
THE SIMPLE CONNECTIVITY OF BSol(q)
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Abstract. A p-local finite group is an algebraic structure which includes two cat-
egories, a fusion system and a linking system, which mimic the fusion and linking
categories of a finite group over one of its Sylow subgroups. The p-completion of the
geometric realization of the linking system is the classifying space of the finite group.
In this paper, we study the geometric realization, without completion, of linking sys-
tems of certain exotic 2-local finite groups whose existence was predicted by Solomon
and Benson, and prove that they are all simply connected.

A p-local finite group consists of a finite p-group S together with a pair of categories F
and L— the fusion system and the centric linking system — with auxiliary structures
which relate F and L. The idea is to mimic the structure of a finite group G having S
as a Sylow p-subgroup, by first providing, by means of the fusion system F , a collection
of maps between subgroups of S which are consistent with the notion of conjugation by
elements of G, and then, with the linking system L, providing a collection of candidates
for the G-normalizers of a large class of subgroups of S. The resulting object (S,F ,L)
should be indistinguishible from such a finite group G, at least from an algebraic
point of view which takes only “p-local structure” into account. From the homotopy-
theoretic viewpoint, the p-completion |L|∧p of the topological realization of L should
be indistinguishible from the p-completion of a classifying space BG. In the case that
these structures really do arise from a finite group G with Sylow p-subgroup S, we may
denote the system (S,F ,L) by GS(G). If no such G exists, one says that L and the
p-local finite group G = (S,F ,L) are exotic.

This paper concerns the family Sol(q) of exotic 2-local finite groups – q an arbitrary
odd prime power – constructed by Ran Levi and the second named author in [LO].
These objects were prefigured in a paper of David Benson [Be] and, earlier still, in work
of Ron Solomon [So]; and they are the only exotic 2-local finite groups that are known
to exist. They are called the “Solomon 2-local finite groups” in recognition that it was
Solomon [So] who first discovered that there was a collection of group-like data which
was internally consistent from a 2-local point of view, and which was not derivable
from any finite group.

The classifying space of a p-local finite group (S,F ,L) is defined to be the space |L|∧p :
the p-completion of the geometric realization of the category L. This was originally
motivated by the observation in [BLO1, Proposition 1.1] that when L is the linking
system of a finite group G, then |L|∧p has the homotopy type of BG∧

p ; and also because
whether or not L is associated to a group, |L|∧p shares many of the homotopy theoretic
properties of p-completed spaces of finite groups. However, interest has recently been
growing in the geometric realization |L| without p-completion, and in particular in its
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fundamental group, as an invariant of a p-local finite group (S,F ,L). This has been
spurred on by questions and conjectures formulated by Jesper Grodal.

Two general references for the geometric realization of a category are Segal’s original
paper [Se, §1-2], and the more recent book of Srinivas [Sr, Chapter 3]. In general,
when C is a discrete, small category, c0 ∈ Ob(C), and I is a set of morphisms in
C which includes exactly one morphism between c0 and each other object, then the
fundamental group π1(|C|) can be described algebraically as the group generated by
Mor(C), modulo the relations given by composition, and modulo the relations given
by setting morphisms in I equal to the identity. In the case of a linking system L, we
take c0 to be the “Sylow subgroup” S ∈ Ob(C), and take I to be a set of “inclusion”
morphisms to S.

When L is the linking system associated to a finite group G, then in many cases,
π1(|L|) is either isomorphic to G or surjects onto G. This is discussed briefly in Section
1, and several other examples will be given in the paper [GO] now in preparation. This
connection with the underlying finite group, when there is one, made it natural to look
at the fundamental groups of exotic linking systems.

The principal aim of this paper is to study the topological realizations of the linking
systems of the Solomon 2-local groups, and to show that they are simply connected.
More precisely, we show:

Theorem A. For every odd prime power q, the geometric realization of the linking
system Lc

Sol(q) is simply connected.

This will be proven as Theorem 5.1. These are the first (and only) examples we
know of linking systems whose nerves are simply connected. In fact, these are the only
examples we know where the automorphism groups in L do not all map injectively into
π1(|L|).

In [LO], an infinite “linking system” Lc
Sol(p

∞) was constructed for all odd primes p,
roughly as the union of the Lc

Sol(p
n) (taken over all n), and its 2-completed nerve was

shown to have the homotopy type of the Dwyer-Wilkerson space BDI(4) [DW]. One
consequence of Theorem A is that |Lc

Sol(p
∞)| is also simply connected (Corollary 5.6).

When proving Theorem A, the first step is to show that if |Lc
Sol(q)| is simply con-

nected, then for all n ≥ 1, |Lc
Sol(q

n)| is also simply connected. This is fairly straightfor-
ward and simple. The following theorem then allows us to reduce the proof to showing
that the topological realization of the linking system for Sol(3) is simply connected.

Theorem B. Let q and q′ be odd prime powers. Then the fusion systems FSol(q) and
FSol(q

′), and also their associated linking systems Lc
Sol(q) and Lc

Sol(q
′), are isomorphic

if and only if q2 − 1 and q′2 − 1 have the same 2-adic valuation.

Theorem B will be shown below as Theorem 3.4, where we give a purely algebraic
proof of the result. It also follows from a result of Broto and Møller [BM, Theorem
C], when combined with [BLO2, Theorem A] which says that the homotopy type of
the classifying space of a p-local finite group determines its homotopy type. However,
Broto and Møller state this result only for odd fusion (the general result follows by
the same argument and will appear in a later paper), and their proof uses some deep
results in homotopy theory. Hence our decision to include a purely algebraic proof
here.

An easy induction argument shows that if a is an odd integer such that v2(a± 1) =

m ≥ 2, then v2(a
2k−1) = m+k for all k ≥ 1. Hence another consequence of Theorem B
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is that the methods in [AC] apply to construct all of the Solomon 2-local finite groups:
since in that paper, the fusion and linking systems FSol(q) and Lc

Sol(q) are defined only
when q is a power of a prime p ≡ 3, 5 (mod 8).

As mentioned above, when L is a linking system, π1(|L|) is the free group on the
morphisms in Lmodulo certain relations given (roughly) by composition and inclusions.
Thus the main problem when proving Theorem A is to find enough relations among the
morphisms to show that they all vanish. In [AC], Lc

Sol(3) (or its fundamental group) is
shown to contain a certain amalgam of three maximal subgroups of the sporadic simple
group Co3. This allows us to reduce the proof of Theorem A to the following result,
which is proven by using computer computations to show that a certain simplicial
complex is simply connected:

Theorem C. Let H1, H2, and H3 be the three maximal overgroups of a fixed Sylow
subgroup S ∈ Syl2(Co3), and let G be the amalgam formed by the Hi and their inter-
sections. Then colim(G) ∼= Co3.

Theorem C is proven as Proposition 4.1.

We would like to thank Jesper Grodal for first getting us interested in this question;
this paper is in some sense an offshoot of the paper [GO] by Grodal and the second au-
thor. Particular thanks go to the mathematics department at Cal Tech, and especially
Michael Aschbacher, for their hospitality in giving the first two authors, and later the
first and third authors, a chance to meet and discuss these problems. Some of the key
ideas in this paper were developped there. The second author would also like to thank
the Mittag-Leffler Institute for providing ideal conditions for him to finish his share of
the work on this paper.

1. Background

We first recall the definition of a (saturated) fusion system. This definition is orig-
inally due to [Pg], although it is presented here in the simpler, but equivalent, form
given in [BLO2].

We first fix some general notation. For any group G, and any pair of subgroups
H,K ≤ G, we set

NG(H,K) = {x ∈ G |xHx−1 ≤ K},
let cx denote conjugation by x on the left (cx(g) = xgx−1), and set

HomG(H,K) =
{
cx ∈ Hom(H,K)

∣∣ x ∈ NG(H,K)
} ∼= NG(H,K)/CG(H).

By analogy, we also write AutG(H) = HomG(H,H) ∼= NG(H)/CG(H).

A fusion system over a finite p-group S is a category F , where Ob(F) is the set of all
subgroups of S, where each morphism set HomF(P,Q) is a set of group monomorphisms
from P to Q which contains HomS(P,Q), and where each ϕ ∈ HomF(P,Q) is the
composite of an isomorphism in F followed by an inclusion. Two subgroups P,Q ≤ S
are said to be F-conjugate if they are isomorphic as objects of the category F . A
subgroup P ≤ S is fully centralized in F if |CS(P )| ≥ |CS(P ′)| for all P ′ ≤ S which is
F -conjugate to P . Similarly, a subgroup P ≤ S is fully normalized in F if |NS(P )| ≥
|NS(P ′)| for all P ′ ≤ S which is F -conjugate to P .

A fusion system F is called saturated if the following two conditions hold:
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(I) For each P ≤ S which is fully normalized in F , P is fully centralized in F and
AutS(P ) ∈ Sylp(AutF(P )).

(II) If P ≤ S and ϕ ∈ HomF(P, S) are such that ϕP is fully centralized, and if we set

Nϕ = {g ∈ NS(P ) |ϕcgϕ−1 ∈ AutS(ϕP )},

then there is ϕ ∈ HomF(Nϕ, S) such that ϕ|P = ϕ.

If G is a finite group and S ∈ Sylp(G), then by [BLO2, Proposition 1.3], the category
FS(G), defined by letting Ob(FS(G)) be the set of all subgroups of S and setting
MorFS(G)(P,Q) = HomG(P,Q), is a saturated fusion system.

Again let F be an abstract saturated fusion system over a p-group S. A subgroup
P ≤ S is F-centric if CS(P ′) = Z(P ′) for all P ′ ≤ S which is F -conjugate to P . A
subgroup P ≤ S is F-radical if OutF(P ) is p-reduced; i.e., if Op(OutF(P )) = 1. Let
F c ⊆ F denote the full subcategory whose objects are the F -centric subgroups of S.

If F = FS(G) for some finite group G, then P ≤ S is F -centric if and only if
P is p-centric in G (i.e., Z(P ) ∈ Sylp(CG(P ))), and P is F -radical if and only if
NG(P )/(P ·CG(P )) is p-reduced. Thus in this situation, a subgroup being F -radical is
not the same as its being a radical p-subgroup of G.

Alperin’s fusion theorem in a version for abstract saturated fusion systems was first
formulated and proven by Puig [Pg]. Since we need to use it several times in what
follows, we state the following version of the theorem, which is proven in [BLO2,
Theorem A.10].

Theorem 1.1. Let F be a saturated fusion system over a p-group S. Then each
morphism in F is a composite of restrictions of morphisms between subgroups of S
which are F-centric, F-radical, and fully normalized in F . More precisely, for each
P, P ′ ≤ S and each ϕ ∈ IsoF(P, P ′), there are subgroups P = P0, P1, . . . , Pk = P ′,
subgroups Qi ≥ 〈Pi−1, Pi〉 (i = 1, . . . , k) which are F-centric, F-radical, and fully
normalized in F , and automorphisms ϕi ∈ AutF(Qi), such that ϕi(Pi−1) = Pi for all i
and ϕ = (ϕk|Pk−1

) ◦ · · · ◦ (ϕ1|P0). �

Again let F be a fusion system over the p-group S. A centric linking system asso-
ciated to F is a category L whose objects are the F -centric subgroups of S, together

with a functor π : L −−−→ F c, and “distinguished” monomorphisms P
δP−−→ AutL(P )

for each F -centric subgroup P ≤ S, which satisfy the following conditions.

(A) π is the identity on objects. For each pair of objects P,Q in L, Z(P ) acts freely
on MorL(P,Q) via composition and δP , and π induces a bijection

MorL(P,Q)/Z(P )
∼=−−−−−−→ HomF(P,Q).

(B) For each F -centric subgroup P ≤ S and each x ∈ P , π(δP (x)) = cx ∈ AutF(P ).

(C) For each f ∈ MorL(P,Q) and each x ∈ P , the following square commutes in L:

P
f → Q

P

δP (x)
↓

f → Q.

δQ(π(f)(x))
↓
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A p-local finite group is defined to be a triple (S,F ,L), where S is a finite p-group,
F is a saturated fusion system over S, and L is a centric linking system associated to
F . The classifying space of the triple (S,F ,L) is the p-completed nerve |L|∧p .

For any finite group G with Sylow p-subgroup S, a category Lc
S(G) was defined in

[BLO1], whose objects are the p-centric subgroups of G, and whose morphism sets are
defined by

MorLc
S(G)(P,Q) = NG(P,Q)/Op(CG(P )).

Since CG(P ) = Z(P ) × Op(CG(P )) when P is p-centric in G, Lc
S(G) is easily seen

to satisfy conditions (A), (B), and (C) above, and hence is a centric linking system
associated to FS(G). Thus (S,FS(G),Lc

S(G)) is a p-local finite group, with classifying
space |Lc

S(G)|∧p ' BG∧
p (see [BLO1, Proposition 1.1]).

The following lifting lemma for linking systems helps to motivate some of the con-
structions made here.

Lemma 1.2. Let (S,F ,L) be a p-local finite group. Fix F-centric subgroups P,Q,R ≤
S, and let ϕ ∈ MorL(P,R) and ψ ∈ MorL(Q,R) be morphisms such that Im(π(ϕ)) ≤
Im(π(ψ)). Then there is a unique morphism χ ∈ MorL(P,Q) such that ϕ = ψ ◦ χ.

Proof. By definition of a fusion system, there is f ∈ HomF(P,Q) such that π(ϕ) =
π(ψ) ◦ f in HomF(P,R). Fix any χ′ ∈ π−1(f). By (A), there is a unique g ∈ Z(P )
such that ϕ = ψ ◦ χ′ ◦ δP (g), and we set χ = χ′ ◦ δP (g). This proves existence, and the
proof uniqueness is similar (again using (A)). (See [BLO2, Lemma 1.10].) �

When working with a p-local finite group (S,F ,L), we always assume we have chosen
“inclusion morphisms” ιP ∈ MorL(P, S) for each P ; i.e., morphisms which are sent to
the inclusion of P in S under the functor π : L −−−→ F (and where ιS = IdS). Then
by Lemma 1.2, for each P ≤ Q ≤ S in L, there is a unique “inclusion” morphism
ιP,Q ∈ MorL(P,Q) such that ιP = ιQ ◦ ιP,Q. Moreover, for each ϕ ∈ MorL(P,Q), and
each P0 ≤ P and Q0 ≤ Q such that π(ϕ)(P0) ≤ Q0 and P0, Q0 ∈ Ob(L), there is a
unique “restriction” ϕ|P0,Q0 ∈ MorL(P0, Q0) such that ιQ0,Q ◦ ϕ|P0,Q0 = ϕ ◦ ιP0,P .

Again fix (S,F ,L), let |L| be the nerve (geometric realization) of the category L,
and let ∗ ∈ |L| be the vertex corresponding to the object S. Let

J = JL : Mor(L) −−−→ π1(|L|, ∗)
be the map which sends ϕ ∈ MorL(P,Q) to the loop in |L| formed by the edges [ϕ],
[ιP ], and [ιQ]. In particular, J sends each of the inclusions [ιP ] to the identity element
in the fundamental group. Also, J sends composites to products, and hence can be
thought of as a functor J : L −−−→ B(π1(|L|, ∗)).

Proposition 1.3. Let (S,F ,L) be a p-local finite group. For any group Γ, and any
map of sets

Φ̂ : Mor(L) −−−−−−→ Γ

which sends composites to products and sends inclusion morphisms to the identity, there

is a unique homomorphism Φ: π1(|L|, ∗) −−−→ Γ such that Φ̂ = Φ ◦ J . In other words,
π1(|L|, ∗) is the free group generated by the morphisms in L, modulo relations defined
by composition and inclusions.

Proof. Let B(Γ) be the category with one object ∗ and morphism group Γ. Then Φ̂
extends to a functor Ψ: L −−−→ B(Γ), and this in turn induces a map

|Ψ| : |L| −−−−−−→ |B(Γ)| = BΓ
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between the geometric realizations. Set

Φ = π1(|Ψ|) : π1(|L|, ∗) −−−−−−→ π1(|B(Γ)|, ∗) = Γ.

The relation Φ̂ = Φ ◦ J is clear by construction. The uniqueness of Φ holds since
every element of π1(|L|, ∗) can be represented by a loop which follows along the edges
of |L| (corresponding to morphisms in L), and any such loop can be factored as a
composite of loops in Im(J). �

Now, in the above situation, we let

τ = τL : S −−−→ π1(|L|, ∗)
denote the composite J ◦ δS. If g ∈ P ≤ S, then by axiom (C) (applied with Q = S
and f = ιP ), ιP ◦ δP (g) = δS(g) ◦ ιP . Thus τ(g) = J(δS(g)) = J(δP (g)). In other words,
τ(g) can be defined using any δP as long as g ∈ P .

Proposition 1.4. Fix a p-local finite group (S,F ,L), a (possibly infinite) group Γ,
and an epimorphism

Φ: π1(|L|, ∗) −−−−−� Γ.

Then the following hold.

(a) Ker(Φ ◦ τ) is strongly F-closed in S.

(b) If Φ ◦ τ is the trivial homomorphism, then Φ ◦ J restricts to a surjective homomor-
phism from AutL(S)/δS(S) ∼= OutF(S) onto Γ.

Proof. For any isomorphism ϕ ∈ IsoF(P,Q) in F between F -centric subgroups, and
any g ∈ P , τ(g) and τ(ϕ(g)) are conjugate in π1(|L|, ∗) (since ϕ lifts to an isomor-
phism in L); and hence either both lie in Ker(Φ) or neither does. By Alperin’s fusion
theorem (Theorem 1.1), any pair of F -conjugate elements of S is linked by a sequence
of isomorphisms between F -centric subgroups, and hence (a) holds.

Point (b) is basically a consequence of [BCGLO2, Lemma 3.4], but because it’s hard
to fit this situation precisely into that setting, we repeat the argument here. Assume
Φ ◦ τ is the trivial homomorphism. In particular, Φ ◦ J factors through a map

J ′ : Mor(F c) −−−−−−→ Γ

in this case, since Φ ◦ J(Z(P )) = 1 for all P . We must show that J ′|AutF (S) is onto.
Assume otherwise. By Alperin’s fusion theorem again, Γ is generated by the sub-
groups J ′(AutF(P )) for P ≤ S F -centric, F -radical, and fully normalized; we fix such
a subgroup P � S which is maximal among all P ≤ S such that J ′(AutF(P )) �
J ′(AutF(S)). Choose ϕ ∈ AutF(P ) such that J ′(ϕ) /∈ J ′(AutF(S)).

Now, J ′(AutS(P )) = 1 and AutS(P ) ∈ Sylp(AutF(P )); hence Op′(AutF(P )) ≤
Ker(J ′). Set K = ϕAutS(P )ϕ−1. Since K and AutS(P ) are both Sylow p-subgroups
of Op′(AutF(P )), there is χ ∈ Op′(AutF(P )) such that χϕ normalizes AutS(P ). Thus
J ′(χϕ) = J ′(ϕ), and by axiom (II) in the definition of a saturated fusion system, χϕ
extends to an automorphism ϕ ∈ AutF(NS(P )). But J ′(ϕ) = J ′(χϕ) (since J sends
inclusions to the identity), J ′(ϕ) ∈ J ′(AutF(S)) by the maximality of P , and this is a
contradiction. This finishes the proof of (b). �

For any n ≥ 0, we write n = {1, 2, . . . , n}. Let C(n) denote the category whose
objects are the nonempty subsets I ⊆ n, with a unique morphism I → J whenever
I ⊆ J . By an amalgam of groups of rank n, we mean a functor A from C(n)op to the
category of groups and monomorphisms. A faithful completion of the amalgam A is a
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collection of monomorphisms fI : A(I) −−−→ G for all ∅ 6= I ⊆ n which commute with
the monomorphisms induced by A, such that

G = 〈f1(A(1)), f2(A(2)), . . . , fn(A(n))〉.

The following properties of an amalgam of groups are well known; we include them
here for ease of later reference.

Proposition 1.5. Fix n ≥ 3, let A be an amalgam of groups of rank n, and let G be
a faithful completion of A. Write GI = A(I), Gi = G{i}, Gij = G{i,j}, etc. for short,
and regard these as subgroups of G for simplicity. Let X be the corresponding coset
complex: the simplicial complex with vertex set

∐n
i=1(G/Gi), with edges the union of

the G/Gij, etc. Then X is connected, and there is a short exact sequence of groups:

1 −−−→ π1(X) −−−−−→ colim(A) −−−−−→ G −−−→ 1.

In particular, the natural homomorphism from colim(A) to G is an isomorphism if and
only if X is simply connected.

Proof. This follows from [T, Proposition 1]. Alternatively, it follows from the following
argument which applies van Kampen’s theorem to the Borel construction on X.

Consider the Borel construction on X:

XhG
def
= EG×G X =

(
EG×X

)/
∼.

Here, EG is a contractible space upon which G acts freely on the right, and we identify
(yg, x) ∼ (y, gx) for all y ∈ EG, g ∈ G, and x ∈ X. Thus EG × X is a covering
space of XhG, and is also homotopy equivalent to X. By the standard properties of
fundamental groups in covering spaces, this yields an exact sequence

1 −−−→ π1(X) −−−−−→ π1(XhG) −−−−−→ G,

where the last homomorphism is surjective if and only if X is connected.

For each i = 1, . . . , n, let Xi ⊆ X be the union of the orbit G/Gi together with all
orbits of open simplices which have this orbit as a vertex. Thus X =

⋃n
i=1Xi. Also,

Xi has one connected component for each vertex in G/Gi (and the components are
contractible), and so π1((Xi)hG) ∼= Gi. Similarly, for each i 6= j, Xi ∩ Xj has one
connected component for each element of G/Gij, and π1((Xi ∩ Xj)hG) ∼= Gij. So by
van Kampen’s theorem, π1(XhG) ∼= colim(A). Since G is generated by the Gi, this also
proves that π1(XhG) surjects onto G, and hence that X is connected. �

Proposition 1.6. Fix a finite group G, a prime p, and a Sylow subgroup S ∈ Sylp(G).
Assume P1, . . . , Pn ≤ S are all centric in G (i.e., CG(Pi) ≤ Pi), and are all weakly
closed in S with respect to G. Define, for each I ⊆ n,

PI = 〈Pi | i ∈ I〉 and GI = NG(PI) =
⋂
i∈I

NG(Pi).

Let L ⊆ Lc
S(G) be the full subcategory with Ob(L) = {PI |∅ 6= I ⊆ n}. Then

π1(|L|) ∼= colim(A),

where A denotes the amalgam of rank n defined by setting A(I) = GI .

Proof. Let X be as in Proposition 1.5: the simplicial complex with vertex set the
disjoint union of the G/Gi, edges the disjoint union of the G/(Gi ∩Gj), etc. Since the
PI are weakly closed and GI = NG(PI), X is equivalent (as a simplicial complex with
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G-action) to the poset of all subgroups of G which are conjugate to some PI . Hence
by [BLO1, Lemma 1.2] (or its proof),

|L| ' EG×G X.

So as in Proposition 1.5, π1(|L|) ∼= colim(A). (Note, however, that in this case, |L| is
connected only if G = 〈G1, . . . , Gn〉.) �

The following examples will be needed later.

Proposition 1.7. Fix a prime p, a finite group G, and a Sylow p-subgroup S ≤ G.

(a) Assume G is a simple group of Lie type in characteristic p of Lie rank ≥ 3, or a
quasisimple group in characteristic p of Lie rank ≥ 3 with center a p-group. Then
π1(|Lc

S(G)|) ∼= G. Also, for any S ∈ Sylp(G), G is the colimit of the diagram of
parabolic subgroups of G which contain S.

(b) Assume G is p-constrained. Then π1(|Lc
S(G)|) ∼= G/Op′(G).

Proof. (a) By the Borel-Tits theorem [GLS, Corollary 3.1.6], together with [Gr, Re-
mark 4.3], there is a bijection of posets from the poset of parabolic subgroups of G to
the opposite poset of the poset of radical p-centric subgroups of G, defined by sending
P 7→ Op(P), and where NG(Op(P)) = P.

We claim that for each S ∈ Sylp(G) and each parabolic subgroup P ≥ S, Op(P)
is weakly closed in S with respect to G. The following argument is taken from [AS,
Lemma I.2.5]. Assume otherwise, and let Q = Op(P) be maximal among subgroups
of this form which are not weakly closed in S. By Alperin’s fusion theorem (Theorem
1.1), there is a radical subgroup Q′ ≤ S such that Q′ 	 Q — hence Q′ = Op(P

′) for
some other parabolic subgroup P′ $ P — and an element x ∈ NG(Q′) = P′ such that
xQx−1 6= Q. But this is impossible, since P′ ≤ P = NG(Q).

Thus, by Proposition 1.6, π1(|Lc
S(G)|) is isomorphic to the colimit of the amalgam

A formed by the parabolic subgroups containing a given Sylow p-subgroup. By Propo-
sition 1.5, there is a short exact sequence

1 −−−→ π1(X) −−−−−→ colim(A) −−−−−→ G −−−→ 1,

where X is the geometric realization of the poset of parabolic subgroups.

If G has Lie rank n, then by [Bw, §V.3], the geometric realization of the poset of
its parabolic subgroups is a building of rank n, and hence by [Bw, Theorem IV.5.2]
has the homotopy type of a bouquet of (n− 1)-spheres. Thus if n ≥ 3, the geometric
realization is simply connected, and colim(A) ∼= G.

(b) Assume G is p-constrained, and set G = G/Op′(G) and Q = Op(G). Thus

C
G
(Q) = Z(Q), and AutL(Q) ∼= G. Let Lrc

S (G) ⊆ Lc
S(G) be the full subcategory with

objects the centric radical subgroups of G; then |Lrc
S (G)| and |Lc

S(G)| have the same

homotopy type by [BCGLO1, Theorem B]. Since each centric radical subgroup of G

contains Q, one easily sees that |Lrc
S (G)| contains as deformation retract the nerve of

the subcategory with unique object Q. Thus

|Lc
S(G)| = |Lc

S(G)| ' |Lrc
S (G)| ' BAutL(Q) ' BG.

In particular, π1(|Lc
S(G)|) ∼= G. �
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2. The linking system of Spin7(q)

Let q be any prime power such that q ≡ ±3 (mod 8). In this section, we describe
the fundamental group of LSol(q) as the colimit of a certain triangle of groups. Before
doing this, we first need to look at the linking system of Spin7(q).

Set H = Spin7(q) for short, and fix S ∈ Syl2(H). By [BCGLO1, Theorem B],
|Lcr

S (H)| ' |Lc
S(H)| (the inclusion is a homotopy equivalence), and thus these two

spaces have the same fundamental group. By [LO, Proposition A.12], every 2-subgroup
P ≤ H which is centric and radical in the fusion system FS(H) is in fact centric in
H; i.e., CH(P ) = Z(P ). (This also follows from the proof of Proposition 2.1 below.)
Hence the linking system Lrc

S (H) is a full subcategory of the transporter category of
H: MorLrc

S (H)(P,Q) is the set of elements of H which conjugate P into Q. Thus there
is a functor from Lrc

S (H) to B(H) — the category with one object and morphism group
H — which sends a morphism to the corresponding element in H, and in particular
sends inclusions to the identity. Upon taking fundamental groups of the geometric
realizations of these categories, this defines a homomorphism

µ : π1(|Lc
S(H)|) ∼= π1(|Lrc

S (H)|) −−−−−−→ H.

Proposition 2.1. For any prime power q ≡ ±3 (mod 8), there is an isomorphism

π1(|Lc
2(Spin7(q))|) ∼= Spin7(Z[1

2
])

which commutes with the natural homomorphisms

π1(|Lc
2(Spin7(q))|)

µ−−−−−−→ Spin7(q)←−−−−−− Spin7(Z[1
2
]).

Proof. By [BCGLO2, Theorem 6.8], this is equivalent to showing that

π1(|Lc
2(Ω7(q))|) ∼= Ω7(Z[1

2
]).

We work with Ω7(q) for simplicity.

Set V = Fq
7, let q be its standard quadratic form, and fix an orthonormal basis

{u1, . . . , un} of V . For each i = 1, 2, 3, set v2i−1 = u2i−1 + u2i and v2i = u2i−1 − u2i.
Thus {v1, . . . , v6, u7} is an orthogonal basis of V , and q(vj) = 2 for all j = 1, . . . , 6.

Set Wi = 〈u2i−1, u2i〉 = 〈v2i−1, v2i〉 (i = 1, 2, 3). Set Ĝ = GO(V, q) ∼= GO7(q) and
G = Ω(V, q) ∼= Ω7(q).

Let Γ4 ≤ Ω(W1 ⊕ W2, q) be the subgroup of those automorphisms α of the form
α(ui) = εiuσ(i), where εi = ±1, ε1ε2ε3ε4 = 1, and σ ∈ Alt4 lies in the normal subgroup
of order 4. Thus Γ4

∼= D8 ×C2 D8 is an extraspecial 2-group of order 25. Consider the
following subgroups of G:

R = {α ∈ G |α(ui) = ±ui for all i = 1, . . . , 7}
R∗ = {α ∈ G |α(vi) = ±vi for all i = 1, . . . , 6}
Q = {α ∈ G |α|W1⊕W2 ∈ Γ4, α(ui) = ±ui for i = 5, 6, 7}.

Set S = RR∗Q. By [GO, Proposition 10.1], S ∈ Syl2(G), and the seven subgroups R,
R∗, Q, RR∗, RQ, R∗Q, and S = RR∗Q are representatives for the distinct conjugacy
classes of 2-subgroups of G = Ω7(q) which are centric and radical in the fusion system
F2(G). Also, R, R∗, and Q are all weakly closed in S = RR∗Q ∈ Syl2(G), and hence
NG(P1P2) = NG(P1) ∩NG(P2) for any pair P1, P2 of such subgroups.

Let L ⊆ Lc
2(G) be the full subcategory whose objects are the subgroups of G which

are centric and radical in F2(G). By [BCGLO1, Theorem 3.5], |L| ' |Lc
2(G)|, and hence
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they have the same fundamental group. By Proposition 1.6, π1(|L|) is the colimit of
the triangle of groups A with vertices NG(R), NG(R∗), and NG(Q) and with edges
their pairwise intersections.

Now set Γ = Ω7(Z[1
2
]), and define bases {u1, . . . , u7} and {v1, . . . , v6, u7} of Z[1

2
]7

analogous to the above elements. Via these bases, we can lift R, R∗, and Q to Γ, and
check directly that NΓ(P ) ∼= NG(P ) for P any of these three subgroups.

We want to compare colim(A) to a similar colimit of subgroups of Γ studied by
Kantor in [Ka, §§5,7]. He constructs a certain 3-dimensional complex ∆7, together
with an action of Γ which is transitive on 3-simplices. This action has four orbits of
vertices

Γ/NΓ(R), Γ/NΓ(Q), Γ/W+, Γ/W−,

where W+ ∼= W− are representatives of the two conjugacy classes of Ω7(2) in Γ, and
W+∩W− = NΓ(R∗). (See [Ka, p.213].) By [Ka, Corollary 7.4], ∆7 is equivalent to the
Euclidean building for Ω7(Q2), and hence contractible. So by Proposition 1.5 again, if
we let A7 denote the rank four amalgam consisting of the four stabilizer subgroups of
a 3-simplex and their intersections, then colim(A7) ∼= Γ.

We now construct group homomorphisms

colim(A)
Φ−−−−−−−→←−−−−−−−
Ψ

colim(A7),

which will be inverses to each other. The first one is clear: Φ is defined by sending
NG(P ) to NΓ(P ) for P = R and Q, and NG(R∗) to W+ ∩W−. To define Ψ, we first
note that by [Ka, p.213] again, W± ∩NΓ(R), W± ∩NΓ(Q), and NΓ(R∗) are the three
maximal parabolic subgroups of W± ∼= 2Sp6(2) containing S ∈ Syl2(W

±), and the
colimit of these groups (together with their intersections) is W± by Proposition 1.7(a).
This defines homomorphisms from W± to colim(A), and together with the canonical
isomorphisms NΓ(P ) ∼= NG(P ) for P = R and Q these induce a homomorphism Ψ. It
is clear by construction that Φ and Ψ are inverses, and thus colim(A) ∼= colim(A7) ∼=
Spin7(Z[1

2
]).

See also [GO, Theorem 10.2] for a slightly different argument. �

We now set up some notation which will be used in this section and the next. For
any odd prime power q, there is a homomorphism

ω : SL2(Fq)
3 −−−−−−→ Spin7(Fq),

with Ker(ω) = 〈(−I,−I,−I)〉, which arises from identifications Spin3(Fq) ∼= SL2(Fq)

and Spin4(Fq) ∼= SL2(Fq)
2. (See [LO, Definition 2.2] for more details.) The three

factors are ordered so that Z(Spin7(Fq)) = 〈ω(−I,−I, I)〉. We write [[X1, X2, X3]] =
ω(X1, X2, X3) for short, and set U = 〈[[±I,±I,±I]]〉 ∼= C2

2 . By [LO, Proposition 2.5]
or [AC, Lemma 4.4(c)],

C
Spin7(Fq)

(U) = ω(SL2(Fq)
3) and N

Spin7(Fq)
(U) = ω(SL2(Fq)

3)·〈τ〉

where τ 2 = 1 and τ [[X1, X2, X3]]τ
−1 = [[X2, X1, X3]]. Finally, Im(ω) ∩ Spin7(q) is

generated by ω(SL2(q)
3), together with an element [[Y, Y, Y ]] for Y ∈ NSL2(q2)(SL2(q))

but not in SL2(q). This will be described in more detail in the next section, in the
proof of Lemma 3.1.

We now restrict to the case q = 3. Let SL2(3) be the normalizer in SL2(F3) of

SL2(3). Thus SL2(3) contains SL2(3) with index 2, and is the 2-fold central extension
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of Sym(4) whose Sylow 2-subgroup is quaternion of order 16. Set

K̂ = (SL2(3))3/〈(z, z, z)〉oSym(3) and B̂ = (SL2(3))
3/〈(z, z, z)〉·〈τ〉 ≤ K̂,

where τ = (1 2) ∈ Sym(3) acts by switching the first two coordinates. Let [X1, X2, X3]

denote the class of a triple (X1, X2, X3). Choose any Y ∈ SL2(3)rSL2(3), and set

B1 =
(
SL2(3)3/〈(z, z, z)〉

)
·
〈
[Y, Y, Y ]

〉
=

{
[X1, X2, X3] ∈ (SL2(3))

3/〈(z, z, z)〉
∣∣X1 ≡ X2 ≡ X3 (mod SL2(3))

}
.

Finally, define

K = B1oSym(3) ≤ K̂ and B = B̂ ∩K = B1〈τ〉,
and let ω : B −−−→ Spin7(3) be the homomorphism induced by ω.

The following two propositions hold, in fact, for Lc
Sol(q) for any q ≡ ±3 (mod 8). We

state them here only for q = 3, since that simplifies somewhat the proofs, and suffices
for our later applications.

Proposition 2.2. Set H = Spin7(Z[1
2
]). Then ω lifts to an embedding λ : B −−−→ H;

and there is an epimorphism

χ : H ∗
B
K −−−−−� π1(|Lc

Sol(3)|),

where H ∗B K is the amalgamated free product defined by the amalgam(
H

λ←−−−− B
incl−−−−→ K

)
.

Proof. Fix S ∈ Syl2(B) ⊆ Syl2(Spin7(3)). By the constructions in [LO] and [AC],
Lc

Sol(q) is generated by its two subcategories Lc
S(Spin7(3)) and Lc

S(K), which intersect
in Lc

S(B). Also, π1(|Lc
S(K)|) ∼= K and π1(|Lc

S(B)|) ∼= B by Proposition 1.7(b) (K
and B are 2-constrained and O2′(K) = O2′(B) = 1). The inclusion of Lc

S(B) into
Lc

S(Spin7(3)) induced by ω now induces an inclusion of B into H ∼= π1(|Lc
S(Spin7(3))|),

together with a homomorphism

χ : H ∗
B
K −−−−−−→ π1(|Lc

Sol(3)|);

and χ is surjective since by construction, all morphisms in Lc
Sol(3) are composites of

morphisms in these subcategories. �

The following proposition will be needed in Section 5, in the proof that |Lc
Sol(3)| is

simply connected.

Proposition 2.3. Again set H = Spin7(Z[1
2
]), and

χ : H ∗
B
K −−−−−� π1(|Lc

Sol(3)|).

be as in Proposition 2.2. Then there are subgroups H0 ≤ H, K0 ≤ K, and B0 =
H0 ∩ K0 ≤ B such that H0/Z ∼= Sp6(2), [K:K0] = 3, and (H0 ≥ B0 ≤ K0) is an
amalgam of maximal subgroups of Co3. Furthermore, if ω 6= 1 (is not the trivial
homomorphism), then ω|〈H0,K0〉 6= 1.

Proof. The inclusions of linking systems Lc
S(H0) ⊆ Lc

S(Spin7(q)) and Lc
S(K0) ⊆ Lc

S(K)
(where S ∈ Syl2(Spin7(q))) were constructed in [AC, Theorem B], in a way so that they
intersect in Lc

S(B0). Also, H0
∼= π1(|Lc

S(H0)|) by Proposition 1.7(a), and the analogous
result for K0 and B0 holds by Proposition 1.7(b). The inclusions H0 ≤ H and K0 ≤ K
now follow upon taking fundamental groups.
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Now let N E H ∗B K be the normal closure of 〈H0, K0〉. To prove the last statement,
we must show that N = H ∗B K. Set G = Spin7(3), and fix S ∈ Syl2(G), also
regarded as a subgroup of B. Since [B:B0] = 3, B0 contains S (up to conjugacy),
and hence N ≥ S. By [Ka, Corollary 7.4], H ∼= Spin7(Z[1

2
]) is generated by two of

the subgroups W± ∼= 2Sp6(2) described in the proof of Proposition 2.1, which contain
S by construction. (Note that in [Ka], G7 is defined to be the subgroup of SO7(Q)
generated by these two subgroups). Since both of these are quasisimple, N contains
W+ and W− since it contains S, and thus N ≥ H ≥ B. Since the normal closure of B
in K is K, this shows that N = H ∗B K. �

3. Identifying FSol(q) from its Sylow 2-subgroup

For any odd prime power q, let FSol(q) be the exotic fusion system constructed in
[LO], over a 2-group S(q). Our aim in this section is to prove Theorem 3.4, which
states that FSol(q) and FSol(q

′) are isomorphic if and only if S(q) and S(q′) have the
same order.

The results in this section will be used to reduce our main theorem — the simple
connectivity of |Lc

Sol(q)| for all odd prime powers q — to the case where q is a power
of 3.

We first need some concrete information about the structure of the Sylow subgroups
of these groups, and of their fusion.

Lemma 3.1. Let q be an odd prime power, set H = Spin7(q), and let S ∈ Syl2(H).
Set F = FSol(q). Set n = v2(q

2− 1) (i.e., 2n is the highest power of 2 dividing q2− 1),
and let Q2n be a generalized quaternion group of order 2n. Then the following hold.

(a) There are unique normal subgroups U E S and E E S which are elementary abelian
of rank two and three, respectively.

(b) There is a unique abelian subgroup T ≤ S0 which is homocyclic of rank three and
exponent 2n−1.

(c) There are exactly six normal subgroups of CS(U) which are isomorphic to Q2n.

They can be labelled R1, R2, R3, R1, R2, R3 so as to have the following properties:

(1) For each i = 1, 2, 3, URi = URi, and Ri ∩ Ri is cyclic of order 2n−1 and
contained in T .

(2) Of the Ri and Ri, R3 and R3 are the only ones which are normal in S.

(3) If P ≤ Ri is quaternion of order 8, then AutNH(U)(P ) = Aut(P ). If P ≤ Ri is
quaternion of order 8, then AutNH(U)(P ) = AutS(P ).

(4) The three subgroups R1, R2, and R3 are NF(E)-conjugate.

(d) Let q′ be any other odd prime power such that v2(q
2 − 1) = v2(q

′2 − 1). Set
H ′ = Spin7(q

′), fix S ′ ∈ Syl2(H
′), set F ′, and let U ′ ≤ E ′ E S ′ be as in (a).

Let R′
i, R

′
i ≤ S ′ be the subgroups which have the same properties as the Ri, Ri ≤ S

described in (c). Then any isomorphism ϕ : S
∼=−−−→ S ′ which induces an isomor-

phism of categories NF(E) ∼= NF ′(E ′) and sends the Ri to the R′
i also induces an

isomorphism of fusion categories FS(NH(U)) ∼= FS′(NH′(U ′)).
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Proof. We recall the notation used in Section 2. There is a homomorphism

ω : SL2(Fq)
3 −−−−−−→ Spin7(Fq)

with Ker(ω) = 〈(−I,−I,−I)〉, and we write [[X1, X2, X3]] = ω(X1, X2, X3). Set U =
{[[±I,±I,±I]]}, and set B = NH(U), B0 = CH(U) = H ∩ Im(ω), and S0 = CS(U).

Set L = SL2(q), and let L̂ ≤ SL2(q
2) be the subgroup generated by L together with

the matrix diag(
√
a, 1/
√
a) for any a ∈ F×q which is not a square (so [L̂:L] = 2). Then

B0 =
{
[[X1, X2, X3]]

∣∣Xi ∈ L̂,X1 ≡ X2 ≡ X3 (mod L)
}
≤ ω(L̂3) ∼= L̂3

/〈
(−I,−I,−I)

〉
;

and B = B0〈τ〉, where τ 2 = 1 and τ [[X1, X2, X3]]τ
−1 = [X2, X1, X3].

Fix Sylow subgroups Q̂ ∈ Syl2(L̂) and Q ∈ Syl2(L); then Q ∼= Q2n and Q̂ ∼= Q2n+1 .

Fix a pair of generators y, b ∈ Q̂, where |y| = 2n and |b| = 4, and set a = y2n−2
and

z = a2(= −I). Thus 〈a, b〉 ∼= Q8, and 〈z〉 = Z(Q̂). Since n ≥ 3, 〈y〉 is the unique cyclic

subgroup of Q̂ of order 2n. Thus

S0 =
{
[[X1, X2, X3]]

∣∣Xi ∈ Q̂,X1 ≡ X2 ≡ X3 (mod Q)
}

=
{
[[X1, X2, X3]]

∣∣Xi ∈ Q
}
·
〈
[[y, y, y]]

〉
,

and S = S0〈τ〉.
Set y1 = [[y, 1, 1]], y2 = [[1, y, 1]], y3 = [[1, 1, y]]; and similarly for bi, ai, and zi. Also,

set ŷ = [[y, y, y]] = y1y2y3, and similarly for b̂ and â. (By definition, [[z, z, z]] = 1.) We
defined U = 〈z1, z2〉 ∼= C2

2 , and now set

E = U〈â〉 = 〈z1, z2, â〉 ∼= C3
2 .

Let T ≤ S0 be the “toral” subgroup:

T = {[[yi, yj, yk]] | i ≡ j ≡ k (mod 2)}.
Then T ∼= (C2n−1)3. If T ′ ≤ S0 is any subgroup such that T ′ ∼= T , then T ′/(T ∩ T ′) ≤
S0/T is elementary abelian, so T ′ ≥ E (the 2-torsion subgroup of T ), T ′ ≤ CS0(E) =

T ·〈̂b〉; and since b̂ = [[b, b, b]] inverts T it follows that T ′ = T . This proves (b). (In fact,
T is the unique subgroup of S of its isomorphism type: this was shown in the proof of
[LO, Proposition 2.9], and was shown in [AC, Lemma 4.9(c)] when n = 3.)

If V E S is a normal elementary abelian subgroup, then [V, T ] ≤ V ∩ T is an

elementary abelian subgroup of T . Fix v ∈ V . If v /∈ T 〈τ, b̂〉, then [v, ŷ] has order

2n−1 ≥ 4; while if v ∈ τ ·〈T, b̂〉, then [v, y2
1] has order 2n−1. Also, if v ∈ b̂·T , then

[v, T ] ≥ E. Thus if rk(V ) ≤ 3, then V ≤ T , and hence V ≤ E (the 2-torsion subgroup
of T ). This shows that E is the unique such normal subgroup of rank 3. Also, since
the four elements [[zia, zja, zka]] of ErU are all S-conjugate to each other, U is the
unique such subgroup of rank 2. This proves (a).

For i = 1, 2, 3, set Ri = 〈y2
i , bi〉 ∼= Q2n . Thus R1 is the image in S0 of Q× 1× 1, R2

is the image of 1×Q× 1, etc. Also, for each i, RiU ∼= Q2n ×C2. Let Ri ≤ RiU be the

unique subgroup isomorphic to Ri such that Ri ∩ Ri ≤ T and is cyclic of order 2n−1.

All six of these subgroups Ri and Ri are normal in S0.

Now, S0/T ∼= C3
2 , with coset representatives the elements bi1b

j
2b

k
3 for i, j, k ∈ {0, 1}.

Also, [bi, T ] is cyclic of order 2n−1 for each i = 1, 2, 3; while for any x ∈ S0 such that
xT /∈ {T, biT}, U ≤ [x, T ] and hence [x, T ] is not cyclic. If R E S0 is isomorphic to
Q2n , then since R and T are both normal, [R, T ] ≤ R ∩ T must be cyclic; and thus
[R, T ] ≤ R ≤ T 〈bi〉 for some i. Hence R = [R, T ]〈gbi〉 for some g ∈ T such that
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(gbi)
2 = b2i ; i.e., such that bigb

−1
i = g−1; and this implies that g ∈ [R, T ]U . Hence

R = Ri or R = Ri, and this finishes the proof that the Ri and Ri are the unique
normal subgroups of S0 isomorphic to Q2n .

Points (c1), (c2), and (c3) now follow easily from the above descriptions of these
subgroups of S. By the construction of F = FSol(q) in [LO] or [AC], there is an
element β ∈ AutF(S0) which permutes the subgroups R1, R2, and R3 cyclically. Also,
β(T ) = T by (b) (the uniqueness of T ), so β normalizes E (the 2-torsion subgroup of
T ). Thus the three subgroups Ri are conjugate in NF(E). This proves (c4), and hence
finishes the proof of (b) and (c).

It remains to prove (d). Let q′ be any other odd prime power such that v2(q
2− 1) =

v2(q
′2− 1), and let H ′ = Spin7(q

′), S ′ ∈ Syl2(H
′), and F ′ = FSol(q

′). Let U ′ ≤ E ′ ≤ S ′

be the unique normal subgroups with U ′ ∼= U and E ′ ∼= E, and let R′
i be the subgroups

of CS′(U
′) with the same properties as the Ri E CS(U). Let ϕ : S

∼=−−−→ S ′ be an
isomorphism which induces an isomorphism of categories NF(E) ∼= NF ′(E ′), and which
sends each Ri to some R′

j,. In particular, ϕ(R3) = R′
3 by (c2), and hence ϕ sends

{R1, R2} to {R′
1, R

′
2}. Upon composing with conjugation by τ , if necessary, we can

assume that ϕ(Ri) = R′
i for all i. By (c3), the Ri and R′

i are contained in the factors
SL2(q) ≤ H,H ′.

Now, the only subgroups of Q̂ ∼= Q2n+1 whose automorphism groups are not 2-groups
are the quaternion subgroups of order 8. Hence FQ(L) is generated by FQ(Q) together

with the groups Aut(P ) for all P ≤ Q quaternion of order 8. Also, if P ≤ Q̂ is
quaternion of order 8 but not contained in Q, then Aut

bL(P ) = Aut
bQ(P ) since any

automorphism leaves P ∩Q invariant. This shows that FS0(B0) is generated by FS(S),
together with those automorphisms α ∈ Aut(PiRjRk) (where {i, j, k} = {1, 2, 3} and
Q8
∼= Pi ≤ Ri) such that α|RjRk

= Id and α|Pi
has order 3. Hence FS(B) is generated by

FS0(B0) and FS(S) together with all automorphisms of the form β ∈ Aut(P1P2R3〈τ ′〉)
for P1 ≤ R1 and P2 ≤ R2 both quaternion of order 8 and exchanged by τ ′ ∈ S0τ , where
β(τ) = τ , β|R3 = Id, and β|P1P2 has order 3. This proves that ϕ sends B = NH(U)-
fusion to NH′(U ′)-fusion, and thus induces an isomorphism of fusion categories. �

Recall that a subgroup H of a group G is strongly embedded in G (at the prime 2)
if H is a proper subgroup of even order such that |H ∩ Hg| is odd for all g ∈ GrH.
A 2-subgroup P ≤ G is essential if Z(P ) ∈ Syl2(CG(P )) and OutG(P ) has a strongly
embedded subgroup. In particular, if S ∈ Syl2(G) and P ≤ S an essential 2-subgroup
of G, then P is centric and radical in the fusion system FS(G).

By the Alperin-Goldschmidt fusion theorem [Go], every morphism in FS(G) is a
composite of restrictions of automorphisms of S, and of essential subgroups P ≤ S such
that NS(P ) ∈ Syl2(NG(P )) (i.e., are fully normalized in FS(G)). For this reason, we
need information about the essential 2-subgroups of Spin7(q), which means information
about the essential 2-subgroups of Ω7(q).

Lemma 3.2. Fix an odd prime power q, set G = Spin7(q), and fix S ∈ Syl2(G). Let
U ≤ E E S be the unique elementary abelian subgroups which are normal in S and of
rank two and three, respectively (see Lemma 3.1). If P ≤ S is an essential 2-subgroup
of G, then P is G-conjugate to a subgroup P ′ ≤ S such that either

(1) U E P ′ is an AutG(P ′)-invariant subgroup; or

(2) E E P ′ is an AutG(P ′)-invariant subgroup.
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Proof. Set V = F7
q, and let q be a quadratic form on V with orthonormal basis. We

identify G = Spin(V, q). Set Z = Z(G), G = G/Z = Ω(V, q), and S = S/Z, and let u
be a generator of U/Z.

Let P ≤ S be an essential 2-subgroup of G = Spin(V, q). Then P = P/Z is an

essential 2-subgroup of G (cf. [LO, Lemma A.11(e)]). Let V = V1 ⊕ · · · ⊕ Vm be a

decomposition of V as a sum of pairwise orthogonal P -invariant subspaces, chosen so
that m is as large as possible. This decomposition can be chosen such that for each

i, either Vi is irreducible as a P -representation, or it is a sum of two irreducible P -
representations neither of which supports a nondegenerate quadratic form (cf. [O1,

Lemma 7.1]). In particular, each element of N
G
(P ) leaves invariant the sum of all of

the Vi of any given dimension.

Set di = dim(Vi), and assume the summands are ordered so that the sequence
∆ = (d1, · · · , dm) is non-increasing. This sequence may be written in abbreviated
fashion, using exponents to indicate repeated dimensions. For example, (4, 13) is an
abbreviation for one such sequence. By [LO, Lemma A.6], each di is a power of 2, and
the discriminant of Vi is a square in F×q if di > 1.

Assume first that there is anN
G
(P )-invariant orthogonal decomposition V = V ′⊕V ′′,

where dim(V ′) = 4 and dim(V ′′) = 3. Let u′ be the involution (−Id)V ′ ⊕ IdV ′′ . Then

u′ centralizes P , so u′ ∈ P since P is 2-centric, and N
G
(P ) ≤ C

G
(u′). Also, u′ is

G-conjugate to u. Since u ∈ Z(S), there is P ′ ≤ S which is G-conjugate to P and such

that u ∈ Z(P ′) and N
G
(P ′) ≤ C

G
(u), and we are thus in the situation of case (1).

Next assume ∆ = (23, 1). Let Q ≤ G be the group of elements which are ±Id on
each of V1, V2, and V3 (i.e., on the 2-dimensional summands), are the identity on V4,
and which negate an even number of summands. Thus Q is a fours group, and is

G-conjugate to E/Z. Also, Q centralizes P , so Q ≤ Z(P ) since P is 2-centric in G,

and every element of Aut
G
(P ) leaves Q invariant. So by the same reasoning as in the

last paragraph, we are in the situation of case (2).

By inspection, we are now left only with the cases where ∆ = (2, 15) or (17). Let n+

be the number of 1-dimensional summands Vi = 〈v〉 such that q(v) is a square, and let
n− be the number of Vi = 〈v〉 such that q(v) is not a square. Then n− is even (since
V itself has square discriminant), and n+ is odd.

If ∆ = (2, 15), then P ≤ O2(q) × C5
2 , and O2(q) is a dihedral group. Also, since P

is 2-centric in G, it contains every involution which negates four of the 1-dimensional

summands. So the Vi are pairwise distinct as P -representations, and thus are permuted

by Aut
G
(P ). Also, N

G
(P ) contains elements whose projections to O(V1, q) represent

all cosets of G = Ω(V, q) in O(V, q), so Out
G
(P ) = OutO(V,q)(P ). Thus Out

G
(P ) ∼=

A × Sym(n+) × Sym(n−), where |A| ≤ 2. Since O2(Out
G
(P )) = 1, this implies that

A = 1, n+ = 5, and Out
G
(P ) ∼= Sym(5), which is impossible since Sym(5) does not

contain a strongly embedded subgroup.

Finally, if ∆ = (17), then similar (but simpler) arguments show that (n+, n−) = (7, 0)

or (1, 6), and that Out
G
(P ) is one of the groups Sym(7), Sym(6), Alt(7), or Alt(6) —

none of which contains a strongly embedded subgroup. �
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Recall that if F is a fusion system over a p-group S, and Φ is a set of F -morphisms,
then one says that F is generated by Φ, and writes F = 〈Φ〉, if every morphism φ in
F is a composite of restrictions of morphisms in Φ. That is, there is no fusion system
over S whose set of morphisms contains Φ, and which is properly contained in F .

Proposition 3.3. Fix an odd prime power q, set H = Spin7(q), let S ∈ Syl2(H),
and let U ≤ E ≤ S be the unique normal elementary abelian subgroups of ranks two
and three, respectively. Let F0 ⊆ F be the fusion systems over S: F0 = FS(H) and
F = FSol(q). Then

F0 = 〈NF0(U), NF0(E)〉 and F = 〈NF0(U), NF(E)〉.

Proof. By the Alperin-Goldschmidt fusion theorem [Go], for any finite group G, any
prime p, and any S ∈ Sylp(G), the fusion system FS(G) is generated by the automor-
phism groups AutG(P ) for P = S, and for subgroups P ≤ S which are essential in
FS(G).

Now set G = Spin7(q) and Z = Z(G), and set F ′
0 = 〈NF0(U), NF0(E)〉. Assume the

lemma is false for F0; i.e., that F ′
0 $ F0. Let P be a maximal essential subgroup for

which AutG(P ) is not contained in F ′
0. By Lemma 3.2, P is G-conjugate to some P ′

such that either U or E is contained in P ′ and is AutG(P ′)-invariant. Thus AutG(P ′)
is in F ′

0; while by the maximality assumption, P is conjugate to P ′ by an isomorphism
in F ′

0. It follows that AutG(P ) is in F ′
0, a contradiction; and thus F0 = F ′

0.

By construction in [LO], FSol(q) is generated by FS(Spin7(q)) together with one
morphism of order three which normalizes U , and which also can be chosen to normalize
E. So the result for F follows from that for F0. �

Recall that v2(−) denotes the 2-adic valuation of an integer: v2(n) = k if k is the
largest integer such that 2k|n.

Theorem 3.4. For any pair of odd prime powers q and q′, FSol(q) ∼= FSol(q
′) — and

hence Lc
Sol(q)

∼= Lc
Sol(q

′) — if and only if v2(q
2 − 1) = v2(q

′2 − 1).

Proof. By [LO, Lemma 3.2], together with the obstruction theory in [BLO2, Propo-
sition 3.1], FSol(q) has a unique associated linking system. Hence the equivalence of
linking systems follows from the equivalence of fusion systems.

Set H = Spin7(q) and H ′ = Spin7(q
′), fix S ∈ Syl2(H) and S ′ ∈ Syl2(H

′), and set
F = FSol(q) and F ′ = FSol(q

′). If v2(q
2 − 1) 6= v2(q

′2 − 1), then |S| 6= |S ′|, and hence
F 6∼= F ′.

Now assume v2(q
2 − 1) = v2(q

′2 − 1); we prove that F ∼= F ′. Let U ≤ E ≤ S and
U ′ ≤ E ′ ≤ S ′ be the normal subgroups of ranks two and three (Lemma 3.1(a)). Set
B = NH(U) and B′ = NH′(U ′). Then S ∼= S ′ by Lemma 3.1(d). We use the notation
of the proof of Lemma 3.1, when needed, to describe elements of S.

Set n = v2(q
2 − 1). By Lemma 3.1(b), there is a unique homocyclic subgroup

T ≤ S0 = CS(U) of rank 3 and exponent 2n−1. In particular, T is weakly closed and
centric in any fusion system over S. Hence by [BLO1, Proposition A6], NF(T ) is a
2-constrained, saturated fusion system; so by [BCGLO2, Proposition 4.3], there is a
group L such that S ∈ Syl2(L), F ∗(L) = O2(L), and FL = NF(T ). By construction

[LO, Section 2], we have CL(E) = CS(E) = T 〈̂b〉, where b̂ acts on T by inverting; and
L/CL(E) ∼= GL3(2) with the obvious action on E.

Now let T ′ E S ′ and L′ ≥ S ′ be the corresponding groups for the fusion system F ′.
We next show that L ∼= L′ via an isomorphism which sends S onto S ′. Basically, this is
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done by showing that L is the unique extension of T by L/T ∼= GL3(2)×C2 for which
GL3(2) has the standard action on E while the C2 factor acts on T by inverting, and
GL3(2) splits over T while L/T does not split.

Let L0 E L be the subgroup of index two such that L0/T ∼= GL3(2). Set S0 = S∩L0,
and let S ′0 ≤ L′0 be the corresponding subgroups of L′. Choose isomorphisms

ϕ0 : E
∼=−−−−−→ E ′ and ψ : L0/T

∼=−−−−−→ L′0/T
′

such that ψ(S0/T ) = S ′0/T
′, and ϕ0 commutes with the conjugation actions of L0/T ∼=

L′0/T
′ when identified via ψ. By [G, Proposition 6.4], the action of L0/T ∼= GL3(2) on

E ∼= (Z/2)3 has a unique lifting to T ∼= (Z/2n−1)3: unique up to an automorphism of

T . Thus ϕ0 extends to an isomorphism ϕ1 : T
∼=−−−→ T ′ which still commutes with the

conjugation actions of L0/T ∼= L′0/T
′.

We next claim that L0 splits over T , and similarly for L′0. Let T 2 ≤ T be the

subgroup of squares in T . Then CL(E)/T 2 = T/T 2×〈̂b〉 ∼= C4
2 , and the quotient group

S/T 2 splits over CL(E)/T 2 via (for example) the subgroup

〈b1, b2, τ〉·T 2 ∼= S/CL(E) ∼= D8.

Hence by Gaschütz’s theorem (i.e., since H2(GL3(2);C
4
2) injects into H2(D8;C

4
2)),

L/T 2 splits as a semidirect product (CL(E)/T 2)·R′ for some subgroup R′ ∼= GL3(2).
In particular, L0/T

2 is a semidirect product of T/T 2 by GL3(2). By [G, Theorem
6.5], the surjection of T onto T/T 2 induces an isomorphism in group cohomology from
H2(L0/T ;T ) to H2(L0/T ;T/T 2), and thus L0 also splits as a semidirect product over
T .

Fix subgroups L1 ≤ L0 and L′1 ≤ L′0, both isomorphic to GL3(2). Let ϕ2 : L0

∼=−→ L′0
be the isomorphism which extends ϕ1 by sending L1 to L′1 via ψ.

Now fix elements d ∈ CS(E)rT and d′ ∈ CS′(E
′)rT ′. Thus d inverts T and L =

L0〈d〉; and similarly for d′. Since H1(L0/T ;T ) ∼= Z/2 [G, Theorem 6.5], L0 contains
two T -conjugacy classes of subgroups isomorphic to GL3(2). If (L1)

d is T -conjugate to
L1, then some element of dT centralizes L1, and L would be split over T . Since U ≤ T
is centralized by 〈b1, b2, b3〉 ≤ L/T , this would imply that S contains some C5

2 , which
is impossible since S has rank four (cf. [LO, Proposition A.8] or [AC, Theorem A]).

Thus conjugation by d switches the two T -conjugacy classes of subgroups GL3(2) ≤
L0, and similarly for d′. So there is some t ∈ T ′ such that ϕ2((L1)

d) = (L′1)
td′ ; and

we can now extend ϕ2 to an isomorphism ϕ3 : L
∼=−−−−→ L′ by setting ϕ3(d) = td′. By

construction, ϕ3(S) = S ′.

Set ϕ = ϕ3|S. Since ϕ extends to L, and FS(L) = NF(E) by construction, ϕ
defines an isomorphism from NF(E) to NF ′(E ′). Set FU = FS(NH(U)) and F ′

U =
FS′(NH′(U ′)). Since F = 〈NF(E),FU〉 by Proposition 3.3, and similarly for F ′, we
will be done if we can show that ϕ induces an isomorphism FU

∼= F ′
U . By Lemma 3.1(d),

this means showing that ϕ sends the set R = {R1, R2, R3} to R′ = {R′
1, R

′
2, R

′
3}.

Assume otherwise. Then by Lemma 3.1(c4), ϕ sends R = {R1, R2, R3} to R′. We
claim there is an automorphism α ∈ Aut(L) such that α(S) = S and α exchanges R
with R. Once we have shown this, then we can replace ϕ by ϕ ◦ α|S, and we are done.

As seen above, there are two T -conjugacy classes of subgroups GL3(2) in L0, and the
two classes are exchanged by elements of the coset dT . Furthermore, by [G, Theorem
6.5] again, the inclusion of E into T induces an isomorphism from H1(L0/T ;E) to
H1(L0/T ;T ); and hence the two classes are both represented in the subgroup EL1.
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We can thus choose d ∈ CS(E)rT such that [d, L1] ≤ E. Let α ∈ Aut(L) be the
automorphism such that α|EL1 is conjugation by d, and α|CS(E) is the identity. Set
V = E〈d〉, and regard it as a 4-dimensional L1-representation.

Clearly, CE(L1) = 1, and hence CV (L1) = 1 since otherwise L would split over T —
which we already know is not the case. Since L1 is generated by three involutions (and
all of its involutions are conjugate), this means that |CV (g)| = 4 for each involution
g ∈ L1. Also, [V, g] ≤ CV (g) (since g2 = 1), and hence [V, g] = CV (g) also has order 4.

Recall the notation set up in Section 2 for elements of S. In particular, S =
T ·〈b1, b2, b3, τ〉, CS(E) = T ·〈b1b2b3〉, and Ri = (Ri ∩ T )〈bi〉. For each i = 1, 2, 3,
let si be the unique element of L1 in the coset biCS(T ) (an involution). Since si ∈
biCS(E) ≤ CS(U), [V, si] = CV (si) ≥ U , and thus [V, si] = U since it has order 4.

Recall that U# = {z1, z2, z3}, where 〈zi〉 = Z(Ri) = Z(Ri). Since siCS(E) = biCS(E),
we have [E, si] = [E, bi] = 〈[a1a2a3, bi]〉 = 〈zi〉, and so [α, si] = [d, si] ∈ Ur〈zi〉. Since
α|CS(E) = Id (and since CS(E)si = CS(E)bi), we now get [α, bi] ∈ Ur{zi}. As zi is the

unique involution in Ri
∼= Q2n , we conclude that (Ri)

α = Ri for all i. This completes
the proof. �

4. The Co3 geometry

Let G be the rank three 2-local geometry of G = Co3 constructed in [A]. It can be
described as follows. There are two conjugacy classes of involutions in G, of which 2A
denotes the class of central involutions (those in centers of Sylow 2-subgroups). The
elements of G are the 2A-pure elementary abelian subgroups of G of rank 1, 2, or 4,
and incidence is given by symmetrized containment. By [Fi, Lemmas 5.8 & 5.9] (where
the conjugacy class 2A is denoted 21), G acts transitively by conjugation on the set of
such subgroups of a fixed order. Furthermore, if E ∈ G has rank 4, then AutG(E) is
the full automorphism group GL4(2). It follows that G acts flag transitively on G; i.e.,
it acts transitively on the set of all maximal flags X ≤ Y ≤ E (where rk(X) = 1 and
rk(Y ) = 2).

Fix such a maximal flag X � Y � E in G. The maximal parabolics corresponding
to this flag are the three maximal subgroups of G containing a given Sylow subgroup
S: L = N(E) ∼= 24·GL4(2), M = N(Y ) ∼= 22+6.32.D12, and N = N(X) ∼= 2·Sp6(2)
(see [A]). Notice that S has index three in the Borel subgroup B = L∩M ∩N of order
210·3.

We will identify the elements of G as follows. We will call the conjugates of X points,
the conjugates of Y lines, and the conjugates of E 3-spaces (for the lack of a better
name; note that 3 here represents the projective dimension).

Let |G| be the flag complex of the geometry G: the simplicial complex with one
vertex for each element of G (each point, line, and 3-space), and a simplex for each
flag in G (each set of elements of G which are pairwise incident). A geometry is called
simply connected if it has no (proper) covering geometries, and this is the case if and
only if its flag complex is simply connected as a space. We refer to [Pn, §8.3] for more
details about coverings of geometries.

Equivalently, |G| is the coset complex for the three orbits G/L, G/M , and G/N .
Since G is generated by L, M , and N , the geometry G is connected; and in fact
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residually connected (the link of each vertex in |G| is connected) since each of L, M ,
and N is generated by its intersections with the other two subgroups.

The following proposition is the main result to be proven in this section.

Theorem 4.1. The geometry G (or its realization |G|) is simply connected. Hence for
any complete flag X ≤ Y ≤ E in G, the colimit of the triangle of groups involving
NG(X), NG(Y ), NG(E) and their intersections is isomorphic to G = Co3.

The last statement in Proposition 4.1 follows from the simple connectivity of |G|
together with Proposition 1.5 (the standard argument involving Tits’ Lemma).

Let Γ be the graph whose vertex set is the set of points in G (i.e., the central invo-
lutions in Co3), and where two vertices are adjacent whenever they are colinear in G
(whenever their product is also a point in G). Since the product of two commuting cen-
tral involutions in Co3 is again a central involution (this follows from [Fi, Lemma 4.7]),
two vertices of Γ are adjacent if and only if the corresponding involutions commute.
Thus, Γ coincides with the commutation graph on the central involutions of G.

A cycle in Γ (i.e., a loop) is called geometric if all of its vertices are incident to a
common 3-space.

Proposition 4.2. Assume every cycle in Γ can be decomposed as a product of geometric
cycles. Then Theorem 4.1 holds.

Proof. This is a standard argument in diagram geometry (cf. [Pn, §12.6]), but we
repeat it here. We regard a cycle γ in Γ as a sequence γ = (x0, x1, . . . , xn = x0) of
vertices (points in G) which are pairwise adjacent; i.e., such that 〈xi−1, xi〉 is a line
in G (or a point if xi−1 = xi) for each i. For each such cycle γ, set yi = 〈xi−1, xi〉,
and let γ̂ be the cycle in |G| defined by the sequence (x0, y1, x1, y2, x2, . . . , yn, xn). If
γ decomposes as a product of cycles δ1 and δ2, then γ̂ decomposes as the product of

the cycles δ̂1 and δ̂2. If γ is geometric — if the xi (i = 0, . . . , n) are all contained in
some 3-space V — then every vertex in γ̂ is adjacent to the vertex V in |G|, and so γ̂
is homotopic to a trivial loop.

Thus, under the hypotheses of the proposition, for every cycle γ in Γ, γ̂ is homotopic
to the trivial loop. It remains to check that every cycle in |G| is homotopic to one of
this form.

Fix a cycle in |G|, regarded as a sequence (V0, V1, . . . , Vn = V0) of elements of G such
that each pair (Vi, Vi+1) is incident. For each i, let xi be a point which is incident to Vi

(and set xn = x0). For each i = 1, . . . , n, 〈xi−1, xi〉 is contained in Vi−1 or Vi (whichever
is larger), and hence xi−1 and xi are adjacent in Γ. Set γ = (x0, x1, . . . , xn = x0), a cycle
in Γ, and set yi = 〈xi−1, xi〉. For each i, the paths (xi−1, yi, xi) and (xi−1, Vi−1, Vi, xi) are
homotopic in |G| (relative to endpoints) since all of the vertices involved are adjacent
to Vi−1 or Vi. Thus γ̂ is homotopic to the loop (V0, V1, . . . , Vn = V0) we started with,
and this is what we had to prove. �

The next lemma shows that it suffices to decompose each cycle in Γ as a product of
cycles of length three.

Lemma 4.3. Every 3-cycle in Γ (i.e., every cycle of length three) is geometric.

Proof. Fix a 3-cycle in Γ; i.e., a sequence of points (x, y, z) in G any two of which are
incident to a line. Thus, if we regard x, y, and z as central involutions in G, they
generate an elementary abelian subgroup of rank two or three, all involutions in which
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are still central (see [Fi, Lemma 4.7] again). Since each 2A-pure elementary abelian
subgroup of G is contained in one of rank four [Fi, Lemma 5.9], 〈x, y, z〉 is contained
in some 3-space in the geometry G, and so the cycle (x, y, z) is geometric.

This also follows directly from the analysis given below of all pairs and triples of
involutions of class 2A in G (see Figure 1). For example, Figure 1 classifies pairs
of central involutions by the conjugacy class of their product, and shows that if the
product is an involution then it must again be central. �

It remains to show that every cycle in Γ is a product of 3-cycles. This has been
shown computationally, using the computer algebra system GAP [GAP]. We realize G
in GAP in its primitive action of length 276. This action can be found in a standard
library of GAP, namely, in the library of primitive permutation groups. Below, we
provide an account of the computation.

The first task is to classify the orbits of G on the pairs of central involutions. Equiv-
alently, we need the orbits of the centralizer C = C(s) of a fixed central involution s
on the set of central involutions (that is, the orbits of the stabilizer of the vertex s on
the vertex set of Γ). Every group in GAP comes with a distinguished set of generators.
As it turns out, the first generator of our copy of G is an element of order 4 and its
square is a central involution, which we choose to be s. By taking random conjugates
sg of s and by computing the double stabilizers C(〈s, sg〉) = CC(sg) we soon find the
following orbits:

• O2 = sC
2 of size 630; s and s2 commute and ss2 is again a central involution;

• O3 = sC
3 of size 1920; ss3 is of order 3 (class 3C);

• O3′ = sC
3′ of size 8960; ss3′ is of order 3 (class 3B);

• O4 = sC
4 of size 30240; ss4 is of order 4;

• O5 = sC
5 of size 48384; ss5 is of order 5; and

• O6 = sC
6 of size 80640; ss6 is of order 6.

We notice that the lengths of these orbits sum to 170774 = [G:C]−1 (where the missing
1 clearly represents s itself), and so our count of orbits is complete. We also remark
that every representative si comes with the conjugating element gi, such that si = sgi .
We store the elements gi for future use, alongside si.

It follows that the orbits of G on the set of pairs (a, b) of central involutions can be
distinguished by the order of ab, except when |ab| = 3. In the latter situation the two
orbits with |ab| = 3 can be distinguished by the order of the centralizer C(〈a, b〉) equal
to 1512 if ab is in class 3C and equal to 324 if ab is in class 3B. Since the edges of Γ
correspond to the pairs of commuting involutions, we conclude that Γ has degree 630
(each vertex is adjacent to 630 other vertices).

With this information, it is now easy, for each t ∈ {s, s2, s3, s3′ , s4, s5, s6}, to find the
630 neighbors of t and then determine the orbits of the double stabilizer C(〈s, t〉) =
CC(t) on the edges starting from t. Indeed, the set of neighbors of s coincides with O2,
while the set of neighbors of each si is Ogi

2 = {xgi |x ∈ O2}. Once the orbits of CC(t),
t ∈ {s, s2, s3, s3′ , s4, s5, s6}, on the neighbors of t are determined, we can place each of
these orbits in a particular Oj by checking the order of sx, where x is a representative
of the orbit, as described above. The results of this computation are presented in the
distance distribution diagram of Γ shown in Figure 1.
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Figure 1. Distance distribution diagram of Γ

For example, this diagram indicates that each element of O2 is incident to 37 other
elements of O2, in two C(〈s, s2〉)-orbits of orders 1 and 36. Hence G has two orbits
on the set of 3-cycles. One of the orbits consists of triples of points incident to a
common line (i.e., the three involutions in a subgroup of rank 2). The other consists of
noncollinear triples of points which generate an elementary abelian subgroup of rank
three.

We now start decomposing cycles. An n-cycle in Γ means a cycle of length n. A
cycle is called isometric if the distance between two vertices of the cycle is the same
when it is computed in the cycle and in Γ. If a cycle is not isometric then it can
be decomposed as a product of two shorter cycles. Thus, we only need to deal with
isometric cycles. Since the diameter of Γ is 3, there are no isometric cycles of length
more than 7.

We start with 4-cycles. Suppose abcd is an isometric 4-cycle. Clearly, d(a, c) = 2,
and b and d are common neighbors of a and c. Since s and s6 have only one common
neighbor, the pair (a, c) is conjugate to (s, s3′) or (s, s4). We start with the second case.
In this case i = (ac)2 is a central involution which commutes with all four involutions
a, b, c, and d. Thus, the 4-cycle can be decomposed as a product of four 3-cycles.

Now suppose that (a, c) is conjugate to (s, s3′). Without loss of generality a = s and
c = s3′ . Let X = X(a, c) be the set of common neighbors of a and c. Then |X| = 9
and the double stabilizer C3′ = C(〈a, c〉) acts on X transitively. Clearly, b, d ∈ X.
Checking the orders of xy for x, y ∈ X we see that all pairs (x, y) are conjugates of
(s, s3′). So the graph induced on X has no edges, and we need a new idea if we want
to decompose these 4-cycles.

According to Figure 1, C3′ has two orbits (cf. 812; i.e. two orbits of length 81) on
the neighbors of c in O4. Checking representatives of these two orbits, we find that one
of them (call it e) has the following properties:

• |ex| ∈ {4, 6} for all x ∈ X; and

• 5 elements of X have neighbors in Y , where Y = X(a, e) is the set of common
neighbors of a = s and e.
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If b and d are among these 5 elements of X then abcd can be decomposed. Indeed, let b
be adjacent to f ∈ Y and d be adjacent to h ∈ Y . Then abcd is a product of abf , fbce,
adh, hdce, and (if f 6= h) afeh. Notice that the 4-cycles used in this decomposition
have a pair of opposite vertices with product 4, hence these 4-cycles are decomposable.

Consider the equivalence relation on X defined by setting x ∼ y if if axcy is de-
composable. Since C3′ acts transitively on X, this splits X as a union of equivalence
classes of the same order (which must divide 9). We have just shown that there is an
equivalence class of order at least 5, and hence the relation is transitive. Thus, we have
verified the following.

Lemma 4.4. All 4-cycles in Γ are decomposable. �

We now turn to 5-cycles. Suppose abcde is an isometric 5-cycle. For x and y at
distance two from each other let X(x, y) denote, as above, the set of common neighbors
of x and y (the so-called µ-graph of x and y). Notice that b ∈ X(a, c) and e ∈ X(a, d).
If we substitute b by any other vertex b′ ∈ X(a, c) then the new 5-cycle ab′cde differs
from abcde by a 4-cycle. Hence, by Lemma 4.4, abcde is decomposable if and only if
ab′cde is. Similarly, e can be substituted by any other vertex e′ ∈ X(a, d). It means
that we can only keep track of one vertex, a, and of the edge, cd, opposite that vertex.
Without loss of generality, we can assume that a = s, in which case cd is an edge
between two vertices at distance two from s. According to Figure 1, there are 50 C-
orbits of such edges, and so we have 50 cases to consider. The representative of all these
50 orbits were collected and stored, when the orbits of Ci = CC(si) on the neighbors
of si, i ∈ {3′, 4, 6}, were determined.

Suppose an edge cd represents one of the 50 cases. We will call this case easy if
X(a, c) and X(a, d) either intersect, or have an edge connecting them. If this is the
case then all 5-cycles containing a and cd are decomposable as a product of 3- and
4-cycles. It turns out that 30 of the 50 cases are easy.

Most of the remaining 20 cases can be handled using an additional trick. Suppose the
distance between X(a, c) and X(a, d) is two, but there is a choice of b ∈ X(a, c) such
that the edge agbg (where g is selected to satisfy s = a = dg) represents an easy case
(or more generally, a previously handled case of 5-cycles). Then, for any e ∈ X(a, d),
the cycle dgegagbgcg is decomposable and hence abcde is decomposable, too. This trick
can be used iteratively, as more and more cases are settled, and eventually it helps
decompose 5-cycles in 18 out of 20 “hard” case.

The remaining 2 orbits have been disposed of via a further trick, which probably
applies in many other cases, as well. Namely, suppose we find a vertex f among the
common neighbors of c and d, such that f is at distance 2 from a and, furthermore, cf
and df both fall into the previously decomposed cases. Then, clearly, we can decompose
abcde as a product of cdf , abcfg, and aedfg, where g is an arbitrary vertex fromX(a, f).
Thus, abcde is also decomposable.

This concludes the verification of the following statement.

Lemma 4.5. All 5-cycles in Γ are decomposable. �

Once all cycles up to length 5 are decomposed, the 6-cycles and 7-cycles are an easy
gain. For t = s3, s5 construct the set X = {x | d(t, x) = 1 and d(a, x) = 2} by selecting
among the neighbors x of t the involutions belonging to O3′ , O4, and O6. Using the
package GRAPE [GAP], we then define a graph on X via commutation (so it is the
subgraph of Γ induced on X) and check that this graph is connected for both choices



THE SIMPLE CONNECTIVITY OF BSol(q) 23

of t. Connectivity means that all 6-cycles can be decomposed as products of 3-cycles
and 5-cycles.

Finally, according to Figure 1, there are 9 cases of isometric 7-cycles. (As was the
case for 5-cycles, we only need to keep track of one vertex, say a = s, and the edge,
say de, opposite it.) In each of these case d and e have a common neighbor that is at
distance 2 from a, and so the 7-cycle can be decomposed as a product of a 3-cycle and
two 6-cycles. So the following is true.

Lemma 4.6. All 6- and 7-cycles in Γ are decomposable. �

Thus, all isometric cycles in Γ are decomposable, and this finishes the proof of
Theorem 4.1.

5. The fundamental group of BSol(q) and BDI(4)

In this section, we prove the following theorem.

Theorem 5.1. For each odd prime power q, the geometric realization of the linking
system Lc

Sol(q) is simply connected.

Theorem 5.1 will follow fairly easily from results in the first two sections, once we
have shown the special case q = 3. So we first set up notation which will be used to
prove this case.

Set H = Spin7(Z[1
2
]) for short, and let

ω : H ∗
B
K −−−−−� π1(|Lc

Sol(3)|)

be the surjective homomorphism of Proposition 2.2. Fix S ∈ Syl2(B) (thus also a
Sylow 2-subgroup of Spin7(3)), and let U E S be the unique normal subgroup of order
4. Then B is a finite subgroup of order 210·33, and has index 3 in K.

Set G = H ∗B K and G = ω(G) for short. Also, for any subgroup R ≤ G, we write

R = ω(R) ≤ G. Since ω is surjective, G ∼= π1(|Lc
Sol(3)|).

Lemma 5.2. Set Z = Z(H) ∼= C2. Then CG(Z) = H.

Proof. Since H ≤ CG(Z), we need only show that CG(Z) ≤ H. Fix g ∈ CG(Z); we

must show that g = ω(g) ∈ H.

Let Λ be the standard tree for G, and set α = H and β = K as vertices of Λ. Thus
Gα = H, Gβ = K, each vertex of Λ is in the orbit of α or of β, and G acts transitively
on the set of edges of Λ. In particular, H acts transitively on the set of vertices adjacent
to α, and K acts transitively on the set of vertices adjacent to β.

Let (
α = α0, β1, α1, . . . , βk, αk = g(α)

)
be the geodesic in Λ from α to g(α), where each αi is in the G-orbit of α and each
βi in the G-orbit of β. Since H acts transitively on the set of vertices adjacent to α,
β1 = g1(β) for some g1 ∈ H. Then g−1

1 (α1) is adjacent to β, and hence there is g2 ∈ K
such that g−1

1 (α1) = g2(α) and thus α1 = g1g2(α). Upon continuing in this way, we
obtain a sequence of elements gi for i = 1, . . . , 2k, where gi ∈ H for i odd and gi ∈ K
for i even, and such that βi = g1 · · · g2i−1(β) and αi = g1 · · · g2i(α) for each i. Set
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ĝi = g1 · · · gi for each i. Then g−1ĝ2k(α) = α, so ĝ2k ∈ gH, it suffices to prove that

ω(ĝ2k) ∈ H, and we can thus assume that g = ĝ2k = g1 · · · g2k.

Now, Z ≤ H = Gα, and Z ≤ gHg−1 = Gg(α). Since the fixed point set of the Z
action is a tree, this means that Z fixes the entire geodesic from α to g(α). Thus for
each i, Z ≤ Gβi

= ĝ2i−1Kĝ
−1
2i−1 and Z ≤ Gαi

= ĝ2iHĝ
−1
2i . So if we set Zi = ĝ−1

i Zĝi,
then for each i = 1, . . . , 2k, Zi ≤ K (if i is odd) or Zi ≤ H (if i is even), and
Zi = g−1

i Zi−1gi ∈ H ∩K = B.

Now, each Zi is H-conjugate to a subgroup of U (this follows from [LO, Proposition
A.8], since B is the same as a subgroup of H = Spin7(Z[1

2
]) or of Spin7(3)); and each

subgroup of order 2 in U is K-conjugate to Z. Thus there is ti ∈ HK such that
t−1
i Ziti = Z. Using this, we can write g as a product of elements in KHKHK, each

of which centralizes Z. So it suffices to prove the lemma for such g. In other words,
we are reduced to the case where k = 3 and g1 = 1. We can regard this situation
schematically as follows.

Z = Z1
g2−−−→

(K)
Z2

g3−−−→
(H)

Z3
g4−−−→

(K)
Z4

g5−−−→
(H)

Z5
g6−−−→

(K)
Z6 = Z.

Assume first that gi ∈ B = H ∩ K for some i. If i = 3, 4, 5, then g ∈ KHK.
If g2 ∈ B, then g2g3 ∈ H, Z3 = Z, and we need only consider the product g4g5g6.
Similarly, if g6 ∈ B, then we need only consider the product g2g3g4. Thus in all cases,
we can relabel the elements and assume that g5 = g6 = 1 (and Z4 = Z). Also,
Z2 = Z if and only if Z3 = Z, since Z3 = g−1

3 Z2g3 and g3 ∈ H. If Z2 = Z3 = Z,
then g2, g4 ∈ CK(Z) = B, so g ∈ H, and the result follows. If Z2 6= Z 6= Z3, then
U = ZZ2 = ZZ3, so g3 ∈ NH(U) = B, g ∈ K and centralizes Z, so g ∈ H.

Now assume that none of the gi lies in B. Thus g2, g6 /∈ H, so Z2, Z5 ≤ U and are
distinct from Z. Hence U = ZZ2 = ZZ5. Also, g3 ∈ HrK implies ZZ3 = g−1

3 ZZ2g3 6=
U , and hence that Z3 � U . Similarly, Z4 � U .

Let Ei ≤ CH(U) (all 1 ≤ i ≤ 6) be the rank three elementary abelian subgroups
defined by the requirements that E3 = UZ3, E4 = UZ4, and g−1

i Ei−1gi = Ei. Thus
U = ZZ5 ≤ g−1

5 E4g5 = E5 since [g5, Z] = 1, and U ≤ E6 since g6 ∈ K normalizes U .
Via similar considerations for E1 and E2, we see that U ≤ Ei for all 1 ≤ i ≤ 6, and
hence that Ei ≤ CH(U).

Set R = CH(U) for short. Then CS(U) ∈ Syl2(R), so each Ei is R-conjugate to a
subgroup E ′

i such that CS(E ′
i) ∈ Syl2(CR(E ′

i)). Hence after composing with appropriate
elements of R ≤ B, we can assume that CS(Ei) ∈ Syl2(CR(Ei)) for each i, and that
g−1

i CS(Ei−1)gi = CS(Ei) for each i. The subgroups CS(Ei) are all FSol(3)-centric, and
thus g defines an isomorphism in CLc

Sol(3)
(Z) from CS(E1) to CS(E6).

Now, CS(E) is centric in both H and K. The easiest way to see this is to note that it
contains a subgroup C4

2 which is self-centralizing in K, and also in H = Spin7(Z[1/2])
since its eigenspaces in (Z[1/2])7 are all 1-dimensional.

Let L = Lc
Sol(3) for short, and set LH = CL(Z) and LK = NL(U). Let

JH : Mor(LH) −−−−→ H ∼= π1(|LH |)
JK : Mor(LK) −−−−→ K ∼= π1(|LK |)
JL : Mor(L) −−−−→ π1(|L|)

be the maps defined in Section 1. For each i, gi ∈ X whereX = H orX = K depending
on the parity of i, and cgi

lifts to some morphism fi ∈ IsoLX
(CS(Ei−1), CS(Ei)). Then

g−1
i JX(fi) ∈ CX(CS(Ei−1)) = Ei−1 since CS(Ei−1) is centric in X, and we can thus
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choose fi such that gi = JX(fi). Hence

ω(g) = ω(g6) · · ·ω(g2) = ω(JK(f6))·ω(JH(f5)) · · ·ω(JK(f2)) = JL(f) ∈ π1(|L|)
where f ∈ IsoL(CS(E1), CS(E6)) is the composite of the fi. Since f centralizes Z, it is
a morphism in LH , and thus ω(g) = ω(JH(f)) where JH(f) ∈ H. �

By Proposition 2.3, there are subgroups H0 ≤ H and K0 ≤ K such that H0/Z ∼=
Sp6(2), [K:K0] = 3, and (H0 ≥ B0 ≤ K0) is an amalgam of maximal subgroups of Co3.
In the terminology of Section 4, H0 is the stabilizer of a point in the geometry G, and
K0 is the stabilizer of a line. Set G0 = 〈H0, K0〉 ≤ G.

Lemma 5.3. If G 6= 1, then H0
∼= H0, K0

∼= K0, and G0
∼= Co3.

Proof. The normalizer N0 in Lc
Sol(3) of a rank four subgroup in B0 is an extension of C4

2

by GL4(2), the stabilizer of a 3-space in G. In other words, ω defines a homomorphism

from the amalgam {H0, K0, N0} of stabilizers of a complete flag in G to G, and the

images of these subgroups generate G0. Since the colimit of this amalgam is isomorphic

to Co3 by Proposition 4.1, this defines a surjection of Co3 onto G0. Since Co3 is simple,

and G0 6= 1 by Proposition 2.3 again, we have G0
∼= Co3. �

We are now ready to prove a special case of the main theorem.

Proposition 5.4. |Lc
Sol(3)| is simply connected.

Proof. As we have already noted, ω is onto, and hence G ∼= π1(|Lc
Sol(3)|). Assume by

way of contradiction that G 6= 1. In particular, by Lemma 5.3, G0
∼= Co3, and S ≤ B

is a Sylow 2-subgroup of G0. We also identify U and Z as subgroups of G0 ≤ G.

We refer to [Fi, §4] for information about the involutions of Co3 and their normalizers.
In particular, Co3 has two classes of involutions, of which those of type 2A are in centers
of Sylow subgroups. Fix an involution τ ′ ∈ Co3 of type 2B. Then CCo3(τ

′) = L′ × 〈τ ′〉
where L′ ∼= M12. By well known properties of M12 (see Lemma 5.5 below), there are
elementary abelian subgroups Z ′ ≤ U ′ ≤ L′ of rank one and two, such that AutL′(U

′) =
Aut(U ′) and L′ = 〈NL′(Z

′), NL′(U
′)〉. By [Fi, Lemma 5.1], AutCo3(V ) has order three

for any 2B-pure fours subgroup V ≤ Co3, so the involutions in U ′ must have type 2A.
Since Co3 contains a unique conjugacy class of 2A-pure subgroup of rank 2 [Fi, Lemma

5.8], there is an isomorphism γ : Co3

∼=−−−→ G0 such that γ(U ′) = U and γ(Z ′) = Z.
Furthermore, since C

S
(U) is a Sylow subgroup of C

G0
(U), we can choose γ to send

〈τ ′, U ′〉 into C
S
(U). Set τ = γ(τ ′) ∈ S, the image of some τ ∈ S ≤ G, and set

L = γ(L′). Thus C
G0

(τ) = L× 〈τ〉, L ∼= M12, and L = 〈NL(Z), NL(U)〉.
We now have

L = 〈NL(Z), NL(U)〉 ≤ 〈C
H0

(τ), C
K0

(τ)〉 = 〈CH0(τ), CK0(τ)〉 ≤ CG(τ).

where the second equality holds since H0 and K0 are sent isomorphically to H0 and

K0. Since 〈τ〉 is G-conjugate to Z (all involutions in S are conjugate in G), CG(τ) is G-

conjugate to CG(Z), and hence CG(τ) is G-conjugate to CG(Z) = H by Lemma 5.2. In
particular, M12 is contained in H/N for some subgroup N normal in H ∼= Spin7(Z[1

2
]).

We claim that this is impossible. By a theorem of Margulis [M, Theorem 2.4.6], the
only normal subgroups of H are those which contain congruence subgroups, and those
which are contained in Z(H). By a theorem of Kneser [Kn, 11.1] (see also the “Zusatz
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bei der Korrektur”), the “congruence kernel” of H = Spin7(Z[1
2
]) is central, which

implies that every normal subgroup of finite index contains the commutator subgroup
of a congruence subgroup. If N ≤ Z(H), then clearly M12 is contained in Ω7(Z/n)
for some odd n. If H/N is finite, and N contains the commutator subgroup of the
congruence subgroup for nZ[1

2
], then since M12 is not abelian, it must be contained in

some quotient group of Ω7(Z/n). From this, using the simplicity of M12 again, and
also the simplicity of the groups Ω7(p), one sees that M12 is isomorphic to a subgroup
of Ω7(p) for some odd prime p.

Since M12 has no faithful irreducible (complex) characters of degree less than 8 (cf.
[Frb, §5]), p must divide |M12|. The odd primes dividing |M12| are 3,5, and 11. For
p = 3 and p = 5, one finds that |Ω7(p)| is not divisible by 11. Suppose p = 11. We
note that Alt(6) is a subgroup of M12, and that the only irreducible complex character
degrees for Alt(6) which are less than 8 are 1 and 5. Thus Alt(6) centralizes a 2-space
in any orthogonal representation of M12 on a space V of dimension 7 over F11. A Sylow
3-subgroup of M12 is extraspecial of order 33, so Alt(6) contains a central 3-element r
from M12. Then [V, r] admits a faithful action by a group of order 27. Since 27 doesn’t
divide |Ω5(11)|, we have a contradiction; and this completes the proof of Proposition
5.4. �

The following lemma was needed in the above proof.

Lemma 5.5. Set L ∼= M12. Then there are elementary abelian subgroups Z ≤ U ≤ L
of ranks one and two, such that AutL(U) = Aut(U) and L = 〈NL(Z), NL(U)〉.

Proof. It is very well known (see [Co, p. 235]) that Z and U can be chosen such that
both normalizers are maximal subgroups in L. However, since we know of no published
proof of this, we give the following short argument (where in fact, the subgroup U which
we take is not in the same conjugacy class as the one whose normalizer is maximal).

Let X be a set of order 12 upon which L acts 5-transitively [G2, Theorem 6.18], and
let Y ⊆ X be any subset of order 10. By [G2, Exercise 6.25.2], the subgroup L0 ≤ L
of elements which stabilize Y is isomorphic to Aut(Alt(6)) — an extension of Sym(6)
by an outer automorphism of order 2. Let Z ≤ U ≤ L′0 = [L0, L0] ∼= A6 be elementary
abelian 2-subgroups of rank one and two. (Note that AutL(U) = AutL′0

(U) = Aut(U).)

The two subgroups U,U ′ ≤ NL′0
(Z) ∼= D8 isomorphic to C2

2 are conjugate in L0, and
L′0 is generated by their normalizers. From this, it is clear that L0 ≤ 〈NL(Z), NL(U)〉.

By 5-transitivity, L0 is a maximal subgroup of L, and it remains only to show that
NL(Z) or NL(U) contains elements of LrL0. Since a Sylow 2-subgroup S0 of L is
not elementary abelian, Z(S0) contain elements which are squares in S0 ≤ L ≤ A12.
Since a product of three 4-cycles is an odd permutation, this shows that Z(S0) contains
involutions which have fixed points on X; and thus that M10 contains involutions which
are central in Sylow subgroups of L. Since M10rA6 contains no involutions, and A6

contains a unique class of involutions, this shows that for the subgroups Z constructed
above, CL(Z) contains a Sylow 2-subgroup of L, and thus (by counting) is not contained
in L0. This finishes the proof that L = 〈NL(Z), NL(U)〉. �

We can now prove the main theorem.

Proof of Theorem 5.1. By Theorem 3.4, for any odd prime power q, |Lc
Sol(q)| is homo-

topy equivalent to |Lc
Sol(3

m)| for some m ≥ 1. So it suffices to prove the theorem when
q = 3m. When m = 1, this is Proposition 5.4.
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Let S(3) ≤ S(3m) be the Sylow subgroups of the linking systems Lc
Sol(3) and

Lc
Sol(3

m). Let τ : S(3m) −−−→ π1(|Lc
Sol(3

m)|) be the homomorphism of Proposition 1.4,
and let τ0 be the corresponding homomorphism defined on S(3). We claim there is a
homomorphism from π1(|Lc

Sol(3)|) to π1(|Lc
Sol(3

m)|) which makes the following square
commute:

S(3)
incl → S(3m)

1=π1(|Lc
Sol(3)|)

τ0↓
→ π1(|Lc

Sol(3
m)|) .

τ)↓

This follows from [LO, Lemma 4.1] and from [AC, Theorem C], using two very different
approaches. Hence

S(3) ≤ K
def
= Ker

[
S(3m)

τ−−−−→ π1(|Lc
Sol(3

m)|)
]
,

and K is strongly closed in FSol(3
m) by Proposition 1.4(a). From the description in

Lemma 3.1 of S(3m) and its fusion, this implies that K contains the subgroups Ri in
S(3m), hence the subgroup T ≤ S(3m) (since R1R2R3∩T has index 2 in T ), and hence
that K = S(3m).

Thus τ is the trivial homomorphism. So by Proposition 1.4(b), OutFSol(3m)(S(3m))
surjects onto π1(|Lc

Sol(3
m)|). Also,

OutFSol(3m)(S(3m)) = OutSpin7(3m)(S(3m)),

since FSpin7(3m)(S(3m)) is the centralizer of an involution. By [LO, Proposition 1.9] (or
by its proof), S(3m) contains a unique subgroup R0

∼= (C2k)3 (where 2k is the largest
power dividing 3m± 1), CS(3m)(R0) = R0, and AutSpin7(3m)(R0) ∼= C2× Sym4. So every
element in NSpin7(3m)(S(3m)) acts on R0 and on S(3m)/R0 with 2-power order; this
implies that OutSpin7(3m)(S(3m)) is a 2-group (hence trivial), and thus that |Lc

Sol(3
m)|

is simply connected. �

For any odd prime p, let Lc
Sol(p

∞) be the category constructed in [LO, Section 4],
as a “linking system” associated to the union FSol(p

∞) of the fusion systems FSol(p
m).

By [LO, Proposition 4.3], |Lc
Sol(p

∞)|∧2 ' BDI(4): the classifying space of the exotic
2-compact group constructed by Dwyer and Wilkerson. We can now show:

Corollary 5.6. For any odd prime p, |Lc
Sol(p

∞)| is simply connected.

Proof. By the construction in [LO, Section 4], the linking category Lc
Sol(p

∞) is the
union of subcategories Lcc

Sol(p
m), whose nerves have the homotopy type of |Lc

Sol(p
m)|

[LO, Lemma 4.1], and hence are simply connected by Theorem 5.1. Thus |Lc
Sol(p

∞)| is
simply connected. �
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