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Abstract. The structure of the variety of upper-triangular square-zero matrices was investigated
by Rothbach, who introduced techniques enabling him to determine its irreducible components.

In this paper, we fix a particular irreducible component of this variety and study the structure of
the subvariety of matrices of submaximal rank in this component. We use Rothbach’s techniques to
determine the components of this variety. We also show that this subvariety contains the support
variety for a certain universal homology module.

1. Introduction

A longstanding conjecture in algebraic topology describes the free rank of symmetry of a product
of spheres. This conjecture states that if the elementary abelian group (Z/p)r acts freely on
Sn1 ×· · ·×Sns , then r ≤ s. A more ambitious generalization of this conjecture states that if (Z/p)r

acts freely on a manifold M , then
∑

i dimFp
Hi(M,Fp) ≥ 2r. For a survey of conjectures of this

type, and partial results, the reader might consult Section 2 of [1].

In [2] G. Carlsson produced a functorial translation of the second conjecture (for p = 2) into the
language of commutative algebra. Carlsson was able to obtain partial results [2, 3] on his version of
the conjecture using techniques of commutative algebra; this yielded new results on the topological
side as well.

The key point in the proofs in [3] is to show that an upper-triangular square-zero matrix over a
polynomial ring can, through some specialization of variables, be forced to have submaximal rank.
The matrix arises as the differential of a free differential graded module over a polynomial ring,
and in the case of interest the module has even rank. The generic 2n× 2n square-zero matrix has
rank n; by a “matrix of submaximal rank” we mean a matrix of rank less than n. The structure
of the variety of upper-triangular square-zero matrices was later investigated by Rothbach [5], who
introduced techniques enabling him to determine its irreducible components.

In this paper, we fix a particular irreducible component of this variety and study the structure of
the subvariety of matrices of submaximal rank in this component. We use Rothbach’s techniques
to determine the components of this variety. Also, following a suggestion of Carlsson, we show that
this subvariety contains the support variety for a certain universal homology module. The hope is
that this universal homology module and the component result will be useful for the commutative
algebra version of the conjecture, but we have not yet made progress in that direction.

The structure of the rest of the paper is as follows: in Section 2 we introduce notation and
terminology for the objects of study, restricting attention to an irreducible component Z of the
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variety of upper-triangular 2n × 2n square-zero matrices. In Section 3 we relate our submaximal
rank subvariety Y ⊂ Z to the support variety for the universal homology module. In Section 4 we
review Rothbach’s techniques, and in Section 5 we determine the irreducible components of Y .

The work for this paper was done while the first and third authors were visiting the University
of Paris 13; it is a pleasure to thank the faculty and staff there for their hospitality.

2. Definitions and Notation

In this paper, we work over an algebraically closed field k, which will be the ground field for all
polynomial rings. We also regard all varieties as being defined over k. In view of the motivation
mentioned in the introduction, the reader may wish to take k = F2, but this restriction is not
necessary for the results.

The following notation will be used throughout the rest of the paper.

• U2n is the variety of strictly upper-triangular 2n× 2n matrices over k.

• V2n is the variety of square-zero matrices in U2n.

• Z denotes a particular irreducible component of V2n.

• R is the coordinate ring of Z.

• Y is the subvariety of matrices of rank less than n in Z.

• I denotes the ideal of R corresponding to Y .

The coordinate ring of U2n is R(U2n) = k[xij | i < j]. There are surjections of coordinate rings
R(U2n) → R(V2n) → R corresponding to the inclusions Z →֒ V2n →֒ U2n. Using these surjections,
we can regard the images of the xij as elements of R. Let M ∈ M2n(R) be the 2n × 2n upper
triangular matrix whose (i, j)-entry is the image in R of xij. In particular, M2 = 0. We regard M
(the universal matrix ) as a differential on the R-module R2n.

Note that I is the ideal generated by all n× n minors of the universal matrix M .

Definition 2.1. The universal homology of Z, written H(M), is the R-module Ker(M)/ Im(M).

3. The Support Variety for Universal Homology

In this section, we show that Y contains the support variety for the universal homology module
H(M) of Z. We recall that by definition, the support variety of a module N is the variety corre-
sponding to the annihiliator ideal of N . The two statements in the following proposition are thus
equivalent.

Proposition 3.1. Y ⊇ suppH(M) and I ⊆ AnnH(M).

Proof. We must show, for each x ∈ I, that x · H(M) = 0. We can restate this last condition as
“for each x ∈ I and for each v ∈ KerM , there is a u ∈ R2n such that Mu = xv”. Of course, it is
enough to show this for the n×n minors which generate I. We will show this one minor at a time,
by constructing an explicit linear map N : R2n → R2n, so that M(Nv) = xv for all v ∈ Ker(M).
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Let X be an (n×n) submatrix of M , and set x = detX. We can assume x 6= 0; otherwise there
is nothing to prove. Set U = R2n, and write U = V ⊕ V ′ = W ⊕ W ′, where the decompositions
correspond to the choices of rows and columns used to define the submatrix X. Thus M : U −→ U
has components

V
α

//
β
❖❖

''❖❖
❖❖

❖❖
❖⊕

W
⊕

V ′

δ
//

γ
♦♦

77♦♦♦♦♦♦♦

W ′

where α has matrix X and determinant x. These two decompositions of U thus correspond to
“pushing X” to the upper left corner of the matrix M . Define N : U −→ U to be the map

W
α̂

//

0
❖❖

''❖❖
❖❖

❖❖
❖⊕

V
⊕

W ′

0
//

0♦♦

77♦♦♦♦♦♦♦

V ′ ;

where α̂ is the linear map whose matrix is the cofactor matrix of X (thus αα̂ = x · IdW ).

Set R̄ = R[1/x]. Since R is an integral domain, and x 6= 0 by assumption, R is a subring of the
localized ring R̄. Since x is invertible in R̄, the submatrix X of M chosen above (and corresponding
to the minor x) is invertible over R̄.

Set Ū = R̄ ⊗R U , V̄ = R̄ ⊗R V , and similarly for V̄ ′, W̄ , and W̄ ′. Since V
α

−→ W is the
map with matrix X, which is invertible over R̄, α becomes invertible as a map from V̄ to W̄ . Set
K = Ker(M) ⊆ Ū , I = Im(M) ⊆ Ū and

K ′ ={(α−1γ(v′),−v′) | v′ ∈ V̄ ′},

I ′ ={(w, βα−1(w)) | w ∈ W̄}.

Thus K ′ is the space of vectors in V̄ ⊕ V̄ ′ whose image under M lies in W̄ ′ (has zero W̄ -component);
while I ′ is the image of V̄ . Obviously I ′ ⊆ I ⊆ K ⊆ K ′.

By definition, (W̄ ′, I ′) and (V̄ ,K ′) are both pairs of complementary subspaces of Ū , where
I ′ ⊆ K ′. Hence

R̄n ∼= W̄ ′ ∼= Ū/I ′ ∼= (V̄ ⊕K ′)/I ′ ∼= V̄ ⊕ (K ′/I ′) ∼= R̄n ⊕ (K ′/I ′).

Since R̄ is noetherian, this implies that K ′/I ′ = 0, and hence that K ′ = I ′. Thus all four of the
submodules I,K, I ′,K ′ are equal.

From the definitions, it follows easily that MN(u) = x·u for all u ∈ I ′. Since I ′ = K = Ker(M)
and R is a subring of R̄, this completes the proof of Proposition 3.1. �

We conclude this section with the natural

Conjecture 3.2. I = AnnH(M), or equivalently, Y = suppH(M).

4. The Structure of V2n

In this section, we review Rothbach’s work on the structure of V2n and its irreducible components;
our decomposition of Y into irreducible components is obtained by similar methods. The reader
familiar with [5] can safely skip this section. It should be noted that because of our motivation,
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and to minimize technical difficulties, we have opted only to consider components of V2n. However,
the work in [5] applies to (n× n)-matrices for odd n as well.

Rothbach’s work is based on the decomposition of V2n into Borel orbits.

Definition 4.1. The Borel orbits in V2n are the orbits of the conjugation action of the Borel group

of all invertible upper-triangular matrices on V2n.

There is a one-to-one correspondence between the Borel orbits and valid X2 words; the ordering
induced on valid X2 words can be described by moves. A move is a function from the set of valid
X2 words to itself; the ordering is described by moves in the sense that if w < w′ then there is a
sequence of moves which transforms w′ into w.

Definition 4.2. A partial permutation matrix X is a matrix of 0’s and 1’s in which each row and

each column contains at most one 1.

To an upper-triangular partial permutation matrix we can associate a sequence of nonnegative
integers (a1, a2, . . . , a2n) by setting

ai =

{
j if Xei = ej ,

0 if Xei = 0.

Definition 4.3. A valid X2 word is a sequence of nonnegative integers (a1, . . . , a2n) associated to

a partial permutation matrix X with X2 = 0. The integers ai are the letters of the word. If v is

a valid X2 word, we write rank(v) for the number of nonzero integers ai in v, i.e. the rank of the

partial permutation matrix associated to v.

Remark 4.4. It follows from the definition of partial permutation matrix that the nonzero letters
in a valid X2 word are distinct.

We can now describe the correspondence between Borel orbits and valid X2 words: each Borel
orbit contains a unique partial permutation matrix, and thus to each Borel orbit is associated
a unique valid X2 word. The closure of a Borel orbit is the closure of an image of the Borel
group, which is an irreducible variety, so these closures are themselves irreducible varieties (cf. [4,
Proposition I.8.1]). Clearly, the closure of a Borel orbit is itself a union of Borel orbits. Thus, V2n

is a finite union of irreducible varieties (closures of all Borel orbits), which are partially ordered by
inclusion, and the components of V2n are therefore the maximal elements of this poset. In this way,
the problem of determining the components of V2n is reduced to the combinatorics of the poset of
valid X2 words.

In order to determine which Borel orbits are contained in the closure of a given Borel orbit,
in terms of the corresponding valid X2 words, Rothbach defined certain “moves” which give an
order relation on the valid X2 words. To explain this, we introduce the following terminology. Let
(a1, . . . , a2n) be a valid X2 word.

Definition 4.5. We say that the i-th letter ai is bound if ai = 0 and there exists a j such that

aj = i. If the letter ai is not bound, then it is free.

It is helpful to regard valid X2 words as “partial permutations” of the set {1, . . . , 2n}. The word
(a1, . . . , a2n) is thought of as the partial permutation with domain {i | ai 6= 0}, which sends i to
ai. The X2 = 0 condition translates to saying that the domain and range of the permutation are
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disjoint. These can be illustrated by diagrams with arrows. For example, the words 002041 and
010003 correspond to the diagrams(

1 2 3
xx

4 5
xx

6
ww

)
and

(
1 2
��

3 4 5 6
ww

)
.

In the following descriptions, whenever we show a “subdiagram” of a partial permutation by
restricting to some subset of indices I ⊆ {1, . . . , 2n}, it is understood that no index i /∈ I is sent to
any index j ∈ I, and no index i ∈ I is sent to any nonzero index j /∈ I.

The three moves are the following:

• A move of type 1 takes a nonzero letter ak and replaces it with a∗k, the largest integer less than
ak such that the replacement yields a new valid X2 word. (Note that a∗k always exists since
replacement with 0 always yields a valid X2 word.) In other words, if we set j = ak and i = a∗k
(so i < j < k), then this move sends

(
i j k

|| )
to

(
i j k
zz

)
or

(
j k
|| )

to
(
j k

)
,

when i 6= 0 or i = 0, respectively.

• A move of type 2 takes two free letters ak, al such that k < l and ak > al, and swaps their
locations. In other words, it either sends

(
i j k

xx
l

xx
)

to
(
i j k
zz

l
zz

)

if ak = j and al = i 6= 0 (and thus i < j < k < l), or else it sends
(
j k
||

l
)

to
(
j k l
zz

)

if ak = j and al = 0 (thus j < k < l).

• A move of type 3 is defined whenever there are indices i < j < k < l such that i = aj and
k = al (hence ai = ak = 0), and replaces al by j, ak by i, and aj by 0. Pictorially, it sends

(
i j
��

k l
�� )

to
(
i j k
zz

l
zz

)
.

Observe that a move of type 2 or 3 preserves the rank of words. In fact, the only way of getting
a word of smaller rank is to replace a letter by zero. This corresponds to applying move 1 one or
more times. A sequence of moves of type 1 which results in a letter being replaced by zero will be
called a move of type 1′.

The order relation on valid X2 words is defined by letting w ≥ w′ if and only if w can be
transformed into w′ by a (possibly empty) finite sequence of moves. The maximal valid X2 words
are thus those which are not the result of any of the three types of moves.

Example 4.6. The word (0, 1, 0, 3) is transformed to (0, 0, 1, 2) by a move of type 3, so in the
ordering defined above, (0, 0, 1, 2) < (0, 1, 0, 3).

Finally, the maximal valid X2 words are also called bracket words because there is a one-to-one
correspondence between maximal valid X2 words and sequences of left and right parentheses of
length 2n which form valid LISP expressions. A bracket word corresponds to the valid X2 word
(a1, . . . , a2n) where ai = 0 if the i-th parenthesis in the bracket word is a left parenthesis, and
ai = j if the i-th parenthesis is a right parenthesis which closes the j-th parenthesis.
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Remark 4.7. For a bracket word w of length 2n, we have rank(w) = n.

The key theorem of Rothbach’s paper is

Theorem 4.8 (Rothbach). For any pair of valid X2 words v,w, the Borel orbit Ov associated

to v is contained in the closure of the Borel orbit Ow associated to w if and only if v ≤ w. The

irreducible components of V2n are thus the closures of the Borel orbits associated to the maximal

valid X2 words; and the irreducible component of V2n associated to a maximal valid X2 word w is

the union of the Borel orbits associated to the valid X2 words which are less than or equal to w.

Since Rothbach’s paper is not generally available, we give a very brief sketch here of his tech-
niques. For each i ≤ 2n, let ki ⊆ k2n be the subspace of elements (x1, . . . , xi, 0, . . . , 0) for
x1, . . . , xi ∈ k. These are the subspaces of k2n which are invariant under the action of all ele-
ments in the Borel group. For any X ∈ V2n and any 0 ≤ j < i, define r(i, j,X) = dimk(X(ki)+kj).
One easily sees that r(i, j,X) = r(i, j, Y ) if X and Y are in the same Borel orbit. For any valid X2

word v, associated to a partial permutation matrix X, set vij = r(i, j,X). Rothbach then shows:

• Two matrices X,Y ∈ V2n are in the same Borel orbit if and only if r(i, j,X) = r(i, j, Y ) for all
i, j. The Borel orbit associated to v is thus the set {X ∈ V2n | r(i, j,X) = vij ∀i, j}.

• For any two valid X2 words v,w, v ≤ w (as defined above via moves) if and only if vij ≤ wij

for all i, j.

• If v is obtained from w by a move of one of the above types, then the Borel orbit Ov is in the
closure of the Borel orbit Ow.

For any given valid X2 word w, the union of the Borel orbits associated to words v ≤ w is just
the set

{X ∈ V2n | r(i, j,X) ≤ wij ∀i, j}.

This is an algebraic set (hence closed), since it is defined by requiring determinants of certain
submatrices to vanish. So together with the three points above, this proves that it is the closure of
the Borel orbit associated to w.

Rothbach’s theorem says that the irreducible components of V2n are determined by the poset of
all valid X2 words. In the next section, we will study the subposet of words associated to orbits
contained in Y , and thus determine the irreducible components of Y .

5. The Irreducible Components of Y

In this section, we will identify the irreducible components of Y . More specifically, if Z is an
irreducible component of V2n corresponding to a valid X2 word w, we will describe the components
of the subvariety Y ⊆ Z in terms of the structure of w.

Definition 5.1. We say that a bracket word is irreducible if it cannot be expressed as the concate-

nation of bracket words of smaller length.

Example 5.2. The bracket word (( )( )) is irreducible; the bracket word ( )(( )) is expressible as a
concatenation of the irreducible bracket words ( ) and (( )).

Let w be a bracket word of length 2n. Observe that w can be expressed as a concatenation of
irreducible bracket words w = w1 · · ·wm. (If w is irreducible then m = 1.) We shall use w,wi to
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denote not only the irreducible bracket words in this factorization, but also the corresponding valid
X2 words. For a bracket word w factored in this way we make the following

Definition 5.3. For each i ∈ {1, . . . ,m}, let w(i) be the valid X2 word obtained from w by replacing

the last letter of wi by a zero.

Notice that the words w(i) defined in 5.3 are all obtained from w by a move of type 1′, and so
all have rank n− 1. Notice also that, in general, there are other words obtained by a move 1′. For
example, if w = 002041 then 002001 is one such word.

Now we can describe the components of Y :

Theorem 5.4. The irreducible components of Y are the closures of the Borel orbits corresponding

to the words w(i). Alternatively, the irreducible component of Y corresponding to w(i) is the union

of the Borel orbits corresponding to the valid X2 words which are less than or equal to w(i).

Example 5.5. Let n = 3 and let Z be the component corresponding to the bracket word ( )(( )).
Then the corresponding valid X2 word is w = 010043. In this case, we express w as the concatena-
tion of ( ) and (( )). Thus, in the notation of the paragraph after Example 5.2, m = 2, w1 = ( ), and
w2 = (( )). Writing this decomposition in terms of valid X2 words, we have w1 = 01, w2 = 0043
and so w(1) = 000043 and w(2) = 010040. Thus the subvariety Y ⊆ Z has two components.

In this case, we can describe these varieties in a simple way in terms of matrices. The component
Z consists of all 6× 6 matrices of the form



0 a b c d e
0 0 0 0 f g
0 0 0 0 h i
0 0 0 0 j k
0 0 0 0 0 0
0 0 0 0 0 0




where
[
a b c

]
·



f g
h i
j k


 =

[
0 0

]

The subvariety Y has two components: one where

rank



f g
h i
j k


 ≤ 1, and another where

[
a b c

]
=

[
0 0 0

]
.

Unfortunately it is not always possible to describe the components in this fashion.

Proof of Theorem 5.4. The closure of each Borel orbit in Y is the closure of a continuous image of
the Borel group of upper triangular matrices, and hence is irreducible (cf. [4, Proposition I.8.1]).
Clearly, the closure of any Borel orbit is a union of Borel orbits, and hence the components of
Y are just the maximal closures of Borel orbits. So by Rothbach’s theorem (Theorem 4.8), the
components of Y are the closures of the orbits associated to valid X2 words which are maximal
among those in Y .

It thus suffices to prove that if w is a maximal valid X2 word, then any v with rank(v) < n and

v ≤ w satisfies v ≤ w(i) for some i. For any such v, there is a sequence of moves that we can apply
which transforms w into v, and one of these moves must be of type 1′ (since that is the only type
of move which decreases the rank). We must show two things: that we can always make a move of
type 1′ first, and that the words w(i) are maximal among those obtained from w by a move of type
1′. The first statement is proved in Lemma 5.6, and the second in Lemma 5.7. �
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Lemma 5.6. Let w be a bracket word of length 2n and let v be a valid X2 word such that rank(v) < n
and v ≤ w. Then there is a valid X2 word u obtained from w by a move of type 1′ such that

v ≤ u ≤ w.

Proof. By induction on the number of moves applied on w to get v, it’s enough to show that a
move of any type followed by a move of type 1′ is the same as a move of type 1′ followed by some
other move. Note, however, that the letters involved in each of the moves 1′ may not be the same
and that the type of the other move may change as we “commute” it past the move of type 1′. We
prove this in cases, according to the type of move which is being composed with the move of type
1′. In what follows we will assume that the move of type 1′ is applied to one of the letters involved
in the other move; if this is not the case the two moves commute and the conclusion of the lemma
follows immediately.

Case I: move 1 followed by move 1′. A move of type 1 followed by a move of type 1′ applied
to the same index is equal to the move of type 1′ applied to that index. This is illustrated by the
following diagram:

j
?> =<89 :;k l

||
j
?> =<89 :;k l

zz
j
?> =<89 :;k l

type 1
//

type 1′
//

type 1′
55

Case II: move 2 followed by move 1′. Suppose we have a valid X2 word a1 · · · a2n, and
indices i < j < k < l such that al = i and ak = j (and thus ai = aj = 0). So we can apply move 2
to the pair ak, al and then apply move 1′ to either of these letters. The following two commutative
squares of diagrams of moves show that the composite of these two moves is always a type 1′ move
followed by a move of type 2 or 1.

i
?> =<89 :;j k

xx
l

xx
i
?> =<89 :;j k

||

l

i
?> =<89 :;j k

{{
l

zz
i
?> =<89 :;j k l

zz

type 1′
//

type 2

��

type 2

��
type 1′

//

i
?> =<89 :;j k

xx
l

xx
i
?> =<89 :;j k

||

l

i
?> =<89 :;j k

{{
l

zz
i
?> =<89 :;j k

{{
l

type 1′
//

type 2

��

type 1

��
type 1′

//

It remains to consider the possibility of a type 2 move which switches two letters of which one is
zero. The composite of such a move followed by a type 1′ move is itself a type 1′ move, as illustrated
by the following diagram.

j
?> =<89 :;k

||

l j
?> =<89 :;k l

zz
j
?> =<89 :;k l

type 2
//

type 1′
//

type 1′
55

Case III: move 3 followed by move 1′. Suppose we are given a valid X2 word a1 · · · a2n to
which we can apply a move of type 3. This means that there are indices i < j < k < l such that
aj = i and al = k (and hence ak = ai = 0). After applying move 3 to this word, we can then apply
move 1′ to the letter in the l-th or k-th position, as illustrated in the bottom side of the following
two squares. The first square illustrates the subcase where we apply the move of type 1′ to the
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index k, and the second the subcase where we apply the move of type 1′ to the index l.

i
?> =<89 :;j

~~

k l
||

i
?> =<89 :;j k l

||

i
?> =<89 :;j k

{{
l

zz
i
?> =<89 :;j k l

zz

type 1′
//

type 3

��

type 1

��
type 1′

//

i
?> =<89 :;j

~~

k l
||

i
?> =<89 :;j

~~

k l

i
?> =<89 :;j k

{{
l

zz
i
?> =<89 :;j k

{{
l

type 1′
//

type 3

��

type 2

��
type 1′

//

Thus both composites of moves can also be described as a type 1′ move followed by a move of type
1 or 2. �

Lemma 5.7. If u is a valid X2 word with rank n − 1 obtained from a bracket word w by a move

of type 1′, then u ≤ w(s) for some s.

Proof. Write w = (a1, . . . , a2n). Let j < k be indices such that ak = j, and such that u is obtained

from w by replacing ak by 0. If u is not equal to w(s) for any s, then there are indices i < j < k < l
such that al = i (hence ai = aj = 0), and some w(s) obtained from w by a move of type 1′ where
al is replaced by 0. In other words,

w =
(
i j k

xx
l

xx
)
, u =

(
i j k l
xx

)
, and w(s) =

(
i j k

xx
l
)
.

We now see that u is obtained from w(s) by a type 2 move followed by a type 1 move:

i
?> =<89 :;j k

xx
l i

?> =<89 :;j k l
zz

i
?> =<89 :;j k l

xxtype 2
//

type 1
//

and thus u ≤ w(s). �
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