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Abstract. For an odd prime p, we look at simple fusion systems over a �nite nonabelian
p-group S which has an abelian subgroup A of index p. When S has more than one such
subgroup, we reduce this to a case already studied by Ruiz and Viruel. When A is the
unique abelian subgroup of index p in S and is not essential (equivalently, is not radical) in
the fusion system, we give a complete list of all possibilities which can occur. This includes
several families of exotic fusion systems, including some which have proper strongly closed
subgroups.

A saturated fusion system F over a �nite p-group S is a category whose objects are the
subgroups of S, whose morphisms are injective homomorphisms between subgroups, and
whose morphism sets satisfy certain axioms �rst formulated by Puig and motivated by the
properties of conjugacy relations among p-subgroups of a �nite group. For example, for each
�nite group G and each S ∈ Sylp(G), the category FS(G), whose objects are the subgroups
of G and whose morphisms are those homomorphisms induced by conjugation in G, is a
saturated fusion system over S. We refer to Puig's paper [Pg], and to [AKO] and [Cr], for
more background details on saturated fusion systems.

A saturated fusion system F over a �nite p-group S is realizable if F = FS(G) for some
�nite group G with S ∈ Sylp(G); otherwise it will be called exotic. When p is odd, many
examples have been constructed of exotic fusion systems over p-groups. We refer in particular
to the classi�cations by Díaz, Ruiz, and Viruel of saturated fusion systems over extraspecial
p-groups of order p3 and exponent p [RV] and over p-groups of rank two [DRV]; and to a
more general procedure described in [BLO4, � 5] for constructing such examples and checking
that they are saturated.

A saturated fusion system F is simple if it contains no nontrivial proper normal subsystems
(see [AKO, De�nition I.6.1] or [Cr, �� 5.4 & 8.1] for the precise de�nition of a normal sub-
system). In this paper, we study simple fusion systems over nonabelian p-groups which have
an abelian subgroup of index p. When p = 2, by [AOV1, Propositions 4.3�4.4] and [AOV2,
Propositions 3.1 & 5.2(a)], each such fusion system is isomorphic to the fusion system of
PSL2(q) or of PSL3(q) for some odd q, and the 2-group in question is dihedral, semidihedral,
or a wreath product C2n o C2.

When p is odd, it turns out that this class of p-groups supports a much richer collection of
simple fusion systems, many of which are exotic. Let F be a simple fusion system over the
nonabelian p-group S, with abelian subgroup A of index p. We split this into three di�erent
cases:

(1) S has more than one abelian subgroup of index p;
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(2) A is the unique abelian subgroup of index p in S, and A is not F -essential (De�nition
1.1); and

(3) A is the unique abelian subgroup of index p in S, and A is F -essential.

In case (1), we show that S is extraspecial of order p3 and exponent p (Theorem 2.1), and
hence that we are in the situation considered by [RV]. In case (2), we give a complete list
of all such fusion systems (Theorem 2.8), and determine which of them are exotic (most of
them). This list includes many of the examples constructed earlier by Díaz, Ruiz, and Viruel
[DRV] in a di�erent context. Among the exotic examples constructed are several which are
also noteworthy for having proper strongly closed subgroups (De�nition 1.1).

Case (3) is more complicated, since it depends heavily on representation theory (via the
action of AutF(A) on A). This will be handled in a later paper together with David Craven.

1. Background

We �rst recall some of the terminology used for certain subgroups in a fusion system.

De�nition 1.1. Fix a prime p, a �nite p-group S, and a saturated fusion system F over S.
Let P ≤ S be any subgroup.

• PF denotes the set of subgroups of S which are F-conjugate (isomorphic in F) to P .
Also, gF denotes the F-conjugacy class of an element g ∈ S (the set of images of g
under morphisms in F).

• P is fully normalized in F ( fully centralized in F) if |NS(P )| ≥ |NS(Q)| (|CS(P )| ≥
|CS(Q)|) for each Q ∈ PF .

• P is F -centric if CS(Q) = Z(Q) for each Q ∈ PF .

• P is F -essential if P < S, P is F-centric and fully normalized in F , and OutF(P )
def
=

AutF(P )/Inn(P ) contains a strongly p-embedded subgroup. Here, a proper subgroup
H < G of a �nite group G is strongly p-embedded if p

∣∣|H|, and p-|H ∩ gHg−1| for
each g ∈ GrH.
Let EF denote the set of all F-essential subgroups of S.

• P is normal in F if each morphism ϕ ∈ HomF(Q,R) in F extends to a morphism
ϕ ∈ HomF(PQ,PR) such that ϕ(P ) = P . The maximal normal p-subgroup of a
saturated fusion system F is denoted Op(F).

• P is strongly closed in F if for each g ∈ P , gF ⊆ P .

• foc(F) =
〈
gh−1

∣∣ g ∈ S, h ∈ gF〉.
Let Op(F) and Op′(F) denote the smallest normal fusion subsystems of p-power index,

and of index prime to p, respectively. Such normal subsystems are de�ned by analogy with
�nite groups, and we refer to [AKO, � I.7] or [Cr, � 7.5] for precise de�nitions and references.

De�nition 1.2. A saturated fusion system F is reduced if Op(F) = 1, and Op(F) = F =
Op′(F). A saturated fusion system is simple if it contains no nontrivial proper normal fusion
subsystems, in the sense of [AKO, De�nition I.6.1] or [Cr, �� 5.4 & 8.1].

For any saturated fusion system F over S, Op(F), Op′(F), and FOp(F)(Op(F)) are all
normal subsystems. Hence F is reduced if it is simple. If E E F is any normal subsystem
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over the subgroup T E S, then by de�nition of normality, T is strongly closed in F . Thus a
reduced fusion system is simple if it has no proper nontrivial strongly closed subgroups.

There are reduced fusion systems which are not simple; constructed, for example, by
taking direct products or wreath products. In this paper, our main interest in reduced
fusion systems is as an intermediate step towards showing that they are simple. We refer to
[AOV1, Theorems A�C] for the original motivation for de�ning them.

The next proposition lists some of the standard tools for handling Op(F) and Op(F).

Proposition 1.3. The following hold for any saturated fusion system F over a �nite p-group
S.

(a) Each morphism in F is a composite of restrictions of elements of AutF(P ) for P ∈
EF ∪ {S}. Moreover, each morphism in F is a composite of restrictions of elements in
AutF(S), and in Op′(AutF(P )) for P ∈ EF .

(b) Assume Q E S has the property that for each P ∈ EF ∪ {S}, P ≥ Q and AutF(P )
normalizes Q. Then Q E F .

(c) foc(F) =
〈
[AutF(P ), P ]

∣∣P ∈ EF ∪ {S}
〉
.

(d) Op(F) = F if and only if foc(F) = S.

Proof. The �rst statement in (a) is shown in [Pg, � 5], and also in [OV, Corollary 2.6],
while the stronger statement follows from [O1, Proposition 1.10(a,b)]. Point (b) is shown in
[AKO, Proposition I.4.5], and point (d) in [AKO, Corollary I.7.5]. Point (c) is an immediate
consequence of (a) and the de�nition of foc(F). �

Determining Op′(F) is more di�cult, in general, but the following lemma su�ces for our
purposes.

Lemma 1.4. Let F be a saturated fusion system over a �nite p-group S. Assume that each
P ∈ EF is minimal among all F-centric subgroups. For each P ∈ EF , set

Aut
(P )
F (S) =

{
α ∈ AutF(S)

∣∣α(P ) = P, α|P ∈ Op′(AutF(P ))
}
.

Then Op′(F) = F if and only if AutF(S) =
〈
Inn(S),Aut

(P )
F (S)

∣∣P ∈ EF
〉
.

Proof. Set HP = Aut
(P )
F (S) and H = 〈Inn(S), HP |P ∈ EF〉 for short. Let F c ⊆ F be the

full subcategory with objects the F -centric subgroups of S.
Since no F -centric subgroup is properly contained in an essential subgroup by assumption,

two F -centric subgroups are F -conjugate only if they are in the same AutF(S)-orbit by
Proposition 1.3(a). Thus all F -centric subgroups are fully normalized in F . In particular,
P ∈ EF and Q ∈ PF imply Q ∈ EF . For α ∈ AutF(S) and P ∈ EF , αHPα

−1 = Hα(P ); and
thus H E AutF(S).

If H = AutF(S), then Op′(F) = F by [BCGLO, Theorem 5.4] or [AKO, Theorem I.7.7],
since H ≤ Aut0

F(S) in the notation of those references.

Now assume H < AutF(S). We claim that for each P ≤ S which is F -centric,

HomF(P, S) =

{{
α|P

∣∣α ∈ AutF(S)
}

if P /∈ EF{
α|P

∣∣α ∈ AutF(S)
}
◦Op′(AutF(P )) if P ∈ EF .

(1)

If P /∈ EF , then since no subgroup in PF is contained in an essential subgroup, each
α ∈ HomF(P, S) extends to some α ∈ AutF(S) by Proposition 1.3(a), and (1) holds in
this case. If P ∈ EF , then each morphism in HomF(P, S) is a composite of restrictions
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of elements in AutF(S), and of elements in Op′(AutF(Q)) for Q ∈ PF . Via the relations
(α|Q)AutF(Q)(α|Q)−1 = AutF(α(Q)) for α ∈ AutF(S), these morphisms can be arranged in
the above form, proving the second case of (1).

De�ne a map θ : Mor(F c) −−−→ AutF(S)/H as follows. For each ϕ ∈ HomF(P,Q) in
F c, set θ(ϕ) = αH (for α ∈ AutF(S)) if ϕ = α|P , or if P ∈ EF and ϕ = α|P ◦ β where
β ∈ Op′(AutF(P )). If ϕ = α|P = α′|P , then α′ = α◦cg for some g ∈ Z(P ) (cf. [AKO, Lemma
I.5.6]), so α′H = αH. If P ∈ EF and ϕ = α|P ◦ β = α′|P ◦ β′ (where β, β′ ∈ Op′(AutF(P ))),
then α = α′γ for some γ ∈ Inn(S)HP by the same lemma and the de�nition of HP . Thus θ
is well de�ned in all cases.

By construction, θ sends composites to products, and sends Op′(AutF(Q)) to the identity
for each Q ∈ Ob(F c) since p-|AutF(S)/H|. So Op′(F) $ F by [AKO, Theorem I.7.7(c)].
More precisely, 〈θ−1(1)〉 is a proper normal subsystem of index prime to p in F . �

The next two lemmas provide the tools we will need to determine which of the fusion
systems we construct are realizable and which are exotic.

Lemma 1.5 ([DRV]). Let F be a reduced fusion system over a p-group S. Assume, for
each 1 6= P E S strongly closed in F , that P is centric in S, is not elementary abelian, and
does not factor as a product of two or more subgroups which are permuted transitively by
AutF(P ). Then if F is realizable, it is the fusion system of a �nite simple group.

Proof. By [DRV, Proposition 2.19], F = FS(G) for some almost simple group G. We must
show that when F is reduced, G can be chosen to be simple.

Assume G is not simple, and that no proper subgroup of G realizes F . Since the outer
automorphism group of every simple group is solvable (cf. [GLS3, Theorem 7.1.1(a)]), there
is a proper normal subgroup G0 E G of index p or of index prime to p. If [G:G0] = p,
then by the focal subgroup theorem [G, Theorem 7.3.4], foc(F) ≤ S ∩ G0 < S, which is
impossible since Op(F) = F (Proposition 1.3(d)). If [G:G0] is prime to p, then FS(G0) is a
normal subsystem of index prime to p in F by [BCGLO, De�nition 3.1(b)]: it is saturated,
and AutG0(P ) ≥ Op′(AutG(P )) for each P ≤ S. Since F is reduced, it has no proper
normal subsystems of index prime to p, so F = FS(G0), which contradicts the minimality
assumption on G. We thus have a contradiction in either case, and so G can be taken to be
simple. �

Lemma 1.6. Fix an odd prime p. Assume G is a �nite simple group for which S ∈ Sylp(G)
is nonabelian and contains a unique abelian subgroup A < S of index p. Assume also that
|Z(S)| = p, |S/[S, S]| = p2, and A is not essential in G. Then p = 3, and G is isomorphic
to one of the groups PSL3(q) (q ≡ 1 (mod 3)), PSU3(q) (q ≡ −1 (mod 3)), G2(q) (3 - q), or
3D4(q) (3 - q).

Proof. Since A is not essential, AutS(A) E AutG(A). Equivalently, S E NG(A), and hence
NG(S) = NG(A). If B < S is any other abelian subgroup, then either B ≤ A, or B ∩ A ≤
Z(S) and hence |B| ≤ p2.

If G is an alternating group, then G ∼= An for some n = ap + b where p ≤ a < 2p and
0 ≤ b < p. Then A ∼= (Cp)

a, and AutG(A) has index two in AutΣn(A) ∼= Cp−1 oΣa. Since no
such group has a normal subgroup of order p, G is not an alternating group.

If G is a sporadic group, then by the tables in [GL, � 1.5] or [GLS3, � 5.3], in almost all
cases, either |S| ≤ p3, or S is abelian, or S contains an extraspecial group of type p1+2k for
k ≥ 2, or S contains a special group of type 32+4. The exceptions are (G, p) = (J3, 3), where
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Z(S) ∼= C2
3 ; (Co1, 5), where J(S) ∼= C3

5 and NG(J(S))/J(S) ∼= C4 × Σ5; and (F3, 3), where
G contains a subgroup C4

3 o SL2(9). Thus G is not a sporadic group.

If G is a group of Lie type in characteristic p, then since S is nonabelian and |S/[S, S]| =
p2, G must be one of the groups L3(p), Sp4(p), U3(p), or G2(p) (see the description in
[GLS3, Theorem 3.3.1] of the central series for S). By the commutator relations, any abelian
subgroup of index p in S would have to be a parabolic subgroup, and hence essential in G.

Thus by the classi�cation theorem, G is a group of Lie type in characteristic di�erent from
p. If G ∼= PSLn(q) for some q and |S| ≥ p4, and k is the order of q in F×p , then S has a normal
abelian subgroup A of order at least p3 with AutG(A) ∼= Ck o Σn for some n, and this has a
normal Sylow subgroup of order p only when p = n = 3 and k = 1. Thus G ∼= PSL3(q) for
q ≡ 1 (mod 3). A similar argument in the unitary case shows that PSU3(q) for q ≡ 2 (mod
3) is the only possibility. If G is symplectic or orthogonal, then AutG(A) always contains
C2 o Σn or (C2)n−1 o Σn, so A is not essential.

In all other cases, by the description in [GL, 10-1] of the Sylow subgroups, there is a normal
abelian p-subgroup PH in S, which must be contained in A by the above remarks, which is
maximal abelian, and whose index in S is determined by the tables there. In particular, A
has index p in S only in the following cases:

• p = 3, G = G2(q) or 3D4(q) (q ≡ ±1 (mod 3)), or G = 2F4(22k+1);

• p = 5, G = E6(q) (q ≡ 1 (mod 5)), G = 2E6(q) (q ≡ −1 (mod 5)), G = E7(q) (q ≡ ±1
(mod 5)), G = E8(q) (q ≡ ±2 (mod 5));

• p = 7, G = E7(q) or E8(q) (q ≡ ±1 (mod 7)).

When p = 3 and G = 2F4(22k+1), then AutG(A) ∼= GL2(3) [Ma, Proposition 1.2]. When
p = 5 and G = E8(q) for q ≡ ±2 (mod 5), then AutG(A)/O2(AutG(A)) ∼= Σ6 [LSS, Table
5.2]. In all other cases when p = 5, 7, AutG(A) is the Weyl group of Em for m = 6, 7, 8, and
contains a (quasi)simple subgroup of index two.

Thus the only cases where AutG(A) contains a normal Sylow p-subgroup of order p are
those where p = 3 and G = G2(q) or 3D4(q). �

We �nish the section with a few elementary group theoretic results.

Lemma 1.7. Fix a prime p, a �nite p-group P , and a group G ≤ Aut(P ) of automorphisms
of P . Let P0 E P1 E · · · E Pm = P be a sequence of subgroups, all normal in P and
normalized by G, such that P0 ≤ Fr(P ). Let H ≤ G be the subgroup of those g ∈ G which
act via the identity on Pi/Pi−1 for each 1 ≤ i ≤ m. Then H is a normal p-subgroup of G.

Proof. See, e.g., [G, Theorems 5.3.2 & 5.1.4]. �

Lemma 1.8. Assume P is a nonabelian group of order p3, for some odd prime p. Then
either P has exponent p and Out(P ) ∼= GL2(p), or P has exponent p2 and Op(Out(P )) ∈
Sylp(Out(P )).

Proof. If P has exponent p, then each automorphism of P/[P, P ] ∼= C2
p lifts to an automor-

phism of P . Also, each automorphism of P which induces the identity on P/[P, P ] is inner,
so Out(P ) ∼= Aut(P/[P, P ]) ∼= GL2(p).

If P has exponent p2, then it contains a unique subgroup Q < P with Q ∼= C2
p . So

by Lemma 1.7, there is a homomorphism from Aut(P ) to Aut(P/Q) × Aut(Q/[P, P ]) ∼=
Cp−1 × Cp−1 whose kernel is Op(Aut(P )). �
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We will adopt the usual notation, and write p1+2
+ and p1+2

− for nonabelian groups of order
p3 and of exponent p or p2, respectively.

Lemma 1.9. Let S be a nonabelian p-group, and assume A E S is an abelian subgroup of
index p. Then either

(a)
∣∣[S, S]

∣∣ ≥ p2,
∣∣S/Z(S)

∣∣ ≥ p3, and A is the unique abelian subgroup of index p in S; or

(b)
∣∣[S, S]

∣∣ = p, S/Z(S) ∼= C2
p , and S contains exactly p+ 1 abelian subgroups of index p.

Proof. Fix any x ∈ SrA. Then [S, S] = [x,A] is the image of (Id− cx) as a homomorphism
from A to itself, and Z(S) = CA(x) is its kernel. Hence |S/Z(S)| = p·|A/Z(S)| = p·

∣∣[S, S]
∣∣.

Since S is nonabelian, S/Z(S) is not cyclic.

If B is a second abelian subgroup of index p in S, then S = AB, so A ∩ B ≤ Z(S),
and |S/Z(S)| ≤ p2. Thus

∣∣[S, S]
∣∣ = p in this case. Conversely, if |S/Z(S)| ≤ p2, then

S/Z(S) ∼= C2
p since it is noncyclic, and each subgroup of index p in S containing Z(S) is

abelian (generated by Z(S) and one more element). Since each abelian subgroup of index p
in S contains Z(S), S has exactly p+ 1 abelian subgroups of index p. �

We �nish the section with two lemmas which deal with actions on �nite abelian p-groups.

Lemma 1.10. Fix a �nite abelian p-group A and a subgroup G ≤ Aut(A). Assume, for
S ∈ Sylp(G), that S 5 G and |A/CA(S)| = p. Then |S| = p.

Proof. Let S1, S2 ∈ Sylp(G) be two distinct Sylow subgroups, and set Ai = CA(Si). For
i = 1, 2, Si induces the trivial action on A/Ai ∼= Cp, and hence [Si, A] ≤ Ai. Also, A1 6= A2,
since otherwise 〈S1, S2〉 would act trivially on A1 and on A/A1, and hence would be a p-group
by Lemma 1.7.

If |Si| > p, then
∣∣[Si, A]

∣∣ > p, so there are elements 1 6= xi ∈ Si such that [xi, A] ≤ A1∩A2.
Set T = 〈x1, x2〉. Then T acts trivially on A1 ∩ A2 and on A/(A1 ∩ A2), so T is a p-group
by Lemma 1.7, while CA(T ) = CA(x1) ∩ CA(x2) = A1 ∩ A2. Since this contradicts the
assumption that |A/CA(S)| = p for each S ∈ Sylp(G), we conclude that |Si| = p. �

Lemma 1.11. Fix a �nite abelian p-group A, and a subgroup G ≤ Aut(A). Assume the
following.

(i) Each Sylow p-subgroup of G has order p and is not normal in G.

(ii) For each x ∈ G of order p, [x,A] has order p, and hence CA(x) has index p.

Set H = Op′(G), A1 = CA(H), and A2 = [H,A]. Then G normalizes A1 and A2, A =
A1 × A2, and H ∼= SL2(p) acts faithfully on A2

∼= C2
p . There are groups of automorphisms

Gi ≤ Aut(Ai) (i = 1, 2), such that p - |G1|, G2 ≥ AutH(A2) ∼= SL2(p), and G E G1×G2 (as
a subgroup of Aut(A)) with index dividing p− 1.

Proof. For each B ≤ A, let V1(B) be the set of subgroups of B of order p. De�ne

θ : Sylp(G) −−−−−−→ V1(A)

by setting θ(S) = [S,A]. If [S,A] = [T,A] for S, T ∈ Sylp(G), then 〈S, T 〉 acts via the
identity on [S,A] and on A/[S,A], so 〈S, T 〉 is a p-group by Lemma 1.7, and S = T . Thus
θ is injective.

Assume S1, S2 ∈ Sylp(G) are distinct, set K = 〈S1, S2〉, and consider the action of K
on [K,A] = θ(S1)θ(S2) ∼= C2

p . Since K acts trivially on A/[K,A], the subgroup K0 =
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CK([K,A]) E K is a normal p-subgroup by Lemma 1.7, hence contained in all Sylow p-
subgroups of K, and hence K0 = 1 by assumption. Hence K acts faithfully on [K,A] ∼= C2

p .
Under an appropriate choice of basis for [K,A], S1 and S2 are the groups of (strict) upper
and lower triangular matrices in GL2(p), and thus generate SL2(p). So K ∼= SL2(p). Also,
θ(Sylp(K)) = V1([K,A]) = V1(θ(S1)θ(S2)).

Thus θ(Sylp(G)) = V1(A2) for some elementary abelian subgroup A2 ≤ A. If rk(A2) ≥ 3,
then there are distinct subgroups T1, T2 ∈ Sylp(G) such that [T1, A] ≤ CA(T2), 〈T1, T2〉
induces the identity on [T1, A], CA(T2)/[T1, A], and A/CA(T2), so 〈T1, T2〉 is a p-group by
Lemma 1.7 again, which is impossible. We conclude that rk(A2) = 2, and hence that
Op′(G) = 〈Sylp(G)〉 ∼= SL2(p).

Set H = Op′(G), and set A1 = CA(H). Then |A/A1| = p2, A1 ∩ A2 = 1 since H ∼= SL2(p)
acts faitfully on A2, and hence A = A1 × A2. Since H E G, the subgroups A1 = CA(H)
and A2 = [H,A] are both G-invariant. Set Gi = AutG(Ai) (i = 1, 2). Thus G1 and G2 are
quotient groups of G, G1 has order prime to p, G2 ≤ Aut(A2) ∼= GL2(p) and contains SL2(p),
and G E G1 ×G2 with index dividing p−1 = [GL2(p):SL2(p)]. �

2. Reduced fusion systems over nonabelian p-groups with index p abelian
subgroup

Throughout this section, p is an odd prime. We want to describe all simple fusion systems
over nonabelian p-groups which contain an abelian subgroup of index p. We begin by showing
that if S has more than one abelian subgroup of index p, and there is a simple fusion system
over S, then S must be extraspecial of order p3 and exponent p (Theorem 2.1). This is the
case already handled by Ruiz and Viruel [RV]. Afterwards, we develop the tools needed to
study simple or reduced fusion systems over a p-group S which contains a unique abelian
subgroup A < S of index p. Our main result is Theorem 2.8, which lists simple fusion
systems over such S when A is not essential. The more complicated case, that where the
unique abelian subgroup of index p is essential, will be handled in a later paper.

Theorem 2.1. Assume p is odd, and let S be a nonabelian p-group containing more than
one abelian subgroup of index p. If there is a simple (or reduced) fusion system over S, then
S is extraspecial of order p3 and exponent p.

Proof. Assume F is a reduced fusion system over S. Set Z = Z(S) and S ′ = [S, S] for
short. By Lemma 1.9, |S ′| = p and S/Z ∼= C2

p . In particular, S ′ ≤ Z. The only proper
subgroups centric in S are the abelian subgroups of index p, and hence they are the only
possible F -essential subgroups.
Fix some A ∈ EF , and set G = AutF(A). Then AutS(A) ∼= S/A has order p, it is a Sylow

p-subgroup of G, but is not the only Sylow p-subgroup since A ∈ EF . Also, [S,A] = S ′ has
order p.

The hypotheses of Lemma 1.11 thus hold. So if we set H = Op′(G), A1 = CA(H), and
A2 = [H,A], then A = A1 ×A2, A1 and A2 are normalized by G, A2

∼= C2
p , and H

∼= SL2(p)
acts trivially on A1 and faithfully on A2. In particular, the subgroup NH(AutS(A))/AutS(A)
acts trivially on A1 and nontrivially on S ′ = Z ∩ A2

∼= Cp.

Thus Z = S ′×A1, and A1 is the unique subgroup of Z which is complementary to S ′ and
normalized by NH(AutS(A))/AutS(A). Hence A1 is also the unique subgroup of Z which
is complementary to S ′ and normalized by AutF(Z) (there is at least one such subgroup
since |AutF(Z)| is prime to p). It follows that A1 is AutF(S)-invariant, and (by the same
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argument) is also normalized by AutF(P ) for each P ∈ EF . By Proposition 1.3(b), A1 E F .
Since F is reduced, this implies that A1 = 1, and so Z = Z(S) = S ′ has order p.

Thus S is a nonabelian group of order p3. If S ∼= p1+2
− , then there is a unique subgroup

Q ≤ S isomorphic to C2
p , this is the only possible F -essential subgroup, so Q E F , again

contradicting the assumption F is reduced. We conclude that S ∼= p1+2
+ . �

Fusion systems over extraspecial groups of order p3 and exponent p have already been
classi�ed by Ruiz and Viruel [RV]. In particular, they showed that there are exactly three
distinct exotic fusion systems over such groups, all for p = 7, of which two are simple.

We now turn to the case where S has a unique abelian subgroup of index p. We �rst �x
some notation.

Notation 2.2. Fix a nonabelian p-group S with unique abelian subgroup A of index p, and
a saturated fusion system F over S. De�ne

S ′ = [S, S] , Z = Z(S) , Z0 = Z ∩ S ′ , Z2 = Z2(S) , A0 = ZS ′ .

Thus Z0 ≤ S ′ ≤ A0 ≤ A and Z0 ≤ Z ≤ A0. Also, set

H =
{
Z〈x〉

∣∣x ∈ SrA} and (when Z2 ≤ A) B =
{
Z2〈x〉

∣∣x ∈ SrA} .
Recall that a p-group P of order pn has maximal class if its lower (or upper) central series

has length n− 1.

Lemma 2.3. Assume the notation and hypotheses of 2.2.

(a) For each P ∈ EF , P ∈ {A} ∪ H ∪ B and |NS(P )/P | = p.

(b) If EF * {A}, then Z2 ≤ A and |Z0| = p = |A/A0| = |Z2/Z|. Also, S/Z has maximal
class.

(c) If Z2〈x〉 ∈ EF for some x ∈ SrA, then Z〈x〉 is not F-centric and Z〈x〉 /∈ EF .

(d) In the situation of (b), there is x ∈ SrA such that A0〈x〉 is normalized by AutF(S).

(e) For each P ∈ EF and each α ∈ NAutF (P )(AutS(P )), α extends to some α ∈ AutF(S).

Proof. (a) Fix some P ∈ EF where P 6= A. Then P � A since P is F -centric. Set
P0 = P∩A, and �x some element x ∈ PrP0. Since OutF(P ) contains a strongly p-embedded
subgroup, Op(OutF(P )) = 1 (cf. [AKO, Proposition A.7(c)]).

(a1) Assume P is nonabelian. Since Z ≤ P (P is F -centric), Z(P ) = CP0(x) = Z. For
each g ∈ NA(P )rP , cg is the identity on P0 and on P/P0. If P0 is characteristic in p, then
cg ∈ Op(AutF(P )) by Lemma 1.7, which is impossible since Op(OutF(P )) = 1. Thus P0 is
not characteristic in P , and hence is not the unique abelian subgroup of index p in P . By
Lemma 1.9, |P0/Z| = p, P/Z(P ) ∼= P/Z ∼= C2

p , and [P, P ] = [x, P0] ∼= Cp.

Now, OutF(P ) maps injectively to Aut(Z(P )) × Aut(P/Z(P )) (since the kernel is a p-
group and Op(OutF(P )) = 1); AutS(P ) is sent trivially to Aut(Z(P )), and so |NS(P )/P | = p
since p2 does not divide the order of Aut(P/Z(P )) ∼= GL2(p). For g ∈ NA(P )rP , [g, P ] � Z
(otherwise cg induces the identity on P/Z(P ) and on Z(P ) = Z, which would imply cg ∈
Op(AutF(P )) = Inn(P )), so g /∈ Z2. In particular, S/Z is nonabelian, so [x,A] � Z and
Z2 ≤ A. Thus Z2 ≤ P0, and Z2 = P0 since Z2 > Z and |P0/Z| = p. So P = Z2〈x〉 ∈ B.
(a2) Assume P ∈ EF is abelian (and P 6= A). Then P0 = Z: it contains Z since P is
centric, and cannot be larger since then P would be nonabelian. Hence P = Z〈x〉 ∈ H.
Also, AutA(P ) = AutS(P ) ∈ Sylp(AutF(P )) centralizes P0. The conditions of Lemma 1.10
thus hold (with P and AutF(P ) in the roles of A and G), so |NS(P )/P | = |AutS(P )| = p.
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Since [S:P ] > p (A is the unique abelian subgroup of index p), this implies that S/Z is
nonabelian, so [x,A] � Z, and Z2 ≤ A.

For each g ∈ A, g ∈ NS(P ) if and only if [g, x] ∈ P0 = Z, if and only if gZ ∈ CA/Z(x) =
Z(S/Z) = Z2/Z. Thus NA(P ) = Z2, NS(P ) = Z2〈x〉 = Z2P , and |Z2/Z| = |NS(P )/P | = p.

(b) Fix x ∈ SrA. Since EF 6⊆ {A}, (H ∪ B) ∩ EF 6= ∅ by (a). Hence Z2 ≤ A and
|Z2/Z| = p by the proofs of (a1) and (a2). Also, S ′ = [x,A] = Im(cx − IdA) and Z =
CA(x) = Ker(cx − IdA), so

∣∣S ′∣∣·|Z| = |A|. Since Z2/Z = CA/Z(x), Z2 = (cx − IdA)−1(Z), so
(cx − IdA) sends Z2/Z isomorphically to Z0 = Z ∩ S ′. Hence |Z0| = p, and A0 = ZS ′ has
index p in A.

De�ne inductively A1 = [x,A] = S ′, and An = [x,An−1] = [S,An−1] for n ≥ 2. If n ≥ 1
and An 6= 1, then An+1 = (cx − Id)(An), Ker

(
(cx − Id)|An

)
= CAn(x) = Z0 since CAn(x) 6= 1

and |Z0| = p, and so |An/An+1| = |Z0| = p. Since AnZ/Z is the n-th term in the lower
central series for S/Z, and since |S/A1Z| = |S/A0| = p2, this proves that S/Z has maximal
class.

(c) Assume x ∈ SrA is such that Z2〈x〉 is F -essential. There are p+ 1 subgroups of index
p in Z2〈x〉 which contain Z(Z2〈x〉) = Z, and by the proof of (a1), AutS(Z2〈x〉) permutes
all of them except Z2 transitively. Since Z2〈x〉 ∈ EF , Z2 is not normalized by AutF(Z2〈x〉),
and there is α ∈ AutF(Z2〈x〉) such that α(Z〈x〉) = Z2 < A. Thus Z〈x〉 is not F -centric,
and hence cannot be F -essential.

(d) For each x ∈ SrA, xp ∈ CA(x) = Z ≤ A0. Hence S/A0
∼= C2

p since |A/A0| = p by (b).
Also, the OutF(S)-action on S/A0 normalizes A/A0 since A is characterisitic in S. Since
OutF(S) has order prime to p, there is an OutF(S)-invariant splitting of A/A0 < S/A0. If
xA0 generates such a splitting (where x ∈ SrA), then A0〈x〉 is normalized by AutF(S).

(e) Fix P ∈ EF and α ∈ NAutF (P )(AutS(P )). By the extension axiom, α extends to some
α̂ ∈ AutF(NS(P )). By (a,b), P is maximal among all F -essential subgroups: either P = A,
or P ∈ B, or P = Z〈x〉 ∈ H for some x ∈ SrA and Z2〈x〉 /∈ EF . So α̂ extends to an element
α ∈ AutF(S) by Proposition 1.3(a). �

Lemma 2.4. Assume the notation and hypotheses of 2.2, and also that Op(F) = 1 and
A /∈ EF . Then H ∩ EF 6= ∅, Z = Z0, S

′ = A0, and S has maximal class.

Proof. Since A /∈ EF , EF ⊆ H ∪ B by Lemma 2.3(a). If EF ⊆ B, then Z = Z(P ) for each
P ∈ EF , so Z E F by Proposition 1.3(b), which contradicts our assumption. Thus there is
Q ∈ H ∩ EF .

By Lemma 2.3(a), AutS(Q) ∈ Sylp(AutF(Q)) has order p. Also, for each g ∈ NS(Q)rQ,
[g,Q] ≤ Q ∩ S ′ = Z ∩ S ′ = Z0, where |Z0| = p by Lemma 2.3(b). Hence by Lemma 1.11, if
we set ΓQ = Op′(AutF(Q)), Q1 = CQ(ΓQ) ≤ Z(S), and Q2 = [ΓQ, Q] ≥ Z0, then Q1 and Q2

are both normalized by AutF(Q) and Q = Q1 × Q2. Also, ΓQ ∼= SL2(p) acts faithfully on
Q2
∼= C2

p and trivially on Q1.

In particular, there is a subgroup H ≤ NΓQ
(AutS(Q)) of order p− 1 which acts as the full

group of automorphisms of Z0 and of Q2/Z0, and acts trivially on Q1. Thus Z = Q1 × Z0,
and Q1 is the unique complement to Z0 in Z which is normalized by H. Since H restricts to
a subgroup of AutF(Z), this shows that Q1 is also the unique complement to Z0 in Z which
is normalized by AutF(Z) (there is at least one such subgroup since |AutF(Z)| is prime to
p).

By a similar argument, Q1 is normalized by AutF(P ) for each P ∈ H∩EF . If P ∈ B∩EF
or P = S, then for each α ∈ AutF(P ), α(Z) = Z since Z = Z(P ), so α|Z = AutF(Z),
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and α(Q1) = Q1. Thus Q1 E F by Proposition 1.3(b), and Q1 = 1 (hence Z = Z0) since
Op(F) = 1. Also, A0 = ZS ′ = S ′ since Z = Z0 ≤ S ′.

Since |Z(S)| = p and S/Z(S) has maximal class, S also has maximal class. �

We now need some more notation.

Notation 2.5. Assume the notation and hypotheses of 2.2, and also that |Z0| = |A/A0| =
|Z2/Z| = p. Fix a ∈ ArA0 and x ∈ SrA, where x is chosen so that 〈A0,x〉 is normalized
by AutF(S) (Lemma 2.3(d)). For each i = 0, 1, . . . , p− 1, de�ne

Hi = 〈Z,xai〉 ∈ H and Bi = 〈Z2,xa
i〉 ∈ B .

Let Hi and Bi denote the S-conjugacy classes of Hi and Bi, respectively, and set

H∗ = H1 ∪ · · · ∪ Hp−1 and B∗ = B1 ∪ · · · ∪ Bp−1.

Thus H = H0 ∪H∗ and B = B0 ∪ B∗, since |A/A0| = p. Also, for P ≤ S, set

Aut
(P )
F (S) =

{
α ∈ AutF(S)

∣∣α(P ) = P, α|P ∈ Op′(AutF(P ))
}
≤ AutF(S) .

Set

∆ = (Z/p)× × (Z/p)× , and ∆i = {(r, ri) | r ∈ (Z/p)×} ≤ ∆ (for i ∈ Z).
De�ne

µ : Aut(S) −−−−−−→ ∆ and µ̂ : Out(S) −−−−−−→ ∆

by setting, for α ∈ Aut(S),

µ(α) = µ̂([α]) = (r, s) if

{
α(x) ∈ xrA for x ∈ SrA
α(g) = gs for g ∈ Z0 .

The next two lemmas describe the role played by µ and ∆ in controlling these fusion
systems.

Lemma 2.6. Assume the notation and hypotheses of 2.2 and 2.5, and let m ≥ 3 be such
that |A/Z| = pm−1. Then the following hold for each α ∈ Aut(S).

(a) Set (r, s) = µ(α), and let u be such that α(g) ∈ guA0 for each g ∈ ArA0. Then
s ≡ urm−1 (mod p).

(b) Either µ(α) ∈ ∆m, and α normalizes each of the S-conjugacy classes Hi and Bi (0 ≤
i ≤ p − 1); or µ(α) /∈ ∆m, and α normalizes only the classes H0 and B0. Also, α acts
via the identity on A/A0 if and only if µ(α) ∈ ∆m−1.

Proof. (a) De�ne inductively A1 = [x, A] = S ′, and An = [x, An−1] for n ≥ 2. If n ≥ 1 and
An 6= 1, then An+1 = (cx − Id)(An), Ker

(
(cx − Id)|An

)
= Z0, and so |An/An+1| = |Z0| = p.

Since |A1| = |A|
/
|Z| = pm−1, this shows that Am−1 = Z0 and Am = 1.

Fix α ∈ Aut(S), set µ(α) = (r, s), and let u ∈ (Z/p)× be such that α(g) ∈ guA0 for each

g ∈ ArA0. Then for each k, α acts on Ak/Ak−1 via g 7→ gur
k
. In particular, α acts on Z0

via g 7→ gur
m−1

, and hence s ≡ urm−1 (mod p).

(b) Fix α ∈ Aut(S), and let r, s, u be as in (a). Then α acts via the identity on A/A0 if
and only if u = 1, which by (b) holds if and only if µ(α) ∈ ∆m−1. Similarly, α normalizes
each subgroup 〈A0,xa

j〉 if and only if r ≡ u (mod p); i.e., s ≡ rm, and µ(α) ∈ ∆m. �

Lemma 2.7. Assume the notation and hypotheses of 2.2 and 2.5. Assume also that Z = Z0.
Let m be such that |A/Z| = pm−1 (hence |A| = pm). Fix P ∈ H ∪ B, and set t = −1 if
P ∈ H, t = 0 if P ∈ B.
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(a) Assume P ∈ EF . Then P ∼= C2
p or p1+2

+ , and µ(Aut
(P )
F (S)) = ∆t. If P ∈ H∗ or P ∈ B∗,

then m ≡ t (mod p− 1).

(b) Conversely, assume that P ∼= C2
p or p1+2

+ , and also that µ(HP ) ≥ ∆t where

HP =
{
α ∈ AutF(S)

∣∣α(P ) = P
}

and ĤP =
{
α|P

∣∣α ∈ HP

}
.

Then there is a subgroup Θ ≤ Out(P ) such that Op(Θ) = 1, OutS(P ) ∈ Sylp(Θ), and

NΘ(OutS(P )) = ĤP/Inn(P ).

(c) In the situation of (b), or in the situation of (a) when Θ = OutF(P ), Op′(Θ) ∼= SL2(p),
and

Θ ∼=

{
SL2(p) if µ(HP ) = ∆t

GL2(p) if µ(HP ) = ∆ .

Proof. Set P0 = P ∩ A, and P1 = [S, P0] = [x, P0]. Thus |P/P0| = p and |P/P1| = p2 in all
cases. Set ΓP = Op′(Out(P )).

(a) Assume P ∈ EF . If P ∈ H, then |P | = p2 since |Z| = p, and if P ∈ B, then P is
nonabelian of order p3. In either case, by Lemma 1.11, applied to the action of OutF(P )
on P/[P, P ], P/[P, P ] ∼= C2

p and the action contains that of SL2(p). Hence by Lemma 1.8,

P ∼= C2
p or p1+2

+ , Out(P ) ∼= GL2(p), and OutF(P ) contains ΓP ∼= SL2(p).

Now, NΓP
(OutS(P )) = OutS(P )o 〈α〉 ∼= CpoCp−1, where for some generator r ∈ (Z/p)×,

α acts on P/P0 via g 7→ gr, and on P0/P1 via g 7→ g1/r. By Lemma 2.3(e), α extends

to α ∈ AutF(S). Hence Aut
(P )
F (S) ≥ AutNS(P )(S)〈α〉, with equality since restrictions of

elements in Aut
(P )
F (S) must be contained in the normalizer of a Sylow p-subgroup in SL2(p).

If P ∼= C2
p , then µ(α) = (r, r−1), while if P ∼= p1+2

+ , then α|Z = Id and hence µ(α) = (r, 1).

Thus in either case, µ(α) generates ∆t, so µ(Aut
(P )
F (S)) = ∆t.

If P ∈ H∗ ∪ B∗, then µ(α) ∈ ∆m by Lemma 2.6(b), since α normalizes P ∈ Hi. So
∆m = ∆t, and m ≡ t (mod p− 1).

(b) By assumption, P ∼= C2
p or p1+2

+ , so ΓP = Op′(Out(P )) ∼= SL2(p). Choose α ∈ HP such
that µ(α) generates ∆t. Then for some generator r ∈ (Z/p)×, α induces x 7→ xr on P/P0

and induces x 7→ x1/r on P0/P1. Thus α|P ∈ ΓP and AutS(P )〈α|P 〉 = NΓP
(AutS(P )).

Set Θ = ΓP ·(ĤP/Inn(P )). Then Op(Θ) = 1 since Op(SL2(p)) = 1 and p - [Θ:ΓP ],

OutS(P ) ∈ Sylp(Θ) since p - [Θ:ΓP ], and NΘ(AutS(P )) = ĤP since AutS(P ) E ĤP .

(c) In either case (a) or (b), Θ acts faithfully on P/P1
∼= C2

p , and contains Op′(Out(P )) ∼=
SL2(p) by Lemma 1.11. Also, NΘ(OutS(P )) = ĤP/Inn(P ): by assumption in case (b), and
by the extension axiom in case (a). The last statement now follows since [Θ:Op′(Out(P ))] =
[µ(HP ):∆t]. �

We are now ready to state and prove our main theorem: a description of all simple fusion
systems in the situation of Notation 2.2 for which A is not essential. In the statement of the
theorem, we set

ζ = ζp = e2πi/p, R = Z[ζ], and p = (1− ζ)R .

We also set U = AutS(A), u = cx ∈ U, and σ =
∑p−1

i=0 ui ∈ Z[U]. We regard A as a
Z[U]-module, and also when possible as an R-module by setting ζ·a = u(a) for a ∈ A.

Theorem 2.8. Fix an odd prime p, a �nite nonabelian p-group S with a unique abelian
subgroup A ≤ S of index p, and a simple fusion system F over S for which A is not
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essential. Assume the notation and hypotheses of 2.2 and 2.5. Let m ≥ 3 be such that
|A| = pm. Then |Z| = p, µ̂|OutF (S) is injective, x ∈ SrA can be chosen so that xp = 1 and
A0〈x〉 is normalized by AutF(S), and one of the following holds.

(a) S ∼= (R/pm)o 〈x〉, and either
(i) m ≡ −1 (mod p−1), µ̂(OutF(S)) = ∆−1, and EF is the union of between 1 and

p of the S-conjugacy classes Hi, with AutF(Hi) ∼= SL2(p) when Hi ∈ EF ; or

(ii) m ≡ −1 (mod p−1), µ̂(OutF(S)) = ∆, and EF = B0 ∪ H∗, where OutF(B0) ∼=
GL2(p), the subgroups in H∗ are all F-conjugate, and OutF(Hi) ∼= SL2(p); or

(iii) m ≡ 0 (mod p−1), µ̂(OutF(S)) = ∆, and EF = H0 ∪ B∗, where OutF(H0) ∼=
GL2(p), the subgroups in B∗ are all F-conjugate, and OutF(Bi) ∼= SL2(p); or

(iv) m 6≡ 0,−1 (mod p−1), µ̂(OutF(S)) = ∆−1, and EF = H0 with OutF(H0) ∼=
SL2(p).

(b) As a Z[U]-module,

A ∼= Z[U]
/〈
pσ, pk + `σ

〉
where k ≥ 1, ` ∈ Z, and

{
p - ` if k ≥ 2

p - `+1 if k = 1.

Also, m = k(p − 1) + 1 ≡ 1 (mod p−1), S ∼= A o 〈x〉, µ̂(OutF(S)) = ∆−1, EF = H0,
and OutF(H0) ∼= SL2(p).

Conversely, in each of these cases, there is up to isomorphism a unique simple fusion system
F which satis�es the given description of S, µ̂(OutF(S)), EF , and the groups OutF(P ) for
P ∈ EF . Furthermore,

• A0H0 < S is strongly closed in F in cases (a.iv) and (b), A0Hi is strongly closed in F
in case (a.i) if EF = Hi, and these are the only occurrences of proper strongly closed
subgroups in these fusion systems; and

• all of these fusion systems are exotic, with the following exceptions when p = 3.
� Case (a.i), when EF = H = H0 ∪ H∗: F is the 3-fusion system of PSL3(q) for

appropriate q ≡ 1 (mod 3), and also of PSU3(q) for appropriate q ≡ −1 (mod
3).

� Case (a.ii): F is the 3-fusion system of 3D4(q) for appropriate q prime to 3.

Proof. Let F be any reduced fusion system over S such that A /∈ EF . By Lemmas 2.3(b)
and 2.4, Z = Z0, S

′ = A0, and |Z| = |A/A0| = p.

For each α ∈ Ker(µ), α induces the identity on S/A, and induces the identity on A/A0

by Lemma 2.6(a). Thus Ker(µ) is a p-group by Lemma 1.7, and Ker(µ) = Op(Aut(S)) since
Im(µ) has order prime to p. In particular, µ̂|OutF (S) is injective since p - |OutF(S)|.
By Proposition 1.3(c,d), and since [AutF(P ), P ] = P for P ∈ EF , O

p(F) = F if and
only if 〈[AutF(S), S],EF〉 = S. Since S ′ = A0 has index p2 in S, [AutF(S), S] = A0〈x〉 if
µ(AutF(S)) ≤ ∆m−1 and [AutF(S), S] = S otherwise (Lemma 2.6(b)). Thus

Op(F) = F ⇐⇒ µ(AutF(S)) � ∆m−1 or (H∗ ∪ B∗) ∩ EF 6= ∅ . (1)

By Lemma 1.4, Op′(F) = F if and only if µ(AutF(S)) is generated by the subgroups

µ(Aut
(P )
F (S)) for P ∈ EF . Together with Lemma 2.7(a) (and since H ∩EF 6= ∅ in all cases

by Lemma 2.4), this implies that

Op′(F) = F ⇐⇒ B ∩ EF 6= ∅ or µ̂(OutF(S)) = ∆−1 . (2)
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Step 1: We �rst check that each of the above choices of S = A o 〈x〉, µ(AutF(S)),
EF , and OutF(P ) for P ∈ EF , determines a reduced fusion system which is unique up to
isomorphism. In each case, we �x an identi�cation of A with a quotient group of R or of
Z[U], as described, and let a ∈ A be the element identi�ed with 1 ∈ R or 1 ∈ Z[U].

For each P ∈ EF , either P ∈ H and P ∼= C2
p or P ∈ B and P ∼= p1+2

+ , so Out(P ) ∼=
GL2(p) in either case, and there is a unique subgroup of Out(P ) isomorphic to SL2(p).
Also, Out(S) is isomorphic to a semidirect product of Ker(µ̂) = Op(Out(S)) with Im(µ̂) ≤
∆, so by the Schur-Zassenhaus theorem (see [G, Theorem 6.2.1]), the statements about
µ(AutF(S)) determine AutF(S) up to conjugacy in Aut(S) (hence up to an isomorphism of
fusion systems). Since F is generated by AutF(S), AutF(P ) for P ∈ EF , and restrictions of
those automorphisms, it is uniquely determined by such data.

For each i ∈ Z prime to p, de�ne λi ∈ Aut(S) by setting λi(a) = ai for a ∈ A and
λi(x) = x. For each j ∈ (Z/p)×, de�ne νj ∈ Aut(S) by setting νj(x) = xj and νj(a) = a.
Then νj(u

k(a)) = ujk(a) for each k (recall u = cx), so νj acts on A via a Galois automorphism
on R in case (a), or via an automorphism of the group U in case (b). In all cases, νj is well
de�ned by the description of A as a quotient of R or of Z[U]. Let Λ < Aut(S) be the
subgroup generated by those λi of order prime to p (i.e., such that ip−1 ≡ 1 modulo the
exponent of A), and by all νj for j ∈ (Z/p)×. Thus Λ ∼= Cp−1 × Cp−1. By Lemma 2.6(a),
µ(Λ) = ∆. By construction, Λ(H0) = H0, Λ(B0) = B0, and Λ permutes each of the sets
{H1, . . . , Hp−1} and {B1, . . . , Bp−1}.
Assume we are in the situation of one of cases (a.i)�(a.iv) or (b). Let Λ0 ≤ Λ be such

that µ(Λ0) is the given subgroup, and set G = S o Λ0. Let Q1, . . . , Qk be representatives
for the G-conjugacy classes in EF as listed, chosen among the Hi and Bi for 0 ≤ i ≤ p− 1.
By Lemma 2.6(b), Λ0 sends the S-conjugacy class of each Qi to itself, except in (a.ii) and
(a.iii) when Q ∈ H∗ ∪ B∗, in which cases Λ0 = Λ contains a subgroup of order p − 1 which
sends each class to itself. Thus Λ0, or a subgroup of order p − 1 in Λ0, normalizes each
Qi by the above remarks. By Lemma 2.7(b), for each i = 1, . . . , k, there is a subgroup
Θi ≤ Out(Qi) ∼= GL2(p) such that OutS(Qi) ∈ Sylp(Θi), OutG(Qi) = NΘi

(OutS(Qi)), and
Op(Θi) = 1; and Θi is uniquely determined because it contains SL2(p) and the normalizer of
its Sylow p-subgroup is given.

Set F = 〈FS(G),Θ1, . . . ,Θk〉, and setKi = OutG(Qi). No Qi is G-conjugate to a subgroup
of Qj for j 6= i. For each i,

(1) p-[Θi:Ki],

(2) Qi is p-centric in G but no proper subgroup of Qi is F -centric or essential in G, and
(3) Ki is strongly p-embedded in Θi.

Hence F is saturated by [BLO4, Proposition 5.1].

Any normal p-subgroup of F must be contained in all essential subgroups, hence is
contained in Z ∼= Cp; and Z 5 F since some P ∈ EF is abelian in each case. Thus
Op(F) = 1. By inspection, the conditions on the right-hand side of (1) and (2) hold, so
Op(F) = F = Op′(F).

Step 2: We next list the proper strongly closed subgroups in F , and use that to determine
whether F is realizable and to prove that F is simple in all cases.

If 1 6= Q E S is strongly closed in F , then it contains Z0 = Z(S) ∼= Cp (each nontrivial
normal subgroup intersects nontrivially with the center), and hence contains each abelian
subgroup in EF . Thus Hi ⊆ EF implies that Q ≥ 〈Hi〉 = A0〈xai〉. In particular, Q ≥ A0 ≥
Z2, so Q also contains all nonabelian subgroups in EF . Hence if Q < S, then EF = Hi
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and Q = A0Hi for some i. By inspection, the only cases where this occurs are (a.iv) and
(b), with i = 0, and sometimes in case (a.i). Conversely, A0Hi is strongly closed in each of
these cases, since it contains 〈EF〉 and is normalized by AutF(S) (by Lemma 2.6(b) and the
assumptions in (a.i) when i 6= 0).

If A0Hi is strongly closed, then it is centric in S, is nonabelian, and does not split as a
product. So in all cases, by Lemma 1.5, if F is realizable, it is realizable by a �nite simple
group. Hence by Lemma 1.6, p = 3, and F is the fusion system of one of the simple groups
G ∼= PSL3(q), PSU3(q), G2(q), or 3D4(q) for some q prime to 3. When G is a Chevalley
group G(q), then all of the classes Hi are conjugate in the Sylow 3-subgroup of G(q3), so all
of them are essential in F since at least one of them is. Thus we must be in case (a.i), and
since m ≡ 1 (mod 2), we have G ∼= PSL3(q) for some q ≡ 1 (mod 3). The groups PSU3(q)
are handled in a similar way. The 3-fusion system of 3D4(q) has type (a.ii) by the description
of its maximal subgroups in [Kl].

If F is not simple, then since it is reduced, A0Hi must be strongly closed for some i, and
there is a normal fusion subsystem E E F over T = A0Hi. Then Hi splits into p T -conjugacy
classes. For each P ∈ Hi, NS(P ) = Z2P ≤ T since Z2 ≤ A0, so AutE(P ) contains the normal
closure Op′(AutF(P )) of AutS(P ), and hence P ∈ EE . So if m ≥ 4 (if |T | ≥ p4), then by
Lemma 2.7(a) (and since |A0| = pm−1), m − 1 ≡ −1 (mod p − 1), which does not hold in
the cases we are considering. If m = 3 (if T is extraspecial of order p3), then by [RV, Tables
1.1 & 1.2], there is no saturated fusion system over T with exactly p essential (or radical)
subgroups of order p2. Thus F is simple.

Step 3: It remains to show that the fusion systems of cases (a) and (b) are the only simple
fusion systems satisfying our hypotheses. By Lemma 2.3(a,c), each P ∈ EF lies in exactly
one of the classes Hi or Bi for 0 ≤ i ≤ p− 1, and Hi and Bi cannot both be in EF .

Recall that U = AutS(A), u = cx ∈ U, and σ =
∑p−1

i=0 ui ∈ Z[U]. De�ne

Ψ: Z[U] −−−−−−→ A

by setting Ψ(uk) = uk(a) for all k. Then Im(Ψ) is normalized by x, Im(Ψ)〈x〉 ≥ 〈a,x〉 = S
since A0 = S ′, so Im(Ψ) = A and Ψ is onto.

For each i ∈ Z, (xai)p = u(ai)u2(ai) · · ·up(ai)xp = Ψ(iσ)xp. Hence

Ψ(σ) = 1 ⇐⇒ (xai)p = xp for each i ∈ Z
⇐⇒ (xai)p = (xaj)p for some 0 ≤ i < j ≤ p− 1.

(3)

Since (xai)p = 1 if Hi ∈ EF or Bi ∈ EF , this shows that x
p = 1 if H0 ⊆ EF , or if B0 ⊆ EF ,

or if Ψ(σ) = 1. We will see that at least one of these holds in each case.

Note that R ∼= Z[U]/〈σ〉, and that p is the image in R of (1− u)Z[U]. Also, pp−1 = pR:
this follows, for example, from the congruence (1−u)p−1 ≡ σ (mod pZ[U]). Thus each ideal
of p-power index in R is a power of p.

By Lemma 2.4, EF contains at least one abelian subgroup. There are three cases to
consider:

Case 1: Assume EF ∩ B 6= ∅. By Lemma 2.7(a), and since EF ∩ H 6= ∅, µ(AutF(S)) ≥
∆0∆−1 = ∆. Hence all subgroups in H∗ and in B∗ are F -conjugate (Lemma 2.6(b)), and
EF = H0 ∪ B∗ or B0 ∪H∗.
By Lemma 2.7(a), m ≡ −1 (mod p− 1) if H∗ ⊆ EF , while m ≡ 0 (mod p− 1) if B∗ ⊆ EF .

By Lemma 2.7(c), for P ∈ EF , OutF(P ) ∼= GL2(p) if P ∈ H0 ∪B0, while OutF(P ) ∼= SL2(p)
if P ∈ H∗ ∪ B∗.
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Since all subgroups in EF have exponent p, (xai)p = 1 for each i. Hence Ψ(σ) = 1 by (3),
so Ψ factors through Z[U]/〈σ〉 ∼= R. We can thus regard A as an R-module, and A ∼= R/pm

(recall pm = |A|) by the above remarks. Thus we are in case (a.ii) or (a.iii).

Case 2: Assume EF contains only abelian subgroups, and also that Hi, Hj ∈ EF for some
0 ≤ i < j ≤ p− 1. Then (xai)p = (xaj)p = 1, so σ ∈ Ker(Ψ) by (3), and A ∼= R/pm by the
above remarks.

Since Hj ∈ EF where j 6= 0, m ≡ −1 (mod p − 1) by Lemma 2.7(a), and µ(AutF(S)) ≥
∆m = ∆−1. Since F is reduced, Op′(F) = F , so µ(AutF(S)) = ∆−1 = ∆m by (2). Thus
no two of the Hi are F -conjugate (Lemma 2.6(b)), AutF(H) ∼= SL2(p) for each H ∈ EF by
Lemma 2.7(c), and we are in case (a.i).

Case 3: Assume EF = Hi for some i. Then µ(AutF(S)) = ∆−1 by (2), and OutF(Hi) ∼=
SL2(p) by Lemma 2.7(c). Also, by Lemma 2.7(a), either i = 0 or m ≡ −1 (mod p − 1). If
i = 0, then by (1), µ(AutF(S)) � ∆m−1, and hence m 6≡ 0 (mod p− 1).

Thus if Ψ(σ) = 1 (so that A ∼= R/pm), then either m ≡ −1 (mod p− 1) and we are in the
situation of (a.i); or i = 0, m 6≡ 0,−1 (mod p− 1), and we are in the situation of (a.iv).

Now assume Ψ(σ) 6= 1. By (3), (xaj)p = 1 for a unique 0 ≤ j ≤ p − 1, and j = i since
subgroups in EF = Hi have exponent p. Also, A0〈xai〉 is characteristic in S since it splits
over A0 while A0〈xa`〉 does not split for ` 6= i. So we can assume that x was chosen with
x = xai. Thus i = 0, and EF = H0.

Set I = Ker(Ψ), τ = 1−u and J = σZ[U]; we identify R = Z[U]/J and p = (τZ[U]+J)/J .
Then Ψ(J) = 〈Ψ(σ)〉 6= 1, Ψ(σ) ∈ Z, so Ψ(J) = Z since |Z| = p. Thus J ∩ I = pJ . Also,

A/Z ∼= Z[U]/(I + J) ∼=
Z[U]/J

(I + J)/J
∼= R/pm−1 ,

since |A/Z| = pm−1 and p is the unique maximal ideal in R which contains p. Hence
I+J = 〈σ, τm−1〉, Ψ(τm−1) ∈ Z, and so I = 〈pσ, τm−1 + tσ〉 for some t ∈ Z. Also, τm ∈ I
since τσ = 0.

De�ne ε : Z[U] −−−→ Z by setting ε
(∑

niu
i
)

=
∑
ni. Then Ker(ε) = τZ[U]. Since

|Z[U]/(I + τZ[U])| = |A/A0| = p, we have ε(I) = pZ, and hence p - t.
Since µ(AutF(S)) = ∆−1, I is invariant under all automorphisms of U. So (1−ur)m−1 +

tσ ∈ I for each 1 ≤ r ≤ p− 1. Since τm ∈ I, this implies that

0 ≡ τm−1(1 + u + . . .+ ur−1)m−1 + tσ ≡ rm−1τm−1 + tσ (mod I) .

Sice p - t, this implies rm−1 ≡ 1 (mod p) for each r, and hence m ≡ 1 (mod p− 1).

Set k = (m − 1)/(p − 1). Then pm−1 = pkR, so I = 〈pσ, pk + `σ〉 for some `, and the
condition ε(I) = pZ implies that p - ` if k ≥ 2, p - (`+1) if k = 1. We are thus in the
situation of case (b). �
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