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Recently, certain categories based on elementary abelian p-groups (i.e., finite p-
groups of the form E ∼= (Cp)

k) have played an important role as indexing categories
for approximating spaces. The construction of approximations to classifying spaces
in [JM], and the realization of a certain Dickson algebra as the cohomology algebra
of a space in [DW2], both depended on the computation of higher derived functors
of inverse limits over such categories. The purpose of this paper is to give a general
procedure for doing this involving the Steinberg representation of GLn(Fp). One
consequence is an upper bound for the degrees in which higher limits over such
categories can be nonvanishing.

As one example, consider the category Ap(G), defined for any compact Lie group
G as follows. An object in Ap(G) is a nontrivial elementary abelian p-subgroup
1 6= E ⊆ G. For any pair E1, E2 of such subgroups, MorAp(G)(E1, E2) is the set of
monomorphisms from E1 to E2 which are composites of inclusions and conjugations
in G. This is the category which (for finite G) was used by Quillen [Q1], for approx-
imating H∗(BG;Fp) up to nilpotence. More recently, it was used by Jackowski &
McClure [JM] as an indexing category for approximating the classifying space BG
itself as a homotopy direct limit of (frequently) simpler spaces. The higher derived
functors of inverse limits of certain covariant functors from Ap(G) to Ab played an
important role in [JM]. One consequence of the results here is that for any p-local

covariant functor F on Ap(G), lim
←−

i(F ) = 0 for all i ≥ p-rk(G) (see Theorem 1).

Higher limits over certain orbit categories were handled in [JMO] by first filtering
the functors in such a way that each of the quotient functors vanishes except on
one single isomorphism class of objects, then analyzing the higher limits of those
quotient functors, and finally using long exact sequences to recover the higher limits
of the original functor. That process seems quite complicated, but it turned out to
be very effective for computing those higher limits over orbit categories needed in
[JMO], as well as in later papers by the same authors. The main idea of this paper
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is to use a similar filtering technique to get information about the higher limits over
categories of elementary abelian groups such as Ap(G).

If A is the category of nontrivial subgroups of some fixed elementary abelian p-
group A, and if F : A −→ Ab is the functor which sends the full group A to Z and the
proper subgroups to 0, then lim

←−

i

A

(F ) is zero when i 6= rk(A)− 1, and is isomorphic

in a natural way to the dual of the Steinberg representation when i = rk(A) − 1.
This follows easily from Lemma 2 below, together with the classical description of
Steinberg representations as homology groups of Tits buildings. What is surprising
is that the higher limits can also be described in terms of Steinberg representations
in more complicated cases. The following theorem is stated here only for Ap(G);
but (as will be seen below) it works equally well for other categories of elementary
abelian p-groups.

For any elementary abelian p-group E, we let StE denote the Steinberg repre-
sentation of GL(E).

Theorem 1. Fix a prime p and a compact Lie group G. Write A = Ap(G) for
short.

(i) Assume F : A −→ Z(p)-mod vanishes except on one (conjugacy class of) object
E. Set k = rk(E), and Γ = AutA(E)⊆GL(E). Then

lim
←−

i

A

(F ) ∼=

{
HomΓ(StE , F (E)) if i = k − 1

0 if i 6= k − 1.

(ii) For each k ≥ 1, set

Ek = Ek(G) =
{
E ∈ Ob(A) : rk(E) = k

}/
(isomorphisms).

Then for any functor F : A −→ Z(p)-mod, lim
←−

∗

A

(F ) is isomorphic to the homology

of a cochain complex (C∗St(F ), δ), where

CiSt(F )
∼=

∏

E∈Ei+1

HomAutA(E)(StE , F (E)).

In particular, lim
←−

i(F ) = 0 for i≥ rkp(G).

The two parts of Theorem 1 will be proven — also for certain other categories
of elementary abelian p-groups — as Propositions 4 and 5 below.

Theorem 1 deals only with covariant functors on Ap(G). In other words, the
limits are always taken in the direction of the smallest subgroups. This is the type
of limit which arises in [JM]; but is the opposite of the limits used by Quillen [Q1]
to approximate H∗(BG;Fp).
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One of the main results in [JM] was a theorem which says that any Mackey

functor F defined on Ap(G) is acyclic: i.e., lim
←−

i(F ) = 0 for all i ≥ 0. Theorem 1 is

intended in part to supplement that result, in that it provides a means to compute
higher limits for functors which are not Mackey functors.

The abstract definition of lim
←−

∗

C

(F ) in terms of an injective resolution of F is not

very useful when making specific calculations. The following lemma describes these
higher limits as the homology of an explicit cochain complex. Alternatively, it can
be thought of as saying that they are the cohomology of a certain sheaf over the
nerve of C.

Lemma 2. Let C be any small category, and let F : C −→ Ab be any covariant
functor. Then lim

←−

∗

C

(F ) ∼= H∗(C∗(C;F ), δ), where

Cn(C;F ) =
∏

x0→···→xn

F (xn) (1)

for all n ≥ 0; and where for U ∈ Cn(C;F ),

δ(U)(x0 → . . . −→ xn
ϕ
−→ xn+1) =

n∑

i=0

(−1)iU(x0 → . . . x̂i · · · → xn+1)

+ (−1)n+1F (ϕ)(U(x0 → · · · → xn)).
(2)

Proof. Let C-mod denote the category of covariant functors from C to Ab. For any
F in C-mod,

lim
←−

C

(F ) ∼= MorC-mod(Z, F ),

where Z denotes the constant functor with values Z. So if (P∗, ∂) is any projective
resolution of Z in C-mod, then lim

←−

∗(F ) is the cohomology of the cochain complex

(
MorC-mod(P∗, F ) , Mor(∂, F )

)
.

For each n ≥ −1, define the functor Pn : C −→ Ab as follows. For each object
x in C, let Pn(x) be the free abelian group with basis the set of all sequences
x0 −→ . . . −→ xn −→ x of morphisms in C ending in x. For any morphism f in C,
Pn(f) is defined by composition in the obvious way. Note that P−1 ∼= Z. Define
boundary maps ∂ : Pn → Pn−1 by setting

∂([x0 → · · · → xn −→ x]) =
n∑

i=0

(−1)i[x0 → . . . x̂i · · · → xn −→ x].

3



For each x, the chain complex

. . .
∂
−→ P2(x)

∂
−→ P1(x)

∂
−→ P0(x)

∂
−→ P−1(x) −→ 0

is split by the maps ([· · · → xn −→ x] 7→ [· · · → xn −→ x
Id
−→ x]); and hence is exact.

Thus, (P∗, ∂) is a resolution of Z. Also, for any F ,

MorC-mod(Pn, F ) ∼=
∏

x0→···→xn

F (xn).

This shows that Pn is projective, and that
(
MorC-mod(P∗, F ),Mor(∂, F )

)
is isomor-

phic to the complex (C∗(C;F ), δ) defined in (1) and (2) above. �

The description of higher limits given in Lemma 2 is well known, but we have
been unable to find it in the literature — aside from a rather obscurely formulated
version in [BK, XI.6.2].

As was noted above, Theorem 1 holds for a wide range of categories based on
elementary abelian p-groups; and similar results seem likely to hold for other, related
categories. Hence, for the sake of other possible applications, we want to prove
Theorem 1 — or at least its essence — in as much generality as possible.

The natural setting for filtering functors and reducing to “single object functors”
seems to be that of what we here call ordered categories. We define an ordered
category to be a category where all endomorphisms are automorphisms. This is the
condition formulated by Lück in [Lü] (where he called them “EI-categories”). If C
is such a category, then the set of isomorphism classes in C is partially ordered by
the relation [x] ≤ [y] if Mor(x, y) 6= ∅. And if C has only finitely many isomorphism
classes of objects, then it is easy to see that for any F : C −→ Ab, F can be filtered
by a sequence 0 = F0 ⊆ F1 ⊆ · · · ⊆ Fk = F , such that each Fi/Fi−1 vanishes except
on one isomorphism class of objects.

In order to formulate the results presented here, some more structure on the
category is needed. We define a category with subobjects to be a pair C ⊇ I of
categories such that Ob(I) = Ob(C), and such that the following two conditions
are satisfied:

(a) |MorI(x, y)| ≤ 1 for any pair of objects x, y; and

(b) each morphism f ∈ MorC(x, y) can be written in a unique way as a composite
f = i ◦ a, where a ∈ IsoC(x, x

′) for some x′, and i ∈ MorI(x
′, y).

The idea for categories with subobjects comes, of course, from the categories of sets,
groups, etc. with monomorphisms, where the subcategories consist of inclusions of
subobjects. With this in mind, for any category with subobjects (C, I), and any

morphism f : x
a
−→
∼=

x′
i
→֒ y as above, we write f(x) or Im(f) for the object x′.
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Similarly, we write x ⊆ y if MorI(x, y) 6= ∅. Note that an inclusion x
i
→֒ y is an

isomorphism in C only if x = y and i = Idx.

The categories Ap(G) defined above, and other categories based on elementary
abelian p-groups, are all ordered categories, and can all be made into categories with
subobjects in an obvious way. In contrast, the orbit categories dealt with in [JMO]
are also ordered, but cannot be given the structure of categories with subobjects.

For any category with subobjects (C, I), and any object x in C, we let C<x ⊆
Cx ⊆ C denote the full subcategories

Ob(Cx) = {y ∈ Ob(C) : y ⊆ x} and Ob(C<x) = {y ∈ Ob(C) : y $ x}.

These are equivalent to the full subcategories of objects y such that [y] ≤ [x], or
[y] ≤ [x] and [y] 6= [x], respectively. It is these last categories which appear when
one studies functors on C which vanish except on objects isomorphic to x. The
main idea is to compare them with the categories Ix = Cx ∩ I and I<x = C<x ∩ I
of subobjects of x. Note that the automorphism group AutC(x) acts in a natural
way on Ix and I<x — this follows from property (b) in the definition — but not
on Cx or C<x.

Proposition 3. Let (C, I) be any (small) ordered category with subobjects. Fix an
object x in C, and set Γ = AutC(x). Let F : C −→ Ab be any covariant functor such
that F (y) = 0 for y 6∼= x, and regard F (x) as a Z[Γ]-module. Then the following
hold.

(1) H∗(BCx, BC<x)∼=H∗(EΓ×Γ BIx, EΓ×Γ BI<x)

(2) There are isomorphisms

lim
←−

∗

C

(F ) ∼= lim
←−

∗

Cx

(F ) ∼= H∗Γ(BIx, BI<x;F (x)),

where H∗Γ(−;−) denotes Borel cohomology with twisted coefficients. The first iso-
morphism is induced by the inclusion of categories. The second isomorphism is
induced by the chain homomorphism Ψ∗, where

Ψn :
⊕

p+q=n

HomZ[Γ]

(
Cq(EΓ)⊗Cp(BIx, BI<x), F (x)

)

−−−−→ Cn(Cx;F ) ∼=
∏

x0→···→xn−1−→x

F (x)

satisfies the formula

Ψn(U)
([
y0

f1
−→ . . .

fp−1
−−−→ yp−1

fp
−→ x

γ1
−→ x −→ . . .

γq
−→ x

])

= γq · · ·γ1·U
((

1, γ1, γ2γ1, . . . , γq · · ·γ1
)
⊗
[
Im(fp · · · f1) →֒ . . . →֒ Im(fp) →֒ x

])
.
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for yi $ x and U ∈ Hom(Cq(EΓ)⊗ Cp(BIx, BI<x), F (x)).

(3) There is a spectral sequence

Epq2
∼= Hp(Γ;Hq(BIx, BI<x;F (x))) =⇒ lim

←−

p+q

C

(F ).

(4) Assume, for some ring R ⊆ Q, that F (x) is an R-module, and that
H∗(BIx, BI<x;R) is R[Γ]-projective. Then for each i ≥ 0,

lim
←−

i

C

(F ) ∼= HomΓ

(
Hi(BIx, BI<x), F (x)

)
.

Proof. Let C̄x ⊆ C be the full subcategory whose objects are those y such that
[y] ≤ [x], i.e., such that MorC(y, x) 6= ∅. From the formula in Lemma 2, it is
clear that lim

←−

∗

C

(F ) ∼= lim
←−

∗

C̄x

(F ). And lim
←−

∗

C̄x

(F ) ∼= lim
←−

∗

Cx

(F ), since the categories are

equivalent (every object in C̄x is isomorphic to an object of Cx). So from now on,
we can work within the category Cx.

Consider the subcategory C1
x ⊆ Cx defined by setting Ob(C1

x) = Ob(Cx),
MorC1x(y, y

′) = MorC(y, y
′) if y $ x, and MorC1x(x, x) = {Idx}. Let Γ act on C1

x

via the identity on objects, via the identity on Mor(C<x), and via composition on
MorC(y, x) for y$x.

Step 1 Let

C(i) : C∗(BIx, BI<x) −−−−→ C∗(BC1
x, BC<x)

be the inclusion. Define a retraction

r : C∗(BC1
x, BC<x) −→ C∗(BIx, BI<x)

by setting

r
([
y0

f0
−→ y1

f1
−→· · · −→ yk

fk−→ x
])

=
[
fk · · · f0(y0) →֒ fk · · · f1(y1) →֒ · · · →֒ fk(yk) →֒ x

]
.

Both of these are homomorphisms of chain complexes, r◦C(i) is the identity on
C∗(BIx, BI<x), and r is Z[Γ]-linear. We first show that these homomorphisms
induce a Z[Γ]-linear isomorphism

H∗(r) : H∗(BC1
x, BC<x)

∼=
−→ H∗(BIx, BI<x). (5)
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Set X∗ = Coker(C(i)) = C∗(BC1
x, BC<x∪BIx). We must show that X∗ is exact.

To do this, define D : Xn −→ Xn+1 by setting

D
([
y0

f0
−→ y1

f1
−→ · · · −→ yk

fk−→ x
])

=

k∑

i=0

(−1)i
[
y0 −→ · · · −→ yi

fk···fi
−−−−→ fk · · · fi(yi) →֒ · · · →֒ fk(yk) →֒ x

]
.

Fix an element [y0
f0
−→ · · · −→ yk

fk−→ x] as above, and set y′i = fk · · · fi(yi). Then

D∂
([
y0 −→ · · · −→ yk −→ x

])

= D

(
k∑

i=0

(−1)i
[
y0 −→ · · · ŷi · · · −→ yk −→ x

]
)

=
∑

j<i

(−1)i+j
[
y0 −→ · · · −→ yj −→ y′j →֒ · · · ŷ′i · · · →֒ y′k →֒ x

]

+
∑

j>i

(−1)i+j−1
[
y0 −→ · · · ŷi · · · −→ yj −→ y′j →֒ · · · →֒ y′k →֒ x

]

and

∂D
([
y0 −→ · · · −→ yk −→ x

])

= ∂




k∑

j=0

(−1)i
[
y0 −→ · · · −→ yj −→ y′j →֒ · · · →֒ y′k →֒ x

]



=
∑

i<j

(−1)i+j
[
y0 −→ · · · ŷi · · · −→ yj −→ y′j →֒ · · · →֒ y′k →֒ x

]

+
∑

i>j

(−1)i+j−1
[
y0 −→ · · · −→ yj −→ y′j →֒ · · · ŷ′i · · · →֒ y′k →֒ x

]

+
k∑

i=0

([
y0 −→ · · · −→ yj−1 −→ y′j →֒ · · · →֒ y′k →֒ x

]

−
[
y0 −→ · · · −→ yj −→ y′j+1 →֒ · · · →֒ y′k →֒ x

])
.

And since [y′0 →֒ · · · →֒ y′k →֒ x] vanishes in C∗(BC1
x, BC<x∪BIx), this gives

(D∂ + ∂D)
([
y0 −→ · · · −→ yk −→ x

])
= −

[
y0 −→ · · · −→ yk −→ x

]
.

Thus, D∂ + ∂D = −Id, and so X∗ is exact.
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Step 2 Let C∗(EΓ) denote the usual chain complex for EΓ: Cn(EΓ) is the free
abelian group with basis consisting of (n + 1)-tuples (γ0, . . . , γn), and Γ acts by
right multiplication. Define

Φ : C∗(EΓ)⊗ C∗(BC1
x, BC<x)

∼=
−−−−−→ C∗(BCx, BC<x)

by setting

Φ
((
γ0, γ1, . . ., γm

)
⊗
[
y0 −→ . . . −→ yk−1

f
−→ x

])
=

[
y0 −→ . . . −→ yk−1

(γ0◦f)
−−−−→ x

γ1γ
−1
0−−−−→ x −→ . . .

γmγ
−1
m−1

−−−−−→ x
]
.

Here, yi∈Ob(C<x) for each i. Note that we have dropped the degenerate simplices;
at least those in BC1

x which involve Idx. Clearly, Φ factors through an isomorphism
on C∗(EΓ) ⊗ZΓ C∗(BC1

x, BC<x) (it sends a basis to a basis), and commutes with
boundary maps. It thus induces an isomorphism

Φ∗ : H∗(EΓ×Γ BC1
x, EΓ×Γ BC<x)

∼=
−−−−−→ H∗(BCx, BC<x). (6)

Together with Step 1, this proves point (1).

Consider the cochain complex (C∗(C;F ), δ) of Lemma 2, whose cohomology is
lim
←−

∗(F ). Define isomorphisms

Ψ̂n :
∑

p+q=n

HomZ[Γ]

(
Cq(EΓ)⊗ Cp(BC1

x, BC<x) , F (x)
)

∼=
−−−−→ Cn(Cx;F ) ∼=

∏

x0→···→xn−1−→x

F (x)

by setting, for yi $ x and U ∈ Hom(Cq ⊗ Cp, F (x)),

Ψ̂n(U)
([
y0 −→ . . . −→ yp−1

f
−→ x

γ1
−→ x −→ . . .

γq
−→ x

])

= (γq · · ·γ1)·U
((

1, γ1, γ2γ1, . . . , γq · · ·γ1
)
⊗
[
y0 −→ . . . −→ yp−1

f
−→ x

])
.

Equivalently, for V ∈ Cn(Cx;F ),

Ψ̂−1n (V )
((
γ0, . . . , γq

)
⊗
[
y0 −→ . . . −→ yp−1

f
−→ x

])

= γ−1q ·V
([
y0 −→ . . . −→ yp−1

γ0f
−−→ x

γ1γ
−1
0−−−−→ x −→ . . .

γqγ
−1
q−1

−−−−→ x
])
.
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These commute with the coboundary homomorphisms, and hence induce an iso-
morphism

lim
←−

∗

Cx

(F ) ∼= H∗Γ
(
EΓ×ΓBC1

x, EΓ×ΓBC<x;F (x)
)

where the homology groups are taken with twisted coefficients. And point (2) now
follows upon composing this with the isomorphism of Step 1.

The last two points follow from the usual spectral sequence for the cohomology
of the Borel construction. �

Before proving Theorem 1, we first look at two other types of categories based
on elementary abelian p-groups.

For any space X such that H∗(X ;Fp) is Noetherian, define the category Ap(X)
as follows. An object in Ap(X) is a pair (E, ψ), where E is an elementary abelian
p-group and ψ : BE −→ X is a homotopy class of maps such that H∗(ψ;Fp) is a
finite morphism (i.e., it makes H∗(BE;Fp) into a finitely generated module over
H∗(X ;Fp)). A morphism in Ap(X) from (E1, ψ1) to (E2, ψ2) is a monomorphism
ϕ : E1E2 such that ψ2◦Bϕ ≃ ψ1. By a theorem of Dwyer & Zabrodsky [DZ],
for any compact Lie group G, Ap(BG) is equivalent to the category Ap(G) defined
earlier.

For any unstable noetherian algebra K over the Steenrod algebra Ap, let Ap(K)
denote the category whose objects are pairs (E, ψ), where E 6= 1 is an elemen-
tary abelian p-group and ψ : K −→ H∗(BE;Fp) is a finite Ap-algebra homomor-
phism. A morphism from (E1, ψ1) to (E2, ψ2) is a monomorphism ϕ : E1E2

such that H∗(Bϕ;Fp) ◦ ψ2 = ψ1. These categories were first defined and used by
Rector [Re]. By a theorem of Lannes ([La1, Théorème 0.4] or [La2, Théorème 0.4]),
Ap(X) ∼= Ap(H

∗(X ;Fp)) if X is simply connected and H∗(X ;Fp) is noetherian.
Dwyer & Wilkerson, in [DW1] and [DW2], have shown the usefulness of Ap(K),
and the importance of higher limits of functors over Ap(K), when trying to deter-
mine whether K can be realized as the cohomology algebra of a space.

For convenience, an object of any of the categories Ap(G), Ap(X), or Ap(K)
will be denoted (E, ψ), where ψ is an inclusion E →֒ G, a map BE −→ X , or a
homomorphism K −→ H∗(BE;Fp), respectively. Recall that for any elementary
abelian p-group E ∼= (Z/p)k, we write StE to denote the Steinberg representation
of GL(E).

Proposition 4. Assume A is one of the categories Ap(G) for a compact Lie group
G, Ap(X) for a space X such that H∗(X ;Fp) is noetherian, or Ap(K) for an
unstable noetherian algebra K over the Steenrod algebra Ap. Let

F : A −−−−→ Z(p)-mod
9



be a covariant functor which vanishes except on the isomorphism class of the object
(E, ψ). Set k = rk(E), and let Γ = AutA(E, ψ)⊆GL(E). Then

lim
←−

i

A

(F ) =

{
HomΓ(StE , F (E, ψ)) if i = k − 1

0 if i 6= k − 1.

Proof. Let IE ⊇ I<E denote the poset categories of nontrivial subgroups, and
proper subgroups, of E, with the induced actions of GL(E). Then BIE is con-
tractible: it is the nerve of a category with final object. So by definition, for any
elementary abelian p-group E ∼= (Z/p)k with k ≥ 1,

Hi(BIE , BI<E) ∼=

{
Hi(point) if k = 1

H̃i−1(BI<E) if k > 1

}
∼=

{
StE if i = k − 1

0 if i 6= k − 1

as modules over Z[GL(E)] ∼= Z[GLn(Fp)] (cf. [Lu, §1.13], where BI<E is de-
noted SII(E)). Also, I<E and IE can be identified with the subcategories
I<(E,ψ) ⊆ I(E,ψ) ⊆ Ap(X) used in Proposition 3. Finally, (StE)(p) is projective
as a Z(p)[GL(E)]-module (cf. [Ro, Theorem 7.4]); and so Proposition 4 follows from
Proposition 3. �

For any k ≥ 1 and any elementary abelian p-group E of rank k+1, let I2
<E ⊆ I<E

be the subcategory of objects of codimension at least 2 in E; i.e., the category of
proper subgroups of E of rank at most k − 1. Define

RE : StE −−−−→
⊕

[E:A]=p

StA

to be the composite

StE ∼= Hk(BIE , BI<E)
∂

−−−−→ Hk−1(BI<E , BI2
<E)

∼=
⊕

[E:A]=p

StA .

Alternatively, RE can be thought of as (up to sign) the homomorphism induced by
truncating chains of subgroups.

Proposition 4 now implies the following:

Proposition 5. Fix a prime p, and let A be one of the rings Ap(G), Ap(X), or
Ap(K) as in Proposition 4. For each k ≥ 1, set

Ek = Ek(X) = {(E, ψ) ∈ Ob(A) : rk(E) = k}/(isomorphisms)

Then for any functor
F : A −→ Z(p)-mod,
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lim
←−

∗

A

(F ) is isomorphic to the homology of a cochain complex (C∗St(F ), δ), where

CiSt(F )
∼=

∏

(E,ψ)∈Ei+1

HomAutA(E)(StE , F (E, ψ)).

In particular, if r denotes the p-rank of G, or the Krull dimension of H∗(X ;Fp) or
K, then lim

←−

i

A

(F ) = 0 for i≥r.

The coboundary maps δ are defined as follows. Fix an element c ∈ Ci−1St (F ),
and choose some (E, ψ) ∈ Ei+1. Then the projection of δ(c) onto the factor
HomAutA(E)(StE , F (E)) is the composite

StE
RE−−→

⊕

[E:A]=p

StA
⊕c(A)
−−−−→

⊕

[E:A]=p

F (A, ψ|A)
⊕F (incl)
−−−−−→ F (E, ψ). (1)

Proof. By assumption (or by definition of Krull dimension), rk(E) ≤ r for any
(E, ψ) in A. Define subfunctors F = F0 ⊇ F1 ⊇ F2 ⊇ · · · ⊇ Fr = 0 by setting

Fi(E, ψ) =

{
F (E, ψ) if rk(E) > i

0 if rk(E) ≤ i.

By Proposition 4, for each i,

lim
←−

j(Fi/Fi+1) ∼=

{
CiSt(F ) if j = i

0 if j 6= i.

The long exact sequences for extensions of functors now show that lim
←−

∗

A

(F ) is the

cohomology of some cochain complex

0 −→ C0
St(F )

δ
−−→ C1

St(F )
δ

−−→ . . .
δ

−−→ Cr−1St −→ 0.

It remains to check the formula for the boundary homomorphisms. Fix an object
(E, ψ) in A of rank i+1, and write I = IE for short. The inclusion ι : I →֒ A
induces homomorphisms ι∗ : lim

←−

∗

A

(Fj) −→ lim
←−

∗

I

(Fj |I) for each j, and similarly for

the quotient functors. In particular, this yields the following commutative diagram

Ci−1St (F )
δ

−−−−→ CiSt(F )

ι∗

y ι∗

y

lim
←−

i−1

I

(Fi−1/Fi)

∼=
∏

[E:A]=p Hom(StA,F (A))

δ2−−−−→ lim
←−

i

I

(Fi/Fi+1)

∼=Hom(StE ,F (E))
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And δ2 is in turn induced by the coboundary homomorphism

RE : StE ∼= Hi(BIE , BI<E)
∂
−→ Hi−1(BI<E , BI2

<E)
∼=

⊕

[E:A]=p

St(A);

which shows that δ has the form given in (1). �

For functors on Ap(X) or Ap(G) which are not p-local, the chain complex must
be replaced by a spectral sequence. The same arguments as used above show:

Proposition 6. Fix a prime p, let A be one of the rings Ap(G), Ap(X), or Ap(K)
as before, and set

Ek = Ek(X) = {(E, ψ) ∈ Ob(A) : rk(E) = k}/(isomorphisms)

for each k ≥ 1. Then for any covariant functor

F : A −→ Ab,

there is a spectral sequence

Eij1
∼=

∏

(E,ψ)∈Ei+1

Hj
(
AutA(E); Hom(StE , F (E)

)
=⇒ lim

←−

i+j

A

(F );

where d1 has the form described in Proposition 5 above.

I would like to thank Hans-Werner Henn for first suggesting that I look more
closely at higher limits over these categories, and for correcting some mistakes in
earlier versions of this paper. I would also like to thank all of my colleagues in
Heidelberg for their hospitality during a very pleasant visit, during which this work
was begun.
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