms of odd degree. By (5.11), (5.12), (5.13), and
(5.14), all boundary maps are kΓ -linear and ∂i−1 ◦ ∂i = 0 for all i ≥ 2.

For each j ≥ 1, let Cj ⊆ C∞ be the subcomplex consisting of all terms in C∞ of degree
at most 2j − 1 together with the summands

⊕∞
n=1 kT(j)·an in degree 2j (thus omitting only

the summand kT(j)·a0). Thus C1
∼= D. More generally, if we set C0 = 0, then for each

j ≥ 0, Cj+1/Cj is isomorphic to the 2j-fold suspension of D tensored by k(j), and hence
by (5.15) has homology isomorphic to k(j+1) in degree 2j + 1 and k(j) in degree 2j. If
j ≥ 1, then the homology of Cj+1/Cj in degree 2j is represented by the class of a0 in that
degree, ∂2j(a0) = −ν0a1 = −σ1a1, and by (5.15) again, this represents the homology class in
Cj/Cj−1 of degree 2j − 1. Together, these observations imply that C∞ is acyclic, and that
for each j ≥ 1,

H0(Cj) ∼= k, H2j−1(Cj) ∼= k(j), and Hi(Cj) = 0 for i 6= 0, 2j − 1.

Set R = Cm (recall m = |H|). We claim that R −→ k −→ 0 is an Ω-resolution with
respect to Γ . Condition (Ω-1) clearly holds (each of the terms is projective), and Γ acts
trivially on H∗(R) since χm = 1. It remains to show (Ω-2): that k ⊗kΓ R is acyclic. Since
k ⊗kΓ kT(i)

∼= k whenever m|i and is zero otherwise,

k ⊗kΓ R ∼=
(

0 −→
∞⊕
n=1

k·an
∂2m=Id−−−−→

∞⊕
n=1

k·an −→ 0 −→ · · · −→ 0 −→ k −→ 0
)

and is acyclic.
We have now shown:

Proposition 5.16. Let Γ = T o H, where T ∼= Z/p∞ and H acts on Ω1(T ) via an in-
jective character χ : H −→ F×p . Set m = |H|. Then the complex R −→ k −→ 0 defined
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above is an Ω-resolution of k with respect to the Ω-system (kΓ -mod, k-mod; θ∗, θ
∗), and

H∗(Ω(BΓ∧p ); k) ∼= H∗(S
2m−1; k).

Note that Cj is not an Ω-resolution when j > m since k⊗kΓCj has nonzero homology in de-
gree 2m (the class of a0), and is not an Ω-resolution when 1 ≤ j < m since Γ acts nontrivially
on H2j−1(Cj). Note also that since Ω(BΓ∧p ) has nonzero homology in degree 2m− 1, R has
the shortest possible length of any Ω-resolution of k with respect to (kΓ -mod, k-mod; θ∗, θ

∗).
The equivalence Ω(BΓ∧p ) ' (S2m−1)∧p follows from [Su, pp. 103–105] (from the proof of the
proposition), and since BT∧p ' K(Zp, 2) by Proposition 5.2(a).

We will see later (Proposition 5.21 and Remark 5.22) that there are similar constructions
of Ω-resolutions when T E Γ are such that T ∼= (Z/p∞)r for r > 1 and p - |Γ/T |.

Remark 5.17. When H 6= 1, the parameters µn and νn can be defined more explicitly as
follows. Fix generators tn ∈ Tn for each n ≥ 1, chosen so that (tn)p = tn−1 when n ≥ 2,
and set µn =

∑
h∈H χ(h)−1t

χ(h)
n ∈ kTn for all n ≥ 1. It is straightforward to check that

h(µn) = χ(h)µn for h ∈ H, that kTn·µn = I(kTn), and that (µ1)p = 0 while (µn)p = µn−1

for n ≥ 2. Also, (µn)p−1σn−1 = σn, so we can set νn−1 = (µn)p−1 for each n, and use these
parameters to define the Ω-resolution R.

5.3. Groups with discrete p-tori of index prime to p.
We now make some more computations of Ω-homology in the situation of Proposition 5.2:

this time by using the existence of Ω-resolutions without constructing them explicitly. The
key to doing this is the following spectral sequence.

Lemma 5.18. Let T E Γ be a pair of groups such that T is p-perfect. Let (C∗, ∂∗) be
a positively graded chain complex of kΓ -modules that are projective as kT -modules, and
assume that T acts trivially on H∗(C∗, ∂∗). Then there is a first quadrant spectral sequence
of k[Γ/T ]-modules of the form

E2
ij = Hi(k ⊗kT C∗)⊗k Hj(Ω(BT∧p ); k) =⇒ Hi+j(C∗)

where the action of Γ/T on H∗(Ω(BT∧p ); k) is that induced by conjugation on T .

Proof. Since BT∧p is simply connected by Proposition 5.2(a), the space Ω(BT∧p ) is connected.
Consider the following diagram of spaces

LpT //

��

ApT //

ν

��

P(BT∧p )

��

ET // BT // BT∧p

where BT = |B(T )| and ET is its universal covering space, P(BT∧p ) is the space of paths
in BT∧p originating at the image of the (unique) vertex in BT , both squares are pullbacks,
and thus the vertical maps are all fibrations with fibre Ω(BT∧p ). In particular, ApT is the
homotopy fibre of the completion map, and is mod p acyclic sinceH∗(BT ;Fp) ∼= H∗(BT

∧
p ;Fp)

and BT∧p ' K(Zp, 2)r is simply connected. Also, LpT ' Ω(BT∧p ) since ET ' ∗, and T acts
freely on LpT with orbit space ApT .

Now, Γ acts on the right on all of these spaces via the conjugation action. More precisely,
we identify the vertices in ET with T , and let Γ act on ET by setting x ∗ g = g−1xg for
x ∈ T and g ∈ Γ , in contrast to the free right action of T defined by x·t = xt. This induces
actions of Γ on BT , BT∧p , and P(BT∧p ), and hence on LpT ; and the actions of T and Γ on
ET and on LpT satisfy the relation ((x ∗ g)·t) ∗ g−1 = x·(gtg−1) for g ∈ Γ and t ∈ T .



LOOP SPACE HOMOLOGY OF A SMALL CATEGORY 35

In particular, C∗(LpT ; k) is a complex of k[T o Γ ]-modules that are free as kT -modules,
and C∗(ApT ; k) ∼= C∗(L

pT ; k) ⊗kT k is an acyclic complex of kΓ -modules. The action of Γ
on H∗(LpT ; k) restricts to the conjugation action of T = π1(BT ) on the fibre of ν over the
basepoint, and this action is trivial since ν is pulled back from the simply connected space
BT∧p . Thus the action of Γ on H∗(LpT ; k) ∼= H∗(Ω(BT∧p ); k) factors through Γ/T .

Consider the complex C∗(LpT ; k)⊗kT C∗. This is a double complex of kΓ -modules, where
g(x ⊗ y) = x ∗ g−1 ⊗ gy for g ∈ Γ . This action of Γ is well defined on the tensor product
over kT , since for g ∈ Γ and t ∈ T ,

g(xt⊗ t−1y) = (xt) ∗ g−1 ⊗ gt−1y = (x ∗ g−1)·(gtg−1)⊗ gt−1y

= x ∗ g−1 ⊗ (gtg−1)gt−1y = x ∗ g−1 ⊗ gy = g(x⊗ y)

by the relation shown above. As usual, we consider the two spectral sequences of kΓ -modules
induced by this double complex.

If we first take homology in the left-hand factor, we obtain

E1
i,j
∼= Hj(Ω(BT∧p ); k)⊗kT Ci and E2

i,j
∼= Hj(Ω(BT∧p ); k)⊗k Hi(k ⊗kT C∗),

where the first isomorphism holds since each Ci is projective as a kT -module, and the second
since T acts trivially on Ω(BT∧p ). On the other hand, if we first take homology of the right-
hand factor, we obtain

Ē1
i,j
∼= Cj(L

pT ; k)⊗kT Hi(C∗) ∼=
(
Cj(L

pT ; k)⊗kT k
)
⊗Hi(C∗),

the first isomorphism since each Cj(LpT ; k) is free as a kT -module, and the second since the
action of T on the homology of C∗ is trivial. Then

Ē2
i,j
∼=

{
Hi(C∗) if j = 0

0 if j > 0

since C∗(LpT ; k)⊗kT k is isomorphic to C∗(ApT ; k) and hence is acyclic. �

In the following lemma, when we say that a graded vector space over k is “finite dimen-
sional”, we mean that it is finite dimensional in each degree and is nonzero in only finitely
many degrees.

Lemma 5.19. Fix a pair of groups T E Γ , where T ∼= (Z/p∞)r for some r ≥ 1 and Γ/T
is finite. Let Op(Γ ) E Γ and π = Γ/Op(Γ ) be as in Proposition 5.2 (thus Op(Γ ) ≥ T and
π is a finite p-group), set π = Γ/Op(Γ ), and let θ : B(Γ ) −→ B(π) be the natural functor.
Let (C∗, ∂∗) be an Ω-resolution of kπ with respect to the Ω-system (kΓ -mod, kπ-mod; θ∗, θ

∗).
Then H∗(C∗, ∂∗) is finite dimensional if and only if H∗(C∗ ⊗kT k) is finite dimensional.

Proof. Since H∗(Ω(BT∧p ); k) is finite dimensional, Lemma 5.18 implies that if H∗(C∗ ⊗kT k)
is finite dimensional, then so is H∗(C∗; k). Thus it remains to prove the converse. Since
H∗(−; k) ∼= H∗(−;Fp)⊗Fp k, it suffices to show this when k = Fp.

Consider the following diagram:

LpΓ //

��

(LpΓ )/T //

��

ApΓ //

��

P(BΓ∧p )

��

EΓ // (EΓ )/T // BΓ // BΓ∧p

where the squares are pullback squares. Since Op(Γ ) is p-perfect by Proposition 5.2(a) (and
since π is a finite p-group), Lemma A.8(c) implies that BΓ∧p is an Fp-plus construction for
(BΓ,Op(Γ )). Also, LpΓ has a free action of Γ induced by that on EΓ . Set C = B(Γ )
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and let θ : C −→ B(π) be the natural functor, so that EC(◦Γ ) = EΓ . Then by Proposition
4.3, C∗(LpΓ ;Fp) is an Ω-resolution of Fpπ with respect to the given Ω-system. Hence by
Proposition 1.7, we may assume C∗ = C∗(L

pΓ ;Fp), and so C∗ ⊗FpT Fp ∼= C∗(L
pΓ/T ;Fp).

From the above pullback diagram, we see that LpΓ/T is the homotopy fibre of the map
BT ' EΓ/T −−−→ BΓ∧p . Since π1(BΓ∧p ) ∼= π is a finite p-group by Proposition 5.2(a),
it acts nilpotently on H∗(L

pΓ/T ;Fp), and hence by the mod-R fibre lemma of Bousfield
and Kan [BK, Lemma II.5.1], (LpΓ/T )∧p is the homotopy fibre of the map BT∧p −→ BΓ∧p
induced by the inclusion. Since BT∧p and BΓ∧p are p-complete by Proposition 5.2(a), the
space (LpΓ/T )∧p is also p-complete by the mod-R fibre lemma again.

Now assume that H∗(C∗;Fp) is finite dimensional, and hence that Ω(BΓ∧p ) is a p-compact
group. By Proposition 5.2(b), there is a p-local compact group (S,F ,L) with T ≤ S ≤ Γ
and |L|∧p ' BΓ∧p . So for each 1 6= t ∈ T , [BLO, Theorem 6.3] implies that the map
B〈t〉 −→ BΓ∧p induced by the inclusion is not null homotopic. In the terminology of [DW,
§ 7], this means that the map BT∧p −→ BΓ∧p , regarded as a map of p-compact groups, has
trivial kernel. So by [DW, Theorem 7.3], BT∧p −→ BΓ∧p is a monomorphism of p-compact
groups, and by definition [DW, 3.2], the Fp-homology of its homotopy fibre (LpΓ/T )∧p is
finite dimensional. �

We now give some consequences of Lemmas 5.18 and 5.19. The first example can also be
carried out using the Serre spectral sequence for the path-loop fibration of BΓ∧p , but the
argument given here is slightly easier, and it illustrates nicely how the action of Γ/T on the
spectral sequence of Lemma 5.18 can be exploited. Note that the space Ω(BΓ∧p ) considered
in the lemma is not a p-compact group, since it has unbounded homology.

Example 5.20. Set Γ = T o C2, where p is odd, T ∼= (Z/p∞)2, and Γ/T ∼= C2 acts by
inverting elements of T . Then

Hi(Ω(BΓ∧p );Fp) ∼=


Fp if i = 0

F3
p if i = 3

F4
p if i > 3 and i ∈ 3Z

0 otherwise.

Proof. To simplify notation, we do this over an arbitary field k of characteristic p. Fix an
Ω-resolution (C∗, ∂∗) of k with respect to Γ , and let E be the spectral sequence of Lemma
5.18. Recall that this is a spectral sequence of k[Γ/T ]-modules: the action of Γ/T plays a
central role in the argument here.

Since Hi(C∗⊗kΓ k) = 0 for i > 0 by (Ω-2), Γ/T ∼= C2 acts via −Id on E2
i,0
∼= Hi(C∗⊗kT k)

for each i > 0. Also, since Γ acts trivially on Hi(C∗) for all i by (Ω-3), Γ/T acts trivially
on E∞i,j for all i, j.

We claim that E2
i,j takes the following form:∣∣∣∣∣∣∣∣∣∣

k+ 0 k2
− 0 0 k2

− 0 0 k2
− . . .

k2
− 0 k4

+

hh

0 0 k4
+ 0 0 k4

+ . . .

k+ 0 k2
−

∼=
hh

0 0 k2
−

∼=
ee

0 0 k2
−

∼=
ee

. . .

where the subscripts (±) describe the action of Γ/T ∼= C2, and where the pattern continues
with E2

3k+2,0
∼= k2

− for i ≥ 0 and E2
i,0 = 0 when 0 < i 6≡ 2 (mod 3). To see this, note first

that E2
1,0
∼= E∞1,0 = 0 since Γ/T acts by inverting elements in E2

1,0 and fixing those in E∞1,0,
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and that the differential sends E2
2,0 isomorphically to E2

0,1 since the action on E∞ is trivial.
Hence E2

i,j is as described for i ≤ 2. Also, E2
3,0 = 0 and E2

4,0 = 0 since there are no terms
which their differentials could hit upon which Γ/T acts by inverting elements, and E2

5,0
∼= k2

−
must be sent isomorphically to E2

2,2.

Upon continuing in this way, we see inductively that E2
i,0
∼= k2

− for i = 3j + 2 (all j ≥ 0)
and is zero in other positive degrees, and the differentials are as shown with one possible
exception. We claim that the differential from E2

2,1 to E2
0,2 is surjective: this holds since

Hi(BΓ
∧
p ; k) ∼= (Hi(BT

∧
p ; k))Γ/T = 0 for i ≤ 3 implies that Hi(Ω(BΓ∧p ); k) = 0 for i ≤ 2.

Thus E∞i,j is zero in positive total degrees except E∞21
∼= k3 and E∞3i+2,1

∼= k4 (all i ≥ 1). �

The next proposition shows that in the situation of Lemma 5.19, at least, whenever the
homology of the loop space is bounded, we get an Ω-resolution of finite length.

Proposition 5.21. Let T E Γ be such that T ∼= (Z/p∞)r for some r ≥ 1 and Γ/T is finite.
If in addition, Ω(BΓ∧p ) is a p-compact group, then there is an Ω-resolution of k with respect
to Γ of finite length. More precisely, if N ≥ 1 is maximal such that HN(Ω(BΓ∧p ); k) 6= 0,
then there is an Ω-resolution of k with respect to Γ of length N + 1.

Proof. Since Ω(BΓ∧p ) is a p-compact group, Op(Γ/T ) has order prime to p by Proposition
5.2(c). Let Op(Γ ) E Γ and π = Γ/Op(Γ ) be as in Proposition 5.2. Since Ω(B(Op(Γ ))∧p )
is homotopy equivalent to a connected component of Ω(BΓ∧p ) (as shown in the proof of
Proposition 5.2(c)), Ω(BOp(Γ )∧p ) is also a p-compact group. If C −→ k −→ 0 is an Ω-
resolution of k with respect to Op(Γ ), then IndΓOp(Γ )(C) −→ kπ −→ 0 is an Ω-resolution of
kπ with respect to Γ . So it suffices to prove the proposition when Γ = Op(Γ ); i.e., when
Γ/T has order prime to p and π = 1.

Recall that r is the rank of T . By Proposition 5.10, there is an Ω-resolution D −→ k −→ 0
of k with respect to T of length r+1 which is also a chain complex of projective kΓ -modules.

Step 1: By Proposition 2.15, there is an Ω-resolution C −→ k −→ 0 of k with respect to Γ
(possibly of infinite length). We will use this as a template for constructing an Ω-resolution
of finite length N + 1.

By Lemma 5.19, the homology of k ⊗kT C is finitely generated. Let

0 = m1 < m2 < · · · < m` = m

be the degrees in which H∗(k⊗kT C) is nonzero. Thus ` is the number of distinct degrees in
which this homology is nonzero. By the spectral sequence {Er

∗,∗} of Lemma 5.18, Hm+r(C) ∼=
E2
m,r 6= 0, and so N = m+ r by Corollary 4.8.

Step 2: By Proposition 1.7, and since C satisfies condition (Ω-3) (Definition 1.5) as a
complex of kT -modules, there is a kT -linear chain map

ψ(0)
∗ : D = H0(k ⊗kT C)⊗k Σ0D −−−−−−→ C

that induces a kΓ -linear isomorphism H0(D)
∼=−−→ H0(C). By averaging, i.e., by replacing

ψ
(0)
∗ by the map x 7→ 1

|Γ/T |
∑

gT∈Γ/T g(ψ
(0)
∗ (g−1x)) for x ∈ D, we can arrange that ψ(0)

∗ is

kΓ -linear without changing H0(ψ
(0)
∗ ). Let C(1) be the mapping cone of ψ(0)

∗ [We, § 1.5]; again
a chain complex of projective kΓ -modules. Since the p-perfect group T acts trivially on the
homology of D and of C, it also acts trivially on Hi(C(1)) for each i (Lemma A.1). Also,
the homology of k ⊗kT C(1) is isomorphic to that of k ⊗kT C (as k-vector spaces), except in
degree 0 = m1.
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Step 3: Let t be the minimum of all i such that Hi(C(1)) 6= 0. If t = ∞ (i.e., if C(1) is
exact), then the sequence splits, so k ⊗kT C(1) is also exact, and ` = 1.

Assume that C(1) is not exact; i.e., that t <∞. Then the exact sequence C(1)
t −→ C

(1)
t−1 −→

· · · −→ C
(1)
0 −→ 0 of projective kΓ -modules splits. By this splitting, and since (k ⊗kT −) is

right exact and T acts trivially on Ht(C(1)), we have Ht(k ⊗kT C(1)) ∼= Ht(C(1)) 6= 0, while
Hi(k ⊗kT C(1)) = 0 for all i < t. Thus t = m2 and ` ≥ 2. By Proposition 1.7 again (and
averaging), there is a kΓ -linear chain map

ψ(1)
∗ : Hm2(k ⊗kT C)⊗k Σm2D −−−−−−→ C(1)

that induces an isomorphism in Hm2(−). In other words, we shift D by degree m2, tensor
each term by the k-module

Hm2(k ⊗kT C) ∼= Hm2(k ⊗kT C(1)) ∼= Hm2(C
(1)),

and then map the resulting complex into C(1).

Let C(2) be the mapping cone of ψ(1)
∗ . By the arguments used in Step 2, T acts trivially

on H∗(C(2)), and Hi(k ⊗kT C(2)) ∼= Hi(k ⊗kT C) for all i > m2 while Hi(k ⊗kT C(2)) = 0 for
i ≤ m2.

Step 4: We now repeat this procedure to obtain an increasing sequence

C ≤ C(1) ≤ C(2) ≤ · · · ≤ C(`)

of chain complexes of projective kΓ -modules, where for each 1 ≤ r ≤ `, T acts trivially on
H∗(C(r)), and Hi(k ⊗kT C(r)) ∼= Hi(k ⊗kT C) for all i > mr while Hi(k ⊗kT C(r)) = 0 for
i ≤ mr. Also, by the argument at the start of Step 3, Hi(C(r)) = 0 for i < mr+1, while
Hmr+1(C

(r)) ∼= Hmr+1(k ⊗kT C(r)) ∼= Hmr+1(k ⊗kT C) 6= 0.

In particular, C(`) is an exact sequence of projective kΓ -modules. Set

R = Σ−1
(
C(`)

/
C
)
.

Then C(`) is the mapping cone of a kΓ -linear chain map R −→ C, and Γ acts trivially on
H∗(R) ∼= H∗(C). Also, k⊗kΓ R is acyclic since k⊗kΓ C is (and since the sequence k⊗kΓ C(`)

∗
is exact), and so R is an Ω-resolution of k with respect to Γ of length m+r+1 = N +1. �

Note that the converse of Proposition 5.21 also holds: Ω(BΓ∧p ) is a p-compact group if
there is an Ω-resolution of finite length. As usual, this can be reduced to the case where
Γ/T is p-perfect; i.e., where BΓ∧p is simply connected. If there is an Ω-resolution of k with
respect to Γ of finite length, then Hi(Ω(BΓ∧p );Fp) = 0 for i large enough by Corollary 4.8.
Also, Hi(BΓ

∧
p ;Fp) ∼= Hi(BΓ ;Fp) is finite for each i by the Serre spectral sequence for the

fibration sequence BT −→ BΓ −→ B(Γ/T ) (and since H∗(BT ;Fp) ∼= H∗(B(S1)r;Fp) and
H∗(B(Γ/T );Fp) are finite in each degree), and hence Hi(Ω(BΓ∧p );Fp) is finite for each i by
[Se, Proposition 7] and since BΓ∧p is simply connected. So Ω(BΓ∧p ) is a p-compact group.

Remark 5.22. By a closer inspection, one can say more about the Ω-resolution constructed
in the proof of Proposition 5.21. By construction, R has a filtration whose successive quo-
tients are the suspended complexes Hmr(k ⊗kT R) ⊗k ΣmrD for 1 ≤ r ≤ `, where D is the
complex constructed in Proposition 5.10 and 0 = m1 < m2 < · · · < m` = m are the degrees
in which H∗(k ⊗kT R) is nonzero.
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Appendix A. R-perfect groups and R-plus constructions

Recall that for a group G, we write Gab = G/[G,G] ∼= H1(G;Z) for short. For a commu-
tative ring R, we say that G is R-perfect if H1(G;R) = 0; equivalently, if Gab ⊗Z R = 0.
When p is a prime, G is p-perfect if it is Fp-perfect.
Lemma A.1. Fix a commutative ring R and an R-perfect group G. Let M0 ⊆ M be RG-
modules such that G acts trivially on M0 and on M/M0. Then G also acts trivially on
M .

Proof. Let Aut0
R(M) be the group of all R-linear automorphisms of M that induce the

identity on M0 and on M/M0. Then Aut0
R(M) ∼= HomR(M/M0,M0) is abelian and has the

structure of an R-module, and G acts on M via a homomorphism G −→ Aut0
R(M). Each

homomorphism from G to an R-module factors through Gab ⊗Z R = 0 and hence is trivial,
so G acts trivially on M . �

We now turn our attention to plus constructions (see Definition 4.2). The following lemma
will be needed when checking the condition in the definition about homology with twisted
coefficients.

Lemma A.2. Fix a commutative ring R and a group π. Let f : X −→ Y be a map between
connected spaces, and let η : π1(Y ) −→ π be a homomorphism such that η and η ◦ π1(f) are
both surjective. Let X̃ and Ỹ be the covering spaces of X and Y with fundamental groups
Ker(η ◦ π1(f)) and Ker(η), respectively, and assume that a covering map f̃ : X̃ −→ Ỹ is an
R-homology equivalence. Then H∗(f ;M) is an isomorphism for each Rπ-module M .

Proof. Let Ĉ∗ be the mapping cone of the chain map C∗(f̃) : C∗(X̃;R) −→ C∗(Ỹ ;R) (see
the remark just before Proposition 5.21). Since C∗(X;M) ∼= C∗(X̃;R)⊗RπM and similarly
for Y (see [Wh, Theorem VI.3.4]), we get that Ĉ∗ ⊗Rπ M is the mapping cone of C∗(f ;M).
Since Ĉ∗ is an exact sequence of free Rπ-modules and is bounded below, Ĉ∗ ⊗Rπ M is also
exact, and hence H∗(f ;M) is an isomorphism. �

As was defined in the introduction (see also Section 4), a group G is strongly R-perfect if
it is R-perfect (H1(G;Z)⊗R = 0) and Tor(H1(G;Z), R) = 0. Thus if R is flat as a Z-module
(in particular, if R = Z), then G is strongly R-perfect if it is R-perfect. By the universal
coefficient theorem, all R-superperfect groups are strongly R-perfect, where a group G is
R-superperfect if H2(G;R) ∼= H1(G;R) = 0.

The next lemma gives necessary and sufficient conditions for a group to be R-perfect or
strongly R-perfect.

Lemma A.3. Let R be a commutative ring, and let A be an abelian group.

(a) If char(R) = n 6= 0, then A is R-perfect if and only if A is n-divisible (i.e., A = nA),
and A is strongly R-perfect if and only if A is uniquely n-divisible.

(b) If char(R) = 0, then A is strongly R-perfect if and only if each element of A is annihi-
lated by an integer that is invertible in R.

(c) If char(R) = 0 and A is R-perfect, then each element of A is annihilated by an integer
that is invertible in R/tors(R), where tors(R) ⊆ R is the ideal of torsion elements in R.

Proof. Since Tor sends monomorphisms to monomorphisms and Tor(Z/p,Z/p) 6= 0 for each
prime p, we have

Tor(A,R) = 0 =⇒ there is no prime p for which R and A both have p-torsion. (A.4)
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(a) Assume char(R) = n 6= 0. Then n·(A⊗R) = 0 and n·Tor(A,R) = 0. If A is n-divisible,
then multiplication by n induces a surjection from A⊗R onto itself, and hence A⊗R = 0. If
A is uniquely n-divisible, then multiplication by n induces an isomorphism from Tor(A,R)
to itself, and hence Tor(A,R) = 0.

Conversely, assume A⊗R = 0, and fix x ∈ A. Let R0 ≤ R be a finitely generated subgroup
such that 1 ∈ R0 and x ⊗ 1 = 0 in A ⊗ R0, and let 〈1〉 ≤ R0 be the subgroup generated
additively by 1. Then 〈1〉 ∼= Z/n and R0 has exponent n, so 〈1〉 is a direct factor of R0 as
an additive group (see, e.g., [MB, Proposition 3, p. 382]). Let ψ : R0 −→ Z/n be such that
ψ(1) = 1. Then IdA ⊗ ψ sends 0 = x⊗ 1 ∈ A⊗R0 to 0 = x⊗ 1 ∈ A⊗Z/n ∼= A/nA, and so
x ∈ nA.

If A is strongly R-perfect, then it is R-perfect, and hence n-divisible. By (A.4), A is
p-torsion free for all primes p | n, and hence is uniquely p-divisible.

(c) Assume char(R) = 0 and A is R-perfect. Fix x ∈ A. Since x ⊗ 1 = 0 in A ⊗ R and
hence in A ⊗ (R/tors(R)), there is a finitely generated additive subgroup R0 ≤ R/tors(R)
containing 1 such that x ⊗ 1 = 0 in A ⊗ R0. Then R0 is a free abelian group, so we can
choose a basis {b1, . . . , bk} for R0 and set 1 =

∑k
i=1 nibi (ni ∈ Z). Thus nix = 0 in A for each

i since x⊗ 1 = 0, and if we set n = gcd{ni}, then nx = 0 and 1 ∈ nR0. So x is n-torsion for
some n invertible in R/tors(R).

(b) Assume char(R) = 0. If nA = 0 for some integer n > 0, then n·(A ⊗ R) = 0 and
n·Tor(A,R) = 0. If, in addition, 1

n
∈ R, then both of these groups are n-torsion free, and

thus A ⊗ R = 0 = Tor(A,R). More generally, if each element of A is annihilated by some
integer invertible in R, then A is the colimit (or union) of its ni-torsion subgroups for some
increasing sequence n1 |n2 |n3 | · · · of integers invertible in R, and A is strongly R-perfect
since (−⊗R) and Tor(−, R) commute with such colimits.

Assume conversely that A is strongly R-perfect. By (c), each element of A is n-torsion for
some n invertible in R/tors(R). By (A.4) and since Tor(A,R) = 0, if A has n-torsion, then
R has m-torsion only for m prime to n. Let r ∈ R be such that nr = 1 + t for t ∈ tors(R).
Then mt = 0 for some m prime to n, and n·(mr) = m. Thus m·1 ∈ nR, n·1 ∈ nR, and so
1 ∈ nR since (m,n) = 1. Hence n is invertible in R. �

When X is a connected CW complex and H E π1(X), the usual plus construction for X
with respect to H (the case R = Z) exists if and only if H is perfect. In the more general
situation with which we are working, the conditions are slightly more complicated.

Proposition A.5. Let R be a commutative ring, let X be a connected CW complex, and let
H E π1(X) be a normal subgroup. Then there is an R-plus construction for (X,H) if and
only if either

• char(R) 6= 0 and H is R-perfect, or

• char(R) = 0 and H is strongly R-perfect.

Proof. Set π = π1(X)/H. Let X̃ be the covering space of X with fundamental group H: a
space with a free π-action. To shorten notation, we write H∗(Y ) = H∗(Y ;Z) when Y is a
space or a group.

(⇐= ) This is essentially Quillen’s construction. Assume H is R-perfect, and is strongly R-
perfect if char(R) = 0. Attach 2-cells to X̃ in free π-orbits to obtain a free, simply connected
π-space X̃+

0 ⊇ X̃.
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The homology sequence for the pair (X̃+
0 , X̃) with integer coefficients takes the form

−−−−→ H2(X̃+
0 )

φ−−−−→ H2(X̃+
0 , X̃) −−−−→ H1(X̃) −−−→ 0,

where H2(X̃+
0 ) ∼= π2(X̃+

0 ) by the Hurewicz theorem. Let B = {bi}i∈I be a basis for
H2(X̃+

0 , X̃) as a free Zπ-module. If char(R) = 0, then by Lemma A.3(b) and since H1(X̃) ∼=
H1(H) is strongly R-perfect, we can replace each bi ∈ B by ribi ∈ Im(φ) for some ri ∈ Z
invertible in R, the set {ribi}i∈I forms a basis of H2(X̃+

0 , X̃)⊗R as an Rπ-module, and thus
a basis for H2(X̃+

0 , X̃;R) can be lifted back to π2(X̃+
0 ). If char(R) = n > 0, then by Lemma

A.3(a) and since H1(X̃) is R-perfect, each bi ∈ B has the form bi = ci + ndi for ci ∈ Im(φ)

and di ∈ H2(X̃+
0 ; X̃), the sets {ci}i∈I and B induce the same basis of H2(X̃+

0 , X̃;R), and so
we can again lift this back to π2(X̃+

0 ).

Thus in either case, free π-orbits of 3-cells can be attached to X̃+
0 to obtain a free π-space

X̃+
R with H∗(X̃

+
R , X̃;R) = 0. Set X+

R = X̃+
R/π and let κ : X −→ X+

R be the inclusion;
then π1(κ) is surjective with kernel H. Also, by Lemma A.2 and since κ̃ : X̃ −→ X̃+

R is
an R-homology equivalence, κ induces an isomorphism in homology with coefficients in any
Rπ-module. So X+

R is an R-plus construction for (X,H).

( =⇒ ) Assume X+
R ⊇ X is an R-plus construction for (X,H). Let X̃+

R be the uni-
versal cover of X+

R , and regard X̃ as a subspace of X̃+
R . Thus X̃+

R is simply connected,
H∗(X̃

+
R , X̃;R) = 0, and Hi(X̃

+
R , X̃) = 0 for i = 0, 1. Also, H2(X̃+

R , X̃) surjects onto
H1(X̃) ∼= H1(H).

Consider the chain complex
∂4−−−−→ C3(X̃+

R , X̃)
∂3−−−−→ C2(X̃+

R , X̃)
∂2−−−→ C1(X̃+

R , X̃)
∂1−−−→ C0(X̃+

R , X̃) −→ 0

of free Zπ-modules. Set F0 = Ker(∂2), set Fi = Ci+2(X̃+
R , X̃) for i ≥ 1, and set ρi = ∂i+2 for

i ≥ 0. Thus Fi is a free abelian group for each i (since subgroups of free abelian groups are
free), and H2(X̃+

R , X̃) ∼= F0/Im(ρ1). So we get another chain complex
ρ3−−−−→ F2

ρ2−−−−→ F1
ρ1−−−−→ F0

ε−−−−→ H1(X̃) −−−→ 0,

where ε is surjective and is induced by the boundary map from H2(X̃+
R , X̃) to H1(X̃). Note

that the sequence (F∗ ⊗R, ρ∗ ⊗ IdR) is exact since H∗(X̃+
R , X̃;R) = 0.

Set M = F0/Im(ρ1). Thus M surjects onto H1(X̃) ∼= H1(H), and M ⊗R = 0 since F1⊗R
surjects onto F0 ⊗ R. In particular, H1(H) ⊗ R = 0 since M surjects onto H1(H), so H is
R-perfect, and we are done if char(R) 6= 0.

Now assume char(R) = 0. Consider the diagram

F2 ⊗R //

0

��

F1 ⊗R //

β

����

F0 ⊗R // 0

0 // Tor(M,R) // Im(ρ1)⊗R // F0 ⊗R // 0 ,

where the top row is exact since H∗(X̃+
R , X̃;R) = 0. The bottom row is exact since M =

F0/Im(ρ1) and F0 is a free abelian group. The right hand square commutes by naturality, and
the left hand square commutes since the composite F2

ρ2−−→ F1
ρ1−−→ Im(ρ1) is zero. Also, β

is onto since F1 −→ Im(ρ1) is onto. An easy diagram chase (or the snake lemma) now shows
that Tor(M,R) = 0. So M is strongly R-perfect. Since M surjects onto H1(X̃) ∼= H1(H),
H is also strongly R-perfect by the characterization in Lemma A.3(b). �
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Example A.6. Set R = Q×Z/p for some prime p. Then p is the only prime not invertible in
R, so (X,H) admits an R-plus construction (H is strongly R-perfect) if and only if H/[H,H]
is torsion prime to p. The group Z/p∞ is R-perfect, since Z/p∞⊗R ∼= (Z/p∞⊗Q)⊕(Z/p∞⊗
Z/p) = 0, but it is not strongly R-perfect.

As another example, consider R =
∏

p Z/p, with the product taken over all primes p.
Then char(R) = 0, no prime is invertible in R, and every prime is invertible in R/tors(R).
For each prime p, Z/p∞ is R-perfect but not strongly R-perfect.

The next lemma shows that product rings R as in Example A.6 are essentially the only
ones with char(R) = 0 that admit R-perfect groups that are not strongly R-perfect. By
Lemma A.3(b,c), this is possible only if there is a prime p that is invertible in R/tors(R)
but not in R.

Lemma A.7. Fix a prime p and a commutative ring R, and let tors(R) ⊆ R be the ideal
of torsion elements. Assume char(R) = 0, p is not invertible in R, and p is invertible in
R/tors(R). Then R ∼= R1 × R2 where R1 and R2 are (nonzero) rings, p is invertible in R1,
and char(R2) = pk for some k.

Proof. Since p is invertible in R/tors(R), there is n > 0 such that n·1 ∈ npR. Let k ≥ 0 be
the largest power of p dividing n. Thus n·1 ∈ pk+1R and pk+1·1 ∈ pk+1R, so pk·1 ∈ pk+1R
since pk = gcd(n, pk+1). Let r ∈ R be such that pk = pk+1r. Then

pk = pk(pr) = pk(pr)2 = · · · = pk(pr)k =⇒ (pr)k = pkrk = pkrk(pr)k = (pr)2k.

Set e = (pr)k, so that e2 = e and pke = pk. Thus R = eR× (1− e)R, where p is invertible in
eR since e = e2 = p(pk−1rke) is the identity in eR, and char((1−e)R) | pk since pk(1−e) = 0.
Since 1

p
/∈ R and char(R) = 0, both factors are nonzero. �

As one application of Lemma A.7, one can show that for a commutative ring R with
char(R) = 0 and torsion ideal tors(R), an abelian group A is R-perfect if and only if

• A is a torsion group,

• A has p-torsion only for primes p invertible in R/tors(R), and

• A is p-divisible for all primes p not invertible in R.

This was the one case missing in Lemma A.3, when characterizing R-perfect and strongly
R-perfect groups.

Under certain conditions, completion or fibrewise completion as defined by Bousfield and
Kan gives another, more functorial way to construct plus constructions.

Lemma A.8. Let π be a group, and let θ : X −→ Bπ be a map of spaces where X is
connected and π1(θ) is onto. Set H = Ker(π1(θ)), and let X̃ be the covering space of X with
covering group π and fundamental group H.

(a) Assume that R is a subring of Q or R = Fp for some prime p, and also that H is
R-perfect. Let θ̂ : X∧ −→ Bπ be the fibrewise R-completion of X over Bπ. Then
κ : X −→ X∧ is an R-plus construction for (X,H).

(b) Assume, for some R ⊆ Q, that H is R-perfect, and that π is R-nilpotent and has
nilpotent action on Hi(X̃;R) for each i. Then the R-completion map κ : X −→ X∧R is
an R-plus construction for (X,H).



LOOP SPACE HOMOLOGY OF A SMALL CATEGORY 43

(c) Assume, for some prime p, that π is a finite p-group and H is p-perfect. Then the
p-completion map κ : X −→ X∧p is a k-plus construction for (X,H) for each field k of
characteristic p.

Proof. (a) Since H is R-perfect, H1(X̃;R) ∼= H1(H;R) = 0 by definition, and hence X̃∧R is
simply connected by [BK, Lemma I.6.1] (applied with k = 1). Since X̃ is the homotopy fibre
of θ : X −→ Bπ, its R-completion X̃∧R is the homotopy fibre of θ̂ by [BK, Corollary I.8.3].
Thus θ̂ induces an isomorphism π1(X∧) ∼= π, and X̃∧R is the universal cover of X∧.

Since X̃∧R is simply connected, it is R-good by Proposition V.3.4 or VI.5.3 in [BK], and
hence X̃ is R-good by [BK, Proposition I.5.2]. So κ0 : X̃ −→ X̃∧R is an R-homology equiva-
lence. By Lemma A.2, κ : X −→ X∧ induces an isomorphism in homology with coefficients
in arbitrary Rπ-modules, and hence κ is an R-plus construction for (X,H).

(b) If R ⊆ Q and π is R-nilpotent, then Bπ is R-complete by [BK, Proposition V.2.2]. If,
in addition, H is R-perfect and the action of π on Hi(X̃;R) (equivalently, on Hi(X̃;R)) is
nilpotent for each i, then fibrewise completion over Bπ is the same as R-completion by the
mod-R fibration lemma [BK, II.5.1], and the result follows from (a).

(c) If π is a finite p-group, then Bπ is p-complete by [BK, VI.3.4 and VI.5.4]. Hence
fibrewise completion over Bπ is the same as p-completion by the mod-R fibration lemma
[BK, II.5.1 and II.5.2.iv], and κ : X −→ X∧p is an Fp-plus construction by (a) (applied with
R = Fp) when H is p-perfect. If k is an arbitrary field of characteristic p, then κ is also a
k-plus construction since H∗(−; k) ∼= H∗(−;Fp)⊗Fp k. �
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