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Abstract

We prove here the Martino-Priddy conjecture at the prime 2: the 2-completions
of the classifying spaces of two finite groupsG andG′ are homotopy equivalent if and
only if there is an isomorphism between their Sylow 2-subgroups which preserves
fusion. This is a consequence of a technical algebraic result, which says that for a
finite group G, the second higher derived functor of the inverse limit vanishes for a
certain functor ZG on the 2-subgroup orbit category of G. The proof of this result
uses the classification theorem for finite simple groups.
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Introduction

In their paper [MP], John Martino and Stewart Priddy claimed (erroneously)
to have shown that for any prime p and any pair G,G′ of finite groups, the p-
completed classifying spaces BG∧

p and BG′∧
p are homotopy equivalent if and only

if the p-local structures of G and of G′ are isomorphic in a sense to be made precise
below. This was part of a program by those two authors and others to understand
the close connection between homotopy properties of BG∧

p (when G is a finite group
or a compact Lie group) and the p-local structure of G, using tools which came out
of the Sullivan conjecture and its proofs.

In an earlier paper [BLO] in collaboration with Carles Broto and Ran Levi, we
identified the obstruction groups to constructing a homotopy equivalence between
BG∧

p and BG′∧
p , given an isomorphism between the p-local structures of G and G′.

For odd primes p, these groups have already been shown [Ol] to vanish in all cases.
The main technical result of this paper, of which the Martino-Priddy conjecture
is one consequence, is that these obstruction groups also vanish when p = 2. The
proof of this result (like the proof of the conjecture for odd primes) depends on the
classification theorem for finite simple groups.

Fix a prime p and a finite group G. The p-subgroup orbit category of G is the
category Op(G) whose objects are the p-subgroups of G, and where

MorOp(G)(P,Q) = MapG(G/P,G/Q).

For the purposes of this paper, it will be more convenient to describe MorOp(G)(P,Q)
in terms of the transporter sets

NG(P,Q) = {x ∈ G |xPx−1 ≤ Q}.

Then
MorOp(G)(P,Q) = Q\NG(P,Q),

where a coset Qx for x ∈ NG(P,Q) corresponds to the map (gP 7→ gx−1Q) between
orbits.

A p-subgroup P ≤ G is called p-centric if Z(P ) is a Sylow p-subgroup of CG(P ),
or equivalently if CG(P ) = Z(P )×C ′

G(P ) for some subgroup C ′
G(P ) of order prime

to p. Define the functor

ZG : Op(G)op −−−−−−→ Ab

by setting ZG(P ) = Z(P ) if P is p-centric in G and ZG(P ) = 0 otherwise, and

sending Qx ∈ MorOp(G)(P,Q) to the morphism Z(Q)
g 7→x−1gx−−−−−−→ Z(P ) if P and Q

are both p-centric. Our main algebraic result is the following.

1



2 INTRODUCTION

Theorem A. For any finite group G,

lim←−
i

O2(G)

(ZG) = 0 for all i ≥ 2.

Proof. In Proposition 2.9, we show that lim←−
i(ZG) = 0 for all i ≥ 2 if each

nonabelian simple group L which appears in the decomposition series of G belongs
to a certain class L≥2(2) (Definition 2.8). We then show that L≥2(2) contains all
alternating groups (Theorem 5.1); all simple groups of Lie type in characteristic
two including the Tits group (Theorem 6.2); all simple groups of Lie type in odd
characteristic (Theorems 7.5 and 8.13); and all sporadic groups (Theorem 9.1).
Theorem A then follows from the classification theorem for finite simple groups. �

Theorem A was motivated by studying equivalences between completed classi-
fying spaces of finite groups. Let p be a prime, let G and G′ be finite groups, and
let S ≤ G and S′ ≤ G′ be Sylow p-subgroups. An isomorphism ϕ : S

∼=−−→ S′ is
called fusion preserving if for all P,Q ≤ S and all P α−−→∼= Q, α is conjugation by

an element of G if and only if ϕ(P )
ϕαϕ−1

−−−−−→∼=
ϕ(Q) is conjugation by an element of

G′.

The Martino-Priddy conjecture states that for any prime p, and any pair G,G′

of finite groups, BG∧
p ' BG′∧

p if and only if there is a fusion preserving isomorphism
between Sylow p-subgroups of G and G′. The “only if” part of the conjecture was
proved by Martino and Priddy [MP]; and follows from the bijection

Rep(P,G) def= Hom(P,G)/ Inn(G)
∼=−−−−−−→ [BP,BG∧

p ]

for any p-group P and any finite group G. This bijection was originally shown by
Mislin [Mi], in the proof of his main theorem there. In fact, the main theorem
in [Mi] states that a group homomorphism G −−−→ G′ induces an isomorphism in
mod p cohomology (hence an equivalence BG∧

p ' BG′∧
p ) if and only if there is a

fusion preserving isomorphism between Sylow p-subgroups, so this can be regarded
as a precursor to the theorem in [MP]. Martino and Priddy also claimed in [MP]
to prove the “if” part of the conjecture, but an error in their proof was found on
[MP, p. 129], where a certain functor fails to be well defined on morphisms.

By [BLO, Proposition 6.1], given a fusion preserving isomorphism between
Sylow p-subgroups of G and G′, the obstruction to extending it to a homotopy
equivalence BG∧

p ' BG′∧
p lies in lim←−

2(ZG). This is a consequence of Dwyer’s p-
centric subgroup decomposition of a classifying space [Dw, §8], together with the
obstruction theory for constructing maps on a homotopy colimit (cf. [Wo]). Hence
Theorem A implies:

Theorem B (Martino-Priddy conjecture at the prime 2). For any pair G and
G′ of finite groups with Sylow 2-subgroups S ≤ G and S′ ≤ G′, BG∧

2 ' BG′∧
2 if

and only if there is a fusion preserving isomorphism S
∼=−−→ S′.

In general, a map f : X −−−→ Y induces an equivalence X∧
p ' Y ∧

p between the
p-completions if and only if H∗(f ; Fp) is an isomorphism. So Theorem B can also
be regarded as a refinement of the theorem of Cartan and Eilenberg [CE, Theorem
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XII.10.1], that H∗(G; Fp) is determined by any Sylow p-subgroup S ≤ G and the
G-fusion in S.

We next turn to the question of self equivalences of BG∧
p . For any space X,

let Out(X) denote the group of homotopy classes of self homotopy equivalences of
X. For any finite group G, any prime p, and any Sylow p-subgroup S ≤ G, let
Autfus(S,G) be the group of fusion preserving automorphisms of S, let AutG(S) be
the group of automorphisms induced by conjugation by elements of G (i.e., elements
of NG(S)), and set

Outfus(S,G) = Autfus(S,G)/AutG(S).

Theorem A, when combined with [BLO, Theorem 6.2], gives the following descrip-
tion, up to extension, of Out(BG∧

p ).

Theorem C. For any finite group G with Sylow 2-subgroup S ≤ G, there is a
short exact sequence

1 −−−→ lim←−
1

O2(G)

(ZG) −−−−−→ Out(BG∧
2 ) −−−−−→ Outfus(S,G) −−−→ 1.

In [Ol], we showed that when p is odd, the groups lim←−
i(ZG) vanish for all finite

G and all i ≥ 1. In contrast, when p = 2, the groups lim←−
1(ZG) can be nonvanishing.

Examples of this include the groups G = PSL2(q) when q ≡ ±1 (mod 8), G = An
when n ≡ 2, 3 (mod 4), and G = PSL4(q) when q ≡ 3 (mod 4). A simple proof of
this when G has dihedral Sylow 2-subgroup is given in Proposition 1.6, and other
cases are discussed in Chapter 10.

Theorem B says that the homotopy type of BG∧
p is determined by a Sylow

p-subgroup S of G and the G-fusion in S, and so it is natural to ask whether and
how that homotopy type can be recovered from the fusion in G. To make this more
precise, consider the p-centric orbit category Ocp(G): the full subcategory of Op(G)
whose objects are the p-centric subgroups of G. There is a functor

B : Ocp(G) −−−−−−→ hoTop

to the homotopy category which sends a p-centric subgroup P ≤ G to BP , and
which sends a morphism Qx (for x ∈ NG(P,Q)) to the (homotopy class of) map
BP −−−→ BQ induced by (g 7→ xgx−1). This clearly depends only on the p-fusion
in G. It is this functor which determines BG∧

p up to homotopy, in the following
sense:

Theorem D. For any finite group G and any prime p, the homotopy functor
B has a unique lifting (unique up to homotopy) to a functor

B̃ : Ocp(G) −−−−−−→ Top

and
[
hocolim−−−−−→(B̃)

]∧
p ' BG∧

p .

Proof. One lifting of B is given by the functor B̂(P ) = EG ×G (G/P ), and
BG∧

p '
[
hocolim−−−−−→(B̂)

]∧
p by the p-centric decomposition of Dwyer [Dw, §8]. So it

remains only to show the uniqueness of this lifting. The functor B is a centric
diagram in the sense of Dwyer and Kan by [DK, Theorem 5.1]. So by their ob-
struction theory [DK, Theorem 1.1], the obstructions to the uniqueness of a lifting
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B̃ lie in lim←−
2(ZG). Since these groups vanish by Theorem A when p = 2, and by

[Ol, Theorem A] when p is odd, the lifting is unique up to homotopy. �

We now turn to the proof of Theorem A. When G is p-constrained (in particu-
lar, when G is p-solvable), then it is relatively simple to prove that the functor ZG
is acyclic (i.e., lim←−

i(ZG) = 0 for all i ≥ 1), and this is shown in Proposition 1.17.
The general case is, however, much more complicated. When G is an arbitrary
finite group, then ZG can be filtered by subfunctors ZKG , defined for all K C G by
setting

ZKG (P ) =

{
Z(P ) ∩K if P is p-centric in G
0 otherwise.

The idea of the proof of Theorem A is to filter G by a maximal sequence 1 = K0 �
K1 � · · · � Kn−1 � Kn = G of normal subgroups, and then analyze higher limits
of the quotient functors ZKj

G /ZKj−1
G . In particular, lim←−

i(ZG) = 0 for all i ≥ 2 if
the same holds for higher limits of ZKj

G /ZKj−1
G for all j.

We first reduce the general computation of lim←−
∗(ZKj

G /ZKj−1
G

)
to the special

case where L = Kj is quasisimple (i.e., L is perfect and L/Z(L) is simple) with
p-group center A = Kj−1 = Z(L). This is done in Lemmas 2.1 and 2.4. We then
observe that in this case, lim←−

∗(ZLG/ZAG) depends only on L and on AutG(L). This
motivates the definition of new functors YΓ

L on Op(Γ), defined for any quasisimple
group L with p-group center and any Γ ≤ Aut(L) which contains Inn(L), with the
property that

lim←−
∗(ZLG/ZAG) ∼= lim←−

∗(YΓ
L)

for any A C L C G as above with Γ = AutG(L). For example, if L is simple (and
identified with Inn(L) C Γ), then YΓ

L = ZLΓ . The definition of YΓ
L in the general

case is given in Definition 2.5.

To simplify notation in the rest of the paper, we then define Li(p) to be the
class of simple groups L for which lim←−

i(YΓ
eL
) = 0 for all choices of central extensions

L̃ of L and Γ ≤ Aut(L̃). We are thus reduced to proving that all simple groups lie
in L≥2(2).

In Chapter 4, we define, for each nonabelian finite simple group L, certain
sets Ri(L ; p) of p-subgroups which could “contribute” to lim←−

i(−), in a way made
precise in Definition 4.1. We then show (Proposition 4.2) that L ∈ Li(p) if there
is a p-centric subgroup Q ≤ L, which is weakly closed in a Sylow p-subgroup
which contains it, and with the property that all subgroups in Ri(L ; p) contain
Q up to conjugacy. This is the result which in almost all cases will be used to
show L ∈ L≥2(2) (simple groups of Lie type in characteristic two are handled in a
different way). The last half of Chapter 4 then consists of a series of propositions,
each of which gives some conditions to be used when proving that certain subgroups
do not lie in R≥2(L ; 2).

In this way, the paper splits into two halves. Chapters 1–4 involve homolog-
ical algebra, and reduce the problem to a series of criteria stated in purely group
theoretic terms. These criteria are then applied in Chapters 5–9 to the individual
groups, to show that L ∈ L≥2(2) in all cases. Afterwards, in Chapter 10, some
computations of lim←−

1(ZG) are listed (mostly without proof).
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Clearly, as a topologist writing a paper which depends very heavily on the
structure of the individual finite simple groups, I had a lot of assistance. Michael
Aschbacher, Ron Solomon, and Richard Lyons all gave extensive help in answering
my questions about the structure of certain simple groups. I am grateful to Sergey
Shpektorov and Ulrich Meierfrankenfeld for sending me their manuscript listing
the maximal 2-local subgroups of the monster and the baby monster — which
allowed me to fill in the last step in the proof of Theorem A. I had several helpful
discussions with George Glauberman and Jesper Grodal during my short visits to
the University of Chicago. Also, Jesper Grodal’s theorems for computing higher
limits using Steinberg complexes [Gro], while not used here directly, was used in
many of the computations which led to this proof. I am especially indebted to my
earlier collaborator, Yoav Segev, who (while not involved in this project) taught
me much of what I know about the classification theorem, and especially about
the finite simple groups of Lie type. I would also like to thank my colleagues at
Northwestern University and the University of Wisconsin for their hospitality while
working on many of the later stages of this project. Finally, I would like to thank
both referees of this paper, and especially the referee of Chapters 5–9 whose detailed
suggestions led to considerable improvements (and corrections) in those chapters.

General notation: We list here, for easy reference, the following notation
which will be used throughout the paper.

• Sp(G) denotes the set of p-subgroups of G

• Sylp(G) denotes the set of Sylow p-subgroups of G

• Gp denotes a Sylow p-subgroup of the group G, but only when it is abelian and
a direct factor of G

• G# = Gr{1} for any group G

• Op(G) is the maximal normal p-subgroup of G

• Op′(G) is the maximal normal subgroup of G of order prime to p

• Cn, Dn, and Qn denote cyclic, dihedral, and quaternion groups of order n

• An and Σn are the alternating and symmetric groups on n elements

• Ωn(P ) (for a p-group P ) is the subgroup generated by all g ∈ P such that gp
n

= 1

• NG(H,K) = {x ∈ G |xHx−1 ≤ K} (for H,K ≤ G)

• cx denotes conjugation by x (g 7→ xgx−1)

• HomG(H,K) =
{
cx ∈ Hom(H,K)

∣∣x ∈ NG(H,K)
}

(for H,K ≤ G)

• AutG(H) = HomG(H,H) ∼= NG(H)/CG(H), OutG(H) = AutG(H)/ Inn(H)

• A functor F : Cop → Ab is called acyclic if lim←−
i(F ) = 0 for all i > 0.



CHAPTER 1

Higher limits over orbit categories

Throughout this chapter, p will be a fixed prime. We first fix our notation. For
any finite group G, the p-subgroup orbit category of G is the category Op(G)
whose objects are the p-subgroups of G, and where

MorOp(G)(P,Q) = Q\NG(P,Q) ∼= MapG(G/P,G/Q).

Recall that NG(P,Q) = {x ∈ G |xPx−1 ≤ Q} (the transporter). This can also
be thought of as a category whose objects are orbits G/P of G and whose mor-
phisms are G-maps, but for our purposes it is more convenient to let the objects
be subgroups. For any homomorphism G

ρ−−−→ G′ of groups, we let

Op(G)
ρ#−−−−−−→ Op(G′)

denote the induced functor between orbit categories.

Theorem A is a statement about higher limits of the functor ZG : Op(G)op →
Ab, defined for any finite group G by setting ZG(P ) = Z(P ) if P is p-centric in
G and ZG(P ) = 0 otherwise. As described very briefly in the introduction, when
K C G is a normal subgroup, we must also consider the subfunctor

ZKG ⊆ ZG : Op(G)op −−−−−−−→ Z(p)-mod,

defined by setting

ZK
G (P ) =

{
Z(P ) ∩K if P is p-centric in G
0 otherwise.

Note that ZG = ZGG .

Mostly, this chapter is a collection of general results about higher limits of
functors over orbit categories. However, some concrete computations of lim←−

i(ZG)
are given in Proposition 1.6 (including cases where lim←−

1(ZG) 6= 0); and the acyclicity
of ZG and ZKG is proved when G is p-constrained (in particular, when G is p-
solvable) in Lemma 1.8 and Proposition 1.17.

1.1. The functor Λ∗

In [JMO], certain graded Z(p)-modules Λ∗(G;M) are defined, for any prime p,
any finite group G, and any Z(p)[G]-module M , by setting

Λ∗(G; M) = lim←−
∗

Op(G)

(ΦGM ) where ΦGM (P ) =

{
M if P = 1
0 otherwise.

Note that these depend on the prime p, even though that has been suppressed from
the notation. We first list some of the basic properties of these groups.

6



1.1. THE FUNCTOR Λ∗ 7

Proposition 1.1. The following hold for any finite group G.

(a) Fix a p-subgroup P ≤ G, and let F : Op(G) → Z(p)-mod be any functor
which vanishes except on subgroups conjugate to P . Then

lim←−
∗

Op(G)

(F ) ∼= Λ∗(NG(P )/P ;F (P )).

(b) If H C G is a normal subgroup which acts trivially on the Z(p)[G]-module M ,
then

Λ∗(G;M) ∼=

{
Λ∗(G/H;M) if (p, |H|) = 1
0 otherwise.

(c) If Op(G) 6= 1 (if G contains a nontrivial normal p-subgroup), then Λ∗(G;M) =
0 for all Z(p)[G]-modules M .

(d) Λi(Σ3; (Z/2)2) ∼=

{
Z/2 if i = 1
0 if i 6= 1

, where Σ3 acts nontrivially on (Z/2)2.

(e) A short exact sequence 0 −−→M ′ −−−→M −−−→M ′′ −−→ 0 of Z(p)[G]-modules
induces a long exact sequence

−−−→ Λi(G;M ′) −−−→ Λi(G;M) −−−→ Λi(G;M ′′) −−−→ Λi+1(G;M ′) −−−→ .

Proof. See [JMO, Propositions 5.4, 5.5, 6.1, & 6.2]. Point (d) is a special case
of [JMO, Proposition 6.2(i)], included here because that particular computation
will be needed later, and because it is the simplest example where Λi(G;M) 6= 0
for i > 0. �

Proposition 1.1(b) motivates the following definition.

Definition 1.2. For any finite group G and any Z(p)[G]-module M , we say
that G acts p-faithfully on M if the kernel of the action Ker[G → Aut(M)]
has order prime to p.

The following lemma is an immediate consequence of Proposition 1.1(b,e).

Lemma 1.3. If the action of a finite group G on a finite Z(p)[G]-module M is
not p-faithful, then Λ∗(G;M) = 0. �

A radical p-subgroup of a finite group G is a p-subgroup P ≤ G such that
Op(NG(P )/P ) = 1; i.e., such that NG(P )/P has no nontrivial normal p-subgroups.
If P is a p-subgroup of G which is not radical, then Λ∗(NG(P )/P ;M) = 0 for all
Z(p)[NG(P )/P ]-modules M by Proposition 1.1(c).

Proposition 1.1 is usually applied by filtering an arbitrary functor on the orbit
category Op(G) in such a way that each quotient functor vanishes except on one
conjugacy class. By Proposition 1.1(a), the higher limits of these quotient functors
can then be described in terms of the graded groups Λ∗. The following lemma
describes some ways this can be done, but covers only those cases which will be
needed later.

Lemma 1.4. The following hold for any finite group G, and any functor

F : Op(G)op → Z(p)-mod.
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(a) Assume, for each radical p-subgroup P ≤ G such that F (P ) 6= 0, that the
NG(P )/P -action on F (P ) is not p-faithful. Then lim←−

∗(F ) = 0.

(b) Let H ⊆ Sp(G) be a subset such that Q ∈ H and P ≥ gQg−1 (g ∈ G) implies
P ∈ H. Then there is a quotient functor of F ,

FH : Op(G)op −−−→ Z(p)-mod defined by FH(P ) =

{
F (P ) if P ∈ H
0 if P /∈ H.

If, for all radical p-subgroups P ≤ G such that P /∈ H, the action of NG(P )/P
on F (P ) is not p-faithful, then

lim←−
∗

Op(G)

(F ) ∼= lim←−
∗

Op(G)

(FH) ∼= lim←−
∗

OHp (G)

(F |OHp (G)); (1)

where OHp (G) ⊆ Op(G) is the full subcategory with object set H.

Proof. In the situation of (a), Λ∗(NG(P )/P ;F (P )) = 0 for all P ∈ Sp(G):
either because F (P ) = 0, or by Proposition 1.1(b,c). Hence lim←−

∗(F ) = 0 by Propo-
sition 1.1(a), together with the obvious filtration of F and the exact sequences for
higher limits of extensions of functors.

It remains to prove (b). For each P ∈ Sp(G), let Φ(P ) : F (P ) −−−→ FH(P )
be the identity if P ∈ H, and the trivial map otherwise (FH(P ) = 0). By the
assumption on H, for any α ∈ MorOp(G)(P,Q), with induced homomorphism F (α)
from F (Q) to F (P ), either FH(Q) = F (Q) or FH(P ) = 0 (or both). This proves
that Φ is a natural epimorphism of functors, and thus that FH is a quotient functor
of F . If, for all radical p-subgroups P ≤ G such that P /∈ H, the action of NG(P )/P
on F (P ) is not p-faithful, then lim←−

∗(Ker(Φ)) = 0 by (a), and this proves the first
isomorphism in (1).

Any injective resolution of F |OHp (G) can be extended to an injective resolution
of FH by assigning to all functors the value zero on objects not in H, and this shows
that lim←−

∗(FH) ∼= lim←−
∗(F |OHp (G)). �

Proposition 1.1(c) and Lemma 1.4 show the important role played by radical
p-subgroups when working with higher limits of functors on orbit categories. The
following lemma lists some conditions for a p-subgroup to be radical or not.

Lemma 1.5. The following hold for any finite group G.

(a) If G splits as a product G =
∏
i∈I Gi, then each radical p-subgroup P ≤ G is of

the form P =
∏
i∈I Pi, where Pi ≤ Gi.

(b) Let H C G be any normal subgroup. Then for each radical p-subgroup P in
G, P ∩H is radical in H, and P ≥ H if H is a p-group. Conversely, if Q is
radical in H, then Q = P ∩H for some radical p-subgroup P in G.

Proof. (a) If P ≤ G =
∏
i∈I Gi does not split as a product, then let Pi ≤ Gi

be the image of P under the projection, and set P ′ =
∏
i∈I Pi ≤ G. Then P ′ 	 P

by assumption, and NG(P ′) ≥ NG(P ). Thus NP ′(P )/P is a nontrivial normal
p-subgroup of NG(P )/P , and P is not p-radical.



1.1. THE FUNCTOR Λ∗ 9

(b) Fix H C G. Assume first that P ∩ H is not radical in H, and set Q =
Op(NH(P∩H)) 	 (P∩H). ThenQP 	 P (sinceQ ≤ H), and soNQP (P )/P 6= 1 by
Lemma 1.10. Furthermore, NQP (P ) is normalized by N(P ) since Q is, NQP (P )/P
is thus a nontrivial normal p-subgroup of NG(P )/P , and so P is not radical in G.

Conversely, fix a radical p-subgroup Q in H, and set P = Op(NG(Q)). Then
P ∩H is a normal p-subgroup of NH(Q) which contains Q, and hence P ∩H = Q.
Clearly, NG(P ) ≥ NG(Q); they are equal since any x ∈ NG(P ) normalizes P ∩H =
Q; and thus P is radical. �

To give a quick illustration of how these techniques are applied, we describe the
computation of lim←−

i(ZG) in certain very simple cases. In particular, the following
proposition shows that these groups are nonvanishing when i = 1 and G is any of
the simple groups A6, A7, or PSL2(q) for q ≡ ±1 (mod 8).

Proposition 1.6. Fix a finite group G and a Sylow subgroup S ∈ Syl2(G).
Assume that S is a dihedral group of order ≥ 8, and let T1, T2 be S-conjugacy class
representatives for the subgroups isomorphic to C2

2 . Then

lim←−
1(ZG) ∼= Z/2

if AutG(Ti) ∼= Σ3 for i = 1, 2, and lim←−
1(ZG) = 0 otherwise. In all cases, lim←−

i(ZG) =
0 for all i ≥ 2.

Proof. Assume P ≤ S is such that Λ∗(NG(P )/P ;ZG(P )) 6= 0. Then P is
2-centric in G (since ZG(P ) = 0 otherwise), so PCG(P )/P has odd order, and

Λ∗(OutG(P );ZG(P )) ∼= Λ∗(NG(P )/PCG(P );Z(P )) ∼= Λ∗(NG(P )/P ;Z(P )) 6= 0

by Proposition 1.1(b). Hence O2(OutG(P )) = 1 (Proposition 1.1(c)). If P is cyclic
of order ≥ 4 or dihedral of order ≥ 8, then Out(P ) is a nontrivial 2-group, so these
cases cannot occur. So we are left only with the cases

Λi(OutG(P );Z(P )) ∼=


Z/2 if P = S, i = 0
Z/2 if P ∼= C2

2 , AutG(P ) ∼= Σ3, i = 1
0 otherwise.

The computation of Λ∗(Σ3; (Z/2)2) follows from Proposition 1.1(d).

By Alperin’s fusion theorem (cf. [Gor, Theorem 7.2.6]), and since 〈T1, T2〉 = S,
T1 and T2 cannot be G-conjugate. So using Proposition 1.1(a) and the obvious
filtration of ZG by subgroups, we see that lim←−

i(ZG) = 0 for all i ≥ 2; and obtain
an exact sequence

0 −−−→ lim←−
0

O2(G)

(ZG) −−−−→ Z/2 −−−−→ (Z/2)k −−−−→ lim←−
1

O2(G)

(ZG) −−−→ 0,

where k is the number of i = 1, 2 such that AutG(Ti) ∼= Σ3. If k ≥ 1, then Z(S) is
G-conjugate to another subgroup of S, and this implies that lim←−

0(ZG) = 0. Thus
lim←−

1(ZG) has rank k−1 in this case, and is trivial otherwise. �
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1.2. Fixed point and norm functors

Fix a finite group G. For any subgroup H ≤ G, set NH =
∑
h∈H h ∈ Z[G].

For any prime p and any Z(p)[G]-module M , we consider the functors

H0M, NM : Op(G)op −−−−−−→ Z(p)-mod,

defined by setting

H0M(P ) = H0(P ;M) = MP and NM(P ) = NP ·M.

The next proposition plays a central role — almost as important as that of the
functors Λ∗(G;M) — when computing higher limits over orbit categories.

Proposition 1.7. For any finite group G, any prime p, and any Z(p)[G]-
module M ,

lim←−
i

Op(G)

(H0M) =

{
MG if i = 0
0 if i > 0

and lim←−
i

Op(G)

(NM) =

{
NG·M if i = 0
0 if i > 0 .

Proof. Set Ĥ0M = H0M/NM ; thus Ĥ0M(P ) = Ĥ0(P ;M) for all P . These
functors are all proto-Mackey functors in the sense of [JM], and hence are acyclic by
[JM, Proposition 5.14]. The complete description of the higher limits of H0M and
Ĥ0M is shown in [JMO, Proposition 5.2], and that of NM follows immediately. �

As a first application of Proposition 1.7, we show that ZG is acyclic whenever
G contains a normal p-centric subgroup.

Lemma 1.8. Assume G is a finite group with a normal p-subgroup Q C G which
is p-centric in G. Then ZG is acyclic. More generally, the functor ZKG is acyclic
for any normal subgroup K C G.

Proof. Let O∗p(G) ⊆ Op(G) be the full subcategory whose objects are the p-
subgroups which contain Q. By Lemma 1.5(b), all radical p-subgroups of G contain
Q. So by Lemma 1.4(b), for all K C G,

lim←−
∗

Op(G)

(ZKG ) ∼= lim←−
∗

O∗p(G)

(ZKG |O∗p(G)).

SetM = Z(Q)∩K. For any p-subgroup P ≤ G containing Q, Z(P ) = Z(Q)P/Q

(since Q is p-centric in G), and hence

ZKG (P ) = Z(P ) ∩K ∼= MP/Q.

Thus ZKG |O∗p(G)
∼= H0M |O∗p(G). So if we identify the categories O∗p(G) ∼= Op(G/Q)

by sending P ∈ Ob(O∗p(G)) to P/Q ∈ Ob(Op(G/Q)), then

lim←−
∗

Op(G)

(ZKG ) ∼= lim←−
∗

Op(G/Q)

(H0M).

The functor H0M is acyclic by Proposition 1.7, and so ZKG is also acyclic. Since
ZG = ZGG , this functor is also acyclic. �
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1.3. Elementary group theory lemmas

We give here, for later reference, two standard lemmas in elementary group
theory. We start with the “Frattini argument”.

Lemma 1.9. For any finite group G, any normal subgroup H C G, and any
P ∈ Sylp(H), G = H·NG(P ).

Proof. For any g ∈ G, gPg−1 ∈ Sylp(H), and hence is H-conjugate to P . So
there is h ∈ H such that hg ∈ NG(P ), and thus g ∈ H·NG(P ). �

We will also need the following lemma about normalizers of p-subgroups.

Lemma 1.10. Fix subgroups P,H ≤ G such that P is a p-subgroup which nor-
malizes H, and P ∩H /∈ Sylp(H). Then P ∩H /∈ Sylp(NH(P )), and

p
∣∣|NHP (P )/P | = |NH(P )/(P ∩H)|.

Proof. By assumption, p
∣∣[H:P ∩H], and [H:P ∩H] = [HP :P ] since P nor-

malizes H. Hence NHP (P )/P also has order a multiple of p (since NHP (P )/P is
the fixed point set of a P -action on HP/P ). Also,

NHP (P )/P =
(
NH(P )·P

)/
P ∼= NH(P )

/(
P ∩NH(P )

)
= NH(P )/(P ∩H),

and thus P ∩H /∈ Sylp(NH(P )). �

1.4. Reduction to smaller orbit categories

We next list some conditions which allow us, in certain situations, to reduce
the computation of higher limits of a functor on Op(G) to those of a functor on the
orbit category of a smaller group.

Lemma 1.11. Fix a finite group G and a p-subgroup Q ≤ G. Then there is a
well defined functor

ΨG
Q : Op(NG(Q)/Q) −−−−−−→ Op(G)

such that ΨG
Q(P/Q) = P for all P/Q ≤ NG(Q)/Q. Define

T =
{
P ≤ G

∣∣Q C P, and x ∈ G, xQx−1 C P implies x ∈ NG(Q)
}
.

Then for any functor F : Op(G)op → Z(p)-mod which vanishes except on sub-
groups G-conjugate to subgroups in T , the induced homomorphism

lim←−
∗

Op(G)

(F )
ΨG

Q
∗

−−−−−−→∼=
lim←−

∗

Op(NG(Q)/Q)

(F ◦ ΨG
Q) (1)

is an isomorphism.

Proof. Set Ψ = ΨG
Q for short. Clearly, Ψ is well defined on objects. To see

that it is well defined on morphisms, recall first that

MorOp(G)(P, P ′) = P ′\NG(P, P ′),
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where NG(P, P ′) is the set of all x ∈ G such that xPx−1 ≤ P ′. Hence for any pair
of objects P/Q and P ′/Q in Op(NG(Q)/Q),

MorOp(NG(Q)/Q)(P/Q,P ′/Q) = (P ′/Q)\NN(Q)/Q(P/Q,P ′/Q)
∼= P ′\NN(Q)(P, P ′) ⊆ P ′\NG(P, P ′) = MorOp(G)(P, P ′);

and Ψ is defined on morphism sets to be this inclusion.

Composition with Ψ is natural in F and preserves short exact sequences of
functors. Hence if F ′ ⊆ F is a pair of functors from Op(G) to Z(p)-mod, and the
lemma holds for F ′ and for F/F ′, then it also holds for F by the 5-lemma. It
thus suffices to prove that (1) is an isomorphism when F vanishes except on the
G-conjugacy class of one subgroup P ∈ T . When P = Q, then (1) is precisely the
isomorphism lim←−

∗(F ) ∼= Λ∗(N(Q)/Q;F (Q)) of Proposition 1.1(a).

Now let P ∈ T be arbitrary. By definition, Q C P , and if x ∈ G is such that
Q C xPx−1, then x−1Qx C P implies x ∈ NG(Q). Thus NG(P ) ≤ NG(Q), and
F ◦ Ψ vanishes except on the NG(Q)/Q-conjugacy class of P/Q. Let

Ψ′ = ΨN(Q)/Q
P/Q : Op(NG(P )/P ) −−−−−−→ Op(NG(Q)/Q)

be the functor Ψ′(R/P ) = R/Q for p-subgroups R ≤ NG(P ) ≤ NG(Q) containing
P . Then the following square commutes

lim←−
∗

Op(G)

(F )
Ψ∗ → lim←−

∗

Op(N(Q)/Q)

(F ◦ Ψ)

Λ∗(NG(P )/P ;F (P ))

(Ψ◦Ψ′)∗ ∼=

↓
== Λ∗(NG(P )/P ;F (P )) ,

Ψ′∗ ∼=

↓

and the vertical maps are isomorphisms by Proposition 1.1(a) (see the proof of
[JMO, Lemma 5.4] for the precise description of the isomorphisms). This shows
that Ψ∗ is an isomorphism. �

We will need three special cases of Lemma 1.11: the first and third will be
applied in Chapter 3, and the second in Chapter 2.

Lemma 1.12. Fix a finite group G and a normal subgroup H C G. Fix a p-
subgroup Q ≤ H, and let F : Op(G)op → Z(p)-mod be any functor such that
F (P ) = 0 whenever P ∩H is not G-conjugate to Q. Then the induced homomor-
phism

lim←−
∗

Op(G)

(F )
ΨG

Q
∗

−−−−−−→∼=
lim←−

∗

Op(N(Q)/Q)

(F ◦ ΨG
Q),

is an isomorphism, where ΨG
Q is the functor of Lemma 1.11.

Proof. If P ∩H = Q, then Q C P , and for any x ∈ G such that xQx−1 ≤ P
we have xQx−1 ≤ P ∩H = Q and hence x ∈ NG(Q). Thus P ∈ T in the notation
of Lemma 1.11. �

The next lemma is really a special case of the last one, combined with other
results shown earlier in the chapter.
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Lemma 1.13. Fix a finite group G and a normal subgroup H C G. Assume
that F : Op(G)op → Z(p)-mod is a functor such that NHP (P )/P acts trivially on
F (P ) for all radical p-subgroups P ≤ G. Then for any Q ∈ Sylp(H), the induced
homomorphism

lim←−
∗

Op(G)

(F )
ΨG

Q
∗

−−−−−−→∼=
lim←−

∗

Op(N(Q)/Q)

(F ◦ ΨG
Q),

is an isomorphism, where ΨG
Q is the functor of Lemma 1.11.

Proof. Let F0 be the functor F0(P ) = F (P ) if P∩H ∈ Sylp(H) and F0(P ) = 0
otherwise, regarded as a quotient functor of F . If P ∩ H /∈ Sylp(H), then either
P is not radical, or p

∣∣|NHP (P )/P | (Lemma 1.10) and thus the action of NG(P )/P
is not p-faithful. Hence lim←−

∗(F ) ∼= lim←−
∗(F0) by Lemma 1.4(b); while lim←−

∗(F0) ∼=
lim←−

∗(F ◦ Ψ) by Lemma 1.12. �

In the next lemma, recall that for any finite group G and any S ∈ Sylp(G), a
subgroup P ≤ S is weakly closed in S with respect to G if P is not G-conjugate to
any other subgroup of S.

Lemma 1.14. Fix a finite group G, and subgroups Q ≤ S ∈ Sylp(G) such that
Q is weakly closed in S with respect to G. Let F : Op(G)op → Z(p)-mod be a
functor such that F (P ) = 0 whenever P does not contain a subgroup G-conjugate
to Q. Then the induced homomorphism

lim←−
∗

Op(G)

(F )
ΨG

Q
∗

−−−−−−→∼=
lim←−

∗

Op(N(Q)/Q)

(F ◦ ΨG
Q),

is an isomorphism, where ΨG
Q is the functor of Lemma 1.11.

Proof. For each P ≥ Q, there is x ∈ G such that xPx−1 ≤ S; xQx−1 = Q
since Q is weakly closed in S, and thus x ∈ NG(Q). If y ∈ G is such that yQy−1 C
xPx−1, then y ∈ NG(Q) since Q is weakly closed in S (hence in xPx−1). In
particular, Q C xPx−1, and this shows that xPx−1 ∈ T in the notation of Lemma
1.11. Thus every P such that F (P ) 6= 0 is G-conjugate to some P ′ ∈ T , and the
result follows from Lemma 1.11. �

The following lemma is very similar in nature to Lemma 1.11. Recall that ϕ#

denotes the functor between orbit categories induced by a group homomorphism ϕ.

Lemma 1.15. Fix a surjection ϕ : G −−� G′ of finite groups. Then for any
functor F : Op(G′)op −−→ Z(p)-mod,

lim←−
∗

Op(G)

(F ◦ ϕ#) ∼= lim←−
∗

Op(G′)

(F ).

More generally, set H = Ker(ϕ), and let O∗p(G) ⊆ Op(G) be the full subcategory
whose objects are the p-subgroups P ≤ G such that P ∩H ∈ Sylp(H). Then

lim←−
∗

Op(G)

(F ) ∼= lim←−
∗

Op(G′)

(F ) (1)
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for any F : Op(G′)op −−→ Z(p)-mod and F : Op(G)op −−→ Z(p)-mod such that

(F ◦ ϕ#)|O∗p(G)
∼= F |O∗p(G), (2)

and such that the action of NHP (P )/P on F (P ) is trivial for all P ∈ Sp(G).

Proof. It suffices to prove the last statement, since NHP (P )/P acts trivially
on F (ϕ(P )) for each P .

For all P ∈ Sp(G) such that P ∩ H /∈ Sylp(H), p
∣∣|NHP (P )/P | (see Lemma

1.10), and NHP (P )/P acts trivially on F (P ). Hence by Lemma 1.4(b),

lim←−
∗

Op(G)

(F ) ∼= lim←−
∗

O∗p(G)

(
F |O∗p(G)

)
. (3)

Let ϕ∗# : O∗p(G) → Op(G′) be the restriction of ϕ#. This is a bijection on
isomorphism classes of objects, since ϕ∗#(P ) = P ′ (for p-subgroups P ≤ G and
P ′ ≤ G′) if and only if P ∈ Sylp(ϕ−1P ′). It is also surjective on all morphism sets,
since for any pair of objects P,Q in O∗p(G), and any x ∈ NG(PH,QH), xPx−1 ≤
QH is H-conjugate to a subgroup of Q ∈ Sylp(QH), and hence x ∈ H·NG(P,Q).

Now assume x, y ∈ NG(P,Q) induce the same morphism in Op(G′). After
replacing y by an appropriate element of Qy, we can assume that y ∈ Hx = xH.
Set y = xh (where h ∈ H). Then P and hPh−1 are both subgroups of x−1Qx, so
[h, P ] ≤ x−1Qx ∩ H = P ∩ H (since P ∩ H ∈ Sylp(H)), and thus h ∈ N(P ). In
other words,

MorOp(G′)(ϕ(P ), ϕ(Q)) ∼= MorOp(G)(P,Q)
/
(NHP (P )/P ) .

Also, NHP (P )/P has order prime to p since P ∈ Sylp(HP ). The category Op(G′)
is thus equivalent to O∗p(G) after dividing out by the action of certain subgroups of
automorphisms of order prime to p. So by [BLO, Lemma 1.3],

lim←−
∗

Op(G′)

(F ) ∼= lim←−
∗

O∗p(G)

(F ◦ ϕ∗#),

and (1) follows from this together with (2) and (3). �

1.5. More higher limits of ZG

We have already given two examples (Proposition 1.6 and Lemma 1.8) of com-
putations of higher limits of the functors ZG or ZKG , using the tools described at
the beginning of this chapter. We now give two more applications, also using the
last lemma.

We first show, for any finite group G, that Theorem A holds for G if and only
if it holds for G/Op′(G). For use in the next chapter, we also state this in terms of
the more general functors ZKG .

Lemma 1.16. Let G be a finite group, with normal subgroup T C G of order
prime to p. Then for any p-subgroup P ≤ G, P is p-centric in G if and only if
PT/T is p-centric in G/T . Hence

lim←−
∗

Op(G)

(ZG) ∼= lim←−
∗

Op(G/T )

(ZG/T ),

and lim←−
∗(ZKG ) ∼= lim←−

∗(ZKT/TG/T ) for any K C G.
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Proof. Let ϕ : G −−−→ G/T denote the projection. The isomorphisms be-
tween higher limits follows from Lemma 1.15, once we know that ZG ∼= ZG/T ◦ ϕ#

and ZKG ∼= Z
KT/T
G/T ◦ ϕ#. Since ϕ#(P ) = PT/T ∼= P , it remains only to show that

P is p-centric in G if and only if PT/T is p-centric in G/T .

We will show that CG/T (PT/T ) = CG(P )·T/T . Since P ∼= PT/T , this will
then imply that Z(PT/T ) ∈ Sylp(CG/T (PT/T )) (PT/T is p-centric) if and only if
Z(P ) ∈ Sylp(CG(P )) (P is p-centric). One inclusion is clear: if g ∈ CG(P )·T , then
[g, PT ] ≤ T , and so gT ∈ CG/T (PT/T ).

Now assume gT ∈ CG/T (PT/T ). Then [g, P ] ≤ T , so P and gPg−1 are two
Sylow p-subgroups of PT , and hence are T -conjugate. Choose h ∈ T such that
hg ∈ NG(P ). Then [hg, P ] ≤ T∩P = 1, so hg ∈ CG(P ), and thus g ∈ CG(P )·T . �

If G is a finite group such that Op′(G) = 1, then G is called p-constrained if
there is a normal p-subgroup Q C G such that CG(Q) = Z(Q). More generally,
if G is an arbitrary finite group, then G is called p-constrained if G/Op′(G) is p-
constrained. Since any finite p-solvable group is p-constrained (cf. [Gor, Theorem
6.3.2]), the following proposition is an immediate corollary to Lemmas 1.16 and 1.8.

Proposition 1.17. For any finite group G which is p-constrained or p-solvable,
ZG is acyclic.

1.6. Kan extensions and limits

In this section, for any (small) category C, we let C-mod denote the category
of functors calcop −−−→ Ab. If H ≤ G, and F : Op(H)op −−→ Ab is any functor,
then we define

F↑GH : Op(G)op −−−−−−→ Ab

as follows. Fix an object P in Op(G), let ι↓P be the overcategory whose objects
are the morphisms Q → P in Op(G) for Q ≤ H, and let κP : ι↓P → Op(H) be
the forgetful functor which sends (Q→ P ) to Q. Set

(F↑GH)(P ) = lim←−
ι↓P

(F ◦ κP ),

and let a morphism P −−→ P ′ in Op(G) induce the obvious map between inverse
limits. By [McL, §X.3, Theorem 1], F↑GH is a right Kan extension to F ; i.e., (−)↑GH
is a right adjoint to the restriction functor from Op(G)-mod to Op(H)-mod.

Lemma 1.18. The following hold for any H ≤ G and any F : Op(H)op −−→ Ab.

(a) lim←−
∗

Op(G)

(F↑GH) ∼= lim←−
∗

Op(H)

(F ).

(b) We can identify

(F↑GH)(P ) =
(⊕
g∈G

F (H ∩ gPg−1)
)P×H ∼= ⊕

HgP∈H\G/P

F (H ∩ gPg−1); (1)

where (x, y) ∈ P × H acts on the first sum by sending the summand for g to
the summand for xgy−1 via F (y). When aPa−1 ≤ Q, the induced morphism

a∗ = (F↑GH)(a) : (F↑GH)(Q) −−−−−−→ (F↑GH)(P )
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satisfies (a∗(ξ))g = F (incl)(ξga−1).

Proof. The formulas in (b) follow directly from the definition of (F↑GH)(P )
as an inverse limit. In particular, the term for g ∈ G corresponds to the maximal

object H ∩ gPg−1 g−1

→ P in the overcategory ι↓P . Also, this formula shows that
(−)↑GH preserves exact sequences of functors.

From the fact that (−)↑GH is a right adjoint to the restriction functor from
Op(G)-mod to Op(H)-mod, it follows immediately that (−)↑GH sends injectives in
Op(H)-mod to injectives in Op(G)-mod. Also, if Z denotes the constant functors
with value Z, then

lim←−
Op(G)

(F↑GH) ∼= HomOp(G)-mod(Z, F↑GH) ∼= HomOp(H)-mod(Z, F ) ∼= lim←−
Op(H)

(F ).

Since (−)↑GH sends an injective resolution of F to an injective resolution of F↑GH ,

lim←−
∗

Op(G)

(F↑GH) ∼= lim←−
∗

Op(H)

(F ). �



CHAPTER 2

Reduction to simple groups

Again, throughout this chapter, we fix a prime p. Our goal now is to study
the higher limits of the quotient functors ZK1

G /ZK2
G , when G is a finite group, and

K2 C K1 C G are two normal subgroups such that K1/K2 is a minimal normal
subgroup of G/K2. Recall again that the subfunctors ZK2

G ⊆ ZK1
G ⊆ ZG are defined

by setting

ZKi

G (P ) =

{
Z(P ) ∩Ki if P is p-centric in G
0 otherwise.

We will reduce the computation of higher limits of ZK1
G /ZK2

G to the case where
K1/K2 is a nonabelian simple group, K2 = Z(K1) is an abelian p-group, and K1

is perfect (thus a quasisimple group).

This involves a series of reductions. The general idea in each case is to first “sim-
plify” the functors in question, by replacing them by quotient functors which vanish
on certain smaller subgroups without changing the higher limits of the functors. In
most cases, this means showing that Λ∗(N(P )/P ;−) = 0 for certain subgroups P ,
and then applying Proposition 1.1(a) or Lemma 1.4. Afterwards, we compare the
higher limits of these quotient functors, over orbit categories of different groups,
using Lemma 1.13, 1.15, or 1.18.

Once we have reduced the problem to that of computing lim←−
∗(ZLG/ZAG), when

L is quasisimple and A = Z(L) is a p-group, we then observe that this computation
depends only on L and on Γ = AutG(L). We can thus reformulate these results
in terms of higher limits of a new functor YΓ

L (Proposition 2.7). Afterwards, we
define Li(p) to be the set of all simple groups L for which lim←−

i(YΓ
eL
) = 0 whenever

L̃/Z(L̃) ∼= L and Inn(L̃) ≤ Γ ≤ Aut(L̃). Thus by the results of this chapter, a
nonabelian simple group L lies in Li(p) if and only if lim←−

i(ZK1
G /ZK2

G ) = 0 whenever
K1/K2

∼= Lr for some r ≥ 1. We are then left with the problem of showing, for
each i ≥ 2, that all simple groups lie in Li(2).

Lemma 2.1. Fix a finite group G, and subgroups K2 � K1 both normal in G,
such that K1/K2 is a minimal normal subgroup of G/K2. Then either ZK1

G /ZK2
G

is acyclic; or there is a finite group G0 with normal subgroups A C K such that

(a) K/A ∼= K1/K2 and is a minimal normal subgroup of G0/A,

(b) A is a p-group and A ≤ Z(K), and

(c) lim←−
∗

Op(G)

(
ZK1
G /ZK2

G

) ∼= lim←−
∗

Op(G0)

(
ZKG0

/ZAG0

)
.

17
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If, furthermore, K/A is an abelian p-group, then G0 can be chosen to contain a
normal p-subgroup Q C G0 which is p-centric in G0.

Proof. Set
H =

{
g ∈ G

∣∣ [g,K1] ≤ K2

}
C G

(i.e., H/K2 = CG/K2(K1/K2)). Choose

Q ∈ Sylp(H),

and set [
G′ = NG(Q)

]
B

[
K ′

1 = CK1(Q)
]

B
[
K ′

2 = CK2(Q)
]
.

Since K2 C H and Q ∈ Sylp(H),

K ′
2 = CK2(Q) = K2 ∩ CH(Q) = K2 ∩

(
Z(Q)× T̂

)
= A′ × T,

where A′ = K2 ∩ Z(Q) is an abelian p-group, and where T̂ and T = K2 ∩ T̂ have
order prime to p. Now set[

G0 = G′/T
]

B
[
K = K ′

1/T
]

B
[
A = K ′

2/T
∼= A′

]
.

We will show that

lim←−
∗

Op(G)

(
ZK1
G /ZK2

G

) ∼= lim←−
∗

Op(G′)

(
ZK

′
1

G′ /Z
K′

2
G′

) ∼= lim←−
∗

Op(G0)

(
ZKG0

/ZAG0

)
. (1)

The second isomorphism follows from Lemma 1.16.

Let
Op(G) Ψ←−−−−−− Op(G′/Q) Ψ′−−−−−−→ Op(G′)

be the functors of Lemma 1.13; thus Ψ(P/Q) = P = Ψ′(P/Q). We claim that

lim←−
∗

Op(G)

(ZK1
G /ZK2

G ) ∼= lim←−
∗

Op(G′/Q)

(ZK1
G /ZK2

G ◦ Ψ)

∼= lim←−
∗

Op(G′/Q)

(ZK
′
1

G′ /Z
K′

2
G′ ◦ Ψ′) ∼= lim←−

∗

Op(G′)

(ZK
′
1

G′ /Z
K′

2
G′ ). (2)

For all P ∈ Sp(G), NHP (P )/P acts trivially on (ZK1
G /ZK2

G )(P ) since H centralizes
K1/K2 ([H,K1] ≤ K2 by definition of H), so the first isomorphism in (2) follows
from Lemma 1.13. The proof of the third isomorphism is similar (just replace
H C G by Q C G′). For each P/Q ∈ Sp(G′/Q), CG(P ) ≤ CG(Q) ≤ G′, and thus
P is p-centric in G if and only if it is p-centric in G′. Hence(

ZK1
G /ZK2

G ◦ Ψ
)
(P/Q) ∼=

Z(P ) ∩K1

Z(P ) ∩K2

∼=
(
ZK

′
1

G′ /Z
K′

2
G′ ◦ Ψ′)(P/Q)

if P is p-centric in G, and both groups are zero otherwise. So these two functors
are isomorphic, this proves the second isomorphism in (2), and finishes the proof
of the first isomorphism in (1).

If K ′
1 = K ′

2, then ZK
′
1

G′ /Z
K′

2
G′ is the zero functor, and the functors in (1) are all

acyclic. Hence there is nothing more to prove in this case. So assume K ′
1 	 K ′

2

(and recall K ′
1 C G′). We must show that K/A ∼= K ′

1/K
′
2
∼= K1/K2, and that this

is a minimal normal subgroup of G0/A ∼= G′/K ′
2.

Fix any K ′ 	 K ′
2 such that K ′ ≤ K ′

1 and K ′ C G′. Since K ′
2 = K ′

1 ∩ K2,
this implies K ′ � K2, so K ′K2 	 K2. The subgroup K ′K2 is normalized by
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G′, and is normalized by H since [H,K ′] ≤ [H,K1] ≤ K2 by definition. Hence
K ′K2 C HG′ = G, where the last equality follows from a Frattini argument again.
Since K1/K2 is a minimal normal subgroup of G/K2 and 1 6= K ′K2/K2 C G/K2,
we have K ′K2 = K ′

1K2 = K1. Thus K1/K2
∼= K ′/K ′

2 = K ′
1/K

′
2
∼= K/A, and

K/A is a minimal normal subgroup of G0/A ∼= G′/K ′
2. This proves (a), and we

already showed (c). As for (b), A is a p-group by construction, and A ≤ Z(K)
since A = K ′

2/T ≤ Z(Q)·T/T and K = CK1(Q)/T .

It remains to prove the last statement. Assume K1/K2
∼= K/A is an abelian p-

group. Then H ≥ K1 since H/K2 = CG/K2(K1/K2) by definition, and QK2 ≥ K1

since Q ∈ Sylp(H). For any g ∈ CG(Q), [g,K1] ≤ [g,QK2] ≤ [g,K2] ≤ K2, so
g ∈ H. This proves that Q is p-centric in G, and hence also in G′. So QT/T ∼= Q
is a normal p-subgroup of G0 = G′/T , which is p-centric by Lemma 1.16. �

As a first application of Lemma 2.1, we handle the case where the subquotient
K1/K2 is abelian.

Proposition 2.2. Let G be a finite group. If K2 C K1 C G are subgroups, both
normal in G, such that K1/K2 is abelian, then the functor ZK1

G /ZK2
G is acyclic.

Proof. It suffices to prove the acyclicity of ZK1
G /ZK2

G when K1/K2 is a min-
imal normal subgroup of G/K2. If K1/K2 has order prime to p, then ZK1

G = ZK2
G ,

and the result is clear. If K1/K2 is a p-group, then by Lemma 2.1, we can also
assume that K2 (hence K1) is a p-group, and that there is a normal p-centric sub-
group Q ≤ G. Then ZK1

G and ZK2
G are both acyclic by Lemma 1.8, and the quotient

functor is also acyclic. �

The following technical lemma will be needed twice in later reductions.

Lemma 2.3. Let G be a finite group with normal subgroups A C K C G, such
that A ≤ Z(K) is an abelian p-group. Let P ≤ G be a p-subgroup such that either
A � P , or (P ∩ K)/A is not p-centric in K/A, or P ∩ K is not p-centric in K.
Then the action of NG(P )/P on (PA ∩K)/A is not p-faithful.

Proof. Set H =
{
x ∈ K

∣∣ [x, P ∩ K] ≤ A
}
. Then P normalizes H. Also,

P ∩H /∈ Sylp(H): this is clear if A � P , and follows by definition (of p-centric) if
(P ∩K)/A is not p-centric in K/A or (P ∩K)/A is not p-centric in K/A. Hence
p
∣∣|NHP (P )/P | by Lemma 1.10. Since NHP (P )/P acts trivially on (PA ∩ K)/A,

this shows that the NG(P )/P -action is not p-faithful. �

We next reduce the computation of lim←−
∗(ZK1

G /ZK2
G ) when K1/K2 is nonabelian

to the case where K1 is quasisimple; i.e., to the case where K1/K2 is nonabelian
and simple, K2 = Z(K1), and K1 is perfect.

Lemma 2.4. Fix a finite group G, and subgroups A ≤ K ≤ G, both normal in
G, such that A is a p-group, [A,K] = 1, and K/A is nonabelian and a minimal
normal subgroup of G/A. Then A = Z(K), and we can write K/A =

∏
j∈J Lj,

where each Lj is simple and a minimal normal subgroup of K/A. Let Kj ≤ K

be such that Lj = Kj/A, and set L̃j = [Kj ,Kj ], Aj = L̃j ∩ A = Z(L̃j), and
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Gj = NG(L̃j). Then for any given j ∈ J ,

lim←−
i

Op(G)

(ZKG /ZAG) ∼= lim←−
i

Op(Gj)

(Z
eLj

Gj
/ZAj

Gj
)

for all i ≥ 2, and there is a surjection

lim←−
1

Op(Gj)

(Z
eLj

Gj
/ZAj

Gj
) −−−−−� lim←−

1

Op(G)

(ZKG /ZAG).

Proof. Since K/A is nonabelian and a minimal normal subgroup of G/A, it
must be a product of nonabelian simple groups isomorphic to each other (cf. [Gor,
Theorem 2.1.5]). Since we also assume [A,K] = 1, this implies that A = Z(K). So
write K/A =

∏
j∈J Lj where Lj = Kj/A as above. For any i 6= j, Ki ∩Kj = A,

and hence [Ki,Kj ] ≤ A. Since A is central, this means that the commutator
map [−,−] : Ki×Kj −−→ A is a homomorphism in each coordinate; e.g., [gg′, h] =
[g, h][g′, h] for g, g′ ∈ Ki and h ∈ Kj . Thus

[Ki,Kj ] = 1 for all i 6= j, (1)

since Ki/A and Kj/A are simple and centralize A.

Set Zj = Z
eLj

Gj
/ZAj

Gj
for short. Define functors F1, F2 : Op(G)op → Ab by

setting

F1(P ) =
(∏
j∈J
Zj(P ∩Gj)

)P
and F2 = ZKG /ZAG .

Each factor Zj(P ∩Gj) in F1(P ) can be identified with a subgroup of Lj ∼= L̃j/Aj ,
and hence F1(P ) can be identified with a subgroup of K/A. Under this identifica-
tion, F1 sends the morphism in Op(G) represented by g ∈ NΓ(P,Q) to

F1(Q)
x7→g−1xg−−−−−−−→ F1(P ).

Let F ′
1 and F ′

2 be the functors

F ′
i (P ) =

{
Fi(P ) if P ∩K is p-centric in K
0 otherwise.

In Step 1, we show that

lim←−
∗

Op(G)

(F1) ∼= lim←−
∗

Op(Gj)

(Zj) for all j ∈ J ; (2)

and in Step 2 that

lim←−
∗

Op(G)

(F ′
1) ∼= lim←−

∗

Op(G)

(F1) and lim←−
∗

Op(G)

(F ′
2) ∼= lim←−

∗

Op(G)

(F2) (3)

In Step 3, we identify F ′
1 as a subfunctor of F ′

2, and prove in Step 4 that F ′
2/F

′
1 is

acyclic. The lemma then follows from the relative exact sequence for higher limits
of the pair F ′

1 ⊆ F ′
2.

Step 1: For each j ∈ J , there is an obvious morphism of functors on Op(Gj)
F1|Op(Gj) −−−−−→ Zj ,

defined by projection to the j-th factor, which is adjoint to a natural morphism

ω : F1 −−−−−→ Zj↑GGj
.
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Since G acts transitively on the factors Lj ≤ K/A (otherwise K/A would not be
a minimal normal subgroup), ω is an isomorphism of functors by the formula in
Lemma 1.18(b) for Kan extensions. Hence (2) follows from Lemma 1.18(a).

Step 2: To prove (3), it suffices, using Lemma 1.4(b), to show that when P ∩K
is not p-centric in K, then neither of the actions of NG(P )/P on F1(P ) or F2(P ) is
p-faithful. This follows from Lemma 2.3, since both of these groups Fi(P ) can be
identified with subgroups of

(PA ∩K)/A ∼= PA/A ∩
∏
j∈J

L̃j/Aj ≥
∏
j∈J

(PA ∩ L̃j)/Aj .

Step 3: Set K̃ =
∏
j∈J L̃j and Ã =

∏
j∈J Aj . We will write Rp for the Sylow

p-subgroup of a group R, but only in situations where it is a direct factor of R and
abelian.

Fix a p-subgroup P ≤ G such that P ∩K is p-centric in K, and note that

C
eK(P ) ∼=

[∏
j∈J

C
eLj

(P ∩Gj)
]P

and C
eA(P ) ∼=

[∏
j∈J

CAj
(P ∩Gj)

]P
.

Furthermore, the action of any g ∈ P permutes the factors under each of these
product decompositions, and is trivial whenever it sends a factor to itself. Hence

F1(P ) ∼=

∏
j∈J

C
eLj

(P ∩Gj)p
CAj (P ∩Gj)

P ∼= [∏
j∈J CeLj

(P ∩Gj)p
]P[∏

j∈J CAj (P ∩Gj)
]P ∼= C

eK(P )p
/
C
eA(P ).

We can thus write

F ′
1(P ) ∼= C

eK(P )p
/
C
eA(P ) and F ′

2(P ) ∼= CK(P )p
/
CA(P ) (4)

for all P ∈ Sp(G) such that P ∩K is p-centric in K. The natural map from K̃ to

K induces a natural morphism of functors F ′
1 → F ′

2, and this is injective since
F ′

1(P ) and F ′
2(P ) can both be identified as subgroups of K/A ∼= K̃/Ã.

Step 4: Set Φ = F ′
1/F

′
2 for short; it remains to show that Φ is acyclic. Fix

Q ∈ Sylp(K). Define

Φ: Op(NG(Q)/Q)op −−−−−→ Z(p)-mod by setting Φ(P/Q) = Φ(P ).

We claim that
lim←−

∗

Op(G)

(Φ) ∼= lim←−
∗

Op(NG(Q)/Q)

(Φ), (5)

and that Φ is acyclic. The isomorphism follows from Lemma 1.13, once we show
that NKP (P )/P acts trivially on Φ(P ) for each radical p-subgroup P ≤ G.

Recall that K/A =
∏
j∈J Kj/A, where the factors Kj/A are simple. Also,

L̃j = [Kj ,Kj ] is perfect (hence quasisimple), with center Z(L̃j) = Aj = L̃j ∩A.

Let R be the set of all radical p-subgroups of G. For any p-subgroup P ≤ G,
we write

P0 = P ∩K and Pj = P ∩Kj (all j ∈ J).
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For any P ∈ R, P ≥ A and P0 is radical in K by Lemma 1.5(b), and P0/A =∏
j∈J Pj/A by Lemma 1.5(a). If P0 is p-centric in K, then following sequence is

exact by (4):

1 → C
eA(P ) → C

eK(P )p × CA(P ) → CK(P )p → Φ(P ) → 1 . (6)

We claim that the sequence

1 → Ã → C
eK(P0)×A → CK(P0) → 1 (7)

is exact. This is obtained from the exact sequence 1 → Ã → K̃ × A → K → 1 by
taking fixed subgroups of the conjugation action of P0. So the exactness of (7) will
follow upon showing that C

eK(P0) × A surjects onto CK(P0). Any g ∈ K can be
written g = a·

∏
j∈J gj for a ∈ A and gj ∈ L̃j , [g, P0] = 1 implies [gj , Pj ] = 1 for

each j (since [Pj , L̃i] ≤ [Kj ,Ki] = 1 for i 6= j by (1)), and thus ga−1 is the image
of (gj)j∈J ∈ C eK(P0).

After taking fixed points of the P/P0-action on (7), we get an exact sequence

1 → C
eA(P ) → C

eK(P )p × CA(P ) → CK(P )p → H1(P/P0; Ã).

A comparison with (6) shows that Φ(P ) is contained in H1(P/P0; Ã) as a module
over N(P )/P . Each coset in NKP (P )/P contains an element of NK(P ), so this
group acts trivially on Φ(P ) since it acts trivially on P/P0

∼= PK/K and on Ã.
This finishes the proof of the isomorphism in (5), using Lemma 1.13.

Finally, when P0 = P ∩ K = Q, the first three terms in the exact sequence
(6) are acyclic as functors on Op(NG(Q)/Q) by Proposition 1.7. (For example,
C
eK(P ) = C

eK(Q)P/Q is the fixed subgroup of the P/Q-action.) So Φ is also acyclic,
and this finishes the proof that F ′

1/F
′
2 is acylic. �

We have now reduced the computation of lim←−
∗(ZK1

G /ZK2
G ) to the case where K1

is quasisimple and K2 = Z(K1) is an abelian p-group. It turns out that this only
depends on K1 and AutG(K1). To make this precise, we define certain functors YΓ

L

as follows. As usual, cx denotes conjugation by an element x; and we write Kp for
the Sylow p-subgroup of K when it is a direct factor and abelian.

Definition 2.5. Fix a finite group L and a group of automorphisms Γ ≤
Aut(L) which contains Inn(L). Define YΓ

L : Op(Γ)op → Ab by setting

YΓ
L(P ) =

{{
cx ∈ Inn(L)

∣∣x ∈ CL(P )
}
p if P ∩ Inn(L) is p-centric in Inn(L)

0 otherwise.

For any P,Q ≤ Γ and any g ∈ NΓ(P,Q),

YΓ
L

(
P

Qg−−−−→ Q
)

=
(
AutCL(Q)(L)p

cx 7→cg−1xg−−−−−−−−−→ AutCL(P )(L)p
)
.

Thus whenever P ∩ Inn(L) is p-centric in Inn(L),

YΓ
L(P ) ≤ CInn(L)(P ∩ Inn(L))p = Z(P ∩ Inn(L)).

Lemma 2.6. Fix a finite group G with quasisimple normal subgroup L C G,
and assume that A = Z(L) is a p-group. Set Γ = AutG(L). Then

lim←−
∗

Op(G)

(ZLG/ZAG) ∼= lim←−
∗

Op(Γ)

(YΓ
L).
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Proof. We consider the following three sets of p-subgroups of G:

H0 =
{
P ∈ Sp(G)

∣∣Z(P ) ∩ L ∈ Sylp(CL(P ))
}

H1 =
{
P ∈ Sp(G)

∣∣Z(P ) ∈ Sylp(CG(P ))
}

=
{
P ∈ Sp(G)

∣∣P p-centric in G
}

H2 =
{
P ∈ Sp(G)

∣∣P ≥ A and (P ∩ L)/A p-centric in L/A
}
.

We first claim that H1 ⊆ H0 ⊇ H2. The first inclusion is clear: if Z(P ) ∈
Sylp(CG(P )), then Z(P ) ∩ L ∈ Sylp(CL(P )). To see the second, note that if
(P ∩L)/A is centric in L/A, then P ∩L is centric in L, so CL(P ∩L) = Z(P ∩L)×T
for some T of order prime to p, and hence (after taking P -centralizers) CL(P ) =
(Z(P ) ∩ L)× CT (P ). Clearly, all three of these sets are closed under G-conjugacy
and overgroups.

For any P ∈ H0, Z(P ) ∩ L is central in CL(P ) and a Sylow subgroup; hence
CL(P ) = (Z(P ) ∩ L)× T for some T of order prime to p. Hence it makes sense to
define functors F0, F1, F2 : Op(G)op −−−→ Z(p)-mod, by setting

Fi(P ) =

{
(Z(P ) ∩ L)/(Z(P ) ∩A) = CL(P )p/CA(P ) if P ∈ Hi
0 otherwise.

In all cases, when P,Q ∈ Hi, a coset Qg for g ∈ NG(P,Q) induces the morphism
(x 7→ g−1xg) from Fi(Q) to Fi(P ). Since H0 contains H1 and H2, F1 and F2 can be
considered quotient functors of F0. For each P ∈ H0rH1, CG(P )·P/P has order a
multiple of p and acts trivially on F0(P ), so the action of NG(P )/P is not p-faithful.
For each P ∈ H0rH2, the action of NG(P )/P on F0(P ) ≤ (PA ∩ L)/A fails to be
p-faithful by Lemma 2.3. Since F1 = ZKG /ZAG , Lemma 1.4(b) now applies to show
that

lim←−
∗

Op(G)

(ZKG /ZAG) ∼= lim←−
∗

Op(G)

(F0) ∼= lim←−
∗

Op(G)

(F2). (1)

It remains to show that lim←−
∗(F2) ∼= lim←−

∗(YΓ
L). Let c : G −� Γ be the surjection

which sends g ∈ G to cg ∈ Aut(L). Set H = Ker(c) = CG(L), and let O∗p(G) ⊆
Op(G) be the full subcategory whose objects are the p-groups P ≤ G such that
P ∩H ∈ Sylp(H). By Lemma 1.15, it suffices to show that

(a) (YΓ
L ◦ c#)|O∗p(G)

∼= F2|O∗p(G); and

(b) the action of NHP (P )/P on F2(P ) is trivial for all p-subgroups P ≤ G.

Point (b) is clear, since H centralizes L.

For any P ≤ G such that P ∩H ∈ Sylp(H),

(YΓ
L ◦ c#)(P ) = YΓ

L(AutP (L))

∼=

{
CL(P )p/CA(P ) if AutP (L) ∩ Inn(L) p-centric in Inn(L)
0 otherwise.

(2)

Also, Inn(L) ∼= L/A, and (since H ∩ L = A):

AutP (L) ∩ Inn(L) = AutPH(L) ∩ Inn(L) = AutPH∩L(L) ∼= (PH ∩ L)/A.

In particular, PH ∩ L is a p-group since AutP (L) is. Since P ∩ H ∈ Sylp(H),
P ∈ Sylp(PH), so P ∩ H ∈ Sylp(PH ∩ L); and since PH ∩ L is a p-group, this
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implies that PH ∩ L = P ∩ L. Thus AutP (L) ∩ Inn(L) is p-centric in Inn(L) if
and only if (P ∩ L)/A is p-centric in L/A, so YΓ

L|O∗p(G)
∼= F2|O∗p(G) by (2), and this

finishes the proof of (a). �

Lemma 2.6 finishes the process of reducing the general computation of lim←−
∗(ZG)

to that of lim←−
∗(YΓ

L) when L is quasisimple and Inn(L) ≤ Γ ≤ Aut(L). These results
are now summarized in the following:

Proposition 2.7. Fix a finite group G and normal subgroups K2 ≤ K1 in
G, such that K1/K2 is a minimal subgroup of G/K2. If K1/K2 is abelian, or if
there is a p-subgroup Q ≤ G such that [Q,K1] ≤ K2 and CK1(Q) ≤ K2, then
the functor ZK1

G /ZK2
G is acyclic. Otherwise, there is a quasiperfect group L with

p-group center such that K1/K2 is isomorphic to a product of copies of L/Z(L), a
subgroup Γ ≤ Aut(L) containing Inn(L), and (for each i) a homomorphism

lim←−
i

Op(Γ)

(YΓ
L) −−−−−→ lim←−

i

Op(G)

(
ZK1
G /ZK2

G

)
which is onto when i = 1 and an isomorphism when i ≥ 2.

Proof. The abelian case was handled in Proposition 2.2. The cases where
K1/K2 is nonabelian follow from Lemmas 2.1, 2.4, and 2.6. �

In order to avoid repeating these conditions about central extensions and groups
of automorphisms throughout the remaining chapters, we define the following classes
of finite simple groups. Recall that p is a fixed prime, and that the functors YΓ

L

depend on p.

Definition 2.8. For each i ≥ 1, let Li(p) be the class of finite nonabelian
simple groups L with the property that

lim←−
i

Op(Γ)

(YΓ
eL
) = 0

for each quasisimple group L̃ such that Z(L̃) is a p-group and L̃/Z(L̃) ∼= L, and each
subgroup Γ ≤ Aut(L̃) which contains Inn(L̃). Also, L≥i(p) denotes the intersection
of the classes Lj(p) for all j ≥ i.

The important consequence of Proposition 2.7 is:

Proposition 2.9. For any finite group G and any i ≥ 1, lim←−
i(ZG) = 0 if each

nonabelian simple group L which appears in the decomposition series for G lies in
Li(p).

Our goal now, throughout the rest of the paper, is to show that every finite
nonabelian simple group lies in L≥2(2).



CHAPTER 3

A relative version of Λ-functors

We now have the problem of proving, for each nonabelian finite simple group L,
that higher limits vanish for certain functors YΓ

eL
, defined for all central extensions

L̃ of L and all groups of outer automorphisms Γ/ Inn(L̃) of L̃. We want to find
a way of doing all of these computations simultaneously (for a given L) as far as
possible. The functors for a central extension L̃ can be regarded as subfunctors of
the ones for L itself (this will be made more explicit in the next chapter). So the
main problem is to deal simultaneously with different groups of automorphisms of
L, which involves handling different functors over different orbit categories. The
main idea for doing this is to use the same filtration for all of these functors: a
filtration indexed by p-centric subgroups of L.

This motivates the following definition of a relative version of the functors
Λ∗(G;M): it will be used to describe the higher limits of the subquotients which
occur under this filtration of YΓ

eL
. Throughout this chapter, p denotes a fixed prime.

Definition 3.1. Fix a pair H C G of finite groups and a Z(p)[G]-module M .
Let ΦG,HM : Op(G)op −−→ Z(p)-mod be the functor defined by

ΦG,H
M (P ) =

{
MP if P ∩H = 1
0 otherwise;

and define
Λ∗(G, H; M) = lim←−

∗

Op(G)

(ΦG,HM ).

Note in particular that ΦGM = ΦG,GM , and hence Λ∗(G;M) = Λ∗(G,G;M). At
the other extreme, when H = 1, ΦG,1M = H0M , and so Λ0(G, 1;M) = MG and
Λi(G, 1;M) = 0 for i > 0 by Proposition 1.7.

The importance of these groups arises from the following generalization of
[JMO, Proposition 5.4]. For any H C G, we say that a functor F : Op(G)op −→ Ab

is H-controlled if for all P , the inclusion of (P∩H) in P induces an isomorphism
F (P ) ∼= F (P∩H)P . Thus the functors ΦG,HM defined above are H-controlled.

Proposition 3.2. Fix a finite group G, a prime p, a normal subgroup H C G,
and a p-subgroup Q ≤ H. Let F : Op(G) −−→ Z(p)-mod be any H-controlled functor
which vanishes except on subgroups P ≤ G such that P ∩H is G-conjugate to Q.
(Thus F (P ) = F (Q)P/Q whenever P ∩H = Q.) Then

lim←−
∗

Op(G)

(F ) ∼= Λ∗
(
NG(Q)/Q,NH(Q)/Q;F (Q)

)
.

25
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Proof. This is a special case of Lemma 1.12. �

The idea now is, given an H-controlled functor F : Op(G) → Z(p)-mod, to
filter it by subfunctors Fi in such a way that for each quotient functor Fi/Fi−1,
Fi/Fi−1(P ) = 0 except for those P ≤ G such that P ∩H lies in one G-conjugacy
class of p-subgroups of H. Then each lim←−

∗(Fi/Fi−1) is described via Proposition
3.2 and the Λ∗(G,H;−). When L is quasisimple and Inn(L) ≤ Γ ≤ Aut(L), the
functors YΓ

L need not be Inn(L)-controlled, but we will see that the same techniques
can be used to compute higher limits of these functors.

For any G, and any short exact sequence of Z(p)[G]-modules

0 −−→M ′ −−−−−→M −−−−−→M ′′ −−→ 0,

the induced sequence of functors 0 −−→ ΦGM ′ −−→ ΦGM −−→ ΦGM ′′ −−→ 0 is also ex-
act, and hence induces a long exact sequence of the groups Λ∗(G;−). This is not
in general the case for the relative groups Λ∗(G,H;−) when H C G is a proper
normal subgroup. For example, from the above remarks about Λ∗(G, 1;−), and the
fact that M 7→ MG is not an exact functor, it is clear that a short exact sequence
of Z(p)[G]-modules will not in general induce a long exact sequence of the groups
Λ∗(G, 1;−). This is why the statement of point (b) in the next proposition is so
detailed.

Most of the properties of the relative groups Λ∗(G,H;M) listed in the following
proposition generalize properties of the groups Λ∗(G;M) proven in [JMO].

Proposition 3.3. Fix a prime p, a finite group G, a normal subgroup H C G,
and a Z(p)[G]-module M . Then the following hold.

(a) If (p, |H|) = 1, then Λ0(G,H;M) ∼= MG, and Λi(G,H;M) = 0 for all i > 0.
If p
∣∣|H|, then Λ0(G,H;M) = 0.

(b) Λ∗(G,H;M) = 0 if the kernel of the action of H on M has order a multiple of
p. More generally, if M0 ⊆M is a G-invariant submodule, then
• Λ∗(G,H;M0) ∼= Λ∗(G,H;M) if the kernel of the H-action on M/M0 has

order a multiple of p; and
• Λ∗(G,H;M) ∼= Λ∗(G,H;M/M0) if the kernel of the H-action on M0 has

order a multiple of p.

(c) Λ∗(G,H;M) = 0 if Op(H) 6= 1.

(d) If K C G is a normal subgroup which acts trivially on the Z(p)[G]-module M ,
and H ∩K has order prime to p, then

Λ∗(G,H;M) ∼= Λ∗(G/K,HK/K;M).

(e) Assume the Sylow p-subgroups of H are cyclic, or (if p = 2) quaternion. Then
Λi(G,H;M) = 0 for all i ≥ 2.

Proof. (a) If (p, |H|) = 1, then P ∩ H = 1 for all p-subgroups H ≤ G, and
hence ΦG,HM = H0M in the notation of Proposition 1.7. So by that proposition,
lim←−

0(ΦG,HM ) = MG and its higher limits vanish. If p
∣∣|H|, then ΦG,HM (S) = 0 for

S ∈ Sylp(G), and hence lim←−
0(ΦG,HM ) = 0.

(b) The first statement is a special case of either of the other two.
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Assume first that K def= Ker[H → Aut(M/M0)] C G has order a multiple of
p. If P ≤ G is such that P ∩ H = 1, then 1 = P ∩K /∈ Sylp(K), so NPK(P )/P
has order a multiple of p by Lemma 1.10, and acts trivially on M/M0. Since
this holds for all such P , lim←−

∗(ΦG,HM /ΦG,HM0
) = 0 by Lemma 1.4(a), and hence

Λ∗(G,H;M) ∼= Λ∗(G,H;M0).

Now assume that K def= Ker[H → Aut(M0)] C G has order a multiple of p.
There is an exact sequence of functors on Op(G)

0 −−−→ ΦG,HM0
−−−−−→ ΦG,HM −−−−−→ ΦG,HM/M0

−−−−−→ Ψ −−−→ 0,

where Ψ(P ) ⊆ H1(P ;M0) if P ∩H = 1 and Ψ(P ) = 0 otherwise. We have just seen
that lim←−

∗(ΦG,HM0
) = 0, and hence we will be done upon showing that lim←−

∗(Ψ) = 0.
For each P ≤ G such that P ∩H = 1, NPK(P )/P has order a multiple of p (Lemma
1.10) and acts trivially on Ψ(P ) ⊆ H1(P ;M0). The action of NG(P )/P on Ψ(P )
thus fails to be p-faithful for any such P , and so all higher limits of Ψ vanish by
Lemma 1.4(a).

(c) If Op(H) 6= 1, then for all p-subgroups P ≤ G such that P ∩H = 1,

Op(NG(P )/P ) ≥ NOp(H)·P (P )/P 6= 1.

Hence no such subgroup is radical in G, and so Λ∗(G,H;M) = 0 by Lemma 1.4(a).

(d) Let ϕ : G −−→ G/K be the projection, and let ϕ# denote the induced functor
between orbit categories. Let O∗p(G) ⊆ Op(G) be the full subcategory whose objects
are those P ≤ G such that P ∩K ∈ Sylp(K). We claim that

ΦG,HM |O∗p(G)
∼=
(
ΦG/K,HK/KM ◦ ϕ#

)
|O∗p(G). (1)

This is clear, once we have checked that for any p-subgroup P ≤ G such that P∩K ∈
Sylp(K), P ∩H = 1 if and only if PK/K ∩HK/K = 1. If PK/K ∩HK/K = 1,
then P ∩H ≤ K, and hence P ∩H = 1 since P is a p-group and K ∩H has order
prime to p.

Conversely, if P∩H = 1, then PK∩H has order prime to p, since P ∈ Sylp(PK)
and thus any element of PK ∩ H of p-power order would be G-conjugate to an
element of P ∩H. Hence PK ∩H ≤ K, since any element of PKrK has order a
multiple of p. It follows that PK ∩HK ≤ K, and PK/K ∩HK/K = 1.

This finishes the proof of (1). Also, NKP (P )/P acts trivially on ΦG,HM (P ) for
all P , since K acts trivially on M . Lemma 1.15 now applies to show that

Λ∗(G,H;M) = lim←−
∗

Op(G)

(ΦG,HM ) ∼= lim←−
∗

Op(G/K)

(ΦG/K,HK/KM ) = Λ∗(G/K,HK/K;M).

(e) Fix T ∈ Sylp(G), set S = T ∩ H ∈ Sylp(H), and let Z ≤ S be the unique
subgroup of order p. In particular, Z is weakly closed in T with respect to G.

Regard ΦG,HM as a subfunctor of the functor H0M which sends P to MP for all
P . Then H0M/ΦG,HM sends a p-subgroup P ≤ G to MP if P contains a subgroup
conjugate to Z and sends P to 0 otherwise. So by Lemma 1.14,

lim←−
∗

Op(G)

(H0M/ΦG,HM ) ∼= lim←−
∗

Op(NG(Z)/Z)

(
P/Z 7→MP

)
,
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and this last functor is acyclic by Proposition 1.7. Since H0M is also acyclic by
Proposition 1.7, the exact sequence for the extension of functors now shows that
Λi(G,H;M) = lim←−

i(ΦG,HM ) = 0 for all i ≥ 2. �

The next proposition describes the role of these relative functors Λ∗(G,H;M)
when computing higher limits of the YΓ

eL
. For these purposes, it is useful to consider

the following subquotient functors of YΓ
eL
, defined for any p-centric subgroup Q ≤ L:

(YΓ
eL
)≥Q(P ) =

{
YΓ
eL
(P ) if P ≥ Q′, some Q′ Γ-conjugate to Q

0 otherwise

(YΓ
eL
)Q(P ) =

{
YΓ
eL
(P ) if P ∩ L is Γ-conjugate to Q

0 otherwise

Thus (YΓ
eL
)Q is a subfunctor of (YΓ

eL
)≥Q, and this is a quotient functor of YΓ

eL
. When

Γ and L̃ are clear from context, we drop them, and just write YQ ⊆ Y≥Q, etc.

Lemma 3.4. Fix a simple group L, a central extension L̃
π
−−� L such that L̃ is

quasisimple and Ker(π) is a p-group, and a subgroup Γ ≤ Aut(L̃) which contains
Inn(L̃) ∼= L. Then the following hold for any p-centric subgroup Q ≤ L.

(a) If Q /∈ Sylp(L), then lim←−
∗

Op(Γ)

((YΓ
eL
)Q) ∼= Λ∗(NΓ(Q)/Q,NL(Q)/Q;YΓ

eL
(Q)).

(b) If S ∈ Sylp(L), and Q is p-centric in L and weakly closed in S with respect to
Γ, then for all i ≥ 0,

lim←−
i

Op(Γ)

((YΓ
eL
)≥Q) ∼=

{
(π−1Q)NΓ(Q)/Z(L̃)Γ if i = 0
0 if i > 0.

Proof. Let F 1 ⊇ F 0 be the following functors on Op(Γ):

F 1(P ) =

{
(π−1(P ∩ L))P if P ∩ L is p-centric in L
Z(L̃)P otherwise

and F 0(P ) = Z(L̃)P .

Here, we identify L = Inn(L̃) C Γ. By definition, Y = YΓ
eL
∼= F 1/F 0. Define quo-

tient functors F i≥Q of F i and subfunctors F iQ ⊆ F i≥Q in analogy with the definitions
for Y . Thus

Y≥Q ∼= F 1
≥Q/F

0
≥Q and YQ ∼= F 1

Q/F
0
Q

By Proposition 3.2,

lim←−
∗

Op(Γ)

(F iQ) ∼= Λ∗
(
NΓ(Q)/Q,NL(Q)/Q;F iQ(Q)

)
for i = 0, 1. Since the action of NL(Q)/Q on F 0(Q) = Z(L̃) is trivial, Proposition
3.3(b) implies that if Q /∈ Sylp(L), then

lim←−
∗

Op(Γ)

(YQ) ∼= lim←−
∗

Op(Γ)

(F 1
Q/F

0
Q) ∼= Λ∗

(
NΓ(Q)/Q,NL(Q)/Q;F 1(Q)/F 0(Q)

)
∼= Λ∗

(
NΓ(Q)/Q,NL(Q)/Q;YΓ

eL
(Q)
)
.
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Now assume that Q is p-centric in L, and weakly closed in some S ∈ Sylp(L)
with respect to Γ. By definition, for all P ≥ Q in Γ, F i(P ) = F i(Q)P for i = 0, 1.
Hence by Lemma 1.14 and Proposition 1.7,

lim←−
∗(F i≥Q) ∼=

{
0 if ∗ > 0
F i(Q)NΓ(Q) if ∗ = 0.

Thus Y≥Q ∼= F 1
≥Q/F

0
≥Q is acyclic, and

lim←−
0(Y≥Q) ∼= (π−1Q)NΓ(Q)/Z(L̃)Γ. �

We will need a much stronger vanishing theorem for the Λ∗(G,H;M) than what
was shown in Proposition 3.3. In the following lemma, for any set H1, . . . ,Hm ≤ G
of subgroups, we write NG(H1, . . . ,Hm) to denote the subgroup of elements of G
which normalize all of them. A radical p-chain of length n in G is a sequence

Op(G) = P0 � P1 � · · · � Pn

of distinct p-subgroups of G such that Pi = Op(NG(P0, . . . , Pi)) for all i, and such
that Pn ∈ Sylp(NG(P0, . . . , Pn−1)). Note that the first condition implies that Pi C
Pj for i < j, and that Pi/Pi−1 is a radical p-subgroup of NG(P0, . . . , Pi−1)/Pi−1

for all i.

Recall that for any finite group G and any H ≤ G, we set NH =
∑
h∈H h ∈

Z[G].

Proposition 3.5. Fix a finite group G, a normal subgroup H C G,and a pair
of finite Z(p)[G]-modules M ′ ⊆ M . Assume, for some n ≥ 1, that the induced
map Λi(G,H;M ′) −−−→ Λi(G,H;M) is not onto for i = n, or is not injective for
i = n+ 1. Then there is a radical p-chain

1 = P0 � P1 � P2 � · · · � Pn

of length n in H such that NNH(P1,...,Pn)·(M/M ′) 6= 0. Also, if p·M ≤ M ′, then
M/M ′ (when regarded as an Fp[Pn]-module) contains a copy of the free module
Fp[Pn]; and in particular

rkp(M) ≥ rk(M/M ′) ≥ |Pn| ≥ pn.

Proof. Since the proof is fairly complicated, we first explain how it works
when H = G. In this case, Λn(G;M/M ′) = lim←−

n(ΦGM/M ′) 6= 0 by assumption. We
set V = M/M ′ for short, and regard ΦGV as a subfunctor of the acyclic functor NV
of Proposition 1.7: the functor which sends P to NP ·V . Thus lim←−

n(NV ) = 0, and
hence lim←−

n−1(NV/ΦGV ) 6= 0. This in turn implies, by Proposition 1.1(a) and an
appropriate filtration of the functor NV/ΦGV , that there is a p-subgroup 1 6= P ≤ G
such that Λn−1(NG(P )/P ;NP ·V ) 6= 0. Also, P is radical by Proposition 1.1(c). If
n = 1, then NG(P )/P has order prime to p by Proposition 3.3(a); so P ∈ Sylp(G),

(1 C P ) is a radical p-chain of length one, and NNG(P )·V =
(
NP ·V

)NG(P )/P 6= 0.
Otherwise, if n > 1, then we repeat this procedure, and eventually get a radical
p-chain of length n which satisfies the required conditions.

When dealing with the general case, the above argument gets into trouble at
the first step. We do not know that Λn(G,H;V ) 6= 0, since an extension of modules
need not induce a long exact sequence of the Λ∗(G,H;−). Hence, instead of proving
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a result about higher limits of the functor ΦG,HV , we prove it for a larger class of
functors on Op(G), which includes the quotient functor ΦG,HM /ΦG,HM ′ as well as other
functors which are needed to carry through the induction step.

More precisely, for any Z(p)[G]-module V , let MG
V be the set of all Mackey

subfunctors Ψ ⊆ H0M . In other words, Ψ ∈ MG
V if and only if it satisfies the

following conditions for all P ∈ Sp(G):

• Ψ(P ) ≤ V P ,

• Ψ(gPg−1) = g(Ψ(P )) for all g ∈ G, and

• Q ≤ P implies NP
Q(Ψ(Q)) ≤ Ψ(P ) ≤ Ψ(Q).

Here, NP
Q : V Q −−−→ V P is the relative norm map: NP

Q(x) =
∑
gQ∈P/Q gx.

In particular, we need to consider the functor

∆G,H
V ∈MG

V defined by ∆G,H
V (P ) = (NP∩H ·V )P ∀P.

Clearly, ∆G,H
V (gPg−1) = g(∆G,H

V (P )) for all g ∈ G. So to see that ∆G,H
V ∈MG

V , it
remains only to check that for all Q ≤ P ∈ Sp(G), NP

Q(∆G,H
V (Q)) ≤ ∆G,H

V (P ) and
∆G,H
V (P ) ≤ ∆G,H

V (Q); and these follow easily from the definition.

Next, for any functor Ψ: Op(G)op −−−→ Z(p)-mod, we define

Ψ[H] : Op(G)op −−−→ Z(p)-mod by setting Ψ[H](P ) =

{
Ψ(P ) if P ∩H = 1
0 otherwise.

Let NG,H
V be the set of all functors on Op(G) of the form Ψ[H] for Ψ ∈MG

V .

Step 1: We first show:

for any Φ ∈ NG,H
V and any n ≥ 1 with lim←−

n(Φ) 6= 0, there exists
a radical p-subgroup P ≤ H such that NP ·V 6= 0, and a functor
Φ′ ∈ NNG(P )/P,NH(P )/P

NP ·V such that lim←−
n−1(Φ′) 6= 0.

(1)

To see this, let Ψ0 ∈ MG
V be such that Φ = (Ψ0)[H]. Set Ψ = Ψ0 ∩ ∆G,H

V ;
then Ψ ∈ MG

V since an intersection of two Mackey subfunctors is again a Mackey
subfunctor. Thus Ψ(P ) = Ψ0(P ) = Φ(P ) if P ∩ H = 1, and so Φ = Ψ[H] ⊆ Ψ.
Since Ψ is acyclic [JM, Proposition 5.14], lim←−

n−1(Ψ/Φ) 6= 0.

For each P ∈ Sp(H), let ΦP : Op(G) −−−→ Z(p)-mod be the functor ΦP (Q) =
Ψ(Q) if Q ∩H is G-conjugate to P and ΦP (Q) = 0 otherwise. Thus Φ = Φ1; and
the ΦP are the subquotients of a certain filtration of Ψ. Hence there is some P such
that lim←−

n−1(ΨP ) 6= 0. By Proposition 1.1(a,c), for some p-subgroup Q ≤ G such
that Q ∩H = P , Q is radical in G, and hence P is radical in H by Lemma 1.5(b).
Furthermore, if we define Φ′ ⊆ Ψ′ on Op(NG(P )/P ) by setting Ψ′(Q/P ) = Ψ(Q)
and Φ′(Q/P ) = ΦP (Q), then Ψ′ ∈MNG(P )/P

NP ·V , and hence

Φ′ = Ψ′
[NH(P )/P ] ∈ N

NG(P )/P,NH(P )/P
NP ·V .

Finally, by Lemma 1.12, the functors ΦP and Φ′ have the same higher limits, and
in particular lim←−

n−1(Φ′) 6= 0. This finishes the proof of (1).

Step 2: We next claim, by induction on n, that
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for any Φ ∈ NG,H
V with lim←−

n(Φ) 6= 0, there exists a radical p-chain
1 = P0 � P1 � · · · � Pn of length n such that NK ·V 6= 0, where
K = NH(P1, . . . , Pn).

(2)

To prove this, let P and Φ′ be as in (1). If n = 1, then

0 6= lim←−
0(Φ′) ⊆ Λ0(NG(P )/P,NH(P )/P ;NP ·V )

implies that (p, |NH(P )/P |) = 1, hence that P ∈ Sylp(H), and

(NP ·V )NH(P ) = NNH(P )·V 6= 0

by Proposition 3.3(a). Thus (1 � P ) is a radical p-chain, and (2) holds in this case.

If n > 1, then by the induction hypothesis (applied to Φ′), there is a radical
p-chain

1 6= P2/P � · · · � Pn/P in NH(P )/P (3)
such that NK/P ·(NP ·V ) = NK ·V 6= 0, where K is defined by setting K/P =
NNH(P )/P (P2/P, . . . , Pn/P ). Since P is radical in H, Op(NH(P )/P ) = 1, and the
sequence 1 � P � P2 � · · · � Pn is a radical p-chain of length n in H. Also,
K = NH(P, P2, . . . , Pn), and this finishes the proof of (2).

Step 3: By assumption, M ′ ⊆M are Z(p)[G]-modules such that

lim←−
n
(
ΦG,HM /ΦG,HM ′

)
6= 0.

Set V = M/M ′ for short.

Consider the functor Ψ = H0M/H0M ′ on Op(G); thus Ψ(P ) = MP /(M ′)P

for all P . This is a quotient of Mackey functors, hence itself a Mackey functor, and
a Mackey subfunctor of H0V . Thus Ψ ∈MG

V , and so

ΦG,HM /ΨG,H
M ′ = Ψ[H] ∈ NG,H

V .

Hence by (2), there is a radical p-chain 1 = P0 � P1 � · · · � Pn of length n such
that NK ·V 6= 0, where K = NH(P1, . . . , Pn).

Now assume that pM ≤ M ′, and thus that pV = 0. Choose x ∈ V such
that NPn ·x 6= 0, and consider the Pn-linear homomorphism Fp[Pn]

α−−→ V defined
by setting α(g) = gx. Thus Ker(α) is an ideal in Fp[Pn] which does not contain
NPn

, and hence is the zero ideal (cf. [Se, §8.3, Prop. 26]). So α is injective, and
V = M/M ′ contains a copy of Fp[K]. The lower bounds for rkp(M) ≥ rk(M/M ′)
are now immediate. �



CHAPTER 4

Subgroups which contribute to higher limits

As noted earlier, our remaining goal is to prove that every nonabelian finite
simple group lies in the class L≥2(2) (see Definition 2.8). Once we have shown this,
then Theorem A will follow as a consequence of Proposition 2.9. The aim of this
chapter is to prove a series of propositions, whose hypotheses are stated in purely
group theoretic terms (without reference to higher limits or Λ∗’s), which can then
be used in later chapters to carry out a case-by-case check that L ∈ L≥2(2).

The following definition is mostly of interest when L is simple, but in a few
cases (when carrying out inductive arguments) we need to also deal with almost
simple groups. For simplicity in notation, for any group L with Z(L) = 1, we
identify L = Inn(L) as a subgroup of Aut(L). Recall that for any p-group P and
any n ≥ 1,

Ωn(P ) def= 〈g ∈ P | gp
n

= 1〉.

Definition 4.1. Fix a centerfree group L and a prime p
∣∣|L|.

(a) For each i ≥ 1, let Ri(L ; p) be the set of all p-subgroups P ≤ L with the
property that for some Γ ≤ Aut(L) which contains Inn(L), and some NΓ(P )-
invariant subgroup Z ′ ⊆ Z(P ),

Λi(NΓ(P )/P,NL(P )/P ;Z ′) 6= 0.

(b) For each i ≥ 1, set

Ei(L ; p) =
{
Ω1(Z(P ))

∣∣P ∈ Ri(L ; p)
}
.

(c) An elementary abelian p-subgroup E ≤ L is called pivotal if E = Ω1(Z(P ))
for some P ∈ Sylp(CL(E)), and Op(AutL(E)) = 1.

We also write R≥i(L ; p) =
⋃
j≥i R

j(L ; p), and similarly for E≥i(L ; p). In
addition, for any p-subgroup Q ≤ L, we let Ri(L ; p)�Q and R≥i(L ; p)�Q denote
the set of subgroups in Ri(L ; p) and R≥i(L ; p), respectively, which do not contain
any subgroup conjugate to Q.

As will be seen in the next proposition (or in its proof), we can think of Ri(L ; p)
as the set of p-subgroups of L which could “contribute” to lim←−

i(YΓ
eL
), for some

quasicentric group L̃ with L̃/Z(L̃) ∼= L, and some Γ ≤ Aut(L̃) which contains
Inn(L̃) ∼= L. Of course, the existence of an element of Ri(L ; p) does not mean that
lim←−

i(YΓ
eL
) is nonvanishing for some Γ and L̃: a nonzero “contribution” to lim←−

i(−)
by a subgroup in Ri(L ; p) could be cancelled by a contribution to lim←−

i±1(−).

32
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Proposition 4.2. Fix a prime p, a finite simple group L, S ∈ Sylp(L), and
i ≥ 1. Assume there is a subgroup Q ≤ S which is p-centric in L and weakly closed
in S with respect to Aut(L), such that Ri(L ; p)�Q = ∅. Then L ∈ Li(p). In
particular, L ∈ Li(p) if Ri(L ; p) = ∅.

Proof. Fix Γ and L̃, and let Y�Q be the subfunctor of YΓ
eL

defined by setting

Y�Q(P ) = YΓ
eL
(P ) if P does not contain a subgroup conjugate to Q and Y�Q(P ) = 0

otherwise. For each P ≤ L ∼= Inn(L̃) which does not contain a subgroup conjugate
to Q, we defined YΓ

eL
(P ) to be a certain NΓ(P )/P -invariant subgroup of Z(P )

(Definition 2.5). Thus P /∈ Ri(L ; p) implies that

Λi(NΓ(P )/P,NL(P )/P ;YΓ
eL
(P )) = 0.

Hence lim←−
i(Y�Q) = 0 by Lemma 3.4(a) and an appropriate filtration of Y�Q. Fur-

thermore, lim←−
i(YΓ

eL
/Y�Q) = 0 by Lemma 3.4(b), and this finishes the proof of the

proposition.

The last statement is just the case Q ∈ Sylp(L). �

In the course of the next five chapters, we will prove that all simple groups lie
in L≥2(2), and most cases this will be done using Proposition 4.2. The following
proposition will, however, be needed when proving that simple groups of Lie type
in characteristic two lie in L≥2(2) (and in fact, with the exception of L3(2), lie in
L≥1(2)).

Proposition 4.3. Let L be a simple group. Fix S ∈ Sylp(L), and let Q C S
be a p-subgroup with the following properties:

(a) Q is p-centric in L and weakly closed in S with respect to Aut(L).

(b) for each P ≤ S which does not contain Q, and which is p-centric and radical in
L, P is weakly closed in S with respect to L, and Z(NL(P ))p = Z(NL(PQ))p.

Then L ∈ L≥1(p).

Proof. Let P be the set of p-subgroups of S which are radical and p-centric
in L. For any P ∈ P, let P̃ denote its inverse image in L̃. We first check that for
each P ∈ P,

Z(N
eL(P̃ ))p = Z(N

eL(P̃Q))p. (1)

By assumption, Z(NL(P ))p = Z(NL(PQ))p. Also,

Z(N
eL(P̃ ))/Z(L̃) = Ker

[
Z(NL(P ))

ψP−−−→ Hom(NL(P ), Z(L̃))
]
,

and similarly Z(N
eL(P̃Q))/Z(L̃) = Ker(ψPQ). Here, ψP and ψPQ are defined by

lifting to L̃ and taking commutators. Thus ψP and ψPQ have the same domain.
Since Z(L̃) is a p-group andNL(P ) ≥ NL(PQ) ≥ S (P andQ being weakly closed in
S), their target groups both inject into Hom(S,Z(L̃)). Thus Ker(ψP ) = Ker(ψPQ),
and this proves (1).
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For each R ∈ P, define functors YR and Y≥R on Op(Γ) by setting

Y≥R(P ) =

{
YΓ
eL
(P ) if P ∩ L ≥ R′, some R′ Γ-conjugate to R

0 otherwise

and

YR(P ) =

{
YΓ
eL
(P ) if P ∩ L is Γ-conjugate to R

0 otherwise.

Thus Y≥R is a quotient functor of YΓ
eL
, and YR is a subfunctor of Y≥R.

We claim that lim←−
∗(YR) = 0 for each R ∈ P which does not contain Q. It

suffices to prove this when NΓ(R)·L = Γ (otherwise replace Γ by NΓ(R)·L without
changing the higher limits). In this case, R and RQ are both weakly closed in S
with respect to Γ. Hence by Lemma 3.4(b), Y≥R and Y≥RQ are acyclic, and by (1),

lim←−
0(Y≥R) ∼= Z(N

eL(R̃))Γ/Lp

/
Z(L̃)Γ ∼= Z(N

eL(R̃Q))Γ/Lp

/
Z(L̃)Γ ∼= lim←−

0(Y≥RQ). (2)

Thus if we set Y•≥R = Ker[Y≥R → Y≥RQ], then lim←−
∗(Y•≥R) = 0. We can assume

inductively that lim←−
∗(YP ) = 0 for all P ∈ P such that P 	 R and P � Q. Via the

obvious filtration of Y•≥R, we now see that lim←−
∗(YR) = 0.

Thus lim←−
∗(YΓ

eL
) ∼= lim←−

∗(Y≥Q), and Y≥Q is acyclic by Lemma 3.4(b) again. Since
this holds for all Γ and L̃, L ∈ L≥1(2). �

It remains to develop some tools for determining which subgroups belong to
the sets Ri(L ; p). The first step is to study their connection with the sets Ei(L ; p)
and with the pivotal subgroups of L, also defined in 4.1.

Proposition 4.4. Fix a prime p, a finite centerfree group L, and i ≥ 1. Then
the following hold for any p-subgroup P ≤ L and any elementary abelian p-subgroup
E ≤ L.

(a) If P ∈ Ri(L ; p) and E = Ω1(Z(P )), then P ∈ Sylp(CL(E)). If E ∈ Ei(L ; p)
and P ∈ Sylp(CL(E)), then P ∈ Ri(L ; p) and E = Ω1(Z(P )). In other words,
there are inverse bijections

Ri(L ; p)/(conj)
elem−−−−−−−−→←−−−−−−−−
rad

Ei(L ; p)/(conj),

where elem(P ) = Ω1(Z(P )) and rad(E) ∈ Sylp(CL(E)).

(b) Assume E = Ω1(Z(P )) and P ∈ Sylp(CL(E)). Then the natural map

NL(P )/P −−� AutL(E)

induced by restriction is a surjection, its kernel has order prime to p, and the
action of NL(P )/P on Z(P ) factors through AutL(E). Furthermore, for any
Γ ≤ Aut(L) which contains Inn(L), the natural map NΓ(P )/P −−� AutΓ(E)
is a surjection.

(c) If E ∈ Ei(L ; p), then E is a pivotal subgroup.

(d) If E is a pivotal subgroup and P ∈ Sylp(CL(E)), then P is a radical p-subgroup
of L.
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(e) Fix S ∈ Sylp(L). Each pivotal p-subgroup of L is L-conjugate to a subgroup
E ≤ S such that E = Ω1(Z(CS(E))), and hence such that E ≥ Ω1(Z(S)).

(f) Let E ≤ L be an elementary abelian p-subgroup, and let X ⊆ CL(E)rE be a
CL(E)-conjugacy class of elements of order p such that |X| is prime to p. Then
no elementary abelian subgroup E′ ≥ E such that E′ ∩ X = ∅ is pivotal in L.

Proof. (a) Assume P ∈ Ri(L ; p), and let Γ ≤ Aut(L) and Z ′ ⊆ Z(P ) be such
that

Λi(NΓ(P )/P,NL(P )/P ;Z ′) 6= 0.
Set E = Ω1(Z(P )) and H = CL(E). Then P ≤ H by definition of E. Since
NH(P )/P acts trivially on E, it acts trivially on Ωn(Z ′)/Ωn−1(Z ′) for each n,
and hence must have order prime to p by Proposition 3.3(b). So by Lemma 1.10,
P ∈ Sylp(H).

Now assume E ∈ Ei(L ; p). By definition, E = Ω1(Z(P ′)) for some P ′ ∈
Ri(L ; p), and we just saw that P ′ ∈ Sylp(CL(E)). Hence if P ∈ Sylp(CL(E)), then
P = xP ′x−1 for some x ∈ CL(E), so P ∈ Ri(L ; p), and Ω1(Z(P )) = xEx−1 = E.

(b) Fix Inn(L) ≤ Γ ≤ Aut(L) (and we identify L with Inn(L) C Γ). Since
E = Ω1(Z(P )), we have NΓ(P ) ≤ NΓ(E). Since P is a Sylow p-subgroup of
CL(E) C NΓ(E) (and NΓ(P ) ≤ NΓ(E)), NΓ(E) = CL(E)·NΓ(P ) by a Frattini
argument (Lemma 1.9). Hence NΓ(P )/P surjects onto AutΓ(E) ∼= NΓ(E)/CΓ(E).
When Γ = L, then the kernel of this surjection is NCL(E)(P )/P , which has order
prime to p since P ∈ Sylp(CL(E)).

It remains to show that NCL(E)(P )/P acts trivially on Z(P ). It acts trivially
on E = Ω1(Z(P )) by definition, and hence on Ωn(Z(P ))/Ωn−1(Z(P )) for each n.
By [Gor, Corollary 5.3.3], any group of automorphisms of Z(P ) with this property
must be a p-group; and since NCL(E)(P )/P has order prime to p, it must act
trivially.

(c) Assume E ∈ Ei(L ; p), and fix P ∈ Sylp(CL(E)). Then E = Ω1(Z(P )) by (a).
So to show E is pivotal, it remains to show that Op(AutL(E)) = 1.

Let Z ′ ≤ Z(P ) and Γ ≤ Aut(L) be such that

Λi(NΓ(P )/P,NL(P )/P ;Z ′) 6= 0.

By (b), NL(P )/P surjects onto AutL(E) with kernel K/P def= NCL(E)(P )/P of
order prime to p, and K acts trivially on Z(P ) (hence on Z ′). So by Proposition
3.3(d),

Λi
(
NΓ(P )/K,AutL(E);Z ′

)
6= 0,

and hence Op(AutL(E)) = 1 by Proposition 3.3(c).

(d) Assume E is pivotal and P ∈ Sylp(CL(E)). By (b), NL(P )/P surjects onto
AutL(E) with kernel of order prime to p. Since Op(AutL(E)) = 1 by definition of
a pivotal subgroup, Op(N(P )/P ) = 1, and so P is radical.

(e) Fix S ∈ Sylp(L). Any pivotal subgroup of L is L-conjugate to a subgroup
E such that some P ∈ Sylp(CL(E)) is contained in S. Thus P = CS(E), and so
E = Ω1(Z(CS(E))) by definition of pivotal. Since E ≤ P ≤ S, we have Z(S) ≤
CS(E) = P , so Z(S) ≤ Z(P ), and hence Ω1(Z(S)) ≤ Ω1(Z(P )) = E.
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(f) Fix an elementary abelian p-subgroup E ≤ L, and a CL(E)-conjugacy class
X ⊆ CL(E) of elements of order p such that |X| is prime to p. Assume E′ ≥ E is
such that E′ ∩ X = ∅. Then CL(E′) ∩ X is the fixed point set of an E′/E-action
on X, and hence also has order prime to p. It is a union of CL(E′)-conjugacy
classes, and thus contains at least one CL(E′)-conjugacy class X′ of order prime to
p. Fix x ∈ X′. Then x /∈ E′ since E′ ∩ X = ∅, and CCL(E′)(x) has index |X′| in
CL(E′). Hence there is P ∈ Sylp(CL(E′)) such that x ∈ P and [x, P ] = 1. Thus
x ∈ Z(P )rE′, so Ω1(Z(P )) 	 E′, and hence E′ is not pivotal. �

It remains to list some more conditions which can be used later to prove that
certain subgroups are not in E≥2(L ; 2) or R≥2(L ; 2). Almost all of these will be
based on the following, very general, proposition. Recall (from Chapter 3) that a
radical p-chain in a group G is a sequence

Op(G) = P0 C P1 C · · · C Pn

of distinct p-subgroups of G such that Pi = Op
(
NG(P0, . . . , Pi)

)
for all i (in par-

ticular, Pi C Pn for all i), and such that Pn ∈ Sylp
(
NG(P0, . . . , Pn−1)

)
.

Proposition 4.5. Fix a finite centerfree group L and an elementary abelian
p-subgroup E ≤ L. Assume, for some m ≥ 1, that E ∈ Em(L ; p). Then for any
sequence 1 = E0 ≤ E1 ≤ · · · ≤ Ek = E of NAut(L)(E)-invariant subgroups, there is
some 1 ≤ i ≤ k such that

(a) the AutL(E)-action on Ei/Ei−1 is p-faithful; and

(b) there is a radical p-chain 1 = P0 � P1 � · · · � Pm of length m in AutL(E)
such that Ei/Ei−1 (when regarded as a Fp[Pm]-module) contains a copy of the
free module Fp[Pm].

Proof. Fix P ∈ Sylp(CL(E)); then P ∈ Rm(L ; 2) by Proposition 4.4(a). Let
Γ ≤ Aut(L) and Z ′ ≤ Z(P ) be such that Λm(NΓ(P )/P,NL(P )/P ;Z ′) 6= 0. By
Proposition 4.4(b), the natural map NL(P )/P −−−→ AutL(E) is surjective with
kernel of order prime to p, and the action of NL(P )/P on Z(P ) (hence on Z ′)
factors through AutL(E).

Since each quotient Ωn(Z ′)/Ωn−1(Z ′) is isomorphic as an Fp[NΓ(P )/P ]-module
to a submodule of E, and since the Ei are all AutΓ(E)-invariant (hence NΓ(P )/P -
invariant) by assumption, there is a sequence 1 = Z0 ≤ Z1 ≤ · · · ≤ Zk = Z ′ of
NΓ(P )/P -invariant subgroups such that each Zi/Zi−1 is isomorphic to a subgroup
of some Ej/Ej−1. Choose i > 0 such that

Λm(NΓ(P )/P,NL(P )/P ;Zi−1) = 0 and Λm(NΓ(P )/P,NL(P )/P ;Zi) 6= 0.

Then (a) follows from Proposition 3.3(b), and (b) from Proposition 3.5. �

We now, for most of the rest of the chapter, specialize to the case p = 2. The
next proposition gives some special cases of Proposition 4.5.

Proposition 4.6. Fix a finite centerfree group L and an elementary abelian
2-subgroup E ≤ L. Let 1 = E0 ≤ E1 ≤ · · · ≤ Ek = E be any sequence of
NAut(L)(E)-invariant subgroups such that at least one of the following conditions
holds for each i:
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(a) The AutL(E)-action on Ei/Ei−1 is not 2-faithful; i.e., its kernel has order a
multiple of 2.

(b) rk(Ei/Ei−1) ≤ 3.

(c) rk(Ei/Ei−1) ≤ 7 and the Sylow 2-subgroups of AutL(E) are neither dihedral
nor semidihedral.

(d) rk(Ei/Ei−1) < 2·|R| for each radical 2-subgroup 1 6= R ≤ AutL(E).

(e) rk(Ei/Ei−1) ≤ 7 and AutL(E) ∼= SL2(4), GL2(4), A6, A7, or Σ6.

Then E /∈ E≥2(L ; 2).

Proof. Assume otherwise: assume E ∈ Em(L ; 2) for some m ≥ 2. By
Proposition 4.5, there is some i such that the AutL(E)-action on Ei/Ei−1 is p-
faithful (i.e., (a) does not hold), and a radical 2-chain 1 = P0 � P1 � · · · � Pm
in AutL(E) such that Ei/Ei−1 contains Fp[Pm] as a summand. In particular,
rk(Ei/Ei−1) ≥ |Pm| ≥ 2m, and this is impossible if either of the conditions (b) or
(d) holds. Condition (e) is a special case of (d), since none of those groups has a
radical 2-subgroup of order 2.

If rk(Ei/Ei−1) ≤ 7, then |Pm| ≤ 4, so m = 2, P1 = 〈x〉 for some involution
x, and P2 = CS(x) for some S ∈ Syl2(AutL(E)). By [Hp, III.14.23], |CS(x)| = 4
implies that S has maximal class (its central series has length k − 1 if |S| = 2k).
By [Gor, Theorem 5.4.5], each 2-group of maximal class is dihedral, quaternion, or
semidihedral. Together with Proposition 3.3(e), this shows that S must be dihedral
or semidihedral.

Thus none of the conditions (a)–(e) hold for Ei/Ei−1. �

We next look at some cases where AutL(E) is a symmetric group or general
linear group. Similar results involving other classical groups in characteristic two
will be shown in Proposition 6.5.

Proposition 4.7. Fix a finite centerfree group L, a pivotal 2-subgroup E ≤
L, and NAut(L)(E)-invariant subgroups 1 = E0 ≤ E1 ≤ · · · ≤ Ek = E. Let
AutL(Ei/Ei−1) denote the image of AutL(E) in Aut(Ei/Ei−1). Assume, for each
1 ≤ i ≤ k, that Ei/Ei−1 either satisfies one of the conditions (a–e) in Proposition
4.6, or satisfies one of the following conditions: either

(a) AutL(Ei/Ei−1) ∼= GLn(2) for some n and rk(Ei/Ei−1) < 2n; or

(b) AutL(Ei/Ei−1) ∼= Σn or An, and Ei/Ei−1 is the permutation representation
on (Z/2)n or (Z/2)n−1; or

(c)
(
AutL(Ei/Ei−1), Ei/Ei−1

) ∼= (
GLm(2) o Σn, (Z/2)mn

)
for some m ≥ 3 and

n ≥ 2.

Then E /∈ E≥2(L ; 2).

Proof. Set E′ = Ei/Ei−1 and G = AutL(Ei/Ei−1) for short. By Propositions
4.5 and 4.6, it suffices to show that there is no radical 2-chain 1 � P1 � · · · � Pk
of length k ≥ 2 in G such that E′ contains a copy of F2[Pk] as a summand.
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When G ∼= GLn(2), then the smallest radical 2-subgroups of G have order 2n−1

(see Lemma 6.1 for a description of the radical 2-subgroups). Hence by Proposition
4.6(d), E ∈ E≥2(L ; 2) implies rk(Ei/Ei−1) ≥ 2n.

Now assume G ∼= Σn or An, regarded as acting on a set X of n elements, such
that Ei/Ei−1 is isomorphic to a submodule or quotient module of F2(X). Then
for any 2-subgroup P ≤ G, Ei/Ei−1 contains a free submodule F2[P ] only if the
action of P on X has at least one free orbit. Furthermore, no radical 2-subgroup
P ≤ G can have m > 1 free orbits: this is clear if |P | = 2, m = 2, and G = An
(since NG(P ) ∼= An ∩ (D8 ×An−4) in this case); and holds in the other cases since
O2(NΣn(P )/P ) contains a copy of Pm−1. Thus there is no radical 2-chain of length
≥ 2 such that P2 has a free orbit, and so (b) follows from Proposition 4.5.

The third case now follows since for any radical 2-chain {Pi} in GLm(2) oΣn of
length ≥ 2, either P2∩ (GLm(2))n 6= 1 and contains a nontrivial radical 2-subgroup
of (GLm(2))n (Lemma 1.5), in which case the module contains no summand F2[P2];
or P2 ∩ (GLm(2))n = 1, and an argument similar to that used for G ∼= Σn shows
that the module contains no summand F2[P2]. �

It is important to note that there is an action of Σ5 on (Z/2)4 with the property
that Λ2(Σ5; (Z/2)4) ∼= Z/2. This is the action obtained by identifying Σ5

∼= ΣL2(4)
— the group SL2(4) ∼= A5 extended by its field automorphism — and (Z/2)4 ∼=
(F4)2. Note that this action is transitive on the nonzero elements in the module,
unlike the permutation action. To see this computation, let M = (F4)2 denote the
module, and consider the functors ΦΣ5

M ⊆ NM over O2(Σ5). Then lim←−
∗(NM) = 0

by Proposition 1.7, and so for all i ≥ 1,

Λi(Σ5;M) = lim←−
i(ΦΣ5

M ) ∼= lim←−
i−1(NM/ΦΣ5

M ).

The only nontrivial radical 2-subgroups P ≤ Σ5 such that NP ·M 6= 0 are the
subgroups of order 2 generated by a transposition in Σ5, or equivalently conjugate
to the field automorphism θ ∈ ΣL2(4). Set P0 = 〈θ〉; then by Proposition 1.1(a,d),

Λi(Σ5;M) ∼= lim←−
i−1(NM/ΦΣ5

M ) ∼= Λi−1(N(P0)/P0;NP0 ·M)

∼= Λi−1(GL2(F2); (F2)2) ∼=

{
Z/2 if i = 2
0 otherwise.

The following variant of Proposition 4.7 will be needed when handling classical
groups in odd characteristic.

Proposition 4.8. Fix a finite centerfree group L and a pivotal 2-subgroup
E ≤ L, and set Γ = AutL(E) for short. Assume there is a finite set X with Γ-
action such that E is isomorphic to a Γ-submodule of the permutation representation
F2(X), or of F2(X)

/〈∑
x∈X x

〉
. Let X1, . . . , Xk ⊆ X be the Γ-orbits, and assume

that the Γ-action contains all permutations whose restriction to each Xi is an even
permutation. Then E /∈ E≥2(L ; 2).

Proof. Assume otherwise. By Proposition 4.5, there is a radical 2-chain 1 �
P1 � · · · � Pk of length k ≥ 2 in Γ such that X contains a free orbit of Pk.

Let Xi ⊆ X be a Γ-orbit which contains a free Pk-orbit. Let m be the number
of free orbits of P1 in Xi (thus m ≥ [P2:P1] ≥ 2), and let Y ⊆ Xi be the union
of those orbits. Let H ∼= P1 o Σm be the group of all permutations of X which
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centralize P1 and are the identity on XrY . The subsets Y ⊆ Xi are both invariant
under the CΓ(P1)-action on X, so Γ ∩H C CΓ(P1) is the kernel of the map from
CΓ(P1) to the symmetric group on XrY .

Since Γ contains all even permutations of Xi (hence of Y ) by assumption, Γ∩H
has index at most 2 in H. Also, O2(H) ∼= Pm1 if m > 2 and O2(H) = H if m = 2.
In either case,

P1 � O2(Γ ∩H) ≤ O2(CΓ(P1)) ≤ O2(NΓ(P1))

since Γ ∩ H C CΓ(P1) C NΓ(P1), so O2(NΓ(P1)) 	 P1, and this contradicts the
assumption that P1 is a radical 2-subgroup of Γ. �

We end the chapter with the following proposition, which will be useful when
working with the sporadic groups.

Proposition 4.9. Let L be any finite centerfree group, let E ≤ L be a pivotal
p-subgroup, and fix P ∈ Sylp(CL(E)). In particular, E = Ω1(Z(P )). Let H ≤ L be
a subgroup which contains NL(E) ≥ NL(P ).

(a) Assume Op(H) 6= 1, and set E0 = E ∩ Z(Op(H)). Then E0 6= 1, P ≥ Op(H),
[E,Op(H)] = 1, and E0 is an AutL(E)-invariant submodule of E. In particular,
in this case, E ≤ Z(Op(H)) if E is AutL(E)-irreducible or if Op(H) is p-centric
in H.

(b) Assume P ∈ Rn(L ; p) (some n ≥ 1). Let H ′ C H be a characteristic sub-
group which is quasisimple, and set K = CH(H ′). Assume that NAut(L)(E) ≤
NAut(L)(H), and that P ∩H ′ /∈ Sylp(H ′). Then PK/K ∈ Rn(H/K ; p).

Proof. (a) Since E is pivotal, P is a radical p-subgroup of L (Proposition 4.4(d)),
and hence a radical p-subgroup of H (since NL(P ) = NH(P )). So P ≥ Op(H) by
Lemma 1.5(b), and E ≤ Z(P ) centralizes Op(H). In particular,

E0
def= E ∩ Z(Op(H)) = Ω1

(
Z(P ) ∩ Z(Op(H))

)
,

and so E0 6= 1 since Z(P ) ∩ Q 6= 1 for any 1 6= Q C P . Also, E0 is AutL(E)-
invariant, since NL(E) = NH(E) normalizes both E and Op(H), and so E0 ≤
Z(Op(H)) if E is AutL(E)-irreducible.

If Op(H) is p-centric, then Z(Op(H)) C CH(Op(H)) is the unique Sylow p-
subgroup. Since E ≤ CH(Op(H)) is a p-subgroup, E ≤ Z(Op(H)) in this case.

(b) We now assume that P ∈ Rn(L ; p) (hence E ∈ En(L ; p)), that H ′ C H is
a characteristic subgroup which is quasisimple, that P ∩H ′ /∈ Sylp(H ′), and that
NAut(L)(E) ≤ NAut(L)(H). Let Γ ≤ Aut(L) and Z ′ ≤ Z(P ) be such that

Λn(NΓ(P )/P,NL(P )/P ;Z ′) 6= 0.

Consider the group

Z ′0 = AutZ′(H ′) ∼= Z ′/CZ′(H ′).

By assumption, NΓ(P ) ≤ NΓ(E) ≤ NΓ(H), and NΓ(H) ≤ NΓ(H ′) since H ′ is
characteristic in H. Hence CZ′(H ′) is an NΓ(P )-invariant subgroup of Z ′. Since
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P ∩ H ′ /∈ Sylp(H ′), NPH′(P )/P has order a multiple of p by Lemma 1.10. This
group acts trivially on CZ′(H ′), and thus

Λn(NΓ(P )/P,NL(P )/P ;Z ′0) 6= 0

by Proposition 3.3(b).

Set
K = CL(H ′).

The action of NL(P )/P on Z ′0 is p-faithful by Proposition 3.3(b). Since P ≤ H

normalizes H ′ and hence K, N
PK

(P )/P acts trivially on Z ′0 ≤ Aut(H0). Hence

N
PK

(P )/P has order prime to p, and P ∈ Sylp(PK) by Lemma 1.10 again.

Now set

P0 = AutP (H ′) ∼= PK/K,

L0 = AutH(H ′) ∼= H/K, (K = CH(H ′))

Γ0 = AutNΓ(H)(H ′).

We must show that P0 ∈ Rn(L0 ; p). Note first that Inn(H ′) ≤ L0 C Γ0 ≤ Aut(H ′).
Since H ′ is quasisimple, Inn(H ′) ∼= H ′/Z(H ′) is nonabelian and simple, and the
natural map from Aut(H ′) to Aut(H ′/Z(H ′)) is injective. Thus L0 and Γ0 can be
considered as groups of automorphisms of Inn(H ′), and in particular, Γ0 can be
considered a group of automorphisms of the centerfree group L0.

For any x ∈ NΓ(H) such that cx ∈ NΓ0(P0),

xPx−1 ≤
(
P ·CΓ(H ′)

)
∩ L = P ·CL(H ′) = PK.

Since P ∈ Sylp(PK) and P normalizes K, this implies there is y ∈ K = CL(H ′)
such that yx ∈ NΓ(P ), and cyx = cx ∈ Aut(H ′). This (together with the relation
NΓ(P ) ≤ NΓ(H)) shows that there is a surjection

NΓ(P )
(x7→cx)
−−−−−−� NΓ0(P0).

A similar argument, involving elements x ∈ H such that cx ∈ NL0(P0), shows that
NL(P ) = NH(P ) surjects onto NL0(P0).

We thus have surjections

NΓ(P )/P
κΓ−−−−� NΓ0(P0)/P0 and NL(P )/P = NH(P )/P

κL−−−−� NL0(P0)/P0.

Furthermore, Ker(κL) ∼= NPK(P )/P ≤ N
PK

(P )/P has order prime to p. So by
Proposition 3.3(d),

Λn(NΓ0(P0)/P0, NL0(P0)/P0;Z ′0) ∼= Λn(NΓ(P )/P ;NL(P )/P ;Z ′0) 6= 0,

and this proves that P0 ∈ Rn(L0 ; p). �



CHAPTER 5

Alternating groups

We are now ready to go through the list of all finite nonabelian simple groups
L, to show in each case that L ∈ L≥2(2). When L is of Lie type in characteristic
2, this will be done using Proposition 4.3. In all other cases, we prove L ∈ L≥2(2)
with the help of Proposition 4.2. This means either showing that R≥2(L ; 2) = ∅
(equivalently E≥2(L ; 2) = ∅); or else choosing a 2-centric subgroup Q ≤ L which is
weakly closed in a Sylow subgroup of L, and then showing that R≥2(L ; 2)�Q = ∅
(equivalently E≥2(L ; 2)�Z(Q) = ∅).

We will be constantly referring to Proposition 4.4 for some of the most basic
properties of subgroups P ∈ Ri(L ; 2) and E = Ω1(Z(P )) ∈ Ei(L ; 2), as well as
the correspondence between these two sets. Propositions 4.5, 4.6, 4.7, and 4.8, all
of which give restrictions on the pairs (E,AutL(E)) for E ∈ Ei(L ; 2), will then be
used to further eliminate subgroups from these sets; while Proposition 4.9 will be
used in some cases to reduce to a problem involving a smaller group. Together with
Lemma 1.5, these will be the only results from earlier chapters used in this part of
the proof.

The easiest case to consider is that of the alternating groups.

Theorem 5.1. For any n ≥ 5, An ∈ L≥2(2).

Proof. Set L = An. When n ≤ 7, then rk2(L) = 2, so R≥2(L ; 2) = ∅ by
Proposition 4.6(b), and L ∈ L≥2(2) by Proposition 4.2. So we can assume that
n ≥ 8, and hence that Aut(L) = Σn (cf. [Sz, 3.2.17]).

We regard Σn as the group of permutations of the set n = {1, . . . , n}. For any
H ≤ Σn, let supp(H) denote the support of H: the set of elements in n which are
moved by H. For each i ≥ 1, let E2i be the set of subgroups E ≤ Σn, such that
E ∼= (C2)i, and the action of E on n contains one free orbit and is otherwise fixed.
These subgroups (for each i such that 2i ≤ n) clearly make up one conjugacy class
in Σn.

Fix some S ∈ Syl2(L), and let Q ≤ S be the subgroup generated by all E ≤ S
such that E ∈ E4. For any E,E′ ∈ E4 with supp(E) ∩ supp(E′) 6= ∅, either
supp(E) = supp(E′) and hence E = E′; or 〈E,E′〉 acts transitively on supp(E) ∪
supp(E′), a set of order 5, 6, or 7, and thus 〈E,E′〉 is not a 2-group. So if E,E′ ∈ E4
and E,E′ ≤ S, then either E = E′ or they have disjoint support. In other words, Q
is the direct product of [n/4] subgroups in E4 with disjoint support, and is weakly
closed in S with respect to Σn by construction. Also, CAn

(Q) ∼= Q × Ak where
k = n − 4·[n/4] ≤ 3, so Q is 2-centric in L = Ak. By Proposition 4.2, it remains
only to show that R≥2(An ; 2)�Q = ∅.

41
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Fix P ∈ R≥2(An ; 2)�Q, and set E = Ω1(Z(P )). Then P ∈ Syl2(CAn(E)) by
Lemma 4.4(a). Each union of k orbits of E of order q (orbits under the action
on n) which are isomorphic as E-orbits contributes a factor Eq o Σk (for Eq ∈ Eq)
to CΣn

(E). Since each Sylow 2-subgroup of Σk is a product of iterated wreath
products C2 o · · · oC2, this shows that P is the intersection with An of a product of
subgroups of the form Eq o C2 o · · · o C2 for Eq ∈ Eq.

Write
P = An ∩

(
W (q1, k1)×W (q2, k2)× · · · ×W (qt, kt)

)
,

where each W (q, k) is a group of the form Eq o C2 o C2 · · · o C2 (wreath product k
times) which acts on a subset of order q·2k in n. We always assume q ≥ 2, except
that there is one factor (q, k) = (1, 0) in the above factorization for each point of n
fixed by all of E. Thus, we are assuming n =

∑t
i=1 qi·2ki : the set n is partitioned,

and each factor of P acts on one summand of the partition.

Since P ∈ Syl2(CAn(E)), and the factors W (1, 0) represent the points fixed by
E, they can occur with multiplicity at most three; and with multiplicity at most
one if E contains orbits of order 2 (i.e., if there are factors W (2, k)).

We now collect together factors with the same parameters (q, k). Thus, after
changing parameters and changing t, we write

P = An ∩
(
W (q1, k1)×r1 ×W (q2, k2)×r2 × · · · ×W (qt, kt)×rk

)
(n =

∑t
i=1 riqi2

ki)

where (qi, ki) 6= (qj , kj) for i 6= j. Then AutΣn
(E) is a product of terms, one for

each factor with qi 6= 1; and the factor for W (q, k)×r has the form Aut(Eq) oΣr, and
acts on a quotient of E of the form (Eq)×r (or its intersection with an alternating
group if (q, k) = (2, 0)).

Assume P is not a Sylow 2-subgroup of An. Then, after permuting the factors
in the above decomposition, we can assume that q1 ≥ 2, and that q1 ≥ 4 or
r1 ≥ 2. We also assume that q1 ≥ 4 if there are any terms with qi ≥ 4, and that
(q1, k1, r1) 6= (4, 0, 1) unless this is the only term with qi ≥ 4. Since n ≥ 8, this
means that if (q1, k1, r1) = (4, 0, 1), then there is at least one factor W (qi, ki)×ri

with qi = 2.

Let E0 ≤ E and P0 ≤ P be the subgroups of elements whose projection to
the first factor is the identity. Set (q, k, r) = (q1, k1, r1) and m = n − rq·2k, and
consider E0 and P0 as subgroups of Am.

If q1 ≥ 4, then define an involution σ0 ∈ AutΣn
(E) by letting it act on each

factor Eq1 in Z(W (q1, k1)×r1) ∼= (Eq1)
×r1 via some given automorphism of Eq1

(under some identification of the different factors), and letting σ0 act trivially on the
other factors Z(W (qi, ki)×ri). If (q1, k1, r1) 6= (4, 0, 1), then set σ = σ0 ∈ AutAn

(E).
If (q1, k1, r1) = (4, 0, 1), then by the above remark there is some orbit of E of order
2; let τ be the transposition which exchanges the elements in that orbit, and set
σ = σ0 × τ . In both cases, σ ∈ AutAn

(E). Finally, if q1 = 2, then r1 ≥ 2, and we
choose σ ∈ AutAn

(E) to exchange two of the factors W (q1, k1).

Thus, in all cases, there is an element σ ∈ AutAn
(E) of order 2 which central-

izes E0. In particular, AutAn
(E) does not act 2-faithfully on E0. So by Proposi-

tion 4.6(a), AutAn
(E) must act 2-faithfully on E/E0, and so NAn

(P )/P also acts
2-faithfully on E by Proposition 4.4(b). Since NAm(P0)/P0 ≤ NAn(P )/P ) acts
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trivially on E/E0, NAm(P0)/P0 has odd order. Thus P0 is a Sylow 2-subgroup of
Am, and hence is the intersection with Am of a Sylow 2-subgroup S′ ≤ Σm. By
the choice of the first term, either q1 ≥ 4 and hence W (q1, k1)×r1 ≤ An, or qi ≤ 2
for all i and hence none of the factors is contained in An. In either case, S′ can be
chosen such that

P = An ∩
(
W (q, k)×r × S′

)
;

and P0 = P ∩S′ and E0 = E∩S′. Since P does not contain any subgroup conjugate
to Q, we must have either q ≥ 8, or q = 2 and k = 0.

In the notation of Proposition 4.7, (AutL(E/E0), E/E0) is isomorphic to one of
the pairs (GLs(2) oΣr, (Z/2)rs) (if q = 2s, s ≥ 3), or (Σr, (Z/2)r) or (Σr, (Z/2)r−1)
(if q = 2). In either case, since the AutL(E)-action on E0 is not 2-faithful,
Proposition 4.7(b,c) applies to show that E /∈ E≥2(An ; 2), and hence that P /∈
R≥2(An ; 2). �

By extending the above arguments, one can show that R≥3(An ; 2) = ∅ for all
n, and

R2(An ; 2) =
{(
E4 o C2 o · · · o C2︸ ︷︷ ︸

k times

)×2×S′
∣∣∣E4 ∈ E4, 2k+3 ≤ n, S′ ∈ Syl2(An−2k+3)

}
.



CHAPTER 6

Groups of Lie type in characteristic two

We next consider simple groups of Lie type in characteristic two. The argu-
ments in this chapter, and in particular the proof of Theorem 6.2, have been greatly
simplified using suggestions of the referee.

We first summarize the notation we use for structures in these groups (in arbi-
trary characteristic p). We refer to [GLS3] and [Ca1] as general references. Any
finite simple group L of Lie type in characteristic p is of the form L = Op

′
(CG(σ)),

where G = G(Fp), and σ ∈ Aut(G) is the composite of a field automorphism and
(possibly) a graph automorphism which permutes the root subgroups of G. We fix
a σ-invariant Borel subgroup B ≤ G, and let U C B be its maximal unipotent sub-
group. Let Σ ⊇ Σ+ ⊇ I denote the sets of roots, of positive roots, and of primitive
roots of G; and let Xr ≤ G denote the root subgroup of the root r ∈ Σ. Thus U is
generated by the root subgroups Xr for r ∈ Σ+.

Let Σ̂ ⊇ Î denote the sets of equivalence classes in Σ ⊇ I as defined in [GLS3,
Definition 2.3.1] and [Ca1, §13.2]. In particular, for each r ∈ Σ, r is equivalent to
τ(r), as well as to all positive linear combinations of r and τ(r) which are roots.
Also, Î = I/τ . For each r̂ ∈ Σ̂, set X r̂ =

∏
r∈r̂Xr and Xr̂ = C

X r̂
(σ). Then

U
def= U ∩ L is generated by the Xr̂ for all equivalence classes r̂ ∈ Σ̂ of positive

roots, and B
def= B ∩ L = NL(U). Finally, for each τ -invariant subset J ⊆ I, let

〈J〉 ⊆ Σ denote the set of Z-linear combinations of elements of J which are roots,
and set

PJ =
〈
B,X−r̂ | r̂ ⊆ 〈J〉

〉
and UJ =

〈
Xr̂ | r̂ ⊆ Σ+r〈J〉

〉
.

In particular, P∅ = B, U∅ = U , PI = L, and UI = 1.

We let 2An(q), 2Dn(q), 3D4(q), and 2E6(q) denote the Steinberg groups defined
over the field Fq2 or Fq3 . But in contrast to the notation used in [GLS3], we let
2B2(q) = Sz(q) and 2F4(q) denote the Suzuki and Ree groups defined as subgroups
of B2(q) and F4(q) (for q an odd power of 2).

Lemma 6.1. Let L = tG(q) be a finite simple group of Lie type over the field
Fq of characteristic p. Set n = rk(L) = |Î|. Then the following hold.

(a) For each τ -invariant subset J $ I, UJ = Op(PJ), PJ = NL(UJ), and
CL(UJ) = Z(UJ). The subgroups PJ are the only subgroups of L which contain
B. Also, for any pair of τ -invariant subsets J,K ⊆ I, UJUK = UJ∩K .

(b) A subgroup P ≤ U is radical in L if and only if P = UJ for some τ -invariant
J ⊆ I.

44
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(c) Each subgroup UJ is weakly closed in U with respect to L.

(d) If p = 2 and q ≥ 4, then Z(B) = 1.

(e) If p = 2, n > 1, and L 6= L3(q) or Sp4(q), then CL(Z(U)) 6⊆ B.

Proof. (a) The first statement is shown in [GLS3, Theorem 2.6.5], and the
second in [GLS3, Theorem 2.6.5(b)]. The relation UJUK = UJ∩K is immediate
from the definition of the UJ .

(b,c) Each subgroup UJ is radical in L by (a). By the Borel-Tits theorem (cf.
[GLS3, Corollary 3.1.5]), if P ≤ L is a radical p-subgroup, then there is a parabolic
subgroup P of L — a subgroup L-conjugate to one of the PJ — such that P =
Op(P) and P = NL(P ). Thus each radical p-subgroup of L is L-conjugate to one
of the UJ , and both points (b) and (c) will follow once we show that each UJ is
weakly closed in U with respect to L.

The following argument is based on that in the proof of [AS, Lemma I.2.5].
Assume otherwise, and let UJ be maximal among those subgroups of this form
which are not weakly closed in U with respect to L. By Alperin’s fusion theorem,
there is a radical subgroup Q ≤ U such that Q 	 UJ — hence Q = UK for some
K $ J — and an element x ∈ NL(Q) = PK such that xUJx−1 6= UJ . But this is
impossible, since PK ≤ PJ = NL(UJ).

(d) By [Ca1, Theorem 6.3.1], for any r ∈ Σ fixed by τ , 〈Xr, X−r〉 is the image
of a homomorphism φr defined on SL2(q), which sends (strict) upper and lower
triangular matrices to the root subgroups Xr and X−r, respectively. Let D ≤
SL2(q) be the subgroup of diagonal matrices. The images φr(D) commute with
each other (for all r ∈ Σ), φr(D) normalizes Xs for all r and s, the φr(D) generate
the abelian subgroup H of diagonal elements of G(q), and NG(q)(U) = UH (cf.
[Ca1, §7.1]). In particular, when q = 2k for k ≥ 2, CXr

(φr(D)) = 1.

Thus when L = G(2k) for k ≥ 2, then H acts on U with trivial fixed subgroup,
and hence Z(B) = CB(Z(U)) = 1. If L is one of the Steinberg groups 2An(2k),
2Dn(2k), 3D4(2k), or 2E6(2k) for k ≥ 2, then Z(U) = Xs where s is the highest
positive root [GLS3, Theorem 3.3.1], φs(SL2(2k)) is contained in L and contains
Xs, and hence Z(B) = Z(NL(U)) = 1. Similarly, if L is a Suzuki group 2B2(22k+1)
or a Ree group 2F4(22k+1) for some k ≥ 1, then the center of the Borel subgroup
is trivial: this follows from the description (cf. [Ca1, Theorem 13.7.4]) of the
diagonal elements in these groups; or (more explicitly) from [HB3, §XI.3] for the
Suzuki groups and from [Sh, §II] for the Ree groups.

(e) The center of U is described as follows.

(i) If L is a Chevalley group G(q), or one of the Steinberg groups 2An(q), 2Dn(q),
3D4(q), or 2E6(q), and L 6∼= Sp2n(q) or F4(q), then Z(U) = Xα where α is the
highest root in the root system.

(ii) If L ∼= F4(q) or Sp2n(q), then Z(U) = XαXᾱ, where α is the highest root and
ᾱ is the highest short root.



46 6. GROUPS OF LIE TYPE IN CHARACTERISTIC TWO

(iii) If L ∼= 2F4(q) (where q ≥ 8 is an odd power of 2), and L = C
L
(σ) where

L = F4(q), then Z(U) = C
XαXᾱ

(σ), where Xr denotes the root group of r in

L, and α and ᾱ are as in (ii).

Points (i) and (ii) are shown in [GLS3, Theorem 3.3.1], and point (iii) is shown in
[Ree, Theorem 4.14].

To prove that CL(Z(U)) � B, it suffices to find an equivalence class β̂ ⊆ Σ+

such that [X−β̂ , Z(U)] = 1. By [GLS3, Theorem 1.12.1], two root groups Xr

and Xs in G(F2) commute (in characteristic two) if and only if either r + s is not
a root; or G = Bn or F4, r and s are short roots, and r + s is a long root (in
particular, r ⊥ s). Using this, together with the tables of roots in [Bb, pp. 250–
275], one checks directly that in all cases except where L = L2(q), U3(q), Sz(q),
L3(q), or Sp4(q) (where only the last two have rank ≥ 2), there is a class β̂ such
that [X−β , Xα] = 1 and [X−β , X ᾱ] = 1 for β ∈ β̂ and α, ᾱ as above. �

We now have the tools needed to prove the main result of this chapter.

Theorem 6.2. Let L be a finite simple group of Lie type in characteristic two,
or the Tits group 2F4(2)′. Then L ∈ L≥2(2), and L ∈ L≥1(2) if L 6∼= PSL3(2).

Proof. Case 1: Assume first that L 6∼= 2F4(2)′. If L = PSL3(2), then
rk2(L) = 2, and the theorem follows from Proposition 4.6(b). Since none of the
groups L2(2), Sz(2), U3(2), or Sp4(2) are simple, one of the two conditions (d) or
(e) in Lemma 6.1 applies in all other cases. If (d) applies, then the theorem follows
from Proposition 4.3, applied with Q = S.

Now assume that condition (e) applies; thus CL(Z(U)) � B. Consider the
subgroup B·CL(Z(U)) 	 B. By Lemma 6.1(a), there is some ∅ 6= K ⊆ I such
that B·CL(Z(U)) = PK . Set D = IrK $ I, and set Q = UD. We claim that
Proposition 4.3 applies with this choice of Q. By Lemma 6.1(a), Q is 2-centric in
L.

Now, Aut(L) = L·NAut(L)(U) by a Frattini argument (Lemma 1.9). By Lemma
6.1(c), Q is weakly closed in U with respect to L. Hence if α ∈ Aut(L) is such that
α(Q) ≤ U , then α can be chosen to normalize U and thus permute the positive
roots of L. Hence α(Q) = UD′ for some D′ ⊆ I, α(PK) = PK′ where K ′ = IrD′,
but α(PK) = PK since α(U) = U and PK = CL(Z(U))·NL(U). Thus K ′ = K,
D′ = D, α(Q) = Q, and so Q is weakly closed in U with respect to Aut(L).

Fix a radical 2-subgroup P ≤ L such that Q � P ≤ U . By Lemma 6.1(b),
P = UJ for some J ⊆ I, and NL(P ) = PJ . Also, PQ = UJ∩D = UJrK (Lemma
6.1(a)), and NL(PQ) = PJrK . Since

NL(P ) = PJ = PJrKPJ∩K = NL(PQ)·PJ∩K ,

and since P and PQ both contain their centralizers (Lemma 6.1(a)),

Z(NL(P )) = CL(PJ) = Z(NL(PQ)) ∩ CL(PJ∩K).

Since PK = B·CL(Z(U)), CL(PJ∩K) ≥ CL(PK) ≥ Z(B) ≥ Z(NL(PQ)), and thus
Z(NL(P )) = Z(NL(PQ)). We have now shown that the hypotheses of Proposition
4.3 all hold, and this finishes the proof of the theorem in this case.
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Case 2: Now assume L is the Tits group 2F4(2)′. By Lemma 1.5(b), the radical 2-
subgroups of L are precisely the subgroups L∩P for 2-radical subgroups P ≤ 2F4(2).
Hence by Lemma 6.1, the subgroups of L ∩U ∈ Syl2(L) which are radical in L are
exactly the subgroups L ∩ UJ for τ -invariant subsets J ⊆ I. Since I has just two
τ -orbits, this means that there are exactly two such proper subgroups.

By [P1] (and in the notation used there), there are 2-subgroups J,K ≤ L,
with normalizers H = NL(J) and N = NL(K), such that H and N both contain
T ∈ Syl2(L), and

O2(H) = J, H/J ∼= C5oC4, O2(N) = K, N/K ∼= Σ3.

Thus J and K are the two radical subgroups of L which are proper subgroups of
T . Since |J | 6= |K|, this implies that J and K are both weakly closed in T with
respect to Aut(L). Also, by [P1] again, Z(H) = Z(T ) has order 2 (H is chosen
to be the centralizer of an involution), while Z(K) ∼= C2

2 . Hence L ∈ L≥1(2) by
Proposition 4.3, applied with Q = K. �

Throughout the rest of the chapter, we prove some related results about groups
of Lie type in characteristic two; results which will be needed in later chapters.
First, since it will frequently be referred to later on, we note Witt’s lemma (over
any field).

Theorem 6.3. Let V be a finite dimensional vector field over a field K. Let
b be a nondegenerate symplectic, unitary, or quadratic form on V . (If a unitary
form, then with respect to some θ ∈ Aut(K) of order 2.) Then for any pair of
subspaces W1,W2 ⊆ V , and any isomorphism α : W1 −−→W2 which preserves b, α
extends to an automorphism of V which preserves b.

Proof. See, e.g., [A2, §20]. A stronger version of this (which allows b to be
degenerate) is proven in [Ta, Theorem 7.4]. �

We have described the radical 2-subgroups of a group of Lie type in charac-
teristic 2 in terms of the root system. But in the case of the classical groups, it is
often more useful to translate this into a description in terms of the action on the
natural (defining) module of the group.

Proposition 6.4. Let G be one of the groups Sp2n(2), GUn(2), or SO±
2n(2)

(for n ≥ 2), or Ω±
2n(2) (for n ≥ 3). Let V be the natural G-module (a vector space

over F2 or F4), with bilinear form b, and (in the orthogonal case) with orthogonal
form q. Let 1 6= P ≤ G be a nontrivial radical 2-subgroup, and set W = CV (P ).
Then either

(a) W is an isotropic subspace with respect to b and q, P contains all elements of G
which induce the identity on W and on W⊥/W , and AutNG(P )(W ) = Aut(W );
or

(b) G = SO±
2n(2), |P | = 2, P is generated by an orthogonal transvection, and W

is a codimension 1 subspace on which q is nondegenerate.

Proof. Let P and W = CV (P ) be as above. Let GW ≤ G be the subgroup
of all elements α ∈ G such that α(W ) = W . Then NG(P ) ≤ GW , so P is a radical
2-subgroup of GW ; and in particular, P ≥ O2(GW ).
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Set W0 = W ∩W⊥ if G is symplectic or unitary, and W0 = Ker(q|W∩W⊥) if G
is orthogonal. Let U ≤ G be the subgroup of elements which induce the identity
on W0 and on W0

⊥/W0 (and hence also on V/W0
⊥). All elements of GW leave W0

and W0
⊥ invariant, and hence U C GW . Also, U is a 2-group (cf. [Gor, Corollary

5.3.3]), and thus U ≤ O2(GW ) ≤ P . If W0 6= 0 and W0 $ W , then W0 $ W0
⊥, and

each automorphism of W0
⊥ which induces the identity on W0 and on the quotient

extends to an element of U by Witt’s lemma. This proves that W0 = CV (P ),
which contradicts the definition of W . Thus either W = W0 is totally isotropic, or
W0 = 0.

Assume W0 = 0. Then either V = W ⊕W⊥; or G is orthogonal and W ∩W⊥ =
〈x〉 for some x with q(x) = 1. Also, P leaves W⊥ invariant, and (since it is a 2-
group) fixes some element y ∈W⊥. If W ∩W⊥ = 0, then CV (P ) ≥W + 〈y〉, which
contradicts the definition of W . If W ∩W⊥ = 〈x〉 and W⊥ % 〈x〉, then the action
of P on W⊥/〈x〉 fixes some coset y+〈x〉 for y /∈ 〈x〉, P (y) = y since q(y) 6= q(y+x),
and again this contradicts the assumption on W . We are thus left with the case
where G is orthogonal, dim(V/W ) = 1, W⊥ = 〈x〉 ≤ W where q(x) = 1; and
thus P is generated by the unique orthogonal transvection which fixes W . Also,
G = SO±

2n(2) since the orthogonal transvections are not in Ω±
2n(2) [Di, §20].

Now assume W = W0 is isotropic. It remains to prove that every α ∈ Aut(W )
extends to an element of NG(P ); it suffices to do this when α is a transvection on
W . Assume first that G is not Ω±

2n(2). We can identify W⊥ = W ⊕W ′, where b is
nondegenerate on W ′. For any α ∈ Aut(W ), α⊕ IdW ′ extends by Witt’s lemma to
some α̂ ∈ G. For any β ∈ P , [α̂, β] induces the identity on W and on W⊥/W (since
α̂ induces the identity on W⊥/W and β induces the identity on W ), and hence
[α̂, β] ∈ P . This shows that α̂ ∈ NG(P ), and hence that AutNG(P )(W ) = Aut(W ).

It remains only to prove the last statement when G ∼= Ω±
2n(2) and n ≥ 3; i.e.,

to show that the automorphism α̂ ∈ SO±
2n(2) constructed above actually lies in G.

To show this, we use Dickson’s characterisation of G: an element β ∈ SO±
2n(2) lies

in G if and only if Im(β − Id) has even rank (cf. [Ta, Theorems 11.41 & 11.44].
To make the above construction of α̂ more precise, set V = W ⊕W ′ ⊕W ∗, where
W ∗ = Hom(W,F2), and where q(w,w′, ϕ) = ϕ(w)+ q′(w′) for some quadratic form
q′ on W ′. For α ∈ Aut(W ), set α̂ = α⊕ IdW ′ ⊕(α∗)−1, where α∗ ∈ Aut(W ∗) is the
dual of α. This is clearly orthogonal, and rk(α̂− IdV ) is even since

rk((α∗)−1 − Id) = rk(Id−α∗) = rk(α− Id). �

We already established, in Chapter 4, several criteria for proving that certain
pivotal subgroups of L are not in E≥2(L ; 2). The following additional conditions
will be needed in later chapters.

Proposition 6.5. Fix a finite centerfree group L, a pivotal 2-subgroup E ≤
L, and NAut(L)(E)-invariant subgroups 1 = E0 ≤ E1 ≤ · · · ≤ Ek = E. Let
AutL(Ei/Ei−1) denote the image of AutL(E) in Aut(Ei/Ei−1). Assume, for each
1 ≤ i ≤ k, that Ei/Ei−1 either satisfies one of the conditions (a–f) in Proposition
4.6, or satisfies one of the following conditions: either

(a) (AutL(Ei/Ei−1), Ei/Ei−1) ∼= (Sp2n(2); (Z/2)2n) for n ≥ 2; or

(b) (AutL(Ei/Ei−1), Ei/Ei−1) ∼= (Ω±
n (2); (Z/2)n) for n ≥ 5; or
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(c) (AutL(Ei/Ei−1), Ei/Ei−1) ∼= (SO±
2n(2); (Z/2)2n) for n ≥ 3; or

(d) (AutL(Ei/Ei−1), Ei/Ei−1) ∼= (G2(2), (Z/2)6).

Then E /∈ E≥2(L ; 2).

Proof. This is closely related to a theorem of Grodal [Gro, Theorem 4.1],
but does not seem to follow from that result (at least not easily) in the generality
we need it here.

Set E′ = Ei/Ei−1 and G = AutL(Ei/Ei−1) for short. By Proposition 4.5, it
suffices to show that there is no radical 2-chain 1 � P1 � · · · � Pk of length k ≥ 2
in G such that E′ contains a copy of F2[Pk] as a summand. In particular, it suffices
to show that |Pk| > dim(E′).

When G ∼= G2(2), the smallest nontrivial radical 2-subgroups of G are those UJ
for |J | = 1, and have order 25. Thus |P2| ≥ 26 > 6 = dim(E′), so the proposition
holds in this case.

Now assume G is one of the groups Sp2n(2) ∼= Ω2n+1(2) (for n ≥ 2) or SO±
2n(2)

(for n ≥ 3). Set V = F2n
2 , and regard G as the group of isometries of a symplectic

form b on V , or of a quadratic form q on V with associated symplectic form b.
Fix a radical 2-subgroup 1 6= P ≤ G. Set W = CV (P ), the fixed subspace of
P , and assume first that W is an isotropic subspace of V . Then by Proposition
6.4, P contains all elements of G which are the identity on W and W⊥/W . In
particular, each automorphism of W⊥ which induces the identity on W and on
W⊥/W extends to an element of P by Witt’s lemma. So if k = rk(W ), then
|P | ≥ 2k(2n−2k), and |P | ≥ 22n−2 if k < n. If k = n, then choose a basis {vi} such
that W = 〈v1, . . . , vn〉, and b(vi, vj) = 1 exactly when |i − j| = n. Also, in the
orthogonal case, we can assume the basis is such that q(

∑2n
i=1 λivi) =

∑n
i=1 λiλn+i.

Thus b has matrix
(

0 I
I 0

)
, and if G is symplectic, then P contains all automorphisms

with matrix
(
I X
0 I

)
with X = Xt, and thus |P | ≥ 2n(n+1)/2. If G is orthogonal,

then P contains all automorphisms with matrix
(
I X
0 I

)
, where X = Xt has zeroes

along the diagonal, and thus |P | ≥ 2n(n−1)/2. Hence the second term of any radical
2-chain in G has order at least 2·|P | ≥ 22n−1 > 2n+1 ≥ dim(E′) in the symplectic
case (n ≥ 2), or 2·|P | ≥ 22n−2 > 2n ≥ dim(E′) in the even dimensional orthogonal
case (n ≥ 3).

By Proposition 6.4 again, it remains to consider the case where G ∼= SO±
2n(2),

and P ≤ G is a subgroup of order 2 generated by an orthogonal transvection τ .
Set Im(τ − Id) = 〈x〉. Then Ker(τ − Id) = x⊥, and N(P ) is the group of all
elements of G which send x to itself. Also, q(x) = 1 (see [Di, §19] for details),
and hence the restriction of q to W

def= x⊥ is nondegenerate. Each element of
Aut(W, q) ∼= SO2n−1(2) extends to an element of G = Aut(V, q), by Witt’s lemma,
and thus NG(P )/P ∼= SO2n−1(2). We have already seen that every nontrivial
radical subgroup of SO2n−1(2) has order at least 22n−3, so the second term in any
radical 2-chain in G starting with P has order at least 22n−2 > 2n = dim(E′).

When G = Ω±
2n(2) for n ≥ 3, then the above arguments still apply, except

that possibly only half of the elements constructed in SO±
2n(2) lie in G. (In fact,

they do all lie in G, but we don’t need that for the estimates here.) Thus each
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nontrivial radical 2-subgroup P ≤ G has order at least 22n−4, so 2·|P | ≥ 22n−3 >
2n = dim(E′). �

The following is a stronger version of one special case of Theorem 6.2. It will
be needed when handling some of the sporadic groups.

Lemma 6.6. Set L = PSU6(2). Then for any Γ ≤ Aut(L) containing Inn(L),
R≥2(Γ ; 2) = ∅.

Proof. Fix V ∼= F6
4, and let b be a hermitian form on V . We set G =

SU(V, b) ∼= SU6(2), Z = Z(G), and identify L = G/Z. Since |Z| = 3, each 2-
subgroup P ≤ L lifts to a unique 2-subgroup P ′ ≤ G, and NL(P ) = NG(P ′)/Z.
Hence O2(NL(P )) ∼= O2(NG(P ′)) = O2(NGU6(2)(P

′)); and so the three groups L,
G, and GU6(2) have the same radical 2-subgroups under this identification.

A general description of the outer automorphism group of a finite simple group
of Lie type is given in [GLS3, Theorem 2.5.12]. In the notation of that theorem,
when L = PSU6(2) = 2A5(2), then Outdiag(L) ∼= C3 (generated by conjugation
by matrices of determinant 6= 1), ΦL ∼= C2 (generated by the field automorphism
ϕ(A) = A) and acts on Outdiag(L) via x 7→ x2, and ΓL = 1. Thus Out(L) ∼= Σ3.
So we can identify

Γ̂ def= Aut(L) ∼= PGU6(2)·〈ϕ〉.

Fix P ∈ R≥2(Γ ; 2), and set E = Ω1(Z(P )) ∈ E≥2(Γ ; 2). In particular, P is
a radical 2-subgroup of Γ (Proposition 4.4(c,d)), and so P0

def= P ∩ L is a radical
2-subgroup of L by Lemma 1.5(b). Also, P0 6= 1, since P ∈ Sylp(CΓ(E)) is 2-
centric. We identify P0 with its lifting to a radical 2-subgroup of G, or of GU6(2),
as described above.

Set W = CV (P0). By Proposition 6.4, W is totally isotropic (with respect to
b), and P0 contains the subgroup UW of all unitary automorphisms which induce
the identity on W and on W⊥/W . Let ZW ≤ UW be the subgroup of those
elements which induce the identity on W⊥ (and hence also on V/W ). We claim
that ZW = Z(P0).

To see this, decompose V = W ⊕W ′ ⊕W ′′, where W ⊕W ′ = W⊥ (possibly
W ′ = 0), and where W ′ ⊥ (W ⊕W ′′). Fix an F4-basis for V such that the matrix
of b with respect to the matrix (when written in 3 × 3 blocks based on the above
decomposition) is

(
0 0 I
0 I 0
I 0 0

)
. Then, with respect to this basis, every element of P0

has the form
(
I A B
0 R C
0 0 I

)
. Let θ ∈ Aut(F4) be the field automorphism, and write

A∗ = θ(At) for any matrix A over F4. Then

UW =
{
β(X,Y ) =

(
I X Y
0 I X∗

0 0 I

) ∣∣∣Y + Y ∗ = XX∗
}

and ZW =
{
β(0, Y )

∣∣Y + Y ∗ = 0
}
. Also, for each matrix X over F4 of the appro-

priate size, there is Y such that β(X,Y ) ∈ UW : this follows from Witt’s lemma or
by a direct check.

It is clear from this description that [ZW , P0] = 1, and thus that ZW ≤ Z(P0).
Fix α ∈ P0rZW with matrix

(
I A B
0 R C
0 0 I

)
; thus A 6= 0 or R 6= I. If R 6= I, choose

β(X,Y ) ∈ UW ≤ P such that XR 6= X, and then [α, β(X,Y )] 6= 1. So α /∈ Z(P0)
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in this case. If A 6= 0, choose β(X,Y ) ∈ UW such that AX 6= 0. If [α, β(X,Y )] = 1,
then AX∗ = XC (compare the (1, 3)-components of the two products). But if this
holds, then A(εX) 6= (εX)∗C (where ε ∈ F∗4 has order 3), and thus [α, β(εX, Y )] 6= 1.
So α /∈ Z(P0), and this finishes the proof that Z(P0) = ZW .

Set r = rk(W ). By the above description of Z(P0), we can identify it with
the additive group of matrices Y ∈ Mr(F4) such that Y ∗ = Y . In particular,
Z(P0) ∼= C2

r2 . Furthermore, AutL(Z(P0)) ∼= AutG(Z(P0)) is generated by matrices

of the form
(
A 0 0
0 R 0
0 0 (A∗)−1

)
with determinant one, and such a matrix acts on Z(P0)

by Y 7→ AY A∗. Thus AutL(Z(P0)) ∼= PSLr(4) or PGLr(4).

If P = P0 ≤ L, then E = Z(P0) has rank r2 ≥ 4, and so r = 2 or 3. Also, de-
pending on the choice of Γ ≤ Aut(L), AutΓ(E) ∼= PSLr(4), PGLr(4), PΣLr(4), or
PΓLr(4) (the last two are the extensions of the first two by the field automorphism
ϕ of PSLr(4)). All elements of order 2 in the coset PSLr(4)·ϕ are conjugate to
elements in UTr(4)·〈ϕ〉, where UTr(4) is the Sylow subgroup of upper triangular
matrices. Also, all involutions in UTr(4)·ϕ are UTr(4)-conjugate to ϕ. For example,
when r = 3, every involution has the form

(
1 a b
0 1 c
0 0 1

)
·ϕ for a, c ∈ F2 and b+θ(b) = ac,

and a direct check shows that this is equal to XϕX−1 for some X ∈ UT3(4). We
thus conclude that all involutions in PSLr(4)·ϕ are PSLr(4)-conjugate to ϕ.

By Proposition 4.5, there is a radical 2-chain 1 � P1 � · · · � Pm in AutL(E), for
some m ≥ 2, such that E contains a copy of the free module F2[Pm]. In particular,
|Pm| ≤ rk(E) = r2. Since the smallest radical 2-subgroups of PSLr(4) have order
4r−1 > r2, this shows that P1 ∩ PSLr(4) = 1, and thus that PΣLr(4) ≤ AutL(E)
and (up to conjugacy) P1 = 〈ϕ〉. Then P2/〈ϕ〉 must be a radical 2-subgroup of
NAutL(E)(〈ϕ〉)/〈ϕ〉 ∼= GLr(2), and thus |P2/〈ϕ〉| ≥ 2r−1. But if E contains a copy
of F2[P2], then rk(CE(ϕ)) ≤ rk(E) − |P2/〈ϕ〉| ≤ r2 − 2r−1; i.e., rk(CE(ϕ)) ≤ 2 (if
r = 2) or 5 (if r = 3). But CE(ϕ) is the group of symmetric matrices over F2, thus
has rank 3 or 6, respectively, and so this situation is impossible. In conclusion, P
cannot be a subgroup of L.

If P � L, then since all involutions in Aut
bΓ(Z(P0)) ∼= PΓLr(4) not in PSLr(4)

are conjugate to ϕ, E is isomorphic to the group of symmetric matrices in Mr(F2),
and AutΓ(E)) ∼= GLr(2) with the action (A,X) 7→ AXAt. Since rk(E) ≥ 4, this
means r = 3, rk(E) = 6, and is impossible by Proposition 4.6(d) since GL3(2)
contains no radical 2-subgroup of order 2. �



CHAPTER 7

Classical groups of Lie type in odd characteristic

We next show that when q is an odd prime power, the simple classical groups
PSLn(q), PSUn(q), PSp2n(q), and PΩ±

n (q) are all in L≥2(2). We refer to [Di] or
[Ca1, §1] for definitions and descriptions of these groups.

It will be convenient to write the general linear, unitary, symplectic, and or-
thogonal groups in the form G = GL(V, b), where V is a vector space over a finite
field K of odd characteristic, b is a trivial, hermitian, symplectic, or quadratic
form, and GL(V, b) denotes the group of all automorphisms of G which preserve
this form. Also, we write PGL(V, b) = GL(V, b)/{λ Id ∈ G |λ ∈ K}, and let
π : GL(V, b) → PGL(V, b) denote the projection. The following technical lemma
will be needed when dealing with decompositions of representations supporting such
forms.

Lemma 7.1. Fix a finite dimensional vector space V over a finite field K of odd
characteristic p, and let b be a nondegenerate symmetric, symplectic, or hermitian
form on V . Let H be a finite group of order prime to p which acts linearly on V
and preserves the form b. Assume, for each irreducible KH-submodule W ⊆ V ,
that W supports some nondegenerate form bW of the same type as b. Then there
are irreducible KH-submodules W1, . . . ,Wk ⊆ V such that b|Wi is nondegenerate
for each i, and such that V = W1 ⊕ · · · ⊕Wk is an orthogonal direct sum.

Proof. Let θ ∈ Aut(K) be the automorphism of order 2 if b is hermitian,
and set θ = Id if b is symplectic or symmetric. For any K-vector space U , let U∗θ

denote the dual of U where the K-linear structure is twisted by θ.

For any irreducible KH-submodule W ⊆ V , b|W is either nondegenerate or
zero. If b|W is nondegenerate, then V = W ⊕W⊥, an orthogonal direct sum, and
b|W⊥ is also nondegenerate. So it suffices to show, whenever V 6= 0, that there is
some irreducible submodule in V on which the form is nonzero.

Assume otherwise: assume b|W = 0 for all irreducible KH-submodules W ⊆ V .
Fix one such submodule U ⊆ V , and let U ′ ⊆ V be any irreducible submodule such
that U ′ ⊕ U⊥ = V . Then b|U = 0, b|U ′ = 0, and there is an isomorphism

ϕ : U
∼=−−−−−→ (U ′)∗θ

defined by setting ϕ(u)(u′) = b(u, u′). By assumption, there is a nondegenerate
form b′ on U ′ of the same type as b, and we define

ψ : U ′ ∼=−−−−−→ (U ′)∗θ

by setting ψ(u′1)(u
′
2) = b′(u′1, u

′
2). Set

W = {u+ ψ−1ϕ(u) |u ∈ U}:

52
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an irreducible KH-submodule isomorphic to U and to U ′. For all u1, u2 ∈ U ,

b(u1 + ψ−1ϕ(u1), u2 + ψ−1ϕ(u2)) = ϕ(u1)(ψ−1ϕ(u2)) + ε·θ
(
ϕ(u2)(ψ−1ϕ(u1))

)
= 2·b′(ψ−1ϕ(u1), ψ−1ϕ(u2)),

where ε = −1 if b is symplectic and ε = 1 otherwise. This shows that b|W is
nondegenerate (since b′ is nondegenerate on U ′), and contradicts our assumption
about V . �

Recall that the modular character χV of an Fq[G]-module V is defined by
identifying F×q with a subgroup of C×, and then letting χV (g) ∈ C (when (|g|, q) =

1) be the sum of the eigenvalues of V
g→ V lifted to C. We always consider this

in the case where G has order prime to q, and hence when two representations with
the same character are isomorphic. See [Se, §18] for more details.

Lemma 7.2. Assume G = GL(V, b), where V is a finite dimensional vector
space over a finite field K of odd characteristic p, and b is a nondegenerate sym-
plectic, quadratic, or hermitian form, or the trivial form. Fix H ≤ G of order
prime to p, let χ : H → C be the character of V as an H-representation, and let
Autχ(H) be the group of automorphisms α ∈ Aut(H) such that χ ◦ α = χ. Then
Autχ(H) = AutG(H) if any of the following conditions hold:

(a) G is a linear or unitary group; or

(b) G is an orthogonal or symplectic group, and there is z ∈ Z(H) such that z2v =
−v for all v ∈ V ; or

(c) there is no irreducible KH-submodule W ⊆ V such that b|W 6= 0.

Furthermore,

(d) [Autχ(H): AutG(H)] ≤ 2 if G is an orthogonal or symplectic group and V ∼=
W k (the direct sum of k copies of W ) for some irreducible H-representation
W .

Proof. Let θ ∈ Aut(K), and U∗θ (for a K-vector space U) be as in the proof
of Lemma 7.1. When b 6= 0, we let

b̂ : V
∼=−−−−−→ V ∗θ

be the isomorphism b̂(v)(w) = b(v, w) for v, w ∈ V (and similarly for other forms
which occur in the proof below). This map is KH-linear when we let H act on V ∗θ

by setting (hϕ)(v) = ϕ(h−1v) for h ∈ H and ϕ ∈ V ∗θ.

For α ∈ Aut(H), let AutKα(V ) denote the set of α-linear automorphisms of
V ; i.e., the set of automorphisms ϕ of V such that ϕ(gv) = α(g)ϕ(v) for all g ∈ H
and v ∈ V . Equivalently, α ∈ Aut(H) is conjugation by ϕ, and so α ∈ AutG(H)
if and only if there is some ϕ ∈ AutKα(V ) which preserves the form b. Since
H ≤ GL(V ) has order prime to p, the two representations of H on V induced by
the inclusion H ≤ GL(V ) and by its composite with α are isomorphic if and only
if their characters χ and χ ◦ α are equal, and thus

Autχ(H) = AutGL(V )(H). (1)
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This proves (a) in the linear case.

We now study how this can be done while preserving a hermitian, symplectic, or
symmetric form b. Write V = V0⊕V ′, where V0 is generated by all irreducible KH-
submodules which support forms of the same type as b, and V ′ is generated by all
others. This is an orthogonal direct sum (since HomKH(V0, (V ′)∗θ) = 0), and hence
b|V0 and b|V ′ are nondegenerate. By Lemma 7.1, V0 splits as an orthogonal direct
sum of irreducible representations. We can thus decompose V as an orthogonal
direct sum

V =

(
k⊕
i=1

Wi

)
⊕ V ′, (2)

where each Wi is an irreducible KH-module, and where V ′ is generated by all
submodules of V of isomorphism types which do not support forms of the same
type as b. In particular, the restriction of b to each irreducible submodule of V ′ is
zero.

The above conditions determine V ′ uniquely, and determine the Wi up to iso-
morphism (and permutation of indices). Also, none of the Wi is isomorphic to
any irreducible submodule of V ′. Hence by (1), for any α ∈ Autχ(H), there is
ϕ ∈ AutKα(V ) which permutes these summands (and which sends V ′ to itself).

We are now ready to prove points (b), (c), and (d), and the remaining case of
point (a).

(c) Assume V = V ′. For each irreducible submodule U ⊆ V ′, we can choose U ′

such that V ′ = U ′ ⊕ U⊥ (orthogonal complement in V ′). Then b vanishes on U
and on U ′ by definition of V ′, and b induces an isomorphism U ′ ∼= U∗θ. So b|U⊕U ′
is nondegenerate. We can thus decompose V ′ as an orthogonal direct sum

V ′ =
⊕̀
j=1

(
Uj ⊕ U ′

j

)
;

where for each j, Uj and U ′
j are irreducible KH-modules, b|Uj = 0 and b|U ′j = 0,

and b defines an isomorphism Uj ∼= (U ′
j)
∗θ.

Fix α ∈ Autχ(H). By (1), there is ϕ ∈ AutKα(V ), and this can be chosen
such that for some permutation σ of {1, . . . , `}, ϕ(Uj ⊕ U ′

j) = Uσ(j) ⊕ U ′
σ(j) for

each j. Since b vanishes on ϕ(Uj) and ϕ(U ′
j) by assumption, it induces KH-linear

isomorphisms Uj ∼= (U ′
j)
∗θ and ϕ(Uj) ∼= (ϕ(U ′

j))
∗θ; and ϕ|Uj⊕U ′j preserves b if and

only if ϕ|Uj
and (ϕ|U ′j )

∗ commute with these isomorphisms in the obvious way.
Thus upon replacing ϕ by its composite with appropriate elements of AutKH(Uj)
for all j (and the identity on each U ′

j), we can arrange that ϕ ∈ GL(V, b) = G.
This shows that α ∈ AutG(H) in this case, and proves (c).

(a,b) Assume that b is a hermitian form, or that b is symmetric or symplectic
and there is some z ∈ Z(H) such that z2 acts on V via − Id. We must show that
AutG(H) = Autχ(H). By (2) and (c), we are reduced to the case V ′ = 0; i.e., the
case where V =

⊕k
i=1Wi is an orthogonal direct sum of irreducible submodules.

By (1), for any α ∈ Autχ(H), there is an α-linear automorphism ϕ of V which
permutes the summands Wi, and we will be done upon showing that ϕ can be
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chosen to preserve the form b. It thus suffices to show, for any irreducible KH-
module W , and any two nondegenerate H-invariant forms b, b′ of the given type
(symmetric, symplectic, or hermitian) on W , that there is some ψ ∈ AutKH(W )
such that b′(v, w) = b(ψ(v), ψ(w)) for all v, w ∈W .

Set K̂ = EndKH(W ), a field. We regard W as a K̂H-module. For each σ ∈ K̂,
set β(σ) = b̂−1σ∗b̂ ∈ AutKH(W ) = K̂. Thus σ∗ ◦ b̂ = b̂ ◦ β(σ), and this translates
to the relation

b(v, σ(w)) = b(β(σ)(v), w)

for all v, w ∈W . Also, for all v, w ∈W and all σ ∈ K̂,

b(β2(σ)(v), w) = b(v, β(σ)(w)) = ε·θ(b(β(σ)(w), v)) = ε·θ(b(w, σ(v))) = b(σ(v), w)

(where ε = −1 if b is symplectic and ε = 1 if b is symmetric or hermitian), and so
β2 = Id. Let K̂0 ⊆ K̂ be the fixed subfield of β.

By definition, β|K = θ, and thus β 6= Id if b is hermitian. If b is symmetric or
symplectic, and z ∈ Z(H) is such that z2 acts via − Id, let ζ ∈ AutKH(W ) = K̂
denote the action of z. Then b(v, zw) = b(z−1v, w) for all v, w ∈ W , and so
β(ζ) = ζ−1 = −ζ. Thus in all cases, β 6= Id, and so [K̂:K̂0] = 2. Set q̂ = |K̂0|, so
|K̂| = q̂2, and β(τ) = τ bq for all τ ∈ K̂.

Set σ = b̂−1 ◦ b̂′ ∈ AutKH(W ). Then b′(v, w) = b(σ(v), w) for all v, w ∈ W .
Since the forms have the same type of symmetry, b(v, σ(w)) = b(σ(v), w) for all
v, w ∈ W , and thus σ ∈ K̂0. Also, [(K̂)×:(K̂0)×] = q̂ + 1; so we can choose ψ ∈ K̂
such that ψ·β(ψ) = ψbq+1 = σ. Then b′(v, w) = b(ψ(v), ψ(w)) for all v, w ∈W , and
this finishes the proof.

(d) Assume now that b is a symplectic or symmetric form, and that V ∼= W k for
some irreducible KH-module W . If W does not support a form of the same type
as b, then we are in the situtation of (c), and AutG(H) = Autχ(H). So assume
that there is a nondegenerate form bW on W of the same type. Let V =

⊕k
i=1Wi

be the decomposition of (2), and fix KH-linear isomorphisms ϕi : W −−−→Wi for
each i. Let bi be the form on W which makes ϕi into an isometry; i.e., bi(v, w) =
b(ϕi(v), ϕi(w)) for all v, w ∈W .

Set K̂ = EndKH(W ), a field. As in the proof of (b) above, there is an auto-
morphism β ∈ Aut(K̂) such that bW (v, σ(w)) = bW (β(σ)(v), w) for all v, w ∈ W
and all σ ∈ K̂, and AutG(H) = Autχ(H) if β 6= Id. So we can assume that β = Id;
i.e., that

bW (v, σ(w)) = bW (σ(v), w) (3)

for all v, w ∈W and σ ∈ K̂.

For each ϕ ∈ NGL(W )(H), there is a unique automorphism ω(ϕ) in K̂× =
AutKH(W ) such that

bW (ϕ(v), ϕ(w)) = bW (ω(ϕ)(v), w) (4)

for all v, w ∈ V (defined by ω(ϕ) = b̂−1
W ϕ∗b̂Wϕ). Since CGL(W )(H) = AutKH(W ) =

K̂×, and since ω(σ) = σ2 for all σ ∈ K̂× by (3), ω factors through a homomorphism

ω : AutGL(W )(H) ∼= NGL(W )(H)/CGL(W )(H) −−−−−→ K̂×/{σ2 |σ ∈ K̂×} ∼= Z/2.
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Now, χ = k·χW , where χW is the character of W , and hence Autχ(H) =
AutχW

(H) = AutGL(W )(H) by (1). Since the index of Ker(ω) in AutGL(W )(H) is at
most two, it remains only to show that AutG(H) ≥ Ker(ω). Fix some α ∈ Ker(ω),
and let ψ0 ∈ NGL(W )(H) be any α-linear automorphism. Then ω(ψ0) = τ2 =

ω(τ · Id) for some τ ∈ K̂×; and so ψ def= τ−1ψ0 ∈ Ker(ω) and is α-linear. By (4),
ψ ∈ Aut(W, bW ).

For each i = 1, . . . , k, let σi ∈ K̂× be the unique element such that

bi(v, w) = bW (σi(v), w)

for each v, w ∈ W . Conjugation by ψ induces an automorphism of the cyclic
group K̂× = AutKH(W ). So for each i = 1, . . . , k, there is τi ∈ K̂× such that
τ2
i = σ−1

i (ψσiψ−1). Set ψi = τiψ ∈ Aut(W ), an α-linear automorphism. For all i
and all v, w ∈W ,

bi(ψi(v), ψi(w)) = bW (σiτiψ(v), τiψ(w)) = bW (σiτ2
i ψ(v), ψ(w))

= bW ((ψσiψ−1)ψ(v), ψ(w)) = bW (σi(v), w) = bi(v, w).

Thus ψi ∈ Aut(W, bi) and is α-linear for each i, and so
k⊕
i=1

ϕiψiϕ
−1
i ∈ Aut(V )

is an α-linear automorphism of V which preserves b. Hence α ∈ AutG(H), and this
finishes the proof of (d). �

In general, for g ∈ GL(V, b), we write −g = (− Id) ◦ g. For any H ≤ PGL(V, b)
and any ε ∈ Hom(H, {±1}), we let Iε ∈ Aut(π−1H) denote the automorphism

Iε(g) =

{
g if ε(π(g)) = 1
−g if ε(π(g)) = −1.

The resulting map

Hom(H, {±1}) ε 7→Iε−−−−−−−→ Aut(π−1H)

is a homomorphism of groups.

The next lemma will be needed later as an explicit way of constructing auto-
morphisms.

Lemma 7.3. Let V be a finite dimensional vector space over a finite field K of
odd characteristic p, and let b be a nondegenerate symplectic, quadratic, or her-
mitian form, or the trivial form. Set G = GL(V, b) and G = PGL(V, b) for
short, and let π : G → G be the projection. Fix H ≤ G of order prime to p,
set H̃ = π−1(H) ≤ G, and let T ≤ Z(H̃) be an elementary abelian 2-subgroup. Set

∆T =
{
ε ∈ Hom(H, {±1})

∣∣π(T ) ≤ Ker(ε), Iε ∈ AutG(H̃)
}
.

For ε ∈ ∆T and x ∈ T , define αε,x ∈ Aut(H̃) by setting

αε,x(g) =

{
g if ε(π(g)) = 1
xg if ε(π(g)) = −1.

Then αε,x ∈ AutG(H̃) for all ε ∈ ∆T and x ∈ T .
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Proof. Let T ≤ Z(H̃) and ∆T ≤ Hom(H, {±1}) be as described. Fix x ∈ T ,
and let V± be its ±1-eigenspaces. Then V = V+ ⊕ V− is an orthogonal direct sum
of H̃-invariant subspaces.

Fix some ε ∈ ∆T , and set α = Iε ∈ AutG(H̃). Let ϕ ∈ G = GL(V, b) be such
that cϕ = α; i.e., ϕ ∈ NG(H̃) and ϕgϕ−1 = α(g) for g ∈ H̃. In particular, ϕxϕ−1 =
α(x) = x, and so ϕ preserves the V±. Define ψ ∈ GL(V, b) by setting ψ|V+ = Id
and ψ|V− = ϕ|V− . Then ψgψ−1 = αε,x(g) for g ∈ H̃, and thus αε,x ∈ AutG(H̃). �

The last lemma will now be applied to get information about elementary abelian
2-subgroups of the projective classical groups.

Lemma 7.4. Let V be a finite dimensional vector space over a finite field K of
odd characteristic, and let b be a nondegenerate symplectic, quadratic, or hermitian
form, or the trivial form. Set G = GL(V, b) and G = PGL(V, b), let π : G → G

be the projection, and set Z = Ker(π) = {u· Id ∈ G |u ∈ K×}. Let E ≤ G be an
elementary abelian subgroup, set Ẽ = π−1(E) ≤ G, and let χ : Ẽ → C be the
character of V as an Ẽ-representation. Set Ẽ0 = Z·Ω1(Z(Ẽ)), E0 = π(Ẽ0) ≤ G,
and

∆ =
{
ε ∈ Hom(E, {±1}),

∣∣ Iε ∈ AutG(Ẽ)
}
.

Then the following hold.

(a) There is an elementary abelian subgroup T ≤ Z(Ẽ), a cyclic subgroup Z ′ ≤
Z(Ẽ) such that Z ≤ Z ′ and [Z ′:Z] ≤ 2, and a subgroup X ≤ Ẽ such that
Z = Z(X) and [X,X] ≤ {± Id}, such that

Ẽ = T ×
(
Z ′ ×Z X

)
, Z(Ẽ) = T × Z ′, and Ẽ0 = T × Z.

Here, Z ′ ×Z X denotes the central product, where Z ≤ Z ′ is identified with
Z = Z(X).

(b) χ(g) = 0 for all g ∈ ẼrẼ0.

(c) ∆ is a subgroup of Hom(E, {±1}), and ∆ ≥ Hom(E/E0, {±1}).

Proof. Since Z(Ẽ)/Z is elementary abelian, we can write Z(Ẽ) = Z ′ × T for
some elementary abelian subgroup T and some cyclic subgroup Z ′ such that Z ≤ Z ′
and [Z ′:Z] ≤ 2. Choose elements g1, . . . , gr ∈ Ẽ whose images form a basis for the
elementary abelian 2-group Ẽ/Z(Ẽ), and set X = 〈Z, g1, . . . , gr〉. Since E ∼= Ẽ/Z

is elementary abelian, g2
i ∈ Z and [gi, gj ] ≤ Z for all i, j, so X ∩ Z(Ẽ) = Z, and

thus Z(X) = Z. Also, the commutator map

δ : Ẽ/Z(Ẽ)× Ẽ/Z(Ẽ) −−−−→ Z

is bilinear and nondegenerate, and hence its image lies in {± Id}. By construction,

Ẽ = T ×
(
Z ′ ×Z X

)
, Z(Ẽ) = T × Z ′, and Ẽ0 = T × Z,

and this proves (a).

The set ∆ is a subgroup of Hom(E, {±1}), since it is the inverse image of
AutG(Ẽ) under the homomorphism from Hom(E, {±1}) to Aut(Ẽ) which sends ε
to Iε. So it remains only to prove (b), and the second statement in (c). Point (b)
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follows from (c) since χ(g) = 0 whenever there is α ∈ AutG(Ẽ) such that α(g) = −g
— and this is the case whenever there is ε ∈ ∆ such that ε(π(g)) = −1.

Since the commutator map δ is bilinear and nondegenerate, it defines an iso-
morphism Hom(Ẽ/Z(Ẽ), {±1}) ∼= Ẽ/Z(Ẽ). Hence for any ε ∈ ∆ such that
Ker(ε) ≥ π(Z(Ẽ)), there is g ∈ Ẽ such that [g, h] = ε(π(h))· Id (so ghg−1 = Iε(h))
for all h ∈ Ẽ. In other words, Iε = cg ∈ AutG(Ẽ) is an inner automorphism when-
ever ε(π(Z(Ẽ))) = 1. This proves (b) and (c) when Z(Ẽ) = Ẽ0 (equivalently, when
Z ′ = Z); and also proves in the general case that χ(g) = 0 for g ∈ ẼrZ(Ẽ).

Now assume [Z ′:Z] = 2. If b is symmetric or symplectic, then |Z| = 2, so
|Z ′| = 4, and Z ′ = 〈z〉 where z2 acts on V via − Id. Hence in all cases, AutG(Ẽ) =
Autχ(Ẽ) by Lemma 7.2(a,b). Thus (c) follows from (b) in this case; and to prove
(b), it remains to show that χ(g) = 0 for all g ∈ Z(Ẽ)rẼ0.

Fix such a g, and recall that Z(Ẽ) = Z ′ × T and Ẽ0 = Z × T , where T is
elementary abelian. Thus g2 ∈ Z, a generator, and so g2 acts on V via u· Id for
some u ∈ K×. Let K be the algebraic closure of K, and let ζ ∈ K× be such that
ζ2 = u. If ζ /∈ K, then the Z(Ẽ)-irreducible summands of V are all 2-dimensional,
all induced from 1-dimensional Ẽ0-representations, and so their characters all vanish
on Z(Ẽ)rẼ0. Thus (b) holds in this case.

So assume now that ζ ∈ K. In particular, G is not linear (b 6= 0), since
otherwise ζ· Id ∈ Z. Thus b defines an isomorphism V ∼= V ∗θ of KẼ-modules,
where θ ∈ Aut(K) and V ∗θ are as in the proof of Lemma 7.1. The only eigenvalues
of the action of g on V are ±ζ. Letm be the multiplicity of ζ andm′ the multiplicity
of −ζ (so m+m′ = dim(V )). Then the action of g on V ∗θ has eigenvalues θ(ζ)−1

with multiplicity m and −θ(ζ)−1 with multiplicity m′. Hence either ζ = θ(ζ)−1

or m = m′. But if ζ·θ(ζ) = 1, then ζ· Id ∈ GL(V, b), hence lies in Z, and this
contradicts the assumption that ζ2· Id generates Z. We thus conclude that m = m′,
and hence that χ(g) = 0. �

We are now ready to show that all classical groups of Lie type in odd charac-
teristic lie in L≥2(2).

Theorem 7.5. Let q be an odd prime power, and let L be one of the simple
groups PSLn(q) (n ≥ 2), PSUn(q) (n ≥ 3), PSp2n(q) (n ≥ 2), or PΩ±

n (q) (n ≥ 5).
Then E≥2(L ; 2) = ∅, and hence L ∈ L≥2(2).

Proof. Write L = [G,G], where G = PGL(V, b), V is a vector space of
dimension n or 2n over the field K = Fq or Fq2 , and b is a nondegenerate symplec-
tic, quadratic, or hermitian form, or the trivial form. Since PSL4(q) ∼= PΩ+

6 (q),
PSU4(q) ∼= PΩ−

6 (q), and PSp4(q) ∼= PΩ5(q), we can assume that dimK(V ) 6= 4.

Set G = GL(V, b), let π : G → G be the projection, and set Z = Ker(π) =
Z(G). Set L̃ = [G,G]. Thus G is one of the groups GLn(q), GUn(q), Sp2n(q), or
GO±

n (q), G = G/Z, and L = L̃/(Z ∩ L̃).

Fix E ∈ E≥2(L ; 2), and set Ẽ = π−1(E). Define

∆ =
{
ε ∈ Hom(E, {±1})

∣∣ Iε ∈ AutG(Ẽ)
}
.
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Set
Ẽ0 = Z·Ω1(Z(Ẽ)), Ẽ1 =

⋂
ε∈∆

Ker(ε ◦ π),

and Ei = π(Ẽi). By Lemma 7.4(c),

Ẽ1 ≤ Ẽ0 and hence E1 ≤ E0.

Since ∆ is a subgroup of Hom(E, {±1}) (Lemma 7.4(c)), and since E1 is defined
to be the intersection of the kernels of all ε ∈ ∆,

∆ =
{
ε ∈ Hom(E, {±1})

∣∣ Ker(ε) ≥ E1

} ∼= Hom(E/E1, {±1}). (1)

Also, for any g ∈ ẼrẼ1, there is some ε ∈ ∆ such that ε(π(g)) = −1, and hence
some α ∈ AutG(Ẽ) (α = Iε) such that α(g) = −g. So if χ : Ẽ → C denotes
the character of V as an Ẽ-representation, then χ(g) = χ(−g) = −χ(g), and hence
χ(g) = 0. We have now shown that

χ(g) = 0 for all g ∈ ẼrẼ1. (2)

Set r = rk(E1), s = rk(E0/E1), t = rk(E/E0), and m = r+ s+ t = rk(E). Let
{e1, . . . , em} be an F2-basis for E, chosen and ordered such that {e1, . . . , er} ⊆ E1

and {e1, . . . , er+s} ⊆ E0 are bases for these subgroups. Let ẽi ∈ Ẽ be a lifting
of ei ∈ E, chosen such that if i ≤ r + s (if ei ∈ E0), then ẽi ∈ Ω1(Z(Ẽ)). Thus
Ẽ0 = Z × T0, where T0

def= 〈ẽ1, . . . , ẽr+s〉 ∼= Cr+s2 .

For each 1 ≤ i < j ≤ m such that i ≤ r + s and j ≥ r + 1, let αij ∈ Aut(Ẽ)
be the automorphism αij |Z = IdZ , αij(ẽk) = ẽk if k 6= j, and αij(ẽj) = ẽiẽj . (This
is an automorphism since ẽi is central of order 2.) Let εj ∈ Hom(Ẽ, {±1}) be the
homomorphism εj(ẽk) = ẽk if k 6= j and εj(ẽj) = −1 (and εj(Z) = 1). Since j > r,
εj ∈ ∆ by (1). Since i ≤ r + s, ẽi ∈ T0, and hence αij ∈ AutG(Ẽ) by Lemma 7.3,
applied with T = 〈ẽ1, . . . , ẽi〉 ≤ T0.

Let A0 ≤ A ≤ Aut(E) be the subgroups

A = CAut(E)(E1) ∩ CAut(E)(E/E0) and A0 = A ∩ CAut(E)(E0/E1).

Thus A is the group of automorphisms which send E0 and E1 to themselves and
induce the identity on E1 and E/E0, while A0 is the subgroup of those which
also induce the identity on E0/E1. With respect to the basis {e1, . . . , em}, A

is the group of automorphisms whose matrices have the form

Ir Y X
0 U Z
0 0 It

 for

U ∈ GLs(F2) and arbitrary matrices X,Y, Z of the appropriate dimensions, while
A0 is the subgroup of automorphisms whose matrices have this form with U = Is.
We have just shown that Aut

G
(E) contains all automorphisms with elementary

matrix eij , for i < j, i ≤ r + s, and j > r. In particular, since A0 is generated
by automorphisms with matrices eij for i ≤ r < j or i ≤ r + s < j, this shows
that A0 ≤ Aut

G
(E). Furthermore, since the basis chosen for E0/E1 was arbitrary,

Aut
G

(E) also contains all automorphisms whose matrix has the above form when
X,Y, Z all vanish and U ∈ GLs(F2) is a transvection. Since GLs(F2) is generated
by transvections, we have now shown that

A0 ≤ A ≤ Aut
G

(E). (3)
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Now, A0 is a 2-subgroup of Aut
G

(E) (it has order 2rs+rt+st by the above
description in terms of matrices), and is a normal subgroup since E0 and E1 are both
Aut

G
(E)-invariant subgroups of E. Thus A0 ≤ O2(Aut

G
(E)). Also, A0 ∩ L = 1

since O2(AutL(E)) = 1 (E is pivotal by Lemma 4.4(c)). Either |G/L| ≤ 4 (if G is
orthogonal), or G/L is cyclic. Hence A0 is cyclic or of order 4, and in particular
rk(A0) ≤ 2. Also, m = r+ s+ t = rk(E) ≥ 4 by Proposition 4.6(b). By the matrix
description, rk(A0) ≥ r(s+ t) and rk(A0) ≥ t(r + s). Thus if any two of the ranks
r, s, t are nonzero, then rk(A0) ≥ 3, which we have just shown is impossible. This
shows that two of the three groups E1, E0/E1, and E/E0 must vanish, and we are
reduced to considering the three cases (E0, E1) = (1, 1), (E, 1), or (E,E).

Case 1: Assume E0 = 1. Then Ω1(Z(Ẽ)) ≤ Z, so Ẽ = P̃ ∼= Z ′ ×Z X by
Lemma 7.4(a), where Z ′ is cyclic, [Z ′:Z] ≤ 2, and X is such that Z(X) = Z and
[X,X] ≤ {± Id}. If G is linear or unitary, or if G is orthogonal or symplectic and
[Z ′:Z] = 2, then AutG(Ẽ) = Autχ(Ẽ) by Lemma 7.2(a,b). If G is orthogonal or
symplectic and Z ′ = Z (= {± Id}), then for any KẼ-submodule V ′ ⊆ V with
character χ′, χ′(− Id) = −χ′(Id), and χ′(g) = 0 for all g ∈ ẼrZ by Lemma 7.4(b).
So by the independence of irreducible characters, V ∼= Wm for some irreducible
KẼ-module W , and AutG(Ẽ) has index at most two in Autχ(Ẽ) in this case by
Lemma 7.2(d).

By (2), the character χ of Ẽ on V vanishes on ẼrZ, and hence

Autχ(Ẽ) =
{
α ∈ Aut(Ẽ)

∣∣α|Z = Id
}
.

Set
Γ =

{
α/Z

∣∣α ∈ Autχ(Ẽ)
}
≤ Aut(E):

the image of Autχ(Ẽ) under the projection to Aut(E). Since AutG(Ẽ) has index
at most two in Autχ(Ẽ), Aut

G
(E) has index at most two in Γ.

Set Z ′2 = {g2 | g ∈ Z ′}. Let

δ : E × E −−−−→ {± Id} and σ : E −−−−→ Z/Z ′2

denote the commutator and squaring maps: δ(π(g), π(h)) = [g, h] and σ(π(g)) =
g2·Z ′2. Then each automorphism of E which preserves these maps lifts to an
automorphism of Ẽ; i.e.,

Γ = {α ∈ Aut(E) | δ ◦ (α× α) = δ and σ ◦ α = σ}.
Also, δ is a nondegenerate symplectic form on X/Z ≤ E (since Z = Z(X)),
and hence rk(X/Z) is even. Set 2m = rk(X/Z). Since rk(E) ≥ 4 and rk(E) ≤
rk(X/Z) + 1, we must have 2m ≥ 4.

Assume first that |Z ′| ≥ 4 and σ 6= 1. In particular, AutG(Ẽ) = Autχ(Ẽ),
and hence Aut

G
(E) = Γ, in this case. Also, Z ′ = Z (so δ is nondegenerate),

[Ẽ, Ẽ] ≤ Z ′2, and hence σ is linear. Set E2 = Ker(σ) and E3 = (E2)⊥ (the
orthogonal complement with respect to δ); thus rk(E3) = 1 and rk(E2) = 2m− 1.
Each automorphism α ∈ Γ leaves E2 and E3 invariant, and hence each α ∈ Γ which
induces the identity on E3, E2/E3, and E/E2 lies in O2(Γ). The transvection
α ∈ Aut(E) such that α|E2 = Id and Im(α− Id) = E3 preserves σ and δ and hence
lies in Γ. Also, by Witt’s lemma (see Theorem 6.3), each automorphism of E2 which
induces the identity on E3 and on E2/E3 extends to a unique automorphism of E



7. CLASSICAL GROUPS OF LIE TYPE IN ODD CHARACTERISTIC 61

which preserves δ, and hence which lies in O2(Γ). From this, one sees that O2(Γ) =
O2(Aut

G
(E)) is noncyclic and |O2(Γ)| ≥ 22m−1 ≥ 8. Since Aut

G
(E)/AutL(E) is

cyclic or has order 4, this proves that O2(AutL(E)) 6= 1, which contradicts the fact
that E is pivotal (Lemma 4.4(c)). Thus, this case cannot occur.

If |Z ′| ≥ 4 and σ = 1, then Γ ∼= Sp2m(2): the group of automorphisms which
preserve δ. If |Z ′| = |Z| = 2, then Ẽ is an extraspecial 2-group, σ is a quadratic
form associated to the bilinear form δ, and hence Γ ∼= SO±

2m(2). Hence if m ≥ 3,
then AutL(E) is isomorphic to Sp2m(2), SO±

2m(2), or Ω±
2m(2), with the usual action

on Ẽ/Z ′ ∼= (Z/2)2m; and by Proposition 6.5, E cannot lie in E≥2(L ; 2). If m = 2
and Γ = Sp4(2) ∼= Σ6 [Hp, II.9.22], then AutL(E) has index at most two in Γ, and
E /∈ E≥2(L ; 2) by Proposition 4.7(b). If m = 2 and Γ = SO−

4 (2), then Γ ∼= Σ5

and acts on E ∼= (Z/2)4 by the permutation action modulo its fixed component
(since E contains exactly five involutions which lift to involutions in Ẽ and their
only relation in E is that their product is trivial); and so again, [Γ:AutL(E)] ≤ 2
and E /∈ E≥2(L ; 2) by Proposition 4.7(b).

It remains to consider the case where Γ ∼= SO+
4 (2), and thus where Ẽ ∼=

D8×C2D8
∼= Q8×C2Q8. As was noted above, this group has a unique irreducibleK-

representation W on which its central involution acts via (− Id). More precisely, let
U be an irreducible 2-dimensionalKD8-module; thenW = U⊗KU is 4-dimensional,
and the unique irreducibleKẼ-module on which the central involution acts via− Id.
Also,

EndK eE(W ) ∼= EndKD8(U)⊗K EndKD8(U) ∼= K.

Furthermore, U is self-dual (since its character vanishes on D8rZ(D8)), so it sup-
ports aD8-invariant symmetric or symplectic form bU , and bU⊗bU is an Ẽ-invariant
symmetric form on W (cf. [A1, 9.1]).

Thus V ∼= Wm for some m ≥ 2, since we are assuming dim(V ) 6= 4. Any
g ∈ CL(E) lifts to g̃ ∈ L̃ whose conjugation action on Ẽ is the identity modulo
Z, hence an inner automorphism of Ẽ; and thus CL(E) = (C

eL(Ẽ)/Z)× E. Hence
any P ∈ Syl2(CL(E)) has the form P = P ′ × E for some P ′ ∈ Syl2(CeL(Ẽ)/Z).
Also, E = Ω1(Z(P )) by Proposition 4.4(a), so P ′ = 1, and C

eL(Ẽ)/Z must have
odd order.

Assume the irreducible KẼ-module W supports a form of the same type as b.
Then by Lemma 7.1, V splits nontrivially as an orthogonal direct sum irreducible
submodules, and P ′ contains all automorphisms which are the identity on certain
summands and − Id on others. So P 6= 1, and this case cannot occur. We can thus
eliminate the linear case (b = 0), and also the orthogonal case since W was shown
above to support a symmetric form. If b is a hermitian form, and K0 is the fixed
subfield of the involution θ ∈ Aut(K), then the symmetric form on the irreducible
K0Ẽ-module W0 extends to a hermitian form on W ∼= K⊗K0 W0. So the only case
which remains to eliminate is the symplectic case.

Assume b is symplectic, and thus that G ∼= Sp4m(K). Identify V = V0 ⊗K W ,
where V0

∼= Km (with no action). Since EndK eE(W ) ∼= K as shown above (and
since W is self-dual), the space of all KẼ-bilinear forms on V ∼= Wm, and the
space EndK eE(W ), are both m2-dimensional K-vector spaces. Thus each bilinear
form on V is of the form b0 ⊗ bW for some unique bilinear form b0 on V0, and
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each KẼ-linear endomorphism of W is of the form f ⊗ IdW for some unique f ∈
EndK(V0). Let b0 be the unique form on V0 such that b = b0⊗bW . Then b0 is skew-
symmetric and nondegenerate since b is (and by the uniqueness of b0). Thus b0 is
a symplectic form on V0 (hence m = dimK(V0) is even); and CG(Ẽ) is the group
of all f ⊗ IdW ∈ AutK eE(V ) such that f ∈ AutK(V0, b0). Hence CG(Ẽ) ∼= Spm(K).
Since Spm(K)/{± Id} has even order for all even m ≥ 2, this contradicts the above
assertion that CG(Ẽ)/Z must have odd order.

This finishes the proof of Case 1: no subgroup E ≤ L of this type can be in
E≥2(L ; 2).

Case 2: Assume E1 = 1 and E0 = E. By (3), Aut
G

(E) = Aut(E). Since
Aut(E) ∼= GLm(2) is a perfect group (recall m = rk(E) ≥ 4), this shows that
AutL(E) = Aut(E). Hence E /∈ E≥2(L ; 2) by Proposition 4.7(a).

Case 3: Now assume E1 = E. In this case, CL(E) is the image in L of C
eL(Ẽ),

and hence Ẽ must contain the center of C
eL(Ẽ). Write Ẽ = Z × T where T is

elementary abelian, and let V =
⊕k

i=1 Vi be the decomposition into eigenspaces
for the characters of T . This is an orthogonal decomposition, and CG(Ẽ) is the
product of the groups GL(Vi, b|Vi

). We claim that

Ẽ = Z·
{
ϕ ∈ L̃

∣∣ϕ|Vi = ± Id for all i
}
. (4)

Since E = Ω1(Z(P )) for some P ∈ Syl2(CL(E)) (Proposition 4.4(a)), Ẽ contains
each involution in the center of C

eL(Ẽ), and thus Ẽ contains all involutions in L̃
which act on each Vi by ± Id. The opposite inclusion follows since by construction,
Ẽ = Z × T for some elementary abelian group T which acts on each Vi via ± Id.

Now, each element ϕ ∈ NG(Ẽ) must preserve the decomposition of V as a sum
of Vi’s, and any ϕ ∈ G which preserves the decomposition normalizes Ẽ by (4). We
have already seen that CG(Ẽ) is the group of elements of G which send each Vi
to itself. Thus AutG(Ẽ) ∼= Aut

G
(E) can be regarded as a group of permutations

of the set {1, . . . , k} — a product of one symmetric group for each isometry class
of pairs (Vi, b|Vi) — and AutL(E) contains the corresponding product of alternat-
ing groups. By (4) again, we can identify E as an Aut

G
(E)-invariant subgroup

of Fk2/〈(1, . . . , 1)〉, where Aut
G

(E) permutes the canonical basis of Fk2 . But this
situation is impossible for E ∈ E≥2(L ; 2) by Proposition 4.8. �



CHAPTER 8

Exceptional groups of Lie type in odd
characteristic

In addition to the five families of Chevalley groups G2(q), F4(q), and En(q), it
remains to consider the twisted groups 2G2(32k+1), 3D4(q), and 2E6(q) for odd q.
The following cases are easy.

Proposition 8.1. Assume L is one of the groups G2(q) or 3D4(q) for any odd
prime power q, or 2G2(32k+1) for some k ≥ 1. Then L ∈ L≥2(2).

Proof. By [Gr2, Theorem 6.1], rk2(G2(Fq)) = 3. Hence G2(q) and 2G2(q)
have 2-rank at most 3 (in fact, equal to three in all cases). Furthermore, the tables
of orders of the groups of Lie type in [Ca1] or [GLS3] show that for odd q,

[3D4(q):G2(q)] = q6(q8 + q4 + 1)

is odd, and thus rk2(3D4(q)) = rk2(G2(q)). So E≥2(L ; 2) = ∅ by Proposition
4.6(b), and hence L ∈ L≥2(2) by Proposition 4.2. �

The groups F4(q) are almost as easy to handle.

Proposition 8.2. Assume, for some odd prime power q, that L = F4(q). Then
R≥2(L ; 2) = ∅, and L ∈ L≥2(2).

Proof. We regard L as a subgroup of G = F4(Fq). There are two conju-
gacy classes of involutions in G, denoted 2A or 2B in [Gr2, Table VI]. By [Gr2,
Theorem 7.3], G contains a unique conjugacy class of maximal elementary abelian
2-subgroups, represented by E5 = T(2) × 〈θ〉, where T is a maximal torus, T(2) is
its 2-torsion subgroup, and θ ∈ NG(T ) is an element which inverts T . Further-
more, the elements of type 2B in E5 form (together with the identity) a subgroup
E2 ≤ E5 of rank 2.

Thus for any elementary abelian 2-subgroup E ≤ L, there is a subgroup E0 ≤ E
such that E ∩ 2B = E0

# and E ∩ 2A = ErE0, and such that rk(E0) ≤ 2 and
rk(E/E0) ≤ 3. In particular, E0 is NAut(G)(E)-invariant, and thus NAut(L)(E)-
invariant. Hence E≥2(L ; 2) = ∅ by Proposition 4.6(b), and so L ∈ L≥2(2) by
Proposition 4.2. �

In order to deal with the remaining cases, we need to look more closely at the
algebraic groups G over Fq, and the endomorphisms σ of G, for which L = CG(σ) is
a finite group of Lie type. Here, CG(σ) denotes the subgroup of elements of G fixed
by σ. Our general references for the properties of algebraic groups are [Hum] and
[Ca2]. Note in particular that connected algebraic groups always have maximal
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tori (products of copies of F×) which are unique up to conjugacy [Hum, §21.3].
For an arbitrary algebraic group G, we let G0 denote the connected component of
the identity, a normal subgroup of finite index [Hum, §7.3]; and let π0(G) = G/G0

denote the finite group of connected components of G.

A connected algebraic group over an algebraically closed field F is reductive
if it has no nontrivial normal unipotent subgroup. Equivalently, G is reductive if
and only if it is the central product over a finite group of a semisimple group and a
torus [Hum, §§19.5 & 27.5]. We first note the following well known results about
centralizers and normalizers of subgroups of a maximal torus in a reductive group.

Lemma 8.3. Let G be an algebraic group over an algebraically closed field F
whose identity component G0 is reductive. Fix a maximal torus T ≤ G, and set
W = NG(T )/T (regarded as a group acting on T ). Let Φ be the set of roots of
G, regarded as elements of Hom(T, F×). For each α ∈ Φ, let Xα ≤ G denote the
corresponding root subgroup (Xα

∼= F ). Then for any subgroup H ≤ T ,

CG(H)0 = 〈T,Xα |α(s) = 1, all s ∈ H〉

is a reductive group, with root system {α ∈ Φ |α(s) = 1, all s ∈ H}. Also,

CG(H) = CG(H)0·{wT ∈W |wsw−1 = s all s ∈ H};

AutG(H) = AutW (H); and two elements x, y ∈ T are CG(H)-conjugate if and only
if they are CW (H)-conjugate.

Proof. The description of CG(H)0 in (a) is shown in [Ca2, Theorem 3.5.3]
when G is connected and H = 〈s〉 is cyclic, and the proof given there also applies
in the more general case.

Now, T is a maximal torus in CG(H)0, and all maximal tori of CG(H)0 are
conjugate in CG(H)0. Each element of NG(H) conjugates T to another maximal
torus of CG(H)0, and hence by a Frattini argument, CG(H) = CG(H)0·CNG(T )(H)
and NG(H) = CG(H)0·NNG(T )(H). This proves the descriptions of CG(H) and
AutG(H). Similarly, for any x, y ∈ T and g ∈ CG(H) such that y = gxg−1, T and
gTg−1 are two maximal tori of the reductive group CG(H, y)0, hence conjugate
in CG(H, y)0, so there is a ∈ CG(H, y) such that a(gTg−1)a−1 = T , and ag ∈
CNG(T )(H) conjugates x into y. �

We adopt the terminology used in [GLS3], and write Steinberg endomorphism
to mean a surjective algebraic endomorphism of an algebraic group G over Fq whose
fixed subgroup is finite. (When G is semisimple, all Steinberg endomorphisms are
group automorphisms, but their inverses are not in general algebraic.) All finite
simple groups of Lie type can be constructed as (commutator subgroups of) fixed
subgroups of Steinberg endomorphisms. The following result is one of the key
properties of these endomorphisms.

Proposition 8.4. (Lang-Steinberg theorem) Fix a prime p and a connected
algebraic group G over Fp. Let σ be any Steinberg endomorphism of G. Then every
element of G is of the form x−1σ(x) for some x ∈ G.

Proof. See [St, Theorem 10.1]. The proof is also sketched in [Ca2, §1.17]. �
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The following proposition is a special case of [GLS3, Theorem 2.1.5]. It de-
scribes, in many cases, the relationship between conjugacy classes and normalizers
in a connected algebraic group with those in the subgroup fixed by a Steinberg
endomorphism.

Proposition 8.5. Let G be any connected algebraic group over Fq. Fix a
Steinberg endomorphism σ of G. Let H ≤ CG(σ) be any subgroup, and let H be the
set of CG(σ)-conjugacy classes of subgroups H ′ ≤ CG(σ) which are G-conjugate to
H. Set

N = NG(H), C = CG(H), and C = π0(C) = C/C0

for short. Let g denote the class in C of g ∈ C, and let [H ′] denote the class in
H of H ′ ≤ CG(σ). Let N act on C by sending (x, g) (for x ∈ N and g ∈ C) to
xgσ(x)−1. Let C/N and C/C denote sets of orbits of these actions of N and C,
respectively, and let N ·g ∈ C/N and C·g ∈ C/C denote the orbits of g ∈ C. Then
the following hold:

(a) For all x ∈ G, xHx−1 ≤ CG(σ) if and only if x−1σ(x) ∈ C.

(b) There is a bijection
ω : H

∼=−−−−−−−→ C/N,

where for any x ∈ G such that xHx−1 ≤ CG(σ), ω([xHx−1]) = N ·x−1σ(x) ∈
C/N .

(c) For any x ∈ G such that xHx−1 ≤ CG(σ), the isomorphism from Aut(xHx−1)
to Aut(H) induced by x (i.e., α 7→ c−1

x αcx) sends AutCG(σ)(H ′) onto the stabi-

lizer of C·x−1σ(x) ∈ C/C: the stabilizer under the action of AutG(H) ∼= N/C

on C/C induced by the action (as defined above) of N = NG(H) on C.

Proof. We first check that NG(H) does act on C = CG(H), and hence on
C = C/C0. If g ∈ NG(H) and x ∈ CG(H), then for all h ∈ H,(

gxσ(g)−1
)
·h·
(
gxσ(g)−1

)−1 = gxσ(g−1hg)x−1g−1 = g(g−1hg)g−1 = h

(since g−1hg ∈ H ≤ CG(σ)), and hence gxσ(g)−1 ∈ CG(H).

If x ∈ G is such that xHx−1 ≤ CG(σ), then xhx−1 = σ(xhx−1) = σ(x)hσ(x)−1

for all h ∈ H, and thus x−1σ(x) ∈ CG(H). Conversely, if x−1σ(x) ∈ CG(H), then
xhx−1 = σ(x)hσ(x)−1 = σ(xhx−1) for all h ∈ H, and hence xHx−1 ≤ CG(σ). This
proves (a).

Let x, y ∈ G be such that xHx−1, yHy−1 ≤ CG(σ), and are CG(σ)-conjugate.
Let a ∈ CG(σ) be such that xHx−1 = ayHy−1a−1, and set g = (ay)−1x ∈ N =
NG(H). Thus x = ayg,

x−1σ(x) = g−1
(
y−1a−1σ(a)σ(y)

)
σ(g) = g−1

(
y−1σ(y)

)
σ(g),

and so N ·x−1σ(x) = N ·y−1σ(y) ∈ C/N . Thus ω([xHx−1]) depends only on the
CG(σ)-conjugacy class of the subgroup xHx−1, and not on x.

This shows that ω is well defined. To see that ω is onto, fix some z ∈ CG(H).
By the Lang-Steinberg theorem, there is x ∈ G such that x−1σ(x) = z. Then
xHx−1 ≤ CG(σ) by (a), and N ·z = ω([xHx−1]) ∈ Im(ω).
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To see that ω is injective, it now suffices to consider the case where x, y ∈ G
are such that x−1σ(x) ≡ y−1σ(y) (mod CG(H)0). Let z ∈ CG(H)0 be such that
x−1σ(x) = y−1σ(y)·z. Then

x−1σ(x) = y−1
(
σ(y)zσ(y)−1

)
σ(y);

and since yHy−1 = σ(y)Hσ(y)−1,

(xy−1)−1σ(xy−1) = σ(y)zσ(y)−1 ∈ CG(yHy−1)0.

By the Lang-Steinberg theorem, (xy−1)−1σ(xy−1) = g−1σ(g) for some element
g ∈ CG(yHy−1)0. Then gyx−1 ∈ CG(σ), and so xHx−1 and yHy−1 are CG(σ)-
conjugate.

It remains to prove (c): to describe AutCG(σ)(H ′) for H ′ = xHx−1 ≤ CG(σ).
Consider the isomorphism

γ : Aut(H ′) −−−−−−−→ Aut(H) (1)

defined by γ(α) = c−1
x αcx. In particular, γ(cg) = cx−1gx for g ∈ NG(H ′). We must

show that γ(AutCG(σ)(H ′)) is the stabilizer of C·x−1σ(x) ∈ C/C under the action
of AutG(H).

Assume first that cg ∈ AutG(H) stabilizes C·x−1σ(x). Upon replacing g by ag
for some appropriate a ∈ CG(H), we can assume that g fixes the class of x−1σ(x)
in C = π0(CG(H)) itself. Thus

g
(
x−1σ(x)

)
σ(g)−1 = (xg−1)−1σ(xg−1) ≡ x−1σ(x) (mod CG(H)0),

and hence (as already shown above) there is z ∈ CG(H ′) such that x(xg−1)−1z−1 ∈
CG(σ). Thus, xgx−1z−1 ∈ NCG(σ)(H ′), and γ sends conjugation by this element
to cg.

Conversely, for any g ∈ NCG(σ)(H ′),

(x−1gx)·
(
x−1σ(x)

)
·σ(x−1gx)−1 = x−1gσ(g)−1σ(x) = x−1σ(x);

and hence x−1gx stabilizes C·x−1σ(x). �

For example, if H = T(2) is the 2-torsion in a σ-invariant maximal torus T ≤ G
(and H ≤ CG(σ)), then CG(H) is generated by T , together with the element of
W = N(T )/T which inverts T if there is such an element. Hence π0(CG(H)) has at
most two elements. So either there are two CG(σ)-conjugacy classes of subgroups
G-conjugate to H (if some element of W inverts T ), or there is just one such class
(if no element of W inverts T ).

The following easy corollary of Proposition 8.5 will be useful.

Corollary 8.6. Fix a connected algebraic group G over Fq and a Steinberg
endomorphism σ of G, and assume L C CG(σ) is a simple subgroup of index d.
Assume E ∈ E≥2(L ; 2), and set k = |π0(CG(E))| and 2n = |O2(AutG(E))|. Then
2n ≤ kd; and AutL(E) is isomorphic to a subgroup of AutG(E)/O2(AutG(E)) of
index ≤ kd/2n.

Proof. By Proposition 8.5, AutCG(σ)(E) is isomorphic to some point stabi-
lizer of an action of AutG(E) on a quotient set of π0(CG(E)). Thus AutCG(σ)(E)
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has index at most k in AutG(E); and so AutL(E) has index ≤ dk in AutG(E). Fur-
thermore, O2(AutL(E)) = 1, since E is pivotal by Proposition 4.4(c), so AutL(E)
is isomorphic to a subgroup of AutG(E)/O2(AutG(E)) of index ≤ kd/2n. In par-
ticular, 2n ≤ kd. �

It will also be useful at times to know that the group of components of the
centralizer of a 2-group is again a 2-group, and to get upper bounds on its order.
The following two propositions will be proven simultaneously.

Proposition 8.7. Let p be any prime, and let G be a connected reductive
algebraic group over an algebraically closed field F of characteristic 6= p. Then for
any finite p-subgroup P ≤ G, π0(CG(P )) is a p-group, and the identity connected
component CG(P )0 of the centralizer is also a reductive algebraic group over F.

Proposition 8.8. Let p be any prime, and let G be a connected reductive
algebraic group over an algebraically closed field F of characteristic 6= p. Set T =
Z(G)0, the largest normal toral subgroup, and let H C G be the largest normal
semisimple subgroup. Let R be the fundamental group of H; i.e., H ∼= H̃/R where
H̃ is of universal type. Then π0(CG(α)) is a p-group, and

|π0(CG(α))| = pr where r ≤ rk(T ) + rkp(R) ≤ rk(G).

Proof. First let G and P be as in Proposition 8.7. Let P ′ C P be a subgroup
of index p; we can assume inductively that the proposition holds for P ′. Thus
CG(P ′)0 is reductive and has p-power index in CG(P ′). Fix any g ∈ PrP ′. Then
g acts via conjugation on CG(P ′) as an algebraic automorphism α ∈ Aut(CG(P ′))
of order p. Thus upon replacing G by CG(P ′)0 and P by 〈α〉, we are reduced to
proving Proposition 8.8, and also proving that CG(α)0 is reductive in that situation.

Set P = 〈α〉 ≤ Aut(G) for short. Since p = |α| is prime to char(F), α is a
semisimple automorphism. Assume first that

1 −−−→ K −−−−−→ G̃ −−−−−→ G −−−→ 1

is a central extension of algebraic groups, where K is finite, and that α lifts to
an automorphism α̃ ∈ Aut(G̃) of order p. Let Nα denote the norm map for the
α-actions:

Nα(x) = x · α(x) · α2(x) · · ·αp−1(x).
The induced exact sequence in cohomology takes the form

1 −−→ H0(P ;K)
=CK(eα)

−−−→ H0(P ;G)
=C

eG(α)

η−−−→ H0(P ;G)
=CG(α)

−−−→ H1(P ;K);

where H1(P ;K) ∼= {x ∈ K |Nα(x) = 1}
/
{x−1α(x) |x ∈ K} is a subquotient of K,

and is finite of exponent p since K is finite and |P | = p. Thus, in this situation,

(1) C
eG(α̃)0 is a finite covering group of CG(α)0, and hence CG(α)0 is reductive if

C
eG(α̃)0 is; and

(2) |π0(CG(α))| divides |π0(C eG(α̃))| · prkp(K).

Recall that H C G is the maximal normal semisimple subgroup, and that
T = Z(G)0. Let H̃ denote the universal central extension of H, so H ∼= H̃/R. By
[St, 9.16], α lifts to a unique automorphism α̃ of H̃, which also has order p (since
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αp = IdH has a unique lifting to H̃). Also, C
eH(α̃) is connected and reductive by

[St, Theorem 8.1] (and this is the deep result which lies behind these propositions).
Hence by (1) and (2) (applied with G = H), CH(α)0 is reductive, and |π0(CH(α))|
divides prkp(R). Upon applying (1) again to the surjection of H × T onto G, we see
that CG(α)0 is also reductive.

Set T ′ = G/H. The extension of H by T ′ induces an exact sequence

1 −−−→ CH(α) −−−−−→ CG(α) −−−−−→ CT ′(α).

Furthermore, since G = TH, T is a finite covering group of T ′, so CT (α)0 ≤ CG(α)0

surjects onto CT ′(α)0 by (1). From this, we see that the sequence

π0(CH(α)) −−−−−→ π0(CG(α)) −−−−−→ π0(CT ′(α))

is exact, and hence that |π0(CG(α))| divides |π0(CH(α))| · |π0(CT ′(α))|. Since the
first factor has order dividing prkp(R), it remains only to show that |π0(CT ′(α))|
divides prk(T ) = prk(T ′). In particular, it suffices to show that π0(CT ′(α)) has
exponent p. This follows upon observing that for any x ∈ CT ′(α), xp = Nα(x)
lies in the subgroup Nα(T ′), which is connected since T ′ is connected, and hence
contained in CT ′(α)0. �

The next proposition will be used to show that certain elementary abelian
subgroups are not pivotal. Note that the condition on σ2 in the statement holds in
all situations which occur for finite groups of Lie type, except those involving the
triality automorphism and 3D4(q). In general, when T is a maximal torus in an
algebraic group G, we let T(2) denote the subgroup of elements of order 2.

Proposition 8.9. Let G be a connected reductive algebraic group over Fq,
where q is odd, and fix a maximal torus T of G. Let σ be a Steinberg endomorphism
of G such that σ(T ) = T , and such that σ2 is the identity on W = NG(T )/T and
on T(2). Let E ≤ CT (σ) be an elementary abelian 2-subgroup. Assume there is an
involution x ∈ TrE such that the orbit of x under the CW (E)-action on T has odd
order. Then no subgroup of CG(σ) which is G-conjugate to E is pivotal in CG(σ).
More generally, if E ≤ E ≤ G are such that E is also elementary abelian and x is
not CG(E)-conjugate to any element of E, then for any L C CG(σ) which contains
{gxg−1 | g ∈ G} ∩CG(σ), no subgroup of L which is G-conjugate to E is pivotal in
L.

Proof. We will show, for any E′ ≤ L C CG(σ) which is G-conjugate to E,
that there are g ∈ G and k ≥ 1 which satisfy the following conditions:

(a) E′ = gEg−1 and g−1σ2k

(g) ∈ T ; and

(b) σ2k

leaves T ′ def= gTg−1 invariant and acts via the identity on W ′ def= NG(T ′)/T ′

and on T ′(2).

We will also show, for any such g and k (and still with T ′ = gTg−1), that

(c) AutCG(σ2k )(T
′) = AutG(T ′); and

(d) there is a CL(E′)-conjugacy class X0 of odd order whose elements are all
CG(E′)-conjugate to x′ def= gxg−1.
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Assume these have been shown, and let E′ ≤ L be a subgroup G-conjugate
to E. Choose h ∈ G such that E′ = hEh−1, and set E′ = hEh−1. Let g be
as in (a) and (b) (and set T ′ = gTg−1); thus hg−1 ∈ NG(E′). By Lemma 8.3,
AutG(E′) = AutNG(T ′)(E′); and by (c), NG(T ′) = CG(T ′)·NCG(σ2k )(T

′). Since
CG(E′) ≥ CG(T ′), there are elements x ∈ CG(E′) and a ∈ NCG(σ2k )(T

′) such that
hg−1 = xa. So upon replacing g by ag = x−1h, conditions (a) and (b) still hold,
and h ∈ CG(E′)·g.

Thus E′ and gEg−1 are CG(E′)-conjugate, and E′ contains no elements CG(E′)-
conjugate to x′ = gxg−1 since E contains no elements CG(E)-conjugate to x. Hence
E′ ∩ X0 = ∅ by (d), and E′ cannot be pivotal in L by Proposition 4.4(f).

It remains to prove points (a–d). Fix g0 ∈ G such that E′ = gEg−1; then
g−1
0 σ(g0) ∈ CG(E) by Proposition 8.5. Consider the homomorphism

CW (E)
ρ

−−−−−� π0(CG(E)),

which is surjective by Lemma 8.3. Since σ acts onW with order 2, and since CW (E)
has an odd number of Sylow 2-subgroups, we can choose S0 ∈ Syl2(CW (E)) which is
σ-invariant. Since π0(CG(E)) is a 2-group (Proposition 8.7), ρ|S0 is also surjective.
Thus there is a ∈ NG(T ) such that aT ∈ S0 and a ∈ g−1

0 σ(g0)·CG(E)0; and by the
Lang-Steinberg theorem, there is g1 ∈ G such that g−1

1 σ(g1) = a. So by Proposition
8.5, g1Eg−1

1 is CG(σ)-conjugate to E′ = g0Eg
−1
0 . We can thus choose g ∈ CG(σ)·g1

such that E′ = gEg−1, and g−1σ(g) = g−1
1 σ(g1) = a.

For each m ≥ 1,

g−1σ2m(g) =
(
g−1σ(g)

)
· σ
(
g−1σ(g)

)
· · ·σ2m−1

(
g−1σ(g)

)
= a·σ(a)·σ2(a)· · ·σ2m−1(a) ∈

(
a·σ(a)

)m·T,
the last step since σ2 acts via the identity on W = NG(T )/T . Since aT ∈ S0, it
has 2-power order in W . So for k sufficiently large,

g−1σ2k

(g) ∈
(
a·σ(a)

)2k−1

T = T.

This proves (a). Write σ2k

(g) = gt for t ∈ T . For all x ∈ NG(T ), σ2k

(gxg−1) =
gtσ2k

(x)t−1g−1; and since σ2 sends T to itself and acts induces the identity on T(2)

and W = NG(T )/T , σ2k

sends T ′ = gTg−1 to itself and acts via the identity on
T ′(2) and on W ′ = NG(T ′)/T ′. Thus (b) also holds.

Now fix any g and k satisfying points (a) and (b), and set T ′ = gTg−1. For any
x ∈ NG(T ′), x−1σ2k

(x) ∈ T ′ since σ2k

acts via the identity on W ′. By the Lang-
Steinberg theorem, there is t ∈ T ′ such that t−1σ2k

(t) = x−1σ2k

(x), and hence
xt−1 ∈ CG(σ2k

). Thus each coset of T ′ in NG(T ′) contains elements of CG(σ2k

),
and this proves (c).

Let T ′(4) ≤ T ′ be the subgroup generated by elements of order 4 in T ′. If

x ∈ T ′(4), then σ2k

(x2) = x2 since x2 ∈ T ′(2), and so x−1σ2k

(x) ∈ T ′(2) is fixed by

σ2k

. Hence σ2k+1
(x) = x for all x ∈ T ′(4), and T ′(4) ≤ CG(σ2k+1

).

Since any algebraic endomorphism of F× has the form u 7→ un for some n ∈ Z,
the group of algebraic automorphisms of T ′ is isomorphic to GLr(Z), where r =
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rk(T ′). No nonidentity element of 1+4Mr(Z) can have finite order in GLr(Z) (this
is seen by examining the binomial expansion of (1+4X)n for n > 1), and hence no
nonidentity element of W ′ = NG(T ′)/T ′ can centralize T ′(4). Thus CG(T ′(4)) = T ′

by Lemma 8.3.

Set Gk+1 = CG(σ2k+1
) for short. Let X′ be the CGk+1(E

′)-orbit of x′ def=
gxg−1. By Lemma 8.3, any two elements of X′ ∩ T ′ are CW ′(E′)-conjugate. Since
AutG(T ′) = AutCG(σ2k )(T

′) by (c), each coset gT ′ ∈ W contains elements of

Gk+1 ≥ CG(σ2k

), so any element CW ′(E′)-conjugate to x′ lies in X′, and X′ ∩ T ′
is the full CW ′(E′)-orbit of x′. Since the CW (E)-orbit of x has odd order by as-
sumption, so does the CW ′(E′)-orbit of x′, and thus X′ ∩ T ′ has odd order. Since
T ′ = CG(T ′(4)) and T ′(4) ≤ CGk+1(E

′), X′ ∩ T ′ = CX′(T ′(4)) is the fixed set of an
action of the 2-group T ′(4) on X′. So X′ must also have odd order.

Since σ acts on X′ ⊆ Gk+1 with order 2k+1, the fixed point set CX′(σ) = X′ ∩
CG(σ) of this action must also have odd order. Also, by assumption, X′ ∩CG(σ) ⊆
L C CG(σ), and is a disjoint union of CL(E′)-conjugacy classes. Since the union
CX′(σ) has odd order, at least one of those CL(E′)-conjugacy classes X0 ⊆ X′ ∩ L
must also have odd order, and this proves (d). �

We are now ready to consider the remaining exceptional groups En(q), and
2E6(q). We adopt some of the notation used by Griess in [Gr2]. In particular, 2A
and 2B will be used to denote conjugacy classes of elements of order 2.

In all cases, we let E6(Fq), E7(Fq), or E8(Fq) denote the adjoint (centerfree)
forms of these groups, and let Ẽn(Fq) denote their universal covers. Thus Ẽ6(Fq) is
a 3-fold cover of E6(Fq) (when q is not a power of 3), and Ẽ7(Fq) is a 2-fold cover
of E7(Fq). In all cases, by [Gr2, Lemma 2.16], if T ≤ Ẽn(Fq) is a maximal torus,
there is a quadratic form q : T(2) → F2 such that the Weyl group acts on T(2) as
the full orthogonal group for the form q.

Proposition 8.10. Assume, for some odd prime power q, that L is one of the
simple groups E6(q) or 2E6(q). Then R≥2(E6(q) ; 2) = ∅, and hence L ∈ L≥2(2).

Proof. Set G = E6(Fq) (in adjoint form, with trivial center). Let ψq ∈
Aut(G) be the field automorphism induced by (x 7→ xq), and let τ ∈ Aut(G) be
the graph automorphism with fixed subgroup F4(Fq). Set σ = ψq if L ∼= E6(q) or
σ = ψq ◦ τ if L ∼= 2E6(q). In either case, we let L be the commutator subgroup of
CG(σ). Note that CG(σ) = Inndiag(L) contains L with index (3, q−1) if L = E6(q),
or with index (3, q + 1) if L = 2E6(q).

Fix a maximal torus T ≤ G upon which σ acts via (t 7→ tq) if L = E6(q), or via
(t 7→ t−q) if L = 2E6(q). To see that there is such a torus in the second case, note
first that by construction of G and σ, there is a “standard” maximal torus in T0

in G, such that ψq(t) = tq for all t ∈ T0, and such that τ acts on T0 by permuting
its positive roots. Let Ŵ0 ≤ Aut(T0) be the group of all automorphisms which
preserve the root system, and regard the Weyl group W0 as a subgroup of Ŵ0.
Thus τ |T0 ∈ Ŵ0rW0. By [Ca2, §3.3], for any w ∈W0, there is another σ-invariant
maximal torus Tw = gT0g

−1 (some g ∈ G) such that σ(gtg−1) = g(wτ(tq))g−1 for
all t ∈ T0. Also, Ŵ0/W0 has order 2 and (t 7→ t−1) ∈ Ŵ0rW0 (cf. [Bb, p.261]). So
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there is w ∈W0 such that wτ(t) = t−1 for all t, and σ(t) = t−q for t ∈ Tw. Thus in
either case, T(2) ≤ L.

By [Gr2, Table VI], G has two conjugacy classes of involutions, denoted 2A
and 2B. For any elementary abelian 2-subgroup E ≤ G, we define q : E −−→ F2 by
setting q(x) = 1 if x ∈ 2A and q(x) = 0 otherwise. By [Gr2, Lemma 2.16], q is a
quadratic form on T(2), and the action of the Weyl group W on T(2) is that of the
orthogonal group SO(T(2), q) ∼= SO−

6 (2).

By [Gr2, Theorem 8.2], there is a unique maximal elementary abelian 2-
subgroup W5 ≤ E6(Fq) which is not contained in a maximal torus, and W5 is
contained in a subgroup F4(Fq) ≤ E6(Fq). By [Gr2, Lemma 2.16(i)], involutions in
F4(Fq) of types 2A and 2B are sent under this embedding to involutions of types
2A and 2B in E6(Fq). So by [Gr2, Theorem 7.3(ii)], there is a subgroup W2 ≤W5

of rank 2 such that W5 ∩ 2B = W2
# and W5 ∩ 2A = W5rW2. Thus for any

elementary abelian 2-subgroup E ≤ L which is not contained in a maximal torus
of G, there is an NAut(L)(E)-invariant subgroup E0 ≤ E such that rk(E0) ≤ 2 and
rk(E/E0) ≤ 3, and E /∈ E≥2(L ; 2) by Proposition 4.6(b).

Now fix some E ∈ E≥2(L ; 2). Since E cannot be G-conjugate to a subgroup of
W5, it must be G-conjugate to a subgroup E′ ≤ T(2). Also, E is pivotal (Proposition
4.4(c)), and rk(E) ≥ 4 by Proposition 4.6(b). By Lemma 8.3(b), AutG(E′) ∼=
SO(E′, q), since every element of AutG(E′) is the restriction of the action of an
element of the Weyl group W ∼= SO(T(2), q).

Assume rk(E) = 4. If q|E is singular, then E ∩ E⊥ is a proper subgroup of
E which is NAut(L)(E)-invariant, so E /∈ E≥2(L ; 2) by Proposition 4.6(b). So we
assume q is nondegenerate on E, and hence on E′ ≤ T(2). Then T(2) = E′ × E′⊥,
E′⊥ is CW (E′)-invariant, and hence there is 1 6= x ∈ E′⊥ whose CW (E′)-orbit has
odd order. By Proposition 8.9, no subgroup of L which is G-conjugate to E′ is
pivotal in L. In particular, E /∈ E≥2(L ; 2) in this case.

Finally, if rk(E) ≥ 5, then we are in one of the following situations: either

(i) rk(E) = 6 and AutG(E) ∼= SO−
6 (2); or

(ii) rk(E) = 5, E = t⊥ for some t ∈ T(2) with q(t) = 0, and AutG(E) ∼= 24:SO−
4 (2);

or

(iii) rk(E) = 5, E = t⊥ for some t ∈ T(2) with q(t) = 1, and AutG(E) ∼= Ω5(2) ∼=
Σ6.

If any nonidentity element w ∈ W centralizes E, then w must be an orthogonal
transvection, and hence E must be of type (iii) above (see [Di, §19]). Furthermore,
the kernel of any root α (considered as an element of Hom(T,F×q )) must be of
this form; and since there is a unique SO(T(2), q)-orbit of subgroups of type (iii)
(SO(T(2), q) acts transitively on the set of nonisotropic elements), every subgroup
of type (iii) is the kernel of some root. So by Lemma 8.3, CG(E′) = T if E′ (or
E) has type (i) or (ii), and CG(E′) is connected if E′ has type (iii). Since CG(E′)
is connected in all cases, AutCG(σ)(E) = AutG(E) ∼= AutG(E′) by Proposition 8.5.
Hence AutL(E) = AutG(E) since AutG(E) has no normal subgroup of index 3. So



72 8. EXCEPTIONAL GROUPS OF LIE TYPE IN ODD CHARACTERISTIC

E /∈ E≥2(L ; 2) by Proposition 4.6(c), since in all cases, the Sylow 2-subgroups of
AutL(E) are neither dihedral nor semidihedral. �

Let Ẽ7(q) ≤ Ẽ7(Fq) denote the universal groups, with center Z of order 2, and
set E7(Fq) = Ẽ7(Fq)/Z and E7(q) = Ẽ7(q)/Z.

Proposition 8.11. Assume, for some odd prime power q, that L = E7(q).
Then R≥2(L ; 2) = ∅, and hence L ∈ L≥2(2).

Proof. Set G̃ = Ẽ7(Fq), let z ∈ Z(G̃) be the central involution, and set
G = G̃/〈z〉 = E7(Fq). Fix a Steinberg endomorphism σ of G̃ such that C

eG(σ) =

L̃
def= Ẽ7(q). We also let σ denote the induced endomorphism of G. Note, however,

that L has index 2 in CG(σ) = Inndiag(L): the extension of L ∼= E7(q) by its
diagonal automorphisms. Let T̃ ≤ G̃ be a σ-invariant maximal torus such that
σ(t) = tq for all t ∈ T̃ , and set T = T̃ /〈z〉. Set T(2),0 = T̃(2)/〈z〉: the subgroup of
elements of T(2) which lift to involutions in T̃ .

By [Gr2, Table VI], the group G̃ has two conjugacy classes of noncentral in-
volutions, denoted 2B and 2C, which are exchanged under multiplication by z.
Define q : T̃(2) −−→ F2 by setting q(x) = 1 if x = z or x ∈ 2B, and q(x) = 0 if x = 0
or x ∈ 2C. Then q is a quadratic form by [Gr2, Lemma 2.16], and

W (E7) = SO(T̃(2), q)× C2
∼= SO7(2)× C2.

Let b̃ denote the symplectic form on T̃(2) associated to q; i.e., b̃(x, y) = q(xy)+
q(x) + q(y). Since q(xz) = q(x) + 1 for all x ∈ T̃(2), b̃(z, x) = 0 for all x, and
hence b̃ factors through a symplectic form b on T(2),0 = T̃(2)/〈z〉. As described in
[Gr2, Definition 2.15]), b and b̃ can be defined directly using the natural bilinear
form on the Cartan subalgebra of the Lie algebra and the exponential map. Hence
b extends to a W -invariant form b′ : T(2) × T̃(2) −−−→ F2, which in turn induces a
W -equivariant isomorphism

Ψ: T(2)

∼=−−−−−→ Hom(T̃(2),F2).

This shows, for example, that there are two W -orbits in T(2)rT(2),0. These
correspond to the elements λ ∈ Hom(T̃(2),F2) with λ(z) = 1, and such that the
quadratic form q|Ker(λ) is nondegenerate of positive or negative type. (By Witt’s
lemma, two subgroups F, F ′ ≤ T̃(2) of index 2 lie in the same W -orbit if q|F and
q|F ′ have the same type.) Since G contains two conjugacy classes of elements of
order 4 whose square is z (denoted 4A and 4H in [Gr2, Table VI]), there are
two G-conjugacy classes of elements in T(2)rT(2),0 which correspond to these two
W -orbits.

For any E = Ẽ/Z ≤ G such that Ẽ is an elementary abelian 2-group, we define
q on Ẽ and b on E × E in the same way as described above when Ẽ = T̃(2). We
claim that any α ∈ NAut(E7(q))(E) preserves b. By construction, this means showing
that α lifts to some α̃ ∈ Aut(Ẽ7(q)) which sends involutions of each type 2B and
2C to themselves. This clearly holds for diagonal automorphisms, since they are
conjugation by elements of G̃. Any field automorphism fixes the involutions in some
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maximal torus of G̃, and hence leaves each of 2B and 2C invariant. Since Ẽ7(q)
has no graph automorphisms, the claim now follows from Steinberg’s theorem (see
[Ca1, Theorem 12.5.1]).

We next note that no element of CG(σ)rL lifts to an involution in G̃. If there
were such an element, and it lifted to x ∈ G̃, then x and xz would be exchanged
by σ, and hence σ would exchange the classes 2B and 2C. That would imply that
the only involution in L̃ ∼= Ẽ7(q) is the central element, which is clearly not true.

By [Gr2, Theorem 9.8], G contains two conjugacy classes of maximal elemen-
tary abelian 2-subgroups, both nontoral: M8 of rank 8 and M7 of rank 7. These lift
to centric subgroups M̃8

∼= Q8 ×C6
2 and M̃7

∼= Q8 ×C5
2 in G̃. Also, M8 = T(2)·〈θ〉,

the extension of 2-torsion in a maximal torus by an involution in NG(T ) which
inverts the torus; while M̃7 ≤ Q8 × F4(Fq) ≤ G̃.

Fix E ∈ E≥2(L ; 2), and let E0 ≤ E be the subgroup of elements of E which
lift to involutions in L̃. Then E0 is a subgroup by the above remarks, and is clearly
NAut(L)(E)-invariant. We now consider the different possibilities.

Case 1: Assume E is G-conjugate to a subgroup E′ ≤ M7. As noted above,
M̃7 = Q × V , where Q ∼= Q8 (and Z(Q) = 〈z〉), and V ∼= C5

2 is a subgroup
of F4(Fq) ≤ Ẽ7(Fq). We also identify V with its image in M7 ≤ L. There is a
subgroup V2 ≤ V such that the involutions in V2 lie in one class in F4(Fq) and
those in VrV2 in the other ([Gr2, Theorem 7.3]). Also, any index two subgroup
of V containing V2 is toral in F4(Fq), hence in G, so the function q as defined
above is quadratic on this subgroup. Since T̃(2) contains no rank four isotropic
subspace, this is possible only if V2

# ⊆ 2C and VrV2 ⊆ 2B (this also follows
from [Gr2, Theorem 2.16]). Thus b : V × V → F2 takes the form b(x, y) = 1 if
rk(〈V2, x, y〉) = 4, and b(x, y) = 0 otherwise.

Now set E1 = {x ∈ E0 | b(x,E0) = 0}; this is again a NAut(L)(E)-invariant
subgroup of E. Let E′

1 ≤ E′
0 ≤ E′ be the corresponding subgroups of E′ (thus

E′
0 = E′ ∩ V ). The above description of b|V shows that E′

1 = E′
0 (b|E′0 = 0)

if rk(〈V2, E
′
0〉) < 4), and E′

1 = E′
0 ∩ V2 otherwise. Thus either E1 = E0 and

rk(E0) ≤ 3, or rk(E1) ≤ 2 and rk(E0/E1) ≤ 3. Since rk(E/E0) ≤ 2, E /∈ E≥2(L ; 2)
in both cases by Proposition 4.6(b).

Case 2: Assume E is G-conjugate to a subgroup E′ ≤ M8 = T(2)·〈θ〉 as above.
In particular, E0 is a toral subgroup, conjugate to E′

0 = E′ ∩ T(2),0; and hence b
is a symplectic form on E0 which is invariant under the action of NAut(L)(E). By
Proposition 4.6(b) again, rk(E0) ≥ 4.

Case 2a: Assume first that rk(E0) = 6. Thus E′ ∩ T ≥ T(2),0. When E′ � T ,
then since all elements of the coset θT are T -conjugate to θ, we can assume that
θ ∈ E′.

This leaves four possibilities for E′, as described in the next table. To see
the information about centralizers and automorphisms, note first that since W ∼=
SO7(2) × C2

∼= Sp6(2) × C2, θT is the only element of W = NG(T )/T which cen-
tralizes T(2),0 or T(2). Since this is not a reflection, these subgroups have centralizer
T ·〈θ〉 by Proposition 8.3, and the other two have centralizer CT ·〈θ〉(θ) = M8. Also,
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E′ CG(E′) |π0(CG(E′))| AutG(E′) ∼=

T(2),0 T ·〈θ〉 2 Sp6(2)

T(2) T ·〈θ〉 2 Sp6(2)

T(2),0·〈θ〉 M8 28 C6
2oSp6(2)

M8 = T(2)·〈θ〉 M8 28 C7
2oSp6(2)

AutG(E′) ∼= Sp6(2) in the first two cases by the description of the Weyl group
again.

When E′ = M8, AutG(E′) is described in [Gr2, Theorem 9.8]; and by the proof
of that theorem, it is the group of all automorphisms of M8 which send T(2) to itself
by a W -automorphism. Hence by comparison, when E′ = T(2),0·〈θ〉, AutG(E′) is
the group of all automorphisms of E′ which send T(2),0 to itself while preserving
the form b, and thus AutG(E′) ∼= C6

2oSp6(2).

Thus in all cases, |π0(CG(E′))| ≤ 4·|O2(AutG(E′))|. Since L has index 2 in
CG(σ), Corollary 8.6 shows that AutL(E) is isomorphic to a subgroup of Sp6(2) of
index ≤ 8. Since Sp6(2) is simple and |Sp6(2)| > 8!, it contains no proper subgroup
of index ≤ 8. So in all cases, we must have AutL(E) ∼= Sp6(2) (with the standard
action on E0). Thus E /∈ E≥2(L ; 2) by Proposition 6.5(a).

Case 2b: Assume rk(E0) = 5. Set E′
1 = E′ ∩ T(2). If E′

1 	 E′
0 (so rk(E′

1) = 6),
then E′

1rE′
0 must contain elements of both classes 4A and 4H: this follows from the

above description of the types in terms of the isomorphism T(2)
∼= Hom(T̃(2),F2).

On the other hand, since θ inverts the torus (and every element of T is a square),
each element of the coset θT (hence of E′rE′

1) is conjugate to θ by an element of
T . This shows that in all cases, E′

1 is an AutG(E′)-invariant subgroup of E′: the
subgroup generated by E′

0 and those elements of E′ not G-conjugate to elements
in θT . Let E1 be the corresponding subgroup of E.

The next table lists the four possibilities for E0 ≤ E1 ≤ E. Assuming this

rk(E1) rk(E) |π0(CG(E′))| |O2(AutG(E′))| AutG(E′)/O2(AutG(E′))

5 5 ≤ 22 ≥ 24 Sp4(2)

6 6 ≤ 22 ≥ 24 Sp4(2)

5 6 ≤ 29 ≥ 29 Sp4(2)

6 7 ≤ 29 ≥ 210 Sp4(2)

data is correct, then by Corollary 8.6, E is not pivotal in the first, second, and
fourth cases, and AutL(E) ∼= Sp4(2) ∼= Σ6 in the third case. So E /∈ E≥2(L ; 2) by
Proposition 4.6(e).
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It remains to check the data in the table. By Proposition 8.3, AutG(E′
i) =

AutW (E′
i) (i = 0, 1); and AutW (E′

0) = Aut(E′
0, b) is the group of all symplectic

automorphisms. If rk(E′
1) = 6, then there is exactly one other subgroup E′′

1 ≤ T(2)

of rank 6 containing E′
0 and not equal to T(2),0. Under the isomorphism Ψ between

T(2) and Hom(T̃(2),F2), E′
1 and E′′

1 are sent to the groups of maps whose kernels
contain x or xz, respectively, for some fixed element x ∈ T̃(2)r〈z〉. Since x and
xz are not G-conjugate, no element of W sends E′

1 to E′′
1 ; and thus NW (E′

0) =
NW (E′

1).

Thus AutG(E0) = Aut(E0, b) ∼= C4
2oSp4(2), and each such automorphism

extends to at least one automorphism in AutG(E1). Furthermore, since AutG(M8)
is the group of all α ∈ Aut(M8) such that α|T(2) ∈ AutG(T(2)) [Gr2, Theorem 9.8],
AutG(E) is the group of all automorphisms of E whose restriction to E1 lies in
AutG(E1). This finishes the description of AutG(E) in the above table.

In all cases, CW (E′
1) has order ≤ 4: it is generated by θ, and possibly the unique

symplectic transvection of T(2),0 which fixes E′
0 (if it also fixes E′

1). Thus by Propo-
sition 8.3, |π0(CG(E1))| ≤ 4. When E 	 E1, the upper bound for |π0(CG(E))| then
follows from Proposition 8.8.

Case 2c: Assume rk(E0) = 4. If b|E0 is degenerate, then E0 ∩ E⊥
0 is a proper

subgroup of E0 which is NAut(L)(E)-invariant, so E /∈ E≥2(L ; 2) by Proposition
4.6(b). So we assume b is nondegenerate on E0, and hence on E′

0 ≤ T(2),0. Then
T(2),0 = E′

0 × E′
0
⊥, E′

0
⊥ is CW (E′

0)-invariant, and hence there is 1 6= x ∈ E′
0
⊥

whose CW (E′
0)-orbit has odd order. By construction, x is not G-conjugate to any

element of ErE0. Hence by Proposition 8.9 (applied with E = E′
0 and E = E′),

no subgroup of L which is G-conjugate to E′ is pivotal in L. In particular, E /∈
E≥2(L ; 2) in this case. �

It remains only to consider the groups E8(q).

Proposition 8.12. Assume, for some odd prime power q, that L = E8(q).
Then R≥2(L ; 2) = ∅, and hence L ∈ L≥2(2).

Proof. Set G = E8(Fq). Fix a Steinberg endomorphism σ of G such that
CG(σ) = L. Let T ≤ G be a σ-invariant maximal torus such that σ(t) = tq for all
t ∈ T .

By [Gr2, Table VI], G has two conjugacy classes of involutions, denoted 2A
and 2B. For any elementary abelian 2-subgroup E ≤ G, we define q : E −−→ F2 by
setting q(x) = 1 if x ∈ 2A and q(x) = 0 otherwise. By [Gr2, Lemma 2.16], q is a
quadratic form on T(2). Also, if θ ∈ NG(T ) is an involution which inverts T , then

W/〈θT 〉 = AutG(T )/{± Id} ∼= O(T(2), q) ∼= SO+
8 (2).

Now let E be any elementary abelian subgroup of G. By [Gr2, Theorem 2.16],
E is toral if and only if q is quadratic on E and E is not 2B-pure of rank 5. Let
b : E ×E −−→ F2 be the form b(x, y) = q(x) + q(y) + q(xy). Using these functions,
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we define the following subgroups:

E0 = 〈E ∩ 2A〉 = 〈x ∈ E | q(x) = 1〉
E1 = {x ∈ E0 | b(x,E0) = 0} = {x ∈ E0 | q(y) + q(yx) = q(x), all y ∈ E0}
E2 = E1 ∩ q−1(0) = {x ∈ E0 ∩ 2B | q(y) = q(xy), all y ∈ E0} ∪ {1}.

Note that E1 and E2 are subgroups: this is a formal consequence of the definition,
and does not use any properties of q. For example, if x, y ∈ E1, then for all z ∈ E0,

q(xy) + q(z) + q(xyz) = q(xy) + (q(y) + q(yz)) + (q(x) + q(yz)) = 0;

so xy ∈ E1. Also, q|E1 is linear, with kernel E2.

By [Gr2, Theorem 2.17], G contains two conjugacy classes of maximal elemen-
tary abelian 2-subgroups, represented by M9 = T(2) × 〈θ〉 of rank 9 (where θ again
inverts T ), and M8 of rank 8. All elements in M9rT(2) are of type 2B.

Assume E ∈ E≥2(L ; 2), with subgroups E2 ≤ E1 ≤ E0 ≤ E defined as above.
By Proposition 4.6(b),

at least one NAut(L)(E)-irreducible subquotient of E has rank ≥ 4. (1)

We first check the following properties of E, which mostly follow from (1) and the
properties of M8 and M9 stated in [Gr2].

(2) Assume E0 6= 1, and E is G-conjugate to a subgroup of M8. Then rk(E1) =
rk(E2) ≤ 2, and there are subgroups V ′,W ′ ≤ E such that E2 = V ′ ∩ W ′,
E ∩ 2A = (V ′ ∪W ′)rE2, E0 = V ′W ′, rk(V ′/E2) = rk(W ′/E2) ∈ {2, 3}, and
rk(E/E0) ≤ 3− rk(V ′/E2).

To see this, fix some M ≥ E which is G-conjugate to M8. By [Gr2,
Theorem 2.17], there are subgroups V,W ≤M of rank five, with intersection
V ∩W = X of rank two, such that M ∩2A = (V ∪W )rX. Set V ′ = V ∩E,
W ′ = W ∩ E, and X ′ = X ∩ E = V ′ ∩W ′.

Clearly, X ′ ≤ E2; we claim they are equal. Assume otherwise, and fix some
g ∈ E2rX ′. Thus g ∈ 2B, so g ∈ Er(V ′∪W ′), and for all a ∈ Er〈g〉, a and
ga have the same type. Then for all a ∈ E∩2A, ga ∈W ′rX ′ if a ∈ V ′rX ′

and vice versa. In particular, if a, a′ ∈ V ′rX ′, and if g′ ∈ E2rX ′ is
another element, then a−1a′ = (ag)−1(a′g) ∈ V ′ ∩ W ′ = X ′, g−1g′ =
(ag)−1(ag′) ∈ W ′, and g−1g′ ∈ X ′ since it has type 2B by assumption
(g ∈ E2). So rk(V ′/X ′) = 1 (recall E has at least one involution of type
2A); and E2 = 〈X ′, g〉. Then rk(E2) = 1 + rk(X ′) ≤ 3, and

rk(E/E2) = rk(E/X ′)− 1 = rk(E/V ′) + rk(V ′/X ′)− 1

= rk(E/V ′) ≤ rk(M/V ) = 3.

But this contradicts (1).

Thus E2 = X ′, and so E0 = V ′W ′: the subgroup generated by elements
of type 2A. Since X ′ = E2 is NAut(L)(E)-invariant, so is the subset V ′ ∪
W ′ = X ′ ∪ (E ∩ 2A). Furthermore, either V ′ and W ′ are each themselves
NAut(L)(E)-invariant, or they have the same rank and there is some element
of NAut(L)(E) which exchanges them. The former case is impossible by (1),
since the successive quotients in the series 1 ≤ E2 ≤ V ′ ≤ E all have rank
≤ 3. Thus rk(V ′) = rk(W ′), so rk(V ′W ′/X ′) is even. Since rk(X ′) ≤ 2 and
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rk(E/V ′W ′) ≤ 3, we must have rk(V ′W ′/X ′) = 4 or 6. Also, this shows
that rk(E/E0) = rk(E/V ′W ′) = rk(E/W ′)− rk(V ′/X ′) ≤ 3− rk(V ′/E2).

Finally, since V ′/E2 and W ′/E2 both have rank ≥ 2, for any x ∈ E∩2A =
(V ′ ∪W ′)rE2, there is some y such that y, xy ∈ E ∩ 2A. This proves that
E1 = E2, and finishes the proof of (2).

(3) Assume E0 6= 1 and E is G-conjugate to a subgroup of M8, and let V ′,W ′ ≤ E
be as in (2). Then AutG(E) is the group of all α ∈ Aut(E) such that α(E2) =
E2, and α either sends V ′ and W ′ to themselves or switches them.

By [Gr2, Theorem 2.17], AutG(M) is the group of all automorphisms of M
which send X to itself, and which either send V and W to themselves or
switch them. By restriction, we see that AutG(E0) contains all automor-
phisms which induce the identity on X ′ and on E0/X

′. If E = E0, then we
are done.

If rk(E/E0) = 1, then rk(V ′/X ′) = 2, so rk(E0/X
′) = 4, and rk(E/E0) = 1.

Choose elements v3 ∈ V and w3 ∈ W such that v3w3 ∈ ErE0. Then
M = 〈E, v3〉 = 〈E,w3〉. For any α ∈ Aut(E), we can write α(v3w3) =
v3w3v

′w′ for some v′ ∈ V ′ and w′ ∈ W ′. Extend α to α ∈ Aut(M) by
setting α(w3) = w3w

′ and α(v3) = v3v
′ if α(V ′) = V ′, or α(w3) = w3v

′

and α(v3) = v3w
′ if α(V ′) = W ′. Then α ∈ AutG(M) by [Gr2], and so

α ∈ AutG(E).

(4) Assume E0 6= 1; and that there is g ∈ G such that E′ def= gEg−1 ≤ M9 =
T(2)·〈θ〉. Set E′

i = gEig
−1. Then E′

0 = E′ ∩ T(2). Also, AutG(E) is the group
of all α ∈ Aut(E) such that α(E0) = E0, and α|E0 preserves the form q.

By [Gr2, Theorem 2.17], M9rT(2) ⊆ 2B. Hence E′
0 = E′ ∩ T(2). By

[Gr2, Table I], AutG(M9) is the group of all α ∈ Aut(M9) such that α|T(2)

preserves the form q. If β ∈ Aut(E′) is such that β(E′
0) = E′

0 and β|E′0
preserves q, then β|E′0 extends to an isometry of T(2) by Witt’s lemma, so
β extends to an element of AutG(M9), and thus β ∈ AutG(E′).

(5) In all cases, if E0 6= 1, then rk(E1) ≤ 2 and rk(E/E0) ≤ 1; so rk(E0/E1) ∈
{4, 6, 8}.

If E is G-conjugate to a subgroup of M9, then q|E0 is quadratic, and hence
rk(E0/E1) + 2· rk(E1) ≤ 8. Since one of rk(E2), rk(E1/E2), or rk(E0/E1)
must be ≥ 4 by (1), we either have rk(E0/E1) ≥ 4 (and is even) and
rk(E1) ≤ 2, or E0 = E2 has rank 4. But in the last case, E0 is 2B-pure,
which contradicts the definition of E0 as being generated by elements of
type 2A. This proves (5) in this case, and it follows from (2) when E is
conjugate to a subgroup of M8.

(6) In all cases, if E0 6= 1, then

|O2(AutG(E))| = 2N where N ≥ rk(E2)· rk(E0/E2) + rk(E0)· rk(E/E0).

By (3) or (4), AutG(E) contains all automorphisms of E which induce the
identity on E2, E0/E2, and E/E0. Since these subgroups are all AutG(E)-
invariant, all such automorphisms lie in O2(AutG(E)); and the inequalities
follow.
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We are now ready to consider the individual cases. In Cases 1 and 2, we
assume E0 6= 1: assuming E0 is toral in Case 1 and nontoral in Case 2. The
2B-pure subgroups are then handled in Cases 3 and 4: rk(E) = 4 in Case 3 and
rk(E) ≥ 5 in Case 4.

Case 1: Assume E0 = 〈E ∩ 2A〉 6= 1, and that E0 is G-conjugate to a subgroup
of T(2). Thus q|E0 is quadratic, E1 = E0 ∩ E⊥

0 , and E2 = Ker(q|E1). By (5),
rk(E1) ≤ 2, and rk(E0/E1) ≥ 4.

Fix g ∈ G such that gE0g
−1 ≤ T(2), and set E′ = gEg−1 and E′

i = gEig
−1.

We claim that E0 is a maximal toral subgroup of E. Assume otherwise: let
E0 � Ê ≤ E be such that q|

bE is quadratic. Let b be the bilinear form associated
to q. For any x ∈ ÊrE0, b(x, y) = q(y) for all y ∈ E0, and so q|E0 is linear since b
is bilinear. But this would imply E1 = E0, which contradicts (5).

Case 1a: Assume q is nondegenerate and rk(E0) ≤ 6. If the symplectic form b is
nondegenerate, then CW (E′

0) leaves E′
0
⊥ invariant, and we can choose 1 6= x ∈ E′

0
⊥

whose CW (E′
0)-orbit has odd order. Since E0 is a maximal toral subgroup of E, x is

not CG(E′
0)-conjugate to any element of E′. Hence by Proposition 8.9, no subgroup

of L which is G-conjugate to E′ can be pivotal; and in particular, E /∈ E≥2(L ; 2).

It remains to consider the case rk(E0) = 5 and rk(E1) = 1. Write E′
0 = E′

1×F ,
where b is nondegenerate on F , rk(F ) = 4, and E′

1 = 〈a〉 with q(a) = 1. Any
nondegenerate quadratic form on F4

2 has an even number of nonisotropic elements
(see Case 1b for more details on the two types of forms). Thus there are an odd
number of nonisotropic elements in F⊥r{a}, none of which lie in E′

0, and they are
permuted by CW (E′

0). So we can choose x ∈ F⊥r{a} whose CW (E′
0)-orbit has

odd order; and Proposition 8.9 again applies to show that E /∈ E≥2(L ; 2).

Case 1b: Assume rk(E0) = 8; i.e., E is G-conjugate to T(2) or M9. Then
CG(T(2)) = T ·〈θ〉 and CG(M9) = M9; while AutG(T(2)) ∼= SO+

8 (2) and AutG(M9) ∼=
C8

2oSO+
8 (2). Thus in both cases, Corollary 8.6 applies to show that AutL(E) is

isomorphic to a subgroup of index at most two in SO+
8 (2); i.e., Ω+

8 (2) or SO+
8 (2).

In either case, E /∈ E≥2(L ; 2) by Proposition 6.5(b,c).

Case 1c: The remaining cases are all included in the next table.

Here, the last two rows represent the cases where E 	 E0. Also, CG(E0)0s means
the maximal normal semisimple subgroup of CG(E0)0; when the group is put in
brackets we just give its universal cover without trying to identify the group itself.
Assuming the table is correct, |O2(AutG(E))| > |π0(CG(E))| in all cases except the
last. So by Corollary 8.6, none of those subgroups can be pivotal. In the last case,
AutG(E0) ∼= GO7(2) ∼= Sp6(2), so Corollary 8.6 implies that AutL(E) has index at
most 4 in Sp6(2), hence is equal to Sp6(2) (with the canonical action on E0/E1),
and this is impossible by Proposition 6.5.

The lower bounds on |O2(AutG(E))| follow from (6) in all cases. The upper
bound on |π0(CG(E))| when rk(E/E0) = 1 follows from the information given
on CG(E0), together with Proposition 8.8. To check the claims about CG(E0),
note first that there is one orthogonal transvection τx in T(2) for each x ∈ T(2)

of type 2A: τx(y) = y for y ∈ x⊥ and τx(y) = xy otherwise (see [Di, §19]).
Hence these are the reflections in W , and the subgroups x⊥ are the kernels of the
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rk(E2) 1 1 2 1 1 0

rk(E1) 1 1 2 2 1 1

rk(E0/E1) 4 4 4 4 6 6

type(E0/E1) + − + ± + ±

CW (E0) D8 × 〈θ〉 Σ4 × 〈θ〉 C2 × 〈θ〉 C2
2 × 〈θ〉 〈θ〉 C2 × 〈θ〉

CG(E0)0s SL2 × SL2 [SL4] 1 [SL2] 1 [SL2]

|π0(CG(E0))| 22 2 22 22 2 2

|O2(AutG(E0))| ≥ 24 ≥ 24 ≥ 28 ≥ 25 ≥ 26 1

|π0(CG(E))| ≤ 28 ≤ 27 ≤ 210 ≤ 210 ≤ 29 ≤ 29

|O2(AutG(E))| ≥ 29 ≥ 29 ≥ 214 ≥ 211 ≥ 213 27

roots. So by Proposition 8.3, the roots in CG(E0)0 correspond precisely to the
nonisotropic elements in the orthogonal complement of E′

0 ≤ T(2). In particular,
when rk(E0) = 7 and E1 = 〈x〉, this shows that CG(E0) = T ·〈θ〉 if x is isotropic,
and CG(E0) = H·〈θ〉 where Hs

∼= SL2(Fq) if q(x) = 1.

Assume E′
0 = E′

1×F , where F ≤ T(2) is orthogonal to E′
1 and is nondegenerate

of rank 4. Then CW (F ) ∼= AutG(F⊥), and F⊥ has the same type of form (positive
or negative) as F . If this form is positive, then there is a splitting F⊥ = F1 × F2

such that F⊥ ∩ 2A = F#
1 ∪ F

#
2 ; and CW/〈θ〉(F ) ∼= GO+

4 (2) ∼= Σ3 o C2. This shows
that CG(F )0s has type SL3(Fq) × SL3(Fq) up to covering. Also, π0(CG(F )) ∼=
C2

2 , generated by θ and an element which switches the two factors SL3(Fq). The
information about CG(E0) in the first, third, and fourth cases can now be computed
directly, by checking roots and Weyl group elements left invariant by one or two
involutions in this group. Note in particular the first case: since CG(F ) ∼= ((F×q )4×
(SL3(Fq))2)/Z for some 3-subgroup Z, CG(E0)0 is the centralizer of an involution
which embeds diagonally in SL3(Fq)2, and hence has semisimple part SL2(Fq)2
(independently of Z).

If q|F and q|F⊥ have negative type, then F⊥ contains 5 isotropic involutions
which generate F⊥ and whose product is trivial. Thus CW/〈θ〉(F ) ∼= Σ5 in this
case, CG(F )0s ∼= SL5(Fq)/Z for some Z, and CG(F ) is connected. The information
in the second case now follows upon taking the centralizer in CG(F ) of one of the
five isotropic involutions in F⊥.

This finishes the proof of the information in the above table.

Case 2: Now assume that E0 6= 1, and that E0 is not toral. By (4), E is not
G-conjugate to a subgroup of M9, and hence is G-conjugate to a subgroup of M8.



80 8. EXCEPTIONAL GROUPS OF LIE TYPE IN ODD CHARACTERISTIC

Let V ′,W ′ ≤ E0 be as in (2) and (3). If rk(V ′/E2) = rk(W ′/E2) = 2, then
q is a quadratic form on E0: it sends all elements in (V ′rE2) ∪ (W ′rE2) to 1
and all others to 0. Hence E0 is toral in this case by [Gr2, Theorem 9.2], in
contradiction to our assumption. So without loss of generality, we can assume that
rk(V ′/E2) = rk(W ′/E2) = 3. Then E = E0 by (2).

Fix subgroups V ≤ V ′ and W ≤ W ′ of index 2 containing E2, and set E =
VW ≤ E. Thus [E:E] = 4. Also, q|

E
is quadratic, and hence a toral subgroup by

[Gr2, Theorem 9.2]. For any E � E′ � E, there are subgroups F0 ≤ F ≤ E′ with
rk(F ) = 3 and rk(F0) ≥ 2, such that F ∩ 2A = (F0)#. Then q|F is not quadratic,
and thus E′ ≥ F are not toral. This shows that E is a maximal toral subgroup of
E.

Case 2a: If rk(E2) = 2, then E = M ; and so CG(E) = E and |O2(AutG(E))| ≥
212 by (6). Thus |O2(AutG(E))| > |π0(CG(E))|, so E /∈ E≥2(L ; 2) by Corollary
8.6.

Case 2b: If rk(E2) = 0, then E = V ′ × W ′ where the elements of type 2A
are precisely those in (V ′ ∪W ′)r1. Let E ≤ E be a maximal toral subgroup as
constructed above. Thus rk(E) = 4, and E ∩ V ′ and E ∩W ′ each has rank 2. Fix
E′ = gEg−1 ≤ T(2) for some g ∈ G, and set E′ = gEg−1. Then CW (E′) leaves E′⊥

invariant, and we can choose 1 6= x ∈ E′⊥ whose CW (E′)-orbit has odd order. Since
E′ is a maximal toral subgroup of E′, x is not CG(E′)-conjugate to any element of
E′. Hence by Proposition 8.9, no subgroup of L which is G-conjugate to E′ can be
pivotal, and in particular E /∈ E≥2(L ; 2).

Case 2c: Now assume rk(E2) = 1. Then |O2(AutG(E))| ≥ 26 by (6).

Fix E = VW ≤ E of index 4, as constructed above. Thus E is a maximal toral
subgroup of E. Fix g ∈ G such that E′ def= gEg−1 ≤ T(2), and set E′ = gEg−1 and
E′
i = gEig

−1.

Set Γ = CG(E)0 for short, and let H = Γs be its maximal normal semisimple
subgroup. In the proof of Case 1c, we saw that H ∼= SL2(Fq)2, and that CG(E) =
Γ·〈a, b〉, where a exchanges the two simple factors in H and b inverts a maximal
torus in Γ. Since E is a maximal toral subgroup of E, E ∩ Γ = E, and so we can
choose a, b ∈ E. Set U = 〈a, b〉. Thus CG(E) = CΓ(U) × U ; and there is an exact
sequence

1 −−−→ CH(U) −−−−−→ CΓ(U) −−−−−→ CΓ/H(U).

Then CH(U) = C
SL2(Fq)

(b) is connected by Steinberg’s theorem (see Proposition

8.8), and the last term has order ≤ 26 since Γ/H ∼= (F×q )6 is inverted by b. It
follows that |π0(CG(E))| ≤ 28.

By Corollary 8.6, AutL(E) is isomorphic to a subgroup of index at most 4 in
AutG(E)/O2(AutG(E)). By (3) again, AutG(E) is the group of all automorphisms
which either send V ′ and W ′ to themselves or switch them. Hence

AutG(E)/O2(AutG(E)) ∼= GL3(2) o C2.
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Since L3(2) has no subgroups of index ≤ 4, this means that AutL(E) is isomorphic
to L3(2) o C2 or L3(2)× L3(2). Since neither of these has dihedral or semidihedral
Sylow 2-subgroup, E /∈ E≥2(L ; 2) by Proposition 4.6(c).

Case 3: Assume E is type 2B pure of rank 4. Any such subgroup is toral [Gr2,
Theorem 9.2], and thus G-conjugate to a maximal isotropic subgroup E′ ≤ T(2).

As noted in the proof of Case 1c, the kernels (in T(2)) of the roots in E8 are
the orthogonal complements of involutions of type 2A. None of these can contain
E′, and hence CG(E′)0 = T by Proposition 8.3. Also, CG(E′)/T = CW (T ), and so
CG(E′)/〈T, θ〉 is the group of all α ∈ Aut(T(2), q) such that α|E′ = Id.

To make this more explicit, we fix a basis {v1, . . . , v8} of T(2) such that E′ =
〈v1, . . . , v4〉, and such that q(

∑8
i=1 rivi) =

∑4
i=1 rir4+i. Let S be the additive group

of symplectic 4× 4 matrices; i.e., symmetric matrices with zeroes on the diagonal.
By direct computation, the group of orthogonal automorphisms which leave E′

invariant is the semidirect product{(
I X
0 I

) ∣∣X ∈ S}o
{(A 0

0 (At)−1

) ∣∣A ∈ GL4(2)
}
.

Thus CG(E′)/〈T, θ〉 ∼= S ∼= C6
2 , and AutG(E′) ∼= GL4(2). Furthermore, this shows

that the conjugation action of AutG(E′) on CG(E′)/〈T, θ〉 is that given by (A,X) 7→
AXAt, for A ∈ GL4(2) and X ∈ S.

The stabilizer of
(

0 I
I 0

)
∈ S under this action of GL4(2) is just Sp4(2) ∼= Σ6.

If we set Y =
(

0 1
1 0

)
∈ M2(2), then the stabilizer of

(
Y 0
0 0

)
∈ S is the group of

invertible matrices of the form
(
A R
0 B

)
, thus isomorphic to C4

2o(Σ3)2. Since these
subgroups have index 28 and 35, respectively, in GL4(2), their AutG(E′)-orbits in
S contain all 63 nonidentity elements.

Since each coset of T in NG(T ) contains elements of L, the action of AutG(E′)
on the conjugacy classes of π0(CG(E′)) (as defined in Proposition 8.5) is just the
conjugation action on the set of its conjugacy classes. Since we have identified
π0(CG(E′))/〈θT 〉 with S, this shows that the point stabilizers of the AutG(E′)-
action on the set of conjugacy classes in π0(CG(E′)) all are isomorphic to subgroups
of index at most two in one of the groups GL4(2), Σ6, or C4

2o(Σ3)2; and thus that
AutL(E) must be isomorphic to some such group. By Proposition 4.6(c), AutL(E)
must have dihedral or semidihedral Sylow 2-subgroups, and this leaves only the
possibility AutL(E) ∼= A6 — which would contradict Proposition 4.6(e).

Case 4: Now assume that E is a 2B-pure subgroup of rank ≥ 5. Cohen and
Griess show in [CG] that any such subgroup of E8(C) has rank equal to 5 and
has finite centralizer, and their argument also holds in G = E8(Fq). Namely, if
χg denotes the character of the adjoint representation of G, then χg(x) = −8 for
all x ∈ 2B (see [CG, Table 4]) and χg(1) = dim(g) = 248. Since dim(CG(E)) =
1
|E| ·

∑
x∈E χg(x) ≥ 0, we get rk(E) = 5 and dim(CG(E)) = 0.

Fix any E4 ≤ E of index 2. Since E4 is toral, as noted above, we can choose
g ∈ G, and set E′ = gEg−1 and E′

4 = gE4g
−1, such that E′

4 ≤ T(2). Then
CG(E′

4)
0 = T (see Case 3), so any x ∈ E′rE′

4 lies in NG(T ), and x ∈ θT since
CT (x) ≤ CG(E′) is finite. Since all 2B-pure subgroups of rank 4 in T(2) are NG(T )-
conjugate (and since all elements of the coset θT are T -conjugate), this shows that
all 2B-pure subgroups of rank 5 in G are G-conjugate. In particular, we can assume
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E′ = E′
4·〈θ〉. From the description of CG(E′

4) given in Case 3, this also shows that
|CG(E′)| = 215.

By [CLSS, Theorem 1 & Lemma 2.17], there is a unique L-conjugacy class of
elementary abelian 2-subgroups F ≤ L of rank 5 such that CL(F )/F = CG(F )/F ∼=
C10

2 and AutL(F ) = AutG(F ) = Aut(F ). Since all involutions of F are conjugate,
they must be of type 2B, and hence F is G-conjugate to E. Since NG(F ) ≤ L,
its action on CG(F ) (as defined in Proposition 8.5) is the conjugation action. So
AutL(E) is a stabilizer subgroup for the action of AutG(F ) by conjugation on
the set of conjugacy classes in CG(F ); or equivalently, the conjugation action of
AutG(E′) ∼= GL5(2) on CG(E′)/(conj).

We first determine the stabilizer subgroups of the conjugation action of AutG(E)
on CG(E)/E ∼= C10

2 ; i.e., the subgroups Stab(Aut(E′), xE′) for x ∈ CG(E′)rE′.
To do this, fix E′ = E′

4·〈θ〉 ≤ T(2)·〈θ〉 as above which is G-conjugate to E. Fix a
basis {v1, . . . , v8} for T(2) as in Case 3, such that E′

4 = 〈v1, . . . , v4〉.
Set x = v8, F = 〈E′, x〉, and E′

3 = 〈v1, v2, v3〉. Then F ∩2A = v4v8E
′
3, so 〈F ∩

2A〉 ∩E′ = E′
3 is invariant under the action of any element of Stab(Aut(E′), xE′).

The subgroup C6
2o(GL3(2) × Σ3) of all automorphisms which leave E′

3 invariant
has index 5·31 in GL5(2), and thus the Aut(E′)-orbit of xE′ in CG(E′)/E′ has
order ≥ 5·31.

Next, since CG(E′) is not elementary abelian, we can choose y ∈ CG(E′) such
that y2 6= 1; and hence (since AutG(E′) acts transitively on involutions) such that
y2 = θ. Then any element of Stab(Aut(E′), yE′) fixes θ. Also, y (and any other
element which normalizes E′

4) normalizes CG(E′
4)

0 = T . So by the computations in
Case 3 (and with respect to the basis {vi}), y has matrix

(
I X
0 I

)
for some symplectic

matrix X. Fix X ′ ∈ M4(Z/4) whose reduction mod 2 is X. By looking at the
conjugation action of y on T(4), we see that the action of y has matrix

(
I X′

0 I

)
+2Y

for some Y ∈M8(Z/2), and the relation
((

I X′

0 I

)
+ 2Y

)2 = −I implies(
0 X
0 0

)
+
(

0 X
0 0

)
Y + Y

(
0 X
0 0

)
= I in M8(Z/2).

ThusX has rank 4. Hence all elements in yE′
4 are T(2)-conjugate; and since E′

4 could
be replaced by any other subgroup of E′ complementary to θ, this shows that all ele-
ments of yE′ are CG(E′)-conjugate. Also, X defines a symplectic form b̂ on E′

4 (with
respect to the basis {v1, . . . , v4}), and this has the property that b̂(a, b) = b(a, b′)
for any a, b ∈ E′

4 and any b′ ∈ T(2) such that [y, b′] = b. Thus b̂ depends only on
E′

4 and the class yE′, and hence is preserved by any α ∈ Stab(Aut(E′), yE′) which
leaves E′

4 invariant. This shows that the index of Stab(Aut(E′), yE′) in Aut(E′, θ)
(the group of α ∈ Aut(E′) such that α(θ) = θ) is at least [GL4(2):Sp4(2)] = 28,
and hence that [Aut(E′):Stab(Aut(E′), yE′)] ≥ 31·28. Also, if Stab(Aut(E′), yE′)
has index exactly 28 in Aut(E′, θ) ∼= C4

2oGL4(2), then it must contain the nor-
mal subgroup C4

2 (since Sp4(2) acts transitively on its involutions), and hence is
isomorphic to C4

2oSp4(2).

We have thus found two distinct Aut(E′)-orbits in CG(E′)/E′ (one containing
elements of order 2 in CG(E′) and the other elements of order 4), and these orbits
have orders ≥ 5·31 and ≥ 28·31. So this accounts for all except the fixed orbit,
the inequalities are equalities, and the point stabilizers of these orbits must be the
subgroups described above. The point stabilizers of elements in CG(E′)/(conj)rE′
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thus either have index ≤ 32 in C6
2o(GL3(2)×Σ3), or are isomorphic to C4

2oSp4(2)
(since all elements of yE′ were shown to be CG(E′)-conjugate). Also, the point
stabilizers of elements in E′ are C4

2oGL4(2) or GL5(2) itself. Since O2(AutL(E)) =
1 (E is pivotal), this implies AutL(E) ∼= GL5(2), which contradicts Proposition
4.7(a). �

The results of this chapter are now summarized in the following theorem.

Theorem 8.13. Fix an odd prime power q. Assume L is a simple group,
isomorphic to one of the groups G2(q), 2G2(q), F4(q), 3D4(q), E6(q), 2E6(q), E7(q),
or E8(q). Then L ∈ L≥2(2).



CHAPTER 9

Sporadic groups

It remains to consider the sporadic simple groups. The following standard
shorthand notation for referring to certain groups will be frequently used through-
out the proof:

• 2n = Cn2 is an elementary abelian 2-group;

• 21+2k
+ is the central product of k copies of D8;

• 21+2k
− is the central product of Q8 with k−1 copies of D8;

• 2a+b is a 2-group P such that Z(P ) ∼= 2a and P/Z(P ) ∼= 2b;

• [2n] is an unspecified group of order 2n; and

• H:K, H·K, and H.K are extensions (split, unsplit, or indeterminate, respec-
tively) with kernel H and quotient K.

Theorem 9.1. If L is one of the sporadic simple groups, then L ∈ L≥2(2).

Proof. When L is one of the groups M11, M12, J1, or O′N, then rk2(L) ≤ 3
[GLS3, §5.6]. Hence R≥2(L ; 2) = ∅ by Proposition 4.6(b), and so L ∈ L≥2(2) in
all of these cases by Proposition 4.2.

The remaining sporadic groups are considered individually. We recall now
(without repeating it each time when used in the proof) that rk(E) ≥ 4 for any
E ∈ E≥2(L ; 2).

L = M22 or M23: We have the following inclusions with odd index:

M22 ≤M23 ≥M21:2 ∼= PΣL3(4),

where PΣL3(4) is the extension of PSL3(4) by the field automorphism. Hence
all three of these groups have isomorphic Sylow 2-subgroups. Any elementary
abelian 2-subgroup of rank 4 in PΣL3(4) is contained in PSL3(4), and any Sylow
2-subgroup of PSL3(4) contains exactly two such subgroups.

Identify L as a subgroup of M24: the subgroup of elements which fix one or
two points under the action on a set X of order 24. Fix S ∈ Syl2(L), and let
V1, V2 ≤ S be the two elementary abelian subgroups of rank four. We take V1 to
be the subgroup whose normalizer in M24 is the octad group V1:A8, where V1 acts
freely on 16 points in X and A8 permutes the remaining 8 points in the obvious way
(cf. [Gr3, 6.8]). Restriction to the subgroups fixing one or two points shows that
AutM22(V1) ∼= A6 and AutM23(V1) ∼= A7. Hence V1 /∈ E≥2(L ; 2) by Proposition

84
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4.6(e), and thus R≥2(L ; 2)�V2
= ∅ since the only possible element of R≥2(L ; 2) is

V2 itself.

Either AutL(V2) ∼= AutL(V1), in which case V2 /∈ E≥2(L ; 2) and so E≥2(L ; 2) =
∅; or else AutL(V2) 6∼= AutL(V1), V1 and V2 are not Aut(L)-conjugate, and hence
both are weakly closed in S with respect to Aut(L). So in either case, L ∈ L≥2(2) by
Proposition 4.2. (In fact, it is well known that AutM22(V2) ∼= Σ5 and AutM23(V2) ∼=
3× Σ5, and using this one can show that V2 ∈ R2(L ; 2) in both cases.)

L = M24 or He: We refer to [A4, §39–42] for details of the structure of these
groups. In both cases, there is an involution z ∈ L such that CL(z) ∼= 21+6

+ :L3(2),
the centralizer of a transvection in L5(2), and this centralizer has odd index in L.
To handle elements in this group, we fix V ∼= (F2)5 with basis {v1, . . . , v5}, and set
Vi = 〈v1, . . . , vi〉. We identify H = CL(z) with the group of automorphisms of V
which leave V1 and V4 invariant.

For 1 ≤ i < j ≤ 5, let eij ∈ H be the element which sends vj 7→ vi + vj and
is the identity on the other basis elements. Thus z = e15. Let S be the subgroup
generated by all eij for i < j; this is a Sylow 2-subgroup of H and hence of L.
For each 1 ≤ i ≤ 4, let Ui ≤ S be the subgroup of automorphisms which are the
identity on Vi and on V/Vi. By [A4, Lemma 39.1(3)] (or by the argument given
below), U2 and U3 are the only subgroups of S of rank six.

Assume E ∈ E≥2(L ; 2); we can assume E ≤ S ≤ H. In particular, rk(E) ≥ 4,
and e15 ∈ E since E is pivotal and 〈e15〉 = Z(H). For each involution u ∈ E,
we write K(u) = Ker(u − Id) and I(u) = Im(u − Id); thus I(u) ≤ K(u) ≤ V . In
particular, I(z) = V1 and K(z) = V4.

Assume first that for some u, v ∈ E, I(v) � K(u); i.e., (u−Id)(v−Id) 6= 0. Then
u|I(v) and v|I(u) must be (nonidentity) involutions, which implies that dim(I(u)) =
dim(I(v)) = 2 and dim(I(u) ∩ I(v)) = 1. Similarly, dim(K(u) + K(v)) = 4,
so dim(K(u) ∩ K(v)) = 2; and the three subspaces K(u) ∩ K(v), I(u), I(v) are
linearly independent modulo I(u)∩I(v). Also, since both of these commute with z,
we have V1 ≤ K(u)∩K(v) and I(u)+I(v) ≤ V4. In all cases, we can choose a basis
{ξ0, ξu, ξv, ξ1, ξ2} for V such that I(u) = 〈ξ0, ξu〉, I(v) = 〈ξ0, ξv〉, K(u) = 〈ξ0, ξu, ξ1〉,
K(v) = 〈ξ0, ξv, ξ1〉, (u− Id) sends ξv 7→ ξ0 and ξ2 7→ ξu, and (v− Id) sends ξu 7→ ξ0
and ξ2 7→ ξv (recall [u, v] = 1). We are thus reduced (up to conjugacy in H) to one
of the following situations:

• I(u) ∩ I(v) = V1 and K(u) +K(v) = V4 :
I(u) = 〈v1, v2〉, I(v) = 〈v1, v3〉, K(u) = 〈v1, v2, v4〉, K(v) = 〈v1, v3, v4〉; u =
e13e25, v = e12e35, E ≤ CH(〈u, v〉) = 〈e13e25, e12e35, e15, e14, e45〉 ∼= 22 ×D8

• I(u) ∩ I(v) = V1 and K(u) +K(v) 6= V4 :
I(u) = 〈v1, v2〉, I(v) = 〈v1, v3〉, K(u) = 〈v1, v2, v5〉, K(v) = 〈v1, v3, v5〉; u =
e13e24, v = e12e34, E = CH(〈u, v〉) = 〈e13e24, e12e34, e15, e14〉 ∼= 24

• I(u) ∩ I(v) 6= V1, and hence K(u) = I(u) + V1 and K(v) = I(v) + V1 :
I(u) = 〈v2, v3〉, I(v) = 〈v2, v4〉, K(u) = 〈v1, v2, v3〉, K(v) = 〈v1, v2, v4〉; u =
e24e35, v = e23e45, E = CH(〈u, v〉) = 〈e24e35, e23e45, e15, e25〉 ∼= 24
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This leaves the following four possibilities for E ≤ CH(〈u, v〉) of rank 4, as described
in the following list. In each case, Ni is a subgroup of NS(Ei) whose elements are

E1 = 〈e15, e14, e12e35, e13e25〉 N1 = 〈e12, e13, e45〉
E2 = 〈e15, e45, e12e35, e13e25〉 N2 = 〈e12, e13, e14〉
E3 = 〈e15, e14, e12e34, e13e24〉 N3 = 〈e24, e25, e34, e35〉
E4 = 〈e15, e25, e23e45, e24e35〉 N4 = 〈e13, e14, e23, e24〉

independent in AutS(Ei). Thus in all cases, AutS(E) has rank ≥ 3, so the Sylow 2-
subgroups of AutL(E) are neither dihedral nor semidihedral. Hence E /∈ E≥2(L ; 2)
by Proposition 4.6(c).

We are left with the case where W def= 〈I(u) |u ∈ E〉 is contained in W ′ def=⋂
u∈E K(u). If W = W ′, then either W = V1 or V4 and E = U1 or U4, or

dim(W ) = 2, 3 and (up to H-conjugacy) E ≤ Ui for i = 2, 3. In general, if u ∈ E
and g ∈ CH(E), then g(I(u)) = I(u) and g(K(u)) = K(u). Hence if W = W ′ = Vi
for i = 2, 3, then every g ∈ CH(E) induces the identity on W and on V/W . In
other words, CH(E) = Ui in this case, hence CL(E) = Ui since H = CL(e15)
and e15 ∈ E; and thus E = Ui since E is pivotal (Proposition 4.4(c)). By [A4,
Lemma 40.5], AutL(E) ∼= L4(2) or 23:L3(2) when E = U1 or U4 (rk(E) = 4),
and AutL(E) ∼= L3(2) × Σ3 or 3·Σ6 when E = U2 or U3 (rk(E) = 6). Since none
of these automorphism groups has dihedral or semidihedral Sylow 2-subgroups,
E /∈ E≥2(L ; 2) by Proposition 4.6(c).

The only remaining case is that where dim(W ) = 2 and dim(W ′) = 3, and
hence where E is H-conjugate to U2 ∩ U3. Thus the only subgroup of S which
could lie in E≥2(L ; 2) is U2 ∩ U3. Since CL(U2 ∩ U3) = CH(U2 ∩ U3) = U2U3, it
follows that R≥2(L ; 2)�U2U3

= ∅. Since U2U3 is weakly closed in S with respect
to Aut(L) (U2 and U3 are the only rank six subgroups of S), Proposition 4.2 now
implies that L ∈ L≥2(2). (In fact, one can show that in all three cases L = M24,
L = He, and L = L5(2), U2 ∩ U3 ∈ E2(L ; 2) and U2U3 ∈ R2(L ; 2).)

L = J2: This group contains two conjugacy classes of involutions, of which those
of type 2A are in the centers of Sylow subgroups. By [FR1, §3], the elements of
type 2A in any elementary abelian E ≤ L form a subgroup, and there are no 2A-
or 2B-pure subgroups of rank 3. Thus any elementary abelian 2-subgroup E ≤ L
contains an NAut(L)(E)-invariant subgroup E0 ≤ E (generated by the elements of
type 2A) such that rk(E0) ≤ 2 and rk(E/E0) ≤ 2. Hence E≥2(L ; 2) = ∅ by
Proposition 4.6(c), and L ∈ L≥2(2) by Proposition 4.2.

L = Co3 or L = HS: By [Fi, §4], there are two conjugacy classes of involutions
in Co3, of which those in the center of a Sylow 2-subgroup are of type 2A with
centralizer 2Sp6(2), and those of type 2B have centralizer 2 ×M12. (These are
denoted (21) and (22), respectively, in [Fi].) By [Fi, Lemma 4.7], this group 2Sp6(2)
has two conjugacy classes of noncentral involutions whose centralizers have different
orders, and hence which project to different classes in Sp6(2). In other words, if
x, y are commuting involutions and x has type 2A, then y and xy are conjugate
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in CL(x), and in particular have the same type in L. This shows that in any
elementary abelian 2-subgroup E ≤ L, the elements of type 2A together with the
identity form a subgroup of E.

By [PW, Lemma 2.2 & §4], there are two conjugacy classes of involutions in
HS, of which those in the center of a Sylow 2-subgroup have type 2A and centralizer
(21+4

+ ×C2 C4)·Σ5, and the others have type 2B with centralizer 2×Aut(A6). Also,
HS is contained as a subgroup of Co3 (see [A4, §§23–24]). Since the order of the
centralizer of a 2A-element in HS does not divide the order of the centralizer of
a 2B-element in Co3, the inclusion must send involutions of type 2A in HS to
involutions of type 2A in Co3. If it sent all involutions in HS to 2A-elements in
Co3, then a Sylow 2-subgroup of Co3 would contain an index 2 subgroup (a Sylow
subgroup of HS) all of whose involutions have type 2A, so there would be no 2B-
pure subgroup of rank 2 in Co3, which would contradict [Fi, Lemma 5.10]. Thus
involutions of type 2B in HS get sent to involutions of type 2B in Co3.

Now assume E ∈ E≥2(L ; 2), for L = Co3 or HS, and let E0 ≤ E be the
subgroup generated by type 2A involutions. Then E0 6= 1, since E contains the
center of a Sylow 2-subgroup (Proposition 4.4(e)), and it is clearly NAut(L)(E)-
invariant. Thus rk(E0) ≥ 4 or rk(E/E0) ≥ 4 by Proposition 4.6(b). Since
rk2(Co3) = 4 [GLS3, p.305], this means that E = E0 is a rank 4 2A-pure subgroup.
If L = Co3, then by [Fi, Lemma 5.9], L has a unique class of such subgroups, and
AutL(E) ∼= A8

∼= GL4(2) for any such E. If L = HS, then by [PW, Lemma 4.1],
AutL(E) ∼= Σ6 for any such E. In both cases, the Sylow 2-subgroups of AutL(E)
are neither dihedral nor semidihedral, and hence E /∈ E≥2(L ; 2) by Proposition
4.6(c). Thus R≥2(L ; 2) = ∅, and L ∈ L≥2(2) by Proposition 4.2.

L = McL or L = Ly: By [GLS3, p.308], rk2(L) = 4 (see also the discussion in
[Fi, §5] when L = McL). By [Fi, Lemma 5.2] (when L = McL) or [W5, §2] (when
L = Ly), AutL(E) ∼= A7 for every elementary abelian 2-subgroup E ≤ L of rank
4, and so E /∈ E≥2(L ; 2) by Proposition 4.6(e). Thus E≥2(L ; 2) = ∅, and hence
L ∈ L≥2(2).

L = F5 = HN: We refer to [NW, §3.1] for the following information about L.
There are two conjugacy classes of involutions in L, types 2A and 2B. For any
elementary abelian 2-subgroup E ≤ L, the function q : E −−→ F2, defined by q(v) =
1 if v ∈ 2A and q(v) = 0 otherwise, is quadratic.

Assume E ∈ E≥2(L ; 2). Set E0 = E ∩E⊥ (with respect to the quadratic form
q), and E1 = Ker(q|E0). Clearly, these subgroups are both NAut(L)(E)-invariant,
and rk(E0/E1) ≤ 1. So either rk(E1) ≥ 4 or rk(E/E0) ≥ 4.

By [NW, p.365], there are exactly two conjugacy classes of 2B-pure subgroups
of rank 2 in L. If x ∈ 2B, then CL(x) ∼= 21+8

+ ·(A5 × A5):2; and the two types are
represented by V1 = 〈x, a〉 and V2 = 〈x, b〉, where a ∈ O2(CL(x)), and b is a diagonal
involution in A5×A5. Also, V1 is contained in a unique 2B-pure subgroup of rank 3
having the property that all of its rank 2 subgroups have the same type as V1. Hence
we can assume E1 contains V2. By [NW, p.365] again, V2 and E1 are both contained
in a unique extraspecial subgroup X ∼= 21+8

+ with NL(X)/X ∼= (A5 × A5):2 (but
where Z(X) � V2). Thus NL(E) ≤ NL(E1) ≤ NL(X), so E ≤ Z(X) ∼= C2 by
Proposition 4.9(a), and this contradicts the assumption rk(E1) ≥ 4.
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We are left with the possibility rk(E/E0) ≥ 4. Choose E′ ≤ E such that
E = E′ × E0; then q|E′ is nondegenerate and rk(E′) ≥ 4. Also, E′ contains a
2A-pure subgroup E′′ of rank two, and CL(E′′) ∼= 22 ×A8 ≤ A12 ≤ L. Inside A12,
the involutions whose support have order 4 or 12 are of type 2A, while those whose
support have order 8 are of type 2B. Using this, one sees that either rk(E′) = 6 and
CL(E′) = E′, or rk(E′) = 4 and CL(E′) ∼= 26 or 24×A4. Thus in all of these cases,
E is contained in a unique subgroup E of rank 6 (on which q is nondegenerate), and
NL(E) ≤ NL(E). Also, AutL(E) = Ω(E, q) ∼= Ω−

6 (2), and so E /∈ E≥2(L ; 2) by
Proposition 4.6(c) (Sylow 2-subgroups of AutL(E) are neither dihedral nor semidi-
hedral). If rk(E) = 5, then either q|E0 6= 0 and AutL(E) ∼= Ω5(2) ∼= Σ6, which
again contradicts Proposition 4.6(c); or q|E0 = 0 and O2(AutL(E)) 6= 1, in which
case E is not pivotal. Finally, if rk(E) = 4 and q is nondegenerate on E, then we
have just seen that the Sylow 2-subgroups of CL(E) are isomorphic to 26, and so
E cannot be pivotal.

This shows that E≥2(L ; 2) = ∅, and thus that L ∈ L≥2(2) by Proposition 4.2.

In all of the remaining cases, the proof that L ∈ L≥2(2) will be based on a list
of maximal 2-local subgroups of L — or in some cases, a list of proper subgroups
of L (not necessarily 2-local) which contain all 2-local subgroups up to conjugacy.
We label these subgroups Hn for n = 1, 2, . . . , and set Vn = Z(O2(Hn)). The goal
is to show that R≥2(L ; 2) = ∅; unless we set Q = Vn for some n, in which case
we show that Q is weakly closed in some (any) Sylow 2-subgroup which contains
it, and that R≥2(L ; 2)�Q = ∅. In either case, Proposition 4.2 then implies that
L ∈ L≥2(2).

Fix a subgroup P ∈ R≥2(L ; 2), and set E = Ω1(Z(P )). Thus NL(P ) ≤
NL(E) ≤ Hn for some n. Also, P ≥ O2(Hn) and E ∩Vn 6= 1 by Proposition 4.9(a),
and hence

If O2(Hn) is centric in Hn, and NL(E) ≤ Hn, then E ≤ Vn. (∗)
This will frequently be used below, without reference. Also, by Proposition 4.6(b,e),

If O2(Hn) is centric in Hn, and either rk(Vn) ≤ 3, or rk(Vn) = 4
and AutHn

(Vn) is isomorphic to A5, GL2(4), A6, Σ6, or A7, then
NL(E) � Hn.

(1)

Finally, if AutL(Vn) = Aut(Vn), then AutL(E) = Aut(E), and so by Proposition
4.7(a) we get:

If O2(Hn) is centric in Hn, and AutL(Vn) = Aut(Vn), then NL(E) � Hn. (2)

Points (1) and (2) will frequently be referred to below.

We use the Atlas notation 2A, 2B, etc. for the conjugacy classes of involutions
in L. Recall that by Proposition 4.4(e), E ≥ Ω1(Z(S)) for some S ∈ Syl2(L), and
thus E contains elements from each conjuacy class of involutions represented in
Z(S).

L = J3: By [FR2, §2], L contains three conjugacy classes of maximal 2-local sub-
groups: H1

∼= 21+4
− :A5, H2

∼= 24:GL2(4), and H3
∼= 22+4:(3 × Σ3). In all three

cases, O2(Hi) is centric in Hi, and NL(E) ≤ Hi is impossible by (1): either be-
cause Vi = Z(O2(Hi)) has rank ≤ 3, or because rk(Vi) = 4 and AutL(Vi) ∼= GL2(4).
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L = Suz: We refer to [W2] for the following information. There are two conjugacy
classes of elements of order 2 in L, of which those of type 2A are in the centers of
Sylow 2-subgroups. Also, in any elementary abelian subgroup E ≤ L, the involu-
tions of type 2A together with the identity form a subgroup of E. Hence NL(E) is
contained in the normalizer of some 2A-pure subgroup; and hence by [W2, §2.4], in
one of the three groups H1

∼= 21+6
− .U4(2), H2

∼= 22+8:(A5×Σ3), or H3
∼= 24+6:3A6.

In all of these cases, O2(Hi) is centric in Hi, and NL(E) � Hi by (1): either because
rk(Vi) ≤ 3 (when i = 1, 2), or because rk(V3) = 4 and AutL(V3) ∼= A6.

L = Ru: There are two conjugacy classes of involutions, of which those of type
2A lie in the centers of Sylow 2-subgroups. Thus E contains elements of type 2A
(Proposition 4.4(e)). By [W3, §2.4], the involutions of type 2A in E together with
the identity form a subgroup E0 ≤ E, and hence NL(E) ≤ NL(E0).

By [W3, §2.4–2.5], the normalizer of each 2A-pure elementary abelian sub-
group of L is conjugate to a subgroup of one of three subgroups Hn listed below.
In all cases, Vi is 2A-pure and O2(Hi) is centric in Hi, so E = E0 ≤ Vi by (∗). (In
particular, V3

∼= 26 is 2A-pure by [W3, Lemma 1], where V3 is denoted R1.)

The first two subgroups in the list, H1
∼= 2·24+6:Σ5 (V1

∼= 2) and H2
∼=

23+8:L3(2) (V2
∼= 23), cannot contain NL(E) by (1). That rk(V1) = 1 follows ei-

ther from the description in [A3, 12.12], or directly from the commutator relations
listed in [P2, Lemma 12] (where O2(H1) is the subgroup generated by the eleven
elements z, t, v, w,w1, x1, x2, a, b, c, d). This leaves only the following subgroup to
consider:

• NL(E) ≤ H3
∼= 26·G2(2), E ≤ V3

∼= 26. We just saw that NL(E) is not
conjugate to a subgroup of H1 or H2. Let T be the conjugacy class of the
subgroups of rank 2 in V2. Let D be the “diagram” of E in the sense of [W3]:
the graph with one node for each involution in E, and an edge connecting two
nodes whenever the elements generate a subgroup in T . The automorphism
group AutL(E) acts on D (and Out(L) = 1 in this case). There cannot be any
AutL(E)-invariant node or triangle in D, since this would imply an AutL(E)-
invariant element or subgroup in T , hence that NL(E) ≤ H1 or H2, contradicting
our assumption on E.

By [W3, §2-4–2.5], for each E ≤ V3 of rank ≥ 2, either the diagram D contains
an AutL(E)-invariant node or triangle; or D is a disjoint union of two or more
triangles and isolated nodes in which case CL(E) = V3

∼= 26; or E = V3 and
AutL(E) ∼= G2(2) ∼= U3(3):2; or rk(E) = 2 and NL(E)/V3

∼= (Σ3 × Σ3). Since
rk(E) ≥ 4, this shows that CL(E) ∼= V3, and hence (since E is pivotal) that
E = V3. Thus (E,AutL(E)) ∼= (26, G2(2)), and this contradicts Proposition 6.5.

L = F3 = Th: By [W7, Theorem 2.2], each 2-local subgroup of L is conjugate to
a subgroup of either H1

∼= 21+8
+ ·A9 or H2

∼= 25·L5(2). By (1) or (2), respectively,
neither of these can contain NL(E).

L = J4: By [KW, §2], there are four conjugacy classes of maximal 2-local subgroups
Hi. Of these, (1) shows that neither H2

∼= 23+12.(Σ5 × L3(2)) (with V2
∼= 23) nor
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H3
∼= 21+12

+ ·(3M22:2) can contain NL(E). It remains to consider the following two
cases:

• NL(E) ≤ H1
∼= 210:L5(2), E ≤ V1

∼= 210. If NL(E) ≤ H1 and E ≤ V1, then
by Proposition 4.9(a), P def= P/V1 is a radical 2-subgroup of H1/V1

∼= L5(2), and
NL(P )/P ∼= NL5(2)(P )/P . Also, L5(2) acts irreducibly on V1 [Ja, Theorem A],
and hence acts as Λ2(V ), where V is one of the standard 5-dimensional repre-
sentations. The only radical subgroups which have fixed subspace on V1 of rank
≥ 4 are the trivial subgroup, and two subgroups 24 with normalizer 24:L4(2) with
fixed subspaces of rank 4 or 6. By Proposition 4.6(c), no such subgroup can be
in R≥2(L ; 2).

• NL(E) ≤ H4
∼= 211:M24, E ≤ Q = V4

∼= 211. By [KW, Lemma 1.1.2], Q = V4

is the unique subgroup of NL(Q) ∼= 211:M24 of rank 11; and this group contains a
Sylow 2-subgroup S ∈ Syl2(L). Hence Q = V4 is weakly closed in S with respect
to Aut(L); and we have just shown that R≥2(L ; 2)�Q = ∅.

L = Co1: Our main reference for this group is Curtis’s paper [Cu]. The conjugacy
classes of involutions which we call 2A, 2B, and 2C are referred to there as types
BD, F , and C, respectively. Also, the subgroups which Curtis calls (0), (a), and
(c) are what we call H7, H2, and H3.

By [Cu, Theorem 2.1], the normalizer of each elementary abelian 2-subgroup
of L is contained in one of seven subgroups, listed here as Hi (i = 1, . . . , 7). Three
of these, H1

∼= 21+8
+ ·Ω+

8 (2), H2
∼= 24+12.(3Σ6 × Σ3) (V2

∼= 24 and AutL(V2) ∼= Σ6),
and H3

∼= 22+12.(Σ3 ×A8), cannot contain NL(E) by (1).

Set Q = V7
∼= 211. We claim that Q is weakly closed in S and R≥2(L ; 2)�Q =

∅.

• NL(E) ≤ H4
∼= Co2 (the stabilizer of a 2-vector). Upon examination of the

proof of [Cu, Theorem 2.1], this case is seen to occur only when E = 〈(4), σ〉
(in the notation of [Cu, p.419]) is a certain 2A-pure subgroup of rank 4 (rank
5 in 2Co1). As noted by Wilson in [W1, p.112], this subgroup is contained in a
unique rank 5 subgroup 〈(7), σ〉 whose involutions all have type 2A, and hence
its normalizer is contained in the normalizer of that subgroup, which is contained
in some subgroup conjugate to H1. We can thus ignore the case NL(E) ≤ Co2.

• NL(E) ≤ H5
∼= (A4 ×G2(4)).2. Then by Lemma 1.5(a,b), P ∩ (A4 ×G2(4)) =

P1 × P2 where P1
∼= 22 ≤ A4 and P2 ≤ G2(4) are radical 2-subgroups. By

examination of the two maximal parabolic subgroups 22+8:(3×A5) and 24+6:(A5×
3) of G2(4), we see that the only possibility for E = Ω1(Z(P )) with an irreducible
component of rank ≥ 4 (see Proposition 4.6(b)) is

E = 22 × 24 ≤ A4 ×G2(4).

In this case, E lifts to a subgroup of 2Co1 isomorphic to Q8 × 24; and NL(E) is
contained in the normalizer of the second factor, whose elements are not of type
2B (since they lift to involutions in 2Co1). Thus by [Cu, Lemmas 2.2 & 2.5]
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(together with the above remarks about H4), this normalizer is contained in one
of the subgroups H1, H2, H3, or H7.

• NL(E) ≤ H6
∼= (A6 ×U3(3)).2. Since rk2(A6) = rk2(U3(3)) = 2, E has a

filtration by NL(E)-invariant subgroups for which the quotients all have rank
≤ 2, and this contradicts Proposition 4.6(b).

• NL(E) ≤ H7
∼= 211:M24, E ≤ Q = V7

∼= 211. By [A3, (30.3) & (31.11)], Q is
the unique subgroup of H7 of rank 11, and hence weakly closed (with respect to
Aut(L)) in any Sylow 2-subgroup which contains it. We have now shown that
R≥2(L ; 2)�Q = ∅.

L = Co2: By [W1, §3], the normalizer of each elementary abelian 2-subgroup of L
is contained in one of seven subgroups Hn listed here.

• NL(E) ≤ H1 = 24+10·(Σ5 ×Σ3), E ≤ V1
∼= 24. Then E = V4 and AutL(E) ∼=

Σ5, and an examination of the first diagram in [W1, p.113] shows that AutL(E)
acts via the permutation representation (with two orbits of lengths 5 and 10).
This contradicts Proposition 4.7(b).

• NL(E) ≤ H2 = 21+8
+ :Sp6(2), E ≤ V2

∼= 2. Impossible by (1).

• NL(E) ≤ H3 = (21+6
+ × 24).A8, E ≤ V3

∼= 25. Let E′ ≤ E be the intersection
of E with the commutator subgroup of O2(H3). Then rk(E′) ≤ 1, and hence
rk(E/E′) = 4. Since A8

∼= GL4(2) has the usual action on the factor 24 in
O2(H3), this shows that CH3(E) = O2(H3), and hence P = O2(H3) and E = V3.
Thus AutL(E) = GL4(2), which contradicts Proposition 4.7(a).

• NL(E) ≤ H4 = M23. This subgroup arises as (one possible) intersection of a
subgroup 211·M24 ≤ Co1 with Co2. From the analysis in [Cu, §2], we see that
each time the normalizer of an elementary abelian subgroup E ≤ Co1 was shown
to be contained in a subgroup K ∼= 211:M24, it was contained in such a way that
E intersects nontrivially with the rank 11 subgroup. Hence if NL(E) ≤ Co2, then
K ∩ Co2 cannot be isomorphic to M23, and so we can ignore this case.

• NL(E) ≤ H5 = U6(2):2. Then P ∈ R≥2(H5 ; 2) by Proposition 4.9(b), which is
empty by Lemma 6.6. (Note that Out(L) = 1.)

• NL(E) ≤ H6 = McL. Then rk(E) = rk2(McL) = 4, and AutL(E) ∼= A7 as
described above. This is impossible by Proposition 4.6(e).

• NL(E) ≤ H7 = 210:M22:2, E ≤ Q = V7
∼= 210. By [A3, (30.3) & (31.11)],

V7 is the unique rank 10 subgroup of H7, and hence weakly closed in any Sylow
subgroup which contains it. We have just shown that R≥2(L ; 2)�Q = ∅.

L = Fi22: By [A5, (25.7)], for any S ∈ Syl2(L), the set of involutions in S of
type 2A generates a subgroup 210, which thus is weakly closed in S with respect



92 9. SPORADIC GROUPS

to Aut(L). We fix S, and let Q ∼= 210 denote this subgroup. We will show that
R≥2(L ; 2)�Q = ∅, and also that R≥2(Aut(L) ; 2)�Q = ∅. The latter will be needed
later, when working with the group Fi′24. We set Γ = Aut(L) = Fi22:2 for short
[A5, (37.2)]. Throughout the following discussion, we use the term “transposition”
to refer to involutions of type 2A; these all have the property that the product of
any two of them has order 2 or 3.

Set E0 = E∩L. By [W4, Proposition 4.4] or [Fl], NL(E0) ≤ Hn and NΓ(E) ≤
Hn for some Hn and Hn (n = 1, . . . , 5) as described in the following list. More
precisely, let T be the set of transpositions in E. If T 6= ∅, then NL(E) ≤ NL(T ),
and NL(T ) is conjugate to H1 if |T | = 1, to H2 if |T | = 2, and to H3 or H5 if
|T | ≥ 3.

• NL(E0) ≤ H1 = 2U6(2), NΓ(E) ≤ H1 = 2U6(2).2, E ≥ V1
∼= 2. If NL(E) ≤

H1 and NΓ(E) ≤ H1, then P/V1 is in R≥2(U6(2) ; 2) or R≥2(U6(2):2 ; 2) by
Proposition 4.9(b); and these sets are empty by Lemma 6.6.

• NL(E0) ≤ H2 = (2× 21+8
+ :U4(2)):2, NΓ(E) ≤ H2 = (2× 21+8

+ :U4(2):2):2, E ≤
V2
∼= 22. Impossible by (1).

• NL(E0) ≤ H3 = 25+8:(Σ3 ×A6), NΓ(E) ≤ H3 = 25+8:(Σ3×Σ6), E ≤ V3
∼= 25.

Thus AutL(E) is the stabilizer of the action of A6 or Σ6. As described in [W4,
§§3–4], V3

∼= 25 is generated by a unique hexad of transpositions any five of which
generate V3, and hence AutL(V3) ∼= A6 and AutΓ(V3) ∼= Σ6 act on V3 via the
permutation action on F6

2/F2. By Proposition 4.6(e), E cannot be equal to V3,
nor equal to the index two subgroup of V3 containing no transpositions (since that
is also stabilized by A6). Thus E � V3 has rank 4 and 1 ≤ |T | ≤ 4. Also, 〈T 〉 is
an NAut(L)(E)-invariant subgroup, and must be equal to E since otherwise this
would contradict Proposition 4.6(b). This leaves the case where T is a basis for
E ∼= 24, so AutL(E) = AutΓ(E) ∼= Σ4, E is not pivotal (since O2(AutL(E)) 6= 1),
and E is in neither E≥2(L ; 2) nor E≥2(Γ ; 2) by Proposition 4.4(c).

• NL(E0) ≤ H4 = 26:Sp6(2), NΓ(E) ≤ H4 = 27:Sp6(2), E0 ≤ V4
∼= 26, and

E ≤ V 4
def= Z(O2(H4)) ∼= 27. The action of H4/O2(H4) ∼= Sp6(2) on V4 is the

standard one (see [W4, §§3–4]). In particular, E can be neither V4 nor V 4 by
Proposition 6.5. Thus P/O2(H4) or P/O2(H4) is a nontrivial radical subgroup
of Sp6(2), whose fixed subgroup in V4 is totally isotropic (with respect to the
symplectic form fixed by H4), and hence of rank ≤ 3 (Proposition 6.4). Hence
rk(E0) ≤ 3, and this contradicts Proposition 4.6(b).

• NL(E0) ≤ H5 = 210:M22, NΓ(E) ≤ H5 = 210:M22:2, E ≤ Q = V5
∼= 210. We

have already seen that Q is weakly closed in any Sylow 2-subgroup which contains
it; and we have just shown that R≥2(L ; 2)�Q = ∅.

L = Fi23: Note that Out(L) = 1 [A5, (37.2)]. Fix S ∈ Syl2(L). Then Z(S) ∼= 22,
and contains a representative from each of the three classes of involutions in L.
Thus by Proposition 4.4(e), E contains involutions from each of the three classes.



9. SPORADIC GROUPS 93

By [A5, (25.7)], the set of transpositions in S (involutions of type 2A) generates
a subgroup 211, which thus is weakly closed in S. We let Q ∼= 211 denote this
subgroup, and will show that R≥2(L ; 2)�Q = ∅.

Let T be the set of transpositions in E, and set E0 = 〈T 〉 ≤ E. Then E0 is
conjugate to a subgroup of Q. So by [Fl, §2], NL(E) ≤ NL(E0) is contained in
one of the subgroups in the following list. More precisely, if |T | = n ≤ 3, then
NL(E) ≤ NL(T ), and NL(T ) is conjugate to Hn (the centralizer of the product of
the elements in T ). If |T | ≥ 4, then each subset of T of order 4 is contained in a
unique “heptad” of commuting transpositions, still contained in S, and so the union
T̂ of these heptads is contained in Q, and NL(E) ≤ NL(T̂ ). By [Fl, §2], either
T̂ is itself a heptad, in which case NL(T̂ ) is conjugate to H4; or Q is the unique
subgroup in its conjugacy class which contains T̂ , and thus NL(T̂ ) ≤ NL(Q) = H5.

• NL(E) ≤ H1 = C(2A) ∼= 2Fi22, E ≥ V1
∼= 2. By Proposition 4.9(b) (and since

Out(L) = 1), P/V1 ∈ R≥2(Fi22 ; 2). We have already seen that this implies that
P/V1 contains the subgroup 210 generated by the involutions of type 2A in some
Sylow 2-subgroup of Fi22, and hence that P ≥ Q = V5 (up to conjugacy).

• NL(E) ≤ H2 = C(2B) ∼= 22·U6(2).2, V2
∼= 22. As noted above, this case need

occur only if |T | = 2 and H2 = NL(T ), and thus V2 = E0 ≤ E. Since Out(L) = 1,
Proposition 4.9(b) implies that P/V2 ∈ R≥2(U6(2):2 ; 2), and this set is empty by
Lemma 6.6.

• NL(E) ≤ H3 = C(2C) ∼= (22 × 21+8
+ ).(3×U4(2)).2, E ≤ V3

∼= 23. Impossible
by (1).

• NL(E) ≤ H4
∼= 26+8:(Σ3 ×A7), E ≤ V4

∼= 26. By [Fl, §2], H4 = NL(S), where
S is a “heptad”: a set of seven transpositions whose product is the identity, and
the only transpositions in 〈S〉. Also, the quotient group A7 acts by permuting
S, and so 〈S〉 = V4 = Z(O2(H4)). Hence AutL(E) is the stabilizer of E for this
permutation action of A7. Also, V4 /∈ E≥2(L ; 2) by Proposition 4.6(e), and thus
E � V4. Hence P/O2(H4) ∼= P1 × P2, where P1 ≤ Σ3 and 1 6= P2 ≤ A7 are
radical 2-subgroups (Lemma 1.5(a)); E is the fixed subgroup of the P2-action on
V4; and this is impossible since the nontrivial radical 2-subgroups of A7 all have
fixed subgroup on V4 of rank ≤ 3.

• NL(E) ≤ H5
∼= 211·M23, E ≤ Q = V5

∼= 211. We have already seen that Q is
weakly closed in any Sylow 2-subgroup which contains it; and we have just shown
that R≥2(L ; 2)�Q = ∅.

L = Fi′24: By [A5, (37.1)], Out(L) ∼= C2, and Aut(L) = Fi24. We write Γ = Fi24
for short. The group Γ is generated by transpositions: elements in a conjugacy
class of involutions in ΓrL the product of any two of which has order 2 or 3.
By [A5, (37.4)], L has two conjugacy classes of involutions: each element of type
2A is a product of a unique pair of commuting transpositions (its factors), while
each element of type 2B is a product of four commuting transpositions (but not
uniquely).
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Fix Ŝ ∈ Syl2(Γ), and set S = Ŝ ∩ L ∈ Syl2(L). By [A5, (25.7)], the set of
transpositions in Ŝ generates a subgroup Q̂ ∼= 212. Set Q = Q̂ ∩ L ∼= 211. By
[A5, (34.9)], Q is the Todd module for NL(Q)/Q ∼= M24. Hence by [A3, 31.11], Q
is the unique elementary abelian 2-subgroup of NL(Q) of rank 11. Since Q C S,
NL(Q) ≥ S, and thus Q is weakly closed in S with respect to Aut(L). We will
show that R≥2(L ; 2)�Q = ∅.

By [W6, Theorems D & E] (with corrections in [LW, §2]), each 2-local subgroup
of L is contained up to conjugacy in one of eight subgroups, labelled here as Hn

(n ≤ 8). In the case of two of these subgroups, H2 = N(2B) ∼= 21+12
+ ·3U4(3):2 and

H5
∼= 23+12.(A6 × L3(2)), NL(E) � Hn by (1). It remains to consider the other

cases.

• NL(E) ≤ H1 = N(2A) ∼= 2Fi22:2, E ≥ V1
∼= 2. Then NΓ(E) ≤ NΓ(H1),

since the factors of the generator of V1 normalize E. By Proposition 4.9(b)
again, P/V1 ∈ R≥2(Fi22:2 ; 2). We have already shown that this implies that
P/V1 contains (up to conjugacy) the subgroup 210 generated by the involutions
of type 2A in any Sylow 2-subgroup of Fi22. Since all involutions in Fi22 lift
to involutions in 2Fi22 [A5, (23.8)], this shows that P contains a subgroup 211,
which must be conjugate to Q.

• NL(E) ≤ H3
∼= 22·U6(2):Σ3, V3

∼= 22. If E � V3, then E ∩ V3 = 〈x〉 for
some involution x, and NL(E) ≤ CL(x) which is conjugate to H1 or H2. So we
can assume E ≥ V3. Also, V3 ≤ Q (up to conjugacy), and all involutions in V3

are of type 2A. The factors of the involutions in V3 all lie in Q̂, and generate a
rank three subgroup with just three transpositions, which are permuted by the
conjugation action of E and hence normalize E. Thus NΓ(E) ≤ NΓ(H3), and so
P/V3 ∈ R≥2(U6(2):Σ3 ; 2) by Proposition 4.9(b). But this set is empty by Lemma
6.6.

• NL(E) ≤ H4
∼= 26+8:(Σ3 ×A8), E ≤ V4

∼= 26. Here, AutL(V4) acts on V4 via
the natural action of A8

∼= Ω+
6 (2). This follows from the discussion in [W6, p.91],

where it is shown that V4 is the intersection with Fi′24 of the subgroup of rank
7 in Fi24 generated by the eight transpositions in an octad. Hence E � V4 by
Proposition 4.6(c), since the Sylow 2-subgroups of A8 are neither dihedral nor
semidihedral. So P/O2(H4) is a nontrivial radical 2-subgroup of Ω+

6 (2), and E is
the fixed subgroup of its action on V4. But the fixed subgroup of any such radical
2-subgroup has rank ≤ 3 by Proposition 6.4, and so this case is not possible.

• NL(E) ≤ H6
∼= (A4 ×Ω+

8 (2):3):2, V6
∼= 22. As in the case NL(E) ≤ H3, we

can assume that E ≥ V6. Then P is a 2-subgroup of CL(V6) ∼= A4 × (Ω+
8 (2):3),

and hence a radical 2-subgroup of A4×Ω+
8 (2). So by Lemma 1.5(b), P = V6×P ′,

where P ′ is a radical subgroup of Ω+
8 (2), and hence of the form O2(P) for some

parabolic subgroup P ≤ Ω+
8 (2) for which rk(Z(O2(P))) ≥ 4. The only such

subgroups are those of the form P ∼= 26:Ω+
6 (2), which can be described as the

subgroup of elements in Ω+
8 (2) which leave invariant some 1-dimensional isotropic

subspace, or some maximal isotropic subspace. This would imply that

(E,AutL(E)) ∼= (22 × 26, (3× Ω+
6 (2)):2).
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By Proposition 6.5, no such group E can be in E≥2(L ; 2).

• NL(E) ≤ H7
∼= 28:Ω−

8 (2), E ≤ V7
∼= 28. Then E � V7 by Proposition 6.5, so

P/V7 is a nontrivial radical 2-subgroup of H7/V7
∼= Ω−

8 (2), and E is the fixed
subgroup of its action on V7. By Proposition 6.4, the fixed subgroup is a totally
isotropic subspace of V7

∼= F8
2, hence of rank ≤ 3 (since the quadratic form on V7

has negative type); and thus E /∈ E≥2(L ; 2).

• NL(E) ≤ H8
∼= 211·M24, E ≤ Q = V8

∼= 211. We have already seen that
Q is weakly closed in S with respect to Aut(L); and have now shown that
R≥2(L ; 2)�Q = ∅.

L = F2: This group contains four conjugacy classes of involutions. By [Gr1, The-
orem 3], or by [Sg, Theorem 5.6], Out(L) = 1. By [MS], every 2-local sub-
group of L is conjugate to a subgroup of one of the groups Hn (n = 1, . . . , 8)
described here. In the case of three of these subgroups, H1 = N(2B) ∼= 21+22.Co2,
H2
∼= 22+10+20.(M22:2 × Σ3), and H4

∼= 25+5+10+10.L5(2), NL(E) � Hn by (1) or
(2). It remains to consider the other five cases.

• NL(E) ≤ H3
∼= [235].(Σ5 × L3(2)), E ≤ V3. The construction of this subgroup

H3 is described in [A3, pp.219–220]. In particular, H3 = NL(W ) for a cer-
tain subgroup W ≤ O2(H1) ∼= 21+22 of rank 3 (and with Z(H1) ≤ W ), and
H3/CL(W ) ∼= L3(2). Set Q = O2(H1) ∼= 21+22

+ , 〈z〉 = Z(Q), and R = O2(H3)
for short. Then CL(W ) ≤ CL(z) = H1 (since z ∈ W ), hence CQ(W ) C CL(W )
is a normal 2-subgroup, and so CQ(W ) C R = O2(CL(W )). Thus Z(R) ≤
CH1(R) ≤ CH1(CQ(W )). Set W ′ = CQ(W ). Since Q ∼= 21+22

+ is extraspecial,
Q ∩ Z(R) = CQ(W ′) = W . Also, [CH1(W

′):W ] ≤ 2, since the subgroup of ele-
ments in Out(Q) whose restriction to W ′ is the identity mod 〈z〉 has order 2, and
thus rk(V3/W ) ≤ 1. Thus W ∩ E is an NAut(L)(E)-invariant subgroup of rank
≤ 3 and index ≤ 2 in E, and hence E /∈ E≥2(L ; 2). (In fact, V3 = W , shown
using the properties of the Co2-representation on Q/Z(Q) ∼= F22

2 , as explained to
me in detail by Sergey Shpektorov.)

• NL(E) ≤ H5
∼= 29+16.Sp8(2), E ≤ V5

∼= 29. Then E ≤ V5
∼= 29, and P/O2(H5)

is a 2-radical subgroup of H5/O2(H5) ∼= Sp8(2). By the description of this sub-
group in [A3, pp.218–219], there is a subgroup V ′

5 ≤ V5 of rank 8 upon which
H5/O2(H5) acts by preserving a symplectic form b. Set E′ = E ∩ V ′

5 ; then
E′ C NL(E) since V ′

5 C H5. If P = O2(H5), then E = V5 and AutL(E) ∼= Sp8(2),
which contradicts Proposition 6.5. Otherwise, P/O2(H5) is a nontrivial radical
subgroup of H5/O2(H5) ∼= Sp8(2), and by Proposition 6.4, E′ = CV ′5 (P ) is a
totally isotropic subgroup of V ′

5 with respect to b, and each automorphism of E′

is induced by some element of NL(P ). Thus rk(E′) = 4, AutL(E) ∼= L4(2) or
24:L4(2), the first possibility contradicts Proposition 4.7(a), and the second is
impossible since E is pivotal (O2(AutL(E)) = 1).

• NL(E) ≤ H6 = N(2A) ∼= 2·2E6(2):2, P ≥ V6
∼= 2. By Proposition 4.9(b),

P/V6 ∈ R≥2(H6/V6 ; 2). In particular, P0/V6
def= (P/V6) ∩ 2E6(2) is a radical 2-

subgroup of 2E6(2). Of the four maximal parabolic subgroups PJ of 2E6(2), there
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is only one for which Z(UJ) (UJ = O2(PJ)) has center of rank ≥ 4. This case
arises when J is the set of the two primitive roots corresponding to the extremities
in the Dynkin diagram of E6, and hence P0/V6 = UJ ∼= 28+16, with normalizer
28+16:SO−

8 (2) in 2E6(2):2. We can thus assume NL(P ) ≤ NL(E) ≤ NL(P0).
By [A3, pp.218–219], P0 = O2(H5) and NL(P0) = H5 (up to conjugacy), so
NL(E) ≤ H5, and we are reduced back to that case.

• NL(E) ≤ H7 = N(2C) ∼= (22 × F4(2)):2. Then P ∩ (22 × F4(2)) = V2 × P0

for some radical 2-subgroup P0 ≤ F4(2). Thus P0 = O2(P) for some parabolic
subgroup P ≤ F4(2). Let I = {r1, r2, r3, r4} denote the set of simple roots of F4,
labelled in order along the Dynkin diagram. Set Pi = P{ri} and Ui = U{ri}.

In particular, P1 and P2 represent the two classes of maximal parabolic subgroups
of F4(2) up to conjugacy in its automorphism group. Also, P1/U1

∼= Sp6(2) ∼=
Ω7(2) acts on Z(U1) ∼= 27 in the standard way; while P2/U2

∼= L2(2) × L3(2)
acts on Z(U2) ∼= 25 as a product of an L2(2)-action on 22 and an L3(2)-action
on 23. In both cases, the Sylow 2-subgroups of Pi/Ui are neither dihedral nor
semidihedral, so P0 cannot be conjugate to either of these by Proposition 4.6(c).

Thus P0 	 Ui, Z(P0) ≤ Z(Ui), and NF4(2)(P0) � Pi (up to conjugacy) for some
i. But in either case (i = 1 or 2), E has no NL(E)-irreducible components of
rank ≥ 4 (any nontrivial radical subgroup of Sp6(2) fixes an isotropic subgroup
of rank ≤ 3 by Proposition 6.4), and thus P /∈ R≥2(L ; 2) by Proposition 4.6(b).

• NL(E) ≤ H8 = N(2C2) ∼= Σ4 × 2F4(2). The radical 2-subgroups of 2F4(2) have
centers of rank one or two (see [W3] or [P1]), and hence E /∈ E≥2(L ; 2) and
P /∈ R≥2(L ; 2).

L = F1: By [Gr1, Theorem 3], or by [GMS, Theorem 5.10], Out(L) = 1. By [MS],
every 2-local subgroup of L is conjugate to a subgroup of one of seven subgroups
Hn (n = 1, . . . , 7) described here. In the case of four of these subgroups, H3 =
N(2B) ∼= 21+24.Co1, H4

∼= 22+11+22.(M24 × Σ3), H5
∼= 23+6+12+18.(L3(2) × 3Σ6),

and H6
∼= 25+10+20.(L5(2)×Σ3), NL(E) � Hn by (1) or (2). It remains to consider

the other three cases.

• NL(E) ≤ H1 = N(2A) ∼= 2·F2, E ≥ V1
∼= 2. By Proposition 4.9(b), P/V1 ∈

R≥2(F2 ; 2), and we have already shown that this last set is empty.

• NL(E) ≤ H2 = N(2A2) ∼= 22·2E6(2):Σ3, V2
∼= 22. We can assume that E ≥ V2,

since otherwise NL(E) is contained in the centralizer of V2 ∩ E = 〈x〉 for some
x ∈ 2A (and is thus conjugate to a subgroup of H1). Then (P/V2) ∩ 2E6(2) is a
radical 2-subgroup of 2E6(2). By the same reasoning as that used for the subgroup
H6 ≤ F2, we are reduced to the case whereNL(E) ≤ NL(P0) for a certain maximal
parabolic subgroup NH2(P0)/V2 of 2E6(2):Σ3, NL(P0) is conjugate to H7 (by the
construction in [A3, pp.218–219] again), and we are reduced to considering that
case.

• NL(E) ≤ H7
∼= 210+16.Ω+

10(2), E ≤ V7
∼= 210. Then P ≥ O2(H7), and

P/O2(H7) is a radical 2-subgroup of H7/O2(H7) ∼= Ω+
10(2). By the description in
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[A3, pp.218–219], H7/O2(H7) ∼= Ω+
10(2) acts on V7 in the canonical way, preserv-

ing a quadratic form q. If P = O2(H7), then E = V7 and AutL(E) ∼= Ω+
10(2), and

this contradicts Proposition 6.5. Otherwise, P/O2(H7) is a nontrivial radical sub-
group of H7/O2(H7), and by Proposition 6.4, E = CV7(P ) is a totally isotropic
subgroup of V7 with respect to q and AutL(E) = Aut(E). But this contradicts
Proposition 4.7(a).

This finishes the proof of Theorem 9.1. �



CHAPTER 10

Computations of lim1(ZG)

In this chapter, we summarize what we know about the groups lim←−
1(YΓ

eL
), with

indications of the proof in some cases. In all cases, lim←−
0(YΓ

eL
) = 0 by Glauberman’s

Z∗-theorem [Gl]. Using this, the following proposition follows by essentially the
same argument as that used to prove Proposition 4.2.

Proposition 10.1. Fix a finite simple group L and S ∈ Syl2(L). Assume Q ≤
S is 2-centric in L and weakly closed in S with respect to Aut(L), and that it has the
property that R≥2(L ; p)�Q = ∅, and that no subgroup in R1(L ; p)�Q is contained

in any other subgroup in this set. Let L̃ be a quasisimple group such that Z(L̃)
is a 2-group and L̃/Z(L̃) ∼= L, and let Γ ≤ Aut(L̃) be a subgroup which contains
Inn(L̃) ∼= L. Then for any set P1, . . . , Pk of Γ-conjugacy class representatives for
subgroups in R1(L ; p)�Q,

lim←−
1(YΓ

eL
) ∼= Ker

[ k⊕
i=1

Λ1(NΓ(Pi), NL(Pi);YΓ
eL
(Pi)) −−−� H0(NΓ(Q);YΓ

eL
(Q))

]
for some surjection between these two groups.

When L ∼= An, then

lim←−
1

O2(Γ)

(YΓ
eL
) ∼=

{
Z/2 if L̃ ∼= An, Γ ≤ Σn, n ≡ 2, 3 (mod 4)
0 otherwise;

When Γ ≤ Σn, this is shown via an easy modification of the proof of Theorem
5.1. (The case L = A6

∼= PSL2(9) and Γ � Σ6 must be handled separately.)
Recall that we write E2k ≤ Σn for the elementary abelian group 2k acting with
one free orbit, and that Q ≤ An denotes the product of [n/4] copies of E4. Then
R1(An ; 2)�Q is empty if n ≡ 0, 1 (mod 4); and contains the conjugacy class of the

group An∩
(
S′×E×3

2

)
for some S′ ∈ Syl2(Σn−6) if n ≡ 2, 3 (mod 4). So An ∈ L1(2)

in the first case by Proposition 4.2, and one gets the above computations using
Proposition 10.1 in the second case.

Note, however, that lim←−
1(ZΣn

) = 0 for all n, even in the cases when lim←−
1(YΣn

An
) ∼=

Z/2. This follows from the observation that lim←−
0(ZΣn/Y

Σn

An
) ∼= Z/2 when n ≡ 2, 3

(mod 4).

When L is of Lie type in characteristic two, then by Theorem 6.2, L ∈ L1(2)
except when L = L3(2) ∼= L2(7). When L is of Lie type in odd characteristic, and
not isomorphic to E7(q) or E8(q), then L ∈ L1(2) except for the following cases:

98
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• lim←−
1(YΓ

L) ∼= Z/2 if L ∼= PSL2(q) ∼= Ω3(q), q ≡ ±1 (mod 8), Γ ≤ Autfg(L)

• lim←−
1(YΓ

L) ∼= Z/2 if L ∼= PSL4(q), q ≡ 3 (mod 4), Γ ≤ Autfg(L)

• lim←−
1(YΓ

L) ∼= Z/2 if L ∼= PSU4(q), q ≡ 1 (mod 4), Γ ≤ Autfg(L)

• lim←−
1(YΓ

L) ∼= Z/2 if L ∼= Ωns
2n(q), n ≥ 3, Γ ≤ Autfg(L).

Here, Autfg(L) denotes the group generated by inner, field, and graph automor-
phisms of L. Also, Ωns

2n(q) = Ω(F2n
q , q) where q is a quadratic form with nonsquare

discriminant. The case L = PSL2(q) is shown using Proposition 1.6 (or an easy
modification of the proposition and its proof). In all other cases, there is a weakly
closed subgroup Q such that R1(L ; 2)�Q contains at most one conjugacy class, or
in certain cases two L-conjugacy classes which are Aut(L)-conjugate. The results
then follow from Propositions 4.2 and 10.1.

The sporadic groups all lie in L1(2), with the possible exception of the baby
monster and the monster. This is shown, either by modifying and extending the
arguments used in Chapter 9, or by using lists of radical 2-subgroups of these groups
such as those published by Yoshiara [Y1] [Y2] and by An & O’Brien [AO].
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