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ABSTRACT. We finish the classification, begun in two earlier papers, of all simple fusion
systems over finite nonabelian p-groups with an abelian subgroup of index p. In particular,
this gives many new examples illustrating the enormous variety of exotic examples that can
arise. In addition, we classify all simple fusion systems over infinite nonabelian discrete
p-toral groups with an abelian subgroup of index p. In all of these cases (finite or infinite),
we reduce the problem to one of listing all F,G-modules (for G finite) satisfying certain
conditions: a problem which was solved in the earlier paper [CrOS] using the classification
of finite simple groups.

A saturated fusion system over a finite p-group S is a category whose objects are the
subgroups of S, and whose morphisms are injective homomorphisms between the subgroups,
and which satisfy some additional conditions first formulated by Puig (who called them
“Frobenius S-categories” in |Pg|) and motivated in part by the Sylow theorems for finite
groups. For example, if G is a finite group and S € Syl,(G), then the category Fs(G),
whose objects are the subgroups of S and whose morphisms are the homomorphisms between
subgroups defined via conjugation in G, is a saturated fusion system over S. We refer to |Pg],
[AKO, Part I], or [Cr] for the basic definitions and properties of saturated fusion systems.

A saturated fusion system is realizable if it is isomorphic to Fg(G) for some finite group
G and some S € Syl,(G); it is evotic otherwise. Here, by an isomorphism of fusion systems
we mean an isomorphism of categories that is induced by an isomorphism between the
underlying p-groups. Exotic fusion systems over finite p-groups seem to be quite rare for
p = 2 (the only known examples are those constructed in [LO| and others easily derived
from them), but many examples of them are known for odd primes p.

A discrete p-torus is a group of the form (Z/p>)" for some r > 0, where Z/p> is the union
of the cyclic groups Z/p* via the obvious inclusions Z/p* < Z/p**1. A discrete p-toral group
is a group containing a discrete p-torus as a normal subgroup of p-power index. Saturated
fusion systems over discrete p-toral groups were defined and studied in [BLO3|, motivated
by the special case of fusion systems for compact Lie groups and p-compact groups.

A fusion system is simple if it is saturated and contains no proper nontrivial normal
fusion subsystems (see Definition 1.4). As a special case, very rich in exotic examples,
we have been looking at simple fusion systems F over finite nonabelian p-groups S with
an abelian subgroup A of index p. By [AOV2, Proposition 5.2(a)|, if p = 2, then S is
dihedral, semidihedral, or a wreath product of the form Cy: ! Cs, and hence F is isomorphic
to the fusion system of PSLsy(q) or PSL3(q) for some odd ¢g. Fusion systems over extraspecial
groups of order p and exponent p were listed in [RV], and by |Ol, Theorem 2.1], these include
the only simple fusion systems over nonabelian p-groups containing more than one abelian
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subgroup of index p. The other cases where p is odd and A is not essential (equivalently,
not radical) in F were handled in [Ol, Theorem 2.8|, while those where A is essential and of
exponent p was handled in [CrOS]. So it remains to describe those cases where A is essential
and not elementary abelian (and the unique abelian subgroup of index p). This, together
with analogous results about simple fusion systems over infinite discrete p-toral groups with
abelian subgroup of index p, are the main results of this paper.

To simplify the following summary of our results, we use the term “index-p-triple” to
denote a triple (F, S, A), where S is a nonabelian discrete p-toral group (finite or infinite)
with abelian subgroup A of index p, and F is a simple fusion system over S. Our main results
are shown in Sections 4 and 5, where we handle separately the finite and infinite cases. In
each of these sections, we first list, in Theorems 4.5 and 5.11, all index-p-triples (F, S, A),
for S finite or infinite, in terms of the pair (G, A) where G = Autz(A) and A is regarded as a
Z,G-module. Theorem 4.5 is taken directly from [CrOS, Theorem 2.8|, while Theorem 5.11
is new. For completeness in the infinite case, we also show that each index-2-triple (F, S, A)
with |S| = oo is isomorphic to that of SO(3) or PSU(3) (Theorem 5.6), and that for each p
there is (up to isomorphism) a unique index-p-triple (F,S, A) where |S| = oo and A is not
essential (Theorem 5.12).

The main theorems, Theorems A and B, appear at the ends of Sections 4 and 5, respec-
tively. In Theorem A, for p odd, we prove that each index-p-triple (F, S, A), where A is finite,
essential in F, and not elementary abelian, is determined by G = Autxz(A), V = Q;(A) re-
garded as an [F,G-module, the exponent of A, and some additional information needed when
A is not homocyclic. In all cases, tk(A) > p — 1, and A is homocyclic whenever rk(A) > p.
Also, A is always isomorphic to some quotient of a Z,G-lattice.

Theorem B can be thought of as a “limiting case” of the classification in Theorem A. It
says that each index-p-triple (F, S, A) such that A is infinite and essential in F is determined
by the pair (G,V'), where G = Autz(A), and V = Q,(A) is regarded as an F,G-module. In
all such cases, A is a discrete p-torus of rank at least p — 1. We also determine which of
the fusion systems we list are realized as fusion systems of compact Lie groups or p-compact
groups.

Theorems A and B reduce our classification problems to questions about F,G-modules with
certain properties. These questions were already studied in [CrOS], using the classification of
finite simple groups, and the results in that paper that are relevant in this one are summarized
in Section 6. Theorems A and B together with Proposition 6.1 and Table 6.1 allow us to
completely list all simple fusion systems over nonabelian discrete p-toral groups (finite or
infinite) with abelian subgroup of index p that is not elementary abelian. In particular, as
in the earlier papers [Ol] and [CrOS], we find a very large, very rich variety of exotic fusion
systems over finite p-groups (at least for p > 5).

This work was motivated in part by the following questions and problems, all of which are
familiar to people working in this field.

Q1: For a fixed odd prime p, a complete classification of all simple fusion systems over finite
p-groups, or even a conjecture as to how they could be classified, seems way out of reach
for now. But based on the many examples already known, is there any meaningful
way in which one could begin to systematize them; for example, by splitting up the
problem into simpler cases? Alternatively, is there a class of simple fusion systems
over finite p-groups, much less restrictive than the one we look at here, for which there
might be some chance of classifying its members?
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Q2: Find some criterion which can be used to prove that some (or at least one!) of the
examples constructed here or earlier (over finite p-groups for odd primes p) are exotic,
without invoking the classification of finite simple groups.

Q3: A torsion linear group in defining characteristic ¢ is a subgroup I' < GL,,(K), for some
n > 1 and some field K of characteristic ¢, such that all elements of I' have finite order.
If p is a prime and T is a torsion linear group in defining characteristic different from
p, then by [BLO3, §8|, there is a maximal discrete p-toral subgroup S < I', unique
up to conjugation, and Fg(I') is a saturated fusion system. Are there any saturated
fusion systems over discrete p-toral groups (for any prime p) which we can prove are
not fusion systems of torsion linear groups?

The notation used in this paper is mostly standard. We let Ao B denote a central product
of A and B. When g and h are in a group G, we set Yh = ghg™! and h? = g~'hg. When
A is an abelian group and § € Aut(A), we write |8, A] = (B(x)z™' |z € A). When P is a
p-group, we let Fr(P) denote its Frattini subgroup, and for £ > 1 set

O(P)=(geP|g" =1) and UHP)=(¢"|ge P).

We would like to thank the Centre for Symmetry and Deformation at Copenhagen Uni-
versity, and the Universitat Autonoma de Barcelona, for their hospitality in allowing us to
get together on several different occasions.

1. BACKGROUND

We first recall some of the definitions and standard terminology used when working with
fusion systems. Recall that a discrete p-toral group is a group that contains a normal
subgroup of p-power index isomorphic to (Z/p>)" for some r > 0. A fusion system over a
discrete p-toral group S is a category F whose objects are the subgroups of S, and where for
each P, < S, the set Homz(P, Q) is a set of injective homomorphisms from P to ) that
includes all those induced by conjugation in S, and such that for each ¢ € Homz(P, @), we
have ¢ € Homz(P, p(P)) and ¢! € Homz(o(P), P).

Define the rank rk(S) of a discrete p-torus S by setting rk(S) = r if S = (Z/p>)". If
S is a discrete p-toral group with normal discrete p-torus Sop < S of p-power index, then
we refer to Sy as the identity component of S, and set |S| = (rk(Sp), |S/So|), where such
pairs are ordered lexicographically. Thus if T" is another discrete p-toral group with identity
component Tp, then |S| < |T if rk(Sy) < rk(Tp), or if rk(Sy) = rk(Tp) and [S/Sy| < |T'/Ty|.
Note that the identity component of S, and hence |S|, are uniquely determined since a
discrete p-torus has no proper subgroups of finite index.

Definition 1.1. Fiz a prime p, a discrete p-toral group S, and a fusion system F over S.

e For each P < S and each g € S, P7 denotes the set of subgroups of S which are F-
conjugate (isomorphic in F) to P, and g” denotes the F-conjugacy class of g (the
set of images of g under morphisms in F ).

o A subgroup P < S is fully normalized in F (fully centralized in F) if [Ns(P)| > |Ns(Q)]
(ICs(P)| < |Cs(Q)]) for each Q € P”.

o A subgroup P < S is fully automized in F if Outz(P) o Autz(P)/Inn(P) is finite and
Outg(P) € Syl,(Outz(P)). The subgroup P is receptive in F if for each Q € P
and each ¢ € Isor(Q, P), there is o € Homz(N,, S) such that p|p = ¢, where

N, = {g € Ng(Q) } peapt € Auts(P)} )
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o The fusion system F is saturated if
— (Sylow axiom) each fully normalized subgroup of S is fully automized and fully cen-
tralized;

— (extension axiom) each fully centralized subgroup of S is receptive; and
— (continuity axiom, when |S| = o0) if P, < P, < Py < --- is an increasing sequence

of subgroups of S with P = |J;°, P;, and ¢ € Hom(P,S) is such that o|p, €
Homz(P;, S) for each i > 1, then ¢ € Homz(P,S).

The above definition of a saturated fusion system is the one given in [BLO2| and [BLO3,
Definition 2.2|. It will not be used directly in this paper (saturation of the fusion systems we
construct will be shown using later theorems), but we will frequently refer to the extension
axiom as a property of saturated fusion systems.

We now need some additional definitions, to describe certain subgroups in a saturated
fusion system.

Definition 1.2. Fix a prime p, a discrete p-toral group S, and a saturated fusion system F
over S. Let P < S be any subgroup. Note that by Definition 1.1, Outx(P) is finite whether
or not P is fully normalized (see also [BLO3, Proposition 2.3|).

e P is F-centric if Cs(Q) = Z(Q) for each Q € P”, and is F-radical if O,(Outz(P)) = 1.

e P is F-essential if P < S, P is F-centric and fully normalized in F, and Outz(P)
contains a strongly p-embedded subgroup. Here, a proper subgroup H < G of a finite
group G is strongly p-embedded z'fp‘ |H|, and p{|HNgHg™ | for each g € GNH. Let
Ex denote the set of all F-essential subgroups of S.

e P is normal in F (P < F) if each morphism ¢ € Homz(Q, R) in F extends to a mor-
phism p € Homz(PQ, PR) such that p(P) = P. The mazimal normal p-subgroup of
a saturated fusion system F is denoted O,(F).

e P is strongly closed in F if for each g € P, ¢ C P.
Proposition 1.3. Let F be a saturated fusion system over a discrete p-toral group S.

(a) Each morphism in F is a composite of restrictions of elements in Autz(P) for P < S
that is fully normalized in F, F-centric and F-radical.

(b) Each morphism in F is a composite of restrictions of elements in Autg(P) for P €
EruU{S}.

(c) For each Q@ < S, Q@ < F if and only if for each P € Ex U{S}, Q@ < P and Q is
Aut z(P)-invariant.

Proof. Point (a) is shown in [BLO3, Theorem 3.6].

By [BLO3, Proposition 2.3], Outz(P) = Autx(P)/Inn(P) is always finite. For each such
P < S that is not F-essential, Autz(P) is generated by automorphisms that can be extended
to strictly larger subgroups: this is shown in [AKO, Proposition 1.3.3] in the finite case, and
the same argument applies when S is infinite. Point (b) now follows from (a) and induction,

and (in the infinite case) since there are only finitely many S-conjugacy classes of subgroups
of S that are F-centric and F-radical [BLO3, Corollary 3.5].

Point (c) follows easily from (b), just as in the finite case [AKO, Proposition 1.4.5]. O

Definition 1.4. Let F be a saturated fusion system over a discrete p-toral group S. A
saturated fusion subsystem & over T < S is normal in F (€ < F) if
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T is strongly closed in F (in particular, T < S);

(invariance condition) each o € Autx(T) is fusion preserving in the sense that it extends
to an automorphism of £;

(Frattini condition) for each P < T and each p € Homzg(P,T), there are a € Autz(T)
and po € Homg(P,T) such that ¢ = a0 @g; and

(extension condition) each o € Aute(T) extends to some a € Autz(TCs(T)) such that
[, Cs(T)] < Z(T).

The fusion system F is simple if it contains no proper nontrivial normal subsystems.

For further discussion of the definition and properties of normal fusion subsystems, we refer
to [AKO, §1.6] or [Cr, §§5.4 & 8.1| (when S and T are finite) and to |Gon, Definition 2.§]
(in the general case). Note in particular the different definition used in [Cr| and in [Gon|: a
saturated fusion subsystem £ < F over a subgroup 7' that is strongly closed in F is normal if
the extension condition holds, and also the strong invariance condition: for each P < Q < T,
and each ¢ € Homg (P, Q) and ¥ € Homz(Q,T), ¥ oo (¢|p)~! € Homg(p(P),T). When S
is finite, this is equivalent to the above definition by [AKO, Proposition 1.6.4], and a similar
argument (made more complicated because there can be infinitely many subgroups) applies
when S and T are p-toral.

Our definition of a simple fusion system also differs from that used by Gonzélez |Gon,
Definition 3.1]: he allows the possibility of finite normal subsystems in a simple fusion
system over an infinite discrete p-toral group. However, that definition seems to make sense
only in the context of Lie groups and their analogues. In our situation, it seems more natural
to require there to be no nontrivial normal subsystems at all.

Since the Frattini condition will be important in Section 5, we work here with the above
definition. However, none of the examples over infinite discrete p-toral groups considered
here contains a nontrivial proper strongly closed subgroup (see Lemma 5.8), so these details
make no difference as to which of them are simple or not.

Proposition 1.5. Fix a prime p, and let F be a saturated fusion system over an infinite
discrete p-toral group S. Let Sy be the identity component of S, and assume that each element
of S is F-conjugate to an element of Sy.

(a) If F is realized by a compact Lie group G with identity connected component Gg, then
G/Gy has order prime to p. If in addition, F is simple, then F is realized by the
connected, simple group Go/Z(Gy), where Z(Gy) is finite of order prime to p.

(b) If F is realized by a p-compact group X, then X is connected. If in addition, F is
simple, then so s X.

In either case, if F is simple, then the action of the Weyl group Autz(Sy) on the Q,-vector
space Q ®z Hom(Sy, Q,/Z,) is irreducible and generated by pseudoreflections.

Proof. If F = Fs(G) where G is a compact Lie group with identity connected component G
and maximal discrete p-toral subgroup S, then S NGy is strongly closed in F since Gy <4 G,
So < SN Gy, and so S < Gy. Hence G/Gy has order prime to p. Also, Fs(Go) < Fs(G):
the invariance and extension conditions are easily checked, and the Frattini condition holds
since G = GoN¢(S) by the Frattini argument.

If in addition, F is simple, then Fs(Go) = Fs(G) = F, and Z(G)) is finite of order prime
to p since Z(F) = 1. Hence F is also realized by Go/Z(Gy), which is simple.
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If F = Fg(X) for some p-compact group X with S € Syl,(X), then X is connected by
[GLR, Proposition 4.8(a)|]. Then X is a central product of connected, simple p-compact
groups, and hence is simple if F is simple.

Whenever F is realized by a connected p-compact group X (possibly a compact connected
Lie group), then by [DW, Theorem 9.7(ii)], the action of the Weyl group Autz(Sp) on
Q ®z H?*(BSy;Z,) is generated by pseudoreflections, where

H*(BSy; Zy) = H*(S0; Zy) = H'(S0; Qp/Zy) = Hom(So, Qp/Zy).

If this is not irreducible as a group generated by pseudoreflections, then by the classification
of connected p-compact groups in [AGMV, Theorem 1.2| (for p odd) and in [AG, Theorem
1.1] or [Mg, Corollary 1.2] (for p = 2), X must be a nontrivial central product of simple
factors, and hence F is not simple. 0

We also recall the definition of a reduced fusion system, but only for fusion systems over
finite p-groups. Recall [AKO, §1.7| that in this setting, OP(F) and O¥ (F) are the smallest
(normal) fusion systems in F of p-power index and of index prime to p, respectively.

Definition 1.6. A saturated fusion system F over a finite p-group S is reduced if O,(F) = 1,
and OP(F) = F = O¥(F).

For each saturated fusion system JF over a finite p-group S, Fo,x) (0,(F)), OP(F), and
OP'(F) are all normal fusion subsystems. Hence F is reduced if it is simple. Conversely, if
& < F is any normal subsystem over the subgroup 7' < .S, then by definition of normality, T
is strongly closed in F. Since each normal fusion subsystem over S itself has index prime to
p, a reduced fusion system is simple if it has no proper nontrivial strongly closed subgroups.

When F is a saturated fusion system over an infinite discrete p-toral group S, there are
well defined normal subsystems OP(F) (see [Gon, Appendix BJ), and OP (F) (see [GLR,
A.10-A.12]), with the same properties as in the finite case. So we could define reduced
fusion systems in this context just as in the finite case. However, to simplify the discussion,
and because we don’t know whether or not infinite reduced fusion systems have the same
properties that motivated the definition in the finite case (see [AOV1, Theorems A & B]),
we restrict attention to simple fusion systems in the infinite setting.

2. REDUCED OR SIMPLE FUSION SYSTEMS OVER NONABELIAN DISCRETE p-TORAL
GROUPS WITH INDEX p ABELIAN SUBGROUP

In this section, p is an arbitrary prime. We want to study simple fusion systems over
nonabelian discrete p-toral groups (possibly finite) which contain an abelian subgroup of
index p. Most of the results here were shown in [CrOS|, but only in the case where |A| < oo
and p is odd.

We first fix some notation which will be used throughout the rest of the paper. As
usual, for a group S, we define Z,,,(S) for all m > 1 by setting Z,(S) = Z(5), and setting
Zm(8) ) Zm-1(S) = Z(S/Z1(S)) for m > 2.

Notation 2.1. Fiz a nonabelian discrete p-toral group S with a unique abelian subgroup A
of index p, and a saturated fusion system F over S. Define

S'=[S,8] =[S, 4], Z=Z(S)=Ca(S), Zo=2ZNS", Zy=75(9).
Thus Zy < Z < Zy and Zy < S" < A. Also, set

H={Z(z)|z e S\A} G = Autz(A)

B={Z(z)|x € S\A} U = Autg(A) € SyL(G).
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Recall that by [Ol, Theorem 2.1|, if p is odd, and S is finite and nonabelian and has
more than one abelian subgroup of index p, then either S is extraspecial of order p* (and
the reduced fusion systems over S were described in [RV]), or there are no reduced fusion
systems over S. So in the finite case, the restriction about the uniqueness of A is just a
convenient way to remove certain cases that have already been handled. We will show later
(Corollary 5.2) that in the infinite case (also when p = 2), A is unique whenever O,(F) = 1.

Lemma 2.2. Assume Notation 2.1. Then Ex C {A}UH UB, and |Ng(P)/P| = p for each
PeEx. IfEx £ {A}, then Zy < A and |Zy/Z]| = p.

Proof. Fix some P € Ex \ {A}. Then P £ A since P is F-centric. Set Py = PN A, and fix
some element x € P\ Fy. Since Outz(P) is finite (Definition 1.1) and contains a strongly
p-embedded subgroup, we have that O,(Outz(P)) =1 (cf. [AKO, Proposition A.7(c)]).

We must show that P € HU B, |[Ng(P)/P| = p, Zo < A, and |Zy/Z| = p. (Clearly,

INs(P)/P|=pif P=A)
Case 1: Assume P is nonabelian. Since Z < P (P is F-centric), Z(P) = Cp,(x) = Z. For
each g € N4(P)\P, ¢, is the identity on Py and on P/Fy. If P, is characteristic in P, then
¢y € Op(Autz(P)) by Lemma A.1, which is impossible since O,(Outz(P)) = 1. Thus F is
not characteristic in P, and hence is not the unique abelian subgroup of index p in P. So by
Lemma A.3, |Py/Z| = p and |[P, P]| = ||z, Po]| = p. Also, P/Z is abelian since |P/Z| = p?,
so [z, By] < Z, and hence Py < Z5. Note that Py > Z, since P is nonabelian.

If Py < Zy, then fory € Zy N\ P, [y,P] < Z = Z(P), soy € Ng(P)~ P and ¢, €
O,(Aut(P)), contradicting the assumption that P is F-essential. Thus Py = Z,, so P € B,
Zy < A, and |Zy/Z| = p. Finally, |Ns(P)/P| = p by Lemma A.6, applied with Outz(P) in
the role of G, Outg(P) = Ng(P)/P in the role of S, and P/Z, (if P € B) in the role of A.
Note that [P, P] = [ZL‘,ZQ] S Z() and OP/ZO(NS(P)) = ZQ/Z().

Case 2: If P € Ex is abelian, then Py = Z: it contains Z since P is centric, and cannot
be larger since then P would be nonabelian. Hence P = Z(z) € H. Also, Auts(P) =
Autg(P) € Syl,(Autz(P)) centralizes Fy. The conditions of Lemma A.6 thus hold (with
P and Autz(P) in the roles of A and G), so |[Ng(P)/P| = |Autg(P)| = p. Since [S:P] =
|A/Z| > p by Lemma A.3 and since A is the unique abelian subgroup of index p, this implies
that S/Z is nonabelian, so [z, A] £ Z, and Z, < A.

For each g € A, g € Ng(P) if and only if [g,2] € P, = Z, if and only if ¢Z € Ca/z(x) =
Z(S)Z) = Zy)Z. Thus Nu(P) = Zs, Ns(P) = Zs(z) = ZsP, and |Zs/Z| = |Ng(P)/P| =
p. O

Lemma 2.3. Let S, F, etc. be as in Notation 2.1. If, for some x € S\ A, Zy(x) € Eg,
then Z(x) is not F-centric, and hence Z{(x) ¢ Er.

Proof. Assume z € S\ A and Zy(x) € Ex, and set P = Zy(z) € B. In particular, Z, < A
since Zy(x) < S. Also, |Z2/Z| = p by Lemma 2.2, so |P/Z| = p*, and Z, is not normalized
by Autz(P) since P is essential.

Let P be the set of all subgroups of index p in P which contain Z. Then P 2 {Z},
so P/Z = C? (i.e., is not cyclic), and Autg(P) permutes transitively the p members of
P~ A{Zy}. So Autx(P) must act transitively on P, hence Z(x) is F-conjugate to Zs, and is
not F-centric (recall Zy < A). So Z(x) ¢ Ex in this case. O

Lemma 2.4. Assume Notation 2.1, and also A 4 F (<= Ex < {A}). Then |Zo| = p,
and | Z;(S)/Z;i—1(S)| = p for all i > 1 such that Z;(S) < S. If |A| < oo, then |A/ZS'| = p.
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Proof. Fix © € S\ A. Let ¢ € End(A) be the homomorphism t(g) = [g, x]. Thus Ker(¢)) =
Z and Im(y) = S".

By Lemma 2.2 and since Ex € {A}, (HUB)NEx # @, Zy, < A, and |Zy/Z| = p. Since
Z5)Z = Cayz(x), Zo = ~1(Z), and so 1) sends Zy onto Zy = Z N S" with kernel Z. Thus
%] = 122/ 2] = p.

Set Z; = Z;(S) for each i > 0, and let k > 2 be the smallest index such that Z; = S. Thus
S/Zy_5 is nonabelian, so Zy_o < A, and Zy_1/Zy_o = Z(S/Zk_2) < A/Z}_5. Hence Z; < A,
and Z; = ¢~ Y(Z;_1), for all i < k. In particular, v induces a monomorphism from Z;/7; ,
into Z;_1/Z;_o for each 3 < i < k, so |Z;/Z;_1| < p, with equality since Z;(S) > Z;_1(5)
whenever Z;_1(5) < S.

If |A| < oo, then | ZS'| = |Z|-|S"| /| Zo| = |A|/| Zo|, and hence ZS’ has index p in A. O

Lemma 2.5. Let A I S, F, H, B, etc., be as in Notation 2.1. Assume P € Ex where
PeHUB, and set X =1 if PeH and X = Zy if P € B. Define P, P, < P by setting

P/X = Cp/x(O¥ (Autz(P)))  and P, =[O”(Autz(P)), P].
Then OF (Outz(P)) = SLy(p), and the following hold.

(a) If PeH, then PL < Z, Z = Py X Zy, Zp < Py = Cz, and P = P, x Py. If p is odd,
then Py is the unique Autx(Z)-invariant subgroup of Z such that Z = Py X Zj.

(b) If P € B, then P, = Z, Py is extraspecial of order p*, Py, = Qg if p = 2 while P, has
exponent p if p is odd, and P, N\ Py = Z(Py) = Zy = [P, P]. Thus P = P, Xz, P».

Proof. To simplify notation, set H = Outz(P), Hy = OF (H), and T = Outg(P) € Syl,(H).
If PeB,then [P,P]<Z(P)NS' =7ZNS" = Z,, with equality since |Zy| = p by Lemma
2.4. Thus P/X is abelian in both cases. Also, [Ns(P),P/X] = Zy (it P € H) or Zy/Z, (if

P € B), and thus has order p in both cases. So by Proposition A.7, applied to the H-action
on P/X, we have Hy = SLQ(]?), P/X = (PI/X) X (PQ/X), and PQ/X = Cg

If PeH (so X =1), then P, = Cp(Hy) < Cp(T) = Z, and [Z:P)] = p since [P:P|] = p*.
Also, P, > [T,P] = Zy, so PPN Zy = 1, and Z = P, x Zy. If p is odd, then Ny, (T) is
a semidirect product of the form C), x C,_;. Fix a € Ny, (T') of order p — 1; then a acts
on Zy = [T, P] with order p — 1 and acts trivially on P;. Thus a|; € Autz(Z), and P, is
the only subgroup which is a complement to Z; in Z and could be normalized by Autz(Z).
Since Autz(Z) has order prime to p, there is at least one such subgroup, and hence P is
Autz(Z)-invariant.

If P € B, then X = Zy, and P,/Zy = Cg. Also, Hy & SLs(p) acts faithfully on P,, and
this is possible only if Z(P,) = Zy, and P, = Qs (if p = 2) or P, is extraspecial of exponent p
(if p is odd). Also, P, has index p? in P since Py N\ Py = Zy, P, < Z(P) since P = P; Xz, P,
is a central product, and hence P, = Z(P) = Z. O

Corollary 2.6. In the situation of Notation 2.1, if AQA F (i.e., if Ex € {A}) and p is odd,
then S splits over A: there is x € S~ A of order p.

Proof. Fix P € Ex ~ {A}. By Lemma 2.2, P € H U B. In either case, by Lemma 2.5, there
is x € P~ A of order p. O

We now restrict to the case where p is odd. Recall that G = Autz(A) by Notation 2.1.

Lemma 2.7. Assume Notation 2.1, and also that p is odd and A 4 F. Then Oy(F) =1 if
and only if either there are no nontrivial G-invariant subgroups of Z, or Er N H # @ and
Zy 1s the only G-invariant subgroup of Z.
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Proof. The following proof is essentially the same as the proof in [CrOS, Lemma 2.7(a)| in
the finite case.

Assume first that Q@ = O,(F) # 1. Since A 4 F, there is P € Ex ~\ {A} C BUH.
If P € H, then Q < Z: the intersection of the subgroups S-conjugate to P. If P € B,
then Q < Z5 by a similar argument, and then () < Z since that is the intersection of the
subgroups in the Autz(P)-orbit of Zs. Thus @ is a non-trivial G-invariant subgroup of Z.
If Q = Zy, then ExrNH = @, since for P € Ex N'H, Z is not normalized by Autz(P). This
proves one implication.

Conversely, assume that 1 # R < Z is G-invariant. For each a € Autz(S), a(4) = A
since A is the unique abelian subgroup of index p, so a4 € G, and thus a(R) = R. Since
each element of Autz(Z) extends to S by the extension axiom, R is also normalized by
Autz(Z). Also, for each P € Exr N B, Z = Z(P) is characteristic in P and so R is also
normalized by Autz(P). In particular, if Er NH = &, then R < F, and so O,(F) # 1.

Now assume that Exr N H # &, and also that R # Zj. By |CrOS, Lemma 2.3(b)] (the
argument casily extends to the mﬁmte case), there is a unique Aut #(Z)-invariant factoriza-
tion Z = Zy x Z.Set R=RNZ. If R> Zy, then R = R x Zy. Otherwise, RN Zy =1
(recall |Zy| = p), and since R is Autz(Z)-invariant, the uniqueness of the splitting implies
that R < Z and hence R = R. Since R #+ Zy, we have R = 1 in either case.

For each ¢ € Autz(A) = G, ¢(R) < R < Z, so by the extension axiom, ¢|5 extends
to some 3 € Autz(S), and ¢(R) = p(R) = R since R is Autz(Z)-invariant. So by the
same arguments as those applied above to R, R is normalized by Autz(P) for each P €

({S}UEs) . If P € Ex NH, then for ecach a € Autz(P), a(Z) = Z by [CrOS, Lemma
2.3(b)], so | extends to an element of Autz(S) and hence of Autz(Z), and in particular,

a(R) = R. Thus 1 # R < F, and hence O,(F) # 1. O

def

Without the assumption that p be odd in Lemma 2.7, the 2-fusion system F of PX Ly(q?
is a counterexample for each prime power ¢ = +1 (mod 8). Here, PX Ly(q*) = PSLy(¢*)(0)
where 0 acts on PSLy(¢?) as a field automorphism of order 2 (and 6% = 1). Then Oy(F) = 1,
S = Dom x Cy for some m > 4 depending on q, A = Com-1 X Cy, Z = Z(S) = 1(A), and
G = Autg(A) acts trivially on Z (so that all subgroups of Z are G-invariant).

Lemma 2.8. Assume Notation 2.1, and also that p is odd and Op(F) =1. Let Ay < A < A
be G-invariant subgroups such that Ay < ZAs. Then either Ay = Ay, or Ay = Zy x Ay and
Zy is G-invariant.

Proof. Fix a class xAy; € A;/A;. By assumption, we can assume x € Z. Since G acts
on A;/Ay and U acts trivially on this quotient, Gy = O (G) also acts trivially. Hence

a(z) € A, for each a € Gy. Let aq,..., a4 € Go be left coset representatives for U (so
1/k

/
ptk=[GyU]), and set y = (Hle ai(x)) . Then y € xA; since a;(x) € A, for each i,
and y € C4(Gp). This shows that A; < Cx(Go)As.

Now, C'4(Gy) is a subgroup of Z = C4(U) normalized by G. So by Lemma 2.7 and since
O,(F) =1, Ca(Gy) < Zy. Thus A; < ZyA,. If Ay > Ay, then Ay = Ay X Zj since |Zy| = p,
and Z, = C’A(Go) is G-invariant. O

The following notation, taken from [CrOS, Notation 2.4|, will be used throughout the rest
of the paper.
Notation 2.9. Assume Notation 2.1, and also that |Zy| = p. Set

=(Z/p)* x (Z/p)*, and Ay =A{(r,7")|r € (Z/p)*} <A (fori€ Z).
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Set
Aut”(S) = {a € Aut(9) | [0, Z] < Zo}, Aut”(A) = {ala|a € Aut¥(S)}
Autx(S) = Aut’(S) N Autx(S) Autr(A) = Aut”(A) N Autr(A)
= {B € Naur)(Auts(A)) | [8,2] < Zo}.
Define

p: At (S) ——— A and pa: AutY(A4) —— A
by setting, for a € Aut”(S),

alz) ez"A forze SN A
alg) =g° for g € Z,

pla) = (r,s) if {

and juaala) = p(a) if @ € Auth(s),

3. MINIMALLY ACTIVE MODULES

In the earlier paper |[CrOS], the concept of “minimally active” modules played a central
role when identifying the pairs (A, Autz(A)) that can occur in a simple fusion system F over
a p-group S that contains an elementary abelian group A with index p. Before continuing
to study the structure of such F, we need to recall some of the notation and results in that
paper, beginning with [CrOS, Definitions 3.1 & 3.3|, and describe how they relate to the
more general situation here.

Definition 3.1. For each prime p,
® &, is the class of finite groups I with U € Syl (I") such that |U| =p and U 4 I'; and
e &7 is the class of those I' € 9, such that [Outp(U)| =p—1 for U € Syl,(I').

For I' € 9,, an F,I"-module is minimally active if its restriction to U € Syl (I") has evactly
one Jordan block with nontrivial action.

The next lemma explains the importance of minimally active modules here. In particular,
it means that many of the tables and results in [CrOS, §4-5| can be applied to get information
about Autr(A) and Q;(A).

Lemma 3.2. Assume Notation 2.1 and 2.9, and also that p is odd, A € Ex, and O,(F) = 1.
Set V. =Q,(A) and
Autz(V) = {B € Nauezv)(Auts(V) [ [8,2(2)] < Zo}
= {alv |a € Autz(9), [0, N0(2)] < Zo},
and define py: Aut s (V) — A by setting py(aly) = u(a). Then
(a) G =Autz(A) €9,

(b) V, and A/Fr(A) if |A| < oo, are both faithful, minimally active, and indecomposable as
F,G-modules; and

v (Aut(V)) if Zy £ Fr(A)

(¢) pa(Auty(A)) = {MV(A (V)N Ay if Zy < Fr(A).
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Proof. (a) By assumption, U = Autg(A) € Syl,(G) has order p. Since A € Ex, U is not
normal in G = Autx(A), and hence G € ¥,,.

Since O,(F) = 1, there is P € ExN(HUB). By Lemma 2.5(a,b), O7 (Out#(P)) = SLy(p).
Choose o € O (Autz(P)) of order p — 1 whose class in Outz(P) normalizes Outg(P) = C,;
then « extends to an element of Autz(Ng(P)) and hence (since P is maximal among F-
essential subgroups) to some a € Autz(S). Then a|4 normalizes U and its class in Autg(U)
has order p — 1, s0 G € 4.

(b) Set A = A/Fr(A). If |A| < oo, then since G acts faithfully on A, [G, Theorems 5.2.4
& 5.3.5] imply that Cg(V) and Cg(A) are both normal p-subgroups of G. Since U is not
normal by (a), G acts faithfully on V' and on A in this case. If |A| = oo, then G acts faithfully
on Q,,(A) for m large enough, and hence acts faithfully on V' by the above argument.

Since |Zy| = p by Lemma 2.4, where Z, = S'N Z = [U,V] N Cy(U), the F,U-module
V|u has exactly one Jordan block with nontrivial action of U. So V' is minimally active. If
|A] < oo, then ZS" = C4(U)[U, A] has index p in A by Lemma 2.4, so C5(U)[U, A] has
index at most p in A, and hence A is minimally active.

If V.= Vi x Va, where each V; is a nontrivial F,G-submodule, then by [CrOS, Lemma
3.4(a)], we can assume (after exchanging indices if needed) that V; < Z and (since it is a
summand) Vi N Zy = 1. But this contradicts Lemma 2.7.

Assume |A| < co. If A = X x Y where X,Y < A are F,G-submodules, then by the
Krull-Schmidt theorem, one of the factors, say X, contains a nontrivial Jordan block, while
U acts trivially on the other factor. Thus X > [U, A] and X & ZS'/Fr(A). Let X < A
be such that Fr(A) < X and X/Fr(4) = X. Then X > & and X £ Z5', so XZ = A.
By Lemma 2.8, either X = A (and X = A) or A = X x Z, (which is impossible since
Zy < 5" < X). Thus X = A, and A is indecomposable.

(c) By definition, the restriction to V of each element in Aut’(A) lies in Aut’»(V), and hence
pa(Autz(A)) < py(Aut=(V)). If Zy < Fr(Z), then choose z € Z such that 1 # 2P € Z.
For each 8 € Auty(A), B(z) = 2P for some k since [, Z] < Zy, and hence 8|z, = Id and
pa(B) € Ag. Thus pa(Autx(A)) is contained in the right hand side in (c).

Now assume that 8 € Autx(V), where 3 = aly for a € Autz(S). If Zy < Fr(A), then
assume also that uy(8) < Ag; ie., that 8|z = Id. Upon replacing 5 by 57" and « by
of" for appropriate k, we can also assume that « has order prime to p without changing
(). Then Z = Cyz(a) x [a, Z] by |G, Theorem 5.2.3] and since Z is the union of the
finite abelian p-groups Q;(Z), and [o, Q1 (Z)] = [B,Q1(Z)] < Zy since B € Autx(V). Also,
N ([, Z]) = o, 2 (2)] < Zy (since it can’t be any larger). If Zy & Fr(Z), then this implies
that [a, Z] < Zy, hence that a € Autx(S). If Zy < Fr(Z), then Qi(|a, Z]) < Zy < Cz(a)
implies that Q([a, Z]) = 1 and hence [o, Z] = 1, so again a € Aut’x(S). Thus uy(8) =
pa(als) € pa(Auty(A)), and the right hand side in (c) is contained in pa(Autz(A)). O

The following basic properties of minimally active indecomposable modules, taken from
[CrOS], play an important role in the rest of the paper.

Lemma 3.3 (|CrOS, Proposition 3.7|). Fiz an odd prime p, a finite group I' € 4,, and
U e Sylp(F). Let V' be a faithful, minimally active, indecomposable F,I"-module. Then

(a) dim(V') < p implies that V|y is indecomposable and thus contains a unique Jordan block;
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(b) dim(V') > p+ 1 implies that V' |y is the direct sum of a Jordan block of dimension p and
a module with trivial action of U; and

(¢) dim(Cy(U)) =1 if dim(V) < p, while dim(Cy (U)) = dim(V) —p+ 1 if dim(V) > p.
The next lemma is closely related to [CrOS, Lemma 1.11].

Lemma 3.4. Fiz an odd prime p, let I' be a finite group such that U € Syl,(I") has order
p, and set N = Np(U). Let V be a faithful, minimally active, indecomposable F,I"-module
such that dim(V') < p. Then Cy(U) and V/[U, V| are both 1-dimensional, and the following
hold.

(a) Ifdim(V) = p, then V/|U, V] and Cy(U) are 1-dimensional, and isomorphic asF,[N/U|-
modules.

(b) The projective cover and the injective envelope of V|n are both p-dimensional.

(c) If dim(V) = p — 1, and there is an F,I-submodule Vo < V' with dim(Vy) = 1, then
there is a projective F,I"-module W such that dim(W) = p and W has a submodule
1somorphic to V.

(d) Let W be another F,I"-module such that dim(W) = dim(V'), and assume that Cy (U) =
Cv(U) as F,[Np(U)/U]-modules. Then W =V as F,[Np(U)|-modules, and as F,I"-
modules if dim(V') < p.

Proof. (a) By Lemma 3.3, U acts on V with only one Jordan block, so dim(Cy(U)) = 1
and dim(V/[U,V]) = 1. By [CrOS, Lemma 1.11(b)|, if ¢ € Np(U) and t € (Z/p)* are
such that g acts on V/[U, V] via multiplication by ¢, then for some r € (Z/p)*, g acts on
Cy(U) via multiplication by tr™~! = trP~! = ¢. Thus V/[U, V] and Cy(U) are isomorphic
as F,[Np(U)/U]-modules.

(b) By the Schur-Zassenhaus theorem, there is H < N of index p such that N = HU. Set
Vo = Cy(U), regarded as an F,[N/U]-module, and also as an F,H-module via the natural

isomorphism H = N/U. Set V= Ind}(Vp): a projective and injective p-dimensional F,N-
module. Then

V /U, V] 2 F,[N/U] ®@p,5 TN Q5,1 Vo = F[N/U] Qp, 1 Vo = Vg,

and so Cy(U) = V; by (a). Thus V is the injective envelope of V; when regarded as an
F,N-module. In particular, an isomorphism Cy(U) = Cy(U) extends to an [F,N-linear

homomorphism V —s V which is injective since it sends the socle Cy(U) injectively. Thus

V' is an injective envelope of V|y. The statement about projective covers is shown in a
similar way (or by dualizing).

(c) Assume that dim(V) = p — 1, and that there is an F,/-submodule V;, < V with
dim(Vp) = 1. Then Vy = Cy(U), since this is the unique 1-dimensional submodule of V' as
an F,U-module. By (b), there is an injective (hence projective) F, N-module 1% containing
V|n as a submodule. By (a), W/V = Vp|n as F,N-modules.

Consider the homomorphisms
Exth r(Vo, V) ——— Exth y(Vo, V) —2— Ext} ;;(Vo, V)

induced by restrictions of rings. Since U has index prime to p in I', ®; and ®, are injective,
and the images of @5 and ®,®; are certain subgroups of stable elements (see [Ben, Proposition
3.8.2] for this version of the stable elements theorem). Since Extlle(Vo, V) =0, we need only
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consider stability of elements with respect to automorphisms of U, and hence Im(®,) =
Im(Py®,).

Thus ®; is an isomorphism. Interpreted in terms of extensions, this implies that there
is an extension 0 — V. — W — Vj — 0 of F,/-modules such that W|y = W. In
particular, W is projective since Wis projective as an [, N-module.

(d) By (b), the injective envelope V of V|y is p-dimensional. Hence Cp(U) = Cy(U) =
Cw(U), so V is also the injective envelope of Cy (U), and hence of W |y since Cyy (U) is its

socle. Since dim (V') = dim(W), and V' contains a unique F, N-submodule of each dimension
m < p, we conclude that V' = W are isomorphic as [, N-modules.

If dim(V') < p, then U is a vertex of V' and of W and they are the Green correspondents
of V|n and Wy, respectively (see [Ben, §3.12]). So V= W as F,I"-modules. O

Point (d) need not hold if dim(V) = p. As an example, fix p > 5, set I' = SLy(p)
and choose U € Syl (I'), let V' be the simple p-dimensional [F,/"-module, and let W be
the projective cover of the trivial 1-dimensional F,/-module. Using the fact that V' is the
(p — 1)-st symmetric power of the natural 2-dimensional F,I™-module, it is not hard to
see that Cy(U) is 1-dimensional with trivial Np(U)/U-action. The same holds for W by
construction, where dim(WW') = p. We refer to [Al, pp. 48-52| or the discussion in [CrOS,
§ 6] for more detail.

A minimally active indecomposable F,/-module of dimension at least p 4 2 is simple by
[CrOS, Proposition 3.7(c)|. This is not true for modules of dimension p+ 1, but the following
lemma gives some information about such modules.

Lemma 3.5. Fiz a finite group I' € ¢, with U € Syl (I'). Let V be a finite, minimally
active, indecomposable F,I"-module of rank p + 1. If 0 # Vi, < V is a proper nontrivial
submodule, then Voly and (V/Vy)|u are both indecomposable F,U-modules with nontrivial
action. In particular, 2 < dim(Vp) < p — 1.

Proof. Recall |U| = p since I" € ¥,. By [CrOS, Proposition 3.7(a)|, V|y = F,U & F,; i.e.,
V|u has Jordan blocks of dimension p and 1.

Fix a proper nontrivial submodule 0 # 1, < V, and assume that Vj|y is decompos-
able or has trivial action as an F,U-module. We will first show that V always has a
1-dimensional F,/'-submodule, and then show that this is impossible. In particular, this
shows that dim(Vp) > 2. The corresponding results for V/V} then follow by dualizing.

If Vol is decomposable with nontrivial action, then Vp|y is the sum of a 1-dimensional
module with trivial action and an indecomposalble module of dimension at most p — 1.
By [CrOS, Proposition 3.7(a)|, Vo is decomposable as an F,/-module, and thus has a 1-
dimensional summand.

If U acts trivially on Vj, then dim(V;) < 2 and OP'(I") (the normal closure of U in I') acts
trivially on Vp. If dim(Vy) = 2, then Vo = Cy(U), and [U, V]NV} is a 1-dimensional subspace
normalized by Np(U). Since I' = OP (I')Np(U) by the Frattini argument, [U,V] NV} is a
1-dimensional F,/-submodule.

We are thus reduced to the case where dim(Vy) = 1. If Vy # [U, V], then (V/Vp)|v is
indecomposable (consists of one Jordan block), and hence is F,U-free. So V//V} is projective,
contradicting the assumption that V' is indecomposable.

Thus Vy = [U, V] is an F,I-submodule, and V/Vj has Jordan blocks of length 1 and p—1.
So by |CrOS, Proposition 3.7(a)], it is decomposable: there are submodules Wy, Wy < V' such
that V/Vy = (W1 /Vy) @ (Wy/Vy), where dim(W;) = p, and (W, /Vp)|y is an (indecomposable)
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Jordan block. If [U, W;] = 0, then [U, W] = V4, and V| contains Jordan blocks of dimension
p—1 and 2, which we saw is impossible. Thus [U, W3] = V4, so Wiy is indecomposable, W7 is
projective and injective, and this again contradicts the assumption that V' is indecomposable.

This proves that U acts nontrivially on Vj, and in particular, dim(Vp) > 2. A similar
argument applied to the dual V* shows that U acts nontrivially on V/V;, and that dim (V) <
p— 1. 0

The following definitions will be useful.

Definition 3.6. For a finite group I', a Z,I-lattice is a finitely generated Z,I"-module
that is free as a Z,-module (hence a lattice in a finitely generated Q,1"-module). A discrete
I'-p-torus is a discrete p-torus equipped with an action of I' by automorphisms.

Let Q,(¢) 2 Z,[¢] denote the extensions of Q, O Z, by a primitive p-th root of unity (.
When U is a group of order p, we regard Q,(¢) and Z,[(] as Z,U-modules under some choice
of identification U = (().

Lemma 3.7. Fiz an odd prime p, a group I' € 9,, and U € Syl (I).

(a) Let A be a Z,I'-lattice such that A/pA is faithful and minimally active as an F,I'-
module. Then N/C\(U) = Z,[¢] as Z,U-modules, and [U,A] + Cy(U) has index p in
A.

(b) Let A be a discrete I'-p-torus such that Qq(A) is faithful and minimally active as an
F,I"-module. Then A/C4(U) = Q,(C)/Z,[C] as Z,U-modules, and |[U, AJNC4(U)| = p.

(c) Let X be a finite, faithful Z,I"-module. Then I" acts faithfully on (X)) and on X/pX.
Among the following conditions:
(1) (X)) is minimally active as an F,I"-module.

(2) X/pX is minimally active as an F,I"-module.

@) U, XInCxU)| =p.

(4) [U,X]|+ Cx(U) has index p in X.

we have (1) <= (3) <= (4) = (2). If X = A/Ay for some Z,I"-lattice A and
some submodule Ay < pA, then all four conditions are equivalent.

(d) If X is a finite, faithful Z,I"-module such that condition (c.4) holds, then for each
re XN (UX]+Cx(U)), X =Cx(U)+2Z,U-x.

Proof. Fix a generator u € U.

(a) Set M = Q, ®z, A. By Lemma A.5(a), M/Cy(U) is isomorphic, as a Q,U-module,
to a sum of copies of Q,(¢), where ( is a primitive p-th root of unity. In particular, each
Jordan block for the action of U on A/(C(U)+ pA) has length at most p— 1. Since A/pA is
minimally active, it follows that M /Cy(U) = Q,((), since otherwise A/(Cx(U) + pA) would
have rank at least 2(p — 1) and hence U would be fixed by a submodule of rank at least
p > 3. Hence A/Cy(U) = Z,[(] by Lemma A.5(c).

Consider the short exact sequence

0—— C\U) 2L A —2 5 [U A] — 0,

where ¢(z) = u(z) — x for all x € A. We just saw that [U, A] = Z,[¢]. Under this iden-
tification, @[] is multiplication by 1 — ¢, and so its image has index p in [U,A]. Thus
CA(U) + [U, A] has index p in A.
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(b) Let A be a discrete I'-p-torus such that €;(A) is faithful and minimally active as
an F,I-module. Set A = Homgy, (A, Q,/Z,), regarded as a Z,I-lattice. Then ;(A) =
A/pA by Proposition A.4, so A/pA is minimally active. We just saw, in the proof of (a),
that this implies that A/Cy(U) = Z,[(]. So after taking tensor products with Q,/Z, and
applying Proposition A.4 again, we get that A/(Q,/Z, ®z, CA(U)) = Q,(()/Zy[¢]. Hence
A/C4(U) = Q,(¢)/R for some Z,U-lattice R < Q,(¢) that contains Z,[¢] with finite index.
Then R = Z,[(] by Lemma A.5(c), Q,(¢) = Q,-R, and so A/C4(U) = Q,(¢)/Z,[(].

Consider the short exact sequence
0—— CuU) 245 4 —% U Al — 0,

where ¢(z) = u(z) — x for all z € A. We just saw that [U, A] = Q,(¢)/Z,[¢]. Under
this identification, iy 4 is multiplication by 1 — ¢, and so its kernel has order p. Thus
|Ca(U) N [U, Al = p.
(c) We have |X| = |Cx(U)|-|[U, X]|: X is finite, and [U, X] is the image of the homomor-
phism X ——% X while Cx(U) is its kernel. Hence (3) and (4) are equivalent.

If (3) holds, then [U,(X)] N Cq,(x)(U) also has order p (since it cannot be trivial).
Since the rank of this intersection is the number of Jordan blocks in (X)) with nontrivial

U-action, we see that €;(X) is minimally active in this case. So (3) implies (1); and a similar
argument shows that (4) implies (2).

Assume that Ay < A are Z,I-lattices such that Ay < pA and A/A; = X. In particular,
A/pA = X/pX. Soif X/pX is minimally active, then [U, A]+ Cy(U) has index p in A by (a),
and hence [U, X] + Cx(U) has index p in X (since it cannot be all of X). Thus (2) implies
(4) in this case.

We continue to assume that X = A/Ay, and set R, = Q,/Z, for short. We have an exact
sequence

0 — Torg, (Ry, X) — R, ®z, Ag —— R, ®z, A — R, @z, X — 0.

Also, by tensoring the short exact sequence 0 — Z, — Q, — R, — 0 by X and using the
fact that Q, is flat over Z,, we see that R, ®z, X = 0, and Tory, (R,, X) = X as Z,[-
modules. Thus X is isomorphic to a subgroup of the discrete I'-p-torus A = R, ®z, Ay (see
Proposition A.4), where Q;(X) = Q;(A). With the help of (b), we now see that (1) implies

(3).

(d) Set X = X/pX for short. By (c), X is minimally active as an F,I"-module. Hence
there is € X such that X = C+(U) +F,U-y. Thus [U, X] = (1 —w)F,U-y. Choose y € X
whose class modulo p is y; then [U, X| < (1 —u)Z,U-y + pX.

By assumption, X = Cx(U) + [U, X]| + Z,-z. So there are { € Z,U and r € Z, such
that y € re + (1 —w)é-y + Cx(U) +pX. Then (1 — (1 —u)é)y € ra + Cx(U) + pX, where
1 — (1 —w)¢ is invertible in Z,U since (1 —u)? € pZ,U. Thus y € Z,U-x+ Cx(U) +pX, and
hence X = Z,U-x + Cx(U) + pX. Since pX is the Frattini subgroup of X, it now follows
that X = Z,U-x + Cx(U). O

In the rest of the section, we look at questions of existence and uniqueness of finite Z,1 -
modules or discrete I'-p-tori A for which €2;(A) is isomorphic to a given minimally active,
indecomposable F,/™-module.

Proposition 3.8. Fiz an odd prime p and a group I' € 9, and let V' be a faithful, minimally
active, indecomposable F,I"-module.
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(a) Ifdim(V) > p—1, then there are a Q,1"-module M and a Z,I -lattice A < M such that
V = A/pA.

(b) If dim(V) = p, and there is an F,I"-submodule Vi <V of dimension 1, then M and A
can be chosen as in (a) such that M contains a 1-dimensional Q,I"-submodule.

Proof. Fix U € Syl (I'), and let u € U be a generator. Let ¢ be a p-th root of unity, and
regard Q,(¢) as a Q,U-module where u acts by multiplication by (. Thus Z,[(] is a Z,U-
lattice in Q,(¢). We also write F,[¢] = Z,[(]/pZ,[¢]. Thus F,[¢] = Fylu]/{(1 —u)P~!), and
Vl]p =2 F,[¢] since V' is minimally active and indecomposable [CrOS, Proposition 3.7(a)].

(a) If dim(V) > p, then V is a trivial source module by [CrOS, Proposition 3.7(b)]|, and
hence V' is the mod p reduction of some Z,I-lattice (see [Ben, Corollary 3.11.4.i]). So for
the rest of the proof, we assume that dim(V) =p — 1.

Set A = Ind}(Z,[¢]) and V = Ind}(V|y). Then V = A/pA. Since induction of rep-
resentations is adjoint to restriction, the identity on V' extends to a surjective I,/ -linear
homomorphism a: V — V. This is split by an F,U-linear map, and hence (by averaglng
over cosets of U) by an F,I™-linear homomorphism 8: V —s V. Set ey = S € Endg p(V)
Thus eq is an idempotent in this endomorphism ring, and eOX/} =V.

We want to lift ey to an idempotent in Endgz, F(K) By the Mackey double coset formula,

Aly = (Ind{(Z,[) |, = (Z,[¢)™ x (z,U)"
as Z,U-modules for some m,n > 0. Hence as Z,-modules,

Endz, r(A) 2 Homg,u(Z,[C], A) 22 (Endg,u (Z,[¢])™ x (Homg,u(Z,[¢], Z,U))"
= (Zplc)™ x (1 =w)Z,U)"

where the last isomorphism follows upon sending a homomorphism ¢ to ¢(1). Since
Endg, r(A) = (F,[C])™ x (1 —w)FU)"

by a similar argument, the natural homomorphism from Endg, r(A) to EHde[‘(‘/}) is sur-

jective (and reduction mod p). So e lifts to an idempotent e € EndeU(/A\) (see |Ben,
Proposition 1.9.4]).

Now set A = eA. Then A/pA = V| and A is a Z,[-lattice in the Q,/-module M =
Qp ®z, A

(b) We repeat the proof of (a), but keeping control of the submodule as well as V. Set
Vo =V and V3 = V35/Vi, and set V; = Ind5(V}|U) for i = 1,2,3. We thus have short exact

sequences

f .o 9 .0

0 Vi v, Vs ——0 and 0—— T, V, 27— 0.

Let o;: ‘A/Z — V; be the natural map, and let §;: V; — l//\; be the F,I-linear splitting of «;
obtained by taking the natural F,U-linear inclusion and then averaging over cosets of U in

I'. Thus ;0 3; = Idy; (upon composing from right to left), while e; o Bioqy is an idempotent
in Endg,(V;). All of these commute with the natural homomorphisms f, f, g, and g, and
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so we get a commutative diagram with exact rows:

0 (LA ;A 7 0
l l J (1)
0 [N ;A 74 0.

Now set A? =7Z,, A =7Z,U, A = Z,[(], and let ¢ and 1 be such that

0—— A 25 A0 Y5 A0 0
is a short exact sequence of Z,U-modules. We identify V;|; = AY/ pAO in such a way that
f and g are the reductions modulo p of ¢ and v, respectively. Set A; = Ind}, u(A?), so that

V = A i/ pA as F,I"-modules, and let ¢ and w be the homomorphlsms induced by ¢ and

1. We claim that the e; can be lifted to elements ¢; € Endy, [‘(AZ) that make the following
diagram commute:

0 Ly VL W 0
S >
0 Ly VL 0.

To see this, we identify

Endz, r(A;) = Homg,;r(AY, (Indf (A) ),
where by the Mackey double coset formula, for some indexing sets J and K independent of
ie€{l1,2,3},

(Indf; (A) v = @AY @ @D (Z,U @3, AY).

jet keK

Fix ey € Endzpp(/AXg), and set €2(1) = ((u)jes, (vk)ker) with respect to the above decom-
position (and where 1 is the identity in AS = Z,U). Then e, induces endomorphisms ¢; and
g3 such that (2) commutes if and only if > 7~ Olu’(vk) € Ker(v) for each k € K. Note that
1, after restriction to the summands for some k € K, is a surjection of one free Z,U-module

onto another. Hence g5 can always be chosen (as a lifting of e;) to induce &; and &3 since
the above condition holds modulo p by the commutativity of (1).

Since ¢; is a lifting of the idempotent e;, we have 2 = ¢; (mod p). Hence (g;,)%" = (g;)?"

(mod p**1) for each k > 1. Upon replacing &; by the limit of the (si)pk, we can arrange that
each ¢; is an idempotent in Endz,r(A;) (and that the above diagram still commutes). Set

A= 52]\\2 and M = Q, ®z, A. Thus M is a Q,/-module with a 1-dimensional submodule,
and has a Z,I"-lattice A such that A/pA = V. O

We now turn to questions of uniqueness, looking first at the finite case. When R is a ring
and M is an R-module, we let Anng(z) denote the annihilator of an element z € M.

Proposition 3.9. Fiz an odd prime p, a finite group I' € 4,, and U € Syl,(I'). Let A,
and Ay be finite Z,I'-modules, and assume that |Ca,(U) N [U, Aj]| = p for i = 1,2. Set
0= et €ZyU.

Assume that there is a Z,U-linear isomorphism ¢: Ay — As whose reduction modulo p is
F,I-linear. Then Ay = Ay as Z,I"-modules. In particular, this happens if A1 /pA; = Ay /pAs
and either
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(a) Ay and Ay are homocyclic of the same exponent and o-A; £ pA; fori=1,2; or

(b) there are elements a; € Ay and ay € Ay such that Ay = Z,U-ay, Ay = Z,U-ay, and
AnnZPU(al) = AnanU(ag).

Proof. Set A; = A;/pA; for i = 1,2. For each X < A; and g € A;, set X = (X + pA;)/pA;
and g = g+ pA;. Set Z; = C4,(U) and S! = [U, A;]. By assumption, |Z; N S;| = p, and hence
|A;/(Z; + S!)| = p by Lemma 3.7(c).

Assume ¢: Ay — A, is a Z,U-linear isomorphism whose reduction ¢: A; — A, modulo
pis F,I-linear. Let ¢i,..., gx be a set of representatives for the left cosets gU in I" (where
k = |I'/U| is prime to p), and define ¢: Ay —— Ay by setting 1(\) = %(Zle gie(g; '),
Then 1) is Z,,I'-linear, its reduction modulo p is equal to ¢ since @ is I,/ -linear, it is surjective
since the reduction mod p is surjective, and is an isomorphism since |A;| = |As|.

It remains to prove that each of (a) and (b) implies the existence of the homomorphism
¢. Fix an F,/-linear isomorphism ¢: Ay — A,

(a) Assume A; and Ay are homocyclic of the same exponent p*, and for i = 1,2, 0-A4; £ pA,.
Choose a; € A; such that o-a; ¢ pA;, and let ay € Ay be such that p(a;) = as. Thus for
i=1,2,0a; #0, and so {u(a;) |u € U} is a basis for F,U-a;, and Anng,(a;) = 0. Note
that a; ¢ Z; + SI, since 0-Z; < pZ; and o-S} = 0.

We claim that each element of C (U) lifts to an element of Cy,(U); i.e., that

C-

4 U) =Z.. (1)

To see this, let g € A; be such that g € C5 (U). By Lemma 3.7(d), g = §{-a; + 2 for some
€ € Z,U and z € Z;. Then £-a, is fixed by U since g is, and Coea(U) = (o-a;) since
Anng,7(a;) = 0. Hence there is k& € Z such that ko-a; = {-a;; and g = ko-a;, + 2z where
ko-a; + z € Z;. This proves (1).

Set m = rk(A;) — p = rk(A42) — p (possibly m = 0). By (1), we can choose elements

Z1,...,Ty € Zy such that A; = F,U-a; & (T1,...,Zy). By (1) again, there are elements
Yty .-y Ym € Zy such that p(z;) = y; for each i. Then

(w@)|ueUyU{z,....on}  and  {u(@)|ue€ U} UG ... 5m}

are bases for A; and As, respectively, and ¢ sends the first basis to the second. Since
A; and A, are both homocyclic of exponent p*, the sets {u(a;),z1,..., 2, |u € U} and
{u(as),y1,...,Ym|u € U} are bases for A; and Ay, respectively, as Z/p*-modules. Thus
lifts to a Z,U-linear isomorphism ¢: A; — A,, defined by setting ¢(u(a;)) = u(az) for
u € U and ¢(z;) = y; for each i.

(b) Let a; € A; (for i = 1,2) be such that Z,U-a; = A; and Anng,_y(a;) = Anng, y(as). Let

¢ € Z,U be such that p(a;) = §-as. Thus £-as generates Ay as an F,U-module, and since
(1 —u)Ay < S for 1 # u e U, ¢ is not in the ideal (1 — u)Z,U + pZ,U of index p in Z,U.
Since this is the unique maximal ideal in Z,U, ¢ is invertible, and we can replace as by £-as
without changing Anng, i (az).

Let ¢: A; — A, be the unique Z,U-linear homomorphism such that ¢(a;) = ay. Its
reduction modulo p is @, since p(a;) = a and ¢ is F,U-linear. O

It remains to prove the analogous uniqueness result for discrete p-tori.
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Lemma 3.10. Fiz an odd prime p, a finite group I' € 4, and U € Syl (I"). Let Ay and A,
be discrete, I'-p-tori, and assume that

(1) (A1) and Qy(A2) are faithful, minimally active, and indecomposable as F,I"-modules;
and

(i) 21(A;) =2 (Ay) as FyI'-modules.
Then Ay = Ay as ZyI'-modules.

Proof. By Lemma 3.7(b), we also have that
(a) [U, A;] N Ca,(U) has order p for i =1,2.

Assume, for each k > 1, that Q(A4;) = Qx(Asz) as Z,I-modules, and let X, be the set of
Z,I-linear isomorphisms €2 (A;) —= Q4(Ay). Then X, is finite since the Q,(A;) are finite,
X # @ by assumption, and if & > 2, restriction to 2x_1(A;) defines a map X — Xj_1.
So the inverse limit of the X}, is nonempty, and each element in the inverse limit determines
a Z,I'-linear isomorphism A; = A,.

It remains to show that Q4 (A1) = Q(As) for each k. Since Qi (A4;)/p(A;) = Q1(4;) as
F,[-modules (multiplication by p*~! defines an isomorphism), we have Q.(A;)/pQ(A;) =
Qr(As)/p(Ay), and both are faithful, minimally active, and indecomposable.

Set 0 = > cyu € Z,U, as usual. If rk(A;) > p, then by Lemma 3.3(a,b), 0-Qi(4;) £
P (A;). Since Qi (A;) and Q4 (As) are both homocyclic of exponent p*, they are isomorphic
as Z,I'-modules by Proposition 3.9(a).

If 1k(A;) = p— 1 for i = 1,2, then by Proposition A.4, A; = (Q,/Z,) ®z, A; for some
(p — 1)-dimensional Z,I-lattice A;. Since I" acts faithfully on the lattices, Ay = Ay = Z,[(]
as Z,U-modules by Lemma A.5(a,c) (where ¢ is a primitive p-th root of unity). Hence
for i = 1,2, A; & Q,(¢)/Z,[¢], and Q(A;) = Z,[C]/p*Z,[¢], as Z,U-modules. So there is
a; € ,(A;) such that Z,U-a; = Q;(A4;) and Anng,y(a;) is the ideal generated by p* and o.
Proposition 3.9(b) now applies to conclude that €(A;) = Qi (As) as Z,I-modules. O

4. REDUCED FUSION SYSTEMS OVER FINITE NONABELIAN p-GROUPS WITH INDEX p
ABELIAN SUBGROUP (p ODD)

Throughout this section, p is an odd prime, and A is finite. As noted in the introduction,
the corresponding question for finite 2-groups was answered in [AOV2, Proposition 5.2(a)].

Lemma 4.1 (|[CrOS, Lemma 2.2(d,e,f)]). Assume the notation and hypotheses of 2.1, and
also that p is odd and |A| < oco. Set Ag = ZS'. Then the following hold.

(a) If A4 F, then there are elements x € S\NA and a € ANAg such that Ag(x) and S'(a)
are normalized by Autz(S). If some element of S\ A has order p, then we can choose
X to have order p.

(b) For each P € Ex and each o € Ny, (py(Auts(P)), a extends to some o € Autz(.5).
(c) For each x € S\A and each g € Ay, Z{(x) is S-conjugate to Z{gx), and Zy(x) is
S-congugate to Zy(gx).

We now fix some more notation, based on Lemma 4.1.

Notation 4.2. Assume Notation 2.1. Assume also that p is odd, S is finite, and A 4 F,
and hence that |Zy| = |A/ZS'| = p by Lemma 2.4. Fixra€ AN ZS" and x € S\ A, chosen
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such that ZS5'(x) and S’(a) are each normalized by Autz(S), and such that xP = 1 if any
element of S~ A has order p (Lemma 4.1(a)). For eachi=0,1,...,p—1, define
Hi=7Z{xa'y €M and B;= Zyxa')eB.
Let H; and B; denote the S-conjugacy classes of H; and B;, respectively, and set
He=H,U---UHp,y and B, =B U---UB,;.
For each P < S, set

Aut(S) = {a € Autz(S) |(P) = P, a|p € O” (Autx(P))}.

When |Zy| = p, then by Lemma 4.1(c), H = Ho U H. and B = By U B,. Note that
for x,2’ € S A, Z(x) is S-conjugate to Z(z') or Zy(x) is S-conjugate to Zy(z') only if
2z7! € ZS'. So in fact, each of the sets H and B is a union of p distinct S-conjugacy
classes: the classes H; and B; for 0 <7 <p—1.

Lemma 4.3 (|[CrOS, Lemma 2.5(a,b)|). Let p be an odd prime, let S be a finite nonabelian
p-group with a unique abelian subgroup A < S of index p, and let F be a saturated fusion
system over S such that A 4 F. We use the conventions of Notation 2.1 and 2.9, set
Ag=ZS', and let m > 3 be such that |A/Z| = p™~t. Then the following hold.

(a) /7|outyr(5) 18 injective.

(b) Fiza € Aut(S), set (r,s) = p(a), and let t be such that a(g) € g'Ap for each g € AN Ap.
Then s = tr™=! (mod p).

Lemma 4.4 (|CrOS, Lemma 2.6(a)]). Let p be an odd prime, let S be a finite nonabelian p-
group with a unique abelian subgroup A < .S of index p, and let F be a saturated fusion system
over S. We use the notation of Notation 2.1 and 2.9. Let m be such that |A/Z| = p™'. Fix
PeHUB, and set

-1 ifPeH

Hp = Nawr(s)(P),  Hp={alp[a€Hp},  and t:{o if PeB.

If P € Ex, then Autgf)(S) < Autx(S) and ,u(Autgf)(S)) =Ay. If Pe€H, or P e B, then
m=t (modp—1).

Theorem 4.5 (|CrOS, Theorem 2.8|). Fizx an odd prime p, and a finite nonabelian p-group
S which contains a unique abelian subgroup A < S of index p. Let F be a reduced fusion
system over S for which A is F-essential. We use the notation of 2.1, 2.9, and 4.2, and
also set Ag = ZS', Eg = Ex~{A}, and G = Autz(A). Thus U = Autg(A) € Syl (G). Let
m > 3 be such that |A/Z] = p™'. Then the following hold:

(a) Zy = Ca(U)N[U,A] has order p, and hence Ay = C4(U)[U, A] has indez p in A.

)
(b) There are no nontrivial G-invariant subgroups of Z = C4(U), aside (possibly) from Zy.
(c) [G,A]=A.
(d) One of the conditions (i)-(iv) holds, described in Table 4.1, where o0 =), .y u € Z,U.

Conversely, for each G, A, U € Syl (G), and Eq € HUB which satisfy conditions (a)-(d),

where |[U| = p and U 4 G, there is a simple fusion system F over Ax U with Autz(A) = G
and Ex = EgU{A}, unique up to isomorphism. When A is not elementary abelian, all such
fusion systems are exotic, except for the fusion systems of the simple groups listed in Table

4.2.
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pa(Auty(A)) | G = O”(G)X where | m (mod p — 1) o-A Eq
(i) A X = Autx(A) = < Fr(Z) | Ho UB.
(ii) A X = Autr(A) =-1 <Fr(Z) | By UH.
111’ =-1 < Fr(Z - H;
(iit") S AL X (A < Fr(2) | Uier
(iii”) - - Ho
(iv') X =y (A) =0 <Fr(Z) | Uie, Bi
> Ay
(iv") Zy not G-invariant — — By
TABLE 4.1

Such a fusion system F has a proper strongly closed subgroup if and only if Ay = C4(U)[U, A]
1s G-invariant, and Eq = H; or B; for some i, in which case AgH; = AgB; is strongly closed.

r D conditions rk(A) e m G = Autr(4) Eo
PSLy(q) | p p?|(g—1), p>3 p—1 | vp(g—1) |e(p—1)—1 X, Ho U Hy
PSLn(q) | p | P*|(g=1), p<n<2p | n—1 | vy(q—1) |e(p—1)+1 S By
PQ3.(q) | p | P?l(q=1), p<n<2p | n | wp(g=1) [e(p-1)+1] C37' %%, | By

2Fy(q) |3 _ v3(g+1) 2e GL2(3) By U B,
E.(q) |5| n=6,7, p*|(¢g—1) n vs(q—1) de + 1 W(E,) By
Euq) |7|n=178 p*l(¢-1)| n | vi(g—1) | 6e+1 W(E,) By
Es(q) |5 ws(¢®+1)>2 4 | os(g*-1) de (402'4).36 | By U B,

TABLE 4.2. In this table, e is such that p is the exponent of A, and we restrict
to the cases where e > 2. In all cases except when I' = PSL,(q), A is homo-
cyclic.

We now look for a more precise description of the group A when it is finite but not
elementary abelian. The following notation will be useful when describing more precisely
elements and subgroups of A.

Notation 4.6. Assume Notation 2.1 and 4.2, and set u = ¢x € U = Autg(A). Set 0 =
l+u+u’+...+u ! €Z,U. Regard A as a Z,U-module, and define

v Z,U — A
by setting W(¢) = E-a. Thus (30— naut) = [[22, u'(a)™ for n; € Z,.
Set ¢ = e*™/? R =17,[(], and p = (1—C)R. Thus p is the unique maximal ideal in R. We
identify R = 7,U/0Z,U, by sending ¢ € R to the class of u modulo (o).
The basic properties of ¥, and the role of W(c), are described in the following lemma.
Recall that U%(P) = (¢*" | g € P), when P is a p-group and k > 1.

Lemma 4.7. Assume Notation 2.1 and 4.6, where A € Ex, and A 4 F s finite and not
elementary abelian. Let m be such that |A/Z| = p™'. Then
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(a) Im(¥)NZ = Zy(¥(0));

(b) U induces an isomorphism A/Z = R/p™ ! via the identification R = Z,U/{c); and
(c) ¥((1—u)™) =1 and Zy = (¥((u—1)""1)).

Furthermore, the following all hold.

(d) The homomorphism ¥ is surjective if and only if tk(A) < p, if and only if Z is cyclic.
If U(o) € Fr(A), then rk(A) < p and V is surjective.
(e) Either
e V(o) = 1, in which case tk(A) = p—1, Z = Zy, and V induces an isomorphism
A = R/p™ via the identification R = Z,U/{(c); or

e V(o) ¢ Fr(Z), in which case Ex C {A} UHy or Ex C {A} U B,.

(f) If¥(o) #1 and U(o) € Zy, thenm =1 (modp—1). If U(o) & Zy, then pu(Autx(S)) =
Ay—1; and either m =1 (mod p—1) and Ex ~ {A} = By, orm =0 (modp—1) and
E]: N {A} = Ho.

(g) If W is not surjective, then A is homocyclic.

Proof. Set A = A/Fr(A) for short. For B < Aorg € A, let B< Aorg € A denote
their images in A under projection. Let ¥: Z,U —— A be the composite of ¥ followed by
projection to A.

(a) Since (1 —u)Z,U + 0Z has index p in Z,U,
Im(¥) = ¥((1 - w)Z,U)(¥(0))(¥(1)) = 5"(¥(0))(a),
where a? € S"(U(0)). Since a ¢ Z and ¥ (o) € Z, we have
(W) N Z = Cin(w) (U) = Csriu(o (U) = (5N 2)-(V(0)) = Zo(¥(0)).

(b,c) Since V(o) € Z, ¥ induces a homomorphism from Z,U/(c) = R to A/Z, which
is onto since A = Z-Im(¥) by Lemma 3.7(d). Since |A/Z| = p™ ! by assumption (and
since p is the unique maximal ideal in R that contains p), we have A/Z = R/p™ . Hence
U((u—1)""1) e Z and ¥((u—1)""2) ¢ Z, and the latter implies that U((u — 1)) £ 1.
Thus in all cases (and since |Zp| = p), ¥((u —1)™) =1 and (¥((u — 1) 1)) = Z,.

(d) Ifrk(A) < p, then rk(A) < p, and by [CrOS, Proposition 3.7(a)|, Ay is indecomposable.
Hence W is onto in this case, and so ¥ is also onto. Conversely, if rk(A4) > p = 1k(Z,U),
then W is clearly not surjective.

By Lemmas 3.2(b) and 3.3(c), 1 (Z
Hence Z is cyclic if and only if rk(A)

) = Ca,(4)(U) has rank 1 if and only if k(£ (A4)) < p.
< P

If U(o) € Fr(A), then rk(Im(¥)) < p — 1. Hence A has no nontrivial Jordan block of
rank p, and by [CrOS, Proposition 3.7(a)| again, A is indecomposable as an F,U-module.
So rk(A) = rk(A) < p, and ¥ is onto.
(e) If ¥(o) € Fr(Z) < Fr(A), then U is surjective by (a), so Z = Zy(V(0)) < Zy-Fr(Z), and
hence Z = Z and V(o) € Fr(Zy) = 1. Thus ¥ factors through a surjection U*: Z,U /(o) =
R —— A, and induces an isomorphism A = R/I for some ideal I in R. Since p is the only
prime ideal in R of p-power index (and |R/p| = p), and since |A| = p™~!|Z| = p™ (recall
Z = Zy by (a)), we have I = p™.



REDUCED FUSION SYSTEMS OVER p-GROUPS WITH ABELIAN SUBGROUP OF INDEX p: III 23
Since Ex Z {A} (Notation 4.6), x? = 1 by Notation 4.6 and Lemma 4.1. For each b € A,
(bx)P = (bx)Px 7 = b25b - b = [T2) w'(b).

If U(o) = [/, u'(a) ¢ Fr(Z), then [[-) u'(b) # 1 for each b€ A~ ZS" = J'- a’ZS". So
by Lemma 2.5, no member of H, U B, can be essential, and Ex C {A} U H, U B,.

(f) Assume A 4 F, and thus Ex € {A}. Fix P € ExN(HUB) and a € Autgf)(S) <
Autx(S) (Lemma 4.4).

Set u(a) = (r,s), and let ¢ be as in Lemma 4.3(b). Thus s = tr™ ! (mod p) and
a(a) = a’ (mod Z5), so a(a) = ¥(§) for some £ =t (mod (1 —u,p)). Also, a(x) € x"A,
so a(u’(g)) = u(a(g)) for all i and g € A. Thus

a(#(0)) = [J (@) = [ (o(a) = (3 eu)

=U(lo) = V(to). (mod ¥(po)) (1)

In other words, a(¥ (o)) = ¥(0)" (mod (¥(o)P)).
If (o) # 1 and V(o) € Zy, then t = s (mod p) by (1) (and by definition of y), and hence

r™ 1 =1 (mod p). Since this holds for arbitary « and hence for arbitary r prime to p by
[CrOS, Lemma 2.6(a)] and since P € Ex N (H U B), it follows that m =1 (mod p — 1).

Now assume ¥ (o) ¢ Z. By (1) and since [o, Z] < Zj, we have t = 1 and s = r™!. Since
this holds for arbitrary « € Aut(J—fD)(S ) (in particular, for arbitrary r prime to p), it follows
that ,u(Autgf)(S)) < p(Aut:(S)) < A1, with equality by Lemma 4.4. So by Lemma 4.4,
P ¢ H.UB,, and either P € Hy and A,,—1 = A_; (so m =0 (mod p—1)); or P € By and
A1 =2Ap (som=1 (modp—1)).

(g) Assume that W is not onto, and hence by (d) that rk(A) > p+ 1 and V(o) ¢ Fr(A).
Let k& > 2 be such that A has exponent p*. If A/Z has strictly smaller exponent, then
1 # UBF1(A) < Z, and thus G*7!(A) is an F,G-submodule of the minimally active, inde-
composable module ©;(A) upon which U acts trivially. If rk(A) = p + 1, this contradicts
Lemma 3.5, while if rk(A) > p+ 2, this is impossible since ;(A) is simple by [CrOS, Propo-
sition 3.7(c)]. Thus A/Z = R/p™ ! also has exponent p* > p?, and hence m — 1 > p. So by
(), and since (u — 1)? € pZ,U, we have Zy = (¥((u — 1)™ 1)) < Fr(A).

Now, rk(A/Z) = rk(R/p™ ') = p — 1 since m > p, and 1k(Z) = 1k(Cq,(4)(U)) =
rk(A) — (p — 1) by Lemma 3.3(c). If Zj is a direct factor in Z, then rk(Z/Zy) = rk(Z) —
so rk(A/Zy) <1k(A/Z) +1k(Z/Zy) = 1k(A) — 1. Thus no minimal generating set for A/Z,
lifts to a generating set for A, so Zy % Fr(A), which contradicts what we just showed. Thus
Zp is not a direct factor in Z, and so Exr NH = @ by Lemma 2.5(a).

In particular, m = 1 (mod p — 1) by (f), and hence A/Z = R/p™ ! is homocyclic of
rank p — 1 and exponent p¥. Thus A and A/Z are both Z/p*-modules and A/Z is free, so
A= 7 x (A/Z) as abelian groups. Since UF'(A) N Z = Cye-104)(U) # 1, this shows that
k(5H1(4)) 2 p.

If A is not homocyclic, then U*"'(A) < Q;(A) is a nontrivial proper F,G-submodule,
where Q(A) is faithful, minimally active, and indecomposable by Lemma 3.2(b). Hence
tk(A) = dim(2;(A)) = p + 1, since ©;(A) is simple if dim(Q(A)) > p + 2 by [CrOS,
Proposition 3.7(c)]. So dim(UG*(A)) < p— 1 by Lemma 3.5. This contradicts what was
shown in the last paragraph, and we conclude that A is homocyclic. O]
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Lemma 4.8. Let p be an odd prime, let U be a group of order p, and set o0 = .y u € ZU.
Then for each 1 # v € U and each k > 1,

(w— 1)V = (=) (p* 1o —p*)  (mod p*(u —1)ZU).

Proof. Since (') = (—1)* (mod p) for each 0 < k < p — 1, we have (u — 1)?"! = ¢ (mod
pZU). Hence

(u—1)P"1'=0—p (mod p(u—1)ZU) (1)
since they are congruent modulo p and modulo v — 1. This proves the lemma when k£ = 1.

When k > 1, (1) together with the congruence for (u — 1) =D®=1) give

(u—1)FPD = (y — 1P~ (u — 1) DD
= (u— 1P (=) 2 %0 — M) (mod (u—1)P~"p*(u - 1))
= (0= (=)@ e —p") (mod p(u —1)(p* o = p*))

= (=D e =Y
and the congruences hold modulo p*(u—1) since p(u—1) divides (u—1)? and (u—1)c = 0. O

Proposition 4.9. Assume the notation of 2.1, 2.9, 4.2, and 4.6. Assume also that A is
finite and not elementary abelian, that A € Ex, and that O,(F) = 1. Let m > 3 be such
that |A/Z| = p™, and let k > 2 be such that A has exzponent p*. Then one of the following
holds, as summarized in Table 4.3, where G = Autz(A).

(a) If ¥(o) = 1, then ¥ is onto, Ker(¥) = (o, (u—1)"), 1k(4A) = p—1, Z = Z, =
(U((u—1)""1), and A= R/p™ as Z,U-modules.

(b) If V(o) ¢ Fr(Z) and A is homocyclic, then tk(A) > rk(Im(¥)) = p, rk(Z) = rk(A) —
p+ 1, and Im(¥) and Z are both direct factors in A and homocyclic of exponent p*.
Also, Ex = {A}UBy. Either ¥ is onto and rk(A) = p, or ¥V is not onto and rk(A) > p.
If tk(A) > p+2, then A/Fr(A) = Q1 (A) are irreducible Fp[Autz(A)]-modules.

(c) If V(o) ¢ Fr(Z) and A is not homocyclic, then V is onto, tk(A) =p—1, m =1 (mod
p—1), Ker(¥) = (pF,p*~t — lo) for some £ prime to p, and Ex = {A} UHy. Also,
A= (Cp1)P72 x Cpe, where BFYA) = Z = Zy = (V(0)). If k=2, then £ £ 1 (mod
p)-

Proof. If Ex = {A}, then A < F by Proposition 1.3(c), contradicting the assumption that
Op(F) = 1. Thus Ex 2 {A}.

Case 1: ¥(o) € Fr(Z). In this case, U is surjective by Lemma 4.7(d) and since Fr(Z) <
Fr(A). By Lemma 4.7(e), ¥(0) =1, rk(A) =p— 1, Z = Zy, and A = R/p™. In particular,
Ker(¥) = (o, (u—1)™), while Zy = (¥((u —1)™"1)) by Lemma 4.7(c). We are thus in the
situation of (a).

Case 2: ¥(o) ¢ Fr(Z) and A is homocyclic. Recall that £ > 2 is such that A has

exponent p*.

If rk(A) < p, then V¥ is onto by Lemma 4.7(d), and ©;(Z) = Cq,(4)(U) has rank 1 by
Lemma 3.3(c) and since §2;(A) is minimally active and indecomposable by Lemma 3.2(b).
Thus Z is cyclic, and since A is homocyclic of rank at least 2, A/Z = R/p™~! also has
exponent p¥ > p?. Hence rk(A) =1k(A/Z) = p — 1. Also, (A/Z)/O*A/Z) = (Cp—r)P7,
so |Z| = p, and Z = Zy. Thus |A| = |A/Z|-|Z| = p™, and m = 0 (mod p — 1) since A is
homocyclic of rank p — 1. But then ¥ (o) ¢ Zy by Lemma 4.7(f), a contradiction.
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Case (a) (b) (c)
V(o) V(o) =1 V(o) ¢ Fr(2)
A homocyclic? }rfleos iiff ((]];__ 1)) J[| ;Z yes no
es if rk(A) =
¥ onto? yes 31710 i rk((A)) >5 yes
rk(A) p—1 r>p p—1
Ker(V) (u—1)" 0) P*Z,U ®* Pt —to) (pte)
A = R/pm = (Cpk)r = (Opkfl)piz X Opk
Z = Z = (Cy)rrtt = Z
Zo (U((a—1)" ) | (Y@ 'o)) (U(p*1)) = (¥(0))
m k(p—1)+1 (k=1p-1)+1
E-~{A} (see Table 4.1) By Ho

TABLE 4.3

Thus rk(A) > p, and (o) ¢ Fr(A) by Lemma 4.7(d). So the homomorphism ¥: F,U —
A/Fr(A) is injective, and A/Fr(A) contains a Jordan block Im(¥) of rank p. Since A is
homocyclic of exponent p*, |[Im(¥)| > pP*, and thus Ker(¥) = p*Z,U. So Im(¥) = Z/p*U.
Also,

Pt = |A)Z) = (W) /(¥ (0))| = p*7Y,
andsom=4k(p—1)+1=1 (mod p—1).

Now, Zy = (¥(p*'0)), and ¥(o) ¢ Z, since k > 2. Hence Ex \ {A} = By by Lemma
4.7(f). Also, ¥ is surjective if and only if rk(A) = p (Lemma 4.7(d)), and we are in the
situation of case (b).

Case 3: ¥(o) ¢ Fr(Z) and A is not homocyclic. Set k' = [m/(p —1)]. Since m = 0,1
(mod p — 1) by Lemma 4.7(f), A/Z = R/p™! has exponent p*, and hence U¥ (4) < Z. So
P (u—1) € Ker(¥).

Now, U is onto by Lemma 4.7(g), and hence rk(A) < p and Z is cyclic by Lemma 4.7(d).
If (o) ¢ Zy, then Zy < Z and is not a direct factor, so Ex N H = @ by Lemma 2.5(a).
Thus

Vonto = VY(o)eZyorExrnH=0. (1)

Case 3.1: U¥(A) # 1. Since U¥(A) < Z is invariant under the action of G = Autz(A),
Lemma 2.7 implies that U (A) = Z, and ExNH # @. In particular, 5¥ (A) = (¥(p*)) has
order p, and W(o) € Zy by (1). Thus (¥(0)) = Zy = (U(p*)), so p* — Lo € Ker(o) for some
¢ prime to p.

Now, rk(A) < p by Lemma 4.7(d) and since ¥ (o) € Zy < Fr(A). Also, Z = Zy(V(0)) = Z
by Lemma 4.7(a), and m = 1 (mod p — 1) by Lemma 4.7(f) and since ¥(o) € Zy. So
Al = |A/Z|-|Z] = p™ = p¥ =D+ and A/U* (A) has exponent k', rank at most p — 1, and
order p¥' "= This proves that A/U* (A) is homocyclic of rank p — 1 and exponent p*', and

hence that A = (Cow)?™? x C xy1. Thus k' = k — 1 (recall A has exponent p*). This also
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shows that (p"~!, o) has index p in Ker(¥), and hence (since p*~! — (o is in the kernel) that
Ker(¥) = (o, g — Lo).

If k =2and ¢ = 1 (mod p), then Ker(¥) = (p*,p — o), and (u — 1)?~! € Ker(¥) by
Lemma 4.8. But then ¥((u — 1)P72) € Z where Z = Z;, = U'(A), and this is impossible
since A/U'(A) has rank p — 1.

Finally, Er = {A} U Hy by Lemma 4.7(e) and since Ex N H # @. We are thus in the
situation of case (c).

Case 3.2: U* (A) = 1. Since ¥(0) € Zy~ 1 or ExNH = @ by (1), we have m = 1 (mod
p—1) by Lemma 4.7(f). Thusm—1 =K (p—1),s0 1 # Zy = (U((1 — u)™ 1)) = (T (p* o))
by Lemma 4.8. Since p* ~'o ¢ Ker(¥), we have |Z| > |¥(0)| = p¥, and |A| = |A/Z]-|Z| >
pmHE = pFP Hence A = Im(¥) is homocyclic of rank p and exponent p*', contradicting
our assumption. O

We now give some examples to show that all cases listed in Proposition 4.9 can occur.

Example 4.10. We list here some examples of pairs (G, A) satisfying the hypotheses of
Theorem 4.5. In all cases, we assume that G € ¢4 and U € Syl (G). By Lemma 3.2(b),
1(A) and A/Fr(A) must be minimally active and indecomposable.

(a): Each Q,G-module of dimension p — 1 whose restriction to U is isomorphic to the
canonical action on Q,(¢) can be used to construct homocyclic examples of arbitrary
exponent, by adding scalars as needed to meet one of the conditions in Table 4.1.

More interesting are examples where A is not homocyclic. By Proposition 4.9,
Q;(A) and A/Fr(A) must be not only minimally active and indecomposable of di-
mension p — 1, but also not simple. By Table 6.1, this occurs only when A4, < G <
Y, xCp1, SLy(p) < G < GLy(p), or PSLy(p) < G < PGLy(p) x Cp—;. By Proposition
3.8(a), for each minimally active, indecomposable [F,,G-module V' of dimension p — 1,
there is a Z,G-lattice A such that A/pA = V. If 0 # V < V is a nontrivial proper
[F,G-submodule, and Ay < A is such that pA < Ag and Ay/pA =V}, then we can take
A= Ag/p*A for arbitrary k > 2.

(b): These are homocyclic, and there are many such examples, obtained from the F,G-
modules in Table 6.1 of dimension at least p (all of them are reductions of lattices in
Q,G-modules). Lemma 3.2(c) together with Theorem 4.5 imply, very roughly, that
each F,G-module that yields simple fusion systems with elementary abelian A and
with Ex C {A} U B will also give simple fusion systems with A of exponent p* for
arbitary k£ > 1. Some of the resulting fusion systems are realizable (see Table 4.2),
while “most” are exotic.

(c): Fix an odd prime p, k£ > 2, and ¢ prime to p such that £ #Z 1 (mod p) if k = 2. Set

G =3, x Cy1 and Gy = O (G) = A, and set U = ((12---p)) € Syl,(G). Let
A = (Z,)P be the Zpé—lattice upon which 3, acts by permuting a Z,-basis {ey, ..., e},

and where the factor C,_; acts via multiplication by (p — 1)-st roots of unity in Y/
Now define

A:A/<pkA,pk71€l—£(€1++6p)}1§2§p>7

and let e; € A be the class of e; € A. This defines a finite Z,G-module of rank p — 1
and exponent p*, as described in the last column in Table 4.3, where ¥: Z,U — A
is defined by setting ¥(§) = &-é;.

Set Z = C4(U). Note that |[pF~*A| = p,and A/p*TA 2 A/(p" 1A e; + -+ + €,) =
Z,[C]/(P*Y). Hence Z > p*~' A, and |Z| > p only if p"?(e; + 2e5 + -+ + pe,) € Z.
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But this last is the case only if p*?((e; + -+ - 4+ €,) — pe1) = 0, which is not possible
since we assumed that either £ > 3 or £ # 1 (mod p). Thus |Z| = p in all cases.

Now set S = A x U, and set G¥ = N5(U). (Note that Z = Z; in the notation of

2.1.) Define ps: G¥ — A as in Notation 2.9. One easily checks that p(GY) = A.
Set G = Gou,'(A_y). This now defines an action which satisfies the conditions in
Theorem 4.5, including condition (d.iii”).

We now combine Theorem 4.5 with Proposition 4.9 to prove our main result on simple

fusion systems over finite p-groups with an abelian subgroup of index p and exponent at
least p?. Recall that Ez is the set of essential subgroups in a fusion system F (Definition
1.2), and that ¢ is a certain class of finite groups (Definition 3.1).

Theorem A. Fiz an odd prime p.

(a) Let F be a simple fusion system over a finite nonabelian p-group S with an abelian sub-

group A < S of index p such that A € Ex. Let k be such that A has exponent p*, and as-
sume k > 2 (A is not elementary abelian). Set G = Autz(A), U = Autg(A) € Syl (G),
V= M(A), and Vo = BF1(A) < V. Let G,y = {a € No(U) |[o, Cy(U)] < [U,V]}
and vy G(VV) — A be as in Notation 2.9. Let V: Z,U — A be as in Notation 4.6.
Then G € 47, restriction defines an isomorphism G = Autz(V), and

V' is a faithful, minimally active, indecomposable F,G-module, and
(G, Vo] = V. Also, one of the cases in Table 4.4 holds, where V has (*fin)

no 1-dimensional submodule in cases (iv') and (iv").

Thl.4.1|ThlL4.3 | dim(V) |r = dim(Vp) Ker(¥) “V(GE/V)) G = E-~{A}
b > Vo=V k
(i) (b) >p 0 (") | B,
1<r<p-1 > Ay | OP(G)pyt (Ao)
s i Bi
(lV ) VO —Vv , UzEI
0 (a) 1 <pk’ g, A or (G)GE/V) Ho U B,
a p— 7 . -
(i) , PFrlu-n7 | A O7(G)-GY,y | BoUH.
r=p-—
(iit) Uiel Hi
1<r<p-1 > A, |OP (G (A
(i) <r<p > A, (G)py (A1) ”
© | p-1] r=1 | p"—to)

TABLE 4.4. The sets in the last column are as defined in Notation 2.1 and 4.2.

(b) Conversely, assume that G € 4 and U € Syl (G), and that V' is a faithful, minimally

active, indecomposable F,G-module satisfying (*gn) for some submodule 0 # Vo <V,
where GV is the subgroup of all elements g € Ng(U) such that [g,Cy(U)] < [U, V],
Then for each k > 2, there is a simple fusion system F over a finite p-group S containing
an abelian subgroup A of index p, and such that G = Autz(A), A has exponent p*,
M (A) 2V and BFY(A) 2 Vg as F,G-modules, and with Ex ~ {A} as described in
Table 4.1. Furthermore, any other simple fusion system with these properties, and with
the same essential subgroups, is isomorphic to F.
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Proof. (a) Set U = Autg(A) € Syl,(G) and Z = C4(U).

Under the above assumptions, G € ¢ by Lemma 3.2(a), V' is faithful, minimally active,
and indecomposable by Lemma 3.2(b), and dim(V') = rk(A) > p — 1 by Proposition 4.9. In
particular, restriction induces a monomorphism G = Autz(A) — Autz(V'), and this is an
isomorphism by the extension axiom (Definition 1.1) and since A = Cs(V'). From now on,
we identify G = Aut (V).

Set Gy = {o € Ng(U) | o, Ca(U)] < [U, A]}. Thus Glay < Gy, and pa ] Gly — A
is as in Notation 2.9. For some A, € {A, Ao, A_;}, MA(GE/A)) > A, and G = OF (G)u;l(AI)
by Theorem 4.5(d). So the same holds if we replace G(VA) by GE/V) and p4 by py.

Assume we are in case (a) of Table 4.3. Then Z = Z, has order p, so |A| = p™, and m =0
(mod p — 1) if and only if A is homocyclic. Also, V(o) = 1. Thus we are in case (i), (iii"),
(iv"), or (iv”) of Table 4.1 if A is homocyclic, or in case (ii), (iii’), (iii”), or (iv”) if A is not
homocyclic. Since m =0 (mod p— 1) and ¥(o) = 1 when A is homocyclic, (iv”) is a special
case of (iv’). The other information follows from the two earlier tables.

Now assume we are in case (b) or (c) in Table 4.3. Then V(o) ¢ Fr(Z), so this corresponds
to case (iii”) or (iv”) in Table 4.1. Since Ex \ {4} = H, in cases (c) and (iii”), and
Er ~ {A} = By in cases (b) and (iv”), these are the only possible correspondences. In case
(b), A is homocyclic, and so we have Vy = V in Table 4.4. In case (c), A = (Cpr-1)P"2 x Cp,
so V = Q(A) has a submodule V; = U*(A) of rank 1.

There is a surjective homomorphism : A —— Vj of Z,G-modules, defined by setting
Y(a) = . Since [G, A] = A by Theorem 4.5(c), we have [G, V;] = V4.

If V.= Q;(A) has a 1-dimensional F,G-submodule W, then W € Cy(U) < Cy4(U), so
W = Zy = C4(U) N [U, A] by Theorem 4.5(b), which is impossible in cases (iv') and (iv")
of Theorem 4.5(d).

(b) Fix G € 9} and U € Syl (G), and let V' be an F,G-module that satisfies (*4,), where
G is the subgroup of all elements g € Ng(U) such that [g,Cy(U)] < [U,V]. Fix k > 2.

Assume we have chosen a finite Z,G-module A such that Q;(A) = V as F,G-modules, and
such that either dim(V) = p —1 and |C4(U)| = p, or dim(V') > p and A is homocyclic. Let
Glay < G|y be as in the proof of (a). If tk(V) = rk(A) = p— 1, then since C4(U) = Cv(U)
has order p, G(VA) = G(VV) = Ng(U) and pg = py. So the properties of G(VV) and gy in Table
4.4 also hold for G, and p14.

If rk(V) = rk(A) > p and A is homocyclic, then puy (Gy)) > Ag, and G = O7 (G (D).
In such cases, we could have GE/A) < GE/V), but for each a € ,u‘_/l(Ao) of order prime to p,
a acts trivially on Cy(U) = Q;(C4(U)) by definition of uy (and Lemma A.1), and hence
also acts trivially on C4(U) (see |G, Theorem 5.2.4]). Thus uy'(A¢) = p; (Ap), and so the
information in Table 4.4 still holds if we replace Gy, and uy by G,y and pa.

Cases 4.9(a,b): Assume that we are in Case (a) or (b) in Proposition 4.9. By Proposition
3.8(a), there is a Z,G-lattice A such that A/pA = V as F,G-modules. Let Ay < A be such
that Ag > pA and Ag/pA = Vp, and set A = Ag/pFA. Set S = A x U, Z = Z(S) = C4(U),
S'=19,5]=[U,A],and Z, = Z NS

We first check that conditions (a)—(d) in Theorem 4.5 all hold. Condition (d) follows
immediately from (*g,). Condition (a) (|Zy| = p) follows from Lemma 3.7(c) and since A is
defined to be a quotient group of a Z,G-lattice.

Assume 1 # B < Z is G-invariant; we claim that B = Z,. If rk(A) = p — 1, then Z = Z,
and there is nothing to prove. If not, then rk(A) > p, we are in case (iv”), and so V has
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no 1-dimensional F,G-submodule. Thus rk(Z) > rk(B) > 2, and hence dim(V) > p+ 1. If
dim(V') = p+ 1, then by Lemma 3.5, every nontrivial F,G-submodule has nontrivial action
of U, contradicting the assumption B < Z. If dim(V') > p + 2, then V is simple by [CrOS,
Proposition 3.7(c)|. So Condition 4.5(b) holds in all cases.

If tk(A) > p, then Vo = V, A/Fr(A) = Vg, and so [G,A] = A since [G, V] = Vo. If
rk(A) = p—1, then by Lemma A.5(a,b,c), Ao|lu = Z,[(] as Z,U-modules, and the radical of
Aolu has index p. Thus pA is contained in the radical, and in [G, A] = A since Vi = Ag/pA
and [G, Vp] = Vp. This proves 4.5(c).

By Theorem 4.5, there is a unique simple fusion system F over A x U such that G =
Autz(A), A € Ex, and Ex \ {A} is as described in Table 4.4. Since A is unique (up
to isomorphism of Z,G-modules) by Proposition 3.9(a) (in case 4.9(b)) or 3.9(b) (in case
4.9(a)), this shows that F is uniquely determined by V.

Case 4.9(c): Assume that we are in Case (c) in Proposition 4.9. In particular, dim(V') =
p—1and dim(Vp) = 1. By Lemma 3.4(c), there is a projective, minimally active F,G-module
W >V such that dim(W) = p and thus dim(W/V') = 1.

By Proposition 3.8(b), there is a Z,G-lattice A such that A/pA = W, and such that A
has a Z,G-submodule Ay = Cy(Gy) of rank 1. In particular, A is free as a Z,U-module
since W is free as an F,U-module. Let Ay < A be the Z,G-sublattice of index p such that
Ay /pA = V. Define

A=A/ (P*A+ PP Ay + pAg) = Coe X (Cppt P72 % G,y

P P
Then Ql(//l\) is a p-dimensional [F,G-module, and contains a 2-dimensional submodule

Ap = (p" A+ No) /(PP A + PP LAY + pAg)
(PN (PP + " AY)) @ (Ao/pho) = (W/V) @ V.
(a

I

Now, Vo = W/V as F,[Ng(U)]-modules by Lemma 3.4(a) and since dim(WW') = p. Also,
O (@) acts trivially on each of them and G = O (G)Ng(U) by the Frattini argument, so
Vo and W/V are isomorphic as F,G-modules, and any F,-linear isomorphism is F,G-linear.
Hence for fixed a € A \ Ay and fixed ¢ prime to p such that £ # 1 (mod p) if £k = 2, the
quotient group

A= A/A, where A = ([p"'a—lo-a]) < Ay

is a quotient group of A where the two summands of 121\0 have l)een identified, and hence is a
ZyG-module. Here, as usual, 0 = Y ., u € Z,U. Note that A, is independent of the choice
of a, and depends on ¢ only modulo p.

Since A/Ay = AJ(p" 1A + Ag), where A/Ag = Z,[¢] as Z,U-modules by Lemma A.5(c),
we have that |C'3 7 (U)| = p, and is generated by the class of p*~*(u—1)P"%a for 1 # u € U.

The class of p*2(u — 1)?"2a in A is fixed by U if and only if as classes in 121\,

[P** (= 1) a] = [p**(0 = p)a] = [p*o-a] — [p*a] € 4,

(where the second equality holds by Lemma 4.8). But this fails to hold under our hypotheses:

either k > 2, in which case [p"~20-a] = 0 and [p*~1a] # 0 in A; or k =2 and £ # 1 (mod p),

in which case [0-a] — [pa] ¢ A;. Thus in all such cases, C'4(U) = Ay/A; and has order p.
Since Vo = Ag/pAy = Ag/A; = C4(U) as F,G-modules, and since V' and Q(A) are

both (p —1)-dimensional minimally active F,G-modules, Lemma 3.4(d) applies to show that
V = Q(A) as F,G-modules.
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By construction, (G, A) satisfies all of the conditions in case (c) of Proposition 4.9, as
well as condition (d.iii”) of Theorem 4.5. Since |Z| = |C4(U)| = p, conditions (a) and (b)
in 4.5 also hold: |Zy| = p, and no nontrivial subgroup of Z is G-invariant except possibly
Zy = Z. Finally, 4.5(c) holds ([G, A] = A) since A/[U, A] = A/Q%_1(A) has order p, and
has nontrivial action of G since G acts nontrivially on Zy = U*~1(A) (since pa(GY) > A_).

By Theorem 4.5, there is a unique simple fusion system F over A x U such that G =

Autz(A), A€ Er, and Er = {A}UH. Since A is unique up to isomorphism of Z,G-modules
by Proposition 3.9(b), this shows that F is uniquely determined by V. O

5. SIMPLE FUSION SYSTEMS OVER NONABELIAN DISCRETE p-TORAL GROUPS WITH
ABELIAN SUBGROUP OF INDEX p

We now focus on the case where A and S are infinite. Since most of the results in Section
2 assume Notation 2.1, and in particular that S contains a unique abelian subgroup of index
p, we begin by proving that this always holds when O, (F) = 1.

Lemma 5.1. Let F be a saturated fusion system over an infinite discrete p-toral group S
with an abelian subgroup A of index p. Assume also that O,(F) = 1. Then |A/Z(S)| = 0.

Proof. Let Sy < S denote the identity component of S. If |[A/Z(S)| < oo, then Sy < Z(95),
so Sy is contained in (and is characterisitic in) each P € Ex. Thus Sy, < F by Proposition
1.3(c), so Sy < O,(F) = 1, contradicting the assumption that |A| = oo, O

Corollary 5.2. If F is a saturated fusion system over an infinite discrete p-toral group S
with an abelian subgroup A of index p, and Oy(F) =1, then A is the only abelian subgroup
of index p in S.

Proof. Since |A/Z(S)| = oo by Lemma 5.1, this follows from Lemma A.3. O

Lemma 5.3. Assume Notation 2.1. If |A| = oo and O,(F) =1, then A/Z and S’ are both
discrete p-tori of rank p — 1.

Proof. Since |A/Z| = oo by Lemma 5.1 and C4,7(U) = Z5/Z has order p by Lemma 2.4,
A)Z = (Z/p>*)P~! by Lemma A.5(d). Also, A/Z = S’ by Lemma A.3. O

Lemma 5.4. Assume Notation 2.1. If |A| = oo and O,(F) =1, then A = ZS'. As one
consequence, each of the sets B and H consists of one S-conjugacy class.

Proof. Fix a generator u € U, and define x: A/Z —— A/Z by setting x(aZ) = [a,u]Z.
Then Im(y) = Z5'/Z, and Ker(x) = Z5/Z has order p by Lemma 2.4. Since A/Z is a
discrete p-torus by Lemma 5.3, y must be onto, and hence ZS" = A.

Thus if P = Z{x) and Q = Z(y) are two members of H, where yz~! € A, then there are
2z € Z and a € A such that yz~! = aza™'27 2. Then y € 27, so Q = P, and P and  are
S-conjugate. A similar argument shows that all members of B are S-conjugate. U

Part of the next lemma follows from Lemma 2.7 when p is odd. But since we also need it
here when p = 2, we prove it independently of the earlier lemma.

Lemma 5.5. Assume Notation 2.1, and also that |A| = 0o, Op(F) =1, and A ¢ Ex. Then
Z =2y, Exr =H, and A= S is a discrete p-torus of rank p — 1.

Proof. Since A ¢ Ex, Lemmas 2.2 and 2.3 imply that Ex = B or Ex = H. If Ex = B, then
since Z = Z(S) is normalized by Autz(S) and by Autz(P) for each P € B (Z is characteristic
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in P by Lemma 2.5(b)), Z < F by Proposition 1.3(c), contradicting the assumption that
O,(F)=1. Thus Er =H.

For P = Z(z) € H, by Lemma 2.5(a), P = P, x P, where P, = Cp(O¥ (Autz(P))) < Z,
Z = P, x Zy, and Zy < P, = C, x C,, and where each factor P; is normalized by Autz(P).
If P* € H is another member, then P* = 9P for some g € S by Lemma 5.4, and P, =
9P, = Cop(OP (Autz(P))) is also normalized by Autz(9P). Finally, P, is normalized by
Autz(95) since Autz(S) = Inn(S)-Naut,(s)(P) by the Frattini argument, and thus P, < F
by Proposition 1.3(c). So P, < O,(F) =1, and hence Z = Z,.

Since Z = Zj,, we have A = S’" by Lemma 5.4, and so A is a discrete p-torus of rank p — 1
by Lemma 5.3. U

When A is finite and p is odd, it was shown in [Ol, Lemma 2.4| that O,(F) = 1 and
A ¢ Ex imply Z = Z;. When A is finite and p = 2, this is not true: for each odd prime
p, the 2-fusion system of PSLy(p?){(¢), where ¢ is a field automorphism of order 2, is a
counterexample. Note that in this case, S = D x Cy for some dihedral 2-group D (whose
order depends on p).

The case p = 2 is now very easy to handle.

Theorem 5.6. Let S be an infinite nonabelian discrete 2-toral group with abelian subgroup
A < S of index 2. Let F be a saturated fusion system over S such that Os(F) = 1. Then F
is isomorphic to the 2-fusion system of SO(3) (if A is not F-essential) or of PSU(3) (if A

is F-essential).

Proof. Recall that A is the unique abelian subgroup of index 2 in S by Corollary 5.2. So we
can use Notation 2.1. Also, |Zy| = 2 by Lemma 2.4, and Ex \ {A} = H or B by Lemmas
2.2 and 5.4 (and since A Q F if Ex C {A}).

Case 1: Assume first that A ¢ Ex. Then by Lemma 5.5, Ex = H, Z = Zy, and A = 5" is
a discrete p-torus of rank 1. Thus A = Z /2%, where this group is inverted by the action of
S/A. Also, for each P € Ex = H, P = Cy x Cy and hence Autz(P) = Aut(P) = X3. Thus
there is a unique choice of fusion system JF on S, and it must be isomorphic to the fusion
system of SO(3).

Case 2: Now assume that A is F-essential, and set G = Autz(A). Then Autg(A) € Syl,(G)
has order 2, so |G| = 2m for some odd m. By Proposition A.7, we can write G = G; X G
and A = A; x Ay, where G, acts faithfully on A; and trivially on As_; for i = 1,2, where
|G1] is odd, Go = X3, and Ay = Cor X Cor for some 1 < k < 0.

Now, |As| = oo since Ay < Z and |A/Z| = oo (Lemma 5.1). Hence Z; is not a direct
factor in Z, so H N Ex = @ by Lemma 2.5(a), and Exr = {A} U B. Each o € Autz(S)
normalizes A and hence normalizes A;. For each P € B and each a € Autz(P), a(Z) = Z
since Z = Z(P), a|z € Autx(Z) extends to a € Autx(S), and thus a(A4;) = A4;. So A; < F,
and Al S Og(f) = 1.

Thus A = (Z/2°)?* and Autz(A) = G = 3. For each P € B = Ex \ {A}, P €
(Z)2%) X ¢, Qs, and the subgroup isomorphic to Qg is unique. Hence Outz(P) = X3 is

uniquely determined, and F is determined uniquely by Autz(A). So F is the 2-fusion
system of PSU(3). O

We now focus on the cases where p is odd.

Proposition 5.7. Assume Notation 2.1. Assume also that p is odd, |A| = 0o, and O,(F) =
1. Then A is a discrete p-torus. If tk(A) > p, then Z is also a discrete p-torus, and has
rank tk(A) — p + 1.
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Proof. We first apply Lemma 2.8, with A; = A and A, the identity component of A. Since
S’ is a discrete p-torus by Lemma 5.3, we have AyZ > ZS" = A = A; by Lemma 5.4. So
by Lemma 2.8, A < AyZy = A, the last equality since Zy < S’ < Ay. Thus A is a discrete
p-torus.

Set G = Autr(A) and V' = Q;(A), and choose 1 # u € U € Syl (G). By Lemma 3.2(a,b),
G €9 (so |U| = p), and V is faithful, minimally active, and indecomposable as an F,G-
module. So if dim(V) = rk(A) > p, then by Lemma 3.3(a,b), the action of u on V has a
Jordan block of length p, and hence dim(;(2)) = dim(Cy(U)) = rk(A) —p+ 1.

Let Z1,Zy < Z be such that Z; is a discrete p-torus, Z, is a finite abelian p-group, and
Z =7y X Zy. Since tk(A/Z) = p — 1 by Lemma 5.3, rk(Z;) = rk(A) — p+ 1 = dim(2,(2)).
So Zy =1, and Z = Z; is a discrete p-torus. O

Lemma 5.8. Assume Notation 2.1, and also that p is odd, |A| = oo, and O,(F) = 1. Then
no proper nontrivial subgroup of S is strongly closed in F. Thus F is simple if and only if
it contains no proper normal subsystem over S.

Proof. Assume that 1 # () < S is strongly closed in F. If ) < Z, then @ is contained in all
F-essential subgroups, so @ < F by Proposition 1.3(c), contradicting the assumption that
Op(F)=1 Thus Q £ Z.

Now, (QZ/Z) N Z(S/Z) # 1 since Q@ 15,80 QNZy £ Z. Fix g € (Q N Zy) N\ Z. Then
Q >19,5) = Zy since Q@ < S.

Fix P € Er ~ {A} € BUH (recall A 4 F). If P € B, then the Autz(P)-orbit of
g € (QNZy) \ Z is not contained in A. If P € H, then the Autz(P)-orbit of Z; < @ is not
contained in A. So in either case, Q@ £ A. Hence Q > [Q,S] > [U,A] = 5"

Set Gy = OP(G). Since Q N A is normalized by the action of G, and contains [U, A]
where Gy is the normal closure of U in G, @ > [Go, A]. Since C4(Gy) < Cx(U) = Z and
Ca(Gp) is normalized by G, Ca(Go) < Zy < [U, A] by Lemma 2.7. So by Lemma A.2,
[Go, A] > C4(U) = Z. Thus Q > ZS" = A, and so Q = S since Q £ A.

The last statement is immediate. O
Lemma 5.9. Assume Notation 2.1 and 2.9, and also that |A| = oo and S splits over A.

(a) The kernel of p: Aut¥(S) — A does not contain any elements of finite order prime to
p.

(b) FixQ € BUH, and sett =0 ifQ € B, t = —1ifQ € H. Assume that p(Autx(S)) > A,.
Then there are unique subgroups Z < Z and @ > QN S" which are normalized by
Nautr(5)(Q), and are such that the following hold.

() IfQeH, thenQ=2xQ and Q = C, x C,.

(i) If Q € B, then Z2=2,Q=20Q,72NnQ =2y = Z(@), and Q is extraspecial of

order p* and exponent p.

(i) Thus in all cases, Out(Q) = GLs(p). If a € Aut(Q) is such that oz = 1d,
a(Q) =Q, a(@NA)=QNA, and alg € O” (Aut(Q)), then a extends to some
@ € Naury(s)(@Q)-

Proof. (a) Fix o € Ker(u) of finite order prime to p. Then « induces the identity on Z/Z
since @ € Autx(S), and on Zy and S/A since pu(a) = (1,1). In particular, a|; = Id by
Lemma A.1, and a4 is Z,U-linear.
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Fix x € S~ A, and let ¢ € End(A) be the homomorphism ¢ (g) = [¢g,x]. Then ¢
commutes with |4 since a(x) € zA, and ¥ induces an injection from Z;(S)/Z;—1(S) into

~1(8)/Z;—5(S) for each i > 2. Since «a|z = Id, this shows that a induces the identity on
Zi(S)/Z;i-1(S) for each i, and hence that a|z,g) = Id for each i by Lemma A.1 again. Thus
ala, 4y = Id since € (A) < Z;(S) for some 4, so a|q,,(a) = Id for each m > 1 by |G, Theorem
5.2.4]. So a|4 =1d, and a = Idg by Lemma A.1 again.

(b) This proof is essentially the same as that of [CrOS, Lemma 2.6(b)| (a similar result but
with |A] < 0o). We sketch an alternative argument here.

Set K = Nauy(s)(Q) for short. By the Frattini argument and since all members of
the Aut(S)-orbit of Q are S-conjugate to @ (Lemma 5.4), Auty(S) = Inn(S)-K. Hence
() > Ay Also, |Nimns)(Q)| < [Ns(Q)/Z| < oo since |[Ng(Q)/Q| = p by Lemma 2.2, and
Ninns)(Q) = Autng()(5) is normal of index prime to p in K since Inn(S) < Autx(S) has
finite index prime to p by the Sylow axiom.

By the Schur-Zassenhaus theorem, there is Ko < K of order prime to p such that K =
Ko-Autng)(S). Set Z = Co(Ky) and Q = [Kq, Q).

o If Q € H and u(Ky) = u(K) > A_y, then Ky acts nontrivially on @/Z and on Zj, and
trivially on Z/Zy. Hence Z < Z and @ﬂA = Zp. Also, Q = Z x @ and Z = Z x Z,
by |G, Theorem 5.2.3| (applied to the subgroups ,,,(Q) for m > 1), and Q< C, x C,
since S splits over A. In particular, Out(Q) = GLy(p).
If 8 € Ky is such that pu(8) generates A_q, then pu(8) = (r,r~!) for some generator
r of (Z/p)*, so ﬁlé acts on Q = C, x C, as the matrix (6 91) for an appropriate
choice of basis. Thus Autg(Q )<B|Q> Now (aut(@))(Zo) Where OF (Aut(Q)) = SLy(p),
proving (iii) in this case.
o If @ € B and u(Ky) = u(K) > Ay, then « acts nontrivially on (Q/Z,, and trivially on
Zy and Z/Zy. Hence « acts trivially on Z by Lemma A.1, nontrivially on Z5/Z, and
so Z = Z and @ NA=2,nS". Also, @ is extraspecial of order p® and (since S
splits over A) exponent p. In particular, Out(@) >~ (GLy(p). By |G, Theorem 5.2.3|,
applied to the abelian p-groups Q,,(Q/Zy) for m > 1, Q = Z@ and Z N @ = Zy.
If B € Ky is such that p(5) generates Ay, then p(5) = (r,1) for some gener-
ator r of (Z/p)x, s0 [|g] has order (p—1) in O¥ (Aut(Q))/Inn(Q) = SLy(p). So

Auts(Q)(4] &) = Now (au(@y) (@ N A) in this case, again proving (iii).

Since Z < Z < Co(Ns(Q)) and Q > QNS > [Ns(Q), Q] in all cases, we have Z = Cy(K)
and Q [K,Q]. Thus Z and @ are independent of the choice of K|, and are normalized by
K = Nauwy(s)(Q). Since Autz(S) is normal in Autz(S) (the kernel of a homomorphism to
Aut(Z/Zy)), we see that K is normal in Nay,(s)(Q), and hence Z and Q are also normalized

by Nautr(s)(Q)- These are easily seen to be the unique subgroups that satisfy the required
conditions. O

When F is a fusion system over a discrete p-toral group S, then for each ) < S, we define
another subgroup @* < S as follows. Let T be the identity component of S. If m > 0 is
the smallest integer such that g?" € T for each g € S, and Q" = U™(Q) = (¢*" | g € Q),
then Q° oo Q-I(Q™)y, where I(Q™)) = Cr(Cauirr)(Q)) and I(QIM), is its identity
component. Thus Q < Q°* < QT for each ). See [BLO3 Definition 3.1] or [BLOG6, Definition
3.1] for more detail, as well as the motivation for this construction.
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Lemma 5.10. Assume the notation and hypotheses of 2.1, and also that |A| = oco. For each
QeBUHU{A S} Q*=Q.

Proof. By Proposition 5.7, A is the identity component of S. Thus A and G play the role
of T and W = Autz(T) in [BLOG6, Definition 3.1]. Since Q@ < Q°* < QA for each Q < S, we
have A* = A and S* = S.

Now assume @ € HUB. By assumption, S/A has exponent p = p'. Since Q/Z = C,, or C

(Lemma 2.5), QU & (g7 | g € Q) < Z. Hence Ce(QW) > U, and I(QW) &' C,(CH(QW)) <
C4(U) = Z. Tt follows that Q* < Q-1(Q!) = Q. O

We are now ready to prove our main theorem used to construct simple fusion systems over
infinite discrete p-toral groups with abelian subgroup of index p.

Theorem 5.11. Fiz an odd prime p. Let S be an infinite nonabelian discrete p-toral group
which contains an abelian subgroup A < S of index p, and let F be a simple fusion system
over S. Assume Notation 2.1 and 2.9 (where the uniqueness of A follows from Corollary
5.2). Then the following hold:

(a) U €Syl (G) and S splits over A.

(b) A is a discrete p-torus of rank at least p — 1, Zy = C4(U) N [U, A] has order p, and
A =Cx(U)-[U,A].

(c) There are no non-trivial G-invariant subgroups of Z = C4(U), aside (possibly) from
Zy.

(d) FEither
(i) Ex~{A} =H, 1k(A) =p—1, pa(Aut:(A)) > A_y, and G = O (G)-u; (A_y);
or

(i) B~ {A} = B, tk(4) > p— 1, pa(Auth(4)) > Ao, pa(Auth(4)) = Ay if
rk(A) > p, G = OP(G) -1, (No), and Zy is not G-invariant.
Here, we regard pa as a homomorphism defined on Aut’(A).

Conversely, let S be an infinite discrete p-toral group containing a unique abelian subgroup
A QS of index p, let G < Aut(A) be such that Autg(A) € Syl,(G), and adopt the notation in
2.1 and 2.9. Assume that (a)-(d) hold, with Autx(A) replaced by GNAutY(A) and Ex~{A}
replaced by Eg = H or B in (d). Then there is a unique simple fusion system F over S such
that G = Autz(A) and Ex ~ {A} = E,.

Proof. We prove in Steps 1 and 3 that conditions (a)—(d) are necessary, and prove the
converse in Step 2.

Step 1: Assume that F is a simple fusion system over S. We must show that conditions
(a)—(d) hold. By Corollary 5.2, A is the unique abelian subgroup of index p in S.

(a,b,c) Point (a) holds by Corollary 2.6 and since A is fully automized. The last two
statements in (b) hold by Lemmas 2.4 and 5.4, and (c) holds by Lemma 2.7 and since
O,(F) = 1. Finally, A is a discrete p-torus by Proposition 5.7, and rk(A) > p—1 by Lemma
5.3.

(d) Since A 4 F, thereis PE ExN(HUB). Set t =0if P € B,and t = —1if P € H.

Set H = Autz(P) and Hy = O” (H). By Lemma 2.5, Hy/Inn(P) = SL,(p), and acts
trivially on Z/Z,. Since Autg(P) € Syl,(H) = Syl,(Hy), we can choose a € Ny, (Autgs(P))
of order p—1 in H/Inn(P). By the extension axiom, « extends to an element of Autz(Ng(P)),
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and since P is maximal among F-essential subgroups by Lemmas 2.2 and 2.3, a = a|p for
some & € Autz(S). Set ap = als € G.

Now, ag induces the identity on Z/Z, since a does, and ay € Ng(U) since it extends to
S. Thus ay € Autx(A). By Lemma 2.5, o acts as an element of SLy(p) on P/Z = C7 (if
P e B) oron P/P, = C? where Z = P, x Z (if P € H). Hence for some s € (Z/p)* of order

— 1, palag) = (s,8 ) if PeH,or pa(ag) = (s,1) if P € B. Thus pa(Autx(A)) > A, in
either case.

Assume rk(A) > p. By Proposition 5.7, Z is a discrete p-torus. Hence each element of
Aut(A) induces the identity on Z; since it induces the identity on Z/Zy, and pa(Autx(A)) <
Ay.

Set Gy = O (G)-u,*(A;). Since Ker(palauya)) = U by Lemma 5.9(a), and since
pa(Aut(A)) > A, by assumption, we have G > p,'(4;), and hence G > Go. We will
show in Step 3 (with the help of the constructions in Step 2) that G = G, thus finishing
the proof of (d).

Step 2: Now assume that S, A, and G are as above, and set G¥ = G'N Aut”(A). Assume
that (a) and (b) hold, and also that ua(GY) > At for some t € {0,—1}. (Note that
GY < Ng(U) since each element is the restriction of an automorphism of S.) We must show

that these are realized by a unique saturated fusion system F, which is simple if (¢) and (d)
hold. Set Eg =H if t = —1, or Eg = B if t = 0.

Set I' = A x G, and identify S = A x U € Syl,(I'). Choose a generator x € U < 5. Set
Z =Z(S), Zy = Zy(5), as in Notation 2.1.

Set QQ = Z(x) it Eg = H, or Q = Zy(x) if Eg = B. Thus @ € E, and each member of E,
is S-conjugate to @) by Lemma 5.4. Set K = Autp(Q). By assumption, there is &« € Ngv(U)
such that p4(a) generates A;, and « extends to some a € Aut”(S) such that a(x) € U. In
particular, @(Q) = @, and a € Autp(95).

By Lemma 5.9(b), applied with Fg(I') in the role of F, there are unique subgroups Z7<Z
and Q > QﬂS’ both normalized by NAutF( (@), and such that Q@ = ZxQ and Q = C, x (),

it Q € H; or Z = Z, Q= ZQ, ZN Q Zy, and Q is extraspecial of order p* and exponent
pif Q € B. Let ®~§ Aut(Q) be the unique subgroup containing Inn(Q) that acts trivially
on Z, normalizes @, and is such that ©/Inn(Q) = SLsy(p).

We next claim that

(1) each o € Autp(Q) extends to some o € Nyt (s)(Q);
(2) Autr(Q) normalizes O;

(3) Auts(Q) € Syl,(©) = Syl (6Autr(Q)); and

(4) Ne(Auts(Q)) < Autr(Q).

Point (1) holds since S = QA where A < T', and hence Np(Q) < Nr(S). By assumption,
each element of Ny (s)(@Q) normalizes Z and @, and hence normalizes ©. Thus (2) follows
from (1). Since |Outg(Q)| = |Ns(Q)/Q| = p by Lemma 2.2, this acts trivially on Z > Z
and normalizes Q, and Out(Q) = GLy(p) where Syl,(GLx(p)) = Syl,(SLa(p)), we see that
Outs(Q) € Syl,(©/Inn(Q)) and hence that Auts(Q) € Syl,(©). Also, © has index prime
to p in ©Autr(Q) since Auts(Q) € Syl (Autr(Q)), and this proves (3). Finally, (4) follows
from Lemma 5.9(b.iii).
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Set F = (Fs(I'),0): the smallest fusion system over S which contains Fg(I') and such
that Autz(Q) > O. Set £ = {S, A} UEy. Then K is invariant under F-conjugacy, and
is closed in the space of all subgroups of S |[BLOG6, Definition 1.11|. Thus condition (i) in
[BLOG6, Theorem 4.2] holds for K; and condition (iii) holds (P € K and P < @ < P*® imply
Q € K) since P = P* for each P € K (Lemma 5.10).

By Lemma 2.3, if Eq = B, then the members of H are not F-centric. So in all cases, if
P < §Sis F-centric and P ¢ K, then P is not contained in any member of Er = E; U {A},
and hence Outg(P) < Outxz(P). This proves condition (iv) in [BLO6, Theorem 4.2]:

O,(Outz(P)) N Outg(P) # 1

whenever P < S is F-centric and not in IC.

We refer to [BLOG, Definition 1.11] for the definitions of “/C-generated” and “/C-saturated”.
By construction, F is K-generated. To show that F is K-saturated, we must prove that each
P € K is fully automized and receptive in F (Definition 1.1). If P = A or P = S, then
Autz(P) = Autp(P), and this is easily checked. So it remains to show this when P = Q.
By (2), Autz(Q) = ©-Autp(Q). So @ is fully automized by (3). If & € Naye,(0)(Auts(Q)),
then o € Autr(Q) by (4), and hence extends to some a € Autr(S) by (1). So @ is also
receptive. This finishes the proof of condition (ii) in [BLOG6, Theorem 4.2|, and hence F is
saturated by that theorem.

Now assume (c) and (d) hold; we must prove that F is simple. By (c), there are no
non-trivial G-invariant subgroups of Z except possibly for Z;. Also, Ex D H in case (d.i),
and Zj is not G-invariant in case (d.ii). Hence O,(F) = 1 by Lemma 2.7. By Lemma 5.8,
F is simple if there are no proper normal fusion subsystems in F over S.

Assume Fy < F is a normal fusion subsystem over S, and set Gy = Autz,(A). Then Gy <
G, and Gy > OP (@) since it is the normal closure of U = Autg(A). Also, ua(Auty, (4)) > A,
by Step 1, applied with Fj in the role of F. Since 4 is injective on G¥/Autg(A) by Lemma
5.9(a), we have Gy > O (G)-u ' (A;) = G. Thus Gy = G, and Autz,(S) = Autz(S) by the
extension axiom, so Fy = JF by the Frattini condition on a normal subsystem (see Definition
1.4). This finishes the proof that F is simple.

The uniqueness of F follows from the uniqueness of Z and @ in Lemma 5.9(b).

Step 3: We return to the situation of Step 1, where it remains only to prove that Gy = G.
By Step 2, there is a unique saturated fusion subsystem Fy < F over S such that Ex, = Er
and Autz (A) = Go. The invariance condition on Fy < F (Definition 1.4) holds by the
uniqueness of Fy, and the Frattini condition holds since G = O (G)Ng(U) < GoNg(U)
(where each element of Ng(U) extends to an element of Autz(.S) by the extension axiom).
Thus Fy < F, so Fg = F since F is simple, and hence Gy = G. [

As a special case, we next show that for each prime p, there is (up to isomorphism) a
unique simple fusion system over an infinite discrete p-toral group with abelian subgroup of
index p which is not essential.

Theorem 5.12. For each odd prime p, there is, up to isomorphism, a unique simple fusion
system F over an infinite nonabelian discrete p-toral group S which contains an abelian
subgroup A < S of index p that is not F-essential. The following hold for each such p, F,
S, and A:

~Y

(a) The group A is a discrete p-torus of rank p — 1, and S splits over A. Also, Autx(A) =
Cp % Cp_1, Outx(S) = Cp_1, and Ex = H (defined as in Notation 2.1).
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(b) Fiz a prime q # p, set I' = PSLp(IE‘ql, letg < I be the subgroup of classes of diagonal
matrices of p-power order, and set S = A(x) € Syl (') for some permutation matriz

z of order p. Then there is an isomorphism S = S that restricts to an isomorphism

A= A, and induces isomorphisms Autz(S) = Autr(S) and Autz(A) = Auty 5 (A).
(¢) Ifp =3, then F is isomorphic to the 3-fusion system of PSU(3), and also to the 3-fusion

system of PSL3(F,) for each prime q # 3. For p > 5, F is not realized by any compact
Lie group, nor by any p-compact group.

Proof. We use the notation of 2.1 and 2.9. In particular, G = Autz(A).

(a,b) Assume F is a simple fusion system over an infinite discrete p-toral group S with an
abelian subgroup A < S of index p such that A ¢ Ex. By Lemma 5.5, Z = Zy, Ex = H,
and A = 5’ is a discrete p-torus of rank p — 1. In particular, |Z| = |Zy| = p. Also, S splits
over A by Corollary 2.6.

It remains to describe G = Autz(A) and Autz(S) and prove (b). Since A ¢ Ex, U <G,
and Outz(S) = G/U. (Each a € Autz(A) extends to Autz(S) by the extension axiom.)

Since S splits over A, each a € Naua)(U) extends to an automorphism of S. Since
Z = Zy, this implies that Npua)(U) = Aut”(A4). Also, pua(G) = A_; by Theorem 5.11(d)
and since O¥ (G) = U < Ker(p,).

Let R = Z,[¢] and p = (1 — ()R be as in Notation 4.6, regarded as Z,U-modules. By
Proposition A.4, A = (Q,/Z,) ®z, A and A = Homyz, (Q,/Z,, A) for some (p—1)-dimensional
Z,G-lattice A, and Aly = R as Z,U-modules by Lemma A.5(c). These isomorphisms induce
isomorphisms of automorphism groups

Aut”(A) = Nau(a)(U) = Nawyr) (U) = Caw(r)(U) x Gal(Q,(¢)/Qp)
= R % Gal(@(€)/Qp) = ((1+p) x Fy) x Gal(Qy(¢)/Qy).
and these send Ker(us) < Aut’(A) (the group of automorphisms of A that commute with

U and are the identity on Z = Z;) onto 1+ p, and send the subgroup sc(FY) < Aut”(A) of
scalar multiplication by (p — 1)-st roots of unity onto IFX. Thus

Aut”(A) = Npue(a)(U) = (Ker(pa) x sc(FX)) x W

p

for a certain subgroup W = C;,_;. Set G = (U xsc(F)))-W < Aut”(A): a subgroup of order
p(p —1)*.

Since Aut”(A)/Ker(u4) has order (p— 1), and since Ker(us) = (1+p) is an abelian pro-
p-group and hence uniquely m-divisible for each m prime to p, we have H*(H; Ker(us)) =0
for each H < Aut”(A)/Ker(ua) and each i > 0. Hence for each subgroup K < Aut”(A) of
order prime to p, K N Ker(us) = 1 since Ker(u4) is a pro-p-group, Ker(ua)-K splits over
Ker(p4) with a splitting unique up to conjugacy, and thus K is conjugate by an element of

Ker(pa) to a subgroup of sc(IF¥)-W. In particular, G is conjugate to a subgroup of G, and we

can assume (without changing the isomorphism type of F) that G < G. Finally, one easily

sees that 4 sends G onto A with kernel U, and hence that G = (1alg) AL = CoxCyy
is uniquely determined.

A natural isomorphism A 2 A is most easily seen by identifying I' = PGL,(F,), so that A
is the quotient of (Z/p>)P by the diagonal Z/p> = O,(Z(I')), with the permutation action
of Autp(A) = ¥,. This then extends to an isomorphism of S = A x U with S = A(Z), and
of Autz(A) with AutNF(g)(ﬁ).
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Existence and uniqueness of F: Let A, U <G, and S = A x (z) be as described in the
proof of (b). Since u4(G) = A_1, conditions (a)—(d) in Theorem 5.11 all hold with Ex = H.
So such an F exists by that theorem. It is unique up to isomorphism by the uniqueness in
the theorem and by the restrictions shown in the proof of (b).

(c) If F is realized by a compact Lie group or a p-compact group, then by Proposition 1.5
and since all elements in S are F-conjugate to elements in A, F is realized by a connected,
simple p-compact group, and the action of the Weyl group Autz(A) on Q®zHom(A,Q,/Z,)
is generated by pseudoreflections. But if p > 5, then Autz(A) = C, x C,_; contains no
pseudoreflections other than the identity. So p = 3, and we easily check that F is realized

by PSU(3), or by PSLs(F,) for q # 3. O

We can now describe the simple fusion systems over discrete p-toral groups with discrete
p-torus of index p in terms of the classification of certain faithful, minimally active, inde-
composable modules carried out in [CrOS].

Theorem B. Fiz an odd prime p.

(a) Let F be a simple fusion system over an infinite nonabelian discrete p-toral group S
with an abelian subgroup A < S of index p. Assume also that A is F-essential. Set
G = Autz(A) and V = Q,(A), let H and B be as in Notation 2.1, and let G¥ = Aut(A)
and pa: GY — A be as in Notation 2.9. Then A is a discrete p-torus, S splits over
A, Ge9), and for somet € {0, -1},

V' s a faithful, minimally active, indecomposable F,G-module. Either

dim(V) =p—1, ua(GY) > A, and G = O (G (A,); or dim(V) >

p, t=0, ua(GY) = Ay, and G = OY(G)-G. Also, Ex = {A}UH if (*00)
t = —1, while Ex = {AYyUB ift =0. Ift =0, then V contains no
1-dimensional F,G-submodule.

(b) Conversely, assume that G € 4, U € Syl (G), and t € {0, 1}, and that V is an F,G-
module that satisfies (%), where GY is the subgroup of all elements o € Ng(U) such
that [, Cyv(U)] < [U,V]. Then there are a discrete G-p-torus A and a simple fusion
system F over S = A x U such that Autz(A) = Autg(A) = G, such that Q(A) =V
as F,G-modules, and such that Er = {A}UH ift = —1, or Ex = {A}UB ift = 0.
Furthermore, any other simple fusion system with these properties is isomorphic to F.

(c) Among the fusion systems specified in (b), the only ones that are realized as fusion
systems of compact Lie groups or of p-compact groups are those listed in Table 5.1.

Proof. (a) Set U = Autg(A) € Syl (G) and Z = C4(U).

Under the above assumptions, A is a discrete p-torus by Proposition 5.7, G € ¥ by
Lemma 3.2(a), V' is faithful, minimally active, and indecomposable by Lemma 3.2(b), and
rk(V) = rk(A) > p — 1 by Lemma 5.3. Also, for some ¢t € {0,—1}, pa(GY) > A; and
G = O”(Q)u,'(A), and Ex is as described in (¥.), by Theorem 5.11(d). Since A 4 F, S
splits over A by Corollary 2.6. If ¢t = 0 and V) < V is a 1-dimensional F,G-submodule, then
Vo < Cy(U) < Z, which is impossible by Theorem 5.11(c,d.ii).

Assume rk(V') = rk(A) > p. Since V' is minimally active and indecomposable, V|y is the
direct sum of a free module F,U and an F,-vector space with trivial U-action by Lemma
3.3, and hence Q;(Z) = Cy(U) has rank rk(A) — p + 1. Also, Z is a discrete p-torus by
Proposition 5.7, so for each a € G¥ = Aut’+(A), a acts via the identity on Zj since it acts
via the identity on Z/Z, (see Notation 2.9). Thus pa(a) € Ag by definition of ps, sot =0
and w4 (GY) = Ay in this case, finishing the proof of ().
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D conditions tk(A) | G = Autz(A) | Eg || p-cpct. gp. | tors. lin. gp.
p p>5 p—1 PN H | PSU(p) PSL,(F,)
p| p<n<2p |n-1 DI B | PSUn) PSL,(F,)
plp<n<2p,n>4| n Cr %%, | B| PSO2n) | Py, (F,)
D ) 2§<n”<1 ‘22(??? ;L 12) A7 (C)" 1 xX,| B || X(m,m,n)

5| n=6,7 n W(E,) | B E, E,(F,)
7| n=7.8 n W(E,) | B E, En(F,)
3 2 GLy(3) B X1 Cry)(7)
5 4 | (4.2)3; | B Xog

5 4 | (40245 | B X Ex(K)
7 6 |6,-PSUL(3).2,| B Xa4

TABLE 5.1. The sixth column lists a compact Lie group or a p-compact group
that realizes the fusion system F described in the first five columns. Here,
X (m,m,n) denotes the p-compact group with Weyl group G(m,m,n) in the
notation of [ST, §2|, and X} the one with Weyl group number £ in [ST, Table
VII|. In the last column, we give, in some cases, a torsion linear group that
realizes F: q # p is prime, K C F, is the union of the odd degree extensions
of Fy, and v € Aut(Fy(K)) is a graph automorphism of order 2. In the fourth
column, B.C' means an extension of B by C', and the subscripts in the entry
61-PSU4(3).29 are Atlas notation [At, p. 52].

(b) Fix Ge ¥}, UecSyl(G), and t € {0,~1}, and let V' be an F,G-module that satisfies
(*00), Where GV is the subgroup of all elements g € Ng(U) such that [g, Cy(U)] < [U, V].
By Proposition 3.8(a), there is a Z,G-lattice A such that A/pA = V as F,G-modules. Set
A= (Q,/Zy) @z, A: adiscrete G-p-torus where €2;(A) =V as F,G-modules (see Proposition
A.4). To simplify notation, we identify V' = Q;(A). Set S = AxU. Set Z = Z(S) = C4(U),
S'=19,5]=[U,A],and Z, = Z NS

We next check that conditions (a)—(d) in Theorem 5.11 all hold. Conditions (a) and (d)
follow immediately from (x.,), and (b) (|Zo| = p) was shown in Lemma 3.7(b).

Assume 1 # B < Z is G-invariant. If rk(A) = p — 1, then Z = Z; has order p, so
B = Zj. Otherwise, by (%), t = 0, and V' contains no 1-dimensional F,G-submodule. Thus
dim(Q(B)) > 2, so dim(V) = rk(A4) > p+ 1. If dim(V) > p+2, then V is simple by [CrOS,
Proposition 3.7(c)|, while if dim(V') = p + 1, then V' contains no nontrivial F,G-submodule
with trivial U-action by Lemma 3.5. Thus B = Zj, and this proves condition 5.11(c).

By Theorem 5.11, there is a unique simple fusion system F over S such that G = Autz(A),
and Ex ~ {A} = H (if t = —1) or B (if t = 0). Since A is unique (up to isomorphism of
Z,G-modules) by Lemma 3.10, this shows that F is uniquely determined by V.

(c) If Fis realized by a compact Lie group or a p-compact group, then by Proposition 1.5 and
since all elements in .S are F-conjugate to elements in A, F is realized by a connected, simple
p-compact group, and the action of the Weyl group G = Autz(A) on Q ®;z Hom(A4,Q,/Z,)
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is irreducible as a group generated by pseudoreflections. Using the list of pseudoreflection
groups and their realizability over Q, compiled by Clark & Ewing [CE|, as well as the
assumption that v,(|G|) = 1, we see that G must be one of the groups listed in Table 5.1,
or else one of the other groups G(m,d,n) (of index d in Cp, 1 ¥,,) for d | m | (p — 1) with
d < m. The latter are eliminated by the condition G = OF' (G)-u;'(A¢) in (d.ii) (i.e., the
fusion systems of the corresponding p-compact groups are not simple), and so we are left
with the groups listed in the table.

Since a p-compact group is determined by its Weyl group by [AGMV, Theorem 1.1, it
remains only to check, when rk(A) = p — 1 and based on the constructions of these groups,
whether B C Ex or H C Ez. This situation occurs only in the last four cases listed in the
table, in which cases the p-compact group was constructed by Aguadé [Ag, §§5-7,10], and
the use of SU(p) in his construction shows that extraspecial groups of order p* and exponent
p appear as essential subgroups.

In those cases where a torsion linear group is given in Table 5.1, it is a union of a sequence
of finite groups that by Table 4.2 realize a sequence of finite fusion subsystems of F. 0J

The different situations handled in Theorem B are partly summarized in Table 5.2.

dim(V) |Ex ~ {A} | pa(GY) G= Condition
LM 280G (A -
p—
B > Ay 0% (G151 (D) V contains no 1-dimensional
>p B =/, F,G-submodule
TABLE 5.2

6. EXAMPLES

Recall Definition 3.1: for a given prime p, %, is the class of finite groups G' with U €
Syl,(G) of order p and not normal, and ¢ is the class of those G' € ¥, such that Autg(U) =
Aut(U). It remains now to describe explicitly which finite groups G € ¢ and F,G-modules
V' can appear in Theorems A and B. This follows immediately from the work already done
in [CrOS], and is stated in Proposition 6.1 and Table 6.1. As in [CrOS|, when p is a fixed
prime, we define, for each odd integer ¢ prime to p,

Nipp ={(r*, ") |7 € (Z/p)*} .
(Compare with the definition of A; in Notation 2.9.)
Proposition 6.1. Assume that G € %pA, and that V' is a faithful, minimally active, in-
decomposable F,G-module such that dim(V) > p — 1. If dim(V) > p, then assume also

that py(GY) > Ag; and if dim(V') = p, then assume that V' contains no 1-dimensional
F,G-submodule. Then either

(a) the image of G in PGL(V) is not almost simple, and G < G with the given action on
V' for one of the pairs (G, V') listed in Table 6.1 with no entry Go; or

(b) the image of G in PGL(V) is almost simple, and Go < G < G with the given action on
V' for one of the triples (Go, G, V) listed in Table 6.1.
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In all cases, the entry under dim(V') gives the dimensions of the composition factors of V;

thus a single number means that V' is simple.

P Go dim(V) G v (GVY| v (GY)

, SLy(p) or PSLy(p) | p—1, p |GLa(p) or A Ay, 30
(p>5) (p—n—1)/n| PGLa(p) x Cpu1 | A [{(u2 u" 1)}

» A, (p=5) (p—2)/1 5, x Cy1 A 340

1/(p—2) A %A—l

P Apy1 (p=5) p Ypr1 X Cpq A A

p | An (p+2 <n < 2p-1) n—1 X x Cp_1 Ag %Ao

p — n Cp-115, (n=p)| A

3 — 2 GLy(3) A —

5 2-Ag 4 4-Sg A Ay

5 — 4 (Cy02H4).S6 A —

5| PSpy(3) = W(Eg) 6 W (Eg) x 4 Ag.2 AN

5| Sp(2) = W(E;) 7 Go x 4 Ay 320

7 6-PSL3(4) 6 Go.21 A Fx2 x Fx

7 61-PSUL(3) 6 Go-29 A Fx2 x Fx

7 PSU3(3) 6 Go.2 x 6 A A

7 PSU3(3) 7 Go.2 x 6 A Ao

7 SLo(8) 7 Go:3 x 6 A A

7| Sps(2) = W(E;) 7 Go x 6 A As

71 2:QF(2) = W(Eg) 8 W(Eg) x 3 No.2 As

11 PSUs(2) 10 Go.2 x 10 A Y

11 2-Mio 10, 10 Go.2 x5 A | Ay, Agg

11 2- Moy 10, 10 Go.2 x5 A | Ayja, Agj

13 PSU;(4) 12 Go.4 x 12 A A

TABLE 6.1. Pairs (G, V), where G € 9, G < G, G > G, when a quasisimple
group Gy is given, and where V' is a minimally active indecomposable module
of dimension at least p — 1, such that uy(GY) > Ag if dim(V) > p, and
such that V' does not have a 1-dimensional submodule if dim(V') = p. In all
cases, dim(V') gives the dimensions of the composition factors in V. Also,
Fx* = {r?|r € F;}. The notation B.C, B:C, and B-C for extensions is as in
the Atlas [At, p. xx|, as well as the subscripts used to make precise certain
central extensions or automorphism groups.

41

Proof. We take as starting point the information in [CrOS, Table 4.1]. We drop from that
table those cases where dim(V) < p — 1, and also those cases where dim(V) > p and
v (GY) # Ag, or where dim(V') = p and V' contains a 1-dimensional F,G-submodule.
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Since the table in [CrOS] is restricted to representations of dimension at least 3, we must
add those representations of dimension 2 that appear. Since dim(V) > p — 1, this occurs
only for p = 3, and thus G < GLy(3). Since this group is solvable, the image of G in PGL(V)
cannot be almost simple, and so this case is covered by the unique row of the table restricted
to p = 3. [

We now give two examples, in terms of the pairs (G, V) that appear in Table 6.1, to
illustrate how this table can be used to list explicit fusion systems as described by Theorems
A and B. When V is an F-vector space, we set Auty(V) = Z(Aut(V)) = F): the group of
automorphisms given by scalar multiplication.

Example 6.2. Fix an odd prime p > 5 and a finite group G € ¢, and choose U € Sylp(@).
Let V' be a simple, (p — 1)-dimensional, minimally active Fpé—module, and assume that
Auié(V) > Autg(V). Then py(GY) = A by [CrOS, Proposition 3.13(a)]. Let A be a
Z,G-lattice such that A/pA =V (see Proposition 3.8(a)).

(a) By case (i-a) in Table 4.4, for each k > 2, there is a unique simple fusion systems F
over (A/p*A) x U, with Autz(A/p*A) = G, and such that Ex = {A} U H, U B..

(b) By case (iv’—a) in Table 4.4, for each k > 2 and each @ # I C {0,1,...,p— 1}, there is
a unique simple fusion system F; over (A/pFA) x U, with Autz, (A/p*A) = Gouy' (Ao),
and such that Ex, = {A} U (U,c; Bi)-

(c) By case (iii”-a) in Table 4.4, for each k > 2, there is a unique simple fusion system F

over (A/p*A) x U, with Autz(A/p*A) = Gouy' (A_y), and such that Ex = {A} U H,.

(d) Set A = (Q,/Z,) ®z, A, regarded as a discrete G-p-torus. By Theorem B, there are
unique simple fusion systems Fp and Fp over A x U, with Autz,(A) = O (G)uy' (Ao)

and Ex, = {A} UB, and Autz, (A) = O” (G)uy (A1) and Ez, = {A} UH.

Since V' is simple (since there is no (p — 2)-dimensional submodule), none of the cases (ii-
a), (iii’-a), or (iii”—c) in Table 4.4 can occur with Gy < G < G and V = Q(A). Since
dim(V') < p, case (iv’-b) in Table 4.3 cannot occur.

The last column in Table 6.1 can be used to help determine the subgroups O (G)uy* (A;)
for © = 0, —1. For example:

e When p = 5, Gy = 2-A, and dim(V) = 4, we have puy(Gy) = Ayje: the subgroup of
order 4 in A = (Z/5)* x (Z/5)* generated by the class of (4,2). Since A;j,A; = A
for t = 0, —1, we have Gouy'(A;) = G.

e When p =7, Gy = 6-PSL3(4) or 6-PSU,(3), and dim(V') = 6, we have that py (Gy) has

index 2 in A and does not contain A; for any ¢. So in all cases, Go,u‘_/l(At) =G an
extension of the form Gy.2.

o If p=17, Gy = PSU3(3), and dim(V) = 6, then uy(Gy) = 3A1: a subgroup of order 3
that intersects trivially with A; for t = 0, —1. So in this case, Gouy'(4A;) has the
form Gy.2 x 3 (where the precise extension depends on t).

We now look at one case where the F,G-module V' is not simple.

Example 6.3. Let p, G, U, V, and A be as in Example 6.2, except that we assume that V'
is indecomposable but not simple, and contains a (p — 2)-dimensional submodule V; < V.

Let Ag < A be a Zpé—sublattice of index p such that Ag/pA = Vj.
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e There are simple fusion systems exactly as described in cases (a), (b), (¢), and (d) in
Example 6.2. In addition, we have:

(e) By case (ii-a) in Table 4.4, for each k > 2, there is a unique simple fusion systems F

over (Ag/p*A) x U, with Autz(Ag/p*A) = G, and such that Ex = {A} U By U H,.

(f) By case (iii"—a) in Table 4.4, for each kK > 2 and each @ # I C {0,1,...,p — 1},
there is a unique simple fusion system F; over (Ag/p*A) x U, with Autz, (Ag/p*A) =

OF (G) iy (A-y), and such that Ex, = {4} U (U,; H)-

Since there is no 1-dimensional submodule, case (iii"—c) in Table 4.4 cannot occur with
Go <G <GandV = Qq(A). Since dim(V) < p, case (iv'-b) in Table 4.3 cannot occur.

If we chose to restrict the above examples to the case dim(V) = p — 1, this is because
when dim(V/) is larger, there are far fewer possibilities. By Table 4.4, A = A/pFA for some
k> 2 and Ex = {A} UB,. Similarly, by Table 5.2, there is only one possibility for 7 when
A is a discrete p-torus with €;(A4) = V.

APPENDIX A. BACKGROUND ON GROUPS AND REPRESENTATIONS

We collect here some miscellaneous group theoretic results which were needed earlier. We
begin with a few elementary properties of discrete p-toral groups that are easily reduced to
the analogous statements about finite p-groups.

Lemma A.l. Fix a prime p, a discrete p-toral group P, and a finite group G < Aut(P)
of automorphisms of P. Let 1 = Py I P, < --- < P,, = P be a sequence of subgroups, all
normal in P and normalized by G. Let H < G be the subgroup of those g € G which act
via the identity on P;/P;_1 for each 1 < i < m. Then H is a normal p-subgroup of G, and
hence H < O,(G).

Proof. See, e.g., [BLO3, Lemma 1.7(a). O

Lemma A.2. Fix an abelian group A each of whose elements has p-power order. Let G <
Aut(A) be a finite group of automorphisms, and choose U € Syl (G). Then

Ca(U) < [G,A] <= Cu(G) < [G,A] < C4(G) < [U,A].

Proof. This is shown in [CrOS, Lemma 1.9] when A is a finite abelian p-group, and the proof
given there also applies when A is infinite and p-power torsion. O

Lemma A.3. Let S be a nonabelian discrete p-toral group, with abelian subgroup A < S of
index p, and set Z = Z(S) = Cs(A) and S" = [S,5] =[S, A]. Then S" = A/Z. Also, A is
the unique abelian subgroup of index p in S if and only if |S'| = |A/Z| > p.

Proof. Choose 1 # u € Autg(A), and define ¢: A — A by setting ¢(a) = a — u(a). Then
Z = Ker(p) and 5" =Im(p), so A/Z = 5"
If |A/Z| = p, then S/Z = C, x C, (it cannot be cyclic since S is nonabelian), and each

subgroup of index p in S containing Z is abelian. Conversely, if B is a second abelian
subgroup of index p, then Z = AN B since S = AB, so |A/Z| = p. O

We now turn attention to discrete p-toral groups and discrete G-p-tori. We start with the
well known equivalence between discrete G-p-tori and Z,G-lattices (see Definition 3.6).
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Proposition A.4. Fix a prime p and a finite group G. Then there is a natural bijection

{isomorphism classes of} = {isomorphism classes of Z,,G—lattices}

discrete G-p-tori é in finitely generated Q,G-modules
Al Homgz, (Q,/Z,, A)
(Qp/Zp) Xz, A A

If A is a discrete G-p-torus and A = Homgy, (Qp/Z,, A), then for each n > 1, evaluation at
[1/p"] € Q,/Z, defines an F,G-linear isomorphism A/p™A —= 5 Q. (A).

Proof. If A 'is a Z,G-lattice, then (Q,/Z,) ®z, A is a discrete G-p-torus, and if A is a discrete
G-p-torus, then Homgy, (Q,/Z,, A) is a Z,G-lattice. It is an easy exercise to show that the
natural homomorphisms

(Qy/Z,) @z, Homy, (Q,/Z,, A) —=2— A

and
A= (r—=T®@N)

A Homzp (Qp/ZP7 (QP/ZP) Rz, A)

are isomorphisms for each Z,G-lattice A and each discrete G-p-torus A. The last statement
now follows from the short exact sequence

0—— (p_”Zp)/Zp L @p/zp M @p/Zp —0. O

The next lemma is mostly a well known result in elementary number theory.

Lemma A.5. Fix a prime p, and let U be a group of order p. Let ( be a primitive p-th
root of unity, and regard Q,(¢) and Z,[C] as Z,U-modules via some choice of isomorphism

U = (().

(a) There are exactly two irreducible Q,U-modules up to isomorphism: a 1-dimensional
module with trivial U-action, and a (p — 1)-dimensional module isomorphic to Q,(C).

(b) The ring Z,[C] is a local ring with mazimal ideal p = (1 — ()Z,[C]. Also, pZ,[(] = pP~ .

(c) Let M be a (p—1)-dimensional irreducible Q,U-module, and let A < M be a Z,U-lattice.
Then A = Z,[C] as Z,U-modules, and hence A/pA = Z,[C]/pP~! is indecomposable as
an F,U-module.

(d) Let B be an infinite abelian discrete p-toral group (written additively), upon which U
acts with |Cp(U)| = p. Assume also that [],.;u(x) =1 for each v € B. Then B is a
discrete p-torus of rank p — 1, and B = Q,(()/Z,[¢] as Z,U-modules.

Proof. (a,b) By [Gd, Proposition 6-2-6|, (1—()Z[(] is the only prime ideal in Z[(] containing
pZIC) = (1= OPZ[c). Hence @, @ Q(C) = Q,(¢), so dimg, (Qy(C) = p— 1, and Z,[(]
is a local ring with maximal ideal p = (1 — ¢)Z,[¢] where pP~! = pZ,[¢]. This proves (b),
and also that Q,(¢) is an irreducible (p — 1)-dimensional Q,U-module. So the only other
irreducible Q,U-module is Q, with the trivial action.

(c) By (a), we can assume that M = Q,(¢). Thus A is a Z,U-lattice in Q,((), so p™A <

Zy[¢] is an ideal for m large enough. Hence p™A = p* = (1 — ()*Z,[(] for some k, and A is
isomorphic to Z,[(] as a Z,U-module.

(d) Since [[,.y u(z) = 1for each x € B, we can regard B as a Z,[¢]-module. For eachn > 1,
12,(B)/(1={)Q0(B)| = |Ca,5)(U)| = |C5(U)| = p, and so by (b), there is r,, € Q,(B) that
generates €, (B) as a Z,[(]-module. Let R, be the set of all such generators of Q,(B), and
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let ¢, R, — R,_1 be the map ¢, (r,) = (r,)?. The (R,, ¢,) thus form an inverse system
of nonempty finite sets. An element (7,),>1 in the inverse limit defines an isomorphism
Qp(Q)/Zy[¢] = (Qp/Zy,) @7, Zy[(] — B of Z,[¢]-modules (hence of Z,U-modules), where
(1/p™) ® & is sent to &1y, O

Lemma A.6. Fiz a prime p, an abelian discrete p-toral group A and a finite group of
automorphisms G° < Aut(A). Assume, for S € Syl,(G), that S 4 G and |A/Ca(S)| = p.
Then |S| = p.

Proof. This is shown in [Ol, Lemma 1.10] when A is finite, and the general case follows since
G acts faithfully on Q4 (A) for k large enough. O

Proposition A.7. Fiz an abelian discrete p-toral group A, and a subgroup G < Aut(A).
Assume the following.

(i) Fach Sylow p-subgroup of G has order p and is not normal in G.
(ii) For each x € G of order p, [z, A] has order p, and hence Cx(z) has indez p.

Set H = O (G), Ay = Ca(H), and Ay = [H,A]. Then G normalizes Ay and Ay, A =
Ay x A, and H = SLy(p) acts faithfully on Ay = C’g. There are groups of automorphisms
G; < Aut(4;) (i =1,2), such that p{ |Gy, Go > Auty(A2) = SLy(p), and G < Gy X Gy (as
a subgroup of Aut(A)) with index dividing p — 1.

Proof. This is shown in [Ol, Lemma 1.11] when A is finite. The general case then follows by
regarding A as the union of the groups Q4 (A) for k > 1. O
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