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Abstract. For a finite group G of Lie type and a prime p, we compare the automorphism
groups of the fusion and linking systems of G at p with the automorphism group of G itself.
When p is the defining characteristic of G, they are all isomorphic, with a very short list
of exceptions. When p is different from the defining characteristic, the situation is much
more complex, but can always be reduced to a case where the natural map from Out(G)
to outer automorphisms of the fusion or linking system is split surjective. This work is
motivated in part by questions involving extending the local structure of a group by a group
of automorphisms, and in part by wanting to describe self homotopy equivalences of BG∧p
in terms of Out(G).
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Introduction

When p is a prime, G is a finite group, and S ∈ Sylp(G), the fusion system of G at S is
the category FS(G) whose objects are the subgroups of S, and whose morphisms are those
homomorphisms between subgroups induced by conjugation in G. In this paper, we are
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interested in comparing automorphisms of G, when G is a simple group of Lie type, with
those of the fusion system of G at a Sylow p-subgroup of G (for different primes p).

Rather than work with automorphisms of FS(G) itself, it turns out to be more natural
in many situations to study the group Out(LcS(G)) of outer automorphisms of the centric
linking system of G. We refer to Section 1 for the definition of LcS(G), and to Definition 1.2
for precise definitions of Out(FS(G)) and Out(LcS(G)). These are defined in such a way that
there are natural homomorphisms

Out(G)
κG−−−−−→ Out(LcS(G))

µG−−−−−→ Out(FS(G)) and κG = µG ◦ κG .

For example, if S controls fusion inG (i.e., if S has a normal complement), then Out(FS(G)) =
Out(S), and κG is induced by projection to S. The fusion system FS(G) is tamely realized by
G if κG is split surjective, and is tame if it is tamely realized by some finite group G∗ where
S ∈ Sylp(G

∗) and FS(G) = FS(G∗). Tameness plays an important role in Aschbacher’s
program for shortening parts of the proof of the classification of finite simple groups by
classifying simple fusion systems over finite 2-groups. We say more about this later in the
introduction, just before the statement of Theorem C.

By [BLO1, Theorem B], Out(LcS(G)) ∼= Out(BG∧p ): the group of homotopy classes of
self homotopy equivalences of the p-completed classifying space of G. Thus one of the
motivations for this paper is to compute Out(BG∧p ) when G is a finite simple group of Lie
type (in characteristic p or in characteristic different from p), and compare it with Out(G).

Following the notation used in [GLS3], for each prime p, we let Lie(p) denote the class of
finite groups of Lie type in characteristic p, and let Lie denote the union of the classes Lie(p)
for all primes p. (See Definition 2.1 for the precise definition.) We say that G ∈ Lie(p) is of
adjoint type if Z(G) = 1, and is of universal type if it has no nontrivial central extensions
which are in Lie(p). For example, for n ≥ 2 and q a power of p, PSLn(q) is of adjoint type
and SLn(q) of universal type.

Our results can be most simply stated in the “equi-characteristic case”: when working
with p-fusion of G ∈ Lie(p).

Theorem A. Let p be a prime. Assume that G ∈ Lie(p) and is of universal or adjoint type,
and also that (G, p) 6∼= (Sz(2), 2). Fix S ∈ Sylp(G). Then the composite homomorphism

κG : Out(G)
κG−−−−−−→ Out(LcS(G))

µG−−−−−−→ Out(FS(G))

is an isomorphism, and κG and µG are isomorphisms except when G ∼= PSL3(2).

Proof. Assume G is of adjoint type. When G 6∼= GL3(2), µG is an isomorphism by [O1,
Proposition 4.3]1 or [O2, Theorems C & 6.2]. The injectivity of κG = µG ◦ κG (in all cases)
is shown in Lemma 4.3. The surjectivity of κG is shown in Proposition 4.5 when G has Lie
rank at least three, and in Proposition 4.8 when G has Lie rank 1 and G 6∼= Sz(2). When G
has Lie rank 2, κG is onto (when G 6∼= SL3(2)) by Proposition 4.12, 4.14, 4.15, 4.16, or 4.17.
(See Notation 4.1(H) for the definition of Lie rank used here.)

If G is of universal type, then by Proposition 3.8, G/Z(G) ∈ Lie(p) is of adjoint type
where Z(G) has order prime to p. Also, Out(G) ∼= Out(G/Z(G)) by [GLS3, Theorem
2.5.14(d)]. Hence FS(G) ∼= FS(G/Z(G)) and LcS(G) ∼= LcS(G/Z(G)); and κG and/or κG is
an isomorphism if κG/Z(G) and/or κG/Z(G), respectively, is an isomorphism. �

1Steve Smith recently pointed out to the third author an error in the proof of this proposition. One can
get around this problem either via a more direct case-by-case argument (see the remark in the middle of
page 345 in [O1]), or by applying [O3, Theorem C]. The proof of the latter result uses the classification of
finite simple groups, but as described by Glauberman and Lynd [GLn, § 3], the proof in [O3] (for odd p)
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When G = PSL3(2) and p = 2, Out(G) ∼= Out(FS(G)) ∼= C2 (and κG is an isomorphism,
while Out(LcS(G)) ∼= C2

2 . When G = Sz(2) ∼= C5 o C4 and p = 2, Out(G) = 1, while
Out(LcS(G)) ∼= Aut(C4) ∼= C2. Thus these groups are exceptions to Theorem A.

To simplify the statement of the next theorem, for finite groups G and H, we write G ∼p H
to mean that there are Sylow subgroups S ∈ Sylp(G) and T ∈ Sylp(H), together with an

isomorphism ϕ : S
∼=−−−→ T which induces an isomorphism of categories FS(G) ∼= FT (H)

(i.e., ϕ is fusion preserving in the sense of Definition 1.2).

Theorem B. Fix a pair of distinct primes p and q0, and a group G ∈ Lie(q0) of universal or
adjoint type. Assume that the Sylow p-subgroups of G are nonabelian. Then there is a prime
q∗0 6= p, and a group G∗ ∈ Lie(q∗0) of universal or adjoint type, respectively, as described in
Tables 0.1–0.3, such that G∗ ∼p G and κG∗ is split surjective. If, furthermore, p is odd or
G∗ has universal type, then µG∗ is an isomorphism, and hence κG∗ is also split surjective.

Proof. Case 1: Assume p is odd and G is of universal type. Since µG is an isomorphism
by [O1, Theorem C], κG or κG∗ is (split) surjective if and only if κG or κG∗ is.

By Proposition 6.8, we can choose a prime q∗0 and a group G∗ ∈ Lie(q∗0) such that either

(1.a) G∗ ∼= G(q∗) or 2G(q∗), for some G with Weyl group W and q∗ a power of q∗0, and has
a σ-setup which satisfies the conditions in Hypotheses 5.1 and 5.11, and

(1.a.1) −Id /∈ W and G∗ is a Chevalley group, or

(1.a.2) −Id ∈ W and q∗ has even order in F×p ; or

(1.b) p = 3, q∗0 = 2, G ∼= 3D4(q) or 2F4(q) for q some power of q0, and G∗ ∼= 3D4(q∗) or
2F4(q∗) for q∗ some power of 2.

Also (by the same proposition), if p = 3 and G∗ = F4(q∗), then we can assume q∗0 = 2.

In case (1.b), κG∗ is split surjective by Proposition 6.9. In case (1.a), it is surjective by
Proposition 5.15. In case (1.a.1), κG∗ is split by Proposition 5.16(b,c). In case (1.a.2), if G∗

is a Chevalley group, then κG∗ is split by Proposition 5.16(c).

This leaves only case (1.a.2) when G∗ is a twisted group. The only irreducible root systems
which have nontrivial graph automorphisms and for which −Id ∈ W are those of type Dn for
even n. Hence G∗ = Spin−2n(q∗) for some even n ≥ 4. By the last statement in Proposition
6.8, G∗ is one of the groups listed in Proposition 1.10, and so qn ≡ −1 (mod p). Hence κG∗
is split surjective by Example 6.6(a), and we are done also in this case.

Case 2: Now assume p = 2 and G is of universal type. By Proposition 6.2, there is an odd
prime q∗0, a group G∗ ∈ Lie(q∗0), and S∗ ∈ Sylp(G

∗), such that FS(G) ∼= FS∗(G∗) and G∗ has
a σ-setup which satisfies Hypotheses 5.1 and 5.11. By the same proposition, if G∗ ∼= G2(q∗),
then we can arrange that q∗ = 5 or q∗0 = 3. If G∗ ∼= G2(5), then by Propositions 6.3 and
A.6, G∗ ∼2 G2(3), κG2(3) is split surjective, and µG2(3) is injective.

In all remaining cases (i.e., G∗ 6∼= G2(q∗) or q∗0 = 3), κG∗ is split surjective by Proposition
5.16(a). If G∗ is a linear, symplectic, or orthogonal group, or an exceptional Chevalley group,
then µG∗ is injective by Proposition A.3 or A.12, respectively. If G∗ ∼= SUn(q∗) or 2E6(q∗),
then by Theorem 1.8(d), FS∗(G∗) is isomorphic to the fusion system of SLn(q∨) or E6(q∨)
for some odd prime power q∨, and so µG∗ is injective by A.3 or A.12 again. Since neither
the triality groups 3D4(q) nor the Suzuki or Ree groups satisfy Hypotheses 5.1, this shows
that µG∗ is injective in all cases, and hence that κG∗ is also split surjective.

can be modified to use an earlier result of Glauberman [Gl2, Theorem A1.4], and through that avoiding the
classification.
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Case 3: Now assume G is of adjoint type. Then G ∼= Gu/Z for some Gu ∈ Lie(q0) of
universal type and Z ≤ Z(Gu). By Proposition 3.8, Z = Z(Gu) and has order prime to q0.

By Case 1 or 2, there is a prime q∗0 6= p and a group G∗u ∈ Lie(q∗0) of universal type such
that G∗u ∼p Gu and κG∗u is split surjective. Also, G∗u is p-perfect by definition of Lie(q∗0)
(and since q∗0 6= p), and H2(G∗u;Z/p) = 0 by Proposition 3.8. Set G∗ = G∗u/Z(G∗u). By
Proposition 1.7, with G∗u/Op′(G

∗
u) in the role of G, κG∗ is also split surjective.

It remains to check that G ∼p G∗. Assume first that Gu and G∗u have σ-setups which
satisfy Hypotheses 5.1. Fix S ∈ Sylp(Gu) and S∗ ∈ Sylp(G

∗
u), and a fusion preserving iso-

morphism ϕ : S −−−→ S∗ (Definition 1.2(a)). By Corollary 5.10, Z(FS(Gu)) = Op(Z(Gu))
and Z(FS∗(G∗u)) = Op(Z(G∗u)). Since ϕ is fusion preserving, it sends Z(FS(Gu)) onto
Z(FS∗(G∗u)), and thus sends Op(Z(Gu)) onto Op(Z(G∗u)). Hence ϕ induces a fusion pre-
serving isomorphism between Sylow subgroups of G = Gu/Z(Gu) and G∗ = G∗u/Z(G∗u).

The only cases we considered where G or G∗ does not satisfy Hypotheses 5.1 were those in
case (1.b) above. In those cases, G ∼= 2F4(q) or 3D4(q) and G∗ ∼= 2F4(q∗) or 3D4(q∗) for some
q and q∗, hence G and G∗ are also of universal type (d = 1 in the notation of [Ca, Lemma
14.1.2(iii)]), and so there is nothing more to prove. �

Since the strategy for replacing G by G∗ is quite elaborate, we summarize these replace-
ments in Tables 0.1, 0.2, and 0.3 at the end of the introduction.

The last statement in Theorem B is not true in general when G∗ is of adjoint type. For
example, if G∗ ∼= PSL2(9), p = 2, and S∗ ∈ Syl2(G∗), then Out(G∗) ∼= Out(LcS∗(G∗)) ∼= C2

2 ,

while Out(S∗,FS∗(G∗)) ∼= C2. By comparison, if G̃∗ ∼= SL2(9) is the universal group, then

Out(S̃∗,FS̃∗(G̃∗)) ∼= C2
2 , and κG̃∗ and µG̃∗ are isomorphisms.

As noted briefly above, a fusion system FS(G) is called tame if there is a finite group
G∗ such that G∗ ∼p G and κG∗ is split surjective. In this situation, we say that G∗ tamely
realizes the fusion system FS(G). By [AOV, Theorem B], if FS(G) is not tame, then some
extension of it is an “exotic” fusion system; i.e., an abstract fusion system not induced by
any finite group. (See Section 1 for more details.) The original goal of this paper was to
determine whether all fusion systems of simple groups of Lie type (at all primes) are tame,
and this follows as an immediate consequence of Theorems A and B. Hence this approach
cannot be used to construct new, exotic fusion systems.

Determining which simple fusion systems over finite 2-groups are tame, and tamely realiz-
able by finite simple groups, plays an important role in Aschbacher’s program for classifying
simple fusion systems over 2-groups (see [AKO, Part II] or [A3]). Given such a fusion sys-
tem F over a 2-group S, and an involution x ∈ S, assume that the centralizer fusion system
CF(x) contains a normal quasisimple subsystem E E CF(x). If E is tamely realized by a
finite quasisimple group K, then under certain additional assumptions, one can show that
the entire centralizer CF(x) is the fusion system of some finite extension of K. (See, e.g.,
[O6, Corollaries 2.4 & 2.5].) This is part of our motivation for looking at this question, and
is also part of the reason why we try to give as much information as possible as to which
groups tamely realize which fusion systems.

Theorem C. For any prime p and any G ∈ Lie of universal or adjoint type, the p-fusion
system of G is tame. If the Sylow p-subgroups of G are nonabelian, or if p is the defining
characteristic and G 6∼= Sz(2), then its fusion system is tamely realized by some other group
in Lie.
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Proof. If S ∈ Sylp(G) is abelian, then the p-fusion in G is controlled by NG(S), and FS(G)
is tame by Proposition 1.6. If p = 2 and G ∼= SL3(2), then the fusion system of G is tamely
realized by PSL2(9). In all other cases, the claims follow from Theorems A and B. �

We have stated the above three theorems only for groups of Lie type, but in fact, we
proved at the same time the corresponding results for the Tits group:

Theorem D. Set G = 2F4(2)′ (the Tits group). Then for each prime p, the p-fusion system
of G is tame. If p = 2 or p = 3, then κG is an isomorphism.

Proof. The second statement is shown in Proposition 4.17 when p = 2, and in Proposition
6.9 when p = 3. When p > 3, the Sylow p-subgroups of G are abelian (|G| = 211 · 33 · 52 · 13),
so G is tame by Proposition 1.6(b). �

As one example, if p = 2 and G = PSL2(17), then κG is not surjective, but G∗ = PSL2(81)
(of adjoint type) has the same 2-fusion system and κG∗ is an isomorphism [BLO1, Proposition
7.9]. Also, κG∗ is non-split surjective with kernel generated by the field automorphism of

order two by [BLO1, Lemma 7.8]. However, if we consider the universal group G̃∗ = SL2(81),
then κG̃∗ and κG̃∗ are both isomorphisms by [BL, Proposition 5.5] (note that Out(F) =
Out(S) in this situation).

As another, more complicated example, consider the case where p = 41 and G = Spin−4k(9).
By [St1, (3.2)–(3.6)], Outdiag(G) ∼= C2, and Out(G) ∼= C2 × C4 is generated by a diagonal
element of order 2 and a field automorphism of order 4 (whose square is a graph automor-
phism of order 2). Also, µG is an isomorphism by Proposition A.3, so κG is surjective, or
split surjective, if and only if κG is. We refer to the proof of Lemma 6.5, and to Table 6.1 in
that proof, for details of a σ-setup for G in which the normalizer of a maximal torus contains
a Sylow p-subgroup S. In particular, S is nonabelian if k ≥ 41. By Proposition 5.16(d) and
Example 6.6(a,b), when k ≥ 41, κG is surjective, κG is split (with Ker(κG) = Outdiag(G))
when k is odd, and κG is not split (Ker(κG) ∼= C2 × C2) when k is even. By Proposition
1.9(c), when k is even, G ∼41 G

∗ for G∗ = Spin4k−1(9), and κG∗ is split surjective (with
Ker(κG∗) = Outdiag(G∗)) by Proposition 5.16(c). Thus FS(G) is tame in all cases: tamely
realized by G itself when k is odd and by Spin4k−1(9) when k is even. Note that when k is
odd, since the graph automorphism does not act trivially on any Sylow p-subgroup, the p-
fusion system of G (equivalently, of SO−4k(9)) is not isomorphic to that of the full orthogonal
group O−4k(9), so by [BMO, Proposition A.3(b)], it is not isomorphic to that of Spin4k+1(9)
either (nor to that of Spin4k−1(9) since its Sylow p-subgroups are smaller).

Other examples are given in Examples 5.17 and 6.6. For more details, in the situation of
Theorem B, about for which groups G the homomorphism κG is surjective or split surjective,
see Propositions 5.15 and 5.16.

The following theorem was shown while proving Theorem B, and could be of independent
interest. It is closely related to [Ma2, Theorem 5.19]. The case where p is odd was handled
by Gorenstein and Lyons [GL, 10-2(1,2)].

Theorem E. Assume G ∈ Lie(q0) is of universal type for some odd prime q0. Fix S ∈
Syl2(G). Then S contains a unique abelian subgroup of maximal order, except when G ∼=
Sp2n(q) for some n ≥ 1 and some q ≡ ±3 (mod 8).

Proof. Assume S is nonabelian; otherwise there is nothing to prove. Since q0 is odd, and since
the Sylow 2-subgroups of 2G2(32k+1) are abelian for all k ≥ 1 [Ree, Theorem 8.5], G must be
a Chevalley or Steinberg group. If G ∼= 3D4(q), then (up to isomorphism) S ∈ Syl2(G2(q))
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by [BMO, Example 4.4]. So we can assume that G ∼= rG(q) for some odd prime power q,
some G, and r = 1 or 2.

If q ≡ 3 (mod 4), then choose another prime power q∗ ≡ 1 (mod 4) such that v2(q∗− 1) =

v2(q + 1) (where v2(m) = k if 2k|n and 2k+1 - n). Then 〈q∗〉 = 〈 − q〉 and 〈 − q∗〉 = 〈q〉 as
closed subgroups of (Z2)×. By [BMO, Theorem A] (see also Theorem 1.8), there is a group
G∗ ∼= tG(q∗) (where t ≤ 2) whose 2-fusion system is equivalent to that of G. We can thus
assume that q ≡ 1 (mod 4). So by Lemma 6.1, G has a σ-setup which satisfies Hypotheses
5.1. By Proposition 5.13(a), S contains a unique abelian subgroup of maximal order, unless
q ≡ 5 (mod 8) and G ∼= Sp2n(q) for some n ≥ 1. �

In fact, when G ∼= Sp2n(q) for q ≡ ±3 (mod 8), then S ∈ Syl2(G) is isomorphic to
(Q8)n o P for P ∈ Syl2(Σn), S contains 3n abelian subgroups of maximal order 22n, and all
of them are conjugate to each other in NG(S).

The main definitions and results about tame and reduced fusion systems are given in
Section 1. We then set up our general notation for finite groups of Lie type in Sections 2 and
3, deal with the equicharacteristic case in Section 4, and with the cross characteristic case
in Sections 5 and 6. The kernel of µG, and thus the relation between automorphism groups
of the fusion and linking systems, is handled in an appendix.

The third author would like to thank Richard Weiss for explaining how to apply the
Delgado-Stellmacher paper [DS] to simplify some of our arguments (see Section 4), and also
thank Andy Chermak and Sergei Shpectorov for first pointing out this connection. All three
authors would especially like to thank the referee for reading the paper very thoroughly and
for the many suggestions for improvements.

Notation: In general, when C is a category and x ∈ Ob(C), we let AutC(x) denote the
group of automorphisms of x in C. When F is a fusion system and P ∈ Ob(F), we set
OutF(P ) = AutF(P )/Inn(P ).

For any group G and g ∈ G, cg ∈ Aut(G) denotes the automorphism cg(h) = ghg−1. Thus
for H ≤ G, gH = cg(H) and Hg = c−1

g (H). When G,H,K are all subgroups of a group Γ,
we define

TG(H,K) = {g ∈ G | gH ≤ K}
HomG(H,K) = {cg ∈ Hom(H,K) | g ∈ TG(H,K)} .

We let AutG(H) be the group AutG(H) = HomG(H,H). When H ≤ G (so AutG(H) ≥
Inn(H)), we also write OutG(H) = AutG(H)/Inn(H).

Tables of substitutions for Theorem B. We now present tables which describe the
strategy for replacing G by G∗ in the context of Theorem B. In all three tables, an entry
within the column G∗ means that the given group is p-locally equivalent to G and tamely
realizes its fusion system, while an entry “G ∼p X” carried over two columns means that
the group X is p-locally equivalent to G but does not tamely realize its fusion system. In
other words, in the latter case, X is one step towards finding the appropriate group G∗, but
one must continue, following the information in the tables for G = X.

Whenever G∗ is listed as satisfying (III.1), (III.2), or (III.3), this holds by Lemma 6.1,
Lemma 6.4, or Lemma 6.5 or 6.7, respectively.
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The following notation is used in Table 0.1 (the case p = 2):

• q∗0 = 3 or 5, and q∗0 = 3 when G = G2;

• q∗ = (q∗0)2k is such that 〈q〉 = 〈q∗〉; and

• q∨ = (q∗0)2` is such that 〈 − q〉 = 〈q∨〉 (equivalently, 〈q〉 = 〈 − q∨〉).

In all cases except whenG∗ ∼= G2(3), G∗ satisfies case (III.1) of Hypotheses 5.1 by Lemma 6.1,
and κG∗ is split surjective by Proposition 5.16(a). When G∗ ∼= G2(3), κG∗ is an isomorphism
by Proposition 6.3. For all odd q, 3D4(q) ∼2 G2(q) by [BMO, Example 4.4(a)].

G G q G∗ G ∼2 G
∗

An, E6 1 (mod 4) G(q∗) Thm. 1.8(a)

Dn (n odd)
G(q)

3 (mod 4) 2G(q∨) Thm. 1.8(d)

Bn, Cn, D2m, 1 (mod 4) G(q∗)

F4, E7, E8

G(q)
3 (mod 4) G(q∨)

Thm. 1.8(c)

1 (mod 8) G(q∗)
G2(q)

7 (mod 8) G(q∨) Thm. 1.8(c)
3D4(q)

3,5 (mod 8) G2(3)

An, E6 1 (mod 4) 2G(q∗) Thm. 1.8(b)

Dn (n odd)
2G(q)

3 (mod 4) G(q∨) Thm. 1.8(d)

Dn
1 (mod 4) 2Dn(q∗)

(n even)
2Dn(q)

3 (mod 4) 2Dn(q∨)
Thm. 1.8(c)

2G2(q) S abelian

Table 0.1. Substitutions in cross-characteristic for p = 2
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The following notation is used in Tables 0.2 and 0.3, where p is always an odd prime:

• q∗0 is any given odd prime whose class generates (Z/p2)×.

• q∗ = (q∗0)b is such that 〈q〉 = 〈q∗〉 and b|(p− 1)p` for some ` ≥ 0.

• q∨ = (q∗0)c is such that 〈 − q〉 = 〈q∨〉 and c|(p− 1)p` for some ` ≥ 0.

G q, p G∗ Hyp 5.1 κG∗ split surj. G ∼p G∗

SLn(q) all cases SLn(q∗) (III.1,3) Th. 1.8(a)

SUn(q) all cases SLn(q∨) (III.1,3) Th. 1.8(d)

Sp2n(q) or ordp(q) even SL2n(q∗) (III.3)
Prop. 5.16(b,c)

Prop. 1.9(a,b)

Spin2n+1(q) ordp(q) odd SL2n(q∨) (III.3) Prop. 1.9(a,b)
Th. 1.8(c)

qn 6≡ ε (mod p) G ∼p Spin2n−1(q) — Prop. 1.9(c)

qn ≡ ε (mod p)
n odd, ε = 1

Spin+
2n(q∗) (III.1,3) Th. 1.8(a)

Spinε2n(q)
qn ≡ ε (mod p)
n odd, ε = −1

Spin+
2n(q∨) (III.1,3)

Prop. 5.16(b,c)

Th. 1.8(d)

qn ≡ ε (mod p)
n, ordp(q) even

Spinε2n(q∗) (III.3) Prop. 5.16(c)
Ex. 6.6(a)

Th. 1.8(a,b)

qn ≡ ε (mod p)
n even, ε = 1
ordp(q) odd

Spin+
2n(q∨) (III.3) Prop. 5.16(c) Th. 1.8(c)

Table 0.2. Substitutions in cross-characteristic for p odd: classical groups
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G p

ord
p (q)

G∗ Hyp 5.1 κG∗ split surj. G ∼p G∗

2B2(q) all cases S abelian

3 1 3D4(q∗)

3D4(q) 3 2 3D4(q∗)
(q∗0 = 2) Prop. 6.9 Theorem 1.8(b)

≥ 5 — S abelian

3 1 G2(q∨)

G2(q) 3 2 G2(q∗)
(III.2) Prop. 5.16(c) Theorem 1.8(c)

≥ 5 — S abelian

2G2(q) all cases S abelian

3 1 F4(q∨) (III.2)

F4(q) 3 2 F4(q∗) (q∗0 = 2)
Prop. 5.16(c) Theorem 1.8(c)

≥ 5 — S abelian

2F4(q) or 3 2 2F4(q∗) — Prop. 6.9 Prop. 6.8(b)

2F4(2)′ ≥ 5 S abelian

3,5 1 E6(q∗) (III.1) Prop. 5.16(b) Theorem 1.8(a)

E6(q) 3 2 G ∼p F4(q2) — Theorem 1.8(d)
[BMO, Ex. 4.4]

other cases S abelian

2E6(q) all cases G ∼p E6(q∨) — Theorem 1.8(d)

3,5,7 1 E7(q∨)

E7(q) 3,5,7 2 E7(q∗)
(III.2) Prop. 5.16(c) Theorem 1.8(c)

other cases S abelian

3,5,7 1 E8(q∨)

E8(q) 3,5,7 2 E8(q∗)
(III.2) Prop. 5.16(c) Theorem 1.8(c)

5 4 E8(q∗) (III.3) Prop. 5.16(c) Theorem 1.8(a)

other cases S abelian

Table 0.3. Substitutions in cross-characteristic for p odd: exceptional groups



10 CARLES BROTO, JESPER M. MØLLER, AND BOB OLIVER

1. Tame and reduced fusion systems

Throughout this section, p always denotes a fixed prime. Before defining tameness of
fusion systems more precisely, we first recall the definitions of fusion and linking systems of
finite groups, and of automorphism groups of fusion and linking systems.

Definition 1.1. Fix a finite group G and a Sylow p-subgroup S ≤ G.

(a) The fusion system of G is the category FS(G) whose objects are the subgroups of S, and
where MorFS(G)(P,Q) = HomG(P,Q) for each P,Q ≤ S.

(b) A subgroup P ≤ S is p-centric in G if Z(P ) ∈ Sylp(CG(P )); equivalently, if CG(P ) =
Z(P )× C ′G(P ) for a (unique) subgroup C ′G(P ) of order prime to p.

(c) The centric linking system of G is the category LcS(G) whose objects are the p-centric
subgroups of G, and where MorLcS(G)(P,Q) = TG(P,Q)/C ′G(P ) for each pair of objects
P,Q. Let π : LcS(G) −−−→ FS(G) denote the natural functor: π is the inclusion on
objects, and sends the class of g ∈ TG(P,Q) to cg ∈ MorFS(G)(P,Q).

(d) For P,Q ≤ S p-centric in G and g ∈ TG(P,Q), we let [[g]]P,Q ∈ MorLcS(G)(P,Q) denote
the class of g, and set [[g]]P = [[g]]P,P if g ∈ NG(P ). For each subgroup H ≤ NG(P ),
[[H]]P denotes the image of H in AutL(P ) = NG(P )/C ′G(P ).

The following definitions of automorphism groups are taken from [AOV, Definition 1.13
& Lemma 1.14], where they are formulated more generally for abstract fusion and linking
systems.

Definition 1.2. Let G be a finite group with S ∈ Sylp(G), and set F = FS(G) and L =
LcS(G).

(a) If H is another finite group with T ∈ Sylp(H), then an isomorphism ϕ : S
∼=−→ T is called

fusion preserving (with respect to G and H) if for each P,Q ≤ S,

HomH(ϕ(P ), ϕ(Q)) = ϕ ◦ HomG(P,Q) ◦ ϕ−1 .

(Composition is from right to left.) Equivalently, ϕ is fusion preserving if it induces an

isomorphism of categories FS(G)
∼=−−−→ FT (H).

(b) Let Aut(F) ≤ Aut(S) be the group of fusion preserving automorphisms of S. Set
Out(F) = Aut(F)/AutF(S).

(c) For each pair of objects P ≤ Q in L, set ιP,Q = [[1]]P,Q ∈ MorL(P,Q), which we call the
inclusion in L of P in Q. For each P , we call [[P ]] = [[P ]]P ≤ AutL(P ) the distinguished
subgroup of AutL(P ).

(d) Let Aut(L) be the group of automorphisms α of the category L such that α sends
inclusions to inclusions and distinguished subgroups to distinguished subgroups. For
γ ∈ AutL(S), let cγ ∈ Aut(L) be the automorphism which sends an object P to π(γ)(P ),
and sends ψ ∈ MorL(P,Q) to γ′ψ(γ′′)−1 where γ′ and γ′′ are appropriate restrictions of
γ. Set

Out(L) = Aut(L)
/
{cγ | γ ∈ AutL(S)} .

(e) Let κG : Out(G) −−−−→ Out(L) be the homomorphism which sends the class [α], for
α ∈ Aut(G) such that α(S) = S, to the class of β ∈ Aut(LcS(G)), where β(P ) = α(P )
for an object P , and β([[g]]P,Q) = [[α(g)]]α(P ),α(Q) for g ∈ TG(P,Q).
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(f) Define µG : Out(L) −−−→ Out(F) by restriction: µG([β]) = [βS|S] for β ∈ Aut(LcS(G)),
where βS is the induced automorphism of AutL(S), and βS|S ∈ Aut(S) is its restriction
to S when we identify S with its image in AutL(S) = NG(S)/C ′G(S).

(g) Set κG = µG ◦ κG : Out(G) −−−→ Out(F): the homomorphism which sends the class of
α ∈ NAut(G)(S) to the class of α|S.

By [AOV, Lemma 1.14], the above definition of Out(L) is equivalent to that in [BLO2], and
by [BLO2, Lemma 8.2], both are equivalent to that in [BLO1]. So by [BLO1, Theorem 4.5(a)],
Out(LcS(G)) ∼= Out(BG∧p ): the group of homotopy classes of self homotopy equivalences of
the space BG∧p .

We refer to [AOV, § 2.2] and [AOV, § 1.3] for more details about the definitions of κG and
µG and the proofs that they are well defined. Note that µ is defined there for an arbitrary
linking system, not necessarily one realized by a group.

We are now ready to define tameness. Again, we restrict attention to fusion systems of
finite groups, and refer to [AOV, § 2.2] for the definition in the more abstract setting.

Definition 1.3. For a finite group G and S ∈ Sylp(G), the fusion system FS(G) is tame if
there is a finite group G∗ which satisfies:

• there is a fusion preserving isomorphism S
∼=−−−→ S∗ for some S∗ ∈ Sylp(G

∗); and

• the homomorphism κG∗ : Out(G∗) −→ Outtyp(LcS(G∗)) ∼= Out(BG∗∧p ) is split surjective.

In this situation, we say that G∗ tamely realizes the fusion system FS(G).

The above definition is complicated by the fact that two finite groups can have isomorphic
fusion systems but different outer automorphism groups. For example, set G = PSL2(9) ∼=
A6 and H = PSL2(7) ∼= GL3(2). The Sylow subgroups of both groups are dihedral of
order 8, and it is not hard to see that any isomorphism between Sylow subgroups is fusion
preserving. But Out(G) ∼= C2

2 while Out(H) ∼= C2 (see Theorem 3.4 below). Also, κG is
an isomorphism, while κH fails to be onto (see [BLO1, Proposition 7.9]). In conclusion, the
2-fusion system of both groups is tame, even though κH is not split surjective.

This definition of tameness was motivated in part in [AOV] by an attempt to construct
new, “exotic” fusion systems (abstract fusion systems not realized by any finite group) as
extensions of a known fusion system by an automorphism. Very roughly, if α ∈ Aut(LcS(G))
is not in the image of κG, and not in the image of κG∗ for any other finite group G∗ which
has the same fusion and linking systems, then one can construct and extension of FS(G) by
α which is not isomorphic to the fusion system of any finite group. This shows why we are
interested in the surjectivity of κG; to see the importance of its being split, we refer to the
proof of [AOV, Theorem B].

It is usually simpler to work with automorphisms of a p-group which preserve fusion than
with automorphisms of a linking system. So in most cases, we prove tameness for the fusion
system of a group G by first showing that κG = µG ◦ κG is split surjective, and then showing
that µG is injective. The following elementary lemma will be useful.

Lemma 1.4. Fix a finite group G and S ∈ Sylp(G), and set F = FS(G). Then

(a) κG is surjective if and only if each ϕ ∈ Aut(F) extends to some ϕ ∈ Aut(G), and

(b) Ker(κG) ∼= CAut(G)(S)/AutCG(S)(G).
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Proof. This follows from the following diagram

0 // AutNG(S)(G) //

����

NAut(G)(S) //

restr
��

Out(G) //

κG
��

0

0 // AutNG(S)(S) // Aut(F) // Out(F) // 0

with exact rows. �

The next lemma can be useful when κG or κG is surjective but not split.

Lemma 1.5. Fix a prime p, a finite group G, and S ∈ Sylp(G).

(a) Assume Ĝ ≥ G is such that G E Ĝ, p - |Ĝ/G|, and OutĜ(G) ≤ Ker(κG). Then

FS(Ĝ) = FS(G) and LcS(Ĝ) ∼= LcS(G).

(b) If κG is surjective and Ker(κG) has order prime to p, then there is Ĝ ≥ G/Op′(Z(G))

such that FS(Ĝ) = FS(G) (where we identify S with its image in G/Op′(G)) and κĜ is

split surjective. In particular, FS(G) is tame, and is tamely realized by Ĝ.

Proof. (a) Since OutĜ(G) ≤ Ker(κG), each coset of G in Ĝ contains an element which
centralizes S. (Recall that κG is induced by the restriction homomorphism from NAut(G)(S)

to Aut(F).) Thus FS(Ĝ) = FS(G) and LcS(Ĝ) = LcS(G).

(b) Since G and G/Op′(Z(G)) have isomorphic fusion systems at p, we can assume that
Z(G) is a p-group. Set K = Ker(κG) ≤ Out(G). Since H i(K;Z(G)) = 0 for i = 2, 3, by the

obstruction theory for group extensions [McL, Theorems IV.8.7–8], there is an extension Ĝ

of G by K such that G E Ĝ and Ĝ/G ∼= K = OutĜ(G). In particular, CĜ(G) ≤ G. Since

K = Ker(κG) ≤ Ker(κG), FS(Ĝ) = FS(G), and LcS(Ĝ) = LcS(G) by (a).

By [OV, Lemma 1.2], and since K E Out(G) and H i(K;Z(G)) = 0 for i = 1, 2, each

automorphism of G extends to an automorphism of Ĝ which is unique modulo inner auto-

morphisms. Thus Out(Ĝ) contains a subgroup isomorphic to Out(G)/K, and κĜ sends this

subgroup isomorphically onto Out(LcS(Ĝ)). So κĜ is split surjective, and FS(G) is tame. �

The next proposition is really a result about constrained fusion systems (cf. [AKO, Def-
inition I.4.8]): it says that every constrained fusion system is tame. Since we are dealing
here only with fusion systems of finite groups, we state it instead in terms of p-constrained
groups.

Proposition 1.6. Fix a finite group G and a Sylow subgroup S ∈ Sylp(G).

(a) If CG(Op(G)) ≤ Op(G), then κG and µG are both isomorphisms:

Out(G)
κG−−−−−→∼= Out(LcS(G))

µG−−−−−→∼= Out(FS(G)) .

(b) If S is abelian, or more generally if NG(S) controls p-fusion in G, then FS(G) is tame,
and is tamely realized by NG(S)/Op′(CG(S)).

Proof. (a) Set Q = Op(G), F = FS(G), and L = LcS(G). Then AutL(Q) = G, so (α 7→ αQ)
defines a homomorphism

Φ: Aut(L) −−−−−→ Aut(AutL(Q)) = Aut(G)

whose image lies in NAut(G)(S). For each α ∈ Ker(Φ), αQ = IdG and hence α = IdL. (Here,
it is important that α sends inclusions to inclusions.) Thus Φ is a monomorphism. Also,
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α = cγ for some γ ∈ AutL(S) if and only if αQ = cg for some g ∈ NG(S), so Φ factors through

a monomorphism Φ from Out(L) to NAut(G)(S)/AutG(S) ∼= Out(G), and ΦG ◦κG = IdOut(G).
Thus κG is an isomorphism.

In the terminology in [AKO, § I.4], G is a model for F = FS(G). By the uniqueness of
models (cf. [AKO, Theorem III.5.10(c)]), each β ∈ Aut(F) extends to some χ ∈ Aut(G),
and χ is unique modulo AutZ(S)(G). Hence κG is an isomorphism, and so is µG.

(b) If NG(S) controls p-fusion in G, then NG(S) ∼p G. Also, NG(S) ∼p G∗ where G∗ =
NG(S)/Op′(CG(S)), G∗ satisfies the hypotheses of (a), and hence tamely realizes FS(G). In
particular, this holds whenever S is abelian by Burnside’s theorem. �

When working with groups of Lie type when p is not the defining characteristic, it is easier
to work with the universal groups rather than those in adjoint form (µG is better behaved
in such cases). The next proposition is needed to show that tameness for fusion systems of
groups of universal type implies the corresponding result for groups of adjoint type.

Proposition 1.7. Let G be a finite p-perfect group such that Op′(G) = 1 and H2(G;Z/p) = 0
(i.e., such that each central extension of G by a finite p-group splits). Choose S ∈ Sylp(G),
and set Z = Z(G) ≤ S. If FS(G) is tamely realized by G, then FS/Z(G/Z) is tamely realized
by G/Z.

Proof. Let H be the set of all P ≤ S such that P ≥ Z and P/Z is p-centric in G/Z, and let
LHS (G) ⊆ LcS(G) be the full subcategory with object set H. By [AOV, Lemma 2.17], LHS (G)
is a linking system associated to FS(G) in the sense of [AOV, Definition 1.9]. Hence the
homomorphism

R : Out(LcS(G))
∼=−−−−−−→ Out(LHS (G))

induced by restriction is an isomorphism by [AOV, Lemma 1.17].

Set F = FS(G), L = LHS (G), G = G/Z, S = S/Z, F = F
S
(G), and L = Lc

S
(G) for short.

Consider the following square:

Out(G)
κG

//

µ
��

Out(L)∼= Out(LcS(G))

Out(G)
κ
G
// Out(L) .

ν1−1

OO

(1)

Here, µ sends the class of an automorphism of G to the class of the induced automorphism

of G = G/Z(G).

Assume that ν has been defined so that (1) commutes and ν is injective. If κG is onto, then
ν is onto and hence an isomorphism, so κ

G
is also onto. Similarly, if κG is split surjective,

then κ
G

is also split surjective. Thus F is tamely realized by G if F is tamely realized by
G, which is what we needed to show.

It thus remains to construct the monomorphism ν, by sending the class of α ∈ Aut(L)
to the class of a lifting of α to L. So in the rest of the proof, we show the existence and
uniqueness of such a lifting.

Let pr : L −−−→ L denote the projection. Let End(L) be the monoid of functors from L
to itself which send inclusions to inclusions and distinguished subgroups into distinguished
subgroups. (Thus Aut(L) is the group of elements of End(L) which are invertible.) We will
prove the following two statements:

(2) For each α ∈ Aut(L), there is a functor α̃ ∈ End(L) such that pr ◦ α̃ = α ◦ pr.
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(3) If β ∈ End(L) is such that pr ◦ β = pr, then β = IdL.

Assume that (2) and (3) hold; we call α̃ a “lifting” of α in the situation of (2). For each

α ∈ Aut(L), there are liftings α̃ of α and α̃∗ of α−1 in End(L), and these are inverses to each
other by (3). Hence α̃ ∈ Aut(L), and is the unique such lifting of α by (3) again.

Define ν : Out(L) −−−→ Out(L) by setting ν([α]) = [α̃] when α̃ is the unique lifting of α.

This is well defined as a homomorphism on Aut(L) by the existence and uniqueness of the

lifting; and it factors through Out(L) since conjugation by γ ∈ AutL(S) lifts to conjugation

by γ ∈ AutL(S) for any γ ∈ pr−1
S (γ).

Thus ν is a well defined homomorphism, and is clearly injective. The square (1) commutes
since for each β ∈ Aut(G) such that β(S) = S, κG([β]) and νκ

G
µ([β]) are the classes of

liftings of the same automorphism of L.

It remains to prove (2) and (3).

Proof of (2): For each α ∈ Aut(L), consider the pullback diagram

L̃ ρ1
//

ρ2

��

L
pr
��

L pr
//

α̃

55

L α

∼=
// L .

(4)

Each functor in (4) is bijective on objects, and the diagram restricts to a pullback square of

morphism sets for each pair of objects in L (and their inverse images in L and L̃).

Since the natural projection G −−−→ G is a central extension with kernel Z, the projection

functor pr : L −−−→ L is also a central extension of linking systems in the sense of [5a2,
Definition 6.9] with kernel Z. Since ρ2 is the pullback of a central extension, it is also a
central extension of linking systems by [5a2, Proposition 6.10], applied with ω = pr∗α∗(ω0) ∈
Z2(L;Z), where ω0 is a 2-cocycle on L which determines the extension pr. By [BLO1,
Proposition 1.1], H2(|L|;Fp) ∼= H2(G;Fp), where the last group is zero by assumption. Hence
H2(|L|;Z) = 0, so ω is a coboundary, and ρ2 is the product extension by [5a2, Theorem

6.13]. In other words, L̃ ∼= LcZ(Z)×L, where LcZ(Z) has one object and automorphism group

Z, and there is a subcategory L0 ⊆ L̃ (with the same objects) which is sent isomorphically
to L by ρ2. Set α̃ = ρ1 ◦ (ρ2|L0)−1.

We first check that α̃ sends distinguished subgroups to distinguished subgroups. Let

prS : S −−−→ S = S/Z be the projection. Fix an object P in L, and set Q = α̃(P ). Then
Q/Z = α(P/Z), and αP/Z([[P/Z]]) = [[Q/Z]], so α̃P ([[P ]]) ≤ pr−1

S ([[Q/Z]]) = [[Q]].

For each subgroup P ∈ Ob(L), there is a unique element zP ∈ Z such that α̃(ιP,S) =
ια̃(P ),S ◦[[zP ]]α̃(P ). Note that zS = 1. Define a new functor β : L −−→ L by setting β(P ) = α̃(P )
on objects and for each ϕ ∈ MorL(P,Q), β(ϕ) = [[zQ]]α̃(Q) ◦ α̃(ϕ) ◦ [[zP ]]−1

α̃(P ). Then β is still a

lifting of α, and for each P :

β(ιP,S) = [[zS]]S ◦ α̃(ιP,S) ◦ [[zP ]]−1
α̃(P ) = ια̃(P ),S ◦ [[zP ]]α̃(P ) ◦ [[zP ]]−1

α̃(P ) = ια̃(P ),S .

For arbitrary P ≤ Q, since ια̃(P ),α̃(Q) is the unique morphism whose composite with ια̃(Q),S

is ια̃(P ),S (see [BLO2, Lemma 1.10(a)]), β sends ιP,Q to ια̃(P ),α̃(Q).

Thus, upon replacing α̃ by β, we can assume that α̃ sends inclusions to inclusions. This
finishes the proof of (2).



AUTOMORPHISMS OF FUSION SYSTEMS OF FINITE SIMPLE GROUPS OF LIE TYPE 15

Proof of (3): Assume that β ∈ End(L) is a lift of the identity on L. Let B(Z) be the
category with one object * and with morphism group Z. Define a functor χ : L −−−→ B(Z)

by sending all objects in L to * , and by sending a morphism [[g]] ∈ MorL(P,Q) to the unique

element z ∈ Z such that βP,Q([[g]]) = [[gz]] = [[zg]]. (Recall that Z ≤ Z(G).)

Now,
H1(|L|;Fp) ∼= H1(|LcS(G)|;Fp) ∼= H1(BG;Fp) ∼= H1(G;Fp) = 0 ,

where the first isomorphism holds by [5a1, Theorem B] and the second by [BLO1, Proposition
1.1]. Hence Hom(π1(|L|),Fp) ∼= Hom(H1(|L|),Fp) ∼= H1(|L|;Fp) = 0, where the second
isomorphism holds by the universal coefficient theorem (cf. [McL, Theorem III.4.1]), and
so Hom(π1(|L|), Z) = 0. In particular, the homomorphism χ̂ : π1(|L|) −−−→ π1(|B(Z)|) ∼= Z
induced by χ is trivial.

Thus for each ψ ∈ MorL(P,Q), the loop in |L| formed by ψ and the inclusions ιP,S and
ιQ,S is sent to 1 ∈ Z. Since β sends inclusions to inclusions, this proves that χP,Q(ψ) = 1,
and hence that βP,Q(ψ) = ψ. Thus β = IdL. �

By Proposition 1.7, when proving tameness for fusion systems of simple groups of Lie
type, it suffices to look at the universal groups (such as SLn(q), SUn(q)) rather than the
simple groups (PSLn(q), PSUn(q)). However, it is important to note that the proposition is
false if we replace automorphisms of the linking systems by those of the fusion system. For

example, set G = SL2(34) and G = PSL2(34). Then S ∼= Q32 and S ∼= D16, Out(FS(G)) =

Out(S) ∼= Out(G) ∼= C4 × C2 (and κG is an isomorphism), while Out(G) ∼= C4 × C2 and

Out(S,F
S
(G)) = Out(S) ∼= C2 × C2.

We already gave one example of two groups which have the same fusion system but different
outer automorphism groups. That is a special case of the main theorem in our earlier paper,
where we construct many examples of different groups of Lie type with isomorphic fusion
systems. Since this plays a crucial role in Section 6, where we handle the cross characteristic
case, we restate the theorem here.

As in the introduction, we write G ∼p H to mean that there is a fusion preserving
isomorphism from a Sylow p-subgroup of G to one of H.

Theorem 1.8 ([BMO, Theorem A]). Fix a prime p, a connected reductive group scheme G
over Z, and a pair of prime powers q and q∗ both prime to p. Then the following hold.

(a) G(q) ∼p G(q∗) if 〈q〉 = 〈q∗〉 as subgroups of Z×p .

(b) If G is of type An, Dn, or E6, and τ is a graph automorphism of G, then τG(q) ∼p τG(q∗)

if 〈q〉 = 〈q∗〉 as subgroups of Z×p .

(c) If the Weyl group of G contains an element which acts on the maximal torus by inverting

all elements, then G(q) ∼p G(q∗) (or τG(q) ∼p τG(q∗) for τ as in (b)) if 〈 − 1, q〉 =

〈 − 1, q∗〉 as subgroups of Z×p .

(d) If G is of type An, Dn for n odd, or E6, and τ is a graph automorphism of G of order

two, then τG(q) ∼p G(q∗) if 〈 − q〉 = 〈q∗〉 as subgroups of Z×p .

The next proposition is of similar type, but much more elementary.

Proposition 1.9. Fix an odd prime p, a prime power q prime to p, n ≥ 2, and ε ∈ {±1}.
Then

(a) Sp2n(q) ∼p SL2n(q) if ordp(q) is even;
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(b) Sp2n(q) ∼p Spin2n+1(q); and

(c) Spinε2n(q) ∼p Spin2n−1(q) if q is odd and qn 6≡ ε (mod p).

Proof. If we replace Spin±m(q) by SO±m(q) in (b) and (c), then these three points are shown
in [BMO, Proposition A.3] as points (d), (a), and (c), respectively. When q is a power of
2, (b) holds because the groups are isomorphic (see [Ta, Theorem 11.9]). So it remains to
show that

Spinεm(q) ∼p Ωε
m(q) ∼p SOε

m(q)

for all m ≥ 3 (even or odd) and q odd. The first equivalence holds since p is odd and Ωε
m(q) ∼=

Spinεm(q)/K where |K| = 2. The second holds by Lemma 1.5(a), and since OutSOεm(q)(Ω
ε
m(q))

is generated by the class of a diagonal automorphism of order 2 (see, e.g., [GLS3, § 2.7]) and
hence can be chosen to commute with a Sylow p-subgroup. This last statement is shown in

Lemma 5.9 below, and holds since for appropriate choices of algebraic group G containing

the given group G, and of maximal torus T ≤ G, a Sylow p-subgroup of G is contained in

N
G

(T ) (see [GLS3, Theorem 4.10.2]) and the diagonal automorphisms of G are induced by
conjugation by elements in N

T
(G) (see Proposition 3.5(c)). �

Theorem 1.8 and Proposition 1.9, together with some other, similar relations in [BMO],
lead to the following proposition, which when p is odd provides a relatively short list of
“p-local equivalence class representatives” for groups of Lie type in characteristic different
from p.

Proposition 1.10. Fix an odd prime p, and assume G ∈ Lie(q0) is of universal type for
some prime q0 6= p. Assume also that the Sylow p-subgroups of G are nonabelian. Then
there is a group G∗ ∈ Lie(q∗0) of universal type for some q∗0 6= p, such that G∗ ∼p G and G∗

is one of the groups in the following list:

(a) SLn(q∗) for some n ≥ p; or

(b) Spinε2n(q∗), where n ≥ p, ε = ±1, (q∗)n ≡ ε (mod p), and ε = +1 if n is odd; or

(c) 3D4(q∗) or 2F4(q∗), where p = 3 and q∗ is a power of 2; or

(d) G(q∗), where G = G2, F4, E6, E7, or E8, p
∣∣ |W (G)|, and q∗ ≡ 1 (mod p); or

(e) E8(q∗), where p = 5 and q∗ ≡ ±2 (mod 5).

Furthermore, in all cases except (c), we can take q∗0 to be any given prime whose class
generates (Z/p2)×, and choose G∗ so that q∗ = (q∗0)b where b|(p− 1)p` for some `.

Proof. Let q be such that G ∼= τG(q) for some τ and some G. Thus q is a power of q0. Fix a
prime q∗0 as specified above. By Lemma 1.11(a), there are positive integers b, c, and powers

q∗ = (q∗0)b and q∨ = (q∗0)c such that 〈q〉 = 〈q∗〉, 〈 − q〉 = 〈q∨〉, and b, c|(p − 1)p` for some
` ≥ 0.

(i) Assume G ∼= Sz(q), 2G2(q), 2F4(q), or G ∼= 3D4(q). Since p 6= q0, and since S ∈ Sylp(G)
is nonabelian, p divides the order of the Weyl group W of G by [GL, 10-1(3)]. The
Weyl group of B2 is a 2-group, and 2 and 3 are the only primes which divide the orders
of the Weyl groups of G2, F4, and D4. Hence p = 3, G 6∼= 2G2(q) since that is defined
only in characteristic 3, and so G ∼= 2F4(q) or 3D4(q). Set G∗ = 2F4(q∗) or 3D4(q∗),
respectively, where q∗0 = 2. Then G∗ ∼p G, and we are in case (c).

(ii) If G = SUn(q) or 2E6(q), then by Theorem 1.8(d), G ∼p G∗ where G∗ ∼= SLn(q∨) or
E6(q∨), respectively. So we can replace G by a Chevalley group in these cases.
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(iii) Assume G = Sp2n(q) for some n and q. If ordp(q) is even, then by Proposition 1.9(a),
G ∼p SL2n(q). If ordp(q) is odd, then ordp(q

∨) is even since 〈q∨〉 = 〈 − q〉 in F×p , and
G ∼p Sp2n(q∨) by Theorem 1.8(c). So G is always p-locally equivalent to a linear group
in this case.

(iv) Assume G = Spin2n+1(q) for some n and q. Then G ∼p Sp2n(q) by Proposition 1.9(b).
So G is p-locally equivalent to a linear group by (iii).

(v) If G = SLn(q), set G∗ = SLn(q∗). Then G∗ ∼p G by Theorem 1.8(a), n ≥ p since the
Sylow p-subgroups of G are nonabelian, and we are in the situation of (a).

(vi) Assume G = Spinε2n(q) for some n and q, and ε = ±1. If q is a power of 2, then by
using point (a) or (b) of Theorem 1.8, we can arrange that q be odd. If qn 6≡ ε (mod p),
then G ∼p Spin2n−1(q) by Proposition 1.9(c), and this is p-equivalent to a linear group
by (iv). So we are left with the case where qn ≡ ε (mod p). If n is odd and ε = −1,
set G∗ = Spin+

2n(q∨) ∼p G (Theorem 1.8(d)). Otherwise, set G∗ = Spinε2n(q∗) ∼p G
(Theorem 1.8(a,b)). In either case, we are in the situation of (b).

We are left with the cases where G = G(q) for some exceptional Lie group G. By [GL, 10-
1(3)] and since the Sylow p-subgroups of G are nonabelian, p

∣∣ |W (G)|. If ordp(q) = 1, then
G∗ = G(q∗) ∼p G by Theorem 1.8(a). If ordp(q) = 2 and G 6= E6, then G∗ = G(q∨) ∼p G
by Theorem 1.8(c), where q∨ ≡ 1 (mod p). In either case, we are in the situation of (d).

If ordp(q) = 2 and G = E6(q), then 〈q〉 = 〈 − q2〉 as closed subgroups of Z×p (note

that vp(q
2 − 1) = vp((−q2)2 − 1)). So by Theorem 1.8(d) and Example 4.4 in [BMO],

G = E6(q) ∼p 2E6(q2) ∼p F4(q2). So we can choose G∗ satisfying (d) as in the last paragraph.

Assume ordp(q) > 2. By [GL, 10-1(3)], for S ∈ Sylp(G) to be nonabelian, there must be

some n ≥ 1 such that p · ordp(q)
∣∣ n, and such that qn− 1 appears as a factor in the formula

for |G(q)| (see, e.g., [GL, Table 4-2] or [Ca, Theorem 9.4.10 & Proposition 10.2.5]). Since
ordp(q)|(p− 1), this shows that the case ordp(q) > 2 appears only for the group E8(q), and
only when p = 5 and ordp(q) = 4. In particular, q, q∗ ≡ ±2 (mod 5). Set G∗ = E8(q∗); then
G∗ ∼p G by Theorem 1.8(a), and we are in the situation of (e). �

The following lemma was needed in the proof of Proposition 1.10 to reduce still further
the prime powers under consideration.

Lemma 1.11. Fix a prime p, and an integer q prime to p such that q 6= ±1.

(a) If p is odd, then for any prime r0 whose class generates (Z/p2)×, there is b ≥ 1 such

that 〈q〉 = 〈(r0)b〉, and b|(p− 1)p` for some `.

(b) If p = 2, then either 〈q〉 = 〈3〉, or 〈q〉 = 〈5〉, or there are ε = ±1 and k ≥ 1 such that

ε ≡ q (mod 8) and 〈q〉 = 〈ε · 32k〉.

Proof. Since q ∈ Z and |q| > 1, 〈q〉 is infinite.

(a) If p is odd, then for each n ≥ 1, (Z/pn)× ∼= (Z/p)×× (Z/pn−1) is cyclic and generated

by the class of r0. Hence Z×p ∼= (Z/p)× × (Zp,+), and 〈r0〉 = Z×p . Also, 〈q〉 ≥ 1 + p`Zp for

some ` ≥ 1, since each infinite, closed subgroup of (Zp,+) contains pkZp for some k.

Set b = [Z×p : 〈q〉] = [(Z/p`)× : 〈q+p`Z〉]
∣∣(p− 1)p`−1. Then 〈q〉 = 〈(r0)b〉.
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(b) If p = 2, then Z×2 = {±1} × 〈3〉, where 〈3〉 ∼= (Z2,+). Hence the only infinite closed

subgroups of 〈3〉 are those of the form 〈32k〉 for some k ≥ 0. So 〈q〉 = 〈ε · 32k〉 for some k ≥ 0

and some ε = ±1, and the result follows since 〈5〉 = 〈 − 3〉. �

We also note, for use in Section 4, the following more technical result.

Lemma 1.12. Let G be a finite group, fix S ∈ Sylp(G), and set F = FS(G). Let P ≤ S
be such that CG(P ) ≤ P and NS(P ) ∈ Sylp(NG(P )). Then for each ϕ ∈ Aut(F) such that
ϕ(P ) = P , ϕ|NS(P ) extends to an automorphism ϕ of NG(P ).

Proof. Since CG(P ) ≤ P and NS(P ) ∈ Sylp(NG(P )), NG(P ) is a model for the fusion system
E = FNS(P )(NG(P )) in the sense of [AKO, Definition I.4.8]. By the strong uniqueness
property for models [AKO, Theorem I.4.9(b)], and since ϕ|NS(P ) preserves fusion in E , ϕ|NS(P )

extends to an automorphism of the model. �

The following elementary lemma will be useful in Sections 5 and 6; for example, when
computing orders of Sylow subgroups of groups of Lie type.

Lemma 1.13. Fix a prime p. Assume q ≡ 1 (mod p), and q ≡ 1 (mod 4) if p = 2. Then
for each n ≥ 1, vp(q

n − 1) = vp(q − 1) + vp(n).

Proof. Set r = vp(q− 1), and let k be such that q = 1 + prk. Then qn = 1 + nprk+ ξ, where
vp(np

rk) = vp(n) + r, and where each term in ξ has strictly larger valuation. �

2. Background on finite groups of Lie type

In this section and the next, we fix the notation to be used for finite groups of Lie type,
and list some of the (mostly standard) results which will be needed later. We begin by
recalling the following concepts used in [GLS3]. We do not repeat the definitions of maximal
tori and Borel subgroups in algebraic groups, but refer instead to [GLS3, §§ 1.4–1.6].

Definition 2.1 ([GLS3, Definitions 1.7.1, 1.15.1, 2.2.1]). Fix a prime q0.

(a) A connected algebraic group G over Fq0 is simple if [G,G] 6= 1, and all proper closed

normal subgroups of G are finite and central. If G is simple, then it is of universal type

if it is simply connected, and of adjoint type if Z(G) = 1.

(b) A Steinberg endomorphism of a connected simple algebraic group G is a surjective al-

gebraic endomorphism σ ∈ End(G) whose fixed subgroup is finite.

(c) A σ-setup for a finite group G is a pair (G, σ), where G is a simple algebraic group over

Fq0, and where σ is a Steinberg endomorphism of G such that G = Oq0′(C
G

(σ)).

(d) Let Lie(q0) denote the class of finite groups with σ-setup (G, σ) where G is simple and is
defined in characteristic q0, and let Lie be the union of the classes Lie(q0) for all primes

q0. We say that G is of universal (adjoint) type if G is of universal (adjoint) type.

If G is universal, then C
G

(σ) is generated by elements of q0-power order (see [St3, Theorem
12.4]), and hence G = C

G
(σ) in (c) above. In general, C

G
(σ) = G · C

T
(σ) (cf. [GLS3,

Theorem 2.2.6]).

A root group in a connected algebraic group G over Fq0 with a given maximal torus T

is a one-parameter closed subgroup (thus isomorphic to Fq0) which is normalized by T .
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The roots of G are the characters for the T -actions on the root groups, and lie in the Z-

lattice X(T ) = Hom(T ,F×q0) of characters of T . (Note that this is the group of algebraic

homomorphisms, and that Hom(F×q0 ,F
×
q0

) ∼= Z.) The roots are regarded as lying in the

R-vector space V = R ⊗Z X(T ). We refer to [GLS3, § 1.9] for details about roots and
root subgroups of algebraic groups, and to [Brb, Chapitre VI] for a detailed survey of root
systems.

The following notation and hypotheses will be used throughout this paper, when working
with a finite group of Lie type defined via a σ-setup.

Notation 2.2. Let (G, σ) be a σ-setup for the finite group G, where G is a connected, simple

algebraic group over Fq0 for a prime q0. When convenient, we also write G = G(Fq0), where
G is a group scheme over Z.

(A) The maximal torus and Weyl group of G. Fix a maximal torus T in G such

that σ(T ) = T . Let W = N
G

(T )/T be the Weyl group of G (and of G).

(B) The root system of G. Let Σ be the set of all roots of G with respect to T , and let

Xα < G denote the root group for the root α ∈ Σ. Thus Xα = {xα(u) |u ∈ Fq0} with

respect to some fixed Chevalley parametrization of G. Set V = R⊗ZX(T ): a real vector
space with inner product (−,−) upon which the Weyl group W acts orthogonally. Let
Π ⊆ Σ be a fundamental system of roots, and let Σ+ ⊆ Σ be the set of positive roots
with respect to Π. For each α ∈ Σ+, let ht(α) denote the height of α: the number of
summands in the decomposition of α as a sum of fundamental roots.

For each α ∈ Σ, let wα ∈ W be the reflection in the hyperplane α⊥ ⊆ V .

For α ∈ Σ and λ ∈ F×q0, let nα(λ) ∈ 〈Xα, X−α〉 and hα(λ) ∈ T ∩ 〈Xα, X−α〉
be as defined in [Ca, § 6.4] or [GLS3, Theorem 1.12.1]: the images of

(
0 λ

−λ−1 0

)
and(

λ 0
0 λ−1

)
, respectively, under the homomorphism SL2(Fq0) −→ G that sends

(
1 u
0 1

)
to

xα(u) and
(

1 0
v 1

)
to x−α(v). Equivalently, nα(λ) = xα(λ)x−α(−λ−1)xα(λ) and hα(λ) =

nα(λ)nα(1)−1.

(C) The maximal torus, root system and Weyl group of G. Set T = T ∩G.
Let τ ∈ Aut(V ) and ρ ∈ Aut(Σ) be the orthogonal automorphism and permutation,

respectively, such that for each α ∈ Σ, σ(Xα) = Xρ(α) and ρ(α) is a positive multiple
of τ(α). Set W0 = CW (τ).

If ρ(Π) = Π, then set V0 = CV (τ), and let pr⊥V0
be the orthogonal projection of V onto

V0. Let Σ̂ be the set of equivalence classes in Σ determined by τ , where α, β ∈ Σ are
equivalent if pr⊥V0

(α) is a positive scalar multiple of pr⊥V0
(β) (see [GLS3, Definition 2.3.1]

or [Ca, § 13.2]). Let Π̂ ⊆ Σ̂+ denote the images in Σ̂ of Π ⊆ Σ+.

For each α̂ ∈ Σ̂, set X α̂ = 〈Xα |α ∈ α̂〉 and Xα̂ = C
Xα̂

(σ). When α ∈ Σ is of minimal

height in its class α̂ ∈ Σ̂, and q′ = |Xab
α̂ |, then for u ∈ Fq′, let x̂α(u) ∈ Xα̂ be an element

whose image under projection to Xα is xα(u) (uniquely determined modulo [Xα̂, Xα̂]).

For α ∈ Π and λ ∈ F×q0, let ĥα(λ) ∈ T be an element in G ∩ 〈hβ(F×q0) | β ∈ α̂〉 whose

component in hα(F×q0) is hα(λ) (if there is such an element).

To see that τ and ρ exist as defined in point (C), recall that the root groups Xα for α ∈ Σ

are the unique closed subgroups of G which are isomorphic to (Fq0 ,+) and normalized by T
(see, e.g., [GLS3, Theorem 1.9.5(a,b)]). Since σ is algebraic (hence continuous) and bijective,
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σ−1 sends root subgroups to root subgroups, and σ permutes the root subgroups (hence the
roots) since there are only finitely many of them. Using Chevalley’s commutator formula,
one sees that this permutation ρ of Σ preserves angles between roots, and hence (up to
positive scalar multiple) extends to an orthogonal automorphism of V .

These definitions of x̂α(u) ∈ Xα̂ and ĥα(λ) ∈ T are slightly different from the definitions
in [GLS3, § 2.4] of elements xα̂(u) and hα̂(λ). We choose this notation to emphasize that

these elements depend on the choice of α ∈ Σ, not only on its class α̂ ∈ Σ̂. This will be
important in some of the relations we need to use in Section 5.

Lemma 2.3. Under the assumptions of Notation 2.2, the action of W on T restricts to an

action of W0 on T , and the natural isomorphism N
G

(T )/T ∼= W restricts to an isomorphism(
NG(T ) ∩N

G
(T )
)/
T ∼= CW (τ) = W0 .

Proof. For each α ∈ Σ, nα(1) = xα(1)x−α(−1)xα(1) represents the reflection wα ∈ W , and

hence σ(nα) ∈ 〈Xρ(α), X−ρ(α)〉 ∩ NG
(T ) represents the reflection wρ(α) = τ(wα). Since W is

generated by the wα for α ∈ Σ, we conclude that σ and τ have the same action on W .

Thus the identification N
G

(T )/T ∼= W restricts to the following inclusions:(
NG(T ) ∩N

G
(T )
)/
T ≤ C

N
G

(T )
(σ)/C

T
(σ) ≤ C

N
G

(T )/T
(σ) ∼= CW (τ) = W0 .

If w ∈ W0 represents the coset xT ⊆ N
G

(T ), then x−1σ(x) ∈ T . By the Lang-Steinberg

theorem, each element of T has the form t−1σ(t) for some t ∈ T , and hence we can choose
x such that σ(x) = x. Then x ∈ C

G
(σ), and hence x normalizes G = Oq′0(C

G
(σ)) and

T = G ∩ T . Since C
G

(σ) = GC
T

(σ) (see [GLS3, Theorem 2.2.6(g)] or [St3, Corollary

12.3(a)]), some element of xT lies in NG(T ). So the above inclusions are equalities. �

The roots in G are defined formally as characters of its maximal torus T . But it will be

useful to distinguish the (abstract) root α ∈ Σ from the character θα ∈ Hom(T ,F×q0) ⊆ V .

For each root α ∈ Σ ⊆ V , let α∨ ∈ V ∗ be the corresponding co-root (dual root): the
unique element such that (α∨, α) = 2 and wα is reflection in the hyperplane Ker(α∨). Since
we identify V = V ∗ via a W -invariant inner product, α∨ = 2α/(α, α). Point (c) of the next

lemma says that α∨ = hα, when we regard hα ∈ Hom(F×q0 , T ) as an element in V ∗.

Lemma 2.4. Assume we are in the situation of (A) and (B) in Notation 2.2.

(a) We have C
G

(T ) = T . In particular, Z(G) ≤ T , and is finite of order prime to the
defining characteristic q0.

(b) The maximal torus T in G is generated by the elements hα(λ) for α ∈ Π and λ ∈ F×q0.

If G is universal, and λα ∈ Fq0 are such that
∏

α∈Π hα(λα) = 1, then λα = 1 for each
α ∈ Π. Thus

T =
∏
α∈Π

hα(F×q0),

and hα is injective for each α.

(c) For each β ∈ Σ, let θβ ∈ X(T ) = Hom(T ,F×q0) be the character such that

txβ(u) = xβ(θβ(t)·u)
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for t ∈ T and u ∈ Fq0. Then

θβ(hα(λ)) = λ(α∨,β) for β, α ∈ Σ, λ ∈ F×q0 .

The product homomorphism θΠ =
∏
θβ : T −−−−→

∏
β∈Π F×q0 is surjective, and Ker(θΠ) =

Z(G).

(d) If α, β1, . . . , βk ∈ Σ and n1, . . . , nk ∈ Z are such that α∨ = n1β
∨
1 + . . .+ nkβ

∨
k , then for

each λ ∈ F×q0, hα(λ) = hβ1(λn1) · · ·hβk(λnk).

(e) For each w ∈ W , α ∈ Σ, and λ ∈ F×q0, and each n ∈ N
G

(T ) such that nT = w ∈
N
G

(T )/T ∼= W , n(Xα) = Xw(α) and n(hα(λ)) = hw(α)(λ). For each α, β ∈ Σ and each

λ ∈ F×q0,

wα(hβ(λ)) = hwα(β)(λ) = hβ(λ)hα(λ−(β∨,α)) .

Hence wα(t) = t · hα(θα(t))−1 for each t ∈ T .

Proof. (a) By [Hu, Proposition 24.1.A], the maximal torus T is regular (i.e., contained in only

finitely many Borel subgroups). So C
G

(T ) = T by [Hu, Corollary 26.2.A]. Hence Z(G) ≤ T ,

it is finite since G is assumed simple, and so it has order prime to the defining characteristic
q0.

We claim that it suffices to prove the relations in (c)–(e) in the adjoint group G/Z(G),

and hence that we can use the results in [Ca, §§ 7.1–2]. For relations in T , this holds since

T is infinitely divisible and Z(G) is finite (thus each homomorphism to T/Z(G) has at most

one lifting to T ). For relations in a root group Xα, this holds since each element of XαZ(G)

of order q0 lies in Xα, since |Z(G)| is prime to q0 by (a).

(b) This is stated without proof in [GLS3, Theorem 1.12.5(b)], and with a brief sketch of
a proof in [St4, p. 122]. We show here how it follows from the classification of reductive
algebraic groups in terms of root data (see, e.g., [Sp, § 10]).

Consider the homomorphism

hΠ : T̃
def
=
∏
α∈Π

F×q0 −−−−−−−→ T

which sends (λα)α∈Π to
∏

α hα(λα). Then hΠ is surjective with finite kernel (see [Ca, § 7.1]).
It remains to show that it is an isomorphism when G is of universal type.

We recall some of the notation used in [Sp, § 7]. To G is associated the root datum(
X(T ),Σ, X∨(T ),Σ∨

)
, where

X(T ) = Hom(T ,F×q0), X∨(T ) = Hom(F×q0 , T ), Σ∨ = {α∨ = hα |α ∈ Σ} ⊆ X∨(T ) .

As noted before, X(T ) and X∨(T ) are groups of algebraic homomorphisms, and are free

abelian groups of finite rank dual to each other. Recall that Σ ⊆ X(T ), since we identify a
root α with the character θα.

Set Y ∨ = ZΣ∨ ⊆ X∨(T ), and let Y ⊇ X(T ) be its dual. Then (Y,Σ, Y ∨,Σ∨) is still
a root datum as defined in [Sp, § 7.4]. By [Sp, Proposition 10.1.3] and its proof, it is

realized by a connected algebraic group G̃ with maximal torus T̃ , which lies in a central

extension f : G̃ −−−→ G which extends hΠ. Since G is of universal type, f and hence hΠ are
isomorphisms.
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(c) Let ZΣ ≤ V be the additive subgroup generated by Σ. In the notation of [Ca, pp.

97–98], for each α ∈ Σ and λ ∈ F×q0 , hα(λ) = h(χα,λ) where

χα,λ ∈ Hom(ZΣ,F×q0) is defined by χα,λ(v) = λ2(α,v)/(α,α) = λ(α∨,v).

Also, by [Ca, p. 100], for each χ ∈ Hom(ZΣ,F×q0), β ∈ Σ, and u ∈ Fq0 , h(χ)xβ(u) =

xβ(χ(β)·u). Thus there are homomorphisms θβ ∈ Hom(T ,F×q0), for each β ∈ Σ, such that
txβ(u) = xβ(θβ(t)·u), and θβ(h(χ)) = χ(β) for each χ. For each α ∈ Σ and λ ∈ F×q0 ,

θβ(hα(λ)) = θβ(h(χα,λ)) = χα,λ(β) = λ(α∨,β) . (1)

Assume t ∈ Ker(θΠ). Thus t ∈ Ker(θα) for all α ∈ Π, and hence for all α ∈ Σ ⊆ ZΠ. So

[t,Xα] = 1 for all α ∈ Σ, these root subgroups generate G (see [Sp, Corollary 8.2.10]), and

this proves that t ∈ Z(G). The converse is clear: t ∈ Z(G) implies t ∈ T by (a), and hence
θβ(t) = 1 for all β ∈ Π by definition of θβ.

It remains to show that θΠ sends T onto
∏

β∈Π Fq0 . Consider the homomorphisms

T̃
def
=
∏
α∈Π

F×q0
hΠ−−−−−−−→ T

θΠ−−−−−−−→
∏
β∈Π

F×q0 , (2)

where hΠ was defined in the proof of (b). We just saw that θΠ ◦hΠ has matrix
(
(α∨, β)

)
α,β∈Π

,

which has nonzero determinant since Π ⊆ V and Π∨ ⊆ V ∗ are bases. Since F×q0 is divisible
and its finite subgroups are cyclic, this implies that θΠ ◦ hΠ is onto, and hence θΠ is onto.

(d) This follows immediately from (c), where we showed, for α ∈ Σ, that α∨ can be identified

with hα in Hom(F×q0 , T ) ⊆ V ∗.

(e) The first statement (n(Xα) = Xw(α) and n(hα(λ)) = hw(α)(λ)) is shown in [Ca, Lemma
7.2.1(ii) & Theorem 7.2.2]. By the usual formula for an orthogonal reflection, wα(β) =

β − 2(α,β)
(α,α)

α = β − (α∨, β)α. Here, we regard wα as an automorphism of V (not of T ). Since

wα(β) and β have the same norm,

wα(β)∨ =
2wα(β)

(β, β)
=

2β

(β, β)
− 2(α, β)

(β, β)
· 2α

(α, α)
= β∨ − (β∨, α) · α∨ ,

and by (d),

wα(hβ(λ)) = hwα(β)(λ) = hβ(λ)hα(λ−(β∨,α)) = hβ(λ)hα(θα(hβ(λ))−1)

where the last equality follows from (c). Since T is generated by the hβ(λ) by (b), this

implies that wα(t) = t · hα(θα(t))−1 for all t ∈ T . �

For any algebraic group H, H0 denotes its identity connected component. The following
proposition holds for any connected, reductive group, but we state it only in the context of

Notation 2.2. Recall the homomorphisms θβ ∈ Hom(T ,F×q0), defined for β ∈ Σ in Lemma
2.4(c).

Proposition 2.5. Assume Notation 2.2. For any subgroup H ≤ T , C
G

(H) is an algebraic
group, C

G
(H)0 is reductive, and

C
G

(H)0 = 〈T ,Xα |α ∈ Σ, H ≤ Ker(θα)〉

C
G

(H) = C
G

(H)0 · {g ∈ N
G

(T ) | [g,H] = 1} .
(3)

If, furthermore, G is of universal type, then Z(G) = C
T

(W ).
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Proof. The description of C
G

(H)0 is shown in [Ca2, Theorem 3.5.3] when H is finite and
cyclic, and the proof given there also applies in the more general case. For each g ∈ C

G
(H),

cg(T ) is another maximal torus in C
G

(H)0, so gh ∈ C
N
G

(T )
(H) for some h ∈ C

G
(H)0, and

thus C
G

(H) = C
G

(H)0 · C
N
G

(T )
(H).

AssumeG is of universal type. Since Z(G) ≤ T by Lemma 2.4(a), we have Z(G) ≤ C
T

(W ).

Conversely, by Lemma 2.4(b), for each t ∈ T and each α ∈ Σ, t(xα(u)) = xα(θα(t)u), and
θ−α(t) = θα(t)−1. Hence also t(nα(1)) = nα(θα(t)) (see the formula for nα(λ) in Notation

2.2(B)). If t ∈ C
T

(W ), then [t, nα(1)] = 1 for each α, and since G is of universal type,

〈Xα, X−α〉 ∼= SL2(Fq0). Thus θα(t) = 1 for all α ∈ Σ, t acts trivially on all root subgroups,

and so t ∈ Z(G). �

We now look more closely at the lattice ZΣ∨ generated by the dual roots.

Lemma 2.6. Assume Notation 2.2(A,B), and also that G (and hence G) is of universal
type.

(a) There is an isomorphism

Φ: ZΣ∨ ⊗Z F×q0 −−−−−−→ T

with the property that Φ(α∨ ⊗ λ) = hα(λ) for each α ∈ Σ and each λ ∈ F×q0.

Fix some λ ∈ F×q0, and set m = |λ|. Set Φλ = Φ(−, λ) : ZΣ∨ −−−→ T .

(b) The map Φλ is Z[W ]-linear, Ker(Φλ) = mZΣ∨, and Im(Φλ) = {t ∈ T | tm = 1}.

(c) Fix t ∈ T and x ∈ ZΣ∨ such that Φλ(x) = t, and also such that

‖x‖ < 1
2
m ·min

{
‖α∨‖

∣∣α ∈ Π
}
.

Then CW (t) = CW (x).

(d) If m = |λ| ≥ 4, then for each α ∈ Σ, CW (hα(λ)) = CW (α).

Proof. (a,b) Identify ZΣ∨ as a subgroup of Hom(F×q0 , T ), and let

Φ: ZΣ∨ × F×q0 −−−−−−→ T

be the evaluation pairing. This is bilinear, hence induces a homomorphism on the tensor

product, and Φ(α∨, λ) = hα(λ) by Lemma 2.4(c). Since {α∨ |α ∈ Π} is a Z-basis for ZΣ∨

(since Σ∨ is a root system by [Brb, §VI.1, Proposition 2]), and since G is of universal type,
Φ is an isomorphism by Lemma 2.4(b).

In particular, for fixed λ ∈ F×q0 of order m, Φ(−, λ) induces an isomorphism from the

quotient group ZΣ∨/mZΣ∨ onto the m-torsion subgroup of T .

(c) Clearly, CW (x) ≤ CW (t); it remains to prove the opposite inclusion. Fix w ∈ CW (t).
By (a), w(x) ≡ x (mod mZΣ∨).

Set r = min
{
‖α∨‖

∣∣α ∈ Π
}

. For each α ∈ Σ, ‖α∨‖ =
√
k · r for some k = 1, 2, 3, and

hence (α∨, α∨) ∈ r2Z. For each α, β ∈ Σ, 2(α∨, β∨)
/

(α∨, α∨) ∈ Z (cf. [Ca, Definition

2.1.1]), and hence (α∨, β∨) ∈ 1
2
r2Z. Thus (x, x) ∈ r2Z for each x ∈ ZΣ∨, and in particular,

min
{
‖x‖

∣∣ 0 6= x ∈ ZΣ∨
}

= r.
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By assumption, ‖w(x)‖ = ‖x‖ < mr/2, so ‖w(x)− x‖ < mr. Since each nonzero element
in mZΣ∨ has norm at least mr, this proves that w(x)− x = 0, and hence that w ∈ CW (x).

(d) This is the special case of (c), where x = α∨ and t = hα(λ). �

Lemma 2.7. Assume Notation 2.2, and assume also that G is of universal type. Let Γ <

Aut(V ) be any finite group of isometries of (V,Σ). Then there is an action of Γ on T , where

g(hα(u)) = hg(α)(u) for each g ∈ Γ, α ∈ Σ, and u ∈ F×q0. Fix m ≥ 3 such that q0 - m, and

set Tm = {t ∈ T | tm = 1}. Then Γ acts faithfully on Tm. If 1 6= g ∈ Γ and ` ∈ Z are such
that g(t) = t` for each t ∈ Tm, then ` ≡ −1 (mod m).

Proof. The action of Γ on T is well defined by the relations in Lemma 2.4(d,b).

Now fix m ≥ 3 prime to q0, and let Tm < T be the m-torsion subgroup. It suffices to
prove the rest of the lemma when m = p is an odd prime, or when m = 4 and p = 2. Fix

λ ∈ F×q0 of order m, and let Φλ : ZΣ∨ −−−−→ T be the homomorphism of Lemma 2.6(b). By
definition of Φλ, it commutes with the actions of Γ on ZΣ∨ < V and on Tm.

Assume 1 6= g ∈ Γ and ` ∈ Z are such that g(t) = t` for each t ∈ Tm. Set r = dim(V ), and
let B ∈ GLr(Z) be the matrix for the action of g on ZΣ∨, with respect to some Z-basis of
ZΣ∨. Then |g| = |B|, and B ≡ `I (mod mMr(Z)). If p = 2 (m = 4), let µ ∈ {±1} be such
that ` ≡ µ (mod 4). If p is odd (so m = p), then let µ ∈ (Zp)× be such that µ ≡ ` (mod p)
and µp−1 = 1. Set B′ = µ−1B ∈ GLr(Zp). Thus B′ also has finite order, and B′ ≡ I (mod
mMr(Zp)).

The logarithm and exponential maps define inverse bijections

I +mMr(Zp)
ln−−−−−−→←−−−−−−

exp
mMr(Zp) .

They are not homomorphisms, but they do have the property that ln(Mk) = k ln(M) for
each M ∈ I + mMr(Zp) and each k ≥ 1. In particular, the only element of finite order in
I + mMr(Zp) is the identity. Thus B′ = I, so B = µI. Since µ ∈ Z and B 6= I, we have
µ = −1 and B = −I. �

The following lemma about the lattice ZΣ∨ will also be useful when working with the

Weyl group action on certain subgroups of T .

Lemma 2.8. Assume Notation 2.2(A,B). Set Λ = ZΣ∨: the lattice in V generated by the
dual roots. Assume that there are b ∈ W of order 2, and a splitting Λ = Λ+ ×Λ−, such that
Λ+,Λ− 6= 0 and b acts on Λ± via ±Id. Then G ∼= Cn (= Sp2n) for some n ≥ 2.

Proof. Fix b ∈ W and a splitting Λ = Λ+×Λ− as above. When considering individual cases,
we use the notation of Bourbaki [Brb, Planches I–IX] to describe the (dual) roots, lattice,
and Weyl group.

• If G = An (n ≥ 2), then Λ =
{

(a0, . . . , an) ∈ Zn+1
∣∣ a0 + . . . + an = 0

}
, and b exchanges

certain coordinates pairwise. Choose v ∈ Λ with coordinates 1, −1, and otherwise 0;
where the two nonzero entries are in separate orbits of b of which at least one is nonfixed.
Then v /∈ Λ+ × Λ−, a contradiction.

• If G = G2, then as described in [Brb, Planche IX], Λ is generated by the dual fundamental
roots (1,−1, 0) and (2

3
,−1

3
,−1

3
), and does not have an orthogonal basis.

• If G = Bn (n ≥ 3), Dn (n ≥ 4), or F4, then Λ < Zn is the sublattice of n-tuples the sum
of whose coordinates is even. Also, b acts by permuting the coordinates and changing
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sign (or we can assume it acts this way in the F4 case). Choose v with two 1’s and the
rest 0, where the 1’s are in separate b-orbits, of which either at least one is nonfixed, or
both are fixed and exactly one is negated. Then v /∈ Λ+ × Λ−, a contradiction.

• If G = E8, then Λ = Λ(E8) < R8 is generated by 1
2
(1, 1, . . . , 1) and the n-tuples of

integers whose sum is even. We can assume (up to conjugation) that b acts as a signed
permutation. Choose v as in the last case.

• If G = E7, then Λ < R8 is the lattice of all x = (x1, . . . , x8) ∈ Λ(E8) such that x7 = −x8.
Up to conjugation, b can be again be assumed to act on A via a signed permutation
(permuting only the first six coordinates), and v can be chosen as in the last case.

• If G = E6, then Λ < R8 is the lattice of all x = (x1, . . . , x8) ∈ Λ(E8) such that x6 = x7 =
−x8. Also, W contains a subgroup isomorphic to 24 : S5 with odd index which acts on
the remaining five coordinates via signed permutations. So b and v can be taken as in the
last three cases. �

We finish the section with a very elementary lemma.

It will be useful to know, in certain situations, that each coset of T in N
G

(T ) contains
elements of G.

Lemma 2.9. Assume that we are in the situation of Notation 2.2(A,B). Assume also that

σ acts on T via (t 7→ tm) for some 1 6= m ∈ Z. Then for each g ∈ N
G

(T ), gT ∩C
G

(σ) 6= ∅.

Proof. Since σ|
T
∈ Z(Aut(T )), we have g−1σ(g) ∈ C

G
(T ) = T , the last equality by Lemma

2.4(a). So for each t ∈ T , σ(gt) = gt if and only if g−1σ(g) = t1−m. Since T ∼= (F×q0)r for

some r, and Fq0 is algebraically complete (and 1−m 6= 0), this always has solutions. �

3. Automorphisms of groups of Lie type

Since automorphisms of G play a central role in this paper, we need to fix our notation
(mostly taken from [GLS3]) for certain subgroups and elements of Aut(G). We begin with

automorphisms of the algebraic group G.

Definition 3.1. Let G and its root system Σ be as in Notation 2.2(A,B).

(a) When q is any power of q0 (the defining characteristic of G), let ψq ∈ End(G) be the

field endomorphism defined by ψq(xα(u)) = xα(uq) for each α ∈ Σ and each u ∈ Fq0.

Set Φ
G

= {ψqb0 | b ≥ 1}: the monoid of all field endomorphisms of G.

(b) Let Γ
G

be the group or set of graph automorphisms of G as defined in [GLS3, Definition
1.15.5(e)]. Thus when (G, q0) 6= (B2, 2), (G2, 3), nor (F4, 2), Γ

G
is the group of all

γ ∈ Aut(G) of the form γ(xα(u)) = xρ(α)(u) (all α ∈ ±Π and u ∈ Fq0) for some
isometry ρ of Σ such that ρ(Π) = Π. If (G, q0) = (B2, 2), (G2, 3), or (F4, 2), then
Γ
G

= {1, ψ}, where for the angle-preserving permutation ρ of Σ which exchanges long
and short roots and sends Π to itself, ψ(xα(u)) = xρ(α)(u) when α is a long root and
ψ(xα(u)) = xρ(α)(u

q0) when α is short.

(c) A Steinberg endomorphism σ of G is “standard” if σ = ψq ◦ γ = γ ◦ ψq, where q is a

power of q0 and γ ∈ Γ
G

. A σ-setup (G, σ) for a finite subgroup G < G is standard if σ
is standard.
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By [GLS3, Theorem 2.2.3], for any G with σ-setup (G, σ) as in Notation 2.2, G is G-
conjugate to a subgroup G∗ which has a standard σ-setup. This will be made more precise
in Proposition 3.6(a).

Most of the time in this paper, we will be working with standard σ-setups. But there are
a few cases where we will need to work with setups which are not standard, which is why
this condition is not included in Notation 2.2.

Following the usual terminology, we call G a “Chevalley group” if it has a standard σ-
setup where γ = Id in the notation of Definition 3.1; i.e., if G ∼= G(q) where q is some power
of q0. In this case, the root groups Xα̂ are all abelian and isomorphic to Fq. When G has a
standard σ-setup with γ 6= Id, we refer to G as a “twisted group”, and the different possible
structures of its root groups are described in [GLS3, Table 2.4]. We also refer to G as a

“Steinberg group” if γ 6= Id and is an algebraic automorphism of G; i.e., if G is a twisted
group and not a Suzuki or Ree group.

The following lemma will be useful in Sections 5 and 6.

Lemma 3.2. Assume G is as in Notation 2.2(A,B). Then for each algebraic automorphism

γ of G which normalizes T , there is an orthogonal automorphism τ of V such that τ(Σ) = Σ,
and

γ(Xα) = Xτ(α) and γ(hα(λ)) = hτ(α)(λ)

for each α ∈ Σ and each λ ∈ F×q0. In particular,
∣∣γ|

T

∣∣ = |τ | < ∞. If, in addition, γ

normalizes each of the root groups Xα (i.e., τ = Id), then γ ∈ Aut
T

(G).

Proof. By [GLS3, Theorem 1.15.2(b)], and since γ is an algebraic automorphism of G, γ =

cg ◦γ0 for some g ∈ G and some γ0 ∈ Γ
G

. Furthermore, γ0 has the form: γ0(xα(u)) = xχ(α)(u)

for all α ∈ Σ and u ∈ Fq0 , and some isometry χ ∈ Aut(V ) such that χ(Π) = Π. Since γ and

γ0 both normalize T , we have g ∈ N
G

(T ).

Thus by Lemma 2.4(e), there is τ ∈ Aut(V ) such that τ(Σ) = Σ, and γ(Xα) = Xτ(α) and

γ(hα(λ)) = hτ(α)(λ) for each α ∈ Σ and λ ∈ F×q0 . In particular,
∣∣γ|

T

∣∣ = |τ |.

If τ = Id, then γ0 = Id and g ∈ T . Thus γ ∈ Aut
T

(G). �

We next fix notation for automorphisms of G.

Definition 3.3. Let G and G be as in Notation 2.2(A,B,C), where in addition, we assume
the σ-setup is standard.

(a) Set

Inndiag(G) = Aut
T

(G)Inn(G) and Outdiag(G) = Inndiag(G)/Inn(G) .

(b) Set ΦG =
{
ψq|G

∣∣ q = qb0, b ≥ 1
}

, the group of field automorphisms of G.

(c) If G is a Chevalley group, set ΓG =
{
γ|G

∣∣ γ ∈ Γ
G

}
, the group of graph automorphisms

of G. Set ΓG = 1 if G is a twisted group (a Steinberg, Suzuki, or Ree group).

Note that in [GLS3, Definition 2.5.13], when G has a standard σ-setup (G, σ), Inndiag(G)
is defined to be the group of automorphisms induced by conjugation by elements of C

G/Z(G)
(σ)

(lifted to G). By [GLS3, Lemma 2.5.8], this is equal to Inndiag(G) as defined above when

G is of adjoint form, and hence also in the general case (since Z(G) ≤ T ).
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Steinberg’s theorem on automorphisms of groups of Lie type can now be stated.

Theorem 3.4 ([St1, § 3]). Let G be a finite group of Lie type. Assume that (G, σ) is a

standard σ-setup for G, where G is in adjoint or universal form. Then

Aut(G) = Inndiag(G)ΦGΓG ,

where Inndiag(G) E Aut(G) and Inndiag(G) ∩ (ΦGΓG) = 1.

Proof. See, e.g., [GLS3, Theorem 2.5.12(a)] (together with [GLS3, Theorem 2.5.14(d)]).
Most of this follows from the main result in [St1], and from [St2, Theorems 30 & 36]. �

We also need the following characterizations of Inndiag(G) which are independent of the
choice of σ-setup.

Proposition 3.5. Assume the hypotheses and notation in 2.2. Then

(a) C
G

(G) = Z(G);

(b) N
G

(G) = GN
T

(G); and

(c) Inndiag(G) = Aut
T

(G)Inn(G) = Aut
G

(G) and hence Outdiag(G) = Out
T

(G).

In fact, (b) and (c) hold if we replace T by any σ-invariant maximal torus in G.

Proof. (a) Since the statement is independent of the choice of σ-setup, we can assume that

σ is standard. Set U =
∏

α∈Σ+
Xα and U∗ =

∏
α∈Σ+

X−α.

Fix g ∈ C
G

(G). Since G has a BN -pair (see [Ca, Proposition 8.2.1]), it has a Bruhat

decomposition G = BNB = UNU [Ca, Proposition 8.2.2(i)], where B = TU and N =

N
G

(T ). Write g = unv, where u, v ∈ U and n ∈ N . For each x ∈ U ∩ G, gx = u(nvx) ∈ U
implies that nvx = n(vx) ∈ U .

Since n ∈ N
G

(T ), conjugation by n permutes the root groups of G, in a way determined by

the class w = nT ∈ W = N
G

(T )/T . Thus w sends each (positive) root in the decomposition
of vx to a positive root. For each α ∈ Σ+, x̂α(1) ∈ G, v(x̂α(1)) has α in its decomposition,
and hence w(α) ∈ Σ+.

Thus w sends all positive roots to positive roots, so w(Π) = Π, and w = 1 by [Ca, Corollary

2.2.3]. So n ∈ T , and g = unv ∈ TU .

By the same argument applied to the negative root groups, g ∈ TU∗. Hence g ∈ T .

For each α ∈ Σ, g ∈ T commutes with x̂α(1) ∈ G, and hence g centralizes Xβ for each

β ∈ α̂ (Lemma 2.4(c)). Thus g centralizes all root groups in G, so g ∈ Z(G).

(b) Let T ∗ be any σ-invariant maximal torus in G. Fix g ∈ N
G

(G). Then g−1 · σ(g) ∈
C
G

(G) = Z(G) ≤ T ∗ by (a). By Lang’s theorem [GLS3, Theorem 2.1.1], there is t ∈ T ∗ such
that g−1 · σ(g) = t−1 · σ(t). Hence gt−1 ∈ C

G
(σ) = G · C

T ∗
(σ), where the last equality holds

by [GLS3, Theorem 2.2.6(g)]. So g ∈ GT ∗, and g ∈ GN
T ∗

(G) since g normalizes G.

(c) By (b), Aut
G

(G) = Aut
T ∗

(G)Inn(G) for each σ-invariant maximal torus T ∗. By defi-

nition, Inndiag(G) = Aut
T ∗

(G)Inn(G) when T ∗ is the maximal torus in a standard σ-setup

for G. Hence Inndiag(G) = Aut
G

(G) = Aut
T ∗

(G)Inn(G) for all such T ∗. �
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We refer to [GLS3, Definitions 1.15.5(a,e) & 2.5.10] for more details about the definitions
of ΦG and ΓG. The next proposition describes how to identify these subgroups when working
in a nonstandard setup.

Proposition 3.6. Assume G, T , and the root system of G, are as in Notation 2.2(A,B).

Let σ be any Steinberg endomorphism of G, and set G = Oq′0(C
G

(σ)).

(a) There is a standard Steinberg endomorphism σ∗ of G such that if we set G∗ = Oq′0(C
G

(σ∗)),

then there is x ∈ G such that G = x(G∗).

Fix G∗, σ∗, and x as in (a). Let Inndiag(G∗), ΦG∗, and ΓG∗ be as in Definition 3.3 (with

respect to the σ-setup (G, σ∗)). Set Inndiag(G) = cxInndiag(G∗)c−1
x , ΦG = cxΦG∗c

−1
x , and

ΓG = cxΓG∗c
−1
x , all as subgroups of Aut(G). Then the following hold.

(b) Inndiag(G) = Aut
G

(G).

(c) For each α ∈ Φ
G

Γ
G

such that α|G∗ ∈ ΦG∗ΓG∗, and each β ∈ α · Inn(G) such that
β(G) = G, β|G ≡ cx(α)c−1

x (mod Inndiag(G)).

(d) If ψq0 normalizes G, then Inndiag(G)ΦG = Inndiag(G)〈ψq0|G〉.

Thus the subgroups ΦG and ΓG are well defined modulo Inndiag(G), independently of the
choice of standard σ-setup for G.

Proof. (a) See, e.g., [GLS3, Theorem 2.2.3]: for any given choice of maximal torus, posi-

tive roots, and parametrizations of the root groups, each Steinberg automorphism of G is

conjugate, by an element of Inn(G), to a Steinberg automorphism of standard type.

(b) This follows immediately from Proposition 3.5(c).

(c) By assumption, β ≡ α ≡ cxαc
−1
x (mod Inn(G)). Since β and cxαc

−1
x both normalize G,

β|G ≡ cxα
∗c−1
x modulo Aut

G
(G) = Inndiag(G).

(d) If ψq0 normalizes G, then (c), applied with α = β = ψq0 , implies that as elements of
Aut(G)/Inndiag(G), [ψq0|G] = [cx(ψq0|G∗)c−1

x ] generates the image of ΦG. �

Lemma 3.7. Assume G, T , σ, G = Oq′0(C
G

(σ)), and the root system of G, are as in Notation

2.2(A,B). Assume that ϕ ∈ Aut(T ) is the restriction of an algebraic automorphism of G

such that [ϕ, σ|
T

] = 1. Then there is an algebraic automorphism ϕ ∈ Aut(G) such that
ϕ|
T

= ϕ, [ϕ, σ] = 1, and ϕ(G) = G.

Proof. By assumption, there is ϕ ∈ Aut(G) such that ϕ|
T

= ϕ. Also, [ϕ, σ] is an algebraic

automorphism of G by [GLS3, Theorem 1.15.7(a)], it is the identity on T , and hence [ϕ, σ] =

ct for some t ∈ T by Lemma 3.2. Using the Lang-Steinberg theorem, upon replacing ϕ by

cuϕ for appropriate u ∈ T , we can arrange that [ϕ, σ] = 1. In particular, ϕ(G) = G. �

The following proposition is well known, but it seems to be difficult to find references
where it is proven.

Proposition 3.8. Fix a prime q0, and a group G ∈ Lie(q0) of universal type. Then Z(G)
has order prime to q0, G/Z(G) ∈ Lie(q0) and is of adjoint type, and Z(G/Z(G)) = 1. If
G/Z(G) is simple, then each central extension of G by a group of order prime to q0 splits
(equivalently, H2(G;Z/p) = 0 for all primes p 6= q0).
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Proof. Let (G, σ) be a σ-setup for G, and choose a maximal torus and positive roots in G.

We can thus assume Notation 2.2. By Lemma 2.4(a), Z(G) is finite of order prime to q0.

Since Z(G) ≤ C
G

(G) = Z(G) by Proposition 3.5(a), Z(G) also has order prime to q0.

Set Ga = G/Z(G) and let Ga < Ga be the image of G under projection. Thus Ga is an

algebraic group of adjoint type, and Ga = Oq0′(C
Ga

(σa)) ∈ Lie(q0) where σa ∈ End(Ga) is

induced by σ. Also, Z(Ga) ≤ Z(Ga) = 1 by Proposition 3.5(a) again.

It remains to prove the statement about central extensions. When G is a Chevalley group,
this was shown in [St4, Théorème 4.5]. It was shown in [St6, Corollary 6.2] when G ∼= 2An(q)
for n even, and in [AG] when G ∼= 2G2(q) or Sz(q). The remaining cases follow by similar
arguments (see [St5, 9.4 & 12.4]). (See also [Cu, § 1], as well as Theorem 6.1.4 and Tables
6.1.2 and 6.1.3 in [GLS3].) �

The next proposition shows that in most cases, C
G

(T ) = T . In Section 5, we will see some

conditions which imply that C
G

(Op(T )) = T when p is a prime different from the defining
characteristic.

Proposition 3.9. Let (G, σ) be a σ-setup for G, where G and G are of universal type.

Assume Notation 2.2, and in particular, that we have fixed a maximal torus T and a root

system Σ in G.

(a) Assume that C
G

(T )0 	 T , where (−)0 denotes the connected component of the identity.

Then there is α ∈ Σ+ such that θα(T ) = 1. Also, there is β ∈ Hom(T ,F×q0) such that

θα = β−1σ∗(β); i.e., θα(t) = β(t−1σ(t)) for each t ∈ T .

(b) If the σ-setup is standard, then C
G

(T )0 = T except possibly when G ∼= rG(2) for some
G and some r ≤ 3, or when G ∼= A1(3), Cn(3) for n ≥ 2, or 2G2(3).

(c) If C
G

(T )0 = T , then NG(T )/T ∼= W0.

Proof. (a) By Proposition 2.5, and since C
G

(T )0 > T , there is α ∈ Σ such that T ≤ Ker(θα)

(equivalently, [T,Xα] = 1). Since Ker(θ−α) = Ker(θα), we can assume that α ∈ Σ+.

Since G is of universal type, G = C
G

(σ) and T = C
T

(σ). Hence there is a short exact
sequence

1 −−−→ T −−−−−→ T
t7→t−1σ(t)−−−−−−−−−→ T ,

where the last map is onto by the Lang-Steinberg theorem. Upon dualizing, and regarding

Hom(T ,F×q0) additively, we get an exact sequence

0 −−−→ Hom(T ,F×q0)
σ∗−Id−−−−−−→ Hom(T ,F×q0)

restr−−−−−→ Hom(T,F×q0)

(see also [Ca2, Proposition 3.2.3]), where Hom(T ,F×q0) is the group of algebraic homomor-
phisms. Since θα is in the kernel of the restriction map, by assumption, it has the form

β−1σ∗(β) for some β ∈ Hom(T ,F×q0).

(b) Let P (Σ) and Q(Σ) be as in [Brb, §VI.1.9] (but with Σ in place of R to denote the
root system). Thus Q(Σ) = ZΣ, the integral lattice generated by Σ, and

P (Σ) = {v ∈ V | (v, α∨) ∈ Z for all α ∈ Σ} ≥ Q(Σ) .
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For each v ∈ P (Σ), define θv ∈ X(T ) = Hom(T ,F×q0) by setting θv(hα(λ)) = λ(v,α∨) for

α ∈ Π and λ ∈ Fq0 . Since G is of universal type, this is a well defined homomorphism by
Lemma 2.4(b), and the same formula holds for all α ∈ Σ by Lemma 2.4(d). By Lemma
2.4(c), this extends our definition of θβ for β ∈ Σ ⊆ P (Σ).

Recall that Hom(F×q0 ,F
×
q0

) ∼= Z. For each θ ∈ X(T ) and each α ∈ Σ, let nθ,α ∈ Z be such

that θ(hα(λ)) = λnθ,α for all λ ∈ F×q0 . For given θ, there is v ∈ P (Σ) such that (v, α∨) = nθ,α
for all α ∈ Π, and hence (by Lemma 2.4(d)) for all α ∈ Σ. Then θ = θv as defined above. In

this way, we identify P (Σ) with the lattice X(T ) of characters for T , while identifying Q(Σ)
with ZΣ.

From the appendix to Chapter VI in [Brb] (Planches I–IX), we obtain the following table:

root system Σ An Cn Bn, Dn G2 F4 E6 E7 E8

min{‖v‖ | v ∈ P (Σ)}
√
n/(n+1) 1 min{

√
n/4, 1}

√
2 1

√
4/3

√
2
√

2

max{‖α‖ |α ∈ Σ}
√

2 2
√

2
√

6
√

2
√

2
√

2
√

2

Here, the norms are given with respect to the descriptions of these lattices in [Brb] as
subgroups of Euclidean spaces.

Assume C
G

(T )0 	 T . By (a), there are α ∈ Σ+ and β ∈ Hom(T ,F×q0) such that α =

β−1σ∗(β). If we regard α and β as elements in the normed vector space V , then ‖α‖ =
‖σ∗(β)−β‖ ≥ ‖σ∗(β)‖−‖β‖. If G = rG(q) (and σ is a standard setup), then ‖σ∗(β)‖ = q‖β‖,
except when G is a Suzuki or Ree group in which case ‖σ∗(β)‖ =

√
q‖β‖. Thus

‖α‖
‖β‖

+ 1 ≥

{
q if G is a Chevalley or Steinberg group
√
q if G is a Suzuki or Ree group.

By the above table, this is possible only if q = 2, or if G is isomorphic to one of the groups
A1(3), B2(3), Cn(3) (n ≥ 3), 2G2(3), or 2B2(8).

Assume G ∼= 2B2(8) ∼= Sz(8). It is most convenient to use the root system for C2 con-
structed in [Brb]: P (Σ) = Z2, and Σ = {(±2, 0), (0,±2), (±1,±1)}. Then α and β satisfy
the above inequality only if ‖α‖ = 2, ‖β‖ = 1, and ‖α + β‖ =

√
8. So (α, β) = 3

2
, which is

impossible for α, β ∈ Z2. Hence C
G

(T )0 = T in this case.

(c) If C
G

(T )0 = T , then N
G

(T ) ≤ N
G

(T ), and so NG(T )/T ∼= W0 by Lemma 2.3. �

The following, more technical lemma will be needed in Section 6.

Lemma 3.10. Assume the hypotheses and notation in 2.2, and also that the σ-setup (G, σ)

is standard. Then under the action of W0 on Σ̂, each orbit contains elements of Π̂.

Proof. When ρ = Id, this is [Ca, Proposition 2.1.8]. When ρ 6= Id, it follows from the

descriptions of W0 and Σ̂ in [Ca, §§ 13.2–13.3]. �

4. The equicharacteristic case

The following notation will be used in this section.

Notation 4.1. Assume the notation in 2.2, and also that ρ(Π) = Π, q0 = p, and Z(G) = 1.

Thus G = G(Fp) is a connected, simple group over Fp in adjoint form, σ is a Steinberg

endomorphism of G of standard form, and G = Op′(C
G

(σ)).
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(D) Set U =
〈
Xα

∣∣α ∈ Σ+

〉
and B

def
= N

G
(U) = UT (the Borel subgroup of G). Set

U = C
U

(σ) = 〈Xα̂ | α̂ ∈ Σ̂+〉 , B = NG(U) , and T = T ∩G.
Thus U =

∏
α̂∈Σ̂+

Xα̂ ∈ Sylp(G), and B = UT . (See, e.g., [GLS3, Theorems 2.3.4(d)

& 2.3.7], or [Ca, Theorems 5.3.3(ii) & 9.4.10] in the case of Chevalley groups.) When

Ĵ $ Π̂ is the image in Σ̂+ of a τ -invariant subset J $ Π, let UĴ ≤ U be the subgroup
generated by root groups for positive roots in Σ+r〈J〉 (the unipotent radical subgroup

associated to Ĵ), and set PĴ = NG(UĴ) = B
〈
X−α̂

∣∣α ∈ 〈J〉〉 (the parabolic subgroup

associated to Ĵ). Thus U = U∅ and B = P∅. We also write Uα̂ = U{α̂} and Pα̂ = P{α̂}
for each α̂ ∈ Π̂.

(E) The height of a positive root α =
∑

γ∈Π nγγ ∈ Σ+ (nγ ≥ 0) is defined by ht(α) =∑
γ∈Π nγ. The height ht(α̂) of a class of roots α̂ ∈ Σ̂+ is the minimum of the heights of

roots in the class α̂.

(F) Set F = FU(G) and L = LcU(G).

(G) Set U0 = 〈Xα̂ | α̂ ∈ Σ̂+, α̂ ∩ Π = ∅〉 = 〈Xα̂ | ht(α̂) ≥ 2〉.

(H) The Lie rank of G is equal to |Π̂|; equivalently, to the number of maximal parabolic
subgroups containing B.

For example, assume σ = ψq ◦ γ, where γ ∈ Aut(G) is a graph automorphism which

induces ρ ∈ Aut(Σ+), and ψq is the field automorphism induced by t 7→ tq. Then for α̂ ∈ Σ̂,
Xα̂
∼= Fq when α̂ = {α} contains only one root, Xα̂

∼= Fqa if α̂ = {ρi(α)} is the ρ-orbit of α
with length a, and Xα̂ is nonabelian if α̂ contains a root α and sums of roots in its ρ-orbit.

We need the following, stronger version of Theorem 3.4.

Theorem 4.2 ([St1, § 3]). Assume G is as in Notation 2.2 and 4.1. If α ∈ Aut(G) is such
that α(U) = U , then α = cudfg for unique automorphisms cu ∈ AutU(G), d ∈ Inndiag(G) =
Aut

T
(G), f ∈ ΦG, and g ∈ ΓG.

Proof. Let NAut(G)(U) ≤ Aut(G) and NInndiag(G)(U) ≤ Inndiag(G) be the subgroups of those
automorphisms that send U to itself. Since ΦGΓG ≤ NAut(G)(U) by definition, Theorem 3.4
implies that NAut(G)(U) = NInndiag(G)(U) · (ΦGΓG), a semidirect product. Since ΦG∩ΓG = 1,
it remains to show that NInndiag(G)(U) = AutU(G)Aut

T
(G) and AutU(G) ∩ Aut

T
(G) = 1.

The first is immediate: since Aut
T

(G) ≤ NAut(G)(U) and NG(U) = TU ,

NInndiag(G)(U) =
(
Inn(G)Aut

T
(G)
)
∩NAut(G)(U)

= AutNG(U)(G)Aut
T

(G) = AutU(G)Aut
T

(G) .

Finally, if cu = ct ∈ Aut(G) where u ∈ U and t ∈ T , then cu = IdG, since u has p-power
order and t has order prime to p. �

Lemma 4.3. Assume G ∈ Lie(p). Then for U ∈ Sylp(G), κG sends Out(G) injectively into
Out(F).

Proof. Assume that κG/Z(G) is injective. We claim that Aut(G) injects into Aut(G/Z(G)),
and hence that κG is also injective. To see this, fix α ∈ Aut(G) such that [α,G] ≤ Z(G).
Recall that Z(G) has order prime to p (Proposition 3.8). For each g ∈ G of p-power order,
α(g) = gz for some z ∈ Z(G), and z = 1 since otherwise |zg| > |g|. Since G is generated by
such elements by definition of Lie(p), α = IdG, proving the claim. It thus suffices to prove
the lemma when G is in adjoint form.
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We can thus assume Notation 4.1. By Lemma 1.4, it will suffice to prove that CAut(G)(U) ≤
Inn(G). Fix β ∈ Aut(G) such that β|U = IdU . By Theorem 4.2, there are unique automor-
phisms cu ∈ AutU(G), d ∈ Aut

T
(G), f ∈ ΦG, and g ∈ ΓG such that β = cudfg.

If g 6= Id, then it permutes the fundamental root groups nontrivially, while cudf |U sends
each such group to itself modulo higher root groups and commutators. Hence g = Id.
Similarly, f = Id, since otherwise β would act on the fundamental root groups (modulo
higher root groups) via some automorphism other than a translation.

Thus β = cud, where d = ct for some t ∈ N
T

(G). Then u has p-power order while t has

order prime to p, so d|U = ct|U = Id. By Lemma 2.4(c), ct sends each root group in U to

itself via xα(u) 7→ xα(θα(t)·u) for some character θα ∈ Hom(T ,F×p ) which is linear in α. For

each α̂ ∈ Σ̂+, ct|Xα̂ = Id implies that θα(t) = 1 for all α ∈ α̂. Thus θα(t) = 1 for all α ∈ Σ+,
so ct = Id

G
, and β = cu ∈ Inn(G). �

It now remains, when proving Theorem A, to show the surjectivity of κG. This will be
done case-by-case. We first handle groups of Lie rank at least three, then those of rank one,
and finally those of rank two.

For simplicity, we state the next two propositions only for groups of adjoint type, but they
also hold without this restriction. The first implies that each element of Aut(F) permutes
the subgroups UĴ (as defined in Notation 4.1), and that each element of Aut(LcS(G)) induces

an automorphism of the amalgam of parabolics PĴ for Ĵ $ Π̂.

Proposition 4.4. Assume Notation 4.1. For 1 6= P ≤ U , the following are equivalent:

(i) P = UĴ for some Ĵ $ Π̂;

(ii) P E B, CU(P ) ≤ P , and Op(OutF(P )) = 1; and

(iii) P E B, CG(P ) ≤ P , and Op(NG(P )) = P .

Hence for each ϕ ∈ Aut(F), ϕ permutes the subgroups UĴ , and in particular permutes the

subgroups Uα̂ for α̂ ∈ Π̂.

Proof. (i) =⇒ (iii): For each Ĵ $ Π̂, CG(UĴ) = Z(UĴ) by [GLS3, Theorem 2.6.5(e)] (recall
that G is of adjoint type). Also, Op(NG(UĴ)) = Op(PĴ) = UĴ , and UĴ is normal in B since
NG(UĴ) = PĴ ≥ B.

(iii) =⇒ (ii): This holds since OutF(P ) ∼= NG(P )/PCG(P ).

(ii) =⇒ (i): In this case, P E B, so NG(P ) ≥ B, and NG(P ) = PĴ for some

Ĵ $ Π̂ (cf. [Ca, Theorem 8.3.2]). Then P ≤ Op(PĴ) = UĴ . Also, UĴCG(P )
/
PCG(P ) ≤

Op(NG(P )/PCG(P )) = 1, so UĴ ≤ PCG(P ). Since UĴ ≤ U , this implies that UĴ ≤
PCU(P ) = P ; i.e., that P = UĴ . So (i) holds.

The last statement follows from the equivalence of (i) and (ii). �

When G has large Lie rank, Theorem A now follows from properties of Tits buildings.

Proposition 4.5. Assume G ∈ Lie(p) is of adjoint type and has Lie rank at least 3. Fix
U ∈ Sylp(G). Then κG is split surjective.

Proof. Set L = LcU(G). By Proposition 4.4, for each α ∈ Aut(L), α permutes the subgroups

UĴ for Ĵ $ Π̂. For each such Ĵ , CG(UĴ) = Z(UĴ), so AutL(UĴ) = NG(UĴ) = PĴ . Thus
α induces an automorphism of the amalgam of parabolic subgroups PĴ . Since G is the
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amalgamated sum of these subgroups by a theorem of Tits (see [Ti, Theorem 13.5] or [Se,
p. 95, Corollary 3]), α extends to a unique automorphism α of G.

Thus α 7→ α defines a homomorphism ŝ : Aut(L) −−−→ Aut(G). If α = cγ for γ ∈
AutL(U) = NG(U), then α is conjugation by γ ∈ G and hence lies in Inn(G). Hence ŝ factors
through s : Out(L) −−−→ Out(G), κG ◦ s = IdOut(L), and thus κG is split surjective. �

Before we can handle the rank 1 case, two elementary lemmas are needed.

Lemma 4.6. Let G be a finite group with normal Sylow p-subgroup S E G such that CG(S) ≤
S. Fix subgroups 1 = S0 < S1 < · · · < Sk = S normal in G such that

(i) Sk−1 ≤ Fr(S); and

(ii) for each 1 ≤ i ≤ k − 1, Si is characteristic in G, [S, Si] ≤ Si−1, Si/Si−1 has exponent
p, and HomFp[G/S](S/Fr(S), Si/Si−1) = 0 (i.e., no irreducible Fp[G/S]-submodule of
Si/Si−1 appears as a submodule of S/Fr(S)).

Let α ∈ Aut(G) be such that [α, S] ≤ Sk−1. Then α ∈ AutS(G).

Proof. For 1 6= g ∈ G of order prime to p, the conjugation action of g on S is nontrivial since
CG(S) ≤ S, and hence the conjugation action on S/Fr(S) is also nontrivial (see [G, Theorem
5.3.5]). Thus G/S acts faithfully on S/Fr(S). Since α induces the identity on S/Fr(S), α
also induces the identity on G/S.

Assume first that α|S = Id. Since S is a p-group and G/S has order prime to p,
H1(G/S;Z(S)) = 0. So by [OV, Lemma 1.2], α ∈ Inn(G). If g ∈ G is such that α = cg,
then [g, S] = 1 since α|S = Id, and g ∈ S since CG(S) ≤ S. Thus α ∈ AutS(G) in this case.

In particular, this proves the lemma when k = 1. So assume k ≥ 2. We can assume
inductively that the lemma holds for G/S1, and hence can arrange (after composing by an
appropriate element of AutS(G)) that α induces the identity on G/S1.

Let ϕ ∈ Hom(S, S1) be such that α(x) = xϕ(x) for each x ∈ S (a homomorphism since
S1 ≤ Z(S)). Then ϕ factors through ϕ ∈ Hom(S/Fr(S), S1) since S1 is elementary abelian,
and ϕ is a homomorphism of Fp[G/S]-modules since α(g) ≡ g (mod S1) for each g ∈ G (and
S1 ≤ Z(S)). Thus ϕ = 1 since HomG/S(Sk/Sk−1, S1) = 0 by (ii), so α|S = Id, and we already
showed that this implies α ∈ AutS(G). �

The next lemma will be useful when checking the hypotheses of Lemma 4.6.

Lemma 4.7. Fix a prime p and e ≥ 1, and set q = pe and Γ = F×q . For each a ∈ Z, set
Va = Fq, regarded as an FpΓ-module with action λ(x) = λax for λ ∈ Γ and x ∈ Fq.

(a) For each a, Va is FpΓ-irreducible if and only if a/ gcd(a, q− 1) does not divide pt− 1 for
any t|e, t < e.

(b) For each a, b ∈ Z, Va ∼= Vb as FpΓ-modules if and only if a ≡ bpi (mod q − 1) for some
i ∈ Z.

Proof. (a) Set d = gcd(a, q − 1), and let t be the order of p in (Z/ q−1
d

)×. Thus t|e since
q−1
d

∣∣(pe − 1). If t < e, then λa ∈ Fpt for each λ ∈ Fq, so 0 6= Fpt $ Va is a proper
FpΓ-submodule, and Va is reducible.

Conversely, if Va is reducible, then it contains a proper submodule 0 6= W $ Va of
dimension i, some 0 < i < e. All Γ-orbits in Var0, hence in Wr0, have length q−1

d
, so

q−1
d

∣∣(pi − 1), and t ≤ i < e.
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(b) For each a ∈ Z, let V a
∼= Fq be the FqΓ-module where Γ acts via λ(x) = λax. Then

Fq ⊗Fp Va ∼= V a ⊕ V ap ⊕ · · · ⊕ V ape−1 as FqΓ-modules. Since V b
∼= V a if and only if b ≡ a

(mod q − 1), Vb ∼= Va if and only if b ≡ api (mod q − 1) for some i. �

In principle, we don’t need to look at the fusion systems of the simple groups of Lie rank 1
if we only want to prove tameness. Their fusion is controlled by the Borel subgroup, so their
fusion systems are tame by Proposition 1.6. But the following proposition is needed when
proving Theorem A in its stronger form, and will also be used when working with groups of
larger Lie rank.

Proposition 4.8. Fix a prime p, and a group G ∈ Lie(p) of Lie rank 1. Assume (G, p) 6∼=
(Sz(2), 2). Then each ϕ ∈ Aut(F) extends to an automorphism of G. Also, if [ϕ,U ] ≤ [U,U ],
then ϕ ∈ Inn(U).

Proof. IfG is of universal form, then Z(G) is cyclic of order prime to p by Proposition 3.8. For
each Z ≤ Z(G), Out(G/Z) ∼= Out(G) by [GLS3, Theorem 2.5.14(d)], and Out(FU(G/Z)) ∼=
Out(FU(G)) since G and G/Z have the same p-fusion systems. It thus suffices to prove the
proposition when G has adjoint form.

Assume first G = PSL2(q). Thus U ∼= Fq (as an additive group), T ∼= C(q−1)/ε where

ε = gcd(q − 1, 2), and Γ
def
= AutT (U) is the subgroup of index ε in F×q . If ϕ ∈ Aut(U) is

fusion preserving, then under these identifications, there is α ∈ Aut(Γ) such that α(u)ϕ(v) =
ϕ(uv) for each u ∈ Γ ≤ F×q and v ∈ Fq. After composing with an appropriate diagonal
automorphism (conjugation by a diagonal element of PGL2(q)), we can assume that ϕ(1) =
1. Hence the above formula (with v = 1) implies that α = ϕ|Γ, and thus that ϕ(uv) =
ϕ(u)ϕ(v) for each u, v ∈ Fq with u ∈ Γ. If ε = 1, then ϕ acts as a field automorphism on
U , hence is the restriction of a field automorphism of G, and we are done. Otherwise, there
is u ∈ Γ such that Fq = Fp(u), u and ϕ(u) have the same minimal polynomial over Fp, and
there is ψ ∈ Aut(Fq) (a field automorphism) such that ψ(u) = ϕ(u). Thus ψ(ui) = ϕ(ui)
for each i, so ψ = ϕ since both are additive homomorphisms, and hence ϕ extends to a field
automorphism of G. (Note that this argument also holds when q = 3 and Γ = 1.)

Next assume G = PSU3(q). Following the conventions in [H, Satz II.10.12(b)], we identify

U =
{

[[a, b]]
∣∣ a, b ∈ Fq2 , b+ bq = −aq+1

}
where [[a, b]] =

(
1 a b
0 1 −aq
0 0 1

)
;

T =
{
d(λ)

∣∣λ ∈ F×q2

}
where d(λ) = diag(λ−q, λq−1, λ).

Here, whenever we write a matrix, we mean its class in PSU3(q). Then B = UT = NG(U) ≤
G (see [H, Satz II.10.12(b)]), and

[[a, b]] · [[c, d]] = [[a+ c, b+ d− acq]] and d(λ)[[a, b]] = [[λ1−2qa, λ−1−qb]] .

Set ε = gcd(2q − 1, q2 − 1) = gcd(2q − 1, q2 − 2q) = gcd(q + 1, 3). Then d(λ) = 1 exactly
when λε = 1, CT (U) = 1, and hence |T | = |AutB(U/Z(U))| = (q2 − 1)/ε. If q > 2, then
|T | does not divide pi − 1 for any power 1 < pi < q2, and by Lemma 4.7(a), U/Z(U) and
Z(U) are both irreducible as Fp[T ]-modules. (Note, in particular, the cases q = 5 and q = 8,
where (U/Z(U), T ) is isomorphic to (F25, C8) and (F64, C21), respectively.)

Fix ϕ ∈ Aut(F), and extend it to α ∈ Aut(B) (Lemma 1.12). Via the same argument
as that used when G = PSL2(q), we can arrange (without changing the class of ϕ modulo
Im(κG)) that ϕ ≡ Id (mod [U,U ]). If q > 2, then the hypotheses of Lemma 4.6 hold (with
[U,U ] < U < B in the role of S1 < S2 = S < G), so α ∈ AutU(B) and ϕ ∈ Inn(U).

If G ∼= PSU3(2) ∼= C2
3 oQ8 (cf. [Ta, p. 123–124]), then U ∼= Q8 and T = 1, so Out(F) =

Out(U) ∼= Σ3. By Theorem 3.4 (or by direct computation), Out(G) = Outdiag(G)ΦG has
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order six, since |Outdiag(G)| = gcd(3, q+ 1) = 3 and |ΦG| = 2. Thus κG is an isomorphism,
since it is injective by Lemma 4.3.

The proof when G = Sz(q) is similar. Set θ =
√

2q. We follow the notation in [HB,
§XI.3], and identify U as the group of all S(a, b) for a, b ∈ Fq and T < B = NG(U) as the
group of all d(λ) for λ ∈ F×q , with relations

S(a, b) · S(c, d) = S(a+ c, b+ d+ aθc) and d(λ)S(a, b) = S(λa, λ1+θb) .

As in the last case, we can arrange that ϕ ∈ Aut(F) is the identity modulo [U,U ]. Since
q ≥ 8 (q 6= 2 by hypothesis), Z(U) and U/Z(U) are nonisomorphic, irreducible F2T -modules
by Lemma 4.7(a,b) (and since Z(U) ∼= V1+θ and U/Z(U) ∼= V1 in the notation of that
lemma). We can thus apply Lemma 4.6 to show that ϕ ∈ Inn(U).

It remains to handle the Ree groups 2G2(q), where q = 3m for some odd m ≥ 1. Set
θ =

√
3q. We use the notation in [HB, Theorem XI.13.2], and identify U = (Fq)3 with

multiplication given by

(x1, y1, z1)·(x2, y2, z2) = (x1 + x2, y1 + y2 + x1·xθ2, z1 + z2 − x1·y2 + y1·x2 − x1·xθ1·x2) .

Note that xθ
2

= x3. Let T ≤ B = NG(U) be the set of all d(λ) for λ ∈ F×q , acting on U via

d(λ)(x, y, z) = (λx, λθ+1y, λθ+2z).

Again, we first reduce to the case where ϕ ∈ Aut(F) is such that [ϕ,U ] ≤ [U,U ], and extend
ϕ to α ∈ Aut(B). If q > 3, then U/[U,U ] ∼= V1, [U,U ]/Z(U) ∼= Vθ+1, and Z(U) ∼= Vθ+2 are
irreducible and pairwise nonisomorphic as F3T -modules by Lemma 4.7 (for Va as defined in
that lemma), since neither θ + 1 nor θ + 2 is a power of 3. So ϕ ∈ Inn(U) by Lemma 4.6.

If q = 3, then U = 〈a, b〉, where |a| = 9, |b| = 3, and [a, b] = a3. Set Qi = 〈abi〉 ∼= C9

(i = 0, 1, 2): the three subgroups of U isomorphic to C9. Let Aut0(U) ≤ Aut(U) be the
group of those α ∈ Aut(U) which send each Qi to itself. For each such α, the induced
action on U/Z(U) sends each subgroup of order three to itself, hence is the identity or
(g 7→ g−1), and the latter is seen to be impossible using the relation [a, b] = a3. Thus each
α ∈ Aut0(U) induces the identity on U/Z(U) and on Z(U), and has the form α(g) = gϕ(g)
for some ϕ ∈ Hom(U/Z(U), Z(U)). So Aut0(U) = Inn(U) since they both have order 9
(and clearly Inn(U) ≤ Aut0(U)). The action of Aut(U) on {Q0, Q1, Q2} thus defines an
embedding of Out(U) into Σ3, and the automorphisms (a, b) 7→ (ab, b) and (a, b) 7→ (a−1, b)
show that Out(U) ∼= Σ3. Since |OutF(U)| = 2 and AutF(U) E Aut(F), it follows that
Out(F) = 1 = Out(G). (See also [BC, Theorem 2] for more discussion about Aut(U).) �

It remains to show that κG (at the prime p) is surjective when G ∈ Lie(p) has Lie rank
2, with the one exception when G ∼= SL3(2). Our proof is based on ideas taken from the
article of Delgado and Stellmacher [DS], even though in the end, we do not actually need to
refer to any of their results in our argument. The third author would like to thank Richard
Weiss for explaining many of the details of how to apply the results in [DS], and also to
Andy Chermak and Sergey Shpectorov for first pointing out the connection.

Fix a prime p, and a finite group G ∈ Lie(p) of Lie rank two. We assume Notation 2.2

and 4.1. In particular, (G, σ) is a σ-setup for G, T ≤ G is a maximal torus, U ∈ Sylp(G)
is generated by the positive root subgroups, and B = NG(U) is a Borel subgroup. Set

Π̂ = {α̂1, α̂2}, and set P1 = Pα̂1 = 〈B,X−α̂1〉 and P2 = Pα̂2 = 〈B,X−α̂2〉: the two maximal
parabolic subgroups of G containing B. Our proofs are based on the following observation:

Lemma 4.9. Assume, for G ∈ Lie(p) of rank 2 and its amalgam of parabolics as above, that

each automorphism of the amalgam (P1 > B < P2) extends to an automorphism
of G.

(∗)
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Then κG is surjective.

Here, by an automorphism of the amalgam, we mean a pair (χ1, χ2), where either χi ∈
Aut(Pi) for i = 1, 2 or χi ∈ Iso(Pi,P3−i) for i = 1, 2, and also χ1|B = χ2|B.

Proof. Set L = LcU(G) and Ui = Op(Pi). By Proposition 4.4, each χ ∈ Aut(L) either sends
U1 and U2 to themselves or exchanges them. For each i = 1, 2, CG(Ui) ≤ Ui, so AutL(Ui) =
NG(Ui) = Pi. Thus χ induces an automorphism of the amalgam (P1 > B < P2). By
assumption, this extends to an automorphism χ of G, and κG(χ) = ξ. �

Set G = P1 * BP2: the amalgamated free product over B. Let ρ : G −−−→ G be the

natural surjective homomorphism. Since each automorphism of the amalgam induces an
automorphism of G, (∗) holds if for each automorphism of (P1 > B < P2), the induced
automorphism of G sends Ker(ρ) to itself.

Let ∆ be the tree corresponding to the amalgam (P1 > B < P2). Thus ∆ has a vertex
[gPi] for each coset gPi (for all g ∈ G and i = 1, 2), and an edge g(eB) connecting [gP1] to
[gP2] for each coset gB in G. Also, G acts on ∆ via its canonical action on the cosets, and
in particular, it acts on g(eB) with stabilizer subgroup gB.

Similarly, let ∆G be the graph of G with respect to the same amalgam: the graph with
vertex set (G/P1) ∪ (G/P2) and edge set G/B. Equivalently, since P1, P2, and B are
self-normalizing, ∆G is the graph whose vertices are the maximal parabolics in G and whose
edges are the Borel subgroups. Let ρ̂ : ∆ −−−→ ∆G be the canonical map which sends a
vertex [gPi] in ∆ to the vertex in ∆G corresponding to the image of gPi in G.

Fix a subgroup N ≤ G such that (B,N) is a BN -pair for G, and such that B∩N = T and
N/T ∼= W0 (where T and W0 are as defined in Notation 2.2). We refer to [Ca, §§ 8.2, 13.5] for
the definition of BN -pairs, and the proof that G has a BN -pair (B,N) which satisfies these
conditions. For i = 1, 2, choose ti ∈ (N ∩Pi)rB = (N ∩Pi)rT . Since (N ∩Pi)/T ∼= C2

and N = 〈N ∩ P1, N ∩ P2〉, we have N = T 〈t1, t2〉, consistent with the notation in [DS].
Note that T can be the trivial subgroup. We also regard the ti ∈ Pi as elements of G, and
T ≤ B as a subgroup of G, when appropriate.

Let T be the union of the edges in the T 〈t1, t2〉-orbit of eB. Thus T is a path of infinite
length in ∆ of the following form:

· · · • • • • •
[t1t2P1] [t1P2] [P1] [P2] [t2P1]

t1t2t1(eB) t1t2(eB) t1(eB) eB t2(eB) t2t1(eB) · · ·

Thus ρ̂(T ) is an apartment in the building ∆G under Tits’s definition and construction of
these structures in [Ti, 3.2.6].

A path in ∆ is always understood not to double back on itself.

Lemma 4.10. Let G, ∆, (T, t1, t2), and T be as above, and let n ∈ {3, 4, 6, 8} be such that
W0
∼= D2n. Then each path in ∆ of length at most n + 1 is contained in g(T ) for some

g ∈ G.

Proof. A path of length 1 is an edge, and is in the G-orbit of eB which has stabilizer group
B. If eB is extended to a path of length 2 with the edge ti(eB) (i = 1 or 2), then this path
has stabilizer group

B ∩ tiB =
∏

α̂∈Σ̂+r{α̂i}

Xα̂ · T .

(Recall that tiXα̂i = X−α̂i , and X−α̂i ∩ B = 1 by [Ca, Lemma 7.1.2].) Thus the stabilizer
subgroup has index pj in B, where pj = |Xα̂i |. Furthermore, |Pi/B| = 1 + pj, since by [Ca,
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Proposition 8.2.2(ii)],

Pi = B ∪ (BtiB) where |BtiB| = |B| · |B/(B ∩ tiB)| = |B| · pj .
Hence there are exactly pj extensions of eB to a path of length 2 containing the vertex [Pi]
in the interior, and these are permuted transitively by B.

Upon continuing this argument, we see inductively that for all 2 ≤ k ≤ n+ 1, the paths of
length k starting at eB with endpoint [P3−i] are permuted transitively by B, and of them,
the one contained in T has stabilizer subgroup the product of T with (n + 1 − k) root
subgroups in U . (Recall that B = TU , and U is the product of n root subgroups.) Since G
acts transitively on the set of edges in ∆, each path of length k is in the G-orbit of one which
begins with eB (and with endpoint [P1] or [P2]), and hence in the G-orbit of a subpath of
T . �

Proposition 4.11. Let G, G, and (T, t1, t2) be as above, and let n ∈ {3, 4, 6, 8} be such that
W0
∼= D2n. Assume that

for each (χ1, χ2) ∈ Aut
(
P1 > B < P2

)
, where χi ∈ Aut(Pi) or χi ∈

Iso(Pi,P3−i) for i = 1, 2, we have (χ1(t1)χ2(t2))n ∈ χ1(T ) ≤ G.
(†)

Then (∗) holds (each automorphism of (P1 > B < P2) extends to an automorphism of G),
and hence κG is onto.

Proof. Let ≈ be the equivalence relation on the set of vertices in ∆ generated by setting x ≈ y
if x and y are of distance 2n apart in some path in the G-orbit of T . Since T 〈t1, t2〉/T ∼= D2n

as a subgroup of NG(T )/T , the natural map ρ̂ : ∆ −−−→ ∆G sends T to a loop of length
2n, and hence sends all apartments in the G-orbit of T to loops of length 2n. Hence
ρ̂ : ∆ −−−→ ∆G factors through ∆/≈. We will show that ρ̂ induces an isomorphism (∆/≈) ∼=
∆G of graphs, and then use that and (†) to prove the proposition.

We claim that

∆G contains no loops of length strictly less than 2n; and (1)

each pair of points in ∆/≈ is connected by a path of length at most n. (2)

Assume (1) does not hold: let L be a loop of minimal length 2k (k < n). Fix edges σi = [xi, yi]
in L (i = 1, 2) such that the shortest path from xi to y3−i in L has length k − 1, and let
L0 ⊆ L be the path of length k + 1 from x1 through y1 and x2 to y2. Then L0 lifts to a
path of length k + 1 ≤ n in ∆, this is contained in some apartment in the G-orbit of T by
Lemma 4.10, and hence L0 ⊆ Σ, where Σ ⊆ ∆G is an apartment in the G-orbit of ρ̂(T ). By
[Ti, Theorem 3.3] or [Br, p. 86], there is a retraction of ∆G onto Σ. Hence the path from
y2 to x1 in Σ has length at most k − 1, which is impossible since Σ is a loop of length 2n
and L0 is a path of length k + 1 ≤ n in Σ. (See also [Br, § IV.3, Exercise 1]. Point (1) also
follows since ∆G is a generalized n-gon in the sense of Tits [Br, p. 117], and hence any two
vertices are joined by at most one path of length less than n.)

Now assume (2) does not hold: let x, y be vertices in ∆ such that the shortest path between
their classes in ∆/≈ has length k ≥ n+ 1. Upon replacing x and y by other vertices in their
equivalence classes, if needed, we can assume that the path [x, y] in ∆ has length k. Let z
be the vertex in the path [x, y] of distance n+ 1 from x. By Lemma 4.10, [x, z] is contained
in g(T ) for some g ∈ G; let x′ be the vertex in g(T ) of distance 2n from x and distance
n − 1 from z. Then x′ ≈ x, and [x′, y] has length at most (n − 1) + (k − n − 1) = k − 2, a
contradiction. This proves (2).

Assume the map (∆/≈) −−−→ ∆G induced by ρ̂ is not an isomorphism of graphs, and let
x and y be distinct vertices in ∆/≈ whose images are equal in ∆G. By (2), there is a path
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from x to y of length at most n, and of even length since the graph is bipartite. This path
cannot have length 2 since ρ̂ : ∆ −−−→ ∆G preserves valence, so its image in ∆G is a loop of
length at most n, and this contradicts (1). We conclude that ∆G

∼= ∆/≈.

Let (χ1, χ2) be an automorphism of the amalgam (P1 > B < P2), let χ ∈ Aut(G) be
the induced automorphism of the amalgamated free product, and let χ̂ ∈ Aut(∆) be the
automorphism which sends a vertex [gPi] to [χ(gPi)]. By (†),

(χ1(t1)χ2(t2))n ∈ χ1(T ) = χ2(T ) ≤ CG(ρ̂(χ̂(T )))

where χ1(t1)χ2(t2) acts on χ̂(T ) by translating it by distance 2. Hence ρ̂(χ̂(T )) is a loop of
length 2n in ∆G. So ρ̂ ◦ χ̂ factors through (∆/≈) ∼= ∆G, and since ∆G is a finite graph, the

induced map ∆G −−−→ ∆G is an automorphism of ∆G. So χ sends Ker[G
ρ−−−→ G] to itself,

and thus induces an automorphism of G. The last statement (κG is onto) now follows from
Lemma 4.9. �

It remains to find conditions under which (†) holds. The following proposition handles all
but a small number of cases.

Proposition 4.12. Assume N = NG(T ) (and hence NG(T )/T is dihedral of order 2n).
Then (†) holds, and hence each automorphism of the amalgam (P1 > B < P2) extends to
an automorphism of G. In particular, (†) and (∗) hold, and hence κG is onto, whenever
G = rXn(q) ∈ Lie(p) has Lie rank 2 for q > 2 and G 6∼= Sp4(3).

Proof. Assume that NG(T ) = N = T 〈t1, t2〉. Then the choices of the ti are unique modulo
T . Also, any two choices of T are B-conjugate, so each automorphism of the amalgam is B-
conjugate to one which sends T to itself. Thus (†) holds, and so (∗) follows from Proposition
4.11.

The last statement now follows from Proposition 3.9. Note that if (†) holds for G of
universal type, then it also holds for G/Z(G) of adjoint type. �

What can go wrong, and what does go wrong when G = SL3(2), is that an automorphism
of the amalgam can send t1, t2 to another pair of elements whose product (modulo T ) has
order strictly greater than 2n. This happens when T is sent to another path not in the
G-orbit of T : one whose image in ∆G is a loop of a different length.

Example 4.13. Assume G = SL3(2). In particular, T = 1. Let B be the group of upper
triangular matrices, let t1 and t2 be the permutation matrices for (1 2) and (2 3), respectively,
and set Pi = 〈B, ti〉.

Consider the automorphism α of the amalgam which is the identity on P1 (hence on B),
and which is conjugation by e13 (the involution in Z(B)) on P2. Set t′i = α(ti). Thus

t′1 =
(

0 1 0
1 0 0
0 0 1

)
and t′2 =

(
1 1 1
0 0 1
0 1 0

)
.

One checks that t′1t
′
2 has order 4, so that 〈t′1, t′2〉 ∼= D8 while 〈t1, t2〉 ∼= D6. In other words,

α sends the lifting (from ∆G to ∆) of a loop of length 6 to the lifting of a loop of length 8,
hence is not compatible with the relation ≈, hence does not extend to an automorphism of
G.

We are left with seven cases: four cases with n = 4, two with n = 6, and one with n = 8.
Those with n = 4 are relatively easy to handle.

Proposition 4.14. Assume G is one of the groups Sp4(2), PSp4(3), PSU4(2), or PSU5(2).
Then (†) holds, and hence (∗) also holds and κG is onto.
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Proof. In all cases, we work in the universal groups Sp4(q) and SUn(2), but the arguments
are unchanged if we replace the subgroups described below by their images in the adjoint
group. Recall that p is always the defining characteristic, so the second and third cases are
distinct, even though PSp4(3) ∼= SU4(2) (see [Wi, § 3.12.4] or [Ta, Corollary 10.19]).

Let (χ1, χ2) be an automorphism of (P1 > B < P2). Since all subgroups of B isomorphic
to T are conjugate to T by the Schur-Zassenhaus theorem, we can also assume that χi(T ) =
T . Set χ0 = χ1|B = χ2|B and t∗i = χi(ti) for short; we must show that |t∗1t∗2| = n = 4. Note
that t∗1t

∗
2 has order at least 4, since otherwise ∆G would contain a loop of length strictly less

than 8 = 2n, which is impossible by point (1) in the proof of Proposition 4.11.

G = Sp4(2) ∼= Σ6 : Set G′ = [G,G]: the subgroup of index 2. The elements xγ(1) for
γ ∈ Σ are all Aut(G)-conjugate: the long roots and the short roots are all W -conjugate and
a graph automorphism exchanges them. Since these elements generate G, none of them are
in G′. Hence for i = 1, 2, all involutions in〈

xαi(1), x−αi(1)
〉 ∼= GL2(2) ∼= Σ3

lie in GrG′, and in particular, ti ∈ GrG′.
Each automorphism of the amalgam sends the focal subgroup to itself (as a subgroup of

B), and hence also sends the intersections Pi ∩ G′ to themselves. So t∗1, t
∗
2 ∈ GrG′, and

t∗1t
∗
2 ∈ G′ ∼= A6. It follows that |t∗1t∗2| ≤ 5, and |t∗1t∗2| = 4 since every dihedral subgroup of

order 10 in Σ6 is contained in A6.

G = Sp4(3) : In this case, T ∼= C2
2 , and NG(T ) ∼= SL2(3) o C2. Hence NG(T )/T ∼= A4 o C2

contains elements of order 2, 3, 4, and 6, but no dihedral subgroups of order 12. Since t∗1t
∗
2

has order at least 4, |t∗1t∗2| = 4, and condition (†) holds.

G = SUn(2) for n = 4 or 5 : We regard these as matrix groups via

SUn(2) =
{
M ∈ SLn(4)

∣∣M t = M−1
}

where
(
aij
)
t =

(
an+1−j,n+1−i

)
,

and where x = x2 for x ∈ F4. We can then take B to be the group of upper triangular
matrices in SUn(2), U the group of strict upper triangular matrices, and T the group of
diagonal matrices. We thus have

T =
{

diag(x, x−1, x−1, x)
∣∣x ∈ F4

} ∼= C3 if n = 4

T =
{

diag(x, y, xy, y, x)
∣∣x, y ∈ F4

} ∼= C2
3 if n = 5.

Since NG(T ) must permute the eigenspaces of the action of T on Fn4 , we have NGUn(2)(T ) ∼=
GU2(2) o C2 (if n = 4) or (GU2(2) o C2)× F×4 (if n = 5). So in both cases,

NG(T )/T ∼= PGU2(2) o C2
∼= Σ3 o C2

∼= C2
3 oD8 .

Set Q = NG(T )/O3(NG(T )) ∼= D8, and let ψ : NG(T ) −−−→ Q be the natural projection.
Set Q0 = ψ(CG(T )). Since CG(T )/T ∼= Σ3 × Σ3 (the subgroup of elements which send each
eigenspace to itself), Q0

∼= C2
2 and CG(T ) = ψ−1(Q0).

Choose the indexing of the parabolics such that P1 is the subgroup of elements which fix
an isotropic point and P2 of those which fix an isotropic line. Thus

P1 =
{(

u v x
0 A w
0 0 u

)∣∣∣ A ∈ GUn−2(2)
}

and

P2 =


{( A X

0 (At)−1

)∣∣∣ A ∈ SL2(4)
}

if n = 4{(
A v X
0 u w

0 0 (At)−1

)∣∣∣∣ A ∈ GL2(4)

}
if n = 5.
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Then ψ(NP1(T )) ≤ Q0: no matrix in P1 can normalize T and exchange its eigenspaces. Also,
NB(T ) contains CU(T ) = 〈e1,n(1), e2,n−1(1)〉, where ei,j(u) denotes the elementary matrix
with unique off-diagonal entry u in position (i, j). Thus Q0 ≥ ψ(NP1(T )) ≥ ψ(NB(T )) ∼= C2

2 ,
so these inclusions are all equalities. Also, P2 contains the permutation matrix for the
permutation (1 2)(n−1n), this element exchanges the eigenspaces of rank 2 for T , and so
ψ(NP2(T )) = Q.

Since T 〈t1, t2〉/T ∼= D8, 〈ψ(t1), ψ(t2)〉 = Q, and so ψ(t1) ∈ Q0rZ(Q) and ψ(t2) ∈ QrQ0.
Since (χ1, χ2) induces an automorphism of the amalgam (Q > Q0 = Q0), this implies that
ψ(t∗1) ∈ Q0rZ(Q) and ψ(t∗2) ∈ QrQ0. But then 〈ψ(t∗1), ψ(t∗2)〉 = Q since these elements
generate modulo Z(Q), so |t∗1t∗2| ∈ 4Z, and |t∗1t∗2| = 4 since NG(T )/T ∼= Σ3 o C2 contains no
elements of order 12. �

It remains to handle the groups G2(2), 3D4(2), and 2F4(2). In the first two cases, if t∗i is
an arbitrary involution in NPi(T )rNB(T ) for i = 1, 2, then t∗1t

∗
2 can have order 6, 7, 8, or

12 when G = G2(2), or order 6 or 8 when G = 3D4(2), and there does not seem to be any
way to prove condition (†) short of analyzing automorphisms of the amalgam sufficiently to
prove (∗) directly.

Let {α, β} be a fundamental system in the root system of G2 where α is the long root.
Let α, α′, α′′ be the three long positive roots, and β, β′, β′′ the three short positive roots, as
described in (3) below.

Let γ0, γ1, γ2, γ3 denote the four fundamental roots in the D4 root system, where γ0 is in
the center of the Dynkin diagram, and the other three are permuted cyclically by the triality
automorphism. Set γij = γi + γj (when it is a root), etc. We identify the six classes of
positive roots in 3D4 with the roots in G2 by identifying the following two diagrams:

β

α′β′′β′α

α′′

−β

−α
G2

//

ff XX FF 88

OO

oo

&&

{γ1,γ2,γ3}

γ0123

{ γ012,
γ023,
γ013

}{ γ01,
γ02,
γ03

}
γ0

γ00123

−γ̂1

−γ0

3D4

//

ff XX FF 88

OO

oo

&&

(3)

The following list gives all nontrivial commutator relations among root subgroups of G2(q)
or 3D4(q) (see [GLS3, Theorems 1.12.1(b) & 2.4.5(b)]):

[xα(u), xβ(v)] ≡ xβ′(±uv)xβ′′(±uv1+q) (mod Xα′Xα′′) (4)

[xβ′(u), xβ(v)] ≡ xβ′′(±(uvq + uqv)) (mod Xα′Xα′′) (5)

[xα(u), xα′(v)] = xα′′(±uv) (6)

[xβ′(u), xβ′′(v)] = xα′′(±Tr(uvq)) (7)

[xβ′′(u), xβ(v)] = xα′(±Tr(uqv)) . (8)

Again, Tr : Fq3 −−−→ Fq denotes the trace. Note that when G = G2(q), then u, v ∈ Fq in all

cases, and hence uq = uq
2

= u, uq+q
2

= u2, and Tr(u) = 3u. When G = 3D4(q), the notation
xβ(−), xβ′(−), and xβ′′(−) is somewhat ambiguous (and formula (5) depends on making the
right choice), but this doesn’t affect the arguments given below.
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Proposition 4.15. Assume p = 2 and G = G2(2). Then (∗) holds: each automorphism
of the amalgam (Pα > B < Pβ) extends to an automorphism of G. (In fact, each au-
tomorphism of the amalgam is conjugation by some element of B.) In particular, κG is
onto.

Proof. In this case, T = 1, and

Pα
∼= (C4 × C4)oD12 and Pβ

∼= (Q8 ×C2 Q8)o Σ3 .

Also, B = U has presentation U = Ao 〈r, t〉, where

A = 〈a, b〉 ∼= C4 × C4, 〈r, t〉 ∼= C2
2 ,

ra = a−1, rb = b−1, ta = b, tb = a .

In terms of the generators xγ = xγ(1) for γ ∈ Σ+, we have A =
〈
xβ′xβ, xβ′′xβ

〉
and Ω1(A) =〈

xα′ , xα′′
〉
, and we can take r = xβ′′ , t = xα, and a = xβxβ′′ (and then b = ta). Note that (5)

takes the more precise form [xβ′ , xβ] = xα′xα′′ in this case. Also,

Uα = A〈r〉 ∼= (C4 × C4)o C2

Uβ = 〈ab−1, a2t〉 ×〈a2b2〉 〈ab, a2rt〉 ∼= Q8 ×C2 Q8

U ∩G′ = A〈t〉 ∼= C4 o C2 .

The last formula holds since G′ = [G,G] ∼= SU3(3) has index two in G (see [Wi, § 4.4.4] or
[Di, pp. 146–150]), since xα, xα′ , xα′′ ∈ G′ (note that xα = [x−β, xβ′ ]), and since xβ, xβ′ , and
xβ′′ are all G-conjugate and hence none of them lies in G′.

Fix an automorphism (χα, χβ) of the amalgam (Pα > B < Pβ), and set χ0 = χα|B =
χβ|B ∈ Aut(B). Then χ0 normalizes each of the subgroups Uα, Uβ, and U ∩ G′. Also, χ0

normalizes Uα ∩ G′ = A, and since Uβ ∩ G′ = 〈ab, ab−1, t〉 ∼= Q8 ×C2 C4 contains a unique
quaternion subgroup, χ0 normalizes each of the two quaternion subgroups in Uβ. After
composing by an appropriate element of AutU(Pβ), we can arrange that χ0(ab) = ab and
χ0(ab−1) = ab−1. In particular, χ0 induces the identity on Ω1(A) and hence also on A/Ω1(A).

Let g ∈ Pα be an element of order 3, chosen so that g(a2) = b2 and g(b2) = a2b2. The
image of 〈g〉 in Pα/A ∼= D12 is normal, so χα(g) ∈ Ag. Let x ∈ Ω1(A) be such that
χα(b) = χ0(b) = ax. Then gb ∈ 〈ab, b2〉 ≤ CA(χ0), so gb = χα(gb) = g(bx) implies that gx = 1
and hence x = 1. Thus χ0|A = Id. Also, χα(〈g〉) ∈ Syl3(Pα) is conjugate to 〈g〉 by an
element of A, so we can arrange that χα(〈g〉) = 〈g〉 and hence that χα|A〈g〉 = Id. But then
χα is the identity modulo CPα(A〈g〉) = Z(A〈g〉) = 1, so χα = IdPα .

Since χβ|Uβ = Id, χβ induces the identity modulo CPβ(Uβ) = Z(Uβ) ∼= C2. It thus has the
form χβ(x) = xψ(x) for some ψ ∈ Hom(Pβ, Z(Uβ)). Hence χβ = Id, since it is the identity
on U ∈ Syl2(Pβ). �

Proposition 4.16. Assume p = 2 and G = 3D4(2). Then (∗) holds, and κG is onto.

Proof. In this case, T ∼= F×8 ∼= C7, Pα/Uα ∼= C7 × Σ3, and Pβ/Uβ ∼= SL2(8). Also, by (6)
and (7), Uβ is extraspecial with center Xα′′ . Fix an automorphism (χα, χβ) of the amalgam
(Pα > B < Pβ), and set χ0 = χα|B = χβ|B. We must show that χα and χβ are the
restrictions of some automorphism of G.

By Theorem 3.4, and since Outdiag(SL2(8)) = 1 = ΓSL2(8), Out(Pβ/Uβ) ∼= Out(SL2(8))
is generated by field automorphisms, and hence automorphisms which are restrictions of
field automorphisms of G. So we can compose χβ and χα by restrictions of elements of
AutB(G)ΦG = NAutPβ (G)(U)ΦG, to arrange that χβ induces the identity on Pβ/Uβ. Then,

upon composing them by some element of AutU(G), we can also arrange that χ0(T ) = T .
Since Xβ′ and Xβ′′ are dual to each other by (7) and hence nonisomorphic as F2[T ]-modules,
χ0 sends each of them to itself.
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Since χ0(T ) = T , χ0 sends CU(T ) = XαXα′Xα′′
∼= D8 to itself. It cannot exchange the

two subgroups XαXα′′ and Xα′Xα′′ (the first is not contained in Uα and the second is),
so χ0|CU (T ) ∈ Inn(CU(T )). Hence after composing by an element of AutCU (T )(G), we can
arrange that χ0 is the identity on this subgroup. Also, by applying (4) with u = 1, and since
χ0|Xβ ≡ Id (mod Uβ) and [Xα, Uβ] ≤ Xα′′ , we see that χ0 is the identity on Xβ′Xβ′′ . We
conclude that χ0 is the identity on Uβ.

Since χβ induces the identity on Uβ and on Pβ/Uβ, it has the form χβ(x) = xψ(x) (all
x ∈ Pβ) for some

ψ ∈ Hom(Pβ/Uβ;Z(Uβ)) ∼= Hom(SL2(8), C2) = 1 .

So χβ = IdPβ .

Now, CPα(T ) ∼= Σ4×C7, and Out(Σ4) = 1. Hence χα|CPα (T ) must be conjugation by some
element z ∈ Z(CU(T )) = Xα′′ = Z(Pβ). After composing χα and χβ by restrictions of cz,
we can thus assume that χα is the identity on CPα(T ) (and still χβ = IdPβ). Since χα|U = Id
and Pα = 〈U,CPα(T )〉, we have χα = IdPα . �

It remains only to handle 2F4(2) and the Tits group.

Proposition 4.17. Assume G = 2F4(2)′ or 2F4(2). Then κG is an isomorphism.

Proof. By the pullback square in [AOV, Lemma 2.15] (and since Out(L) is independent of
the choice of objects in L by [AOV, Lemma 1.17]), κG is an isomorphism when G = 2F4(2)
if it is an isomorphism when G is the Tits group. So from now on, we assume G = 2F4(2)′.

We adopt the notation for subgroups of G used by Parrott [Pa]. Fix T ∈ Syl2(G), and
set Z = Z(T ) ∼= C2, H = CG(Z), and J = O2(H). Let z ∈ Z be a generator. Then H
is the parabolic subgroup of order 211 · 5, |J | = 29, and H/J ∼= C5 o C4. Set E = [J, J ].
By [Pa, Lemma 1], E = Z2(J) = Fr(J) ∼= C5

2 , and by the proof of that lemma, the Sylow
5-subgroups of H act irreducibly on J/E ∼= C4

2 and on E/Z ∼= C4
2 . Since each element of

AutH/J(J/E) sends CJ/E(T/J) ∼= C2 to itself,

AutH/J(J/E) = {IdJ/E} and

|HomH/J(J/E,E/Z)| ≤ |HomH/J(J/E, J/E)| = 2 . (9)

Let N > T be the other parabolic, and set K = O2(N). Thus N/K ∼= Σ3, and [T : K] = 2.

Fix P ∈ Syl5(H) ⊆ Syl5(G) (so P ∼= C5). By [Pa, p. 674], H/E = (J/E) · (NG(P )/Z),
where NG(P )/Z ∼= H/J ∼= C5 o C4. For each β ∈ Aut(H) such that β(T ) = T , there is
β1 ≡ β (mod AutJ(H)) such that β1(P ) = P . Since each automorphism of H/J which sends
T/J ∼= C4 to itself is conjugation by an element of T/J , there is β2 ≡ β1 (mod AutNT (P )(H))
such that β2 induces the identity on H/J . By (9), β2 also induces the identity on J/E, and
hence on H/E = (J/E) · (NG(P )/Z). Thus

NAut(H)(T ) = AutT (H) · {β ∈ Aut(H) | β(P ) = P, [β,H] ≤ E} . (10)

Now set L = LcT (G) for short, and identify N = AutL(K) and H = AutL(J). For each
α ∈ Aut(L), let αH ∈ Aut(H) and αN ∈ Aut(N) be the induced automorphisms, and set
αT = αH |T = αN |T . Set

A0 =
{
α ∈ Aut(L)

∣∣ [αH , H] ≤ E and αH |P = IdP
}
.

By (10), each class in Out(L) contains at least one automorphism in A0.

Fix α ∈ A0. Since [αH , H] must be normal in H, we have [αH , H] ∈ {E,Z, 1}. If
[αH , H] = Z, then αH |JP = Id, so [αH , K] = [αN , K] = Z, which is impossible since Z is not
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normal in N by [Pa, Lemma 6] (or since z /∈ Z(G) and G = 〈H,N〉). Thus either αH = Id,
or [αH , H] = E.

If αH = IdH , then αN |T = Id. In this case, αN determines an element of H1(N/K;Z(K))
whose restriction toH1(T/K;Z(K)) is trivial, and since this restriction map forH1(−;Z(K))
is injective (since T/K ∈ Syl2(N/K)), αN ∈ Inn(N) (see, e.g., [OV, Lemma 1.2]). Hence
αN ∈ AutZ(N) since αN |T = Id (and Z = Z(T )). So α ∈ AutZ(L) in this case, and
[α] = 1 ∈ Out(L).

Set H = H/Z, and similarly for subgroups of H. Let αH ∈ Aut(H) and αT ∈ Aut(T )

be the automorphisms induced by αH and αT , and set β = αT |J . Then E = Z(J) since

E = Z2(J), so β(g) = gϕ(ĝ) for some ϕ ∈ HomH/J(J/E,E). If ϕ = 1, so that [α, J ] ≤ Z,
then since α|P = Id, we have [αH , H] < E and so αH = Id.

We have now constructed a homomorphism from A0 to HomH/J(J/E,E) with kernel
AutZ(L). Thus

|Out(L)| ≤ |A0/AutZ(L)| ≤ |HomH/J(J/E,E)| ≤ 2 .

where the last inequality holds by (9). Since |Out(G)| = 2 by [GrL, Theorem 2], and since
κG is injective by Lemma 4.3, this proves that κG is an isomorphism.

Alternatively, this can be shown using results in [Fn]. Since T/[T, T ] ∼= C2 × C4 by the
above description of T/E (where E ≤ [T, T ]), Aut(T ) and hence Out(L) are 2-groups. So
each automorphism of the amalgam H > T < N determines a larger amalgam. Since the
only extension of this amalgam is to that of 2F4(2) by [Fn, Theorem 1], |Out(L)| = 2. �

5. The cross characteristic case: I

Throughout this section, we will work with groups G = C
G

(σ) which satisfy the conditions
in Hypotheses 5.1 below. In particular, 5.1(I) implies that G is not a Suzuki or Ree group.
We will see in Section 6 (Proposition 6.8) that while these hypotheses are far from including
all finite Chevalley and Steinberg groups, their fusion systems at the prime p do include
almost all of those we need to consider.

For any finite abelian group B, we denote its “scalar automorphisms” by

ψBk ∈ Aut(B), ψBk (g) = gk for all k such that (k, |B|) = 1

and define the group of its scalar automorphisms

Autsc(B) =
{
ψBk
∣∣ (k, |B|) = 1

}
≤ Z(Aut(B)) .

Hypotheses 5.1. Assume we are in the situation of Notation 2.2(A,B,C).

(I) Let p be a prime distinct from q0 such that p
∣∣|W0|. Assume also that σ = ψq ◦ γ =

γ ◦ ψq ∈ End(G), where

• q is a power of the prime q0;

• ψq ∈ Φ
G

is the field automorphism (see Definition 3.1(a)); and

• γ ∈ Aut(G) is an algebraic automorphism of finite order which sends T to itself and
commutes with ψq0 (so that ψq0(G) = G).

Also, there is a free 〈τ〉-orbit of the form

{α1, α2, . . . , αs} or {±α1,±α2, . . . ,±αs}
in Σ such that the set {α1, α2, . . . , αs} is linearly independent in V .
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(II) The algebraic group G is of universal type, and NG(T ) contains a Sylow p-subgroup of
G. Set A = Op(T ), and fix S ∈ Sylp(NG(T )) ⊆ Sylp(G); thus A ≤ S.

(III) Assume one of the following holds: either

(III.1) q ≡ 1 (mod p), q ≡ 1 (mod 4) if p = 2, |γ| ≤ 2, and γ ∈ Γ
G

(thus ρ(Π) = Π); or

(III.2) p is odd, q ≡ −1 (mod p), G is a Chevalley group (i.e., γ ∈ Inn(G)), and

γ(t) = t−1 for each t ∈ T ; or

(III.3) p is odd, |τ | = ordp(q) ≥ 2, CA(Op′(W0)) = 1, CS(Ω1(A)) = A, AutG(A) =
AutW0(A),

NAut(A)(AutW0(A)) ≤ Autsc(A)AutAut(G)(A)

where AutAut(G)(A) =
{
δ|A
∣∣ δ ∈ Aut(G), δ(A) = A

}
, and

AutW0(A) ∩ Autsc(A) ≤

{〈
γ|A
〉

if 2
∣∣ordp(q) or −Id /∈ W〈

γ|A, ψA−1

〉
otherwise,

Since W0 acts on T by Lemma 2.3, it also acts on A = Op(T ).

We will see in Lemma 5.3 that the conditions CS(Ω1(A)) = A (or CS(A) = A when p = 2)
and AutG(A) = AutW0(A), both assumed here in (III.3), also hold in cases (III.1) and (III.2).

Recall, in the situation of (III.3), that |τ | = |γ|
T
| by Lemma 3.2.

Note that the above hypotheses eliminate the possibility that G be a Suzuki or Ree group.
Since we always assume the Sylow p-subgroups are nonabelian, the only such case which
needs to be considered here (when q0 6= p) is that of 2F4(q) when p = 3, and this will be
handled separately.

By Lemma 3.2, whenever σ = ψq ◦ γ, and γ is an algebraic automorphism of G which

normalizes T , there is τ ∈ Aut(V ) such that τ(Σ) = Σ and σ(Xα) = Xτ(α) for each α ∈ Σ. So
under Hypotheses 5.1, the condition at the beginning of Notation 2.2(C) holds automatically,
and with ρ = τ |Σ. To simplify the notation, throughout this section and the next, we write
τ = ρ to denote this induced permutation of Σ.

The following notation will be used throughout this section, in addition to that in Notation

2.2. Note that Π̂ and Σ̂ are defined in Notation 2.2(C) only when ρ(Π) = Π, and hence only
in case (III.1) of Hypotheses 5.1. It will be convenient, in some of the proofs in this section,
to extend this definition to case (III.2).

Recall (Notation 2.2) that for α ∈ Σ, wα ∈ W denotes the reflection in the hyperplane
α⊥ ⊆ V .

Notation 5.2. Assume we are in the situation of Notation 2.2 and Hypotheses 5.1.

(D) If (III.2) holds, then set Σ̂ = Σ, Π̂ = Π, and V0 = V . Note that W0 = W in this case.

(E) If (III.1) holds, then for each α̂ ∈ Σ̂, let wα̂ ∈ W0 be the element in 〈wα |α ∈ α̂〉 which

acts on V0 as the reflection across the hyperplane 〈α̂〉⊥, and which exchanges the positive
and negative roots in the set 〈α̂〉 ∩ Σ. (Such an element exists and lies in W0 by [Ca,
Proposition 13.1.2].)
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(F) If (III.1) or (III.2) holds, then for each α ∈ Σ and each α̂ ∈ Σ̂, set

Kα = 〈Xα, X−α〉 Tα = hα(F×q0)

K α̂ = 〈Kα |α ∈ α̂〉 T α̂ = 〈Tα |α ∈ α̂〉 .

(G) Set N = NG(T )/Op′(T ), and identify A = Op(T ) with T/Op′(T ) E N . If (III.1) or

(III.2) holds, then for α̂ ∈ Σ̂, set Aα̂ = A ∩ T α̂.

(H) Set F = FS(G), and

Aut(A,F) =
{
β ∈ Aut(A)

∣∣ β = β|A, some β ∈ Aut(F)
}
.

Set Autdiag(F) = CAut(F)(A) =
{
β ∈ Aut(F)

∣∣ β|A = Id
}

, and let Outdiag(F) be the
image of Autdiag(F) in Out(F).

Note that when (G, σ) is a standard setup (i.e., in case (III.1)), W0 acts faithfully on V0

(see [Ca, Lemma 13.1.1]).

Recall that N = NG(T )/Op′(T ). We identify A = Op(T ) with T/Op′(T ) E N .

Lemma 5.3. Assume Hypotheses 5.1 and Notation 5.2.

(a) If condition (III.1) or (III.2) holds, then CW (A) = 1, C
G

(A) = C
G

(T ) = T , CG(A) = T ,
and CS(A) = A. If p is odd, then CW (Ω1(A)) = 1 and CS(Ω1(A)) = A.

(b) If C
G

(A)0 = T (in particular, if (III.1) or (III.2) holds), then NG(A) = NG(T ) ≤
N
G

(T ), and the inclusion of NG(T ) in N
G

(T ) induces isomorphisms W0
∼= NG(T )/T ∼=

N/A. Thus AutG(A) = AutW0(A).

Proof. (a) Assume condition (III.1) or (III.2) holds. We first prove that CW (A) = 1, and
also that CW (Ω1(A)) = 1 when p is odd.

If p is odd, set A0 = Ω1(A) and p̂ = p. If p = 2, set A0 = Ω2(A) and p̂ = 4. Thus in all
cases, A0 is the p̂-torsion subgroup of A. Set ε = 1 if we are in case (III.1), or ε = −1 in
case (III.2). By assumption, p̂|(q− ε). Choose λ ∈ F×q (or λ ∈ F×q2 if ε = −1) of order p̂. Set

Π = {α1, . . . , αr}. Fix w ∈ CW (A0).

Assume first G = G(q), a Chevalley group. Then T =
{
t ∈ T

∣∣ tq−ε = 1
}

, and A0 contains

all elements of order p̂ in T . So w = 1 by Lemma 2.7.

Now assume that Id 6= γ ∈ Γ
G

; i.e., G is one of the Steinberg groups 2An(q), 2Dn(q), or
2E6(q). Then C

G
(γ) is a simple algebraic group of type Bm, Cm, or F4 (cf. [Ca, § 13.1–3])

with root system Σ̂ ⊆ V0 = CV (τ), and A0 contains all p̂-torsion in C
T

(γ). By Lemma 2.7
again, w|V0 = Id. Since w and τ are both orthogonal, w also sends the (−1)-eigenspace for
the action of τ to itself, and thus w ∈ CW (τ) = W0. But W0 acts faithfully on V0 (see, e.g.,
[Ca, 13.1.1]), so w = 1.

Thus CW (A0) = 1. Hence C
G

(A0) = T by Proposition 2.5, and the other statements
follow immediately.

(b) If C
G

(A)0 = T , then N
G

(T ) ≤ N
G

(A) ≤ N
G

(T ) (recall that A is the p-power torsion in

T ). If g ∈ N
G

(T ) and σ(g) = g, then g also normalizes T = C
T

(σ). Thus NG(T ) = NG(A) ≤
N
G

(T ), and hence NG(T )/T ∼= W0 by Lemma 2.3. The identification N/A ∼= NG(T )/T is
immediate from the definition of N . �

We next look at the centralizer of the Weyl group acting on T or T .
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Lemma 5.4. Assume Hypotheses 5.1, case (III.1), and Notation 5.2.

(a) Assume that all classes in Σ̂ have order 1 or 2. (Equivalently, τ(α) = α or τ(α) ⊥ α

for each α ∈ Σ.) Then C
T

(W0) = C
T

(W ) = Z(G), and Z(G) = CT (W0).

(b) Assume that Σ̂ contains classes of order 3. Then G ∼= SL2n−1(Fq0) and G ∼= SU2n−1(q)

for some n ≥ 2. Also, C
T

(W0) ∼= F×q0, and σ(t) = t−q for all t ∈ C
T

(W0).

Proof. (a) Assume that τ(α) = α or τ(α) ⊥ α for each α ∈ Σ. We first show, for each

α̂ = {α, τ(α)} ∈ Π̂, that C
T

(wα̂) = C
T

(wα, wτ(α)). This is clear if α = τ(α). If α ⊥ τ(α),
then wα̂ = wαwτ(α), so if t ∈ C

T
(wα̂), then wα(t) = wτ(α)(t) and t−1wα(t) = t−1wτ(α)(t).

Also, t−1wα(t) ∈ Tα and t−1wτ(α)(t) ∈ T τ(α) by Lemma 2.4(e). Since Tα ∩ T τ(α) = 1 by
Lemma 2.4(b), t−1wα(t) = 1, and hence t ∈ C

T
(wα, wτ(α)).

Since W = 〈wα |α ∈ Π〉, this proves that C
T

(W0) = C
T

(W ). Since G is universal,

C
T

(W ) = Z(G) by Proposition 2.5. In particular, CT (W0) ≤ G ∩ Z(G) ≤ Z(G); while
Z(G) ≤ CT (W0) since CG(T ) = T by Lemma 5.3(a).

(b) Assume Σ̂ contains a class of order 3. Then by [GLS3, (2.3.2)], γ 6= Id, G ∼= SL2n−1,
and G ∼= SU2n−1(q) (some n ≥ 2). Also, if we identify

T =
{

diag(λ1, . . . , λ2n−1)
∣∣λi ∈ F×q0 , λ1λ2 · · ·λ2n−1 = 1

}
,

and identify W = Σ2n−1 with its action on T permuting the coordinates, then

γ
(
diag(λ1, . . . , λ2n−1)

)
= diag(λ−1

2n−1, . . . , λ
−1
1 ),

and W0
∼= C2 o Σn−1 is generated by the permutations (i 2n−i) and (i j)(2n−i 2n−j) for

i, j < n. So C
T

(W0) is the group of all matrices diag(λ1, . . . , λ2n−1) such that λi = λ1 for

all i 6= n and λn = λ
−(2n−2)
1 , and C

T
(W0) ∼= F×q0 . Also, γ inverts C

T
(W0), so σ(t) = t−q for

t ∈ C
T

(W0). �

Recall (Notation 5.2(F)) that when case (III.1) of Hypotheses 5.1 holds (in particular,

when p = 2), we set K α̂ = 〈Kα |α ∈ α̂〉 for α̂ ∈ Σ̂, where Kα = 〈Xα, X−α〉. The conditions

in (III.1) imply that each class in Σ̂ is of the form {α}, {α, τ(α)}, or {α, τ(α), α+ τ(α)} for
some α. This last case occurs only when G ∼= SUn(q) for some odd n ≥ 3 and some q ≡ 1
(mod p or mod 4).

Lemma 5.5. Assume Hypotheses 5.1, case (III.1), and Notation 5.2. For each α ∈ Σ,

Kα
∼= SL2(Fq0). For each α̂ ∈ Σ̂, K α̂

∼= SL2(Fq0), SL2(Fq0)×SL2(Fq0), or SL3(Fq0) whenever

the class α̂ has order 1, 2, or 3, respectively. Also, G∩K α̂ is isomorphic to SL2(q), SL2(q2),
or SU3(q), respectively, in these three cases.

Proof. By Lemma 3.10, each class in Σ̂ is in the W0-orbit of a class in Π̂. So it suffices to

prove the statements about Kα and K α̂ when α ∈ Π, and when α̂ ∈ Π̂ is its equivalence
class.

By Lemma 2.4(b) (and since G is universal), Kα
∼= SL2(Fq0) for each α ∈ Π. So when

α = τ(α) (when |α̂| = 1), K α̂ = Kα
∼= SL2(Fq0).

When α 6= τ(α) and they are not orthogonal, then G ∼= SL2n+1(Fq0) for some n, and the

inclusion of SL3(Fq0) is clear. When α ⊥ τ(α), then [Kα, Kτ(α)] = 1, and Kα ∩Kτ(α) = 1
by Lemma 2.4(b) and since G is universal, and since the intersection is contained in the



AUTOMORPHISMS OF FUSION SYSTEMS OF FINITE SIMPLE GROUPS OF LIE TYPE 47

centers of the two factors and hence in the maximal tori. Hence K̄α̂ = 〈X̄±α, X̄±τ(α)〉 ∼=
Kα ×Kτ(α)

∼= SL2(Fq0)× SL2(Fq0).

In all cases, since G is universal, G ∩K α̂ = C
G

(σ) ∩K α̂ = C
Kα̂

(σ). If α = τ(α), then γ

acts trivially on K α̂, and C
Kα̂

(σ) ∼= SL2(q). If α ⊥ τ(α) then γ exchanges the two factors

and C
Kα̂

(σ) ∼= SL2(q2). Finally, if α 6= τ(α) and they are not orthogonal, then γ is the

graph automorphism of SL3(Fq0), so C
Kα̂

(σ) ∼= SU3(q). �

Recall, for α̂ ∈ Σ̂, that Aα̂ = A ∩ T α̂, where T α̂ = 〈hα(F×q0) |α ∈ α̂〉. These subgroups are
described in the next lemma.

Lemma 5.6. Assume that G and (G, σ) satisfy Hypotheses 5.1, case (III.1) or (III.2).
Assume also Notation 5.2.

(a) If τ 6= Id (hence we are in Case (III.1)), then for each α̂ ∈ Σ̂,

wα̂ =


wα if α̂ = {α}
wαwτ(α) if α̂ = {α, τ(α)}, α ⊥ τ(α)

wα+τ(α) = wαwτ(α)wα if α̂ = {α, τ(α), α + τ(α)},

T α̂ =

{
Tα if α̂ = {α}
Tα × T τ(α) if α, τ(α) ∈ α̂, α 6= τ(α),

and

ĥα(λ) =

{
hα(λ) if α̂ = {α}, λ ∈ F×q
hα(λ)hτ(α)(λ

q) if α, τ(α) ∈ α̂, α 6= τ(α), λ ∈ F×q2 .

(b) In all cases, T = C
T

(ψqγ) =
∏

α̂∈Π̂ CT α̂(ψqγ) and hence A =
∏

α̂∈Π̂ Aα̂ (direct products).

(c) Set ε = 1 if we are in case (III.1), or ε = −1 if we are in case (III.2). Set m = vp(q−ε).

For each α̂ ∈ Σ̂,

G ∩ T α̂ =

{
{hα(λ) |λ ∈ F×q2 , λ

εq = λ} ∼= Cq−ε if α̂ = {α}
ĥα(F×q2) ∼= Cq2−1 if α, τ(α) ∈ α̂, α 6= τ(α).

In particular,

Aα̂ ∼= Cpm if p is odd; Aα̂ ∼=

{
C2m if p = 2 and |α̂| = 1

C2m+1 if p = 2 and |α̂| ≥ 2.

Proof. Recall that Σ̂ and Π̂ are defined in Notation 2.2(C) only when ρ(Π) = Π; i.e., in case
(III.1) of Hypotheses 5.1. In case (III.2), they were defined in Notation 5.2(D) by setting

Σ̂ = Σ and Π̂ = Π (and also W0 = W in this case).

(a,c) If we are in case (III.1) of Hypotheses 5.1 (where the σ-setup is standard), then by

Lemma 3.10, each orbit of W0 under its action on Σ̂ contains an element of Π̂. If we are in

case (III.2), then since W0 = W , Σ̂ = Σ, and Π̂ = Π, the same statement follows from [Ca,

Proposition 2.1.8]. So it suffices to prove these two points when α̂ ∈ Π̂.

The formulas for wα̂, T α̂, and ĥα(λ), and the description of G ∩ T α̂ = C
T α̂

(σ), are clear

when α̂ = {α}. So assume now that α̂ = {α, τ(α)} or {α, τ(α), α + τ(α)}, where α 6= τ(α).

By the definition in Notation 5.2(E), wα̂ ∈ 〈wα, wτ(α)〉 acts on V0 = CV (τ) as the reflection

across the hyperplane 〈α̂〉⊥, and exchanges the positive and negative roots in 〈α̂〉 ∩ Σ. If
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α ⊥ τ(α), then [wα, wτ(α)] = 1, and hence wα̂ is the product of these reflections. If |α̂| = 3,
then 〈wα, wτ(α)〉 ∼= Σ3, and one sees by inspection that wα+τ(α) = wαwτ(α)wα is the only
element which satisfies the above conditions.

If |α̂| = 3, then Tα+τ(α) ≤ TαT τ(α) by Lemma 2.4(d). Hence T α̂ = TαT τ(α) whenever

α 6= τ(α) ∈ α̂. We can assume α, τ(α) ∈ Π, and so Tα ∩ T τ(α) = 1 by Lemma 2.4(b).

By definition (see Notation 2.2(C)), for λ ∈ Fq0 , if ĥα(λ) is defined, it has the form

hα(λ)hτ(α)(µ) for some µ ∈ Fq0 . Since

σ(hα(λ)hτ(α)(µ)) = hα(µq)hτ(α)(λ
q) ,

this element lies in G if and only if µ = λq and λq
2

= λ; i.e., λ ∈ F×q2 .

This proves the formulas for ĥα(λ) in (a), and also the description of G ∩ T α̂ in (c). The
last statement in (c) is now immediate, since vp(q

2 − 1) = m + vp(q + 1) = m (if p is odd)
or m+ 1 (if p = 2).

(b) By Lemma 2.4(b), T =
∏

α∈Π Tα =
∏

α̂∈Π̂ T α̂ (a direct product), the last equality by
(a). The direct product decompositions for T and A = Op(T ) follow immediately. �

We would like to know that fusion preserving automorphisms of S (i.e., elements of
Aut(FS(G))) permute the subgroups Aα̂ ≤ S. We next characterize (when possible) these
subgroups in terms of fusion in S. Recall the definition of the focal subgroup of a saturated
fusion system F over a finite p-group S:

foc(F) =
〈
xy−1

∣∣x, y ∈ S, x is F -conjugate to y
〉
.

By the focal subgroup theorem for groups (cf. [G, Theorem 7.3.4]), if F = FS(G) for some
finite group G with S ∈ Sylp(G), then foc(F) = S ∩ [G,G].

Lemma 5.7. Assume Hypotheses 5.1, case (III.1) or (III.2), and Notation 5.2.

(a) If p is odd, then [wα̂, A] = Aα̂ for each α̂ ∈ Σ̂. If p = 2, then for each α̂ ∈ Σ̂,
[wα̂, A] ≤ Aα̂ with index at most 2, and [wα̂, A] = Aα̂ with the following exceptions:

• τ = Id, G ∼= A1, and α̂ = {α}; or

• τ = Id, G ∼= Cn for n ≥ 2 (or B2), and α̂ = {α} where α is a long root; or

• |τ | = 2, G ∼= Dn for n ≥ 3 (or A3), and α̂ = {α, τ(α)} where α ⊥ τ(α); or

• |τ | = 2, G ∼= A2n for n ≥ 1, and |α̂| = 3.

(b) For each w ∈ W0 of order 2, w = wα̂ for some α̂ ∈ Σ̂ if and only if [w,A] is cyclic.

(c) If p = 2, then for each α̂ ∈ Σ̂,

C
G

(CA(wα̂)) =

{
TK α̂ if |α̂| ≤ 2

TKα+τ(α) if α̂ = {α, τ(α), α + τ(α)}.
(1)

If in addition, |α̂| ≤ 2, then

Aα̂ = A ∩
[
CG(CA(wα̂)), CG(CA(wα̂))

]
= A ∩ foc(CF(CA(wα̂))).

Proof. As in the proof of Lemma 5.6, we can assume in the proofs of (a) and (c) that α̂ ∈ Π̂.

(a) Fix α ∈ Π, and let α̂ ∈ Π̂ be its class. By Lemma 2.4(e) and since wα̂ ∈ 〈wα, wτ(α)〉, we

have [wα̂, A] ≤ A ∩ T α̂ = Aα̂ in all cases. By the same lemma, wα̂(ĥα(λ)) = ĥα(λ−1) for all
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λ ∈ F×q0 if |α̂| ≤ 2; and wα̂(ĥα(λ)) = ĥα(λ−q) for λ ∈ F×q2 if |α̂| = 3. So [wα̂, A] = Aα̂ if p is

odd, and (since Aα̂ is cyclic by Lemma 5.6(c)) [wα̂, A] has index at most 2 in Aα̂ if p = 2.

Assume now that p = 2, and hence that q ≡ 1 (mod 4). If τ = Id (and hence α̂ = {α}),
then for each β ∈ Π and each λ ∈ F×q , Lemma 2.4(e) implies that

wα(hβ(λ)) =


hβ(λ) if β ⊥ α

hβ(λ)hα(λ) if β 6⊥ α, ‖β‖ ≥ ‖α‖
hβ(λ)hα(λk) if β 6⊥ α, ‖α‖ =

√
k · ‖β‖, k = 1, 2, 3.

(Note that wα(β∨) = β∨, β∨ + α∨, or β∨ + kα∨, respectively, in these three cases.) Since T
is generated by the hβ(λ) for β ∈ Π and λ ∈ F×q , it follows that [wα, A] has index 2 in Aα
exactly when |Π| = 1, or there are roots with two lengths and ratio

√
2, α is a long root,

and is orthogonal to all other long roots in Π. This happens only when G ∼= A1 or Cn.

Now assume |τ | = 2. In particular, all roots in Σ have the same length. By Lemmas 2.4(e)

and 5.6(a), for each β ∈ Πrα̂ such that β 6⊥ α and with class β̂ ∈ Π̂, we have

wα̂(ĥβ(λ)) =


ĥβ(λ)ĥα(λ) if |β̂| = 1 and λ ∈ F×q
ĥβ(λ)ĥα(λ) if |β̂| ≥ 2, |α̂| = 2, and λ ∈ F×q2

ĥβ(λ)ĥα(λq+1) if |β̂| ≥ 2, |α̂| = 1 or 3, and λ ∈ F×q2

By these formulas and Lemma 5.6(c), [wα̂, A] = Aα̂ exactly when |α̂| = 1, or |α̂| = 2 and
there is some β ∈ Π such that β 6⊥ α and β 6= τ(β). The only cases where this does not
happen are when G ∼= Dn or A3 and |α̂| = 2, and when G ∼= A2n and |α̂| ≥ 3.

(b) For each α̂ ∈ Σ̂, [wα̂, A] ≤ Aα̂ by (a), and hence is cyclic. It remains to prove the
converse.

Recall (Notation 5.2(D)) that when we are in case (III.2) (and hence the setup is not
standard), we define V0 = V . By assumption, G is always a Chevalley group in this case.

Let w ∈ W0 be an element of order 2 which is not equal to wα̂ for any α̂. If G is a Chevalley
group (if W0 = W and V0 = V ), then CV (w) contains no points in the interior of any Weyl
chamber, since W permutes freely the Weyl chambers (see [Brb, §V.3.2, Théorème 1(iii)]).
Since w is not the reflection in a root hyperplane, it follows that dim(V/CV (w)) ≥ 2. If G
is a Steinberg group (thus in case (III.1) with a standard setup), then W0 acts on V0 as the
Weyl group of a certain root system on V0 (see [Ca, § 13.3]), so dim(V0/CV0(w)) ≥ 2 by a
similar argument.

Set ε = +1 if we are in case (III.1), or ε = −1 if we are in case (III.2). Set m = vp(q− ε),
and choose λ ∈ (Fq2)× of order pm. Set Λ = ZΣ∨, regarded as the lattice in V with Z-basis
Π∨ = {α∨ |α ∈ Π}. Let

Φλ : Λ/pmΛ −−−−−−→ T

be the Z[W ]-linear monomorphism of Lemma 2.6(b) with image the pm-torsion in T . Thus
Φλ(α

∨) = hα(λ) for each α ∈ Σ. Also, σ(hα(λ)) = hτ(α)(λ) for each α ∈ Σ (λq = λ by

assumption), and thus Φλ commutes with the actions of τ on Λ < V and of σ on T .

Set Λ0 = CΛ(τ) in case (III.1), or Λ0 = Λ in case (III.2). Then CΛ/pmΛ(τ) = Λ0/p
mΛ0 in

case (III.1), since τ permutes the basis Π∨ of Λ. We claim that Φλ restricts to a Z[W0]-linear
isomorphism

Φ0 : Λ0/p
mΛ0

∼=−−−−−−→ Ωm(A) ,

where Ωm(A) is the pm-torsion subgroup of A and hence of T = C
T

(σ). If G is a Chevalley
group (in either case (III.1) or (III.2)), then Λ0 = Λ, so Im(Φ0) is the pm-torsion subgroup
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of T and equal to Ωm(A). If G is a Steinberg group, then ε = +1, each element of order

dividing pm in T is fixed by ψq, and hence lies in Ωm(A) if and only if it is fixed by γ (thus
in Φλ(CΛ/pmΛ(τ))).

Thus [w,A] ≥ [w,Ωm(A)] ∼= [w,Λ0/p
mΛ0]. Set B = Λ0/p

mΛ0 for short; we will show that
[w,B] is noncyclic. Set

r = rk(Λ0) = dim(V0) and s = rk(CΛ0(w)) = dimR(CV0(w)) ≤ r − 2 .

For each b ∈ CB(w), and each v ∈ Λ0 such that b = v + pmΛ0, v + w(v) ∈ CΛ0(w) maps to
2b ∈ CB(w). Thus B ∼= (Z/pm)r, while {2b | b ∈ CB(w)} is contained in CΛ0(w)/pmCΛ0(w) ∼=
(Z/pm)s. Since pm > 2 by assumption (and r − s ≥ 2), it follows that B/CB(w) ∼= [w,B] is
not cyclic.

(c) Fix α̂ ∈ Σ̂. We set up our notation as follows.

Case (1): |α̂| = 1 or 3. Set α∗ = α if α̂ = {α} (where τ(α) = α), or α∗ = α + τ(α) if
α̂ = {α, τ(α), α + τ(α)}. Set wα̂ = wα∗ , Wα̂ = 〈wα̂〉, and ∆ = {±α∗} ⊆ Σ.

Case (2): |α̂| = 2. Thus α̂ = {α, τ(α)}, where α ⊥ τ(α). Set wα̂ = wαwτ(α), Wα̂ =
〈wα, wτ(α)〉, and ∆ = {±α,±τ(α)} ⊆ Σ.

In case (1), by Lemma 2.4(c,e),

C
T

(wα̂) = C
T

(wα∗) = Ker(θα∗) = C
T

(Xα∗) = C
T

(X−α∗) .

Hence C
G

(CA(wα̂)) ≥ C
G

(C
T

(wα̂)) ≥ T 〈Xα∗ , X−α∗〉 = TKα∗ . In case (2), by the same
lemma,

C
T

(wα̂) = C
T

(〈wα, wτ(α)〉) = C
T

(〈Xα, X−α, Xτ(α), X−τ(α)〉) = C
T

(KαKτ(α))

so that C
G

(CA(wα̂)) ≥ TK α̂. This proves one of the inclusions in (1). By Proposition 2.5,
the opposite inclusion will follow once we show that

CW (CA(wα̂)) ≤ Wα̂ . (2)

Fix w ∈ CW (CA(wα̂)).

• Let β ∈ Σ ∩∆⊥ be such that β = τ(β). Then hβ(λ) ∈ CA(wα̂) for λ ∈ F×q0 of order 4, so
w(hβ(λ)) = hβ(λ), and β ∈ CV (w) by Lemma 2.6(d).

• Let β ∈ Σ ∩∆⊥ be such that β 6= τ(β), and set β′ = τ(β) for short. Let r ≥ 2 be such

that q ≡ 1 + 2r (mod 2r+1), and choose λ ∈ F×q0 of order 2r+1. Set a = 1− 2r, so λa = λq.
Then

hβ(λ)hβ′(λ
a), hβ(λa)hβ′(λ) ∈ CA(wα̂) ≤ C

T
(w) .

Also, ‖β + aβ′‖ = ‖aβ + β′‖ < (1 − a)‖β‖ = 1
2
|λ|‖β‖ since a < 0 and β′ 6= −β (since

τ(Σ+) = Σ+). Thus β + aβ′, aβ + β′ ∈ CV (w) by Lemma 2.6(c), so β, β′ ∈ CV (w).

• Let β ∈ Σ be such that β = τ(β) and β /∈ ∆⊥, and set η = β+wα̂(β). Since wα̂τ = τwα̂ in
Aut(V ), τ(η) = η. Since β /∈ ∆⊥ = CV (wα̂), we have wα̂(β) 6= β, and hence ‖η‖ < 2‖β‖.
For λ ∈ F×q0 of order 4, t = hβ(λ)hwα̂(β)(λ) ∈ CA(wα̂), so w(t) = t, and η = β + wα̂(β) ∈
CV (w) by Lemma 2.6(c).

Consider the set

Σ∗ =
(
Σ ∩∆⊥

)
∪
{
β + wα̂(β)

∣∣ β ∈ Σ, τ(β) = β, β 6⊥ ∆
}
⊆ V .

We have just shown that w(η) = η for each η ∈ Σ∗, and hence that w|〈Σ∗〉 = Id. We next
claim that

Σ ∩ (Σ∗)⊥ = ∆ except when G ∼= A2 and |τ | = 2. (3)
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From the description of the root systems in [Brb, Planches I–IX], whenever G is not of
type An, we get that 〈Σ ∩ β⊥〉 is a hyperplane in V for each β ∈ Σ. (It suffices to check
this for one root in Σ, or for one short root and one long root.) In particular, (3) holds
whenever |α̂| = 1 or 3 and G is of one of these types. If |α̂| = 2, so |τ | = 2 and α̂ = {α, τ(α)}
where α ⊥ τ(α), and G = Dn or E6, then a similar check shows that 〈Σ ∩ {α, τ(α)}⊥〉 has
codimension 2 in V , and hence that (3) holds. For example, when G = E6, it suffices to
check this with the roots α = α3 = ε2 − ε1 and τ(α) = α5 = ε4 − ε3 in the notation of [Brb,
Planche V].

Now assume G ∼= An for some n. If n ≥ 3, then 〈Σ ∩ β⊥〉 has codimension 2 for β ∈ Σ,
but the only roots in the orthogonal complement of this space are ±β. Thus (3) holds for
An when n ≥ 3 and |α̂| = 1 or 3, and the cases n = 1, 2 are easily checked. If α̂ = {α, τ(α)}
where α ⊥ τ(α), then n ≥ 3, and we can take α = ε1 − ε2 and τ(α) = εn − εn+1 in the
notation of [Brb, Planche I], where τ(x1, . . . , xn+1) = (−xn+1, . . . ,−x1). In this case, Σ∗

contains all roots εi − εj for 3 ≤ i < j ≤ n− 1 as well as (ε1 − εn+1) + (ε2 − εn), and these
elements suffice to show that ±α and ±τ(α) are the only roots in (Σ∗)⊥. This finishes the
proof of (3).

By (3), when G 6∼= SU3(q), the only reflection hyperplanes which contain 〈Σ∗〉 are those in
the set {β⊥ | β ∈ ∆}. Fix a “generic” element v ∈ 〈Σ∗〉; i.e., one which is not contained in
any other hyperplane. In case (1), v is contained in only the one reflection hyperplane α∗⊥,
and hence is in the closure of exactly two Weyl chambers for (Σ,W ): chambers which are
exchanged by wα̂. In case (2), v is contained in the two reflection hyperplanes α⊥ and τ(α)⊥,
and hence in the closure of four Weyl chambers which are permuted freely and transitively
by Wα̂ = 〈wα, wτ(α)〉. Since W permutes the Weyl chambers freely and transitively (see [Brb,
§V.3.2, Théorème 1(iii)]), and since 〈w,Wα̂〉 permutes the chambers whose closures contain
v, we have w ∈ Wα̂.

This proves (2) when G 6∼= SU3(q). If G ∼= SU3(q), then hα∗(−1) ∈ CA(wα̂). But no

element of order 2 in T < SL3(Fq0) centralizes the full Weyl group W ∼= Σ3, so (2) also holds
in this case. This finishes the proof of (1).

If |α̂| ≤ 2, then

CG(CA(wα̂)) = G ∩ C
G

(CA(wα̂)) = T (G ∩K α̂)

where by Lemma 5.5, G∩K α̂
∼= SL2(q) or SL2(q2). Hence CG(CA(wα̂)) has commutator sub-

group G∩K α̂, and focal subgroup Aα̂. Since CF(CA(wα̂)) is the fusion system of CG(CA(wα̂))
(cf. [AKO, Proposition I.5.4]), this proves the last statement. �

Recall (Notation 5.2(H)) that Aut(A,F) is the group of automorphisms of A which extend
to elements of Aut(F). The next result describes the structure of Aut(A,F) for a group G in
the situation of case (III.1) or (III.2) of Hypotheses 5.1. Recall that W0 acts faithfully on A
by Lemma 5.3(a), and hence that W0

∼= AutN(A) = AutNG(T )(A) by Lemma 5.3(b). It will
be convenient to identify W0 with this subgroup of Aut(A). Since each element of Aut(A,F)
is fusion preserving, this group normalizes and hence acts on W0, and W0Aut(A,F) is a
subgroup of Aut(A).

For convenience, we set AutAut(G)(A) =
{
δ|A
∣∣ δ ∈ Aut(G), δ(A) = A

}
.

Lemma 5.8. Assume that G and (G, σ) satisfy Hypotheses 5.1, case (III.1) or (III.2).
Assume also Notation 5.2.

(a) CW0Aut(A,F)(W0) ≤ W0Autsc(A).

(b) Aut(A,F) ≤ Autsc(A)AutAut(G)(A), with the exceptions
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• (G, p) ∼= (2E6(q), 3), or

• (G, p) ∼= (G2(q), 2) and q0 6= 3, or

• (G, p) ∼= (F4(q), 3) and q0 6= 2.

(c) In all cases, the index of Aut(A,F)∩Autsc(A)AutAut(G)(A) in Aut(A,F) is at most 2 .

Proof. Recall that in Notation 2.2(C), V0, Σ̂, and Π̂ are defined when ρ(Π) = Π, and hence

in case (III.1) of Hypotheses 5.1. In case (III.2), we defined V0 = V , Σ̂ = Σ, and Π̂ = Π in
Notation 5.2(D). So under the hypotheses of the lemma (and since G is always a Chevalley

group in case (III.2)), we have V0 = V and Π̂ = Π if and only if G is a Chevalley group.

Set ε = 1 if we are in case (III.1), ε = −1 if we are in case (III.2), and m = vp(q − ε).

Step 1: We first prove that

ϕ ∈ CW0Aut(A,F)(W0) =⇒ ϕ(Aα̂) = Aα̂ for all α̂ ∈ Σ̂. (4)

If p is odd, then Aα̂ = [wα̂, A] by Lemma 5.7(a), so (4) is immediate.

Next assume that p = 2, and also that |α̂| ≤ 2. Write ϕ = w ◦ ϕ0, where w ∈ W0 and

ϕ0 ∈ Aut(A,F). Then ϕ0(CA(wα̂)) = w−1(CA(wα̂)) = CA(wβ̂), where β̂ = w−1(α̂). By

definition of Aut(A,F) (Notation 5.2), ϕ0 = ϕ0|A for some ϕ0 ∈ Aut(F). Since ϕ0 is fusion
preserving, it sends foc(CF(CA(wα̂))) onto foc(CF(CA(wβ̂))). Since these focal subgroups are

Aα̂ and Aβ̂, respectively, by Lemma 5.7(c), ϕ(Aα̂) = w(Aβ̂) = Aw(β̂) = Aα̂ also in this case

(the second equality by Lemma 2.4(e)).

It remains to consider the case where p = 2 and |α̂| = 3, and thus where G ∼= SU2n+1(q)
for some n ≥ 1. There is a subgroup (H1 × · · · × Hn) o Σn < G of odd index, where
Hi
∼= GU2(q). Fix Si ∈ Syl2(Hi); then Si ∼= SD2k where k = v2(q2 − 1) + 1 ≥ 4. Let

Ai, Qi < Si denote the cyclic and quaternion subgroups of index 2 in Si. Then we can take
A = A1 × · · · × An ∼= (C2k−1)n, N = (S1 × · · · × Sn)o Σn, and S ∈ Syl2(N).

There are exactly n classes α̂1, . . . , α̂n ∈ Σ̂+ of order 3, which we label so that [wα̂i , A] ≤ Ai
([wα̂i , A] = A∩Qi). Equivalently, these are chosen so that wα̂i acts on A via conjugation by
an element of SirAi. Let α∗i ∈ Σ+ be the root in the class α̂i which is the sum of the other
two.

Write ϕ = w ◦ ϕ0, where w ∈ W0 and ϕ0 ∈ Aut(A,F), and let ϕ0 ∈ Aut(F) be such that
ϕ0 = ϕ0|A. For each 1 ≤ i ≤ n, ϕ0(CA(wα̂i)) = w−1(CA(wα̂i)) = CA(wα̂f(i)

), where f ∈ Σn

is such that α̂f(i) = w−1(α̂i). Since ϕ0 is fusion preserving, it sends foc(CF(CA(wα̂i)))

onto foc(CF(CA(wα̂f(i)
))). By Lemma 5.7(c), CG(CA(wα̂i)) = G ∩ (TKα∗i

), its commutator

subgroup is G ∩Kα∗i
∼= SL2(q), and hence foc(CF(CA(wα̂i))) = Qi. Thus ϕ0(Qi) = Qf(i).

For each i, set Q∗i = 〈Qj | j 6= i〉. Then CG(Q∗i ) is the product of G ∩ K α̂i
∼= SL3(q)

(Lemma 5.5) with Z(Q∗i ). Thus ϕ0 sends foc(CF(Q∗i )) = Si to foc(CF(Q∗f(i))) = Sf(i), and

hence ϕ0(Ai) = Af(i). So ϕ(Ai) = w(Af(i)) = Ai for each i where Ai = Aα̂i , and this finishes
the proof of (4).

Step 2: We next prove point (a): that CW0Aut(A,F)(W0) ≤ W0Autsc(A). Let ϕ ∈
W0Aut(A,F) be an element which centralizes AutN(A) ∼= N/A ∼= W0. By (4), ϕ(Aα̂) = Aα̂
for each α̂ ∈ Σ̂. Since Aα̂ is cyclic for each α̂ ∈ Σ̂+ by Lemma 5.6(c), ϕ|Aα̂ is multiplication
by some unique uα̂ ∈ (Z/qα̂)×, where qα̂ = |Aα̂|. We must show that uα̂ is independent of α̂.

Assume first that τ = Id. By Lemma 5.6(c), |Aα| = pm for each α ∈ Π. Fix α1, α2 ∈ Π
and β ∈ Σ+ such that 1

k
β = 1

k
α1 + α2, where either
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• k = 1 and all three roots have the same length; or

• k ∈ {2, 3} and ‖β‖ = ‖α1‖ =
√
k · ‖α2‖.

The relation between the three roots is chosen so that hβ(λ) = hα1(λ)hα2(λ) for all λ ∈ F×q0
by Lemma 2.4(d). Hence uα1 ≡ uβ ≡ uα2 (mod pm) by Lemma 5.6(b). By the connectivity
of the Dynkin diagram, the uα for α ∈ Π are all equal, and ϕ ∈ Autsc(A).

Now assume |τ | = 2; the argument is similar but slightly more complicated. By assump-
tion, G is of type An, Dn, or En; i.e., all roots have the same length. Set m′ = vp(q

2 − 1);
then m′ = m if p is odd, and m′ = m+ 1 if p = 2. Fix α1, α2 ∈ Π such that α1 6= τ(α2) and

β
def
= α1 + α2 ∈ Σ+. Choose λ ∈ F×q0 of order pm

′
.

If α1 6= τ(α1) and α2 6= τ(α2), then |Aα̂1| = |Aα̂2| = pm
′

by Lemma 5.6(c), and

ĥα1(λ)ĥα2(λ) = hα1(λ)hτ(α1)(λ
q)hα2(λ)hτ(α2)(λ

q)

= hβ(λ)hτ(β)(λ
q) = ĥβ(λ) ∈ Aβ̂ .

Hence (
ĥα1(λ)ĥα2(λ)

)u
β̂ = ϕ

(
ĥα1(λ)ĥα2(λ)

)
= ĥα1(λ)uα̂1 · ĥα2(λ)uα̂2 ,

and together with Lemma 5.6(b), this proves that uα̂1 ≡ uβ̂ ≡ uα̂2 (mod pm
′
).

If τ(αi) = αi for i = 1, 2, then a similar argument shows that uα̂1 ≡ uβ̂ ≡ uα̂2 (mod pm). It

remains to handle the case where α1 6= τ(α1) and α2 = τ(α2). In this case, |Aα̂1 | = pm
′

and

|Aα̂2| = pm by Lemma 5.6(c), and these groups are generated by ĥα1(λ) = hα1(λ)hτ(α1)(λ
q)

and hα2(λq+1), respectively. Then

ĥα1(λ)ĥα2(λq+1) = hα1(λ)hτ(α1)(λ
q)hα2(λq+1) = hβ(λ)hτ(β)(λ

q) = ĥβ(λ) ∈ Aβ̂ ,

so (
ĥα1(λ)ĥα2(λq+1)

)u
β̂ = ϕ

(
ĥα1(λ)ĥα2(λq+1)

)
= ĥα1(λ)uα̂1 · hα2(λq+1)uα̂2 ,

and uα̂1 ≡ uβ̂ ≡ uα̂2 (mod pm) by Lemma 5.6(b) again.

Since the Dynkin diagram is connected, and since the subdiagram of nodes in free orbits

in the quotient diagram is also connected, this shows that the uα̂ are all congruent for α̂ ∈ Π̂
(modulo pm or pm

′
, depending on where they are defined), and hence that ϕ ∈ Autsc(A).

Step 3: Consider the subset WΠ̂ = {wα̂ | α̂ ∈ Π̂}. We need to study the subgroup
NW0Aut(A,F)(WΠ̂): the group of elements of W0Aut(A,F) which permute the set WΠ̂. Note

that W0 = 〈WΠ̂〉 (see, e.g., [Ca, Proposition 13.1.2], and recall that W0 = W and Π̂ = Π in
case (III.2)). We first show that

Aut(A,F) ≤ W0NW0Aut(A,F)(WΠ̂) . (5)

Write Π̂ = {α̂1, . . . , α̂k}, ordered so that for each 2 ≤ i ≤ k, α̂i is orthogonal to all but one
of the α̂j for j < i. Here, α̂i ⊥ α̂j means orthogonal as vectors in V0. Thus wα̂i commutes
with all but one of the wα̂j for j < i. By inspection of the Dynkin diagram of G (or the
quotient of that diagram by τ), this is always possible.

Fix ϕ ∈ Aut(A,F). In particular, ϕ normalizes W0 (recall that we identify W0 =
AutW0(A)) since ϕ is fusion preserving. (Recall that AutG(A) = AutW0(A) by Lemma
5.3(b).) We must show that some element of ϕW0 normalizes the set WΠ̂.

By definition of Aut(A,F) (Notation 5.2), ϕ = ϕ|A for some ϕ ∈ Aut(F). Since ϕ is
fusion preserving, ϕ normalizes AutF(A) = AutG(A), where AutG(A) ∼= N/A ∼= W0 since
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CN(A) = A by Lemma 5.3(a). Thus there is a unique automorphism ϕ̂ ∈ Aut(W0) such that
ϕ̂(w) = ϕ ◦ w ◦ ϕ−1 for each w ∈ W0.

For each i, since |ϕ̂(wα̂i)| = 2 and [ϕ̂(wα̂i), A] ∼= [wα̂i , A] is cyclic, ϕ̂(wα̂i) = wα̂′i for some

α̂′i ∈ Σ̂ by Lemma 5.7(b), where α̂′i is uniquely determined only up to sign. For i 6= j,

α̂i ⊥ α̂j ⇐⇒ [wα̂i , wα̂j ] = 1 ⇐⇒ [ϕ̂(wα̂i), ϕ̂(wα̂j)] = 1 ⇐⇒ α̂′i ⊥ α̂′j .

So via the assumption about orthogonality, we can choose successively elements α̂′1, α̂
′
2, . . . , α̂

′
k

such that ϕ̂(wα̂i) = wα̂′i for each i, and 〈α̂′i, α̂′j〉 ≤ 0 for i 6= j.

For each i 6= j, since |wα̂iwα̂j | = |wα̂′iwα̂′j |, the angle (in V0) between α̂i and α̂j is equal

to that between α̂′i and α̂′j (by assumption, both angles are between π/2 and π). The roots

α̂′i for 1 ≤ i ≤ k thus generate Σ̂ as a root system on V0 with Weyl group W0, and hence

are the fundamental roots for another Weyl chamber for Σ̂. (Recall that Σ̂ = Σ, V0 = V ,
and W0 = W in case (III.2).) Since W0 permutes the Weyl chambers transitively [Brb,
§VI.1.5, Theorem 2(i)], there is w ∈ W0 which sends the set {wα̂i} onto {ϕ̂(wα̂i)}. Thus
c−1
w ◦ ϕ ∈ NW0Aut(A,F)(WΠ̂), so ϕ ∈ W0NW0Aut(A,F)(WΠ̂), and this proves (5).

Step 4: Set AutW0Aut(A,F)(WΠ̂) = NW0Aut(A,F)(WΠ̂)
/
CW0Aut(A,F)(WΠ̂): the group of per-

mutations of the set WΠ̂ which are induced by elements of W0Aut(A,F). By (a) (Step 2)
and (5), and since W0 = 〈WΠ̂〉, there is a surjection

AutW0Aut(A,F)(WΠ̂)
onto
−−−−−�

W0NW0Aut(A,F)(WΠ̂)

W0CW0Aut(A,F)(WΠ̂)
=
W0Aut(A,F)

W0Autsc(A)
. (6)

To finish the proof of the lemma, we must show that each element of the group AutW0Aut(A,F)(WΠ̂)
is represented by an element of AutAut(G)(A) (i.e., the restriction of an automorphism of G),
with the exceptions listed in point (b).

In the proof of Step 3, we saw that each element of AutW0Aut(A,F)(WΠ̂) preserves angles

between the corresponding elements of Π̂, and hence induces an automorphism of the Coxeter

diagram for (V0, Σ̂) (i.e., the Dynkin diagram without orientation on the edges).

Case 1: Assume G = G(q) is a Chevalley group. The automorphisms of the Coxeter
diagram of G are well known, and we have

∣∣AutW0Aut(A,F)(WΠ̂)
∣∣ ≤


6 if G ∼= D4

2 if G ∼= An (n ≥ 2), Dn (n ≥ 5), E6, B2, G2, or F4

1 otherwise.

(7)

In case (III.1) (i.e., when the setup is standard), all of these automorphisms are realized
by restrictions of graph automorphisms in ΓG (see [Ca, §§ 12.2–4]), except possibly when
G ∼= B2(q), G2(q), or F4(q). In case (III.2), with the same three exceptions, each such
automorphism is realized by some graph automorphism ϕ ∈ Γ

G
, and ϕ|

T
commutes with

σ|
T
∈ Z(Aut(T )). Hence by Lemma 3.7, ϕ|T extends to an automorphism of G whose

restriction to A induces the given symmetry of the Coxeter diagram. Together with (6), this
proves the lemma for Chevalley groups, with the above exceptions.

If G ∼= B2(q) or F4(q) and p 6= 2, then
∣∣AutW0Aut(A,F)(WΠ̂)

∣∣ = 2, and the nontrivial element
is represented by an element of AutΓG(A) exactly when q0 = 2. This proves the lemma in
these cases, and a similar argument holds when G ∼= G2(q) and p 6= 3.

It remains to check the cases where (G, p) ∼= (B2(q), 2), (G2(q), 3), or (F4(q), 2). We claim
that AutW0Aut(A,F)(WΠ̂) = 1 in these three cases; then the three groups in (6) are trivial, and
so Aut(A,F) ≤ W0Autsc(A). If (G, p) = (B2, 2) or (G2, 3), then with the help of Lemma
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2.4(d,b), one shows that the subgroups Ω1(Aα) are all equal for α a short root, and are all
distinct for the distinct (positive) long roots. More precisely, of the p+ 1 subgroups of order
p in Ω1(A) ∼= C2

p , one is equal to Aα when α is any of the short roots in Σ+, while each of the
other p is equal to Aα for one distinct long root α. Since Ω1(Aα) = Ω1([wα, A]) for each α, no
element of NW0Aut(A,F)(WΠ̂) can exchange the long and short roots, so AutW0Aut(A,F)(WΠ̂) =
1.

Now assume (G, p) = (F4, 2). Let α, β ∈ Π be such that α is long, β is short, and α 6⊥ β.
Then α and β generate a root system of type B2, and by the argument in the last paragraph,
no element of NW0Aut(A,F)(WΠ̂) can exchange them. Thus no element in NW0Aut(A,F)(WΠ̂)
can exchange the long and short roots in G, so again AutW0Aut(A,F)(WΠ̂) = 1.

Case 2: Assume G is a Steinberg group. In particular, we are in case (III.1). The Coxeter

diagram for the root system (V0, Σ̂) has type Bn, Cn, or F4 (recall that we excluded the
triality groups 3D4(q) in Hypotheses 5.1), and hence has a nontrivial automorphism only
when it has type B2 or F4. It thus suffices to consider the groups G = 2A3(q), 2A4(q), and
2E6(q).

For these groups, the elements ĥα(λ) for λ ∈ F×q , and hence the (q − 1)-torsion in the

subgroups Tα̂ for α̂ ∈ Σ̂+, have relations similar to those among the corresponding subgroups
of T when G = B2(q) or F4(q). This follows from Lemma 2.6(b): if λ ∈ F×q is a generator,
then Φλ restricts to an isomorphism from CZΣ∨(τ)/(q − 1) to the (q − 1)-torsion in T , and

the elements in Π̂ can be identified in a natural way with a basis for CZΣ∨(τ). Hence when

p = 2, certain subgroups Ω1(Aα̂) are equal for distinct α̂ ∈ Σ̂+, proving that no element in
NW0Aut(A,F)(WΠ̂) can exchange the two classes of roots. Thus the same argument as that
used in Case 1 when (G, p) = (B2(q), 2) or (F4(q), 2) applies to prove that NW0Aut(A,F)(WΠ̂) =
Autsc(A) in these cases.

Since p
∣∣|W0| by Hypotheses 5.1(I), we are left only with the case where p = 3 and G =

2E6(q) for some q ≡ 1 (mod 3). Then (V0, Σ̂) is the root system of F4, so Aut(A,F) ∩
W0Autsc(A) has index at most 2 in Aut(A,F) by (6) and (7). Thus (c) holds in this case.
(In fact, the fusion system of G is isomorphic to that of F4(q) by [BMO, Example 4.4], and
does have an “exotic” graph automorphism.) �

We now look at groups which satisfy any of the cases (III.1), (III.2), or (III.3) in Hypothe-
ses 5.1. Recall that κG = µG ◦ κG : Out(G) −−−→ Out(F).

Lemma 5.9. Assume Hypotheses 5.1 and Notation 5.2. Then each element ϕ ∈ Autdiag(F)
is the restriction of a diagonal automorphism of G. More precisely, κG restricts to an epi-
morphism from Outdiag(G) onto Outdiag(F) whose kernel is the p′-torsion subgroup. Also,
CA(W0) = Op(Z(G)).

Proof. In general, whenever H is a group and B E H is a normal abelian subgroup, we let
Autdiag(H,B) be the group of all ϕ ∈ Aut(H) such that ϕ|B = IdB and [ϕ,H] ≤ B, and
let Outdiag(H,B) be the image of Autdiag(H,B) in Out(H). There is a natural isomorphism

Autdiag(H,B)/AutB(H)
ηH,B−−−→∼= H1(H/B;B) (cf. [Sz1, 2.8.7]), and hence H1(H/B;B) sur-

jects onto Outdiag(H,B). If B is centric in H (if CH(B) = B), then Outdiag(H,B) ∼=
H1(H/B;B) since AutB(H) = Inn(H) ∩ Autdiag(H,B).

In particular, Outdiag(S,A) is a p-group since H1(S/A;A) is a p-group. Also, CS(A) = A
by Lemma 5.3(a) (or by assumption in case (III.3)), and hence we have Outdiag(S,A) ∼=
Autdiag(S,A)/AutA(S). So Autdiag(S,A) is a p-group, and its subgroup Autdiag(F) is a
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p-group. It follows that

Autdiag(F) ∩ AutG(S) = Autdiag(F) ∩ Inn(S) = AutA(S) ,

and thus Outdiag(F) ∼= Autdiag(F)/AutA(S).

Since Outdiag(G) = Out
T

(G) by Proposition 3.5(c), we get κG(Outdiag(G)) ≤ Outdiag(F).
In particular, κG sends all torsion prime to p in Outdiag(G) to the identity. It remains to
show that it sends Op(Outdiag(G)) isomorphically to Outdiag(F).

Consider the following commutative diagram of automorphism groups and cohomology
groups:

Outdiag(F) ∼= Autdiag(F)/AutA(S)
χ

//

incl
��

H1(AutG(A);A)

ρ2

��

Outdiag(S,A) ∼= Autdiag(S,A)/AutA(S)
ηS,A

∼=
// H1(AutS(A);A) .

(8)

Here, ρ2 is induced by restriction, and is injective by [CE, Theorem XII.10.1] and since
AutS(A) ∈ Sylp(AutG(A)) (since A E S ∈ Sylp(G)). For each ω ∈ Autdiag(F), since
ω is fusion preserving, ηS,A([ω]) ∈ H1(AutS(A);A) is stable with respect to AutG(A)-
fusion, and hence by [CE, Theorem XII.10.1] is the restriction of a unique element χ([ω]) ∈
H1(AutG(A);A).

The rest of the proof splits into two parts, depending on which of cases (III.1), (III.2), or
(III.3) in Hypotheses 5.1 holds. Recall that AutF(A) = AutG(A) = AutW0(A): the second
equality by Lemma 5.3(b) in cases (III.1) or (III.2), or by assumption in case (III.3).

Cases (III.2) and (III.3): We show that in these cases, Outdiag(G), Outdiag(F), Z(G),
and CA(W0) all have order prime to p. Recall that p is odd in both cases. By hypothesis

in case (III.3), and since γ|
T
∈ Op′(W0) inverts T in case (III.2), CA(Op′(W0)) = 1. In

particular, CA(W0) = 1. Since Z(G) ≤ Z(G) by Proposition 3.5(a), and Z(G) ≤ T by
Lemma 2.4(a), Z(G) ≤ G ∩ C

T
(W ) ≤ CT (W0), so Op(Z(G)) ≤ CA(W0) = 1. This proves

the last statement.

Now, Op(Outdiag(G)) = 1 since Outdiag(G) ∼= Z(G) (see [GLS3, Theorem 2.5.12(c)]) and
Op(Z(G)) = 1. Also,

H1(AutG(A);A) = H1(AutW0(A);A)

∼= H1(AutW0(A)/AutOp′ (W0)(A);CA(Op′(W0))) = 0

since A is a p-group and CA(Op′(W0)) = 1. Hence Outdiag(F) = 1 by diagram (8).

Case (III.1): Since CW (A) = 1 by Lemma 5.3(a) (and since AutG(A) = AutW0(A)), we
can identify H1(AutG(A);A) = H1(W0;A). Consider the following commutative diagram of
automorphism groups and cohomology groups

Op(Outdiag(G))
R

//

κG

��

Op(Outdiag(NG(T ), T ))
ηN(T ),T

∼=
//

∼= σ1

��

H1(W0;T )(p)

∼= σ2

��

Outdiag(N,A)
ηN,A

∼=
//

ρ1

��

H1(W0;A)

ρ2

��

Outdiag(F)
incl

//

χ0

44

χ
++

Outdiag(S,A)
ηS,A

∼=
// H1(S/A;A)

(9)
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where R is induced by restriction to NG(T ). By Lemma 5.3(a), T is centric in NG(T ) and
A is centric in N , so the three η’s are well defined and isomorphisms (i.e., Outdiag(N,A) =
Autdiag(N,A)/AutA(N), etc.). The maps σi are induced by dividing out by Op′(T ), and are
isomorphisms since A = Op(T ). The maps ρi are induced by restriction, and are injective
since S/A ∈ Sylp(W0) (see [CE, Theorem XII.10.1]).

Consider the short exact sequence

1 −−−→ T −−−−−→ T
Ψ−−−−−→ T −−−→ 1,

where Ψ(t) = t−1 · γψq(t) = t−1γ(tq) for t ∈ T . Let

1 −→ CT (W0) −−−→ C
T

(W0)
Ψ∗−−−→ C

T
(W0)

δ−−−→ H1(W0;T )
θ−−−→ H1(W0;T ) (10)

be the induced cohomology exact sequence for the W0-action, and recall that H1(W0;A) ∼=
H1(W0;T )(p) by (9). We claim that

(11) |Op(Outdiag(G))| = |Im(δ)(p)| = |Op(Z(G))| = |CA(W0)|;
(12) R is injective; and

(13) χ(Outdiag(F)) ≤ Ker(θ).

These three points will be shown below. It then follows from the commutativity of dia-
gram (9) (and since Im(δ) = Ker(θ)) that κG sends Op(Outdiag(G)) isomorphically onto
Outdiag(F).

Proof of (11) and (12): Assume first that γ 6= Id and G ∼= SL2n−1 (some n ≥ 1). Thus
G ∼= SU2n−1(q). By [St1, 3.4], Outdiag(G) and Z(G) are cyclic of order (q + 1, 2n− 1), and

hence have no p-torsion (recall p|(q− 1)). By Lemma 5.4(b), C
T

(W0) ∼= F×q0 , and σ(u) = u−q

for u ∈ C
T

(W0). Thus Ψ∗(u) = u−1σ(u) = u−1−q for u ∈ C
T

(W0), so Ψ∗ is onto, and
Im(δ) = 1 ∼= Op(Outdiag(G)) in this case. Also, CT (W0) = Ker(Ψ∗) has order q + 1, so
CA(W0) = Op(CT (W0)) = 1.

Now assume γ = Id or G 6= SL2n−1. By Lemma 5.4, in all such cases,

C
T

(W0) = C
T

(W ) = Z(G) and CT (W0) = Z(G) . (14)

In particular, these groups are all finite, and hence |Im(δ)| = |Z(G)| by the exactness of (10).
By [GLS3, Theorem 2.5.12(c)], Outdiag(G) ∼= Z(G) in all cases, and hence |Outdiag(G)| =
|Im(δ)|.

If [ϕ] ∈ Ker(R), then we can assume that it is the class of ϕ ∈ Aut
T

(G). Thus ϕ = cx
for some x ∈ N

T
(G), and ϕ|NG(T ) = cy for some y ∈ NG(T ) which centralizes A. Then

y ∈ CG(A) = T by Lemma 5.3(a), and upon replacing ϕ by c−1
y ◦ ϕ and x by y−1x (without

changing the class [ϕ]), we can arrange that ϕ|NG(T ) = Id. Then x ∈ C
T

(W0) since it

centralizes NG(T ) (and since NG(T )/T ∼= W0 by Lemma 5.3(b)), so x ∈ Z(G) by (14), and
hence ϕ = IdG. Thus R is injective.

Proof of (13): Fix ϕ ∈ Autdiag(F). Choose ϕ ∈ Autdiag(N,A) such that ϕ|S = ϕ (i.e.,
such that [ϕ] = χ0([ϕ]) in diagram (9)). Recall that W0

∼= N/A by Lemma 5.3(b). Let
c : W0

∼= N/A −−−→ A be such that ϕ(g) = c(gA)·g for each g ∈ N ; thus ηN,A([ϕ]) = [c].
We must show that θ([c]) = 1: that this is a consequence of ϕ being fusion preserving.

For each α̂ ∈ Π̂, set uα̂ = c(wα̂). Thus for g ∈ N , ϕ(g) = uα̂g if g ∈ wα̂ (as a coset of
A in N). Since w2

α̂ = 1, g2 = ϕ(g2) = (uα̂g)2, and hence wα̂(uα̂) = u−1
α̂ . We claim that

uα̂ ∈ Aα̂ = A ∩K α̂ for each α̂ ∈ Π̂.

• If p is odd, then uα̂ ∈ Aα̂, since Aα̂ = {a ∈ A |wα̂(a) = a−1} by Lemma 2.4(e).
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• If p = 2, wα̂ ∈ S/A, and |α̂| ≤ 2, choose gα̂ ∈ S ∩ K α̂ such that wα̂ = gα̂A. (For
example, if we set g =

∏
α∈α̂ nα(1) (see Notation 2.2(B)), then g ∈ NG(T ) represents

the class wα̂ ∈ W0, and is T -conjugate to an element of S ∩ K α̂.) By Lemma 5.7(c),

CG(CA(wα̂)) = G ∩ TK α̂, where G ∩K α̂
∼= SL2(q) or SL2(q2) by Lemma 5.5. Hence

foc(CF(CA(wα̂))) = foc(CG(CA(wα̂))) = S ∩ [G ∩ TK α̂, G ∩ TK α̂] = S ∩K α̂

(see the remarks before Lemma 5.7), and gα̂ lies in this subgroup. Since ϕ is fusion
preserving, ϕ(gα̂) ∈ foc(CF(CA(wα̂))). By Lemma 5.7(c) again,

uα̂ = ϕ(gα̂) · g−1
α̂ ∈ A ∩ foc(CF(CA(wα̂))) = Aα̂ .

• If p = 2, wα̂ ∈ S/A, and α̂ = {α, τ(α), α∗} where α∗ = α + τ(α), then wα̂ = wα∗ . Choose

gα̂ ∈ S ∩Kα∗ such that gα̂A = wα̂ ∈ N/A. (For example, there is such a gα̂ which is T -

conjugate to nα∗(1).) By Lemma 5.7(c), CG(CA(wα̂)) = G∩TKα∗ , G∩Kα∗
∼= SL2(q), and

hence gα̂ ∈ foc(CF(CA(wα̂))). So ϕ(gα̂) ∈ foc(CF(CA(wα̂))) since ϕ|S is fusion preserving.
By Lemma 5.7(c),

uα̂ = ϕ(gα̂) · g−1
α̂ ∈ A ∩ foc(CF(CA(wα̂))) = A ∩Kα∗ ≤ Aα̂ .

• If p = 2 and wα̂ /∈ S/A ∈ Syl2(W0), then it is W0-conjugate to some other reflection

wβ̂ ∈ S/A (for β̂ ∈ Σ̂+), c(wβ̂) ∈ Aβ̂ by the above argument, and hence uα̂ = c(wα̂) ∈ Aα̂.

Consider the homomorphism

Φ = (Φα)α∈Π : T −−−−−−→
∏
α∈Π

Tα where Φα(t) = t−1wα(t) ∀ t ∈ T , α ∈ Π.

Since W = 〈wα |α ∈ Π〉, we have Ker(Φ) = C
T

(W ) = Z(G) is finite (Proposition 2.5). Thus

Φ is (isomorphic to) a homomorphism from (F×q0)r to itself with finite kernel (where r = |Π|),
and any such homomorphism is surjective since F×q0 has no subgroups of finite index.

Choose elements vα ∈ Tα for α ∈ Π as follows.

• If α̂ = {α} where τ(α) = α, we set vα = uα̂.

• If α̂ = {α, τ(α)}, where α ⊥ τ(α), then T α̂ = Tα×T τ(α), and we let vα, vτ(α) be such that
vαvτ(α) = uα̂.

• If α̂ = {α, τ(α), α∗} where α∗ = α + τ(α), then uα̂ = hα(λ)hτ(α)(λ
′) for some λ, λ′ ∈ F×q0 ,

wα̂(hα(λ)hτ(α)(λ
′)) = hα(λ′−1)hτ(α)(λ

−1)

by Lemma 2.4(e), and λ = λ′ since wα̂(uα̂) = u−1
α̂ . Set vα = hα(λ) and vτ(α) = 1. (This

depends on the choice of α ∈ α̂ ∩ Π.)

Let t ∈ T be such that Φ(t) = (vα)α∈Π. We claim that t−1wα̂(t) = uα̂ for each α̂ ∈ Π̂. This
is clear when |α̂| ≤ 2. If α̂ = {α, τ(α), α∗} and λ are as above, then

wα̂(t) = wα∗(t) = wτ(α)wαwτ(α)(t) = wτ(α)(wα(t)) = wτ(α)

(
t · hα(λ)

)
= t · wτ(α)(hα(λ)) = t · hα∗(λ) = t · uα̂.

Thus c(wα̂) = dt(wα̂) for each α̂ ∈ Π̂. Since W0 = 〈wα̂ | α̂ ∈ Π̂〉 (and since c and dt are

both cocycles), this implies that c = dt, and hence that [c] = 0 in H1(W0;T ). �
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As one consequence of Lemma 5.9, the Z∗-theorem holds for these groups. This is known
to hold for all finite groups (see [GLS3, § 7.8]), but its proof for odd p depends on the
classification of finite simple groups, which we prefer not to assume here.

Corollary 5.10. Assume that G ∈ Lie(q0), p 6= q0, and S ∈ Sylp(G) satisfy Hypotheses 5.1.
Then Z(FS(G)) = Op(Z(G)).

Proof. By Lemma 5.9, Op(Z(G)) = CA(W0). By Lemma 5.3(a,b), or by hypothesis in Case
5.1(III.3), CS(A) = A and AutG(A) = AutW0(A). Hence Z(FS(G)) ≤ Op(Z(G)), while the
other inclusion is clear. �

We now need the following additional hypotheses, in order to be able to compare Autsc(A)
with the group of field automorphisms of G. With the help of Lemma 1.11, we will see in
Section 6 that we can always arrange for them to hold.

Hypotheses 5.11. Fix a prime p and a prime power q. Assume that q = qb0 where q0 is
prime, b ≥ 1, q0 6= p, and

(i) q0 ≡ ±3 (mod 8) if p = 2;

(ii) the class of q0 generates (Z/p2)× if p is odd; and

(iii) b|(p− 1)p` for some ` ≥ 0.

We will also say that “G satisfies Hypotheses 5.11” (for a given prime p) if G ∼= tG(q) for
some t and G, and some q which satisfies the above conditions.

By Hypothesis 5.1(I), ψq0(G) = G, and thus all field endomorphisms of G normalize G.
When G has a standard σ-setup, ΦG was defined to be the group of restrictions of such
endomorphisms ψqa0 ∈ Φ

G
for a ≥ 0. Under our Hypotheses 5.1, this applies only when we

are in case (III.1) (although Proposition 3.6 describes the relation between ΦG and ψq0 in
the other cases). In what follows, it will be useful to set

Φ̂G = 〈ψq0|G〉 ≤ Aut(G).

By Proposition 3.6(d), Inndiag(G)Φ̂G = Inndiag(G)ΦG. However, Φ̂G can be strictly larger

than ΦG, and Φ̂G∩ Inndiag(G) need not be trivial. For example, if G = SLn(q) where p does

not divide q − 1, then there is a σ-setup with σ = cxψq for some x ∈ N
G

(T ) that satisfies
Hypotheses 5.1 (see Lemma 6.5), and ψq|G = c−1

x |G ∈ Inndiag(G). Note that since each

element of Φ̂G acts on T via (t 7→ tr) for some r, Φ̂G normalizes T and each of its subgroups.

Recall that τ ∈ Aut(V ) is the automorphism induced by σ, and also denotes the induced
permutation of Σ.

Lemma 5.12. Assume Hypotheses 5.1 and 5.11 and Notation 5.2. Let

χ0 : Φ̂G −−−−−−−→ Aut(A,F)

be the homomorphism induced by restriction from G to A. Set m = |τ | =
∣∣γ|

T

∣∣. Then the
following hold.

(a) Either T has exponent qm − 1; or p is odd, m = ordp(q), m is even, and (qm/2 +
1)
∣∣expt(T )

∣∣(qm − 1).

(b) If p is odd, then χ0(Φ̂G) = Autsc(A). If p = 2, then χ0(Φ̂G) has index 2 in Autsc(A),
and Autsc(A) = Im(χ0)〈ψA−1〉.
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(c) If p = 2, then χ0 is injective. If p is odd, then

Ker(χ0) =

{
〈ψq|G〉 = 〈γ|G〉 in case (III.1)

〈(ψq|G)m〉 = 〈γm|G〉 = Φ̂G ∩ Aut
T

(G) in cases (III.2) and (III.3).

Proof. We first recall some of the assumptions in cases (III.1–3) of Hypotheses 5.1:

case (III.1) ordp(q) = 1, m = |γ|, and m ≤ 2

case (III.2) ordp(q) = m = 2 p is odd

case (III.3) ordp(q) = m p is odd

(15)

(Recall that γ is a graph automorphsm in case (III.1), so |γ| = |τ | = m.) In all of these
cases, p|(qm − 1) since ordp(q)|m.

(a) For each t ∈ T = C
T

(ψq ◦ γ), tq = ψq(t) = γ−1(t). Hence t = γ−m(t) = (ψq)
m(t) = tq

m
,

and tq
m−1 = 1. Thus expt(T )

∣∣(qm − 1).

By Hypotheses 5.1(I), there is a linearly independent subset Ω = {α1, . . . , αs} ⊆ Σ such
that either Ω or ±Ω = {±α1, . . . ,±αs} is a free 〈τ〉-orbit in Σ. Assume Ω is a free orbit

(this always happens in case (III.1)). In particular, m = |τ | = s. For each 1 6= λ ∈ F×q0 such

that λq
s−1 = 1, the element

t(λ) =
m−1∏
i=0

hτ i(α1)(λ
qi)

is fixed by σ = ψq ◦ γ (recall σ(hβ(λ)) = hτ(β)(λ
q) for each β ∈ Σ by Lemma 3.2). Hence

t(λ) ∈ T , and t(λ) 6= 1 when λ 6= 1 by Lemma 2.4(d,b). Thus T contains the subgroup

{t(λ) |λqm−1 = 1} of order qm− 1, this subgroup is cyclic (isomorphic to a subgroup of F×q0),
and hence expt(T ) = qm − 1.

Assume now that ±Ω is a free 〈τ〉-orbit (thus m = |τ | = 2s). In particular, we are not
in case (III.1), so p is odd and m = ordp(q). Then τ i(α1) = −α1 for some 0 < i < 2s, and

i = s since τ 2i(α1) = α1. For each 1 6= λ ∈ F×q0 such that λq
s+1 = 1,

t(λ) =
s−1∏
i=0

hτ i(α1)(λ
qi)

is fixed by σ = ψq ◦ γ by Lemma 3.2 and since hτs(α1)(λ
qs) = h−α1(λ−1) = hα1(λ). Hence

t(λ) ∈ T , and t(λ) 6= 1 when λ 6= 1 by Lemma 2.4 again. Thus {t(λ) |λqe+1 = 1} ≤ T is
cyclic of order qs + 1, and so (qs + 1)

∣∣expt(T ).

(b) By definition, Im(χ0) = χ0(Φ̂G) is generated by χ0(ψq0) = ψq0|A, which acts on A via
(a 7→ aq0). If p is odd, then by Hypotheses 5.11(ii), the class of q0 generates (Z/p2)×, and
hence generates (Z/pk)× for each k > 0. So Im(χ0) = Autsc(A) in this case.

If p = 2, then q0 ≡ ±3 (mod 8) by Hypotheses 5.11(i). So for each k ≥ 2, 〈q0〉 has index
2 in (Z/2k)× = 〈q0,−1〉. Hence Im(χ0) = 〈ψq0 |A〉 has index 2 in Autsc(A) = 〈ψq0|A, ψA−1〉.

(c) Set φ0 = ψq0|G, a generator of Φ̂G. Then (φ0)b = ψq|G = (γ|G)−1 since G = C
G

(ψq ◦ γ),

and so
∣∣φ0|T

∣∣ divides b|γ|
T
| = bm. Also, (φ0)bm = (γ|G)−m ∈ Aut

T
(G) by Lemma 3.2.

By (a), either expt(T ) = qm − 1; or m is even, p is odd, ordp(q) = m, and (qm/2 +
1)
∣∣expt(T )

∣∣(qm − 1). In the latter case, vp(q
m/2 + 1) = vp(q

m − 1) > 0 since p - (qm/2 − 1).
Thus

expt(A) = pe where e = vp(q
m − 1) = vp(q0

bm − 1) > 0 . (16)
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If p = 2, then we are in case (III.1). In particular, q = qb0 ≡ 1 (mod 4), and m ≤ 2. Also, b
(and hence bm) is a power of 2 by Hypotheses 5.11(iii). If bm = 1, then q = q0 ≡ 5 (mod 8),
so e = v2(q−1) = 2. If bm is even, then e = v2(qbm0 −1) = v2(q2

0−1)+v2(bm/2) = 3+v2(bm/2)
by Lemma 1.13. Thus in all cases, e = 2 + v2(bm). So Im(χ0) ≤ Autsc(A) ∼= (Z/2e)× has
order 2e−2 = bm. Since (ψq0|G)bm = (ψq|G)m = (γ−1|G)m = IdG (recall m = |γ| in case
(III.1)), χ0 is injective.

Now assume p is odd, and set m0 = ordp(q). Then b|(p−1)p` for some ` ≥ 0 by Hypotheses
5.11(iii), and q = qb0 where the class of q0 generates (Z/pk)× for each k ≥ 1. For r ∈ Z,
qr = qbr0 ≡ 1 (mod p) if and only if (p− 1)|br. Hence bm0 = b · ordp(q) = (p− 1)p` for some

` ≥ 0. Since vp(q
p−1
0 − 1) = 1, and since m = m0 or 2m0, Lemma 1.13 implies that

e = vp(q
m − 1) = vp(q

bm
0 − 1) = vp(q

bm0
0 − 1) = 1 + vp(p

`) = 1 + ` .

Thus ` = e − 1, where pe = expt(A) by (16), so |Autsc(A)| = (p − 1)pe−1 = bm0.

Since χ0 sends the generator φ0 of Φ̂G to the generator χ0(φ0) of Autsc(A), this proves
that Ker(χ0) = 〈ψm0

q |G〉 = 〈γm0|G〉. The descriptions in the different cases now follow

immediately. Note that in cases (III.2) and (III.3) (where m = m0), φbm0 = γ−m|G ∈ Aut
T

(G)

by Lemma 3.2. The converse is immediate: Φ̂G ∩ Aut
T

(G) ≤ Ker(χ0). �

Before applying these results to describe Out(F) and the homomorphism κG, we need to
know in which cases the subgroup A is characteristic in S.

Proposition 5.13. Assume Hypotheses 5.1 and Notation 5.2.

(a) If p = 2, then A is characteristic in S, and is the unique abelian subgroup of S of order
|A|, except when q ≡ 5 (mod 8) and G ∼= Sp2n(q) for some n ≥ 1.

(b) If p is odd, then A is characteristic in S, and Ω1(A) is the unique elementary abelian
subgroup of S of maximal rank, except when p = 3, q ≡ 1 (mod 3), v3(q − 1) = 1, and
G ∼= SU3(q) or G2(q).

In all cases, each normal subgroup of S isomorphic to A is NG(S)-conjugate to A.

Proof. If p is odd, then by [GL, 10-2(1,2)], there is a unique elementary p-subgroup E ≤ S
of rank equal to that of A (denoted rm0 in [GL]), except when p = 3 and G is isomorphic
to one of the groups SL3(q) (q ≡ 1 (mod 3)), SU3(q) (q ≡ −1 (mod 3)), or G2(q), 3D4(q),
or 2F4(q) (q ≡ ±1 (mod 3)). When there is a unique such subgroup E, then A = CS(E) by
Lemma 5.3(a) (or by assumption in case (III.3)), and hence A is characteristic in S.

Among the exceptions, SL3(q) and G2(q) are the only ones which satisfy Hypotheses 5.1.
In both cases, S is an extension of A ∼= (C3`)

2 by C3, where ` = v3(q − 1), and where
Z(S) = CA(S) has order 3. If ` > 1, then A is the unique abelian subgroup of index p in
S. If ` = 1, then S is extraspecial of order 33 and exponent 3. By Theorem 1.8(a), we can
assume q = 4 without changing the isomorphism type of the fusion system, so G contains
SU3(2). This is a semidirect product S o Q8 (cf. [Ta, p. 123–124]), and hence the four
subgroups of S of order 9 are NG(S)-conjugate.

It remains to prove the proposition when p = 2. We use [O3, § 2] as a reference for
information about best offenders, since this contains what we need in a brief presentation.
Assume A is not the unique abelian subgroup of S of order |A|. Then there is an abelian
subgroup 1 6= B ≤ W0 such that |B| · |CA(B)| ≥ |A|. In other words, the action of the Weyl
group W0 on A has a nontrivial best offender [O3, Definition 2.1(b)]. Hence by Timmesfeld’s
replacement theorem [O3, Theorem 2.5], there is a quadratic best offender 1 6= B ≤ W0: an
offender such that [B, [B,A]] = 1.
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We consider three different cases.

Case 1: G ∼= G(q) is a Chevalley group, where either q ≡ 1 (mod 8), or G 6∼=
Sp2n(q) for any n ≥ 1. Set n = rk(A) = rk(T ): the Lie rank of G (or of G). Set

` = v2(q − 1) ≥ 2. Then A ∼= (C2`)
n is the group of all 2`-torsion elements in T (or in T ).

Since the result is clear when n = 1 (G ∼= SL2(q) ∼= Sp2(q), A ∼= C2` , and S ∼= Q2`+1), we
assume n ≥ 2.

Let Λ = ZΣ∨ be the lattice in V generated by the dual roots. By Lemma 2.6(b), there
are Z[W ]-linear isomorphisms A ∼= Λ/2`Λ and Ω1(A) ∼= Λ/2Λ.

Assume first that B acts faithfully on Ω1(A). Since B has quadratic action, it is elementary
abelian [O3, Lemma 2.4]. Set k = rk(B); thus B ∼= Ck

2 and |A/CA(B)| ≤ 2k.

Since the B-action on V is faithful, the characters χ ∈ Hom(B, {±1}) which have non-
trivial eigenspace on V generate the dual group B∗. So we can choose a basis χ1, . . . , χk for
B∗ such that each χi has nontrivial eigenspace. Let b ∈ B be the unique element such that
χi(b) = −1 for each i = 1, . . . , k. Let V+, V− be the ±1-eigenspaces for the b-action on V ,
and set Λ± = Λ ∩ V±. By construction, dim(V−) ≥ k.

Let v ∈ Λ be an element whose class modulo 2`Λ is fixed by b, and write v = v+ + v−
where v± ∈ V±. Then 2v− = v− b(v) ∈ 2`Λ∩V− = 2`Λ−, so v− ∈ 2`−1Λ− and v+ = v− v− ∈
Λ ∩ V+ = Λ+. Thus CΛ/2`Λ(b) = (Λ+ × 2`−1Λ−)/2`Λ. Set r = rk(Λ−) = dim(V−) ≥ k; then

2k ≥ |A/CA(B)| ≥ |A/CA(b)| = |Λ/(Λ+ × 2`−1Λ−)| = 2r(`−1) · |Λ/(Λ+ × Λ−)|
≥ 2k(`−1) · |Λ/(Λ+ × Λ−)|.

In particular, Λ = Λ+ × Λ−. But then b acts trivially on Λ/2Λ, hence on Ω1(A), which
contradicts our assumption.

Thus B does not act faithfully on Ω1(A). Set B0 = CB(Ω1(A)) ∼= CB(Λ/2Λ) 6= 1. If
−IdV ∈ B0, then it inverts A, [B,Ω1(A)] ≤ [B, [B0, A]] = 1 since B acts quadratically, so
B = B0, and |B0| ≥ |A/CA(B)| ≥ |A/Ω1(A)| = 2(`−1)n. If b ∈ B0 is such that b2 = −IdV ,
then b defines a C-vector space structure on V , and hence does not induce the identity on
Λ/2Λ, a contradiction.

Thus there is b ∈ B0 which does not act on V via ±Id. Let V± 6= 0 be the ±1-eigenspaces
for the b-action on V , and set Λ± = Λ∩V±. For each v ∈ Λ, v−b(v) ∈ 2Λ since b acts trivially
on Ω1(A) ∼= Λ/2Λ. Set v = v+ + v−, where v± ∈ V±. Then 2v− = v− b(v) ∈ 2Λ∩ V− = 2Λ−
implies that v− ∈ Λ−, and hence v+ ∈ Λ+. Thus v ∈ Λ+ × Λ−, so by Lemma 2.8, G ∼= Cn.
By assumption, q ≡ 1 (mod 8), so ` ≥ 3, and [b, [b,Λ/2`Λ]] ≥ 4Λ−/2

`Λ− 6= 1, contradicting
the assumption that B acts quadratically on A.

Case 2: G ∼= Sp2n(q) for some n ≥ 1 and some q ≡ 5 (mod 8). Fix subgroups
Hi ≤ G (1 ≤ i ≤ n) and K < G such that Hi

∼= Sp2(q) for each i, K ∼= Σn is the group of
permutation matrices (in 2× 2 blocks), and K normalizes H = H1× · · · ×Hn and permutes

the factors in the obvious way. We can also fix isomorphisms χi : Hi

∼=−−−→ Sp2(q) such that
the action of K on the Hi commutes with the χi.

Fix subgroups Â < Q̂ < Sp2(q), where Q̂ ∼= Q8 (a Sylow 2-subgroup), and Â ∼= C4

is contained in the maximal torus. Set Qi = χ−1
i (Q̂) and Ai = χ−1

i (Â), and set Q =
Q1Q2 · · ·Qn and A = A1A2 · · ·An. Thus A = O2(T ) is as in Hypotheses 5.1(III): the 2-
power torsion in the maximal torus of G. By [CF, § I], S = QR for some R ∈ Syl2(K). Also,
W ∼= QK/A ∼= C2 o Σn acts on A via signed permutations of the coordinates.

Let B be any nontrivial best offender in W on A. Consider the action of B on the set
{1, 2, . . . , n}, let X1, . . . , Xk be the set of orbits, and set di = |Xi|. For 1 ≤ i ≤ k, let Ai ≤ A
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be the subgroup of elements whose coordinates vanish except for those in positions in Xi;
thus Ai ∼= (C4)di and A = A1×· · ·×Ak. Set Bi = B/CB(Ai); then |B| ≤

∏k
i=1 |Bi|. Since B

is abelian, either |Bi| = di and Bi permutes the coordinates freely, or |Bi| = 2di and there is
a unique involution in Bi which inverts all coordinates in Ai. In the first case, |CAi(Bi)| = 4,
and so |Bi| · |CAi(Bi)| = di · 4 ≤ 4di = |Ai| with equality only if di = 1. In the second case,
|CAi(Bi)| = 2, and again |Bi| · |CAi(Bi)| = 2di · 2 ≤ 4di = |Ai| with equality only if di = 1.
Since

k∏
i=1

|Ai| = |A| ≤ |B| · |CA(B)| = |B| ·
k∏
i=1

|CAi(Bi)| ≤
k∏
i=1

(
|Bi| · |CAi(Bi)|

)
,

we conclude that di = 1 for all i, and hence that B acts only by changing signs in certain
coordinates.

For each 1 ≤ i ≤ n, let pri : Q −−−→ Qi be the projection onto the i-th factor. If A∗ ≤ S
is abelian of order 4n, then A∗A/A is a best offender in W on A, and hence A∗ ≤ Q by the
last paragraph. Also, pri(A

∗) is cyclic of order at most 4 for each i, and since |A∗| = 4n,
pri(A

∗) ∼= C4 for each i and A∗ =
∏n

i=1 pri(A
∗). Thus there are exactly 3n such subgroups.

Now assume A∗ E S, and set A∗i = pri(A
∗) ≤ Qi for short. Since A∗ is normal, the

subgroups χi(A
∗
i ) ≤ Q̂ < Sp2(q) are equal for all i lying in any R-orbit of the set {1, 2, . . . , n}.

Hence we can choose elements x1, x2, . . . , xn, where xi ∈ NHi(Qi) ∼= SL2(3) and xi(Ai) = A∗i
for each i, and such that χi(xi) ∈ Sp2(q) is constant on each R-orbit. Set x = x1x2 · · ·xn;
then xA = A∗, and x ∈ NG(S).

Case 3: G is a Steinberg group. Assume γ ∈ Γ
G

is a graph automorphism of order 2,
and thatG = C

G
(σ) where σ = γψq. SetG0 = C

G
(γ, ψq); thusG0 ≤ G. Set ` = v2(q−1) ≥ 2.

We must again show that the action of W0 on A has no nontrivial best offenders.

If G ∼= 2E6(q) or Spin−2n(q) (n ≥ 4), then G0
∼= F4(q) or Spin2n−1(q), respectively, and W0

is the Weyl group of G0. If 1 6= B ≤ W0 is a best offender in W0 on A, then it is also a best
offender on Ω`(A) ≤ G0 (see [O3, Lemma 2.2(a)]), which is impossible by Case 1.

If G ∼= SU2n+1(q) ∼= 2A2n(q), then S ∼= (SD2`+2)noR for some R ∈ Syl2(Σn) [CF, pp. 143–
144]. Thus A ∼= (C2`+1)n, W0

∼= C2 o Σn, Σn < W0 acts on A by permuting the coordinates,
and the subgroup W1

∼= (C2)n in W0 has a basis each element of which acts on one coordinate

by (a 7→ a2`−1). If B ≤ W0 is a nontrivial quadratic best offender on A, then it is also a best
offender on Ω`(A) [O3, Lemma 2.2(a)], hence is contained in W1 by the argument in Case 2,
which is impossible since no nontrivial element in this subgroup acts quadratically. Thus A
is characteristic in this case.

It remains to consider the case where G ∼= SU2n(q) ∼= 2A2n−1(q). Since the case SU2(q) ∼=
Sp2(q) has already been handled, we can assume n ≥ 2. Set Ĝ = GU2n(q) > G, set

G0 = GU2(q) × · · · × GU2(q) ≤ Ĝ, and set G1 = NĜ(G0) ∼= GU2(q) o Σn. Then G1 has

odd index in Ĝ [CF, pp. 143–144], so we can assume S ≤ G1 ∩ G. Fix H0 ∈ Syl2(G0);
thus H0

∼= (SD2`+2)n. Since v2(q + 1) = 1, and since the Sylow 2-subgroups of SU2(q) are
quaternion,

G ∩H0 = Ker
[
H0
∼= (SD2`+2)n

χn−−−−→ Cn
2

sum−−−−→ C2

]
,

where χ : SD2`+2 −−−→ C2 is the surjection with quaternion kernel. As in the last case,
W0
∼= C2 o Σn with normal subgroup W1

∼= Cn
2 . If B ≤ W0 is a nontrivial quadratic best

offender on A, then it is also a best offender on Ω`(A) [O3, Lemma 2.2(a)], so B ≤ W1 by
the argument used in Case 2. Since no nontrivial element in W1 acts quadratically on A, we
conclude that A is characteristic in this case. �
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The next lemma is needed to deal with the fact that not all restrictions to A of automor-
phisms of G lie in Aut(A,F) (since they need not normalize S).

Lemma 5.14. Let G be any finite group, fix S ∈ Sylp(G), and let S0 E S be a normal
subgroup. Let ϕ ∈ Aut(G) be such that ϕ(S0) = S0 and ϕ|S0 ∈ NAut(S0)(AutS(S0)). Then
there is ϕ′ ∈ Aut(G) such that ϕ′|S0 = ϕ|S0, ϕ′(S) = S, and ϕ′ ≡ ϕ (mod Inn(G)).

Proof. Since ϕ|S0 normalizes AutS(S0), and cϕ(g) = ϕcgϕ
−1 for each g ∈ G, we have

Autϕ(S)(S0) = ϕAutS(S0) = AutS(S0). Hence ϕ(S) ≤ CG(S0)S. Since S normalizes CG(S0)
and S ∈ Sylp(CG(S0)S), we have ϕ(S) = xS for some x ∈ CG(S0). Set ϕ′ = c−1

x ◦ϕ ∈ Aut(G);
then ϕ′(S) = S and ϕ′|S0 = ϕ|S0 . �

In the next two propositions, we will be referring to the short exact sequence

1 −−−→ Autdiag(F) −−−−−−→ NAut(F)(A)
R−−−−−−→ Aut(A,F) −−−→ 1 . (17)

Here, R is induced by restriction, and Aut(A,F) = Im(R) and Autdiag(F) = Ker(R) by
definition of these two groups (Notation 5.2(H)). By the last statement in Proposition 5.13,
in all cases, each class in Out(F) is represented by elements of NAut(F)(A).

Proposition 5.15. Assume Hypotheses 5.1 and 5.11 and Notation 5.2. Then κG is surjec-
tive, except in the following cases:

• (G, p) ∼= (2E6(q), 3), or

• (G, p) ∼= (G2(q), 2) and q0 6= 3, or

• (G, p) ∼= (F4(q), 3) and q0 6= 2.

In the exceptional cases, |Coker(κG)| ≤ 2.

Proof. We first claim that for ϕ ∈ Aut(F),

ϕ(A) = A and ϕ|A ∈ Autsc(A)AutAut(G)(A) =⇒ [ϕ] ∈ Im(κG) . (18)

To see this, fix such a ϕ. By Lemma 5.12(b), each element of Autsc(A), or of Autsc(A)/〈ψA−1〉
if p = 2, is the restriction of an element of Φ̂G. If p = 2, then we are in case (III.1), the
σ-setup is standard, and hence the inversion automorphism ψA−1 is the restriction of an inner
automorphism of G (if −IdV ∈ W ) or an element of Inn(G)ΓG. Thus ϕ|A extends to an
automorphism of G.

Now, ϕ|A normalizes AutS(A) since ϕ(S) = S. So by Lemma 5.14, ϕ|A is the restriction
of an automorphism of G which normalizes S, and hence is the restriction of an element
ψ ∈ Aut(F) such that [ψ] ∈ Im(κG). Then ϕψ−1 ∈ Ker(R) = Autdiag(F) by the exactness
of (17), and [ϕψ−1] ∈ Im(κG) by Lemma 5.9. So [ϕ] ∈ Im(κG), which proves (18).

By Proposition 5.13, each class in Out(F) is represented by an element of NAut(F)(A).
Hence by (18), |Coker(κG)| is at most the index of Aut(A,F) ∩ Autsc(A)AutAut(G)(A) in
Aut(A,F). So by Lemma 5.8, |Coker(κG)| ≤ 2, and κG is surjective with the exceptions
listed above. �

We now want to refine Proposition 5.15, and finish the proof of Theorem B, by determining
Ker(κG) in each case where 5.1 and 5.11 hold and checking whether it is split. In particular,
we still want to show that each of these fusion systems is tamely realized by some finite
group of Lie type (and not just an extension of such a group by outer automorphisms).

Since Op′(Outdiag(G)) ≤ Ker(κG) in all cases by Lemma 5.9, κG induces a quotient
homomorphism

◦
κG : Out(G)/Op′(Outdiag(G)) −−−−−−→ Out(F) ,
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and it is simpler to describe Ker(
◦
κG) than Ker(κG). The projection of Out(G) onto the

quotient Out(G)/Op′(Outdiag(G)) is always split: by Steinberg’s theorem (Theorem 3.4),
it splits back to Op(Outdiag(G))ΦGΓG as defined with respect to some choice of standard
setup. (Recall that Outdiag(G) is independent of the σ-setup by Propositions 3.5(c) and

3.6(a).) Hence
◦
κG is split surjective if and only if κG is split surjective.

Proposition 5.16. Assume Hypotheses 5.1 and 5.11 and Notation 5.2. Assume also that
none of the following hold: neither

• (G, p) ∼= (2E6(q), 3), nor

• (G, p) ∼= (G2(q), 2) and q0 6= 3, nor

• (G, p) ∼= (F4(q), 3) and q0 6= 2.

(a) If p = 2, then
◦
κG is an isomorphism, and κG is split surjective.

(b) Assume that p is odd, and that we are in the situation of case (III.1) of Hypotheses 5.1.
Then

√
q ∈ N, and

Ker(
◦
κG) =


〈
[ψ√q]

〉 ∼= C2 if γ = Id and −Id ∈ W〈
[γ0ψ√q]

〉 ∼= C2 if γ = Id and −Id /∈ W〈
[ψ√q]

〉 ∼= C4 if γ 6= Id (G is a Steinberg group)

where in the second case, γ0 ∈ ΓG is a graph automorphism of order 2. Hence κG and
◦
κG are split surjective if and only if either γ = Id and −Id /∈ W , or p ≡ 3 (mod 4) and
G is not F4.

(c) Assume that p is odd, and that we are in the situation of case (III.2) or (III.3) of

Hypotheses 5.1. Assume also that G is a Chevalley group (γ ∈ Inn(G)), and that
ordp(q) is even or −Id /∈ W0. Let ΦG,ΓG ≤ Aut(G) be as in Proposition 3.6. Then

ΦG ∩Ker(
◦
κG) = 1, so |Ker(

◦
κG)| ≤ |ΓG|, and κG and

◦
κG are split surjective.

(d) Assume that p is odd, and that we are in the situation of case (III.3) of Hypotheses 5.1.

Assume also that G is a Steinberg group (γ /∈ Inn(G)), and that ordp(q) is even. Then

Ker(
◦
κG) =

{〈
[γ|G]

〉 ∼= C2 if γ|A ∈ AutW0(A)

1 otherwise.

Hence κG and
◦
κG are split surjective if and only if q is an odd power of q0 or Ker(κG) =

Op′(Outdiag(G)). If κG is not split surjective, then its kernel contains a graph auto-
morphism of order 2 in Out(G)/Outdiag(G).

Proof. In all cases, κG is surjective by Proposition 5.15 (with the three exceptions listed
above).

By definition and Proposition 5.13,

Out(F) = Aut(F)/AutF(S) ∼= NAut(F)(A)
/
NAutF (S)(A) .

Also, Outdiag(F) is the image in Out(F) of Autdiag(F). Since NAutF (S)(A) is the group of
automorphisms of S induced by conjugation by elements in NG(S)∩NG(A), the short exact
sequence (17) induces a quotient exact sequence

1 −−−→ Outdiag(F) −−−−−−→ Out(F)
R−−−−−−→ Aut(A,F)

/
AutNG(S)(A) −−−→ 1 . (19)
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We claim that

AutNG(S)(A) = Aut(A,F) ∩ AutG(A) . (20)

That AutNG(S)(A) is contained in the two other groups is clear. Conversely, assume α ∈
Aut(A,F) ∩ AutG(A). Then α = cg|A for some g ∈ NG(A), and α ∈ NAut(A)(AutS(A))
since it is the restriction of an element of Aut(F). Hence g normalizes SCG(A), and since
S ∈ Sylp(SCG(A)), there is h ∈ CG(A) such that hg ∈ NG(S). Thus α = cg|A = chg|A ∈
AutNG(S)(A), and this finishes the proof of (20).

By Lemma 5.9, κG sends Outdiag(G) onto Outdiag(F) with kernel the subgroupOp′(Outdiag(G)).
Hence by the exactness of (19), restriction to A induces an isomorphism

Ker(
◦
κG)

R0−−−−→∼= Ker
[
Out(G)/Outdiag(G) −−−−→ Aut(A,F)/AutNG(S)(A)

]
= Ker

[
Out(G)/Outdiag(G) −−−−→ NAut(A)(AutG(A))/AutG(A)

]
, (21)

where the equality holds by (20).

Recall that for each ` prime to p, ψA` ∈ Autsc(A) denotes the automorphism (a 7→ a`).

(a,b) Under either assumption (a) or (b), we are in case (III.1) of Hypotheses 5.1. In

particular, (G, σ) is a standard σ-setup for G. Set k = vp(q − 1); then k ≥ 1, and k ≥ 2 if
p = 2.

If p is odd, then by Hypotheses 5.11(ii), the class of q0 generates (Z/p)×. Since q = qb0 ≡ 1

(mod p), this implies that (p− 1)|b. In particular, b is even and
√
q = q

b/2
0 ∈ N in this case.

Also, for arbitrary p, Hypotheses 5.11(iii) implies that

b = (p− 1)p` for some ` ≥ 0. (22)

Since Out(G)/Outdiag(G) ∼= ΦGΓG by Theorem 3.4, where ΦGΓG normalizes T and hence
A, and since AutG(A) = AutW0(A) by Lemma 5.3(b), (21) takes the form

Ker(
◦
κG) ∼=

{
ϕ ∈ ΦGΓG

∣∣ϕ|A ∈ AutW0(A)
}
. (23)

In fact, when Ker(
◦
κG) has order prime to p (which is the case for all examples considered

here), the isomorphism in (23) is an equality since the quotient Outdiag(G)/Op′(Outdiag(G))
is a p-group.

Assume first that G = G(q) is a Chevalley group. Thus σ = ψq where q ≡ 1 (mod p), and

A =
{
t ∈ T

∣∣ tpk = 1
}

. Set

Γ0
G =

{
ΓG if G is not one of B2, F4, or G2

1 if G ∼= B2, F4, or G2

and similarly for Γ0

G
. By Lemma 2.7 (applied with m = pk ≥ 3), we have AutW (T ) ∩

AutΓ0

G

(T ) = 1, the group AutW (T )AutΓ0

G

(T ) acts faithfully on A, and its action intersects

Autsc(A) only in 〈ψA−1〉. By Lemma 5.12(b,c), restriction to A sends Φ̂G isomorphically onto
Autsc(A) if p is odd, and with index 2 and ψA−1 not in the image if p = 2. So ΦGΓ0

G acts
faithfully on A, and

{
ϕ ∈ ΦGΓ0

G

∣∣ϕ|A ∈ AutW0(A)
}

=


1 if p = 2

〈ψ√q〉 if p is odd and −Id ∈ W
〈γ0ψ√q〉 if p is odd and −Id /∈ W

(24)
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where in the last case, γ0 ∈ ΓG is a graph automorphism such that the coset γ0W contains
−Id. (Recall that b = (p−1)p` for some ` ≥ 0 by (22). Hence

√
q ≡ −1 modulo pk = expt(A),

and ψ√q|A = ψA−1.)

Thus by (23) and (24), if G is not B2, F4, or G2, then
◦
κG is injective if p = 2, and

|Ker(
◦
κG)| = 2 if p is odd. When p is odd, since Ker(

◦
κG) is normal of order prime to

p in Out(G) (hence of order prime to |Op(Outdiag(G))|), Ker(
◦
κG) is generated by [ψ√q] if

−Id ∈ W (i.e., if there is an inner automorphism which inverts T and hence A), or by [γ0ψ√q]

if −Id /∈ W and γ0 is as above. In the latter case,
◦
κG is split since it sends Op(Outdiag(G))ΦG

isomorphically onto Out(F) (note that in this case, G ∼= An, Dn for n odd, or E6, and hence

ΓG ∼= C2). When Ker(
◦
κG) =

〈
[ψ√q]

〉
, the map is split if and only if 4 - |ΦG| = b, and since

b = (p− 1)pm for some m by (22), this holds exactly when p ≡ 3 (mod 4).

If (G, p) ∼= (B2(q), 2), (F4(q), 2), or (G2(q), 3), then since q0 6= p, ΓG = 1 = Γ0
G. So (23)

and (24) again imply that Ker(
◦
κG) = 1, 1, or

〈
[ψ√q]

〉 ∼= C2, respectively, and that
◦
κG is split

in all cases.

Next assume G = G2(q), where p = 2, q = 3b, and b is a power of 2. Then b ≥ 2 since
q ≡ 1 (mod 4). By (23) and (24) again, ΦG injects into Out(F). Since Out(G) is cyclic of
order 2b, generated by a graph automorphism whose square generates ΦG (and since 2|b),
Out(G) injects into Out(F).

If G = F4(q), where p = 3, q = 2b, and b = 2 · 3` for some ` ≥ 0, then by (23)

and (24), Ker(
◦
κG|Φ(G)) = 〈ψ√q〉 ∼= C2. Fix 1 6= γ ∈ ΓG. If |Ker(

◦
κG)| > 2, then since

Autsc(Ω1(A)) = {±Id} ≤ AutW (Ω1(A)), we have wγ|Ω1(A) = Id for some w ∈ W . Since
W acts faithfully on Ω1(A) (Lemma 2.7), this would imply that [wγ,W ] = 1 in W 〈γ〉, and
hence that γ acts on W as an inner automorphism, which is impossible since the action of γ
exchanges reflections in W for long and short roots, unlike any inner automorphism. Thus
Ker(

◦
κG) = 〈ψ√q〉 ∼= C2. Since Out(G) is cyclic of order 2b = 4 · 3`, neither

◦
κG nor κG splits.

It remains to handle the Steinberg groups. Let H be such that C
G

(γ) = H(Fq0): a simple
algebraic group by [GLS3, Theorem 1.15.2(d)]. In particular, G ≥ H = H(q). Also, W0 is
the Weyl group of H by [GLS3, Theorem 1.15.2(d)] (or by the proof of [St3, Theorem 8.2]).
For a ∈ A,

a ∈ H ⇐⇒ γ(a) = a ⇐⇒ ψq(a) = aq = a ⇐⇒ a ∈ Ωk(A).

Thus Ωk(A) = A∩H. So by Lemma 2.7 applied to H(Fq0), W0 acts faithfully on Ωk(A), and
intersects Autsc(A) at most in 〈ψA−1〉.

If p = 2, then by Lemma 5.12(b), ψA−1 is not the restriction of an element in ΦG. Also,

ΦG
∼= C2b is sent injectively into Autsc(A) by Lemma 5.12(c), so

◦
κG is injective by (23).

If p is odd, then A = Ωk(A) ≤ H since vp(q
2 − 1) = vp(q − 1) = k, and W0 acts on

A as the Weyl group of Bm or Cm (some m) or of F4 (see [GLS3, Proposition 2.3.2(d)] or
[Ca, § 13.3]). Also, ψq0|A has order b in Autsc(A) by Lemma 5.12(c). Since (ψq0)b/2 = ψ√q
where

√
q ≡ −1 (mod p) (recall b = (p − 1)p` for some ` by (22)), and since −IdV0 ∈ W0

by the above remarks, ψq0 |A has order b/2 modulo AutW0(A). So by (23) and the remark

afterwards, and since ΦG is cyclic of order 2b, Ker(
◦
κG) =

〈
[ψ√q]

〉 ∼= C4. In particular,
◦
κG is

split only if b/2 is odd; equivalently, p ≡ 3 (mod 4).

(c,d) In both of these cases, p is odd, either ordp(q) is even or −Id /∈ W0, and we are in the
situation of case (III.2) or (III.3) in Hypothesis 5.1. Then γ|G = (ψq|G)−1 since G ≤ C

G
(γψq).

Also, ψq0(G) = G by 5.1(I), and hence γ(G) = G. Since ψq0 and γ both normalize T
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by assumption or by construction, they also normalize T = G ∩ T and A = Op(T ). By
Proposition 3.6(d), [ψq0 ] generates the image of ΦG in Out(G)/Outdiag(G).

We claim that in all cases,

AutG(A) = AutW0(A) and AutG(A) ∩ Autsc(A) ≤ 〈γ|A〉 . (25)

This holds by assumption in case (III.3), and since ordp(q) is even or −Id /∈ W0. In case
(III.2), the first statement holds by Lemma 5.3(b), and the second by Lemma 2.7 (and since

W0 = W and A contains all pk-torsion in T ).

(c) Assume in addition that G is a Chevalley group. Thus γ ∈ Inn(G), so γ|G ∈
Inndiag(G) = Inn(G)Aut

T
(G) by Proposition 3.6(b), and hence γ|A ∈ AutG(A). Also,

γ|A = (ψq|A)−1 = (ψq0|A)−b since σ = γψq centralizes G ≥ A. Since ψq0|A has order
b · ordp(q) in Autsc(A) by Lemma 5.12(c), its class in NAut(A)(AutG(A))/AutG(A) has order
b by (25).

Thus by (21),
◦
κG sends Op(Outdiag(G))ΦG injectively into Out(F). Since ΓG is isomorphic

to 1, C2, or Σ3 (and since
◦
κG is onto by Proposition 5.15),

◦
κG and κG are split.

(d) Assume G is a Steinberg group and ordp(q) is even. In this case, γ /∈ Inn(G), and
Out(G)/Outdiag(G) ∼= ΦG is cyclic of order 2b, generated by the class of ψq0|G. Hence by

(21), Ker(
◦
κG) is isomorphic to the subgroup of those ψ ∈ ΦG such that ψ|A ∈ AutG(A). By

(25) and since ψq|A = γ−1|A, AutG(A) ∩ Autsc(A) ≤ 〈ψAq 〉. Thus |Ker(
◦
κG)| ≤ 2, and

|Ker(
◦
κG)| = 2 ⇐⇒ γ|A ∈ AutG(A) = AutW0(A) .

When Ker(
◦
κG) 6= 1,

◦
κG is split if and only if 4 - |ΦG| = 2b; i.e., when b is odd. �

In the situation of Proposition 5.16(c), if −Id /∈ W , then Ker(
◦
κG) =

〈
[γ0ψ√q]

〉
where γ0

is a nontrivial graph automorphism. If −Id ∈ W (hence ordp(q) is even), then
◦
κG is always

injective: either because ΓG = 1, or by the explicit descriptions in the next section of the
setups when ordp(q) = 2 (Lemma 6.4), or when ordp(q) > 2 and G ∼= D2n (Lemma 6.5).

The following examples help to illustrate some of the complications in the statement of
Proposition 5.16.

Example 5.17. Set p = 5. If G = Spin−4k(3
4), Sp2k(3

4), or SUk(3
4) (k ≥ 5), then by Propo-

sition 5.16(b), κG is surjective but not split. (These groups satisfy case (III.1) of Hypotheses
5.1 by Lemma 6.1.) The fusion systems of the last two are tamely realized by Sp2`(3

2)
and SLn(32), respectively (these groups satisfy case (III.2) by Lemma 6.4, hence Proposition
5.16(c) applies). The fusion system of Spin−4k(3

4) is also realized by Spin−4k(3
2), but not tamely

(Example 6.6(b)). It is tamely realized by Spin4k−1(32) (see Propositions 1.9(c) and 5.16(c)).

6. The cross characteristic case: II

In Section 5, we established certain conditions on a finite group G of Lie type in charac-
teristic q0, on a σ-setup for G, and on a prime p 6= q0, and then proved that the p-fusion
system of G is tame whenever those conditions hold. It remains to prove that for each G
of Lie type and each p different from the characteristic, there is another group G∗ whose
p-fusion system is tame by the results of Section 5, and is isomorphic to that of G.

We first list the groups which satisfy case (III.1) of Hypotheses 5.1.
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Lemma 6.1. Fix a prime p and a prime power q ≡ 1 (mod p), where q ≡ 1 (mod 4) if p = 2.
Assume G ∼= G(q) for some simple group scheme G over Z of universal type, or G ∼= 2G(q)

for G ∼= An, Dn, or E6 of universal type. Then G has a σ-setup (G, σ) such that Hypotheses
5.1, case (III.1) holds.

Proof. Set G = G(Fq), and let ψq ∈ Φ
G

be the field automorphism. Set σ = γψq ∈ End(G),
where γ = Id if G ∼= G(q), and γ ∈ Γ

G
has order 2 if G ∼= 2G(q).

NG(T ) contains a Sylow p-subgroup of G. If γ = Id, then by [Ca, Theorem 9.4.10]
(and since G is in universal form), |G| = qN

∏r
i=1(qdi−1) for some integers N, d1, . . . , dr (r =

rk(G)), where d1d2 · · · dr = |W | by [Ca, Theorem 9.3.4]. Also, |T | = (q−1)r, NG(T )/T ∼= W ,
and so

vp(|G|) =
r∑
i=1

vp(q
di − 1) =

r∑
i=1

(
vp(q − 1) + vp(di)

)
= vp(|T |) + vp(|W |) = vp(NG(T )) ,

where the second equality holds by Lemma 1.13.

If |γ| = 2, then by [Ca, §§ 14.2–3], for N and di as above, there are εi, ηi ∈ {±1} for
1 ≤ i ≤ r such that |G| = qN

∏r
i=1(qdi−εi) and |T | =

∏r
i=1(q−ηi). (More precisely, the ηi are

the eigenvalues of the γ-action on V , and polynomial generators I1, . . . , Ir ∈ R[x1, . . . , xr]
W

can be chosen such that deg(Ii) = di and τ(Ii) = εiIi.) By [Ca, Proposition 14.2.1],

|W0| = lim
t→1

r∏
i=1

(1− εitdi
1− ηit

)
=⇒

∣∣{1 ≤ i ≤ r | εi = 1}
∣∣ =

∣∣{1 ≤ i ≤ r | ηi = 1}
∣∣

and |W0| =
∏
{di | εi = +1}.

Also, vp(q
d + 1) = vp(q + 1) for all d ≥ 1: they are both 0 if p is odd, and both 1 if p = 2.

Hence

vp(|G|)− vp(|T |) =
r∑
i=1
εi=+1

vp

(qdi − 1

q − 1

)

=
r∑
i=1
εi=+1

vp(di) = vp(|W0|) = vp(|NG(T )|)− vp(|T |)

by Lemma 1.13 again, and so NG(T ) contains a Sylow p-subgroup of G.

The free 〈γ〉-orbit {α} (if γ = Id) or {α, τ(α)} (if |γ| = 2 and α 6= τ(α)), for any α ∈ Σ,
satisfies the hypotheses of this condition.

[γ, ψq0] = Id since γ ∈ Γ
G

. �

We are now ready to describe the reduction, when p = 2, to groups with σ-setups satisfying
Hypotheses 5.1.

Proposition 6.2. Assume G ∈ Lie(q0) is of universal type for some odd prime q0. Fix
S ∈ Syl2(G), and assume S is nonabelian. Then there is an odd prime q∗0, a group G∗ ∈
Lie(q∗0) of universal type, and S∗ ∈ Syl2(G∗), such that FS(G) ∼= FS∗(G∗), and G∗ has a
σ-setup which satisfies case (III.1) of Hypotheses 5.1 and also Hypotheses 5.11. Moreover,
if G∗ ∼= G2(q∗) where q∗ is a power of q∗0, then we can arrange that either q∗ = 5 or q∗0 = 3.

Proof. Since q0 is odd, and since the Sylow 2-subgroups of 2G2(32k+1) are abelian for all
k ≥ 1 [Ree, Theorem 8.5], G must be a Chevalley or Steinberg group. If G ∼= 3D4(q), then F
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is also the fusion system of G2(q) by [BMO, Example 4.5]. So we can assume that G ∼= τG(q)
for some odd prime power q, some G, and some graph automorphism τ of order 1 or 2.

Let ε ∈ {±1} be such that q ≡ ε (mod 4). By Lemma 1.11, there is a prime q∗0 and k ≥ 0

such that 〈q〉 = 〈ε · (q∗0)2k〉, where either q∗0 = 5 and k = 0, or q∗0 = 3 and k ≥ 1.

If ε = 1, then set G∗ = τG((q∗0)2k), and fix S∗ ∈ Syl2(G∗). Then FS∗(G∗) ∼= FS(G)
by Theorem 1.8(a), G∗ satisfies case (III.1) of Hypotheses 5.1 by Lemma 6.1 (and since

(q∗0)2k ≡ 1 (mod 4)), and G∗ also satisfies Hypotheses 5.11.

Now assume ε = −1. If −Id is in the Weyl group of G, then set G∗ = τG((q∗0)2k). If −Id

is not in the Weyl group, then G ∼= An, Dn for n odd, or E6, and we set G∗ = G((q∗0)2k) if

τ 6= Id, and G∗ = 2G((q∗0)2k) if G = G(q). In all cases, for S∗ ∈ Sylp(G
∗), FS∗(G∗) ∼= FS(G)

by Theorem 1.8(c,d), G∗ satisfies case (III.1) of Hypotheses 5.1 by Lemma 6.1 again, and
also satisfies Hypotheses 5.11.

By construction, if G ∼= G2, then either q∗0 = 3 or (q∗0)2k = 5. �

When G ∼= G2(5) and p = 2, G satisfies Hypotheses 5.1 and 5.11, but κG is not shown to
be surjective in Proposition 5.15 (and in fact, it is not surjective). Hence this case must be
handled separately.

Proposition 6.3. Assume p = 2. Set G = G2(5) and G∗ = G2(3), and fix S ∈ Syl2(G)
and S∗ ∈ Syl2(G∗). Then FS∗(G∗) ∼= FS(G) as fusion systems, and κG∗ = µG∗ ◦ κG∗ is an
isomorphism from Out(G∗) ∼= C2 onto Out(S∗,FS∗(G∗)).

Proof. The first statement follows from Theorem 1.8(c). Also, |Out(G)| = 1 and |Out(G∗)| =
2 by Theorem 3.4, and since G and G∗ have no field automorphisms and all diagonal automor-
phisms are inner (cf. [St1, 3.4]), and G∗ = G2(3) has a nontrivial graph automorphism while
G = G2(5) does not [St1, 3.6]. Since G satisfies Hypotheses 5.1 and 5.11, |Coker(κG)| ≤ 2
by Proposition 5.15, so |Out(FS(G))| ≤ 2.

By [O5, Proposition 4.2], S∗ contains a unique subgroup Q ∼= Q8 ×C2 Q8 of index 2.

Let x ∈ Z(Q) = Z(S∗) be the central involution. Set G = G2(F3) > G∗. Then C
G

(x) is

connected since G is of universal type [St3, Theorem 8.1], so C
G

(x) ∼= SL2(F3)×C2 SL2(F3)
by Proposition 2.5. Furthermore, any outer (graph) automorphism which centralizes x ex-

changes the two central factors SL2(F3). Hence for each α ∈ Aut(G∗)rInn(G∗) which nor-
malizes S∗, α exchanges the two factors Q8, and in particular, does not centralize S∗. Thus
κG∗ is injective, and hence an isomorphism since |Out(G∗)| = 2 and |Out(S∗,FS∗(G∗))| =
|Out(FS(G))| ≤ 2. �

We now turn to case (III.2) of Hypotheses 5.1.

Lemma 6.4. Fix an odd prime p, and an odd prime power q prime to p such that q ≡ −1
(mod p). Let G be one of the groups Sp2n(q), Spin2n+1(q), Spin+

4n(q) (n ≥ 2), G2(q), F4(q),
E7(q), or E8(q) (i.e., G = G(q) for some G whose Weyl group contains −Id), and assume

that the Sylow p-subgroups of G are nonabelian. Then G has a σ-setup (G, σ) such that
Hypotheses 5.1, case (III.2), hold.

Proof. Assume q = qb0 where q0 is prime and b ≥ 1. Set G = G(Fq0), and let T < G be a

maximal torus. Set r = rk(T ) and k = vp(q + 1).

In all of these cases, −Id ∈ W , so there is a coset w0 ∈ NG
(T )/T which inverts T . Fix

g0 ∈ NG
(T ) such that g0T = w0 and ψq0(g0) = g0 (Lemma 2.9). Set γ = cg0 and σ = γ ◦ ψq.
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We identify G = Oq′0(C
G

(σ)), T = G ∩ T , and A = Op(T ). Since σ(t) = t−q for each t ∈ T ,

T ∼= (Cq+1)r is the (q + 1)-torsion subgroup of T , and A ∼= (Cpk)
r.

NG(T ) contains a Sylow p-subgroup of G. In all cases, by [Ca, Theorem 9.4.10]
(and since G is in universal form), |G| = qN

∏r
i=1(qdi − 1), where d1d2 · · · dr = |W | by [Ca,

Theorem 9.3.4]. Also, the di are all even in the cases considered here (see [St2, Theorem 25]
or [Ca, Corollary 10.2.4 & Proposition 10.2.5]). Hence by Lemma 1.13 and since p is odd,

vp(|G|) =
r∑
i=1

vp(q
di − 1) =

r∑
i=1

vp
(
(q2)di/2 − 1

)
=

r∑
i=1

(
vp(q

2 − 1) + vp(di/2)
)

= r · vp(q + 1) +
r∑
i=1

vp(di) = vp(|T |) + vp(|W |) = vp(|NG(T )|) .

[γ, ψq0] = Id since γ = cg0 and ψq0(g0) = g0.

A free 〈γ〉-orbit in Σ. For each α ∈ Σ, {±α} is a free 〈γ〉-orbit. �

We now consider case (III.3) of Hypotheses 5.1. By [GL, 10-1,2], when p is odd, each
finite group of Lie type has a σ-setup for which NG(T ) contains a Sylow p-subgroup of G.
Here, we need to construct such setups explicitly enough to be able to check that the other
conditions in Hypotheses 5.1 hold.

When p is a prime, A is a finite abelian p-group, and Id 6= ξ ∈ Aut(A) has order prime
to p, we say that ξ is a reflection in A if [A, ξ] is cyclic. In this case, there is a direct
product decomposition A = [A, ξ] × CA(ξ), and we call [A, ξ] the reflection subgroup of ξ.
This terminology will be used in the proofs of the next two lemmas.

Lemma 6.5. Fix an odd prime p, and an odd prime power q prime to p such that q 6≡ 1
(mod p). Let G be one of the classical groups SLn(q), Sp2n(q), Spin2n+1(q), or Spin±2n(q),

and assume that the Sylow p-subgroups of G are nonabelian. Then G has a σ-setup (G, σ)
such that case (III.3) of Hypotheses 5.1 holds.

Proof. Set m = ordp(q); m > 1 by assumption. We follow Notation 2.2, except that we have
yet to fix the σ-setup for G. Thus, for example, q0 is the prime of which q is a power.

When defining and working with the σ-setups for the spinor groups, it is sometimes easier
to work with orthogonal groups than with their 2-fold covers. For this reason, throughout

the proof, we set Gc = SO` when G = Spin`, set Gc = SO`(Fq0) when G = Spin`(Fq0), and

let χ : G −−−→ Gc be the natural surjection. We then set Gc = C
Gc

(σ) ∼= SO±` (q), once σ

has been chosen so that G = C
G

(σ) ∼= Spin±` (q), and set T c = χ(T ) and Tc = C
T c

(σ). Also,
in order to prove the lemma without constantly considering these groups as a separate case,

we set Gc = G, Gc = G, χ = Id, etc. when G is linear or symplectic. Thus Gc and Gc are
classical groups in all cases.

Regard Gc as a subgroup of Aut(V , b), where V is an Fq0-vector space of dimension n, 2n,

or 2n+ 1, and b is a bilinear form. Explicitly, b = 0 if G = SLn, and b has matrix
(

0 1
−1 0

)⊕n
if G = Sp2n,

(
0 1
1 0

)⊕n
if G = Spin2n, or

(
0 1
1 0

)⊕n ⊕ (1) if G = Spin2n+1. Let T c be the group

of diagonal matrices in Gc, and set

[λ1, . . . , λn] =


diag(λ1, . . . , λn) if G = SLn
diag(λ1, λ

−1
1 , . . . , λn, λ

−1
n ) if G = Sp2n or Spin2n

diag(λ1, λ
−1
1 , . . . , λn, λ

−1
n , 1) if G = Spin2n+1.
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In this way, we identify the maximal torus T c < Gc with (F×q0)n in the symplectic and

orthogonal cases, and with a subgroup of (F×q0)n in the linear case.

Set W ∗ = W (the Weyl group of G and of Gc), except when G = Spin2n, in which

case we let W ∗ < Aut(T c) be the group of all automorphisms which permute and invert
the coordinates. Thus in this last case, W ∗ ∼= {±1} o Σn, while W is the group of signed
permutations which invert an even number of coordinates (so [W ∗ : W ] = 2). Since W ∗

induces a group of isometries of the root system for Spin2n and contains W with index 2, it

is generated by W and the restriction to T c of a graph automorphism of order 2 (see, e.g.,
[Brb, §VI.1.5, Proposition 16]).

We next introduce some notation in order to identify certain elements in W ∗. For each r, s

such that rs ≤ n, let τ sr ∈ Aut(T c) be the Weyl group element induced by the permutation
(1 · · · r)(r+1 · · · 2r) · · · ((s−1)r + 1 · · · sr); i.e.,

τ sr([λ1, . . . , λn]) =

[λr, λ1, . . . , λr−1, λ2r, λr+1, . . . , λsr, λ(s−1)r+1, . . . , λsr−1, λsr+1, . . .].

For 1 ≤ i ≤ n, let ξi ∈ Aut(T ) be the automorphism which inverts the i-th coordinate. Set
τ sr,+1 = τ sr and τ sr,−1 = τ srξrξ2r · · · ξsr. Thus for θ = ±1,

τ sr,θ([λ1, . . . , λn]) =

[λθr, λ1, . . . , λr−1, λ
θ
2r, λr+1, . . . λ

θ
sr, λ(s−1)r+1, . . . , λsr−1, λsr+1, . . .].

Recall that m = ordp(q). Define parameters µ, θ, k, and κ as follows:

if m is odd : µ = m θ = 1 κ = [n/µ] = [n/m]

if m is even : µ = m/2 θ = −1
k = [n/m]

κ = [n/µ] = [2n/m] .

We can now define our σ-setups for G and Gc. Recall that we assume m > 1. In Table
6.1, we define an element w0 ∈ W ∗, and then describe Tc = C

T c
(w0 ◦ψq) and W ∗

0 = CW ∗(w0)

(where W0 = CW (w0) has index at most 2 in W ∗
0 ). In all cases, we choose γ ∈ Aut(Gc) as

Gc conditions w0 = γ|
T c

Tc W ∗0

SLn(q) τ km (Cqm−1)k × Cn−mk−1
q−1 (Cm o Σk)×H

Sp2n(q)

SO2n+1(q) τ κµ,θ (Cqµ−θ)
κ × Cn−κµq−1 (C2µ o Σκ)×H

ε = θκ

ε 6= θκ, µ-n τ κµ,θ ξn (Cqµ−θ)
κ × Cn−κµ−1

q−1 × Cq+1 (C2µ o Σκ)×H
SOε

2n(q) ε 6= θκ, µ|n
θ = −1

τ κ−1
µ,θ (Cqµ−θ)

κ−1 × Cµq−1

ε 6= θκ, µ|n
θ = +1

τ κ−1
µ,θ ξn (Cqµ−θ)

κ−1 × Cµ−1
q−1 × Cq+1

(C2µ o Σκ−1)×H

In all cases, T
χ−→ Tc has kernel and cokernel of order ≤ 2, and so A = Op(T ) ∼= Op(Tc).

Table 6.1

follows. Write w0 = w′0 ◦ γ0|T c for some w′0 ∈ W and γ0 ∈ Γ
Gc

(possibly γ0 = Id). Choose
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g0 ∈ NGc
(T c) such that g0T c = w′0 and ψq0(g0) = g0 (Lemma 2.9), and set γ = cg0 ◦ γ0. Then

[γ, ψq0 ] = Id
Gc

, since cg0 and γ0 both commute with ψq0 , and we set σ = γ ◦ ψq = ψq ◦ γ.

When G = Spin2n or Spin2n+1, since G is a perfect group and Ker(χ) ≤ Z(G), γ and σ lift to

unique endomorphisms of G which we also denote γ and σ (and still [γ, ψq0 ] = 1 in Aut(G)).

Thus G ∼= C
G

(σ) and Gc
∼= C

Gc
(σ) in all cases, and we identify these groups. Set

T = C
T

(σ), Tc = C
T c

(σ), W ∗
0 = CW ∗(γ), and W0 = CW (γ). If G = Spin2n+1 or Spin2n, then

χ(T ) is the kernel of the homomorphism Tc → Ker(χ) which sends χ(t) to t−1σ(t), and thus
has index at most 2 in Tc. Since p is odd, this proves the statement in the last line of Table
6.1.

In the description of W ∗
0 in Table 6.1, H always denotes a direct factor of order prime to

p. The first factor in the description of W ∗
0 acts on the first factor in that of T , and H acts

on the other factors.

When Gc = SLn(q) and m|n, the second factor C−1
q−1 in the description of T doesn’t make

sense. It should be interpreted to mean that T is “a subgroup of index q − 1 in the first
factor (Cqm−1)k”.

Recall that Tc = C
T c

(γ ◦ ψq). When U = (F×q0)µ, then

CU(τ 1
µ,θ ◦ ψq) =

{
(λ, λq, λq

2

, . . . , λq
µ−1

)
∣∣ (λqµ−1

)qθ = λ
}

=
{

(λ, λq, λq
2

, . . . , λq
µ−1

)
∣∣λqµ−θ = 1

} ∼= Cqµ−θ .

This explains the description of Tc in the symplectic and orthogonal cases: it is always the
direct product of (Cqµ−θ)

κ or (Cqµ−θ)
κ−1 with a group of order prime to p. (Note that p|(q+1)

only when m = 2; i.e., when θ = −1 and 1 = µ|n.)

Since the cyclic permutation (1 2 · · · µ) generates its own centralizer in Σµ, the centralizer

of τ 1
µ,θ in {±1} o Σµ < Aut((F×q0)µ) is generated by τ 1

µ,θ and ψT−1. If θ = −1, then (τ 1
µ,θ)

µ =

ψT−1, while if θ = 1, then τ 1
µ,θ has order µ. Since m = µ is odd in the latter case, the

centralizer is cyclic of order 2µ in both cases. This is why, in the symplectic and orthogonal
cases, the first factor in W ∗

0 is always a wreath product of C2µ with a symmetric group.

We are now ready to check the conditions in case (III.3) of Hypotheses 5.1.

NG(T ) contains a Sylow p-subgroup of G. Set

e = vp(q
m − 1) = vp(q

µ − θ) .

The second equality holds since if 2|m, then p - (qµ − 1) and hence e = vp(q
µ + 1). Recall

also that m|(p − 1), so vp(m) = 0. Consider the information listed in Table 6.2, where the
formulas for vp(|T |) = vp(|Tc|) and vp(|W0|) follow from Table 6.1, and those for |G| are
shown in [St2, Theorems 25 & 35] and also in [Ca, Corollary 10.2.4, Proposition 10.2.5 &
Theorem 14.3.2].

For all i > 0, we have

vp(q
i − 1) =

{
e+ vp(i/m) if m|i
0 if m-i.

The first case follows from Lemma 1.13, and the second case since m = ordp(q). Using this,
we check that vp(q

2i − 1) = vp(q
i − 1) for all i whenever m is odd, and that

vp(q
n − ε) =

{
e+ vp(2n/m) if m|2n and ε = (−1)2n/m

0 otherwise.
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G cond. vp(|G|) vp(|T |) vp(|W0|)

SLn(q)
∑n

i=2 vp(q
i − 1) ke vp(k!)

Sp2n(q)

Spin2n+1(q)

∑n
i=1 vp(q

2i − 1)

ε = θκ
κe vp(κ!)

Spinε2n(q) ε 6= θκ, µ-n
vp(q

n − ε)

ε 6= θκ, µ|n
+
∑n−1

i=1 vp(q
2i − 1)

(κ−1)e vp((κ−1)!)

Table 6.2

So in all cases, vp(|G|) = vp(|T |) + vp(|W0|) by the above relations and the formulas in Table
6.2. Since NG(T )/T ∼= W0 by Lemma 5.3(b), this proves that vp(|G|) = vp(|NG(T )|), and
hence that NG(T ) contains a Sylow p-subgroup of G.∣∣γ|

T

∣∣ = |τ | = ordp(q) ≥ 2 and [γ, ψq0] = Id by construction. Note, when G is a spinor

group, that these relations hold in G if and only if they hold in Gc.

CS(Ω1(A)) = A by Table 6.1 and since p - |H|.

CA(Op′(W0)) = 1. By Table 6.1, in all cases, there are r, t ≥ 1 and 1 6= s|(p − 1) such
that A ∼= (Cpt)

r, and AutW ∗0 (A) ∼= Cs o Σr acts on A by acting on and permuting the cyclic
factors. In particular, AutOp′ (W0)(A) contains a subgroup of index at most 2 in (Cs)

r, this

subgroup acts nontrivially on each of the cyclic factors in A, and hence CA(Op′(W0)) = 1.

A free 〈γ〉-orbit in Σ. This can be defined as described in Table 6.3. In each case, we
use the notation of Bourbaki [Brb, pp. 250–258] for the roots of G. Thus, for example, the
roots of SLn are the ±(εi − εj) for 1 ≤ i < j ≤ n, and the roots of SO2n the ±εi ± εj. Note
that since S is assumed nonabelian, p

∣∣|W0|, and hence n ≥ pm in the linear case, and n ≥ pµ
in the other cases.

G θ = 1 θ = −1

SLn(q) {εi − εm+i | 1 ≤ i ≤ m}

Sp2n(q) {2εi | 1 ≤ i ≤ µ} {±2εi | 1 ≤ i ≤ µ}

Spin2n+1(q) {εi | 1 ≤ i ≤ µ} {±εi | 1 ≤ i ≤ µ}

Spinε2n(q) {εi − εµ+i | 1 ≤ i ≤ µ} {±(εi − εµ+i) | 1 ≤ i ≤ µ}

Table 6.3

AutW0(A) ∩ Autsc(A) ≤
{
〈γ|A〉 if ordp(q) even or −Id /∈W0

〈γ|A, ψA
−1〉 otherwise.

Set K∗ = AutW ∗0 (A) ∩ Autsc(A) and K = AutW0(A) ∩ Autsc(A) for short. By Table 6.1,
|K∗| = m if G ∼= SLn(q), and |K∗| = 2µ otherwise. Also, 〈γ|A〉 = 〈ψ−1

q |A〉 has order ordp(q).
Thus K ≤ K∗ = 〈γ|A〉 except when G is symplectic or orthogonal and m = ordp(q) is odd.
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In this last case, K = K∗ (so |K| = 2µ = 2m) if W0 contains an element which inverts A

(hence which inverts T and T ); and |K∗/K| = 2 (|K| = m) otherwise.

AutG(A) = AutW0(A). Since A = Op(T ) ∼= Op(Tc) by Table 6.1, it suffices to prove

this for Gc. Fix g ∈ NGc(A). Since gT c is a maximal torus in the algebraic group C
Gc

(A)

(Proposition 2.5), there is b ∈ C
Gc

(A) such that bT c = gT c. Set a = b−1g ∈ N
Gc

(T c); thus

ca = cg ∈ Aut(A). Set w = aT c ∈ W = N
Gc

(T c)/T c; thus w ∈ NW (A), and w|A = cg|A.

By the descriptions in Table 6.1, we can factor T c = T 1×T 2, where γ and each element of

NW (A) send each factor to itself, γ|
T 2

= Id, A ≤ T 1, and [CW (A), T 1] = 1. Since σ(g) = g,

σ(a) ≡ a (mod C
Gc

(A)), and so τ(w) ≡ w (mod CW (A)). Thus τ(w)|
T 1

= w|
T 1

since CW (A)

acts trivially on this factor, τ(w)|
T 2

= w|
T 2

since γ|
T 2

= Id, and so w ∈ W0 = CW (τ).

NAut(A)(AutW0(A)) ≤ Autsc(A)AutAut(G)(A). By Table 6.1, for some r, t ≥ 1,
A = A1×· · ·×Ar, where Ai ∼= Cpt for each i. Also, for some 1 6= s|(p−1), AutW ∗0 (A) ∼= Cs oΣr

acts on A via faithful actions of Cs on each Ai and permutations of the Ai.

Let Aut0
W ∗0

(A) E AutW ∗0 (A) and Aut0
W0

(A) E AutW0(A) be the subgroups of elements

which normalize each cyclic subgroup Ai. Thus Aut0
W ∗0

(A) ∼= (Cs)
r, and contains Aut0

W0
(A)

with index at most 2.

Case 1: Assume first that Aut0
W0

(A) is characteristic in AutW0(A). Fix some α ∈
NAut(A)(AutW0(A)). We first show that α ∈ AutW ∗0 (A)Autsc(A).

Since α normalizes AutW0(A), it also normalizes Aut0
W0

(A). For each β ∈ Aut0
W0

(A),
[β,A] is a product of Ai’s. Hence the factors Ai are characterized as the minimal nontrivial
intersections of such [β,A], and are permuted by α. So after composing with an appropriate
element of AutW ∗0 (A), we can assume that α(Ai) = Ai for each i.

After composing α by an element of Autsc(A), we can assume that α|A1 = Id. Fix i 6= 1
(2 ≤ i ≤ r), let u ∈ Z be such that α|Ai = ψAiu = (a 7→ au), and choose w ∈ AutW0(A)
such that w(A1) = Ai. Then w−1αwα−1 ∈ AutW0(A) since α normalizes AutW0(A), and(
w−1αwα−1

)∣∣
A1

= ψA1
u . Hence us ≡ 1 (mod pt = |A1|), and since this holds for each i,

α ∈ AutW ∗0 (A).

Thus NAut(A)(AutW0(A)) ≤ AutW ∗0 (A)Autsc(A). By Table 6.1, each element of AutW ∗0 (A)

extends to some ϕ ∈ AutW ∗(T ) which commutes with σ|
T

. So AutW ∗0 (A) ≤ AutAut(G)(A) by
Lemma 3.7, and this finishes the proof of the claim.

Case 2: Now assume that Aut0
W0

(A) is not characteristic in AutW0(A). Then r ≤ 4, and
since p ≤ r, we have p = 3 and r = 3, 4. Also, s = 2 since s|(p− 1) and s 6= 1. Thus r = 4,
since Aut0

W0
(A) = O2(AutW0(A)) if r = 3. Thus AutW0(A) ∼= C3

2 o Σ4: the Weyl group of
D4. Also, m = 2 since p = 3, so (in the notation used in the tables) µ = 1, θ = −1, and
κ = n. By Table 6.1, G ∼= SO8(q) for some q ≡ 2 (mod 3) (and W0 = W ).

Now, O2(W ) ∼= Q8×C2Q8, and so Out(O2(W )) ∼= Σ3 oC2. Under the action of W/O2(W ) ∼=
Σ3, the elements of order 3 act on both central factors and those of order 2 exchange
the factors. (This is seen by computing their centralizers in O2(W ).) It follows that
NOut(O2(W ))(OutW (O2(W )))/OutW (O2(W )) ∼= Σ3

∼= ΓG, and all classes in this quotient
extend to graph automorphisms of G ∼= Spin8(q). So for each α ∈ NAut(A)(AutW (A)), after
composing with a graph automorphism of G we can arrange that α commutes with O2(W ),
and in particular, normalizes Aut0

W (A). Hence by the same argument as used in Case 1,
α ∈ Autsc(A)AutAut(G)(A).

This finishes the proof that this σ-setup for G satisfies case (III.3) of Hypotheses 5.1. �
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Example 6.6. Fix distinct odd primes p and q0, and a prime power q = qb0 where b is even

and ordpq is even. Set G = Spin−4k(q) for some k ≥ 2. Let (G, σ) be the setup for G of

Lemma 6.5, where σ = ψqγ for γ ∈ Aut(G). In the notation of Table 6.1, m = ordp(q),
µ = m/2, θ = −1 = ε, n = 2k, and κ = [2k/µ] = [4k/m]. There are three cases to consider:

(a) If q2k ≡ −1 (mod p); equivalently, if m|4k and κ = 4k/m is odd, then ε = θκ, w0 =
γ|
T c

= τ κµ,θ, rk(A) = κ, and W ∗
0
∼= Cm o Σκ. Then W ∗

0 acts faithfully on A while

w0 ∈ W ∗
0rW0, and so γ|A /∈ AutW0(A). Hence by Proposition 5.16(d), κG is split.

(b) If q2k ≡ 1 (mod p); equivalently, if m|4k and κ = 4k/m is even, then ε 6= θκ, γ|
T c

=

τ κ−1
µ,θ , rk(A) = κ − 1, and W ∗

0
∼= (Cm o Σκ−1) × H where H ∼= (C2 o Σµ). Then H acts

trivially on A and contains elements in W ∗
0rW0, so γ|A ∈ AutW0(A). Hence κG is not

split.

(c) If q2k 6≡ ±1 (mod p); equivalently, if m - 4k, then in either case (κ even or odd), the
factor H in the last column of Table 6.1 is nontrivial, acts trivially on A, and contains
elements in W ∗

0rW0. Hence γ|A ∈ AutW0(A) in this case, and κG is not split.

We also need the following lemma, which handles the only case of a Chevalley group of
exceptional type which we must show satisfies case (III.3) of Hypotheses 5.1.

Lemma 6.7. Set p = 5, let q be an odd prime power such that q ≡ ±2 (mod 5), and set
G = E8(q). Then G has a σ-setup which satisfies Hypotheses 5.1 (case (III.3)).

Proof. We use the notation in 2.2, where q is a power of the odd prime q0, and G = E8(Fq0).

By [Brb, Planche VII], the of roots of E8 can be given the following form, where {ε1, . . . , ε8}
denotes the standard orthonormal basis of R8:

Σ =
{
±εi ± εj

∣∣∣ 1 ≤ i < j ≤ 8
}
∪
{1

2

8∑
i=1

(−1)miεi

∣∣∣ 8∑
i=1

mi even
}
⊆ R8 .

By the same reference, the Weyl group W is the group of all automorphisms of R8 which
permute Σ (A(R) = W (R) in the notation of [Brb]). Give R8 a complex structure by setting
iε2k−1 = ε2k and iε2k = −ε2k−1, and set ε∗k = ε2k−1 for 1 ≤ k ≤ 4. Multiplication by i
permutes Σ, and hence is the action of an element w0 ∈ W . Upon writing the elements of Σ
with complex coordinates, we get the following equivalent subset Σ∗ ⊆ C4:

Σ∗ =
{

(±1± i)ε∗k
∣∣∣ 1 ≤ k ≤ 4

}
∪
{
imε∗k + inε∗`

∣∣∣ 1 ≤ k < ` ≤ 4, m, n ∈ Z
}

∪
{1 + i

2

4∑
k=1

imkε∗k

∣∣∣ ∑mk even
}
.

Let ZΣ ⊆ R8 be the lattice generated by Σ. By Lemma 2.4(d) (and since (α, α) = 2 for

all α ∈ Σ), we can identify T ∼= ZΣ⊗Z F×q0 by sending hα(λ) to α⊗λ for α ∈ Σ and λ ∈ F×q0 .

Set Λ0 = ZΣ ∩ Z8, a lattice in R8 of index 2 in ZΣ and in Z8. The inclusions of lattices
induce homomorphisms

T ∼= ZΣ⊗Z F×q0
χ1←−−−−−− Λ0 ⊗Z F×q0

χ2−−−−−−→ Z8 ⊗Z F×q0 ∼= (F×q0)8
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each of which is surjective with kernel of order 2 (since Tor1
Z(Z/2,F×q0) ∼= Z/2). We can thus

identify T = (F×q0)8, modulo 2-power torsion, in a way so that

α =
8∑
i=1

kiεi ∈ Σ, λ ∈ F×q0 =⇒ hα(λ) = (λk1 , . . . , λk8) .

Under this identification, by the formula in Lemma 2.4(c),

β =
8∑
i=1

`iεi ∈ Σ =⇒ θβ(λ1, . . . , λ8) = λ`11 · · ·λ`88 (1)

for λ1, . . . , λ8 ∈ F×q0 . Also,

w0(λ1, . . . , λ8) = (λ−1
2 , λ1, λ

−1
4 , λ3, . . . , λ

−1
8 , λ7)

for each (λ1, . . . , λ8).

Choose g0 ∈ NG
(T ) such that g0T = w0 and ψq0(g0) = g0 (Lemma 2.9), and set γ = cg0 ∈

Inn(G). Thus σ = ψq ◦ γ = γ ◦ ψq, G = C
G

(σ), and T = C
T

(σ). By the Lang-Steinberg

theorem [St3, Theorem 10.1], there is h ∈ G such that g = hψq(h
−1); then σ = chψqc

−1
h and

G ∼= C
G

(ψq) = E8(q). It remains to check that the setup (G, σ) satisfies the list of conditions
in Hypotheses 5.1.

We identify W0 = CW (w0) with the group of C-linear automorphisms of C4 which permute
Σ∗. The order of W0 is computed in [Ca3, Table 11] (the entry Γ = D4(a1)2), but since we
need to know more about its structure, we describe it more precisely here. Let W2 ≤ GL4(C)
be the group of monomial matrices with nonzero entries ±1 or ±i, and with determinant ±1.
Then W2 ≤ W0, |W2| = 1

2
·44 ·4! = 210 ·3, and W2 acts on Σ∗ with three orbits corresponding

to the three subsets in the above description of Σ∗. The (complex) reflection of order 2 in
the hyperplane orthogonal to 1+i

2
(ε∗1 + ε∗2 + ε∗3 + ε∗4) sends (1 + i)ε∗1 to 1+i

2
(ε∗1 − ε∗2 − ε∗3 − ε∗4),

and it sends (ε∗1 + iε∗2) to 1+i
2

(i3ε∗1 + iε∗2 − ε∗3 − ε∗4). Thus W0 acts transitively on Σ∗.

Let Σ ⊆ P (C4) be the set of projective points representing elements of Σ∗, and let [α] ∈ Σ
denote the class of α ∈ Σ∗. To simplify notation, we also write [x] = [α] for x ∈ C4

representing the same point, also when x /∈ Σ∗. Let ∼ denote the relation on Σ: [α] ∼ [β] if

α = β, or if α ⊥ β and the projective line
〈
[α], [β]

〉
⊆ P (C4) contains four other points in Σ.

By inspection, [ε∗j ] ∼ [ε∗k] for all j, k ∈ {1, 2, 3, 4}, and these are the only elements [α] such
that [α] ∼ [ε∗j ] for some j. Since this relation is preserved by W0, and W0 acts transitively

on Σ, we see that ∼ is an equivalence relation on Σ with 15 classes of four elements each.

Set ∆ = Σ/∼, and let [α]∆ denote the class of [α] in ∆. Thus |Σ| = 1
4
|Σ| = 60 and |∆| = 15.

Since W2 is the stabilizer subgroup of [ε∗1]∆ under the transitive W0-action on ∆, we have
|W0| = |W2| · 15 = 210 · 32 · 5.

Let W1 E W0 be the subgroup of elements which act trivially on ∆. By inspection,
W1 ≤ W2, |W1| = 26, and W1 is generated by w0 = diag(i, i, i, i), diag(1, 1,−1,−1),
diag(1,−1, 1,−1), and the permutation matrices for the permutations (1 2)(3 4) and (1 3)(2 4).
Thus W1

∼= C4 ×C2 D8 ×C2 D8.

By the above computations, |W0/W1| = 24 · 32 · 5 = |Sp4(2)|. There is a bijection from
∆ to the set of maximal isotropic subspaces in W1/Z(W1) which sends a class [α]∆ to the
subgroup of those elements in W1 which send each of the four projective points in [α]∆ to
itself. Hence for each w ∈ CW0(W1), w acts via the identity on ∆, and so w ∈ W1 by



78 CARLES BROTO, JESPER M. MØLLER, AND BOB OLIVER

definition. Thus W0/W1 injects into Out(W1) ∼= Σ6 × C2, and injects into the first factor
since Z(W1) = Z(W0) (∼= C4). So by counting, W0/W1

∼= Σ6. Also, W1 = O2(W0).

Set a = v5(q4 − 1) = v5(q2 + 1), and fix u ∈ F×q0 of order 5a. Let A be as in Notation
5.2(G): the subgroup of elements in T of 5-power order. Thus

A =
{

(u1, u
q
1, u2, u

q
2, u3, u

q
3, u4, u

q
4)
∣∣u1, u2, u3, u4 ∈ 〈u〉

} ∼= (C5a)
4 . (2)

By (2) and (1), there is no β ∈ Σ such that A ≤ Ker(θβ). Hence C
G

(A)0 = T by Proposition
2.5. So by Lemma 5.3(b),

NG(A) = NG(T ) and NG(T )/T = W0 . (3)

We are now ready to check the conditions in Case (III.3) of Hypotheses 5.1.

NG(T ) contains a Sylow p-subgroup of G. Let S be a Sylow p-subgroup of NG(T )
which contains A. Since NG(T )/T = W0 by (3), A ∼= (C5a)

4, and W0/O2(W0) ∼= Σ6,
|S| = 54a+1. By [St2, Theorem 25] or [Ca, Corollary 10.2.4 & Proposition 10.2.5], and since
v5(qk − 1) = 0 when 4 - k and v5(q4` − 1) = a+ v5(`) (Lemma 1.13),

v5(|G|) = v5

(
(q24 − 1)(q20 − 1)(q12 − 1)(q8 − 1)

)
= 4a+ 1 .

Thus S ∈ Sylp(G).∣∣γ|
T

∣∣ = ordp(q) ≥ 2 and [γ, ψq0] = Id. The first is clear, and the second holds since
γ = cg0 where ψq0(g0) = g0.

CS(Ω1(A)) = A by the above description of the action of W0 on A.

CA(Op′(W0)) = 1 since w0 ∈ O5′(W0) and CA(w0) = 1.

A free 〈γ〉-orbit in Σ. The subset {±(ε1 + ε3),±(ε2 + ε4)} ⊆ Σ is a free 〈γ〉-orbit.

AutW0(A) ∩ Autsc(A) ≤ 〈γ|A〉. Recall that
∣∣γ|

T

∣∣ = 4 and |Autsc(A)| = 4 · 5k for some
k, and W0 acts faithfully on A. So if this is not true, then there is an element of order 5 in
Z(W0), which is impossible by the above description of W0.

AutG(A) = AutW0(A) by (3).

NAut(A)(AutW0(A)) ≤ Autsc(A)AutW0(A). For j = 1, 2, 3, 4, let Aj < A be the cyclic
subgroup of all elements as in (2) where uk = 1 for k 6= j. The group W0 contains as
subgroup C2 o Σ4: the group which permutes pairs of coordinates up to sign. So each of the
four subgroups Aj is the reflection subgroup of some reflection in W0.

For each ϕ ∈ CAut(A)(AutW0(A)), ϕ(Aj) = Aj for each j, and ϕ(a) = anj for some
nj ∈ (Z/5a)×. Also, n1 = n2 = n3 = n4 since the Aj are permuted transitively by elements
of W0, and hence ϕ ∈ Autsc(A).

Now assume ϕ ∈ NAut(A)(AutW0(A)). Since ϕ centralizes Z(W1) = 〈w0〉 = 〈diag(i, i, i, i)〉
(since diag(i, i, i, i) ∈ Z(Aut(A))), cϕ|W1 ∈ Inn(W1), and we can assume (after composing
by an appropriate element of W1) that [ϕ,W1] = 1. So cϕ ∈ Aut(W0) has the form cϕ(g) =
gχ(g), where g ∈ W0/W1

∼= Σ6 is the class of g ∈ W0, and where χ ∈ Hom(W0/W1, Z(W1)) ∼=
Hom(Σ6, C4) ∼= C2 is some homomorphism. Since (w0)2 inverts the torus T , composition
with (w0)2 does not send reflections (in A) to reflections, and so we must have cϕ = IdW0 .
Thus ϕ ∈ CAut(A)(AutW0(A)) = Autsc(A) (modulo AutW0(A)). �

The following lemma now reduces the proof of Theorem B to the cases considered in
Section 5, together with certain small cases handled at the end of this section. As before,
when p is a prime and p - n, ordp(n) denotes the multiplicative order of n in F×p .
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Proposition 6.8. Fix an odd prime p, and assume G ∈ Lie(q0) is of universal type for some
prime q0 6= p. Fix S ∈ Sylp(G), and assume S is nonabelian. Then there is a prime q∗0 6= p,
a group G∗ ∈ Lie(q∗0) of universal type, and S∗ ∈ Sylp(G

∗), such that FS(G) ∼= FS∗(G∗), and
one of the following holds: either

(a) G∗ has a σ-setup which satisfies Hypotheses 5.1 and 5.11, G∗ ∼= G(q∗) or 2G(q∗) where
q∗ is a power of q∗0, and

(a.1) −Id /∈ W and G∗ is a Chevalley group, or
(a.2) −Id ∈ W and ordp(q

∗) is even

where W is the Weyl group of G; or

(b) p = 3, q∗0 = 2, G ∼= 3D4(q) or 2F4(q) for q some power of q0, and G∗ ∼= 3D4(q∗) or 2F4(q∗)
for q∗ some power of 2.

Moreover, if p = 3 and G∗ = F4(q∗) where q∗ is a power of q∗0, then we can assume q∗0 = 2.
In all cases, we can choose G∗ to be either one of the groups listed in Proposition 1.10(a–e),
or one of E7(q∗) or E8(q∗) for some q∗ ≡ −1 (mod p).

Proof. We can assume that G = G(q) is one of the groups listed in one of the five cases
(a)–(e) of Proposition 1.10. In all cases except 1.10(c), we can also assume that G satisfies
Hypotheses 5.11, with q0 = 2 if p = 3 and G = F4, and with q0 odd in cases (a) and (b)
of 1.10. If G = SLn(q) or Spin±2n(q) where p|(q − 1), or G is in case (d), then G satisfies
Hypotheses 5.1 by Lemma 6.1. If G ∼= SLn(q) or Spin±2n(q) where p - (q − 1), then G
satisfies Hypotheses 5.1 by Lemma 6.5. This leaves only case (c) in Proposition 1.10, which
corresponds to case (b) here, and case (e) (p = 5, G = E8(q), q ≡ ±2 (mod 5)) where G∗

satisfies Hypotheses 5.1 by Lemma 6.7.

We next show, in cases (a,b,d,e) of Proposition 1.10, that we can arrange for one of the
conditions (a.1) or (a.2) to hold. If −Id /∈ W , then G = An, Dn for n odd, or E6, and
G is a Chevalley group by the assumptions in cases (a,b,d) of Proposition 1.10. So (a.1)
holds. If −Id ∈ W and ordp(q) is even, then (a.2) holds. If −Id ∈ W , ordp(q) is odd, and
G = G(q) is a Chevalley group, then by Theorem 1.8(c), G ∼p G(q∗) for some q∗ = qc0 such

that 〈q∗〉 = 〈 − q〉, and ordp(q
∗) is even. So we can replace G by G(q∗) in this last case, and

(a.2) holds.

This leaves the case where −Id ∈ W , ordp(q) is odd, and G is not a Chevalley group. By
inspection, the first and third conditions both hold only when G = 2Dn(q) for n even. So
we are in the situation of Proposition 1.10(b), where we also assume qn ≡ −1 (mod p). But
then ordp(q) is even, so this case cannot occur. �

We now consider the two families of groups which appear in Proposition 6.8(b): those not
covered by Hypotheses 5.1.

Proposition 6.9. Let G be one of the groups 3D4(q) where q is a prime power prime to 3,
2F4(22m+1) for m ≥ 0, or 2F4(2)′. Then the 3-fusion system of G is tame. If G ∼= 3D4(2n)
(n ≥ 1), 2F4(22m+1) (m ≥ 0), or 2F4(2)′, then κG is split surjective, and Ker(κG) is the
subgroup of field automorphisms of order prime to 3.

Proof. Fix S ∈ Syl3(G), and set F = FS(G).

If G is the Tits group 2F4(2)′, then S is extraspecial of order 33 and exponent 3, so
Out(S) ∼= GL2(3). Also, OutG(S) ∼= D8 and OutAut(G)(S) ∼= SD16, since the normalizer in
2F4(2) of an element of order 3 (the element t4 in [Sh]) has the form SU3(2) : 2 ∼= 31+2

+ : SD16

by [Sh, Table IV] or [Ma1, Proposition 1.2]. Hence Out(F) ≤ NOut(S)(OutG(S))/OutG(S)
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has order at most 2, and κG sends Out(G) ∼= C2 ([GrL, Theorem 2]) isomorphically to
Out(F). If G = 2F4(2), then OutG(S) ∼= SD16, so Out(F) = 1 by a similar argument, and
κG is an isomorphism between trivial groups.

Assume now that G ∼= 2F4(2n) for odd n ≥ 3 or G ∼= 3D4(q) where 3 - q. In order to
describe the Sylow 3-subgroups of these groups, set ζ = e2πi/3, R = Z[ζ], and p = (1− ζ)R.
Let Sk be the semidirect product R/pk o C3, where the quotient acts via multiplication by
ζ. Explicitly, set

Sk = {(x, i) |x ∈ R/pk, i ∈ Z/3} and Ak = R/pk × {0},

where (x, i)(y, j) = (x + ζ iy, i + j). Thus |Sk| = 3k+1. Set s = (0, 1), so that s(x, 0)s−1 =
(ζx, 0) for each x ∈ R/pk.

Assume k ≥ 3, so that Ak is the unique abelian subgroup of index three in Sk. Set S = Sk
and A = Ak for short. We want to describe Out(S). Define automorphisms ξa (a ∈ (R/pk)×),
ω, η, and ρ by setting

ξa(x, i) = (xa, i), η = ξ−1, ω(x, i) = (−x,−i), ρ(x, i) = (x+ λ(i), i). (4)

Here, x 7→ x means complex conjugation, and λ(i) = 1 + ζ+ . . .+ ζ i−1. Note, when checking
that ρ is an automorphism, that λ(i) + ζ iλ(j) = λ(i+ j). Note that ρ3 ∈ Inn(S): it is (left)
conjugation by (1− ζ2, 0).

Let Aut0(S) E Aut(S) be the subgroup of automorphisms which induce the identity on
S/[S, S] = S/[s, A], and set Out0(S) = Aut0(S)/Inn(S). Each element in s·[s, A] is conjugate
to s, and thus each class in Out0(S) is represented by an automorphism which sends s to
itself, which is unique modulo 〈cs〉. If ϕ ∈ Aut(S) and ϕ(s) = s, then ϕ|A commutes with cs,
thus is R-linear under the identification A ∼= R/pk, and hence ϕ = ξa for some a ∈ 1 + p/pk.
Moreover, since

(1 + p/pk)× = (1 + p2/pk)× × 〈ζ〉 = (1 + 3R/pk)× × 〈ζ〉

as multiplicative groups (just compare orders, noting that the groups on the right have trivial
intersection), each class in Out0(S) is represented by ξa for some unique a ∈ 1 + 3R/pk.

Since the images of η, ω, and ρ generate Aut(S)/Aut0(S) (the group of automorphisms of
S/[s, A] ∼= C2

3 which normalize A/[s, A] ∼= C3), this shows that Out(S) is generated by the
classes of the automorphisms in (4). In fact, a straightforward check of the relations among
them shows that

Out(S) ∼=
(

Out0(S)o C2
[ω]

)
× Σ3

[ρ],[η]
where Out0(S) =

{
[ξa]
∣∣ a ∈ (1 + 3R/pk)×

}
.

Also, ωξaω
−1 = ξā for a ∈ (1 + 3R/pk)×.

For each x ∈ 1 + 3R such that x ≡ x (mod pk), we can write x = r+ sζ with r, s ∈ Z, and
then s(ζ − ζ) ∈ pk, so s ∈ pk−1, and x ∈ r + s+ pk ⊆ 1 + 3Z+ pk. This proves that

COut(S)(ω) =
{

[ξa]
∣∣ a ∈ Z}× 〈[ω]

〉
×
〈
[ρ], [η]

〉
.

For any group G with S ∈ Syl3(G) and S ∼= Sk, OutG(S) has order prime to 3, and hence
is a 2-group and conjugate to a subgroup of 〈ω, η〉 ∈ Syl2(Out(S)). If |OutG(S)| = 4, then
we can identify S with Sk in a way so that OutG(S) =

〈
[ω], [η]

〉
. Then

Out(F) ≤ NOut(S)

(〈
[ω], [η]

〉)
/
〈
[ω], [η]

〉
= COut(S)

(〈
[ω], [η]

〉)
/
〈
[ω], [η]

〉
=
{

[ξa]
∣∣ a ∈ Z} =

〈
[ξ2]
〉
,

where the first equality holds since O3(Out(S)) has index four in Out(S).
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We are now ready to look at the individual groups. Assume G = 2F4(q), where q = 2n

and n ≥ 3 is odd. By [St1, 3.2–3.6], Out(G) is cyclic of order n, generated by the field
automorphism ψ2. By the main theorem in [Ma1], there is a subgroup NG(T8) ∼= (Cq+1)2 o
GL2(3), the normalizer of a maximal torus, which contains a Sylow 3-subgroup. Hence if we
set k = v3(q+1) = v3(4n−1) = 1+v3(n) (Lemma 1.13), we have S ∼= S2k

∼= (C3k)
2oC3, and

OutG(S) = 〈ω, η〉 up to conjugacy. So Out(F) is cyclic, generated by ξ2 = κG(ψ2). Since
A ∼= (C3k)

2, and since ξ−1 ∈ OutG(S), |Out(F)| = |[ξ2]| = 3k−1 where k−1 = v3(n). Thus κG
is surjective, and is split since the Sylow 3-subgroup of Out(G) ∼= Cn is sent isomorphically
to Out(F).

Next assume G = 3D4(q), where q = 2n for n ≥ 1. By [St1, 3.2–3.6], Out(G) is cyclic of
order 3n, generated by the field automorphism ψ2 (and where the field automorphism ψ2n

of order three is also a graph automorphism). Set k = v3(q2 − 1) = v3(22n − 1) = 1 + v3(n)
(Lemma 1.13). Then S ∼= S2k+1: this follows from the description of the Sylow structure
in G in [GL, 10-1(4)], and also from the description (based on [Kl]) of its fusion system in
[O4, Theorem 2.8] (case (a.ii) of the theorem). Also, OutG(S) = 〈ω, η〉 up to conjugacy. So
Out(F) is cyclic, generated by ξ2 = κG(ψ2). Since A ∼= C3k×C3k+1 , and since ξ−1 ∈ OutG(S),
|Out(F)| = |[ξ2]| = 3k. Thus κG is surjective, and is split since the Sylow 3-subgroup of
Out(G) ∼= C3n is sent isomorphically to Out(F).

By Theorem 1.8(b) and Lemma 1.11(a), for each prime power q with 3 - q, the 3-fusion
system of 3D4(q) is isomorphic to that of 3D4(2n) for some n. By [O1, Theorem C], µG is
injective in all cases. Thus the 3-fusion systems of all of these groups are tame. �

Appendix A. Injectivity of µG by Bob Oliver

Recall that for any finite group G and any S ∈ Sylp(G),

µG : Out(LcS(G)) −−−−−−−→ Out(FS(G))

is the homomorphism which sends the class of β ∈ Aut(LcS(G)) to the class of βS|S, where
βS is the induced automorphism of AutLcS(G)(S) = NG(S)/Op′(CG(S)). We need to develop
tools for computing Ker(µG), taking as starting point [AOV, Proposition 4.2].

As usual, for a finite group G and a prime p, a proper subgroup H < G is strongly p-
embedded in G if p

∣∣|H|, and p - |H ∩ gH| for g ∈ GrH. The following properties of groups
with strongly embedded subgroups will be needed.

Lemma A.1. Fix a prime p and a finite group G.

(a) If G contains a strongly p-embedded subgroup, then Op(G) = 1.

(b) If H < G is strongly p-embedded, and K E G is a normal subgroup of order prime to p
such that KH < G, then HK/K is strongly p-embedded in G/K.

Proof. (a) See, e.g., [AKO, Proposition A.7(c)].

(b) Assume otherwise. Thus there is g ∈ GrHK such that p
∣∣|(gHK/K) ∩ (HK/K)|, and

hence x ∈ gHK ∩HK of order p. Then H ∩K〈x〉 and gH ∩K〈x〉 have order a multiple of
p, so there are elements y ∈ H and z ∈ gH of order p such that y ≡ x ≡ z (mod K).

Since 〈y〉, 〈z〉 ∈ Sylp(K〈x〉), there is k ∈ K such that 〈y〉 = k〈z〉. Then y ∈ H ∩ kgH,
and kg /∈ H since k ∈ K and g /∈ HK. But this is impossible, since H is strongly p-
embedded. �

For the sake of possible future applications, we state the next proposition in terms of
abstract fusion and linking systems. We refer to [AOV], and also to Chapters I.2 and III.4
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in [AKO], for the basic definitions. Recall that if F is a fusion system over a finite p-group
S, and P ≤ S, then

• P is F-centric if CS(Q) ≤ Q for each Q which is F -conjugate to P ;

• P is fully normalized in F if |NS(P )| ≥ |NS(Q)| whenever Q is F -conjugate to P ; and

• P is F-essential if P < S, P is F -centric and fully normalized in F , and if OutF(P )
contains a strongly p-embedded subgroup.

For any saturated fusion system F over a finite p-group S, set

Ẑ(F) =
{
E ≤ S

∣∣E elementary abelian, fully normalized in F ,

E = Ω1(Z(CS(E))), AutF(E) has a strongly p-embedded subgroup
}
.

The following proposition is our main tool for proving that µL is injective in certain cases.
Point (a) will be used to handle the groups Spin±n (q), point (c) the linear and symplectic
groups, and point (b) the exceptional Chevalley groups.

Proposition A.2. Fix a saturated fusion system F over a p-group S and an associated

centric linking system L. Let E1, . . . , Ek ∈ Ẑ(F) be such that each E ∈ Ẑ(F) is F-conjugate
to Ei for some unique i. For each i, set Pi = CS(Ei) and Zi = Z(Pi). Then the following
hold.

(a) If k = 0 (Ẑ(F) = ∅), then Ker(µL) = 1.

(b) If k = 1, E1 E S, and AutF(Ω1(Z(S))) = 1, then Ker(µL) = 1.

(c) Assume, for each (gi)
k
i=1 ∈

∏k
i=1CZi(AutS(Pi)), that there is an element g ∈ CZ(S)(AutF(S))

such that gi ∈ g · CZi(AutF(Pi)) for each i. Then Ker(µL) = 1.

(d) If α ∈ Aut(L) is the identity on AutL(S), and on AutL(Pi) for each 1 ≤ i ≤ k, then
α = IdL.

Proof. We first prove point (d). The other three points then follow quickly from that together
with [AOV, Proposition 4.2].

We will need to refer a few times to the extension axiom for fusion systems, as stated, e.g.,
in [AKO, Proposition I.2.5]. As one special case, this says that for P ≤ S and PCS(P ) ≤ Q ≤
NS(P ), each automorphism in NAutF (P )(AutQ(P )) extends to one in AutF(Q) (a consequence
of the Sylow theorems when F = FS(G) for S ∈ Sylp(G)).

(d) Fix α ∈ Aut(L) such that αS = IdAutL(S). By [AOV, Proposition 4.2], there are
elements gP ∈ CZ(P )(AutS(P )), defined for each P ∈ Ob(L) which is fully normalized, such
that

(i) αP ∈ Aut(AutL(P )) is conjugation by [[gP ]]P ; and

(ii) αP = Id if and only if gP ∈ CZ(P )(AutF(P )).

Note that if we are in an abstract linking system, [[gP ]]P ∈ AutL(P ) should be replaced by
δP (gP ). Furthermore, for each such P and each ψ ∈ AutL(P ),

αP (ψ) = ψ ⇐⇒ π(ψ)(gP ) = gP , (1)

where π : L −−−→ F denotes the canonical functor (so π([[g]]) = cg if L = LcS(G) and F =
FS(G)). By (i) above, αP (ψ) = ψ if and only if ψ commutes with [[gP ]]P in AutL(P ), and this
is equivalent to π(ψ)(gP ) = gP by axiom (C) in the definition of a linking system (see, e.g.,
[AKO, Definition III.4.1]) and since (g 7→ [[g]]P ) is injective. We leave it as an easy exercise
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to check this when L = LcS(G) and ψ = [[h]]P for some h ∈ NG(P ) (note that [h, gP ] ∈ Z(P )
since gP ∈ Z(P )).

Now assume αPi is the identity on AutL(Pi) for each 1 ≤ i ≤ k. If α 6= IdL, then by
Alperin’s fusion theorem for linking systems (see [AOV, Theorem 4.1]), there is Q < S
such that αQ 6= Id, while α is the identity on MorL(P, P ∗) for all P, P ∗ ∈ Ob(L) such that
|P |, |P ∗| > |Q|. Also, for each Q∗ ∈ QF , there is (by Alperin’s fusion theorem again) an
isomorphism χ ∈ IsoL(Q,Q∗) which is a composite of isomorphisms each of which extends to
an isomorphism between strictly larger subgroups, and hence is such that α(χ) = χ. Thus

Q∗ ∈ QF =⇒ αQ∗ 6= Id . (2)

Set E = Ω1(Z(Q)). Let ϕ ∈ HomF(NS(E), S) be such that ϕ(E) is fully normalized (cf.
[AKO, Lemma I.2.6(c)]). Then NS(Q) ≤ NS(E), so |NS(ϕ(Q))| ≥ |NS(Q)|, and ϕ(Q) is
fully normalized since Q is. Since αQ∗ 6= Id by (2), we can replace Q by Q∗ and E by E∗,
and arrange that Q and E are both fully normalized in F (and Q is still F -essential).

We will show that Q = CS(E) and E ∈ Ẑ(F). Then E ∈ (Ei)
F for some unique 1 ≤ i ≤ k,

and Q ∈ (Pi)
F by the extension axiom (and since E and Ei are both fully centralized). But

then αPi 6= Id by (2), contradicting the original assumption about α. We conclude that
α = Id, finishing the proof of (d).

Set Γ = AutF(Q), and set

Γ0 = CΓ(E) =
{
ϕ ∈ AutF(Q)

∣∣ϕ|E = IdE
}
E Γ

Γ1 =
〈
ϕ ∈ Γ

∣∣ϕ = ϕ|Q for some ϕ ∈ HomF(R, S), R > Q
〉
.

Then AutS(Q) ≤ Γ1, since each element of AutS(Q) extends to NS(Q) and NS(Q) > Q (see
[Sz1, Theorem 2.1.6]). Hence

Γ0Γ1 = Op(Γ0) · AutS(Q) · Γ1 = Op(Γ0)Γ1 .

For each ϕ ∈ Γ0 of order prime to p, ϕ|Z(Q) = IdZ(Q) since ϕ is the identity on E =
Ω1(Z(Q)) (cf. [G, Theorem 5.2.4]). Thus gQ ∈ CZ(Q)(O

p(Γ0)). If ϕ ∈ AutF(Q) extends

to ϕ ∈ HomF(R, S) for some R > Q, then by the maximality of Q, α(ψ) = ψ for each

ψ ∈ MorL(R, S) such that π(ψ) = ϕ, and since α commutes with restriction (it sends

inclusions to themselves), αQ is the identity on ψ|Q,Q ∈ π−1
Q (ϕ). So by (1), ϕ(gQ) = gQ.

Thus ϕ(gQ) = gQ for all ϕ ∈ Γ1. Since αQ 6= Id by assumption, there is some ϕ ∈ AutF(Q)
such that ϕ(gQ) 6= gQ (by (1) again), and we conclude that

gQ ∈ CZ(Q)(Γ0Γ1) and Γ0Γ1 < Γ = AutF(Q) . (3)

Set Q∗ = NCS(E)(Q) ≥ Q. Then AutQ∗(Q) = Γ0 ∩ AutS(Q) ∈ Sylp(Γ0) since AutS(Q) ∈
Sylp(Γ), and by the Frattini argument, Γ = NΓ(AutQ∗(Q))Γ0. If Q∗ > Q, then for each ϕ ∈
NΓ(AutQ∗(Q)), ϕ extends to ϕ ∈ AutF(Q∗) by the extension axiom. Thus NΓ(AutQ∗(Q)) ≤
Γ1 in this case, so Γ = Γ1Γ0, contradicting (3). We conclude that Q∗ = NCS(E)(Q) = Q, and
hence that CS(E) = Q (cf. [Sz1, Theorem 2.1.6]).

The homomorphism Γ = AutF(Q) −−−→ AutF(E) induced by restriction is surjective by
the extension axiom, so AutF(E) ∼= Γ/Γ0. By [AKO, Proposition I.3.3(b)], Γ1/Inn(Q) is
strongly p-embedded in Γ/Inn(Q) = OutF(Q); and Γ0Γ1 < Γ by (3). Also, p - |Γ0/Inn(Q)|,
since otherwise we would have Γ1 ≥ NΓ(T ) for some T ∈ Sylp(Γ0), in which case Γ1Γ0 ≥
NΓ(T )Γ0 = Γ by the Frattini argument. Thus Γ1Γ0/Γ0 is strongly p-embedded in Γ/Γ0

∼=
AutF(E) by Lemma A.1(b).

Now, Ω1(Z(CS(E))) = Ω1(Z(Q)) = E, and thus E ∈ Ê(F). We already showed that this
implies (d).
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(c) Now assume that the hypothesis in (c) holds, and fix [α] ∈ Ker(µL). By [AOV,
Proposition 4.2], there is α ∈ Aut(L) in the class [α] such that αS = Id. For each 1 ≤
i ≤ k, let gPi ∈ CZ(Pi)(AutS(Pi)) be as in the proof of (d). By assumption, there is g ∈
CZ(S)(AutF(S)) such that gPi ≡ g (mod CZ(Pi)(AutF(Pi)) for each i.

Let β ∈ Aut(L) be conjugation by [[g]]S ∈ AutS(L) and its restrictions (or by δS(g) if L is
an abstract linking system). Upon replacing α by β−1 ◦ α and hence gPi by g−1gPi for each
i, we can arrange that gPi ∈ CZ(Pi)(AutF(Pi)) for each i, and hence by (ii) that αPi = Id for
each i. Then α = Id by (d), so [α] = 1. Thus Ker(µL) = 1, proving (c).

(a) This is a special case of (c).

(b) If k = 1, E1 E S, and AutF(Ω1(Z(S))) = 1, then the group OutF(S) of order prime
to p acts trivially on Ω1(Z(S)), and hence acts trivially on Z(S) (cf. [G, Theorem 5.2.4]).
Also, P1 = CS(E1) E S, so CZ1(AutS(P1)) = Z(S) = CZ(S)(AutF(S)), and Ker(µL) = 1 by
(c). �

A.1. Classical groups of Lie type in odd characteristic. Throughout this subsection,
we fix an odd prime power q and an integer n ≥ 1. We want to show Ker(µG) = 1 when G
is one of the quasisimple classical groups of universal type over Fq. By Theorem 1.8(d), we
need not consider the unitary groups.

Proposition A.3. Fix an odd prime power q. Let G be isomorphic to one of the quasisimple
groups SLn(q), Spn(q) (n = 2m), or Spin±n (q) (n ≥ 3). Then Ker(µG) = 1.

Proof. Let V , b, and Ĝ = Aut(V, b) be such that G = [Ĝ, Ĝ] if G ∼= Spn(q) or G ∼= SLn(q),

and G/〈z〉 = [Ĝ, Ĝ] for some z ∈ Z(Ĝ) if G ∼= Spin±n (q) (where z ∈ Z(G)). Thus V is a
vector space of dimension n over the field K = Fq, b is a trivial, symplectic, or quadratic

form, and Ĝ is one of the groups GLn(q), Sp2n(q), or O±n (q).

Fix S ∈ Syl2(G), and set F = FS(G). Set Ẑ = Ẑ(F) for short.

Case 1: Assume G = Spin(V, b), where b is nondegenerate and symmetric. Set Z = Z(G),

and let z ∈ Z be such that G/〈z〉 = Ω(V, b). We claim that Ẑ = ∅ in this case, and hence
that Ker(µG) = 1 by Proposition A.2(a).

Fix an elementary abelian 2-subgroup E ≤ G where E ≥ Z. Let V =
⊕m

i=1 Vi be the
decomposition as a sum of eigenspaces for the action of E on V . Fix indices j, k ∈ {1, . . . ,m}
such that either dim(Vj) ≥ 2, or the subspaces have the same discriminant (modulo squares).
(Since dim(V ) ≥ 3, this can always be done.) Then there is an involution γ ∈ SO(V, b) such
that γ(Vi) = Vi for all i, γ|Vi = Id for i 6= j, k, det(γ|Vj) = det(γ|Vk) = −1, and such that the
(−1)-eigenspace of γ has discriminant a square. This last condition ensures that γ ∈ Ω(V, b)
(cf. [LO, Lemma A.4(a)]), so we can lift it to g ∈ G. Then for each x ∈ E, cg(x) = x if
x has the same eigenvalues on Vj and Vk, and cg(x) = zx otherwise (see, e.g., [LO, Lemma
A.4(c)]). Since z is fixed by all elements of AutF(E), cg ∈ O2(AutF(E)), and hence AutF(E)

has no strongly 2-embedded subgroups by Lemma A.1(a). Thus E /∈ Ẑ.

Case 2: Now assume G is linear or symplectic, and fix S ∈ Syl2(G). For each V =

{V1, . . . , Vk} such that V =
⊕k

i=1 Vi, and such that Vi ⊥ Vj for i 6= j if G is symplectic, set

E(V) =
{
ϕ ∈ G

∣∣ϕ|Vi = ±Id for each i
}
.

We claim that each subgroup in Ẑ has this form. To see this, fix E ∈ Ẑ, and let V =
{V1, . . . , Vk} be the eigenspaces for the nonzero characters of E. Then E ≤ E(V), V =
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i=1 Vi, and this is an orthogonal decomposition if G is symplectic. Also, CĜ(E) is the

product of the groups Aut(Vi, b|Vi). Since E = Ω1(Z(P )) where P = CS(E), E contains the
2-torsion in the center of CG(E), and thus E = E(V). Furthermore, the action of P on each
Vi must be irreducible (otherwise Ω1(Z(P )) > E), so dim(Vi) is a power of 2 for each i.

Again assume E = E(V) ∈ Ẑ for some V . Then AutĜ(E) is a product of symmetric groups:
if V contains ni subspaces of dimension i for each i ≥ 1, then AutĜ(E(V)) ∼=

∏
i≥1 Σni .

Each such permutation can be realized by a self map of determinant one (if G is linear), so
AutG(E) = AutĜ(E). Since AutG(E) contains a strongly 2-embedded subgroup by definition

of Ẑ (and since a direct product of groups of even order contains no strongly 2-embedded
subgroup), AutG(E) = AutĜ(E) ∼= Σ3.

Write n = dim(V ) = 2k0 + 2k1 + . . . + 2km , where 0 ≤ k0 < k1 < · · · < km. There is an
(orthogonal) decomposition V =

⊕m
i=0 Vi, where S acts irreducibly on each Vi, and where

dim(Vi) = 2ki (see [CF, Theorem 1]). For each 1 ≤ i ≤ m, fix an (orthogonal) decomposition
Wi of Vi whose components have dimensions 2ki−1 , 2ki−1 , 2ki−1+1, . . . , 2ki−1, and set

Vi = {Vj | j 6= i} ∪Wi

and Ei = E(Vi). Thus Vi contains exactly three subspaces of dimension 2ki−1 , and the dimen-

sions of the other subspaces are distinct. Hence AutG(Ei) ∼= Σ3, and Ei ∈ Ẑ. Conversely, by

the above analysis (and since the conjugacy class of E ∈ Ẑ is determined by the dimensions

of its eigenspaces), each subgroup in Ẑ is G-conjugate to one of the Ei.

For each 1 ≤ i ≤ m, set Pi = CS(Ei) and Zi = Z(Pi) (so Ei = Ω1(Zi)). Since each
element of NG(Pi) ≤ NG(Ei) permutes members of Vi of equal dimension, and the elements
of NS(Pi) do so only within each of the Vj, we have

Zi =
{
z ∈ G

∣∣ z|X = λ
(z)
X IdX for all X ∈ Vi, some λ

(z)
X ∈ O2(F×q )

}
CZi(AutS(Pi)) =

{
z ∈ Zi

∣∣λ(z)
Xi

= λ
(z)

X′i

}
CZi(AutG(Pi)) =

{
z ∈ Zi

∣∣λ(z)
Xi

= λ
(z)

X′i
= λ

(z)
Vi−1

}
,

(4)

where Xi, X
′
i, and Vi−1 are the three members of the decomposition Vi of dimension 2ki−1

(and Xi, X
′
i ∈ Wi).

Fix (gi)
m
i=1 ∈

∏m
i=1CZi(AutS(Pi)). Then gi ∈ CZi(AutG(Pi)) if and only if λ

(gi)
Vi−1

= λ
(gi)
Xi

.

Choose g ∈ Ĝ such that g|Vi = ηi · Id for each i, where the ηi ∈ O2(F×q ) are chosen so

that ηi/ηi−1 = λ
(gi)
Xi
/λ

(gi)
Vi−1

for each 1 ≤ i ≤ m. If G is linear, then det(g) = θ2k0 for some

θ ∈ O2(F×q ), and upon replacing g by g ◦ θ−2k0/nIdV (recall k0 = v2(n)) we can assume g ∈ G.
Then g ∈ CZ(S)(AutG(S)) since it is a multiple of the identity on each Vi and has 2-power
order. By construction and (4), g ≡ gi (mod CZi(AutG(Pi))) for each i; so Ker(µG) = 1 by
Proposition A.2(c). �

A.2. Exceptional groups of Lie type in odd characteristic. Throughout this subsec-
tion, q0 is an odd prime, and q is a power of q0. We show that Ker(µG) = 1 when G is one
of the groups G2(q), F4(q), E6(q), E7(q), or E8(q) and is of universal type.

The following proposition is a special case of [GLS3, Theorem 2.1.5], and is stated and
proven explicitly in [O2, Proposition 8.5]. It describes, in many cases, the relationship
between conjugacy classes and normalizers in a connected algebraic group and those in the
subgroup fixed by a Steinberg endomorphism.
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Proposition A.4. Let G be a connected algebraic group over Fq0, let σ be a Steinberg

endomorphism of G, and set G = C
G

(σ). Let H ≤ G be any subgroup, and let H be the

set of G-conjugacy classes of subgroups G-conjugate to H. Let N
G

(H) act on π0(C
G

(H)) by
sending g to xgσ(x)−1 (for x ∈ N

G
(H)). Then there is a bijection

ω : H
∼=−−−−−−−→ π0(C

G
(H))/N

G
(H),

defined by setting ω([xH]) = [x−1σ(x)] whenever xH ≤ C
G

(σ). Also, for each x ∈ G such that
xH ≤ G, AutG(xH) is isomorphic to the stabilizer of [x−1σ(x)] ∈ π0(C

G
(H))/C

G
(H) under

the action of Aut
G

(H) on this set.

Since we always assume G is of universal type in this section, the group G = C
G

(σ) of

Proposition A.4 is equal to the group G = Oq′0(C
G

(σ)) of Definition 2.1 and Notation 2.2.

The following definitions will be useful when applying Proposition A.4. For any finite
group G, set

SE(G) =
{
H ≤ G

∣∣H has a strongly 2-embedded subgroup
}

δ(G) =

{
min

{
[G : H]

∣∣H ∈ SE(G)
}

if SE(G) 6= ∅
∞ if SE(G) = ∅.

Thus by Proposition A.4, if H < G is such that |π0(C
G

(H))| > δ(Out
G

(H)), then no

subgroup H∗ ≤ C
G

(σ) which is G-conjugate to H has the property that AutC
G

(σ)(H
∗) has

a strongly 2-embedded subgroup. The next lemma provides some tools for finding lower
bounds for δ(G).

Lemma A.5. (a) For any finite group G, δ(G) ≥ |O2(G)| · δ(G/O2(G)).

(b) If G = G1 ×G2 is finite, and δ(Gi) <∞ for i = 1, 2, then

δ(G) = min
{
δ(G1) · η(G2) , δ(G2) · η(G1)

}
,

where η(Gi) is the smallest index of any odd order subgroup of Gi.

(c) If δ(G) <∞, and there is a faithful F2[G]-module V of rank n, then

2v2(|G|)−[n/2]
∣∣ δ(G).

(d) More concretely, δ(GL3(2)) = 28, δ(GL4(2)) = 112, δ(GL5(2)) = 28 · 7 · 31, and
δ(SO+

4 (2)) = 2 = δ(SO−4 (2)). Also, 24 ≤ δ(SO+
6 (2)) <∞ and 26 ≤ δ(SO7(2)) <∞.

Proof. (a) If H ∈ SE(G), then H∩O2(G) = 1 by Lemma A.1(a). Hence there is a subgroup
H∗ ≤ G/O2(G) isomorphic to H, and

[G : H] = |O2(G)| · [G/O2(G) : H∗] ≥ |O2(G)| · δ(G/O2(G)) .

(b) If a finite group H has a strongly 2-embedded subgroup, then so does its direct product
with any odd order group. Hence δ(G) ≤ δ(Gi)η(G3−i) for i = 1, 2.

Assume H ≤ G has a strongly 2-embedded subgroup K < H. Set Hi = H ∩ Gi for
i = 1, 2. Since all involutions in H are H-conjugate (see [Sz2, 6.4.4]), H1 and H2 cannot
both have even order. Assume |H2| is odd. Let pr1 be projection onto the first factor.
If pr1(K) = pr1(H), then there is x ∈ (HrK) ∩ H2, and this commutes with all Sylow
2-subgroups of H since they lie in G1, contradicting the assumption that K is strongly 2-
embedded in H. Thus pr1(K) < pr1(H). Then pr1(H) has a strongly 2-embedded subgroup
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by Lemma A.1(b), and hence

[G : H] = [G1 : pr1(H)] · [G2 : H2] ≥ δ(G1) · η(G2) .

So δ(G) ≥ δ(Gi)η(G3−i) for i = 1 or 2.

(c) This follows from [OV, Lemma 1.7(a)]: if H < G has a strongly 2-embedded subgroup,
T ∈ Syl2(H), and |T | = 2k, then dim(V ) ≥ 2k.

(d) The formulas for δ(SO±4 (2)) hold since SO+
4 (2) ∼= Σ3 oC2 contains a subgroup isomorphic

to C2
3 o C4 and SO−4 (2) ∼= Σ5 a subgroup isomorphic to A5. Since 4|δ(GL3(2)) by (c), and

since 7|δ(GL3(2)) (there are no subgroups of order 14 or 42), we have 28|δ(GL3(2)), with
equality since Σ3 has index 28. The last two (very coarse) estimates follow from (c), and the
6- and 7-dimensional representations of these groups.

Fix n = 4, 5, and set Gn = GLn(2). Assume H ≤ Gn has a strongly embedded subgroup,
where 7

∣∣|H| or 31
∣∣|H|. By (c), 24|δ(G4) and 28|δ(G5), and thus 8 - |H|. If H is almost simple,

then H ∼= A5 by Bender’s theorem (see [Sz2, Theorem 6.4.2]), contradicting the assumption
about |H|. So by the main theorem in [A1], H must be contained in a member of one of the
classes Ci (1 ≤ i ≤ 8) defined in that paper. One quickly checks that since (7 · 31, |H|) 6= 1,
H is contained in a member of C1. Thus H is reducible, and since O2(H) = 1, either H is
isomorphic to a subgroup of GL3(2) × GLn−3(2), or n = 5 and H < GL4(2). By (b) and
since 7

∣∣|δ(GL3(2)), we must have H ∼= Σ3 × (C7 o C3), in which case |H| < 180 = |GL2(4)|.
Thus 7|δ(Gn) for n = 4, 5, and 31|δ(G5). Since GL4(2) contains a subgroup isomorphic to
GL2(4) ∼= C3 × A5, we get δ(G4) = 24 · 7 and δ(G5) = 28 · 7 · 31. �

We illustrate the use of the above proposition and lemma by proving the injectivity of µG
when G = G2(q).

Proposition A.6. If G = G2(q) for some odd prime power q, then Ker(µG) = 1.

Proof. Assume q is a power of the prime q0, set G = G2(Fq0), and fix a maximal torus T .

We identify G = C
G

(ψq), where ψq is the field automorphism, and acts via (t 7→ tq) on T .

Fix S ∈ Syl2(G), and set Ẑ = Ẑ(FS(G)).

Let E ∼= C2
2 be the 2-torsion subgroup of T . By Proposition 2.5, C

G
(E) = T 〈θ〉 where

θ ∈ N
G

(T ) inverts the torus. Thus by Proposition A.4, there are two G-conjugacy classes of

subgroups G-conjugate to E, represented by E± (E+ = E), where AutG(E±) = Aut(E±) ∼=
Σ3 and CG(E±) = (Cq∓1)2oC2. The subgroups in one of these classes have centralizer in S

isomorphic to C3
2 , hence are not in Ẑ, while those in the other class do lie in Ẑ. The latter

also have normalizer of order 12(q ± 1)2 and hence of odd index in G, and thus are normal
in some choice of Sylow 2-subgroup.

By [Gr, Table I], for each nontoral elementary abelian 2-subgroup E ≤ G, rk(E) = 3,
C
G

(E) = E, and Aut
G

(E) ∼= GL3(2). By Proposition A.4, and since δ(Aut
G

(E)) = 28 >
|C

G
(E)| by Lemma A.5, AutG(E) contains no strongly 2-embedded subgroup, and thus

E /∈ Ẑ.

Thus Ẑ is contained in a unique G-conjugacy class of subgroups of rank 2, and Ker(µG) = 1
by Proposition A.2(b). �

Throughout the rest of this subsection, fix an odd prime power q, and let G be one of the
groups F4, E6, E7, or E8.
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Hypotheses A.7. Assume G = G(Fq0) and G ∼= G(q), where q is a power of the odd prime

q0, and where G = F4, E6, E7, or E8 and is of universal type. Fix a maximal torus T < G.

(I) Set T(2) = {t ∈ T | t2 = 1}. Let 2A and 2B denote the two G-conjugacy classes of

noncentral involutions in G, as defined in [Gr, Table VI], except that when G = E7, they
denote the classes labelled 2B and 2C, respectively, in that table. For each elementary

abelian 2-subgroup E < G, define

qE : E −−−−−−→ F2

by setting q(x) = 0 if x ∈ 2B ∪ {1}, and q(x) = 1 if x ∈ 2A ∪ (Z(G)r1).

(II) Assume G = C
G

(ψq), where ψq is the field endomorphism with respect to some root

structure with maximal torus T . Thus ψq(t) = tq for all t ∈ T . Fix S ∈ Syl2(G), and

set Ẑ = Ẑ(FS(G)).

By [Gr, Lemma 2.16], qT(2)
is a quadratic form on T(2) in all cases, and hence qE is

quadratic for each E ≤ T(2). In general, qE need not be quadratic when E is not contained
in a maximal torus. In fact, Griess showed in [Gr, Theorems 7.3, 8.2, & 9.2] that in many
(but not all) cases, E is contained in a torus if and only if qE is quadratic (cx(E) ≤ 2 in his
terminology).

With the above choices of notation for noncentral involutions, all of the inclusions F4 ≤
E6 ≤ E7 ≤ E8 restrict to inclusions of the classes 2A and of the classes 2B. This follows
since the forms are quadratic, and also (for E7 < E8) from [Gr, Lemma 2.16(iv)].

Lemma A.8. Assume Hypotheses A.7, and let b be the bilinear form associated to q. Define

V0 =
{
v ∈ T(2)

∣∣ b(v, T(2)) = 0, q(v) = 0
}

γx =
(
v 7→ v + b(v, x)x

)
∈ Aut(T(2), q) for x ∈ T(2) with q(x) = 1, x 6⊥ T(2)

Then the following hold.

(a) Aut
G

(T(2)) = Aut(T(2), q).

(b) For each nonisotropic x ∈ T(2)rT⊥(2), γx is the restriction to T(2) of a Weyl reflection on

T . If α ∈ Σ is such that γx = wα|T(2)
, then θα(v) = (−1)b(x,v) for each v ∈ T(2).

(c) If G = Er (r = 6, 7, 8), then q is nondegenerate (V0 = 0), and the restriction to T(2) of
each Weyl reflection is equal to γx for some nonisotropic x ∈ T(2)rT⊥(2).

(d) If G = F4, then dim(V0) = 2, and q(v) = 1 for all v ∈ T(2)rV0.

Proof. (a) Since Aut
G

(T(2)) has to preserveG-conjugacy classes, it is contained in Aut(T(2), q).
Equality will be shown while proving (c) and (d).

(c) If G = Er for r = 6, 7, 8, then q is nondegenerate by [Gr, Lemma 2.16]. Hence the
only orthogonal transvections are of the form γx for nonisotropic x, and each Weyl reflection
restricts to one of them. By a direct count (using the tables in [Brb]), the number of
pairs {±α} of roots in G (hence the number of Weyl reflections) is equal to 36, 63, or
120, respectively. This is equal to the number of nonisotropic elements in T(2) r T⊥(2) =

T(2) r Z(G) (see the formula in [Ta, Theorem 11.5] for the number of isotropic elements).
So all transvections are restrictions of Weyl reflections, and Aut

G
(T(2)) = Aut(T(2), q).
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(d) Assume G = F4. Then dim(V0) = 2 and q−1(1) = T(2)rV0 by [Gr, Lemma 2.16]. Thus
|Aut(T(2), q)| = 42 · |GL2(2)|2 = 26 · 32 = 1

2
|W | (see [Brb, Planche VIII]), so AutW (T(2)) =

Aut(T(2), q) since W also contains −Id.

There are three conjugacy classes of transvections γ ∈ Aut(T(2), q): one of order 36 con-
taining those where γ|V0 6= Id (and hence [γ, T(2)] ≤ V0), and two of order 12 containing
those where γ|V0 = Id (one where [γ, T(2)] ≤ V0 and one where [γ, T(2)] � V0). Since there
are two W -orbits of roots (long and short), each containing 12 pairs ±α, the corresponding
Weyl reflections must restrict to the last two classes of transvections, of which one is the set
of all γx for x ∈ T(2) r V0.

(b) We showed in the proofs of (c) and (d) that each orthogonal transvection γx is the

restriction of a Weyl reflection. If γx = wα|T(2)
for some root α ∈ Σ, then θα ∈ Hom(T ,F×q0)

(Lemma 2.4(c)), so [T(2) : Ker(θα|T(2)
)] ≤ 2. Also, Ker(θα) ≤ C

T
(wα) by Lemma 2.4(e),

so Ker(θα|T(2)
) ≤ CT(2)

(wα) = CT(2)
(γx) = x⊥, with equality since [T(2) : x⊥] = 2. Since

θα(T(2)) ≤ {±1}, it follows that θα(v) = (−1)b(x,v) for each v ∈ T(2). �

We are now ready to list the subgroups in Ẑ(G(q)) in all cases. The proof of the following
lemma will be given at the end of the section.

Lemma A.9. Let G = G(Fq0) and G = G(q) be as in Hypotheses A.7. Assume E ∈ Ẑ(G).

Then either G 6= E7, rk(E) = 2, and qE = 0; or G = E7, Z = Z(G) ∼= C2, and E = Z ×E0

where rk(E0) = 2 and qE0 = 0. In all cases, Aut
G

(E) ∼= Σ3.

Proof. This will be shown in Lemmas A.14 and A.15. �

The next two lemmas will be needed to apply Proposition A.2(b) to these groups. The
first is very elementary.

Lemma A.10. Let V be an F2-vector space of dimension k, and let q : V −−−→ F2 be a
quadratic form on V . For m ≥ 1 such that k > 2m, the number of totally isotropic subspaces
of dimension m in V is odd.

Proof. This will be shown by induction on m, starting with the case m = 1. Since k ≥ 3,
there is an orthogonal splitting V = V1 ⊥ V2 where V1, V2 6= 0. Let ki be the number of
isotropic elements in Vi (including 0), and set ni = |Vi|. The number of isotropic elements
in V is then k1k2 + (n1 − k1)(n2 − k2), and is even since the ni are even. The number of
1-dimensional isotropic subspaces is thus odd.

Now fix m > 1 (such that k > 2m), and assume the lemma holds for subspaces of
dimension m − 1. For each isotropic element x ∈ V , a subspace E ≤ V of dimension m
containing x is totally isotropic if and only if E ≤ x⊥ and E/〈x〉 is isotropic in x⊥/〈x〉 with
the induced quadratic form. By the induction hypothesis, and since

2 · dim(E/〈x〉) = 2(m− 1) < k − 2 ≤ dim(x⊥/〈x〉),
the number of isotropic subspaces of dimension m which contain x is odd. Upon taking the
sum over all x, and noting that each subspace has been counted 2m − 1 times, we see that
the number of isotropic subspaces of dimension m is odd. �

Lemma A.11. Assume Hypotheses A.7(I). Let σ be a Steinberg endomorphism of G such

that for some ε = ±1, σ(t) = tεq for each t ∈ T . Set G = C
G

(σ). Fix E ≤ T(2) of rank

2 such that q(E) = 0. Then the set of subgroups of G which are G-conjugate to E, and
the set of subgroups which are G-conjugate to E, both have odd order and contain all totally
isotropic subgroups of rank 2 in T(2).
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Proof. Let X ⊇ X be the sets of subgroups of G which are G-conjugate to E or G-conjugate
to E, respectively. Let X0 be the subset of all totally isotropic subgroups of T(2) of rank 2. If q
is nondegenerate, then by Witt’s theorem (see [Ta, Theorem 7.4]), AutW (T(2)) = Aut(T(2), q)
permutes X0 transitively, and hence all elements in X0 are G-conjugate to E by Lemma 2.9.
If in addition, dim(T(2)) ≥ 5, then |X0| is odd by Lemma A.10. Otherwise, by Lemma
A.8(c,d), G = F4 and X0 = {E}. Thus in all cases, X0 ⊆ X and |X0| is odd.

Assume G = E6. Then C
G

(T(2)) = T by Proposition 2.5. Consider the conjugation action

of T(2) on X, and let X1 be its fixed point set. Since T(2) ≤ G by the assumptions on σ, this
action also normalizes X. For F ∈ X1, either the action of T(2) fixes F pointwise, in which
case F ∈ X0, or there are x, y ∈ F such that [x, T(2)] = 1 and [y, T(2)] = 〈x〉. In particular,
cy ∈ Aut

G
(T(2)) = SO(T(2), q). For each v ∈ T(2) such that [y, v] = x, q(v) = q(vx) and

q(x) = 0 imply x ⊥ v, so x ⊥ T(2) since T(2) is generated by those elements. This is impossible
since q is nondegenerate by Lemma A.8(c), and thus X1 = X0.

Now assume G = F4, E7, or E8. Then −Id ∈ W , so there is θ ∈ N
G

(T ) which inverts

T . Then C
G

(T(2)) = T 〈θ〉. By the Lang-Steinberg theorem, there is g ∈ G such that

g−1σ(g) ∈ θT ; then σ(gtg−1) = gt∓qg−1 for t ∈ T , and thus σ acts on gTg−1 via t 7→ t∓q.

We can thus assume T was chosen so that G ∩ T = C
T

(σ) contains the 4-torsion subgroup

T (4) ≤ T . Let X1 ⊆ X be the fixed point set of the conjugation action of T (4) on X.

For F ∈ X1, either the action of T (4) fixes F pointwise, in which case F ∈ X0, or there

are x, y ∈ F such that [x, T (4)] = 1 and [y, T (4)] = 〈x〉. But then [F, T ∗(4)] = 1 for some

T ∗(4) < T (4) of index two, [F, T(2)] = 1 implies F ≤ T(2)〈θ〉; and F ≤ T(2) since no element in

T (4)rT(2) commutes with any element of T(2)θ. So X1 = X0 in this case.

Thus in both cases, X0 is the fixed point set of an action of a 2-group on X which normalizes

X. Since |X0| is odd, so are |X| and |X|. �

We are now ready to prove:

Proposition A.12. Fix an odd prime power q. Assume G is a quasisimple group of universal
type isomorphic to G2(q), F4(q), E6(q), E7(q), or E8(q). Then Ker(µG) = 1.

Proof. This holds when G ∼= G2(q) by Proposition A.6, so we can assume Hypotheses A.7.
Let X be the set of all elementary abelian 2-subgroups E ≤ G such that either G 6= E7,
rk(E) = 2, and qE = 0; or G = E7, rk(E) = 3, and E = Z(G) × E0 where qE0 = 0. By

Lemma A.11, |X| is odd. In all cases, by Lemma A.9, Ẑ(G) ⊆ X. By Proposition A.2(a,b),

to prove µG is injective, it remains to show that if Ẑ(G) 6= ∅, then Ẑ(G) has odd order and
is contained in a single G-conjugacy class, and AutG(Z(S)) = 1.

Fix E ∈ X such that E ≤ T(2). We first claim that if G = F4, E6, or E7, then C
G

(E)
is connected, and hence all elements in X are G-conjugate to E by Proposition A.4. If
G = E7, then C

G
(E) is connected by [Gr, Proposition 9.5(iii)(a)]. If G = F4 or E6, then for

x ∈ E, C
G

(x) ∼= Spin9(Fq0) or Fq0 ×C4 Spin10(Fq0), respectively (see [Gr, Table VI]). Since

the centralizer of each element in the simply connected groups Spin9(Fq0) and Spin10(Fq0) is
connected [St3, Theorem 8.1], C

G
(E) is connected in these cases.

Now assume G = E8. We can assume G = C
G

(ψq), where ψq is the field automorphism;

in particular, ψq(t) = tq for t ∈ T . Fix x, y ∈ E such that E = 〈x, y〉. By [Gr, Lemma
2.16(ii)], (T(2), q) is of positive type (has a 4-dimensional totally isotropic subspace). Hence
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E⊥ = E × V1 × V2, where dim(Vi) = 2 and q(Vir1) = 1 for i = 1, 2, and V1 ⊥ V2. Thus
(qE⊥)−1(1) =

⋃2
i=1

(
(Vir1) × E

)
, and by Lemma A.8(b,c), these are the restrictions to T(2)

of Weyl reflections wα for α ∈ Σ such that E ≤ Ker(θα). Also, CW (E) ∼= W (D4) o C2. By
Proposition 2.5, C

G
(E)0 has type D4 ×D4 and |π0(C

G
(E))| = 2. More precisely, C

G
(E) =

(H1 ×E H2)〈δ〉, where H i
∼= Spin8(Fq0) and Z(H i) = E for i = 1, 2, and conjugation by

δ ∈ N
G

(T ) exchanges V1 and V2 and hence exchanges H1 and H2.

By Proposition A.4, the two connected components in the centralizer give rise to two

G-conjugacy classes of subgroups which are G-conjugate to E, represented by E and gEg−1

where g−1σ(g) lies in the nonidentity component of C
G

(E). Then CG(E) contains a subgroup

Spin+
8 (q)×C2

2
Spin+

8 (q) with index 8 (the extension by certain pairs of diagonal automorphisms

of the Spin+
8 (q)-factors, as well as an automorphism which switches the factors). So E =

Z(T ) for T ∈ Syl2(CG(E)), and E ∈ Ẑ(G). Also, gyg−1 ∈ CG(gEg−1) if and only if
y ∈ C

G
(E) and τ̃(y) = y where τ̃ = cg−1σ(g) ◦σ. Then τ̃ switches the central factors in C

G
(E),

and the group CC
G

(E)(τ̃) splits as a product of E times the group of elements which are

invariant after lifting τ̃ to the 4-fold cover Spin8(Fq0)oC2. Since gEg−1 intersects trivially with
the commutator subgroup of CG(gEg−1), Ω1(Z(T )) > gEg−1 for any T ∈ Syl2(CG(gEg−1))

(since Z(T ) ∩ [T, T ] 6= 1); and thus gEg−1 /∈ Ẑ(G). Thus Ẑ(G) is the G-conjugacy class of
E, and has odd order by Lemma A.11.

Thus, in all cases, if Ẑ(G) is nonempty, it has odd order and is contained in one G-

conjugacy class. Also, Z(S) ≤ CE(AutS(E)) < E for E ∈ Ẑ(G), so either |Z(S)| = 2, or

G = E7, Z(S) ∼= C2
2 , and the three involutions in Z(S) belong to three different G-conjugacy

classes. Hence AutG(Z(S)) = 1. �

It remains to prove Lemma A.9, which is split into the two Lemmas A.14 and A.15. The
next proposition will be used to show that certain elementary abelian subgroups are not in

Ẑ.

Proposition A.13. Assume Hypotheses A.7. Let E ≤ T(2) and x ∈ T(2)rE be such that
the orbit of x under the CW (E)-action on T(2) has odd order. Then no subgroup of S which

is G-conjugate to E is in Ẑ. More generally, if E ≥ E is also elementary abelian, and is

such that x is not C
G

(E)-conjugate to any element of E, then for any L E G which contains

{gxg−1 | g ∈ G} ∩G, no subgroup of S which is G-conjugate to E is in Ẑ.

Proof. In [O2], an elementary abelian p-subgroup E < G is called pivotal if Op(AutG(E)) =
1, and E = Ω1(Z(P )) for some P ∈ Sylp(CG(E)). In particular, by Lemma A.1(a), the

subgroups in Ẑ are all pivotal. Note that T(2) ≤ G by Hypotheses A.7. By [O2, Proposition
8.9], no subgroup satisfying the above conditions can be pivotal, and hence they cannot be

in Ẑ. �

In the next two lemmas, we show that in all cases, E ∈ Ẑ implies rk(E) = 2 and qE = 0 if
G 6= E7, with a similar result when G = E7. We first handle those subgroups which are toral

(contained in a maximal torus in G), and then those which are not toral. By a 2Ak-subgroup
or subgroup of type 2Ak (2Bk-subgroup or subgroup of type 2Bk) is meant an elementary
abelian 2-subgroup of rank k all of whose nonidentity elements are in class 2A (class 2B).

Lemma A.14. Assume Hypotheses A.7. Fix some E ∈ Ẑ which is contained in a maximal

torus of G. Then either G 6= E7, rk(E) = 2, and qE = 0; or G = E7, Z = Z(G) ∼= C2, and
E = Z × E0 where rk(E0) = 2 and qE0 = 0. In all cases, Aut

G
(E) ∼= Σ3.
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Proof. Set Z = O2(Z(G)) ≤ T(2). Thus |Z| = 2 if G = E7, and |Z| = 1 otherwise. Recall
that AutG(T(2)) = Aut

G
(T(2)) = Aut(T(2), q) by Lemmas 2.9 and A.8(a).

The following notation will be used to denote isomorphism types of quadratic forms over
F2. Let [n]± denote the isomorphism class of a nondegenerate form of rank n. When n
is even, [n]+ denotes the hyperbolic form (with maximal Witt index), and [n]− the form
with nonmaximal Witt index. Finally, a subscript “(k)” denotes sum with a k-dimensional
trivial form. By [Gr, Lemma 2.16], qT(2)

has type [2]−(2), [6]−, [7], or [8]+ when G = F4, E6,
E7, or E8, respectively.

Fix E ≤ T(2); we want to determine whether E can be G-conjugate to an element of Ẑ. Set
E1 = E ∩E⊥ (the orthogonal complement taken with respect to q), and set E0 = Ker(qE1).
Note that E1 > E0 if G = E7 (E ≥ Z).

Assume first that E0 = 1. If G = F4, then T(2) ∩ 2B is a CW (E)-orbit of odd order. If
G = Er and E1 = 1, then E × E⊥, E⊥ is CW (E)-invariant, and hence there is 1 6= x ∈ E⊥
whose CW (E)-orbit has odd order. If G = Er and rk(E1) = 1, then E ∩ E⊥ = E1, there
is an odd number of involutions in E⊥rE1 of each type (isotropic or not), and again there
is 1 6= x ∈ E⊥ whose CW (E)-orbit has odd order. In all cases, x has the property that
CW (〈E, x〉) has odd index in CW (E). So by Proposition A.13, no subgroup of G which is

G-conjugate to E can be in Ẑ.

Thus E0 6= 1. Set k = rk(E0). Then∣∣π0(C
G

(E))
∣∣ =

∣∣CW (E)
/〈
wα
∣∣α ∈ Σ, E ≤ Ker(θ(α))

〉∣∣ (Proposition 2.5)

≤
∣∣CW (T(2))

∣∣ · ∣∣CSO(T(2),q)(E)
/〈
γv
∣∣ v ∈ 2A ∩ E⊥

〉∣∣ (Lemma A.8(a,b))

≤
∣∣CW (T(2))

∣∣ · ∣∣CSO(T(2),q)(E
⊥
0 )
∣∣ · ∣∣CSO(E⊥0 ,q)

(E)
/〈
γv
∣∣ v ∈ 2A ∩ E⊥

〉∣∣ . (5)

The first factor is easily described:

∣∣CW (T(2))
∣∣ = 2ε where ε =

{
1 if −Id ∈ W (if G = F4, E7, E8)

0 if −Id /∈ W (if G = E6).
(6)

We next claim that ∣∣CSO(T(2),q)(E
⊥
0 )
∣∣ ≤ 2(k2) , (7)

with equality except possibly when G = F4. To see this, let F1 < T(2) be a subspace
complementary to E⊥0 . Each α ∈ CAut(T(2))(E

⊥
0 ) has the form α(x) = xψ(x) for some

ψ ∈ Hom(F1, E0), and α is orthogonal if and only if x ⊥ ψ(x) for each x. The space of such
homomorphisms has dimension at most

(
k
2

)
(corresponding to symmetric k×k matrices with

zeros on the diagonal); with dimension equal to
(
k
2

)
if dim(F1) = dim(E0) (which occurs if q

is nondegenerate).

Write (E0)⊥ = E × F2, where E⊥ = E0 × F2 and the form qF2 is nondegenerate. By
[Ta, Theorem 11.41], SO(F2, qF2) is generated by transvections unless qF2 is of type [4]+,
in which case the reflections generate a subgroup of SO(F2, qF2) ∼= Σ3 o C2 isomorphic to
Σ3 × Σ3. Also, F2 is generated by nonisotropic elements except when qF2 is of type [2]+,
and when this is the case, all automorphisms of (E0)⊥ which induce the identity on E and
on (E0)⊥/E0 are composites of transvections. (Look at the composites γvx ◦ γv for v ∈ F2

and x ∈ E0.) Hence ∣∣CSO(E⊥0 ,q)
(E)
/〈
γv
∣∣ v ∈ 2A ∩ E⊥

〉∣∣ ≤ 2η
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where η = 1 if qE⊥ has type [4]+(k), η = k if qE⊥ has type [2]+(k), and η = 0 otherwise.

Together with (5), (6), and (7), this proves that

|π0(C
G

(E))| ≤ 2(k2)+ε+η where ε ≤ 1. (8)

Now, N
G

(E) ≤ C
G

(E)0N
G

(T ) by the Frattini argument: each maximal torus which con-

tains E lies in C
G

(E)0 and hence is C
G

(E)0-conjugate to T . So each element of Aut
G

(E) is

represented by a coset of T in N
G

(T ), and can be chosen to lie in G by Lemma 2.9. Thus
the action described in Proposition A.4 which determines the automizers AutG(E∗) for E∗

G-conjugate to E is the conjugation action of Aut
G

(E) on the set of conjugacy classes in
π0(C

G
(E)). In particular, this action is not transitive, since the identity is fixed.

Set ` = rk(E/E0)− 1 if G = E7 and ` = rk(E/E0) otherwise. Every automorphism of E
which induces the identity on E0Z and on E/E0 is orthogonal, and hence the restriction of

an element of O2(CW (E)). Thus |O2(Out
G

(E))| ≥ 2k`. If E∗ ∈ Z is G-conjugate to E, then

since AutG(E∗) has a strongly 2-embedded subgroup, 2k` ≤ δ(Aut
G

(E)) <
∣∣π0(C

G
(E))

∣∣
by Proposition A.4 and Lemma A.5(a), with strict inequality since the action of N

G
(E)

on π0(C
G

(E)) is not transitive. Together with (8), and since ε ≤ 1, this implies that

k` ≤
(
k
2

)
+ η ≤

(
k
2

)
+ k. Thus ` ≤ k+1

2
, and ` ≤ k−1

2
if η = 0. By definition, η = 0 whenever

rk(E1/E0) = 1, which is the case if G = E7 or ` is odd. Since 2k + ` ≤ 8, we are thus left
with the following possibilities.

• If (k, `) = (3, 2), then G = E8, E has form of type [2]+(3), so E⊥ = E0 has trivial form,

and η = 0. Thus k` �
(
k
2

)
+ η, so this cannot occur.

• If (k, `) = (3, 1), then G = E8, E has form of type ∗ + 3, and rk(E) = rk(E1) = 4.
Then Aut

G
(E) ∼= C3

2 o GL3(2), so δ(Aut
G

(E)) ≥ 23 · 28 by Lemma A.5(a,d). Since
|π0(C

G
(E))| ≤ 16, this case is also impossible.

• If (k, `) = (4, 0), then G = E8 and E = E0 is isotropic of rank 4. By Proposition 2.5

and Lemma A.8(c), C
G

(E)0 = T . By [CG, Proposition 3.8(ii)], π0(C
G

(E)) is extraspecial
of order 27 and Aut

G
(E) ∼= GL4(2). (This is stated for subgroups of E8(C), but the

same argument applies in our situation.) In particular, π0(C
G

(E)) has just 65 conjugacy
classes. Since δ(GL4(2)) = 112 by Lemma A.5(d), Proposition A.4 implies that AutG(E∗)
cannot have a strongly 2-embedded subgroup.

• If (k, `) = (3, 0), then E = Z×E0 where dim(E0) = 3, and Aut
G

(E) ∼= GL3(2). If G = E6

or E7, then E⊥ = E, and |π0(C
G

(E))| ≤ 16 by (8).

If G = E8, then (E⊥, qE⊥) has type [2]+(3). By the arguments used to prove (8),

|CW (E)| = |CW (T(2))| · |CSO(T(2),q)(E
⊥
0 )| · |CSO(E⊥0 ,q)

(E)| = 2 · 23 · 27 = 211.

Also, E⊥ contains exactly 8 nonisotropic elements, they are pairwise orthogonal, and
hence determine 8 pairwise commuting transvections on T(2). These extend to 8 Weyl
reflections which are pairwise commuting since no two can generate a dihedral subgroup
of order 8 (this would imply two roots of different lengths). Hence by Proposition 2.5,
C
G

(E)0 has type (A1)8 and |π0(C
G

(E))| = 211/28 = 23. Since δ(GL3(2)) = 28 by Lemma
A.5(c), this case cannot occur.

• If (k, `) = (2, 0), then E = Z × E0 where dim(E0) = 2. Then E is as described in the
statement of the lemma. �

It remains to handle the nontoral elementary abelian subgroups.
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Lemma A.15. Assume Hypotheses A.7. Let E ≤ G be an elementary abelian 2-group which

is not contained in a maximal torus of G. Then E /∈ Ẑ.

Proof. To simplify notation, we write K = Fq0 . Set Z = O2(Z(G)) ≤ T(2). Thus |Z| = 2 if

G = E7, and |Z| = 1 otherwise. The maximal nontoral subgroups of G are described in all
cases by Griess [Gr].

(A) If G = F4 or E6, then by [Gr, Theorems 7.3 & 8.2], G contains a unique conjugacy
class of maximal nontoral elementary abelian 2-subgroups, represented by W5 of rank
five. There is a subgroup W2 ≤ W5 of rank two such that W5 ∩ 2A = W5rW2. Also,
Aut

G
(E5) = Aut(E5, qE5): the group of all automorphisms of W5 which normalize W2.

A subgroup E ≤ W5 is nontoral if and only if it contains a 2A3-subgroup.

When G = F4, we can assume W5 = T(2)〈θ〉, where θ ∈ N
G

(T ) inverts the torus.

(B) If G = E7, then by [Gr, Theorem 9.8(i)], G contains a unique maximal nontoral elemen-
tary abelian 2-subgroup W6, of rank six. For any choice of E6(K) < G, W5 < E6(K)
(as just described) has rank 5, is nontoral since it contains a 2A3-subgroup, and so we
can take W6 = Z ×W5.

Each coset of Z of involutions in GrZ contains one element of each class 2A and
2B. Together with the above description of E5, this shows that all 2A2-subgroups of
W6 are contained in W5. Hence for each nontoral subgroup E ≤ W6 which contains
Z, E ∩W5 is the subgroup generated by 2A2-subgroups of E, thus is normalized by
Aut

G
(E), and so

Aut
G

(E) ∼= Aut
G

(E ∩W5) = Aut(E ∩W5, qE∩W5) ∼= Aut(E, qE)

Aut
G

(W6) ∼= Aut(W6, qW6) ∼= C6
2 o (Σ3 ×GL3(2))

For Z ≤ E ≤ W6, the subgroup E is nontoral exactly when it contains a 2A3-
subgroup. This is immediate from the analogous statement in (A) for E6(K).

(C) If G = E8, then by [Gr, Theorem 2.17], G contains two maximal elementary abelian
subgroups W8 and W9, neither of which is toral [Gr, Theorem 9.2]. An elementary

abelian 2-subgroup E ≤ G is nontoral if and only if qE is not quadratic or E has type
2B5 [Gr, Theorem 9.2].

We refer to [Gr, Theorem 2.17] for descriptions of W8 and W9. There are subgroups
F0 ≤ F1, F2 ≤ W8 such that rk(F0) = 2, rk(F1) = rk(F2) = 5, F1 ∩ F2 = F0, and
W8 ∩ 2A = (F1rF0) ∪ (F2rF0). Also, Aut

G
(W8) is the group of those automorphisms

of W8 which leave F0 invariant, and either leave F1 and F2 invariant or exchange them.

We can assume that W9 = T(2)〈θ〉, where θ ∈ N
G

(T ) inverts T . Also, W9rT(2) ⊆ 2B.
Hence T(2) = 〈W9∩2A〉 is Aut

G
(W9)-invariant. Each automorphism of W9 which is the

identity on T(2) is induced by conjugation by some element of order 4 in T , and thus
Aut

G
(W9) is the group of all automorphisms whose restriction to T(2) lies in Aut

G
(T(2)).

We next list other properties of elementary abelian subgroups ofG, and of their centralizers
and normalizers, which will be needed in the proof.

(D) If G = E8, E ≤ G, E ∼= Cr
2 , and |E ∩ 2A| = m, then dim(C

G
(E)) = 28−r + 25−rm− 8.
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This follows from character computations: if g denotes the Lie algebra of G = E8(K),
then dim(C

G
(E)) = dim(Cg(E)) = |E|−1

∑
x∈E χg(x). By [Gr, Table VI], χg(1) =

dim(G) = 248, and χg(x) = 24 or −8 when x ∈ 2A or 2B, respectively.

(E) If G = E8, E ≤ G is an elementary abelian 2-group, and Et < E has index 2 and is

such that ErEt ⊆ 2B, then there is g ∈ G such that gE ≤ W9 = T(2)〈θ〉 and gEt ≤ T(2).

It suffices to prove this when E is maximal among such such pairs Et < E. We can
assume that E is contained in W8 or W9.

If E ≤ W8, then in the notation of (C), F0 ≤ E (since E is maximal), and either
rk(E ∩ Fi) = 3 for i = 1, 2 and rk(E) = 6, or rk(E ∩ Fi) = 4 for i = 1, 2 and
rk(E) = 7. These imply that |E ∩ 2A| = 8 or 24, respectively, and hence by (D)

that dim(C
G

(Et)) = 8 (C
G

(Et)
0 = T ) and dim(C

G
(E)) = 0. Hence in either case,

if g ∈ G is such that gEt ≤ T(2), then gErgEt ⊆ θT , and there is t ∈ T such that
tgE ≤ T(2)〈θ〉 = W9.

If E ≤ W9, set E2 = 〈E ∩ 2A〉. Then E2 ≤ E ∩ T(2) and E2 ≤ Et, so there is nothing
to prove unless rk(E/E2) ≥ 2. In this case, from the maximality of E, we see that
Et = Ea × Eb, where Ea ∼= C2

2 has type 2ABB, Eb is a 2B3-group, and Ea ⊥ Eb with
respect to the form q. Thus rk(E) = 6, |E ∩ 2A| = 8, and the result follows by the
same argument as in the last paragraph.

(F) If G = E8, and E ≤ G is a nontoral elementary abelian 2-group, then either E contains

a 2A3-subgroup, or E is G-conjugate to a subgroup of W9.

Assume E ≤ W8 is nontoral and contains no 2A3-subgroup. We use the notation
F0 < F1, F2 < W8 of (C). Set Ei = E ∩ Fi for i = 0, 1, 2. Then qE1E2 is quadratic: it
is the orthogonal direct sum of qE0 , qE1/E0 , and qE2/E0 , each of which is quadratic since

rk(Ei/E0) ≤ 2 for i = 1, 2 (E has no 2A3-subgroup). Hence E > E1E2 ≥ 〈E ∩ 2A〉
since E is nontoral, so E is conjugate to a subgroup of W9 by (E).

(G) Let E ≤ G be an elementary abelian 2-subgroup, and let Et ≤ E be maximal among

toral subgroups of E. Assume that Et∩E⊥t ∩2B = ∅, and that either rk(T )−rk(Et) ≥ 2

or Et ∩ E⊥t = 1. Then E /∈ Ẑ.

To see this, choose F ≥ Ft which is G-conjugate to E ≥ Et and such that Ft =
F ∩ T(2). By maximality, no element of FrFt is C

G
(Ft)-conjugate to an element of

T . If Ft ∩ F⊥t = 1, then some CW (Ft)-orbit in F⊥t r1 has odd order. Otherwise,
since q is linear on Ft ∩ F⊥t , we have Ft ∩ F⊥t = 〈y〉 for some y ∈ 2A, in which case

|q−1
F⊥t

(0)| = |F⊥t |/2 is even since rk(F⊥t ) ≥ rk(T )− rk(Ft) ≥ 2. So again, some CW (Ft)-

orbit in F⊥t r1 has odd order in this case. Point (G) now follows from Proposition
A.13.

(H) Assume G = E8. Let 1 6= E0 ≤ E ≤ G be elementary abelian 2-subgroups, where
rk(E) = 3, and E ∩ 2A = E0r1. Then

C
G

(E) ∼=


E × F4(K) if rk(E0) = 3

E × PSp8(K) if rk(E0) = 2

E × PSO8(K) if rk(E0) = 1.

To see this, fix 1 6= y ∈ E0, and identify C
G

(y) ∼= SL2(K) ×C2 E7(K). For each

x ∈ Er〈y〉, since x and xy are G-conjugate, x 6= (1, b) for b ∈ E7(K). Thus x = (a, b)
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for some a ∈ SL2(K) and b ∈ E7(K) both of order 4, and (in the notation of [Gr, Table
VI]) b is in class 4A or 4H since b2 ∈ Z(E7(K)). By (D) and [Gr, Table VI],

dim(C
G

(E)) =

{
80 = dim(CE7(K)(4H)) + 1 if E has type 2AAA

64 = dim(CE7(K)(4A)) + 1 if E has type 2ABB,

and thus x ∈ 2A if b ∈ 4H and x ∈ 2B if b ∈ 4A. Thus if E = 〈y, x1, x2〉, and
xi = (ai, bi), then 〈a1, a2〉 ≤ SL2(K) and 〈b1, b2〉 ≤ E7(K) are both quaternion of order
8. Point (H) now follows using the description in [Gr, Proposition 9.5(i)] of centralizers
of certain quaternion subgroups of E7(K). When combined with the description in [Gr,
Table VI] of CE7(K)(4A), this also shows that

F ∼= C2
2 of type 2ABB =⇒ C

G
(F )0 is of type A7T

1 (9)

(i.e., C
G

(F )0 ∼= (SL8(K)×K×)/Z, for some finite subgroup Z ≤ Z(SL8(K))×K×).

(I) If U < G is a 2A3-subgroup, then C
G

(U) = U ×H, where H is as follows:

G F4 E6 E7 E8

H SO3(K) SL3(K) Sp6(K) F4(K)

When G = E8, this is a special case of (H). For x ∈ 2A ∩ F4(K), CE8(K)(x) ∼=
SL2(K)×C2 E7(K) by [Gr, 2.14]. Since CF4(K)(x) ∼= SL2(K)×C2 Sp6(K), this shows that
CE7(K)(U) ∼= U × Sp6(K).

Similarly, CE8(K)(y) ∼= SL3(K) ×C3 E6(K) by [Gr, 2.14] again (where y is in class
3B in his notation). There is only one class of element of order three in F4(K) whose
centralizer contains a central factor SL3(K) — CF4(K)(y) ∼= SL3(K)×C3 SL3(K) for y of
type 3C in F4(K) — and thus CE6(K)(U) ∼= U × SL3(K).

If G = F4, then by [Gr, 2.14], for y ∈ 3C, C
G

(y) ∼= SL3(K) ×C3 SL3(K). Also,
the involutions in one factor must all lie in the class 2A and those in the other in
2B. This, together with Proposition 2.5, shows that for U2 < U of rank 2, C

G
(U2) ∼=

(T 2 ×C3 SL3(K))〈θ〉, where θ inverts a maximal torus. Thus C
G

(U) = U × CSL3(K)(θ),
where by [Gr, Proposition 2.18], CSL3(K)(θ) ∼= SO3(K). This finishes the proof of (I).

For the rest of the proof, we fix a nontoral elementary abelian 2-subgroup E < G. We

must show that E /∈ Ẑ. In almost all cases, we do this either by showing that the hypotheses
of (G) hold, or by showing that δ(Aut

G
(E)) > |π0(C

G
(E))| (where δ(−) is as in Lemma A.5),

in which case AutG(E) has no strongly 2-embedded subgroup by Proposition A.4, and hence

E /∈ Ẑ.

By (A), (B), and (F), either E contains a 2A3-subgroup of rank three, or G = E8 and E

is G-conjugate to a subgroup of W9. These two cases will be handled separately.

Case 1: Assume first that E contains a 2A3-subgroup U ≤ E. From the lists in (A,B,C)
of maximal nontoral subgroups, there are the following possibilities.

G = F4, E6, or E7: By (A,B), we can write E = U × E0 × Z, where E0 is a 2Bk subgroup
(some k ≤ 2) and UE0rE0 ⊆ 2A (and where Z = 1 unless G = E7). If k = 0, then

E /∈ Ẑ by (G), so assume k ≥ 1. By (I), and since each elementary abelian 2-subgroup
of SL3(K) and of Sp6(K) has connected centralizer, π0(C

G
(E)) ∼= U if G = E6 or E7. If

G = F4, then by (I) again, and since the centralizer in SO3(K) ∼= PSL2(K) of any Ck
2 has

2k components, |π0(C
G

(E))| = 23+k.
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By (A,B) again, Aut
G

(E) is the group of all automorphisms which normalize E0 and
UE0 and fix Z. Hence

|O2(Aut
G

(E))| = 23k and Aut
G

(E)/O2(Aut
G

(E)) ∼= GL3(2)×GLk(2) .

So δ(Aut
G

(E)) ≥ 23k+3 > |π0(C
G

(E))| by Lemma A.5, and E /∈ Ẑ.

G = E8: By (I), C
G

(U) = U×H where H ∼= F4(K). Set E2 = E∩H, and let E0 = 〈E2∩2B〉.
Set k = rk(E0) and ` = rk(E2/E0).

If k = 0, then E2 has type 2A`, and Er(U ∪ E2) ⊆ 2B. So each maximal toral
subgroup Et < E has the form Et = U1 × U2, where rk(U1) = 2, rk(U2) ≤ 2, and

Et ∩ 2A = (U1 ∪ U2)r1. The hypotheses of (G) thus hold, and so E∗ /∈ Ẑ.

Thus k = 1, 2. If ` ≤ 2, then E2 is toral, and

|π0(C
G

(E))| = 8 · |π0(CH(E2))| ≤ 23+k

by formula (8) in the proof of Lemma A.14. (Note that ε = 1 and η = 0 in the notation
of that formula.) If ` = 3, then |π0(C

G
(E))| = 26+k by the argument just given for

F4(K). Also, Aut
G

(E) contains all automorphisms of E which normalize E0, and either
normalize UE0 and E2 or (if ` = 3) exchange them: since in the notation of (C), each
such automorphism extends to an automorphism of W8 which normalizes F1 and F2. So
|O2(Aut

G
(E))| ≥ 2k(3+`), and Aut

G
(E)/O2(Aut

G
(E)) ∼= GL3(2)×GLk(2)×GL`(2) or (if

` = 3) (GL3(2) o C2) × GLk(2). In all cases, δ(Aut
G

(E)) ≥ 23k+`k+3 > |π0(C
G

(E))|, so
E /∈ Z.

Case 2: Now assume that G = E8, and that E is G-conjugate to a subgroup of W9. To

simplify the argument, we assume that E ≤ W9, and then prove that no subgroup E∗ ∈ Ẑ
can be G-conjugate to E. Recall that W9 = T(2)〈θ〉, where θ ∈ N

G
(T ) inverts the torus and

θT(2) ⊆ 2B.

If E ∩ 2A = ∅, then rk(E) = 5. In this case, Aut
G

(E) ∼= GL5(2) and |C
G

(E)| = 215 [CG,
Proposition 3.8]. (Cohen and Griess work in E8(C), but their argument also holds in our

situation.) Since δ(GL5(2)) > 215 by Lemma A.5(d), no E∗ ∈ Ẑ can be G-conjugate to E.

Now assume E has 2A-elements, and set E2 = 〈E ∩ 2A〉. Then E2 ≤ T(2) (hence qE2 is
quadratic) by the above remarks. Set E1 = E⊥2 ∩ E2 and E0 = Ker(qE1). If E0 = 1 and

rk(E2) 6= 7, then by (G), no subgroup of S which is G-conjugate to E lies in Ẑ.

It remains to consider the subgroups E for which E0 6= 1 or rk(E2) = 7. Information
about |O2(Aut

G
(E))| and |π0(C

G
(E))| for such E is summarized in Table A.1. By the “type

of qE” is meant the type of quadratic form, in the notation used in the proof of Lemma A.14.

We first check that the table includes all cases. If rk(E/E2) = 1, then E2 = E ∩ T(2), and
the table lists all types which the form qE2 can have. Note that since E2 is generated by
nonisotropic vectors, qE2 cannot have type [2]+(k). If rk(E/E2) = 2, then qE2 is linear, and
must be one of the three types listed. Since qE∩T(2)

is quadratic and qE is not, E2 has index
at most 2 in E ∩ T(2).

We claim that

E,F < W9, α ∈ Iso(E,F ) such that α(E ∩ T(2)) = F ∩ T(2) and α(E ∩ 2A) =

F ∩ 2A =⇒ α = ctg for some t ∈ T and some g ∈ NG(T ) = G ∩N
G

(T ).
(10)

By (C) and Witt’s theorem (see [Ta, Theorem 7.4]), there is g ∈ N
G

(T ) such that α|E∩T(2)
=

cg, and we can assume g ∈ G by Lemma 2.9. Then gErg(E ∩ T(2)) ≤ θT since θT ∈
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C
ase

n
r.

rk(E
/E

2 )

rk(E
2 /E

0 )

rk(E
0 )

qE2

type

|π
0 (C

G (E
∗))|

|O
2 (A

u
t
G (E
∗))|

δ(A
u
t
G (E
∗))

1 1 7 0 [7] ≤ 29 27 ≥ 213

2 1 6+ 1 [6]+(1) ≤ 29 213 ≥ 217

3 1 5 1 [5](1) ≤ 210 211 ≥ 3 · 213

4 1 4+ 2 [4]+(2) ≤ 210 214 ≥ 216

5 1 4+ 1 [4]+(1) ≤ 28 29 ≥ 210

6 1 4− 1 [4]−(1) ≤ 27 29 ≥ 210

7 1 3 2 [3](2) ≤ 26 211 ≥ 212

8 1 3 1 [3](1) ≤ 25 27 ≥ 27

9 1 2− 2 [2]−(2) ≤ 25 28 ≥ 29

10 1 2− 1 [2]−(1) ≤ 24 25 ≥ 25

11 2 1 3 [1](3) ≤ 212 211 ≥ 214

12 2 1 2 [1](2) ≤ 28 28 ≥ 29

13 2 1 1 [1](1) ≤ 25 25 ≥ 25

Table A.1

Z(N
G

(T ))/T , so α = ctg for some t ∈ T . This proves (10). In particular, any two subgroups

of W9 which have the same data as listed in the first three rows of Table A.1 are G-conjugate.

By (10), together with (E) when rk(E/E2) = 2, we have Aut
G

(E) = Aut(E, qE) in all
cases. Thus Aut

G
(E) is the group of all automorphisms of E which normalize E0 and E2

and preserve the induced quadratic form on E2/E0. This gives the value for |O2(Aut
G

(E))|
in the table, and the lower bounds for δ(Aut

G
(E)) then follow from Lemma A.5.

In cases 1–6, the upper bounds for |π0(C
G

(E))| given in the table are proven in [O2, p.
78–79]. In all cases, |π0(C

G
(E2))| is first computed, using Proposition 2.5 or the upper bound

given in formula (8) in the proof of the last lemma, and then [O2, Proposition 8.8] is used
to compute an upper bound for |π0(C

G
(E))|

/
|π0(C

G
(E2))|. There is in fact an error in the

table on [O2, p. 79] (the group CG(E0)0
s in the third-to-last column should be SL2× SL2 up

to finite cover), but correcting this gives in fact a better estimate |π0(C
G

(E))| ≤ 29.

Case nr. 11 can be handled in a similar way. Set Et = E ∩T(2) < E, so that |E/Et| = 2 =

|Et/E2|. The form qEt has type [2]+(3), while E⊥t has type 2B3. Hence |π0(C
G

(Et))| ≤ 24 by

(8). By [O2, Proposition 8.8], |π0(C
G

(E))| ≤ 24+r, where r = dim(T ) = 8.

To handle the remaining cases, fix rank 2 subgroups F1, F2 ≤ T(2) < G with involutions
of type AAA and ABB, respectively, and consider the information in Table A.2. The
description of C

G
(Fi〈θ〉) follows from (H). The third through fifth columns give dimensions
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dim(C
G

(Fi)〈θ, g〉) for g as follows:
i C

G
(Fi〈θ〉)

−I4 ⊕ I4 −I2 ⊕ I6 order 4 2A 2B

1 F1〈θ〉 × PSp8(K) 20 24 16 16 20

2 F2〈θ〉 × PSO8(K) 12 16 16 16 12

Table A.2

of centralizers of Fi〈θ〉〈g〉, for g as described after lifting to Sp8(K) or SO8(K). (Here,
Im denotes the m ×m identity matrix.) The last two columns do this for g ∈ 2A or 2B,
respectively, when g ∈ T(2) is orthogonal to Fi with respect to the form q, and the dimensions
follow from (D). Thus elements of class 2B lift to involutions in Sp8(K) or SO8(K) with
4-dimensional (−1)-eigenspace, while for i = 1 at least, elements of class 2A lift to elements
of order 4 in Sp8(K).

Thus in all of the cases nr. 7–13 in Table A.1, we can identify E = Fi〈θ〉 × F ∗, where
i = 1 in nr. 7–10 or i = 2 in nr. 11–13, and where F ∗ lifts to an abelian subgroup of Sp8(K)
or SO8(K) (elementary abelian except for nr. 7–8). This information, together with the
following:

H a group, Z ≤ Z(H), |Z| = p, Z ≤ P ≤ H a p-subgroup

=⇒
∣∣CH/Z(P )

/
CH(P )/Z

∣∣ ≤ |P/Fr(P )|

(applied with H = Sp8(K) or SO8(K)), imply the remaining bounds in the last line of Table
A.1.

In all but the last case in Table A.1, δ(Aut
G

(E)) > |π0(C
G

(E))|, so no E∗ ∈ Ẑ is G-
conjugate to E by Proposition A.4. In the last case, by the same proposition, E can be

G-conjugate to some E∗ ∈ Ẑ only if Aut
G

(E) acts transitively on π0(C
G

(E)) ∼= C5
2 with

point stabilizers isomorphic to Σ3. By (10), each class in O2(Aut
G

(E)) is represented by some

element tg ∈ N
G

(E), where g ∈ NG(T ) and t ∈ T . In particular, (tg)σ(tg)−1 = tσ(t)−1 ∈ T .
So each class in the O2(Aut

G
(E))-orbit of 1 ∈ π0(C

G
(E)) has nonempty intersection with

T . But by (9), C
G

(F2)0 ∩ θT = ∅, so θC
G

(E)0 ∩ T = ∅. Thus the action is not transitive

on π0(C
G

(E)), and hence E∗ /∈ Ẑ. �
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Université Paris 13, Sorbonne Paris Cité, LAGA, UMR 7539 du CNRS, 99, Av. J.-B.
Clément, 93430 Villetaneuse, France.

E-mail address: bobol@math.univ-paris13.fr


