
EXTENSIONS OF LINKING SYSTEMS AND FUSION SYSTEMS

BOB OLIVER

Abstract. We correct two errors in the statement and proof of a theorem in [BCGLO2],
and at the same time extend that result to a more general theorem about extensions of
p-local finite groups. Other special cases of this theorem have already been shown in two
later papers, so we feel it will be useful to have this more general result in the literature.

This paper has two purposes: to correct some errors in the statement and proof of a
theorem in the earlier paper [BCGLO2], and also to prove a more general version of this
theorem, describing (very roughly) how to construct extensions of fusion and linking systems
by groups of outer automorphisms. Special cases of this construction have been used in at
least two papers written since [BCGLO2].

When G is a finite group and S ∈ Sylp(G), the fusion category of G is the category FS(G)
whose objects consist of all subgroups of S, and where

MorFS(G)(P,Q) = HomG(P,Q)
def
= {cg ∈ Hom(P,Q) | g ∈ G, gPg−1 ≤ Q} .

This gives a means of encoding the p-local structure of G: the conjugacy relations among
the p-subgroups of G. The centric linking category of G is a closely related category which
(among other things) provides a link between the fusion in G and the homotopy type of
its p-completed classifying space. These categories motivated the definition by Puig [Pg] of
abstract fusion systems, and by Broto, Levi, and Oliver [BLO] of abstract linking systems.

The main theorem in this note (Theorem 9) describes how to construct certain types of
extensions of abstract fusion and linking systems. The special case shown in [BCGLO2,
Theorem 4.6] shows how to extend a linking system by a p-group of outer automorphisms.
Other special cases were used by Castellana and Libman [CL] to construct wreath products
of linking systems, and by Andersen, Oliver, and Ventura [AOV] to construct exotic fusion
and linking systems under certain hypotheses. Since all three of these constructions have
very similar proofs, it should be useful to have one reference which covers all of these cases,
and hopefully any others which might be needed in the future.

There was an omission in the statement of [BCGLO2, Theorem 4.6], in that the group S
must be assumed to act on L0 via isotypical automorphisms (Definition 5). Without this
assumption, it need not induce an action on the fusion system F0. The error in the proof of
the theorem occurs in Step 4. In that step, a certain property of subgroups not in a family
H was proven using a result shown in Step 3 — a result shown there only for subgroups
which are in the family H.

In most cases, our main interest is to construct extensions of fusion systems. However,
when trying to do this, one quickly discovers that a fusion system alone does not contain
enough information to construct extensions, at least not in a straightforward way. This is
why the results in [BCGLO2], [CL], and [AOV] are all stated in terms of linking systems.
Furthermore, the extensions L0 E L of linking systems which we construct are such that

2000 Mathematics Subject Classification. Primary 55R35. Secondary 20D20, 20E22.
Key words and phrases. Classifying spaces, Sylow subgroups, fusion, extensions.
B. Oliver is partially supported by UMR 7539 of the CNRS.

1



2 BOB OLIVER

the geometric realization |L0| has the homotopy type of a finite covering space of |L| —
with covering group the group of outer automorphisms by which we extended. This is not
in general the case for extensions of the fusion systems.

We now recall the definitions of abstract fusion and linking systems, and their basic
properties which will be needed later.

An abstract fusion system over a finite p-group S is a category F such that Ob(F) is the
set of all subgroups of S, and such that for all P,Q ≤ S,

• HomS(P,Q) ⊆ HomF(P,Q) ⊆ Inj(P,Q); and

• each ϕ ∈ HomF(P,Q) is the composite of an F -isomorphism followed by an inclusion.

Some additional conditions are needed to make this very useful.

Definition 1 ([Pg], [BLO]). Let F be a fusion system over a p-group S.

• Two subgroups P,Q ≤ S are F -conjugate if they are isomorphic as objects of the category
F .

• A subgroup P ≤ S is fully centralized in F if |CS(P )| ≥ |CS(P
′)| for all P ′ ≤ S which

is F-conjugate to P .

• A subgroup P ≤ S is fully normalized in F if |NS(P )| ≥ |NS(P
′)| for all P ′ ≤ S which

is F-conjugate to P .

• F is saturated if the following two conditions hold:
(I) For all P ≤ S which is fully normalized in F , P is fully centralized in F and

AutS(P ) ∈ Sylp(AutF(P )).

(II) For all P ≤ S and ϕ ∈ HomF(P, S) such that ϕP is fully centralized, if we set

Nϕ = {g ∈ NS(P ) |ϕcgϕ
−1 ∈ AutS(ϕP )},

then there is ϕ ∈ HomF(Nϕ, S) such that ϕ|P = ϕ.

More generally, when H is a set of subgroups of S closed under F-conjugacy, F is H-
saturated if axioms (I) and (II) hold for all P ∈ H.

The main objects of interest here are the saturated fusion systems. For example, FS(G)
is saturated for any finite group G and any S ∈ Sylp(G). Axioms (I) and (II) follow mostly
as consequences of the Sylow theorems (cf. [BLO, Proposition 1.3]).

We will need to refer frequently to the following classes of subgroups in a fusion system.

Definition 2. Let F be a fusion system over a p-group S.

• A subgroup P ≤ S is F -centric if it is fully centralized and CS(P ) = Z(P );

• P ≤ S is F -radical if Op(AutF (P )) = Inn(P ); and

• P ≤ S is F -quasicentric if for each P ′ ≤ S which is fully centralized and F-conjugate
to P , each P ′ ≤ Q ≤ P ′·CS(P

′), and each α ∈ AutF(Q) such that α|P ′ = Id, α has
p-power order.

We now turn to abstract linking systems. As explained above, they seem to be the most
natural structures for describing extensions of the type which we are looking at in this paper.
For any finite group G, let T (G) denote the transporter category of G: the category with
Ob(T (G)) the set of all subgroups of G, and where for each P,Q ≤ G,

MorT (G)(P,Q) = NG(P,Q)
def
= {g ∈ G | gPg−1 ≤ Q}
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(the transporter set). When H is a set of subgroups of G, then TH(G) ⊆ T (G) denotes the
full subcategory with object set H.

Definition 3 ([BLO, Definition 1.7] & [BCGLO1, Definition 3.3]). Let F be a fusion system
over a p-group S. A linking system associated to F is a finite category L, together with a
pair of functors

TOb(L)(S)
δ

−−−−−−→ L
π

−−−−−−→ F ,

satisfying the following conditions:

(A) Ob(L) is a set of subgroups of S closed under F-conjugacy and overgroups, and includes
all subgroups which are F-centric and F-radical. Each object in L is isomorphic (in
L) to one which is fully centralized in F . Also, δ is the identity on objects, and π is
the inclusion on objects. For each P,Q ∈ Ob(L) such that P is fully centralized in F ,
CS(P ) acts freely on MorL(P,Q) via δP,P and right composition, and πP,Q induces a
bijection

MorL(P,Q)/CS(P )
∼=

−−−−−−→ HomF (P,Q) .

(B) For each P,Q ∈ Ob(L) and each g ∈ NS(P,Q), πP,Q sends δP,Q(g) ∈ MorL(P,Q) to
cg ∈ HomF (P,Q).

(C) For all ϕ ∈ MorL(P,Q) and all g ∈ P , the diagram

P
ϕ

//

δP,P (g)

��

Q

δQ,Q(π(ϕ)(g))

��

P
ϕ

// Q

commutes in L.

The main differences between this definition and those in [BLO] and [BCGLO1] are that
it is more flexible on the set of objects in L, and that we define here δ as a functor on the
transporter category of S. That δ can be defined on TOb(L)(S) follows as a consequence of the
earlier definitions (see [BLO, Proposition 1.11] and [BCGLO1, Lemma 3.7]), and including
it in the definition allows us to drop axiom (D)q in [BCGLO1, Definition 3.3]. We will see
shortly (in Proposition 4(g)) that all objects in a linking system L must be quasicentric.

The condition that L be closed under overgroups could perhaps be dropped. But it
simplifies the proof of Proposition 4 below, and is needed in any case in the hypotheses of
the main theorem. Also, it is difficult to imagine a situation where we might need a linking
system which is not closed under overgroups.

The reason for assuming L contains all subgroups which are F -centric and F -radical orig-
inates with [BCGLO1, Theorem 3.5], which says that if L′ ⊆ L are two linking systems
associated to the same fusion system, such that Ob(L′) contains all F -centric F -radical sub-
groups and Ob(L) is contained in the set of all F -quasicentric subgroups, then the geometric
realizations of these two categories are homotopy equivalent. In other words, this seems to
be the minimal set of objects needed to get the information which one needs from a linking
system. But as we will see shortly, this also plays an important role in the proof of Theorem
9 below.

In general, when L is a linking system over S, and P ≤ Q are both objects in L, we define
ιQP = δP,Q(1), where δ : TOb(L)(S) −−−→ L is the functor in the definition of L. We regard
these morphisms as the inclusion morphisms in L.

Proposition 4. The following hold for any linking system L associated to a saturated fusion
system F over a p-group S.
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(a) For each P,Q ∈ Ob(L), the subgroup E(P )
def
= Ker[AutL(P ) −−−→ AutF(P )] acts freely

on MorL(P,Q) via right composition, and πP,Q induces a bijection

MorL(P,Q)/E(P )
∼=

−−−−−−→ HomF(P,Q) .

(b) For every morphism ψ ∈ MorL(P,Q), and every P0, Q0 ∈ Ob(L) such that P0 ≤ P ,
Q0 ≤ Q, and π(ψ)(P0) ≤ Q0, there is a unique morphism ψ|P0,Q0 ∈ MorL(P0, Q0) (the
“restriction” of ψ) such that ψ ◦ ιP0,P = ιQ0,Q ◦ ψ|P0,Q0.

(c) The functor δ is injective on all morphism sets.

(d) If P ∈ Ob(L) is fully normalized in F , then δP (NS(P )) ∈ Sylp(AutL(P )).

(e) Let P,Q, P ,Q ∈ Ob(L) and ψ ∈ MorL(P,Q) be such that P E P , Q ≤ Q, and for each

g ∈ P there is h ∈ Q such that ψ ◦ δP (g) = δQ,Q∗(h) ◦ ψ (Q∗ = hQh−1). Then there is a

unique morphism ψ ∈ MorL(P ,Q) such that ψ|P,Q = ψ.

(f) All morphisms in L are monomorphisms and epimorphisms in the categorical sense.

(g) All objects in L are F-quasicentric. In other words, if P ∈ Ob(L) is fully centralized in
F , and P ≤ Q ≤ PCS(P ), then each automorphism α ∈ AutF(Q) such that α|P = IdP
has p-power order.

Proof. (a) Fix P,Q ∈ Ob(L). By axiom (A), there is a subgroup P ∗ ∈ Ob(L) fully
centralized in F and an isomorphism α ∈ IsoL(P

∗, P ). Set β = π(α) ∈ IsoF(P
∗, P ), and

consider the following commutative squares:

AutL(P )
Φ=c−1

α

∼=
//

πP

��

AutL(P
∗)

πP∗

��

AutF(P )
c−1
β

∼=
// AutF(P

∗)

and

MorL(P,Q)
Ψ=(−◦α)

∼=
//

πP,Q

��

MorL(P
∗, Q)

πP∗,Q

��

HomF(P,Q)
−◦β

∼=
// HomF(P

∗, Q) .

By the commutativity of the first square, Φ sends E(P ) = Ker(πP,P ) onto E(P
∗) = Ker(πP ∗,P ∗).

By (A), E(P ∗) acts freely on MorL(P
∗, Q), and πP ∗,Q is the orbit map of this action. Since

Ψ(ψ ◦ χ) = Ψ(ψ) ◦ Φ(χ) for ψ ∈ MorL(P,Q) and χ ∈ AutL(P ), it follows that E(P ) acts
freely on MorL(P,Q) and πP,Q is the orbit map of that action.

(b) Fix ψ ∈ MorL(P,Q), and P0 ≤ P , Q0 ≤ Q as above, and set ϕ = π(ψ)|P0,Q0 ∈
HomF(P0, Q0). Let ψ1 ∈ MorL(P0, Q0) be any morphism such that π(ψ1) = ϕ. Then

π(ιQQ0
◦ψ1) = π(ψ ◦ ιPP0

), so by (a), there is χ ∈ E(P0) such that ιQQ0
◦ψ1 ◦ χ = ψ ◦ ιPP0

. We can
thus take ψ|P0,Q0 = ψ1 ◦ χ.

Now assume ψ0 and ψ′
0 are two such restrictions; thus ιQQ0

◦ ψ0 = ιQQ0
◦ ψ′

0. By (a) again,
there is χ ∈ E(P0) such that ψ′

0 = ψ0 ◦ χ. But then χ = IdP0 since E(P0) acts freely on
MorL(P0, Q), and thus ψ0 = ψ′

0.

(c) For any pair of objects P and Q, π ◦ δP,Q sends NS(P,Q) = MorT (S)(P,Q) onto
HomS(P,Q) ∼= NS(P,Q)/CS(P ). By (a), E(P ) acts freely on π−1(HomS(P,Q)). Hence
δP,Q is injective if δP sends CS(P ) injectively into E(P ). By (A), this is the case whenever
P is fully centralized in F .

If P is not fully centralized, then choose P ∗ which is fully centralized, and ϕ ∈ IsoF(P, P
∗).

By the extension axiom (II), there is ϕ ∈ HomF(CS(P )·P, S) such that ϕ|P = ϕ. Set
R = Im(ϕ); thus R ≤ CS(P

∗)·P ∗. Choose ψ ∈ IsoL(CS(P )·P,R) such that π(ψ) = ϕ, and
set ψ0 = ψ|P,P ∗.
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By axiom (C), for each g ∈ CS(P ), ψ ◦ δNS(P )·P (g) ◦ ψ−1 = δR(ϕ(g)). Upon restricting

to P and P ∗, this implies ψ0 ◦ δP (g) ◦ ψ−1
0 = δP ∗(ϕ(g)). If g 6= 1, then ϕ(g) 6= 1, and

hence δP ∗(ϕ(g)) 6= Id since P ∗ is fully centralized. Since ψ0 is an isomorphism, this implies
δP (g) 6= Id, and thus that δP is injective on CS(P ).

(d) If P ∈ Ob(L) is fully normalized in F , then AutS(P ) ∈ Sylp(AutF(P )),

AutF(P ) ∼= AutL(P )/δP (CS(P )) and AutS(P ) ∼= NS(P )/CS(P ),

and hence δP (NS(P )) ∈ Sylp(AutL(P )).

(e) Set ϕ = π(ψ), Q0 = ϕ(P ), ψ0 = ψ|P,Q0 ∈ IsoL(P,Q0), and Q0 = N
Q
(Q0). If g ∈ P and

h ∈ Q are such that ψ ◦ δP (g) = δQ,Q∗(h) ◦ ψ (where Q∗ = hQh−1), then for each x ∈ P ,

ϕ(gxg−1) = hϕ(x)h−1 ∈ Q0, and thus h ∈ Q0. Also,

ψ0 ◦ δP (g) =
(
ψ ◦ δP (g)

)
|P,Q0 =

(
δQ,Q∗(h) ◦ ψ

)
|P,Q0 = δQ0(h) ◦ ψ0

by the uniqueness of restrictions in (b). We are thus reduced to proving this point when ψ

is an isomorphism and Q E Q.

Now assume ψ ∈ IsoL(P,Q); thus ψ ◦ δP (P ) ◦ ψ−1 ≤ δQ(Q). If Q is fully centralized in
F , then axiom (II) for the saturated fusion system F implies that ϕ = π(ψ) extends to

a homomorphism ϕ ∈ HomF(P , S). Choose ψ̂ ∈ MorL(P, S) such that π(ψ̂) = ϕ. Then

π(ψ̂|P,Q) = π(ψ). Since Q is fully centralized, there is g ∈ CS(Q) such that ψ = δQ(g) ◦ ψ̂|P,Q
by axiom (A) (applied to δQ,P and the morphisms ψ−1 and (ψ̂|P,Q)

−1). Set ψ = δS(g)◦ψ̂; then

ψ|P,Q = ψ. Also, π(ψ)(P ) ≤ Q by (C) and the original assumption on ψ, and so ψ restricts to

a morphism in MorL(P,Q) by (b). Note that this is an isomorphism if ψ◦δP (P )◦ψ
−1 = δQ(Q).

Now assume Q is not fully centralized. Choose R which is F -conjugate to P and Q and

fully normalized in F . Fix an isomorphism ϕ ∈ IsoL(Q,R). Then ϕδQ(Q)ϕ
−1 is a p-subgroup

of AutL(R), so by (d), there is χ ∈ AutL(R) such that (χϕ)δQ(Q)(χϕ)
−1 = δR(R) for some

R ≤ NS(R). We just showed that χϕ and χϕψ extend to morphisms ϕ ∈ IsoL(Q,R) and

ψ ∈ MorL(P,R), and so ϕ−1
◦ ψ ∈ MorL(P,Q) extends ψ. This proves (e), except for the

uniqueness which will follow from (f).

(f) We claim that L is a transporter system in the sense of [OV1, Definition 3.1]. Once this
has been shown, then (f) follows from [OV1, Lemma 3.2(b,d)].

Points (A1) and (C) in [OV1, Definition 3.1] hold for L by definition, while (II) holds by

(e) (it requires only the existence of ψ and not uniqueness), and (I) by (d). Point (B) holds
by axiom (B) here, together with the injectivity of δ shown in (c).

Point (A2) holds by (a), except for showing that for all P,Q ∈ Ob(L), E(Q) acts freely on
MorL(P,Q) by left composition. Since this property depends only on the isomorphism class of
Q in L, it suffices to prove it when Q is fully centralized, and hence when E(Q) = δQ(CS(Q)).

To see this, fix ψ ∈ MorL(P,Q) and g ∈ CS(Q) such that δQ(g)◦ψ = ψ. Set Q0 = π(ψ)(P )

and ψ0 = ψ|P,Q0. Thus ψ = ιQQ0
◦ ψ0 where ψ0 is an isomorphism, so δQ(g) ◦ ιQQ0

= ιQQ0
. In

other words, δQ0,Q(g) = δQ0,Q(1), and so g = 1 since δQ0,Q is injective by (c).

(g) Fix P ∈ Ob(L); we claim P is F -quasicentric. It suffices to show this when P is
fully centralized. If P is not F -quasicentric, then by definition, there is some Q and some
Id 6= α ∈ AutF(Q) such that P ≤ Q ≤ PCS(P ), α|P = IdP , and α has order prime to
p. Assume this is the case, and choose ψ ∈ AutL(Q) such that π(ψ) = α. We can assume
ψ also has order prime to p; otherwise replace it by ψk for some appropriate k. Then
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π(ψ|P,P ) = IdP , so ψ|P,P = δ(g) for some g ∈ CS(P ) by axiom (A). Thus ψ|P,P has p-power

order and order prime to p, so ψ|P,P = Id in AutL(P ). But this means that ψ ◦ ιQP = IdQ ◦ ιQP ,

so ψ = Id since ιQP is an epimorphism by (f). Hence α = IdQ, which contradicts the original
assumption on α. �

Since we want to construct extensions of fusion and linking systems, we must say what
we mean by automorphisms of linking systems and by normal linking subsystems. We first
look at automorphisms.

Definition 5. For any linking system L, an automorphism of categories α : L
∼=

−−−→ L is
isotypical if for each P ∈ Ob(L), α(δP (P )) = δα(P )(α(P )). Let AutItyp(L) be the group of
isotypical automorphisms of L which send inclusions to inclusions.

Let F : L −−−→ Grp be the functor π : L −−−→ F followed by the forgetful functor from
F to groups. An automorphism α of a linking system L is isotypical if and only if there is
a natural isomorphism of functors F ◦ α ∼= F . This was shown for centric linking systems in
[BLO, Lemma 8.2], and the same proof applies in this more general setting.

The next proposition shows that each α ∈ AutItyp(L) induces an automorphism of F in a
natural way.

Proposition 6. Let L be a linking system associated to a fusion system F over a p-group S,

with structure functors TOb(L)(S)
δ

−−−→ L
π

−−−→ F . Fix α ∈ AutItyp(L). Let β ∈ Aut(S) be
such that α(δS(g)) = δS(β(g)) for all g ∈ S. Then β is “fusion preserving” in the following
sense: there is an automorphism α̂ of the category F which sends P ≤ S to β(P ) and sends
ϕ ∈ HomF(P,Q) to βϕβ

−1 ∈ HomF(β(P ), β(Q)). Furthermore, π ◦ α = α̂ ◦ π.

Proof. Clearly, α(S) = S, and hence α sends δS(S) to itself. Thus β is well defined. Since
α sends inclusions to inclusions, it commutes with restrictions. So for P ∈ Ob(L), since
αP sends δP (P ) to δα(P )(α(P )), αS sends δS(P ) to δS(α(P )), and thus α(P ) = β(P ) since
δS is a monomorphism (Proposition 4(c)). Furthermore, for each g ∈ P , α sends δP (g) to
δβ(P )(β(g)).

Now fix P,Q ∈ Ob(L) and ψ ∈ MorL(P,Q), and set ϕ = π(ψ) ∈ HomF(P,Q). For each
g ∈ P , α sends

P
ψ

//

δP (g)

��

Q

δQ(ϕ(g))

��

P
ψ

// Q

to

β(P )
α(ψ)

//

δβ(P )(β(g))

��

β(Q)

δβ(Q)(β(ϕ(g)))

��

β(P )
α(ψ)

// β(Q)

.

By axiom (C) in Definition 3, these squares commute, and also (since morphisms in L are
epimorphisms) β(ϕ(g)) = π(α(ψ))(β(g)). Thus

π(α(ψ)) = βπ(ψ)β−1. (1)

In particular, βϕβ−1 ∈ HomF(β(P ), β(Q)) for each P,Q ∈ Ob(L) and ϕ ∈ HomF(P,Q).
Since Ob(L) includes all subgroups which are F -centric and F -radical, all morphisms in F
are composites of restrictions of morphisms between objects of L (cf. [BLO, Theorem A.10]).
Hence there is a well defined functor α̂ from F to itself which sends each P ≤ S to β(P )
and sends each ϕ ∈ HomF(P,Q) to βϕβ

−1. This is an automorphism of the category F by
the same argument applied to α−1. By (1), π ◦ α = α̂ ◦ π. �
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The following definition of a normal fusion subsystem is the most convenient for our
purposes. When F is a fusion system over S and S0 E S, then S0 is strongly closed if no
element of S0 is F -conjugate to any element of SrS0.

Definition 7. Let F be a saturated fusion system over a p-group S, and let F0 ⊆ F be
a subcategory which is a saturated fusion subsystem over a subgroup S0 ≤ S. Then F0 is
normal in F (F0 E F) if

(i) S0 is strongly closed in F ;

(ii) for all P,Q ≤ S0 and ϕ ∈ HomF(P,Q), there are morphisms α ∈ AutF(S0) and
ϕ0 ∈ HomF0(α(P ), Q) such that ϕ = ϕ0 ◦ α|P,α(P ); and

(iii) for each P,Q ≤ S0, each ϕ ∈ HomF0(P,Q), and each β ∈ AutF(S0), βϕβ
−1 ∈

HomF0(β(P ), β(Q)).

This is equivalent to Puig’s definition of a normal subsystem [Pg, § 6.4]. It is also equivalent
to Aschbacher’s definition [Asch, § 3] of an F -invariant subsystem, except that he does not
require the subsystem to be saturated. See [Asch, Theorem 3.3] for a proof of the equivalence
of these definitions.

For example, when G0 E G are finite groups, S ∈ Sylp(G), and S0 = S ∩ G0 ∈ Sylp(G0),
then FS0(G0) is a normal subsystem of FS(G) under the above definition. The first and last
conditions clearly hold, and (ii) holds by the Frattini argument: G = G0·NG(S0), since any
subgroup G-conjugate to S0 is also G0-conjugate.

There is now an obvious analogous definition of a normal linking subsystem.

Definition 8. Fix a pair of saturated fusion systems F0 E F over p-groups S0 E S such
that F0 is normal in F , and let L0 ⊆ L be associated linking systems. Then L0 is normal
in L (L0 E L) if

(i) Ob(L) = {P ≤ S |P ∩ S0 ∈ Ob(L0)};

(ii) for all P,Q ∈ Ob(L0) and ψ ∈ MorL(P,Q), there are morphisms γ ∈ AutL(S0) and
ψ0 ∈ MorL0(γ(P ), Q) such that ψ = ψ0 ◦ γ|P,γ(P ); and

(iii) for all γ ∈ AutL(S0), P,Q ∈ Ob(L0), and ψ ∈ MorL0(P,Q), γ|Q,γ(Q) ◦ ψ ◦ γ|−1
P,γ(P ) is in

MorL0(γ(P ), γ(Q)).

Here, in (ii) and (iii), we write γ(P ) = π(γ)(P ) and γ(Q) = π(γ)(Q) for short.

In fact, condition (ii) in Definition 8 follows from other conditions in that definition,
together with condition (ii) in Definition 7. But we include it here anyway to make the
analogy between the two definitions clearer.

Whenever L0 E L is a pair of linking systems over p-groups S0 E S, then the geometric
realization |L0| has the homotopy type of a covering space over |L| with covering group the
quotient AutL(S0)/AutL0(S0). We don’t prove this here since it isn’t used, but it follows by
essentially the same proof as that of [BCGLO2, Theorem 3.9] or [OV1, Proposition 4.1(d)].

We are now ready to describe the procedure for constructing extensions of linking systems.
To help motivate the hypotheses, we first describe an analogous construction with groups.
Assume we are given three groups H0, H , and G0, where H0 ≤ G0 and H0 E H , together
with an action τ of H on G0 which leaves H0 invariant. Regard τ as a homomorphism
from H to Aut(G0:H0), where Aut(G0:H0) is the group of automorphisms of G0 which
leave H0 invariant. We want to construct a group G = G0H , where G0 E G, and where the
conjugation action ofH onG0 is that defined by τ . The obvious way to do this is to start with
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the semidirect product G0⋊H defined by τ , and then set G = (G0⋊H)/{(g, g−1) | g ∈ H0}.
In order to do this, the set {(g, g−1)} must be a normal subgroup, and one quickly discovers
that the necessary and sufficient condition for this to be the case is for the following diagram
to commute:

H0

conj
//

incl
��

Aut(G0:H0)

restr.
��

H
conj

//

τ
88
q
q
q
q
q
q
q
q
q
q
q
q

Aut(H0) .

The hypotheses in Theorem 9 are similar, except that G0 E G are replaced by a pair of
linking systems L0 E L.

The following theorem generalizes [BCGLO2, Theorem 4.6], and also generalizes a related
result in [CL]. Recall that by definition, the set of objects in a linking system L associated
to a fusion system F over S is closed under F -conjugacy and overgroups, and must contain
among its objects all subgroups which are F -centric and F -radical. By the conjugation
action of ψ ∈ AutL(S) on L is meant the action which sends P ≤ S to π(ψ)(P ), and which
sends α ∈ Mor(L) to ψαψ−1 (after replacing each ψ by the appropriate restriction).

Theorem 9. Fix a saturated fusion system F0 over a finite p-group S0, and let L0 be a linking
system associated to F0. Set H0 = Ob(L0), and assume it is closed under overgroups. Set
Γ0 = AutL0(S0), and regard S0 as a subgroup of Γ0 via the inclusion of TH0(S0) into L0. Thus
S0 = Op(Γ0), since Γ0/S0 has order prime to p by Proposition 4(d). Fix a finite group Γ
such that Γ0 E Γ, and a homomorphism τ : Γ −−−−−→ AutItyp(L0) which makes both triangles
in the following diagram commute:

AutL0(S0) =Γ0

conj
//

incl
(1a)

��

AutItyp(L0)

(α7→αS0
)

(1b)
��

Γ
conj

//

τ

99
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

Aut(Γ0) ,

(1)

Let F1 be the smallest fusion system over S0 (not necessarily saturated) such that F1 ⊇
F0 and AutF1(S0) ≥ AutΓ(S0), where Γ acts on S0 = Op(Γ0) E Γ via conjugation. Fix
S ∈ Sylp(Γ). Then there is a saturated fusion system F over S which contains F1 as a full
subcategory, and such that F0 E F .

Assume, in addition, that

CΓ(S0) is a p-group; (2)

and also that

Γ/Γ0 is a p-group, or each P ∈ H0 is F0-centric, (3′)

or more generally

P ∈ H0, P ≤ Q ≤ P ·CS0(P ), α ∈ AutF1(Q), α|P = IdP =⇒ α has p-power order. (3)

Then F can be chosen so as to have an associated linking system L for which L0 E L,

Ob(L) = H
def
= {P ≤ S |P ∩ S0 ∈ H0} ,

and AutL(S0) = Γ with the given action on L0. If L′ is another linking system, associated
to a saturated fusion system F ′ over S, such that L0 E L′, F0 E F ′, Ob(L′) = H, and
AutL′(S0) = Γ with the given action on L0 and the given inclusion S ≤ Γ, then F ′ = F and
L′ ∼= L.
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Proof. The categories L and F will be constructed in Steps 1 and 2. We then show F is
H-saturated in Steps 3 and 4, and finish the proof that F is saturated in Step 5. Step 5 is
essentially a corrected version of Step 4 in the proof of [BCGLO2, Theorem 4.6]. We prove
(3′) implies (3) at the beginning of Step 6. Afterwards, we assume (2) and (3) throughout
the rest of the proof, show L is a linking system in Steps 6 and 7, and prove its uniqueness
in Step 8. The normality of F0 in F and of L0 in L are shown at the end of Steps 5 and 7,
respectively.

We first fix some notation. For all P ≤ S, we write P0 = P ∩ S0. Let

TH0(S0)
δ0−−−−−−→ L0

π0−−−−−−→ F0

be the structure functors for the linking system L0. For P ≤ Q, set ιQP = (δ0)P,Q(1). Recall
we regard S0 as a subgroup of Γ0 = AutL0(S0) via (δ0)S0.

For each γ ∈ Γ, let cγ ∈ Aut(S0) denote conjugation by γ on S0 = Op(Γ0) E Γ. By
the commutativity of (1b), this is the restriction to S0 of τ(γ)S0 ∈ Aut(Γ0). Hence by
Proposition 6, cγ is fusion preserving (induces an automorphism of the category F0), and
τ(γ)(P ) = cγ(P ) for all P ∈ H0. To simplify notation below, we write γ(P ) = τ(γ)(P ) to
denote this action of γ on H0.

For each γ0 ∈ Γ0 = AutL0(S0), γ0 acts on the set Mor(L0) by composing on the left or
right with γ0 and its restrictions. Thus for any ϕ ∈ MorL0(P,Q), we set

γ0ϕ = γ0|Q,γ0(Q) ◦ ϕ ∈ MorL0(P, γ0(Q))

and

ϕγ0 = ϕ ◦ γ0|γ−1
0 (P ),P ∈ MorL0(γ

−1
0 (P ), Q).

Here, we write γ0(P ) = π(γ0)(P ) for short. This defines natural left and right actions of Γ0

on the set Mor(L0). By the commutativity of (1a), the conjugation action ψ 7→ γ0ψγ
−1
0 on

Mor(L0) is the restriction to Γ0 of τ ; in particular, γ0(P ) = τ(γ0)(P ) as in the last paragraph.

Step 1: We first define categories L1 ⊇ L0 and F1 ⊇ F0, where Ob(F1) = Ob(F0) and
Ob(L1) = H0. Set

Mor(L1) = Mor(L0)×Γ0 Γ =
(
Mor(L0)× Γ

)/
∼,

where (ϕ, γ) ∼ (ϕ′, γ′) if and only if there is γ0 ∈ Γ0 such that ϕ′ = ϕγ0 and γ′ = γ−1
0 γ.

Thus (ϕγ0, γ) ∼ (ϕ, γ0γ) for all ϕ ∈ Mor(L0), γ0 ∈ Γ0, and γ ∈ Γ. If ϕ ∈ MorL0(P,Q), then
[[ϕ, γ]] ∈ MorL1(γ

−1(P ), Q) denotes the equivalence class of the pair (ϕ, γ). Composition is
defined by

[[ψ, η]] ◦ [[ϕ, γ]] = [[ψ ◦ τ(η)(ϕ), ηγ]].

Here, τ(η)(ϕ) ∈ MorL0(η(P ), η(Q)) for ϕ ∈ MorL0(P,Q) (recall η(P ) = τ(η)(P ), etc.).

To show composition is well defined, we note that for all ψ, ϕ ∈ Mor(L0), η0, γ0 ∈ Γ0, and
η, γ ∈ Γ with appropriate domain and range,

[[ψη0, η]] ◦ [[ϕγ0, γ]] = [[ψη0 ◦ τ(η)(ϕγ0), ηγ]] = [[ψη0 ◦ τ(η)(ϕ), (ηγ0η
−1)ηγ]]

= [[ψη0 ◦ τ(η)(ϕ)η−1
0 , η0ηγ0γ]] = [[ψ ◦ τ(η0η)(ϕ), η0ηγ0γ]] = [[ψ, η0η]] ◦ [[ϕ, γ0γ]]

The second equality follows from the commutativity of (1b), and the fourth from that of
(1a).

We claim that

all morphisms in L1 are monomorphisms and epimorphisms. (4)
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For any [[ϕ, γ]], [[ϕ′, γ′]], and [[ψ, η]] with appropriate domain and range,

[[ψ, η]]◦[[ϕ, γ]] = [[ψ, η]] ◦ [[ϕ′, γ′]] =⇒ [[ψ ◦ τ(η)(ϕ), ηγ]] = [[ψ ◦ τ(η)(ϕ′), ηγ′]]

=⇒ ∃ γ0 ∈ Γ0, ηγ = γ−1
0 ηγ′ and ψ ◦ τ(η)(ϕ) = ψ ◦ τ(η)(ϕ′) ◦ γ0

=⇒ γ = (η−1γ0η)
−1γ′ and ϕ = ϕ′

◦ τ(η−1)(γ0)

since morphisms in L0 are monomorphisms (Proposition 4(f)). Also, τ(η−1)(γ0) = η−1γ0η
by the commutativity of (1b), so [[ϕ, γ]] = [[ϕ′, γ′]], and hence [[ψ, η]] is a monomorphism. The
proof that morphisms are epimorphisms is similar.

Set AutΓ(S0) = {cγ ∈ Aut(S0) | γ ∈ Γ}. Let F1 be the smallest fusion system over S0

which contains F0 and AutΓ(S0). Define

π1 : L1 −−−−−→ F1

by setting π1([[ϕ, γ]]) = π0(ϕ) ◦ cγ. To show this is a functor (that it preserves composition),
we must show the following square commutes

P
π0(ϕ)

//

cγ

��

Q

cγ

��

γ(P )
π0(τ(γ)(ϕ))

// γ(Q)

for each ϕ ∈ MorL0(P,Q) and each γ ∈ Γ; and this follows from the commutativity of (1b)
together with the last statement in Proposition 6 (applied with α = τ(γ) and β = cγ).
Since π1(L1) contains F0|H0 and AutΓ(S0), and is closed under restrictions of morphisms to
subgroups in H0 (Proposition 4(b)), π1 maps onto F1|H0.

We regard L0 as a subcategory of L1 by identifying ϕ ∈ MorL0(P,Q) with [[ϕ, 1]] ∈
MorL1(P,Q). By construction, π0 = π1|L0. For P ≤ Q in H0, the inclusion morphism

ιQP = (δ0)P,Q(1) for L0 is also considered as an inclusion morphism in L1. The existence
of restriction morphisms in L0 (Proposition 4(b)) carries over easily to the existence of
restriction morphisms in L1, and they are unique by (4).

For all P,Q ∈ H0, define

δP,Q : NS(P,Q) −−−−−−→ MorL1(P,Q)

by setting δP,Q(s) = [[ιQ
s(P ), s]]. When s ∈ S0, [[ι

Q

s(P ), s]] = [[(δ0)P,Q(s), 1]]; and thus δP,Q extends

the monomorphism (δ0)P,Q from NS0(P,Q) to MorL0(P,Q) defined for L0. To simplify the
notation, we write δ(x) = δP,Q(x) when P and Q are understood.

We claim that for all P,Q ∈ H0, ψ ∈ MorL1(P,Q), and x ∈ P ,

δ(π1(ψ)(x)) ◦ ψ = ψ ◦ δ(x).

Set ψ = [[ϕ, γ]], where γ ∈ Γ and ϕ ∈ MorL0(γ(P ), Q). Then

ψ ◦ δ(x) = [[ϕ, γ]] ◦ [[IdP , x]] = [[ϕ, γx]] = [[ϕ, cγ(x)γ]] = [[ϕ ◦ δ0(cγ(x)), γ]]

= [[δ0(π0(ϕ)(cγ(x))) ◦ ϕ, γ]] = [[δ0(π1(ψ)(x)) ◦ ϕ, γ]]

= [[δ0(π1(ψ)(x)), 1]] ◦ [[ϕ, γ]] = δ(π1(ψ)(x)) ◦ ψ ,

where the fifth equality holds by axiom (C) for the linking system L0.

We next show that morphisms in L1 have the following extension property:

∀P,Q ∈ H0, ψ ∈ IsoL1(P,Q), and P ,Q ≤ S0 for which P E P , Q E Q,

and ψδ(P )ψ−1 ≤ δ(Q), ∃!ψ ∈ MorL1(P,Q) such that ψ|P,Q = ψ.
(5)
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Set ψ = [[ϕ, γ]] where ϕ ∈ MorL0(γ(P ), Q). For all x ∈ P ,

[[ϕ, γ]] ◦ [[δ0(x), 1]] ◦ [[ϕ, γ]]
−1 = [[ϕ ◦ τ(γ)(δ0(x)) ◦ ϕ−1, 1]] = [[ϕ ◦ δ0(cγ(x)) ◦ ϕ−1, 1]] ∈ δ(Q) ,

where τ(γ)(δ0(x)) = δ0(cγ(x)) by the commutativity of (1b). Thus ϕδ0(γ(P ))ϕ
−1 ≤ δ0(Q),

so ϕ extends to ϕ ∈ MorL0(γ(P ), Q) by Proposition 4(e). Set ψ = [[ϕ, γ]]. Then ψ|P,Q = ψ

since τ(γ)(ιPP ) = ι
γ(P )
γ(P ) (τ(γ) sends inclusions to inclusions), and this proves (5).

Step 2: We next construct categories L and F2, both of which have object sets H, and
which contain L1 and the restriction of F1 to H0, respectively. Afterwards, we let F be the
fusion system over S generated by F2 and restrictions of morphisms.

Now let L be the category with Ob(L) = H, and where for all P,Q ∈ H,

MorL(P,Q) =
{
ψ ∈ MorL1(P0, Q0)

∣∣ ∀ x ∈ P ∃ y ∈ Q such that ψ ◦ δ(x) = δ(y) ◦ ψ
}
.

Let

δP,Q : NS(P,Q)
⊆NS(P0,Q0)

−−−−−−→ MorL(P,Q)
⊆MorL1

(P0,Q0)

be the restriction of δP0,Q0. Let F2 be the category with Ob(F2) = H, and where

MorF2(P,Q) =
{
ϕ ∈ Hom(P,Q)

∣∣ ∃ψ ∈ MorL1(P0, Q0) where ψ ◦ δ(x) = δ(ϕ(x)) ◦ ψ ∀x ∈ P
}
.

Define π : L −−−→ F2 to be the identity on objects, and to send ψ ∈ MorL(P,Q) to the
homomorphism π(ψ)(x) = y if ψ ◦ δ(x) = δ(y) ◦ ψ (uniquely defined by (4)). This is clearly
a functor: it is seen to preserve composition by juxtaposing the commutative squares which
define π on morphisms.

Let F be the fusion system over S generated by F2 and restriction of homomorphisms.
Since H = Ob(F2) is closed under overgroups, F2 is a full subcategory of F . Since L1 is
a full subcategory of L, HomF1(P,Q) = HomF2(P,Q) for all P,Q ∈ H0. If P,Q ≤ S0 are
any subgroups and ϕ ∈ HomF(P,Q), then ϕ is a composite of restrictions of morphisms
in F2, and hence (since P ∈ Ob(F2) = H implies P0 ∈ H0) a composite of restrictions of
morphisms in F2 (equivalently F1) between subgroups in H0. Thus ϕ ∈ HomF1(P,Q); and
we conclude that F1 is also a full subcategory of F .

Step 3: We next prove that

each P ∈ H is F -conjugate to some P ′ ∈ H such that δ(NS(P
′
0)) ∈ Sylp(AutL(P

′
0)). (6)

Let Pfn be the set of all S0-conjugacy classes [P ′
0] of subgroups P

′
0 ≤ S0 which are F0-

conjugate to P0 and fully normalized in F0. (If P
′
0 is fully normalized in F0, then so is every

subgroup in [P ′
0].) If γ ∈ Γ and Q0, Q

′
0 ∈ H0, then since γ acts on L0 and hence on F0 as

a group of automorphisms (Proposition 6), Q0 is F0-conjugate to Q′
0 if and only if γ(Q0) is

F0-conjugate to γ(Q′
0).

Let Γ′ ⊆ Γ be the subset of those γ ∈ Γ such that γ(P0) is F0-conjugate to P0. For
γ1, γ2 ∈ Γ′, γ1γ2(P0) is F0-conjugate to γ1(P0) since γ2(P0) is F0-conjugate to P0, and hence
γ1γ2 ∈ Γ′. Thus Γ′ is a subgroup of Γ. Since S0 E Γ, Q0 and Q

′
0 are S0-conjugate if and only

if γ(Q0) and γ(Q
′
0) are. Since each γ ∈ Γ acts on S0 via the fusion preserving automorphism

cγ ∈ Aut(S0) as shown above, γ permutes the subgroups fully normalized in S0. This proves
that Γ′ permutes the set Pfn.

Fix S∗ ∈ Sylp(Γ
′). Let η ∈ Γ be such that S ′ def

= ηS∗η−1 ≤ S. Since Pfn has order prime
to p by [BCGLO2, Proposition 1.16], there is some [P ∗

0 ] ∈ Pfn fixed by S∗. In other words,
for each γ ∈ S∗, γ(P ∗

0 ) is S0-conjugate to P ∗
0 . So for each s = ηγη−1 ∈ S ′ (where γ ∈ S∗),
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s(η(P ∗
0 )) is S0-conjugate to η(P

∗
0 ). Set Q0 = η(P ∗

0 ). Then each coset in S ′/S0 contains some
element s which normalizes Q0, and hence

|NS(Q0)| ≥ |NS0(Q0)|·|S
′/S0| = |NS0(P

∗
0 )|·|S

∗/S0| .

Since Γ′ is the subgroup of elements of Γ which send P0 to a subgroup in its F0-conjugacy
class,

|AutL(Q0)| = |AutL(P0)| = |AutL0(P0)|·|Γ
′/Γ0| = |AutL0(P

∗
0 )|·|Γ

′/Γ0| .

Since P ∗
0 is fully normalized in F0, S

∗ ∈ Sylp(Γ
′), and S0 ∈ Sylp(Γ0), this shows that

δ(NS(Q0)) is a Sylow p-subgroup of AutL(Q0).

Choose any ψ ∈ IsoL(P0, Q0). Then ψδ(NS(P0))ψ
−1 is a p-subgroup of AutL(Q0). Choose

χ ∈ AutL(Q0) such that (χψ)δ(NS(P0))(χψ)
−1 ≤ δ(NS(Q0)). By definition of the category

L, χψ extends to a morphism ψ ∈ MorL(P,NS(Q0)). Set P
′ = π(ψ)(P ). Then P ′

0 = Q0, P
′

is F -conjugate to P , and P ′ ∈ H since P ′
0 ∈ H0 (H0 is closed under F0-conjugacy). This

finishes the proof of (6).

Step 4: We are now ready to show that F is H-saturated. For each P ∈ H, set

E(P ) = Ker
[
AutL(P )

πP−−−−−→ AutF (P )
]
.

Fix P ∈ H such that δ(NS(P0)) ∈ Sylp(AutL(P0)). By (6), every subgroup in H is F -

conjugate to some such P . Write G = AutL(P0), T = δ(NS(P0)), and P̂ = δ(P ) for short,

where δ = δP0 is injective by construction. Thus P̂ ≤ T ∈ Sylp(G). Fix R ∈ Sylp(NG(P̂ )),
and choose α ∈ G such that αRα−1 ≤ T . Then

αRα−1 ∈ Sylp(NG(αP̂α
−1)) , αRα−1 ≤ T =⇒ αRα−1 = NT (αP̂α

−1) .

Also, αP̂α−1 ≤ αRα−1 ≤ T = δ(NS(P0)), and we choose P ′ = δ−1(αP̂α−1). Then

NT (αP̂α
−1) = Nδ(NS (P0))(δ(P

′)) = δ(NS(P
′)) ,

NG(αP̂α
−1) = NAutL(P0)(δ(P

′)) = AutL(P
′) .

We have thus found P ′ F -conjugate to P such that δ(NS(P
′)) ∈ Sylp(AutL(P

′)). This in
turn implies

AutS(P
′) ∈ Sylp(AutF(P

′)) and δ(CS(P
′)) ∈ Sylp(E(P

′)). (7)

Since F2 is a full subcategory of F , all F -morphisms between subgroups in H lift to
morphisms in L by definition of F2. Since P ′ ∈ H, |AutF(P

′)| and |E(P ′)| depend only on
the F -conjugacy class (= L-isomorphism class) of P ′. So by (7), the subgroup P ′ must be
fully normalized and fully centralized in F . If P ′′ ∈ H is any other subgroup F -conjugate
to P ′ and fully normalized, then since |NS(P

′′)| = |AutS(P
′′)|·|CS(P

′′)|, P ′′ must be fully
centralized and AutS(P

′′) ∈ Sylp(AutF (P
′′)). This finishes the proof of axiom (I) for the

fusion system F , and also shows that a subgroup P ∈ H is fully centralized if and only if
δP (CS(P )) ∈ Sylp(E(P )).

Now assume P ∈ H is fully centralized in F . Thus δ(CS(P )) ∈ Sylp(E(P )). Fix Q ∈ H
and ϕ ∈ IsoF(Q,P ), and set

N = Nϕ = {g ∈ NS(Q) |ϕcgϕ
−1 ∈ AutS(P )} .

Let ψ ∈ IsoL(Q,P ) be any morphism in π−1(ϕ). Then ψδQ(N)ψ−1 ≤ δP (NS(P ))·E(P ).
Since δP (CS(P )) ∈ Sylp(E(P )), ψδQ(N)ψ−1 is conjugate by an element of E(P ) to a sub-
group of δP (NS(P )). So upon replacing ψ by χψ for some appropriate χ ∈ E(P ), we can
assume ψδQ(N)ψ−1 ≤ δP (NS(P )).
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Set ψ0 = ψ, regarded as an element ψ0 ∈ IsoL1(Q0, P0). By definition of L, δQ, and δP ,
upon restricting to intersections with S0, the inclusion ψδQ(N)ψ−1 ≤ δP (NS(P )) implies

ψ0δQ0(N)ψ−1
0 ≤ δP0(NS(P ))

in AutL1(P0). By (4), for each g ∈ N , there is a unique element ϕ(g) ∈ NS(P ) such that
ψ0δQ0(g)ψ

−1
0 = δP0(ϕ(g)). Then ϕ ∈ Hom(N,NS(P )). We claim ϕ is a morphism in F .

By (5), there is ψ0 ∈ MorL1(N0, NS0(P )) such that ψ0|Q0,P0 = ψ0. By the uniqueness of
extensions (4), for all g ∈ N ,

ψ0 ◦ δN0(g) = δNS0
(P )(ϕ(g)) ◦ ψ0

in L1, and hence ϕ ∈ HomF(N,NS(P )) by the definition of F in Step 2.

Step 5: By Step 4, F is H-saturated; i.e., it satisfies the saturation axioms for subgroups in
H. It is also H-generated by definition: each morphism in F is a composite of restrictions of
morphisms between subgroups in H. So by [BCGLO1, Theorem A], to prove F is saturated,
it suffices to show the following holds for all P ≤ S:

P F -centric, P /∈ H =⇒ ∃P ′ F -conj. to P , AutS(P
′) ∩ Op(AutF(P

′)) 	 Inn(P ′). (8)

Let K be the set of all P ≤ S such that the saturation axioms hold for subgroups F -
conjugate to P and all of their overgroups. Since H0 is closed under overgroups and F0-
conjugacy by assumption, H is closed under overgroups and F -conjugacy by construction,
and thus K ⊇ H. Let K∗ be the set of subgroups of S not in K, and let K∗

0 be the set of
subgroups of S0 not in K. We must show K∗ = ∅. This will be done by first proving that
for all P ≤ S,

P0 ∈ K or P0 maximal in K∗
0 =⇒ (8) holds for P (9)

Fix P as in (9). We first show there exists P ∗ F -conjugate to P such that P ∗
0 is fully

normalized in F0. If P0 is fully normalized, we are done, so assume otherwise. Let P ′
0

be F0-conjugate to P0 and fully normalized in F0. By [BLO, Proposition A.2(b)], there is
ρ ∈ HomF0(NS0(P0), NS0(P

′
0)) such that ρ(P0) = P ′

0. Clearly, P0 � S0, so NS0(P0) 	 P0.
Whether P0 ∈ K or P0 is maximal in K∗

0, NS0(P0) ∈ K, and hence the saturation axioms
hold for NS0(P0), NS0(P

′
0), and all subgroups of S which contain them.

Set R = NS0(P0) and R′ = ρ(R). Choose R′′ ≤ S0 and τ ∈ IsoF(R,R
′′) such that

R′′ is fully normalized in F , and set P ′′
0 = τ(P0). In general, for a pair of subgroups

Q1 ≤ Q ≤ S, we write AutF(Q:Q1) for the group of elements in AutF(Q) which leave Q1

invariant, and similarly for AutS(Q:Q1) andNS(Q:Q1) = NS(Q)∩NS(Q1). Since AutS(R
′′) ∈

Sylp(AutF(R
′′)) (recall R′′ is fully normalized in F), there is ω ∈ AutF (R

′′) such that
AutS(R

′′:ω(P ′′
0 )) ∈ Sylp(AutF (R

′′:ω(P ′′
0 ))). So upon replacing τ by ωτ , we can assume

AutS(R
′′:P ′′

0 ) ∈ Sylp(AutF(R
′′:P ′′

0 )).

In particular, there is χ ∈ AutF(R
′′:P ′′

0 ) such that (χτ)AutS(R:P0)(χτ)
−1 ≤ AutS(R

′′:P ′′
0 ).

Since F is H-saturated and R′′ ∈ H (and is fully centralized), χτ extends to some τ̄ ∈
HomF(NS(R:P0), NS(R

′′:P ′′
0 )). Note that P ≤ NS(R:P0), and τ̄ (P0) = τ(P0) = P ′′

0 . Set P
′′ =

τ̄(P ). By a similar argument, there is χ′ ∈ AutF (R
′′:P ′′

0 ) such that χ′τρ−1 ∈ IsoF(R
′, R′′)

extends to some ρ̄ ∈ HomF (NS(R
′:P ′

0), NS(R
′′:P ′′

0 )), where ρ̄(P
′
0) = τρ−1(P ′

0) = P ′′
0 .

We claim that

|NS0(P0)| < |NS0(R
′:P ′

0)| ≤ |NS0(R
′′:P ′′

0 )| ≤ |NS0(P
′′
0 )| . (10)

Since P0 is not fully normalized in F0, R
′ = ρ(NS0(P0)) � NS0(P

′
0), and hence

R′ � NNS0
(P ′

0)
(R′) = NS0(R

′:P ′
0) .
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This proves the first inequality in (10). The next one holds since ρ̄ sends NS0(R
′:P ′

0) into
NS0(R

′′:P ′′
0 ), and the last since all elements of NS0(R

′′:P ′′
0 ) normalize P ′′

0 . Thus P ′′ is F -
conjugate to P and |NS0(P

′′
0 )| > |NS0(P0)|. If P ′′

0 is not fully normalized in F0, then we
repeat this procedure, until we do find a subgroup P ∗ which is F -conjugate to P and such
that P ∗

0 is fully normalized in F0.

We are now ready to prove (9). Assume P is F -centric and P /∈ H; otherwise the statement
is empty. Thus P0 /∈ H0 = Ob(L0). By definition of a linking system, either P0 and P

∗
0 are not

F0-centric or they are not F0-radical. If P
∗
0 is not F0-centric, then there is g ∈ CS0(P

∗
0 )rP

∗
0

(since P ∗
0 is fully centralized). If P ∗

0 is not F0-radical, then Op(AutF0(P
∗
0 )) 	 Inn(P ∗

0 ) and
is contained in the Sylow subgroup AutS0(P

∗
0 ) (P ∗

0 is fully normalized), and thus there is
g ∈ NS0(P

∗
0 )rP

∗
0 such that cg ∈ Op(AutF0(P

∗
0 )). In either case,

g ∈ Q∗ def
=

{
g ∈ NS0(P

∗
0 )

∣∣ cg ∈ Op(AutF0(P
∗
0 ))

}
and g /∈ P ∗

0 ,

and hence Q∗ 	 P ∗
0 . Also, P

∗ normalizes Q∗ and P ∗Q∗ 	 P ∗, so NP ∗Q∗(P ∗) 	 P ∗, and there
is x ∈ Q∗rP ∗ such that x ∈ NS0(P

∗). For any such x, cx /∈ Inn(P ∗) (CS(P
∗) ≤ P ∗ since

P is F -centric), but cx|P ∗
0
is in Op(AutF0(P

∗
0 )) and cx induces the identity on P ∗/P ∗

0 (since
x ∈ S0). Hence cx ∈ Op(AutF(P

∗)): the subgroup
{
α ∈ AutF(P

∗)
∣∣α|P ∗

0
∈ Op(AutF0(P

∗
0 )), α induces the identity on P ∗/P ∗

0

}

is a normal p-subgroup of AutF(P
∗) since the group of all α ∈ Aut(P ∗) which induce the

identity on P ∗
0 and on P ∗/P ∗

0 is a p-group (cf. [G, Corollary 5.3.3]). Thus (8) holds for P ,
and this finishes the proof of (9).

We want to show that F is saturated; i.e., that K∗ = ∅. Assume otherwise; then K∗
0 6= ∅

since P ∈ K∗ implies P0 ∈ K∗
0. Choose Q to be maximal in K∗

0, and choose P to be maximal
among those P ∈ K∗ such that P0 = Q. Then P is also maximal in K∗. By [BCGLO1,
Lemmas 2.4 & 2.5], this maximality of P among subgroups not satisfying the saturation
axioms implies (8) does not hold for P . Since this contradicts (9), we now conclude that
K∗ = ∅, and hence that F is saturated and (8) holds for all P .

Now that we know F is saturated, (8) implies that H contains all subgroups which are
F -centric and F -radical. Also, F0 is normal in F (Definition 7).

Step 6: We show here that (3′) implies (3), and that (2) and (3) imply E(P ) is a p-group
for all P ∈ H. Assume first (3′) holds. Fix P ∈ H0, P ≤ Q ≤ P ·CS0(P ), and α ∈ AutF1(Q)
such that α|P = Id. If P is F0-centric, then Q = P and α = Id. If Γ/Γ0 is a p-group, then
AutL0(Q) has p-power index in AutL1(Q) (there is a homomorphism from AutL1(Q) to Γ/Γ0

sending [[ϕ, γ]] to γΓ0 with kernel AutL0(Q)); so AutF0(Q) has p-power index in AutF1(Q),

and hence αp
k

∈ AutF0(Q) for some k. By Proposition 4(g), P is F0-quasicentric, and so

αp
k

has p-power order. Thus α has p-power order in both cases, and this proves (3).

For the rest of the proof, we assume (2) and (3) hold. We next show E(P ) is a p-group
when P ∈ H0; i.e., when P ≤ S0. Assume otherwise, and let P be maximal among those
P ∈ H0 for which E(P ) is not a p-group. Since this depends only on the F0-conjugacy class
of P , we can assume P is fully normalized in F0. Since E(S0) = CΓ(S0) is a p-group by (2),
we have P � S0.

Fix Id 6= ψ ∈ E(P ) of order prime to p. Write ψ = [[ϕ, γ]], where γ ∈ Γ and ϕ ∈
IsoL0(γ(P ), P ). Thus π(ϕ−1) = π(γ)|P,γ(P ) ∈ HomF0(P, γ(P )). Set N = NS0(P ) 	 P . For
each g ∈ N ,

π(ϕ−1) ◦ cg =
(
π(γ) ◦ cg

)∣∣
P,γ(P )

=
(
cγ(g) ◦ π(γ)

)∣∣
P,γ(P )

= cγ(g) ◦ π(ϕ−1) .
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By axiom (A), and since P is fully normalized in F0, there is x ∈ CS0(P ) ≤ N such that
ϕ−1

◦ δ0(gx) = δ0(γ(g)) ◦ ϕ−1 in L0. Thus ϕδ0(γ(N))ϕ−1 = δ0(N).

By Proposition 4(e) (applied to L0), ϕ extends to some ϕ ∈ IsoL0(γ(N), N), and hence ψ

also extends to an automorphism ψ ∈ AutL(N). By the uniqueness of extension, ψ has the

same order as ψ, which is thus prime to p. Set α = π(ψ) ∈ AutF(N). By (3), α|P ·CN(P ) has
p-power order, hence is the identity since α has order prime to p. For all g ∈ N and x ∈ P ,
α(g)xα(g)−1 = α(gxg−1) = gxg−1 since α|P = Id, and hence g−1α(g) ∈ CN(P ). Thus α
induces the identity on N/CN (P ) and on CN(P ), so α has p-power order by [G, Corollary

5.3.3], and hence α = Id. This proves that ψ ∈ E(N), which contradicts the assumption
that P was maximal among subgroups in H0 with E(P ) not a p-group.

Thus E(P ) is a p-group for all P ∈ H0. Now assume P ∈ HrH0. Fix Id 6= ψ ∈ AutL(P )
of order prime to p such that πP (ψ) = IdP , and set ψ0 = ψ|P0,P0. Then ψ0 ∈ E(P0), E(P0) is
a p-group, and hence ψ0 = Id. But then ψ, Id ∈ AutL(P ) are two automorphisms with the
same restriction to AutL(P0), which contradicts the definition of AutL(P ) in Step 2.

Step 7: We now prove that L is a linking system associated to F by checking the axioms
in Definition 3. We first claim that for each P,Q ∈ H such that P is fully centralized in F ,

δP (CS(P )) acts freely on MorL(P,Q) and πP,Q is the orbit map. (11)

Since every morphism in L (and also in F) factors uniquely as the composite of an isomor-
phism followed by an inclusion, it suffices to prove this when P and Q are F -conjugate. It
thus suffices to prove it when P = Q, and this follows from (7) (δP (CS(P )) ∈ Sylp(E(P )))
and Step 6 (E(P ) is a p-group).

This proves the last part of axiom (A). The rest of axiom (A) holds by construction (note
that two objects of L are L-isomorphic whenever they are F -isomorphic), and by Step 5 (all
objects in L are F -centric and F -radical). Also, axiom (B) holds by construction, and (C)
by definition of the functor π : L −−−→ F .

The pair L0 ⊆ L clearly satisfies the conditions in Definition 8, and so L0 is normal in L.

Step 8: Now assume L′ is another linking system with the same objects, associated to a
fusion system F ′ over S, with L0 E L′, and where AutL′(S0) = Γ with the same conjugation
action on L0. Let F

′
1 ⊆ F ′ and L′

1 ⊆ L′ be the full subcategories with Ob(F ′
1) = {P ≤ S0}

and Ob(L′
1) = H0. Then F ′

1 and F1 are both fusion systems over S0 (not necessarily
saturated). By condition (ii) in the definition of a normal fusion system, F ′

1 and F1 are both
generated (as fusion systems) by F0 and AutΓ(S0), and hence F ′

1 = F1.

Define Φ1 : L1 −−−→ L′
1 to be the identity on objects, and to send [[ϕ, γ]] ∈ MorL1(P,Q) to

ϕ◦γ|P,γ(P ) ∈ MorL′
1
(P,Q). This preserves composition (hence is a functor) by the assumption

that L and L′ induce the same Γ-actions on L0. If P is fully centralized in F , then it is
fully centralized in F ′ since it has the same F - and F ′-conjugacy classes. By axiom (A)
(applied to L and L′), CS(P ) acts freely on MorL(P,Q) and on MorL′(P,Q) with orbit
sets HomF(P,Q) = HomF ′(P,Q). By construction, (Φ1)P,Q is equivariant with respect
to these actions, and hence is also a bijection. If P is not fully centralized, then choose
ψ ∈ IsoL(P

∗, P ) such that P ∗ is fully centralized; Φ1(ψ) is an isomorphism in L′, composition
with ψ and Φ1(ψ) send MorL(P,Q) bijectively to MorL(P

∗, Q) and similarly for L′, and thus
(Φ1)P,Q is again bijective. So Φ1 is an isomorphism of categories L1

∼= L′
1.

For each P,Q ∈ H, consider the restriction homomorphism

MorL′(P,Q)
ResP,Q
−−−−−→ MorL′(P0, Q0).
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This is injective by Proposition 4(e) (the uniqueness part), and

Im(ResP,Q) =
{
ψ ∈ MorL′(P0, Q0)

∣∣∀ g ∈ P ∃h ∈ Q with ψ ◦ δP0(g) = δQ0(h) ◦ ψ
}

(12)

by Proposition 4(e) and axiom (C). Using this and the definition of L in Step 2, Φ1 extends to
an isomorphism Φ: L −−−→ L′ of linking systems. By axiom (C), HomF(P,Q) is determined
by (12) for each P,Q, and thus F ′ = F . �

In general, the uniqueness of the extension of fusion systems in Theorem 9 does not follow
from the information about the fusion systems alone. For example, let F0 be the fusion
system of A6 (over S0

∼= D8). Set S = C2 × S0, identified as a Sylow 2-subgroup of C2 ×A6

and also of Σ6. Then F = FS(C2 × A6) and F ′ = FS(Σ6) are both fusion systems over S
containing F0 as a normal subsystem, and AutF(S0) = AutF ′(S0) (= Inn(S0)). But these
fusion systems are not isomorphic.

Condition (2) in Theorem 9 is clearly necessary to get a linking system, since CΓ(S0) =
Ker(πS0,S0) must be isomorphic to CS(S0). Condition (3) is necessary since by Proposition
4(g), each P ∈ H = Ob(L) must be F -quasicentric. If Condition (3) in Theorem 9 fails to
hold, and all of the other hypotheses do hold, then one can arrange for (3′) (hence (3)) to
hold by restricting the objects in L0 to those which are F0-centric. In other words, one can
always construct some linking system associated to F in this situation, but sometimes only
after restricting the set of objects.

As remarked earlier, whenever L0 E L and Γ0 E Γ are as in Theorem 9, the geometric
realisation |L0| has the homotopy type of a covering space of |L| with covering group Γ/Γ0.

The author would like to give profound thanks to Natàlia Castellana, Assaf Libman,
Kasper Andersen, and especially the referee, for having read this paper carefully and sent
many suggestions which helped to greatly improve it.
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