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Abstract

We prove a version of the Atiyah-Segal completion theorem for proper actions of an
infinite discrete group G. More precisely, for any finite proper G-CW-complex X,
K∗(EG×GX) is the completion of K∗

G(X) with respect to a certain ideal. We also
show, for such G and X, that KG(X) can be defined as the Grothendieck group of the
monoid of G-vector bundles over X.
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Let G be any discrete group. For such G, a G-CW-complex is a CW-complex with G-
action which permutes the cells, such that an element g ∈ G sends a cell to itself only by
the identity map. A G-CW-complex X is proper if all of its isotropy subgroups have finite
order, and is finite if it is made up of finitely many orbits of cells. A G-CW-pair is a pair of
G-spaces (X,A), where X is a G-CW-complex and A is a G-invariant subcomplex.

The main results of this paper are Theorems 3.2 and 4.3 below. The first says that
equivariant K-theory K∗

G(−) can be defined on the category of finite proper G-CW-pairs
using (finite dimensional) G-vector bundles, in the sense that this does define an equivariant
cohomology theory. In particular, for any X , KG(X) is just the Grothendieck group of the
monoid of G-vector bundles over X .

The second theorem is an extension of the Atiyah-Segal completion theorem to this situ-
ation. It says that for any finite proper G-CW-complex X , K∗(EG×GX) is the completion
of K∗

G(X) with respect to a certain ideal. In particular, when the universal proper G-space
EFIN (G) (= EG in the notation of Baum and Connes [7]) has the homotopy type of a finite
G-CW-complex, then this completion is taken with respect to the augmentation ideal of
KG(EFIN (G)). For example, when X = EFIN (G), Theorem 4.3 implies that K∗(BG) is the
completion of K∗

G(EFIN (G)) with respect to the augmentation ideal in KG(EFIN (G)).

There are two ways in which the proofs of these theorems, when G is infinite and discrete,
diverge from the usual proofs for finite group actions. First, since the category of spaces
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with proper G-action doesn’t contain cones or suspensions (fixed points are not allowed), we
need to find other ways to define KG(X,A) and K−n

G (X). This is easily handled. A more
crucial difference is that special constructions are needed, carried out in Section 2, to get
around the lack of “sufficiently many” product bundles. This second difficulty is illustrated
by the fact that both of these theorems fail in general when G is a positive dimensional
noncompact Lie group. This is discussed in detail, with examples, in Section 5. Examples
which show that KG(−) defined using G-vector bundles is not an equivariant cohomology
theory in this situation were originally due to Phillips [15], who instead defined KG(−) using
infinite dimensional G-vector bundles with Hilbert space fibers (see also [17]).

In a separate paper, we will construct an equivariant cohomology theory K∗
G(−) for

arbitrary (not necessarily proper) G-CW-complexes using spectra. More precisely, this will
be done using Or(G)-spectra: contravariant functors from the orbit category of G to spectra.
We will also construct an equivariant Chern character for proper G-CW -complexes which
takes values in equivariant Bredon cohomology, and which is rationally an isomorphism for
finite proper G-CW -complexes.

Let K∗
G(X) be the Grothendieck group of (finite-dimensional) G-vector bundles over X .

There is a natural transformation ϕG : K∗
G(X) → K∗

G(X), which is an isomorphism for
finite proper G-CW-complexes. In the nonequivariant case, this is well known to be an
isomorphism for any finite dimensional CW-complex X (since any map X → BU factors
through some BU(n)). But even for finite G 6= 1, Example 3.11 below shows that K∗

G is not
a cohomology theory on the category of all finite dimensional proper G-CW-pairs.

The paper is organized as follows:

1. G-vector bundles over proper G-CW-complexes
2. Constructions of G-vector bundles
3. Equivariant K-theory for finite proper G-CW-complexes
4. The completion theorem
5. Proper actions of Lie groups

References

1. G-vector bundles over proper G-CW-complexes

Throughout this section G is a Lie group. We collect here some basic facts about G-vector
bundles over proper G-CW-complexes.

A G-CW-complex X is a space with G-action, which is filtered by its “skeleta” X(n), such
that X has the weak topology as the union of the X(n), and such that each X(n) is obtained
fromX(n−1) by attaching orbits of cellsG/Hi×Dn via attaching mapsG/Hi×Sn−1 → X(n−1).
(Here X(−1) = ∅.) When G is discrete, a G-CW-complex can be thought of as a CW-complex
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with G-action which permutes the cells, such that an element g ∈ G sends a cell to itself only
by the identity map. Note that the orbit space of a G-CW-complex inherits the structure of
an (ordinary) CW-complex. For more details about G-CW-complexes, see, e.g., [9, §§II.1–2]
or [13, §§I.1–2].

A G-CW-complex X is finite if it is made up of finitely many orbits of cells G/H×Dn,
or equivalently if X/G is a finite CW-complex. A G-CW-complex X will be called proper if
all of its isotropy subgroups are compact. (For G-CW-complexes, this is equivalent to the
various definitions of proper actions which have been given in more general situations.)

A G-vector bundle over a G-CW-complex X consists of a (complex) vector bundle p :
E → X , together with a G-action on E such that p is G-equivariant and each g ∈ G acts
on E and X via a bundle isomorphism. We let E|x denote the fiber over a point x ∈ X .

A map of G-vector bundles from p : E → X to p′ : E ′ → X ′ is just a map (f, f) of vector

bundles, such that f : E → E ′ and f : X → X ′ are G-equivariant. Here, we assume only

that f restricts to a linear map E|x → E ′|f(x) for each x ∈ X . We call (f, f) a strong map if

f restricts to a linear isomorphism E|x
∼=
−→ E ′|f(x) for each x ∈ X . This is clearly equivalent

to the condition that p : E → X is isomorphic to the pullback of p′ : E ′ → X ′ over f .

Most of the properties of G-vector bundles over G-CW-complexes we need will be easy
consequences of the following elementary lemma.

Lemma 1.1 (a) Any G-vector bundle over an orbit of cells G/H × Dn is isomorphic to
G×H(V ×Dn) for some H-representation V .

(b) For any G-CW-complex X, both X and X/G are paracompact.

(c) Fix a G-vector bundle p : E → X over a G-CW-complex X. Let X(n) be the n-skeleton
of X, and set En = p−1(X(n)). Then the squares

∐
j∈J G/Hj × Sn−1

∐
j∈J qj
−−−−→ X(n−1)

y
y

∐
j∈J G/Hj ×Dn

∐
j∈J Qj

−−−−−→ X(n)

and

∐
j∈J G×Hj

(Vj × Sn−1)

∐
j∈J qj
−−−−→ En−1y

y
∐

j∈J G×Hj
(Vj ×Dn)

∐
j∈J Qj

−−−−−→ En

are pushout squares for each n. Also, X and E have the weak topology with respect
to the subspaces X(n) and En, respectively. More generally, if {Xi}i∈I is any set of
subcomplexes which cover X, then X and E have the weak topology with respect to the
subspaces Xi and p

−1(Xi), respectively.

(d) For any G-CW-pair (X,A), there is a neighborhood W of A in X, which can be chosen
to be closed or open, such that A is an equivariant strong deformation retract of W .

Proof : (a) Note that for any G-map p : X −→ G/H , the canonical map G×H p
−1(eH) −→

X is a G-homeomorphism. (This will be used frequently throughout the paper.) It thus
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suffices to show that any H-vector bundle over Dn is isomorphic to the product bundle
V ×Dn for some H-representation V , and this follows from [3, Proposition 1.6.2].

(c) The pushout square for X(n), and the fact that X has the weak topology with respect
to its skeleta, follow from the definition of a G-CW-complex. In particular, a function
X → Y (for any space Y ) is continuous if and only if its composite with each equivariant
cell G/H×Dn → X is continuous; and from this one sees immediately that X has the weak
topology with respect to any covering set of subcomplexes. The G-pushout property for En

follows the pushout property for X(n), together with (a) and [13, Lemma 1.26].

We now claim for any X , any vector bundle p : E → X , and any covering X = ∪i∈IXi

by closed subspaces, that E has the weak topology with respect to its subsets p−1(Xi) if X
has the weak topology with respect to the Xi. Upon restricting to a neighborhood of any
given x ∈ X , this is reduced to the case where E is a product bundle; and the result then
follows easily since the fibers are locally compact.

(b) Given an open covering U of X or of X/G, a partition of unity subordinate to U can be
constructed by applying Zorn’s lemma to the set of such partitions of unity over subcomplexes
of X (and using (c) above). For more details (in the case of a nonequivariant CW-complex),
see [14, Theorem II.4.2].

(d) For each n, one easily constructs a collar neighborhood Vn of X(n) in X(n+1) (open or
closed), together with an equivariant deformation retraction ρn : Vn → X(n), which restricts
to a deformation retraction of ρ−1

n (B) to B for any B ⊆ X(n). Now set

W−1 = A, Wn = A ∪ ρ−1
n (Wn−1 ∩X

(n)) (all n ≥ 0), and W = ∪∞n=0Wn,

let rn : Wn → Wn−1 be the identity on A and ρn on WnrA, and let r : W → A be the
composite of the rn.

The next three results, which list some of the standard properties of G-vector bundles,
are easy consequences of Lemma 1.1. We begin with homotopy invariance. As usual, I
denotes the unit interval [0, 1].

Theorem 1.2 Let X be a proper G-CW-complex, let p : E → X×I be a G-vector bundle,
and set E0 = E|X×0, regarded as a G-vector bundle over X. Then there is an isomorphism

ρ : E
∼=
−→ E0 × I of G-vector bundles, which is the identity on E0 and covers the identity

on X × I. If, in addition, A ⊆ X is any G-invariant subcomplex, then ρ can be chosen to

extend any given isomorphism ρA : E|A×I

∼=
−→ E0|A × I.

Proof : Using Lemma 1.1(c), this is quickly reduced to the case where (X,A) = (G/H ×
Dn, G/H × Sn−1). By Lemma 1.1(a), E = G×H(V ×Dn × I). Thus, ρA is equivalent to a
map ρ′ : Sn−1×I → AutH(V ) which sends Sn−1×0 to the identity, and this can be extended
to Dn × I since Sn−1 → Dn is a cofibration.

The proof of the next two lemmas is similiar to that of Theorem 1.2.
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Lemma 1.3 Let (X,A) be a proper G-CW-pair, and let E and E ′ be G-vector bundles
over X. Then any map f : E ′|A −→ E|A of G-vector bundles over A extends to a map

f : E ′ −→ E of G-vector bundles over X.

Proof : Via Lemma 1.1, it suffices to prove this when (X,A) = (G/H ×Dn, G/H × Sn−1),
E = G×H(V × Dn), and E ′ = G×H(V

′ × Dn). A map E ′ → E of G-vector bundles thus
corresponds to an H-map Dn → HomH(V

′, V ), and any map over A extends to a map over
X since HomH(V

′, V ) is contractible.

Lemma 1.4 Let (X,A) be a proper G-CW-pair, and let E be a G-vector bundle over X.
Then any G-invariant Hermitian metric of E|A extends to a G-invariant Hermitian metric
on E.

Proof : Again, it suffices to prove this when (X,A) = (G/H × Dn, G/H × Sn−1), and
E = G×H(V ×Dn). A Hermitian metric over X then corresponds to a mapDn → HermH(V )
(the space of H-invariant Hermitian metrics over V ); and any such map on Sn−1 can be
extended to one on Dn since HermH(V ) is convex (and hence contractible).

To finish the section, we check that a pushout of G-vector bundles is a G-vector bundle
over the pushout of the base spaces. This will, of course, be used to prove excision in Section
3.

Lemma 1.5 Let ϕ : (X1, X0) → (X,X2) be a map of G-CW-pairs, set ϕ0 = ϕ|X0, and
assume that X ∼= X2∪ϕ0X1. Let p1 : E1 → X1 and p2 : E2 → X2 be G-vector bundles, let
ϕ0 : E1|X0 → E2 be a strong map covering ϕ0, and set E = E2∪ϕ0

E1. Then p = p1 ∪ p2 :
E → X is a G-vector bundle over X.

Proof : The only problem is to show that p : E −→ X is locally trivial (in a non-
equivariant sense). Since E1 is locally trivial, so is E|XrX2

∼= E1|X1rX0 . So it remains to find
a neighborhood of X2 over which E is locally trivial. Choose a closed neighborhood W1 of
X0 in X1 for which there is a strong deformation retraction r : W1 → X0 (Lemma 1.1(d)).
By the homotopy invariance for nonequivariant vector bundles over paracompact spaces (cf.
[10, Corollary 3.4.5]), r is covered by a strong map of vector bundles r : E1|W1 −→ E0 which

extends i1. Set W = X2∪ϕ0W1. Then r extends, via the pushout, to a strong map of vector

bundles E|W → E2 which extends i2, and hence E|W is locally trivial.

Let p : E −→ B be a G-vector bundle over a proper G-CW-complex. Each orbit Gx ⊆ X
has a G-invariant neighborhood Ux such that Gx is an equivariant retract of Ux, and the
neighborhood can in fact be chosen such that the retraction is covered by a strong map
E|Ux

→ E|Gx. There is thus a G-covering U of X such that each E|U (for U ∈ U) is “trivial”
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in the sense that it is the pullback of a bundle over a (proper) orbit. Also, since X/G is
paracompact by Lemma 1.1(b), U is G-numerable in the sense that there is a locally finite
partition of unity {tU | U ∈ U} by G-invariant functions tU with supp(tU) ⊆ U . Hence our
notion of G-vector bundles agrees with that of tom Dieck in [9, I.9]. For these same reasons,
the results of this section can easily be extended to proper G-spaces which have paracompact
quotients (any such space has tubes, i.e., equivariant neighborhood retracts of orbits).

2. Constructions of G-vector bundles

The main result in this section is Theorem 2.7. Given a discrete group G, a G-CW-
complex X , and a family {VH} of representations of the isotropy subgroups in X , we would
like to be able to construct a G-vector bundle E → X whose fiber over any x ∈ X is
isomorphic to VGx

. This is in general not possible, even for finite G, for reasons discussed
at the end of the section. What we show here is that we can do this, assuming certain
conditions on X and the VH , but only after replacing the VH by some iterated direct sum
(VH)

k, or by some iterated tensor product (VH)
⊗k. These bundles are the crucial ingredients

in the proof that G-vector bundles define an equivariant cohomology theory (Theorem 3.2),
and the proof of the completion theorem (Theorem 4.3).

Throughout the first part of the section, G and Γ will denote arbitrary Lie groups.
A family F of subgroups of G is a set of (closed) subgroups of G which is closed under
conjugation. We will need to work with some classifying spaces and universal spaces: first
for (proper) G-actions and then for bundles.

Definition 2.1 For any family F of subgroups of G, let EF(G) denote the topological
category whose objects are the pairs (G/H, gH) for H ∈ F and g ∈ G, and where
Mor((G/H, gH), (G/K, g′K)) is the set of G-maps G/H → G/K which send gH to g′K
(a set of cardinality at most one). Let EF(G) be the realization of the nerve of EF(G),
considered as a G-CW-complex:

EF(G) =
( ∞∐

n=0

∐

G/H0→···→G/Hn

G/H0 ×∆n
)/
∼,

where the identifications are those induced by the obvious face and degeneracy maps.

As usual, we are assuming that EF(G) has the weak topology with respect to its cellular
structure.

Lemma 2.2 Fix a Lie group G and a family F of subgroups of G.

(a) For any K ∈ F , (EF (G))
K is contractible.
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(b) Let (X,A) be any G-CW-pair such that Gx ∈ F for all x ∈ X. Then any G-map
fA : A→ EF(G), extends to a G-map fX : X → EF(G), and any two such extensions
are G-homotopic relative A.

Proof : (a) For any K ⊆ G, (EF(G))
K is the nerve of the full subcategory of EF(G) with

objects those (G/H, gH) such that K ⊆ gHg−1. And if K ∈ F , then this category has the
initial object (G/K, eK).

(b) This follows immediately from point (a) (see [13, Proposition 2.3 on page 35]).

A G-equivariant Γ-bundle (or (G,Γ)-bundle for short) consists of a Γ-principal bundle
p : E → X , together with left G-actions on E and X , such that p is G-equivariant, and such
that the left G-action and the right Γ-action on E commute. We let BdlG,Γ(X) denote the
set of isomorphism classes of (G,Γ)-bundles over the G-space X .

One natural example of this is the case Γ = U(n). A (G,U(n))-bundle E → X is just the
principal bundle associated with the G-vector bundle E×U(n)Cn → X . Similarly, a (G,Σn)-
bundle is the principal bundle associated with a G-equivariant n-sheeted covering space. In
the constructions below, we will have to consider (G,Γ)-bundles for certain finite subgroups
Γ ⊆ U(n).

Now fix a family F of compact subgroups of G. For each H ∈ F , set RepΓ(H) =
Hom(H,Γ)/ Inn(Γ); i.e., the set of conjugacy classes of homomorphisms from H to Γ. For
example, RepU(n)(H) is the set of isomorphism classes of n-dimensional complex representa-
tions of H , and RepΣn

(H) is the set of isomorphism classes of H-sets of order n. Note that
for any H and Γ, there are natural bijections

RepΓ(H) ∼= BdlH,Γ(pt) ∼= BdlG,Γ(G/H). (2.3)

We need a way to specify the isomorphism types of the fibers of a (G,Γ)-bundle. Suppose
we are given an element

A =
(
αH

)
∈ lim←−

H∈F

RepΓ(H) ⊆
∏

H∈F

RepΓ(H),

where the limit is taken with respect to all homomorphisms induced by inclusions and
conjugation in G. This is equivalent to an element in lim←−OrF (G)

BdlG,Γ(−), where BdlG,Γ(−)

is considered as a contravariant functor (via pullback) on the orbit category OrF(G). If X
is a G-space all of whose isotropy subgroups lie in F , then we define a (G,A)-bundle over
X to be a (G,Γ)-bundle such that the fiber over any point x ∈ X is isomorphic to (Γ, αGx

),
regarded as a (Gx,Γ)-bundle over a point (see (2.3)). When Γ = U(n), this corresponds to
those G-vector bundles whose fibers are isomorphic to certain given representations of the
isotropy subgroups.

We want to define classifying spaces for (G,Γ)-bundles and for (G,A)-bundles. In fact,
these are just the universal (G× Γ)-CW-complexes with respect to appropriate families.
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Definition 2.4 Let F be a family of compact subgroups of G. Define

EF(G,Γ) = EFΓ
(G× Γ) and BF(G,Γ) = EF(G,Γ)/Γ,

where
FΓ = {H ⊆ G× Γ | pr1(H) ∈ F , H ∩ (1× Γ) = 1}.

For any element

A =
(
αH

)
∈ lim←−

H∈F

RepΓ(H) ⊆
∏

H∈F

RepΓ(H),

define

FA =
{
H ⊆ G× Γ

∣∣H = graph(α : K → Γ), some K ∈ F , some α conjugate to αK

}
,

and set
EF(G,A) = EFA

(G× Γ) and BF(G,A) = EF(G,A)/Γ.

In the above situation, if E
p
−→ X is any (G,Γ)-bundle, where X is a proper G-CW-

complex all of whose isotropy subgroups lie in F , then E is a proper (G× Γ)-CW-complex
all of whose isotropy subgroups lie in FΓ. Conversely, if E is any proper (G×Γ)-CW-complex
all of whose isotropy subgroups lie in FΓ, then E/Γ is a proper G-CW-complex all of whose
isotropy subgroups lie in F , and the projection E → E/Γ is a (G,Γ)-bundle. Similarly, for
any A, there is a correspondence between (G,A)-bundles and (G× Γ)-CW-complexes all of
whose isotropy subgroups lie in FA. This leads to the following:

Lemma 2.5 Fix a family F of compact subgroups of G, and an element

A =
(
αH

)
∈ lim←−

H∈F

RepΓ(H),

where the limit is taken with respect to inclusions and conjugation in G. Then the following
hold:

(a) For each H ∈ F , let CΓ(αH) denote the centralizer of the image of αH : H → Γ (well
defined up to conjugacy). Then there is a homotopy equivalence

(
BF (G,A)

)H
≃ BCΓ(αH),

which is natural with respect to maps induced by homomorphisms Γ→ Γ′.

(b) The (G,A)-bundle
EF(G,A) −−−−→ BF(G,A)

is the universal (G,A)-bundle in that it defines, via pullbacks, a bijection

[X,BF (G,A)]G −−−−→ BdlG,A(X),

for any proper G-CW-complex X all of whose isotropy subgroups are in F .
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Proof : (a) Fix H , and write C = CΓ(αH) for short. Consider the (G,A)-bundle

G×H (EC×CΓ) −−−−−→ G/H ×BC,

where H acts on EC×CΓ via h(x, γ) = (x, αH(h)γ). The classifying map for this bundle
restricts to a map

BC −−−−−→
(
BF(G,A)

)H
.

Similarly, the restriction of the universal (G,A)-bundle over
(
BF(G,A)

)H
is an (H,αH)-

bundle over a space with trivial H-action, and hence has structure group C = CΓ(αH). It is
thus classified by a map (

BF(G,A)
)H
−−−−−→ BC,

and the above two maps are homotopy inverses by the universal properties of the spaces.

(b) This follows immediately from Lemma 2.2(b).

We now assume, throughout the rest of the section, that G is discrete. We need to
construct maps to the classifying spaces defined in Definition 2.4. The obstructions to doing
so lie in certain Bredon cohomology groups.

Let (X,A) be any G-CW-pair such that the isotropy group of each point in XrA lies in
F . For each n ≥ 0, let

Cn(X,A) : OrF (G) −−−−−→ Ab

denote the contravariant functor which sends G/H to Cn(X
H , AH). Here, Cn(X

H , AH) is
the free abelian group with one generator for each n-cell in XHrAH . For any contravari-
ant functor M : OrF(G) → Ab, HomOrF (G)(Cn(X,A),M) is the direct sum of one copy
of M(G/H) for each orbit G/H×Dn of n-cells in XrA. In particular, Cn(X,A) is projec-
tive in the category OrF(G)-mod of contravariant functors OrF(G) → Ab. The Bredon
cohomology groups H∗

G(X,A;M) are thus the homology groups of the cochain complex

0 −→ HomOrF (G)(C0(X,A),M)
δ
−−→ HomOrF (G)(C1(X,A),M)

δ
−−→ HomOrF (G)(C2(X,A),M)

δ
−−→ . . . .

Lemma 2.6 Assume that G is discrete. Fix a family F of finite subgroups of G, a finite
group Γ, and a system of representations

A =
(
αH

)
H∈F
∈ lim←−

H∈F

RepΓ(H).

Set B = BF(G,A), and let
βA : B −−−−−→ EF(G)

be any G-map. (This exists and is unique up to G-homotopy by Lemma 2.2(b), since all
isotropy subgroups for B lie in F .) Let Z denote the mapping cylinder of βA. Let M :
OrF(G)→ Ab be any contravariant functor. Then for each n ≥ 0,

|Γ|n ·Hn
G(Z,B;M) = 0.
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Proof : There is a cohomology spectral sequence

Ep,q
2 = Extp

OrF (G)(Hq(Z,B),M) =⇒ Hp+q
G (Z,B;M),

where Hp(Z,B) denotes the functor OrF (G)→ Ab which assigns to G/H the abelian group
Hp(Z

H , BH). It is induced by the double complex HomOrF (G)(Cq(Z,B), Ip), where {Ip} is
any injective resolution in OrF(G)-mod of M . We have just seen that the Cq(Z,B) are all
projective in OrF (G)-mod. This category does have enough injectives by, e.g., [19, Example
2.3.13].

Since ZH ≃
(
EF (G)

)H
is contractible by Lemma 2.2(a), we conclude from Lemma 2.5(a)

that
Hq(Z

H , BH) ∼= H̃q−1(B
H) ∼= H̃q−1(CΓ(αH)).

In particular, since CΓ(αH) ⊆ Γ, this shows that

|Γ| ·H∗(Z
H , BH) = 0.

So |Γ| annihilates all terms in the above spectral sequence, and hence (since Ep,0
2 = 0) |Γ|n

annihilates Hp
G(Z,B;M).

Given any A =
(
αH

)
∈ lim←−H∈F

RepΓ(H), and any homomorphism ρ : Γ → U(n), there
is a natural map

ρ∗ : BF (G,A) −−−−−→ BF(G, ρ◦A), where ρ◦A =
(
ρ◦αH

)
∈ lim←−

H∈F

RepU(n)(H);

and ρ∗ commutes with the maps βA and βρ◦A to EF (G).

Theorem 2.7 Assume that G is discrete. Fix any family F of finite subgroups of G, and
let

V =
(
VH

)
∈ lim←−

H∈F

RepU(n)(H)

be any system of compatible n-dimensional representations. Assume that there is a finite
group Γ, a system

A =
(
αH

)
∈ lim←−

H∈F

RepΓ(H),

and a homomorphism ρ : Γ → U(n) such that V = ρ◦A. Then for any d > 0 there is
an integer k = k(d) > 0, such that for any d-dimensional G-CW-complex X all of whose
isotropy subgroups lie in F , there are G-vector bundles E,E ′ → X such that the fibers E|x
and E ′|x over each point x ∈ X are isomorphic as Gx-representations to (VGx

)k and (VGx
)⊗k,

respectively.

Proof : We only treat the case of direct sums here; the tensor product case is analogous. By

the universal property of EF(G) (Lemma 2.2(b)), it suffices to prove this when X = EF(G)
(d)

(the d-skeleton).
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Write B = BF (G,A) and B′
k = BF (G,V

k) for short (any k ≥ 1), and let Z be the
mapping cylinder of βA : B → EF(G). We must construct, for some k, a map Z(d) → B′

k; and
we will do so by extending the map ρk∗ : B → B′

k. By Lemma 2.5(a), (B′
k)

H ≃ B AutH(V
k
H)

for each H ∈ F , and is in particular a product of BU(m)’s and hence simply connected. So
there is no obstruction to extending ρ1∗ : B → B′

1 to a map f2 : B ∪ Z(2) → B′
1.

Assume inductively that fd−1 : B ∪ Z(d−1) → B′
r has been constructed, (where r =

k(d− 1)). We now apply standard equivariant obstruction theory. For each H ∈ F , let

cd(fd−1)(G/H) : Cd(Z
H , BH) −−−−→ πd−1((B

′
r)

H)

be the map which sends each generator, corresponding to a d-cell σ in ZHrBH , to the
element fd−1(∂σ). This is well defined independently of the basepoint, since (B′

r)
H is simply

connected. By naturality, this defines an element

cd(fd−1) ∈ C
d
G(Z,B; πd−1(B

′
r)) = HomOrF (G)

(
Cd(Z,B), πd−1(B

′
r)
)
,

and fd−1 can be extended to a map B ∪Z(d) → B′
r if and only if cd(fd−1) = 0. Furthermore,

cd(fd−1) is a cocycle by [20, Theorem V.5.6], and hence defines an element

od(fd−1) ∈ H
d
G(Z,B; πd−1(B

′
r)).

Finally, for any c̃ ∈ Cd−1
G (Z,B; πd−1(B

′
r)), there is a map f ′ : B ∪ Z(d−1) → B′

r such that f ′

agrees with fd−1 on B ∪ Z(d−2), and such that cd(f ′) − cd(fd−1) = δ(c̃) (as in [20, Theorem
V.5.6′]). So if od(fd−1) = 0, then fd−1|B ∪ Z(d−2) can be extended to B ∪ Z(d). For more
details, see [20, §V.5], and also [8, §II.1] (where equivariant obstruction theory is developed
for actions of a finite group).

By Lemma 2.6, Hd
G(Z,B; πd−1(B

′
r)) has exponent |Γ|d. Furthermore, by Lemma 2.5(a)

again, πd−1(B
′
r) is the functor G/H 7→ πd−1(B AutH(V

r
H)). Write m = |Γ|d for short, and

consider the homomorphisms

πd−1(B AutH(V
r
H))

i1,...,im−−−−−→−−−−−→
diag

(
πd−1(B AutH(V

r
H))

)m B⊕∗−−−−→ πd−1(BAutH(V
mr
H )).

These are all homomorphisms of functors on OrF(G). Also, B⊕∗◦is = B⊕∗◦i1 for all s, since
the corresponding maps between spaces differ by conjugation by an element of AutH(V

mr
H )

(and the automorphism group is connected). Since diag =
∑m

s=1 is, it follows that (B⊕∗)◦diag
factors through multiplication by m, and hence that the induced map

Hd
G(Z,B; πd−1(B

′
r))

∆m
∗−−−−−→ Hd

G(Z,B; πd−1(B
′
mr))

is zero. Here, ∆m : U(rn) → U(mrn) denotes the diagonal inclusion. We can thus extend
∆m

∗ ◦fd−1|B ∪ Z(d−2) to a map

fd : B ∪ Z
(d) −−−−→ B′

mr = BF(G,V
mr).

Set k = k(d) = mr; the pullback to EF(G)
(d) ⊆ Z(d) of the (G,Vk)-vector bundle

EF (G,V
k)×U(nk) Cnk −−−−→ BF(G,V

k)
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now has the desired properties.

As a first consequence of Theorem 2.7, we show the following result, which will be needed
when proving excision for equivariant K-theory defined via G-vector bundles.

Corollary 2.8 Assume that G is discrete, and let X be any finite dimensional proper G-
CW-complex whose isotropy subgroups have bounded order. Then there is a G-vector bundle
E → X such that for each x ∈ X, the fiber E|x is a multiple of the regular representation of
Gx.

Proof : Let F be the family of isotropy subgroups in X , and let n be the least common
multiple of their orders. For each H ∈ F , let VH be the free complex H-representation of
dimension n, and let αH : H → Σn be a homomorphism corresponding to a free H-set of
order n. Then

V =
(
VH

)
∈ lim←−

H∈F

RepU(n)(H) and A =
(
αH

)
∈ lim←−

H∈F

RepΣn
(H),

and these satisfy the hypotheses of Theorem 2.7 (with Γ = Σn). So by the theorem, there is
some k, and a G-vector bundle E → X , such that for each x ∈ X , E|x ∼= V k

Gx
is a multiple

of the regular representation of Gx.

An H-representation V will be called p′-free if for any subgroup K ⊆ H of order prime to
p, V |K is a multiple of the regular representation of K. This is equivalent to the condition
that the character of any element h ∈ H not of p-power order is zero. The next result, a
second consequence of Theorem 2.7, is the main technical ingredient in our extension of the
completion theorem of Atiyah and Segal from finite groups and compact spaces to arbitrary
discrete groups and finite proper G-CW-complexes.

Corollary 2.9 Assume that G is discrete, and let X be any finite dimensional proper G-
CW-complex whose isotropy subgroups have bounded order. Then for any prime p, there is
a G-vector bundle E → X of dimension prime to p, such that for each x ∈ X, E|x is p′-free
as a Gx-representation.

Proof : Let F be the family of isotropy subgroups in X , and let m be the least common
multiple of the |H| for H ∈ F . For each H ∈ F , let αH : H → Σm be the homomorphism
corresponding to any free action of H on {1, . . . , m}. The αH clearly form an element

A =
(
αH

)
∈ lim←−

H∈F

RepΣm
(H).

Set n = |Σm/Sylp(Σm)|, let ρ : Σm → U(n) be the corresponding permutation repre-
sentation, and (for each H) let VH be the n-dimensional representation defined by ρ◦αH .

12



By Theorem 2.7, there is k > 0 and a G-bundle E → X , such that the fiber E|x over any
point x ∈ X is isomorphic to (VGx

)⊗k. This bundle has dimension nk, which is prime to p.
Furthermore, for each H ∈ F , and each subgroup K ⊆ H of order prime to p, (VH)|K is a
free C[K]-module by construction, and so the same holds for (V ⊗k

H )|K . In other words, E|x
is p′-free as a Gx-representation for each x, and so E has all of the required properties. This
finishes the proof of Corollary 2.9.

In view of Theorem 2.7, the following question arises. Let X be a G-CW-complex.
Given a compatible family {VH} of representations of the isotropy subgroups of X , is there
a G-vector bundle E → X such that E|x ∼= VGx

as Gx-representations for each x ∈ X?
Here, “compatible” means that if α(K) ⊆ H , where α is an inner automorphism of G,
then (α∗VH)|K ∼= VK . This question can also be posed more generally, requiring different
representations on different components of fixed point sets.

It is in fact easy to find counterexamples to this question, even in the case where
G is finite. Fix a finite group G and a normal subgroup H ⊳ G, and set IH =
Ker[R(G)

res
−→ R(H)]. By a theorem of Jackowski [11, Theorem 5.1 & Example 5.5], the

pro-rings {KG(E(G/H)(n))}n≥1 and {R(G)/(IH)n}n≥1 are isomorphic. In particular, for
n sufficiently large, the fibers of any G-vector bundle over E(G/H)(n), considered as H-
representations, can always be extended to virtual G-representations. On the other hand,
any G/H-invariant H-representation VH defines a “compatible family” of representations
of the isotropy subgroups of E(G/H). It is not hard to find examples of G and H where
Im[R(G)→ R(H)] $ R(H)G/H , and hence of a compatible family which cannot be the fibers
of a G-vector bundle over the finite G-CW-complex E(G/H)(n).

What we really would like to find is an example of an infinite discrete group G, such
that EFIN (G) has the homotopy type of a finite G-CW-complex, and for which not every
compatible family {VH} of representations of the finite subgroups can be realized as a G-
vector bundle over EFIN (G) (not even stably). Presumably such examples exist, but we
have so far been unable to find any.

3. Equivariant K-theory for finite proper

G-CW-complexes

The main result in this section is that when G is discrete, G-vector bundles define a
Z/2-graded multiplicative cohomology theory K∗

G(−) on the category of finite proper G-
CW-complexes. This is summarized in Theorem 3.2 below.

The assumption here that G is discrete is essential, even in the case of finite proper CW-
complexes. So this will be assumed throughout most of the section. The problems arising
in the case of positive dimensional Lie groups will be discussed in Section 5 below.
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The usual way to define KG(X,A), when G is finite, is as the reduced K-theory of the
mapping cone of the inclusion of A in X (cf. [3] or [18]). That approach is not possible here,
since the mapping cone of a map of proper G-CW-complexes has a G-fixed point, and hence
is not proper if G is not compact. For the same reason, we are unable to use suspensions in
this situation to define the groups K−n

G (X,A). Instead, we make the following definitions:

Definition 3.1 For any Lie group G and any proper G-CW-complex X, let KG(X) =
K0

G(X) be the Grothendieck group of the monoid of isomorphism classes of G-vector bundles
over X. Define K−n

G (X), for all n > 0, by setting

K−n
G (X) = Ker

[
KG(X × S

n)
incl∗
−−−→ KG(X)

]
.

For any proper G-CW-pair (X,A), set

K−n
G (X,A) = Ker

[
K−n

G (X ∪A X)
i∗2−−−→ K−n

G (X)
]
.

When G is discrete and (X,A) is a finite proper G-CW-pair, write

KG(X,A) = KG(X,A) and K−n
G (X,A) = K−n

G (X,A).

The pullback construction makes K−n
G (−) and K−n

G (−) into contravariant functors on the
categories of proper, or finite proper, G-CW-pairs.

Note that we get a natural isomorphism

pr∗X ⊕ i : K
0
G(X)⊕K−n

G (X)
∼=

−−−−−→ K0
G(X × S

n),

where i is the inclusion and prX the projection.

We can now state the main theorem in this section.

Theorem 3.2 For any discrete group G, the groups K−n
G (X,A) extend to a Z/2-graded

multiplicative equivariant cohomology theory on the category of finite proper G-CW-pairs.
In particular, K∗

G(−) is a homotopy invariant contravariant functor, satisfies excision, and
there is an exact sequence

K0
G(X,A) −−−→ K0

G(X) −−−→ K0
G(A)

δ1

x δ0

y
K1

G(A) ←−−− K1
G(X) ←−−− K1

G(X,A)

of K∗
G(X)-modules for any finite proper G-CW-pair (X,A). For any pushout X = X1∪AX2

where (X1, A) is a finite proper G-CW-pair, all maps in the induced Mayer-Vietoris sequence
are K∗

G(X)-linear. For finite subgroups H ⊆ G, there are natural isomorphisms K0
G(G/H) ∼=

R(H), and K1
G(G/H) = 0. If G is finite and X is compact, this construction agrees with the

classicial definition.
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The proof of Theorem 3.2 will occupy most of the rest of the section. We first show some
of the properties of K∗

G(−) which hold for any Lie group G and any proper G-CW-complex
X , beginning with homotopy invariance.

Lemma 3.3 (Homotopy invariance) Let G be a Lie group. If f0, f1 : (X,A) −→ (Y,B)
are G-homotopic G-maps between proper G-CW-pairs, then

f ∗
0 = f ∗

1 : K−n
G (Y,B) −−−−−→ K−n

G (X,A)

for all n ≥ 0.

Proof : When n = 0 and A = B = ∅, this follows immediately from Theorem 1.2. The

general case then follows from the definition of K−n
G (X,A).

We next note the following relation between equivariant K-theory for different groups.

Lemma 3.4 (Induction) Let H ⊆ G be an inclusion of Lie groups and let (X,A) be a
proper H-CW-pair. Then G×H (X,A) is a proper G-CW-pair, and there are isomorphisms

iGH : K−n
H (X,A)

∼=
−−−−−→ K−n

G (G×H (X,A))

(for all n ≥ 0) defined by sending [E] to [G×H E].

Proof : This is clear when A = ∅. When A 6= ∅, it follows since

G×H(X ∪A X) ∼= (G×HX) ∪G×HA (G×HX).

The next two lemmas are also very elementary.

Lemma 3.5 (Free quotients) Let G be a Lie group. Let (X,A) be a proper G-CW-pair
for which the normal subgroup H ⊳ G acts freely on X. Then the projection pr : X → X/H
induces an isomorphism

pr∗ : K−n
G/H(X/H,A/H)

∼=
−−−−−→ K−n

G (X,A).

Proof : This is quickly reduced to the case n = 0 and A = ∅, for which the inverse of the
above map is defined by sending [E] ∈ KG(X) to [E/H ] ∈ KG/H(X/H).
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Lemma 3.6 Let G be a Lie group, and let (X,A) be a proper G-CW-pair. Suppose that
X =

∐
i∈I Xi, the disjoint union of open G-invariant subspaces Xi (for any index set I), and

set Ai = A ∩Xi. Then there is a natural isomorphism

K−n
G (X,A)

∼=
−−−−→

∏

i∈I

K−n
G (Xi, Ai)

induced by the inclusions of the components.

We now assume, throughout (most of) the rest of the section, that G is a discrete group.
When proving excision and constructing the exact sequences for equivariant K-theory, we
need to know when a G-vector bundle E0 over a G-subspace A ⊆ X can be embedded as a
summand of some bundle E over X . Suppose for simplicity that X/G is compact. If G is a
finite group (or a compact Lie group), then it is easy to find E, since any G-vector bundle
over a compact G-CW-complex is a summand of some product bundle. This is no longer
the case when G is not compact, and instead of product bundles we will construct E using
the bundles constructed in Corollary 2.8.

Note that the following lemma does not hold when G is a noncompact Lie group of
positive dimension, even in the special case where X is finite. In fact, Phillips [15, §9] has
shown that in this situation, equivariant K-theory defined via (finite-dimensional) G-vector
bundles need not be an equivariant cohomology theory. We will discuss this in more detail
in Section 5.

Lemma 3.7 Assume G is discrete, let ϕ : X → Y be an equivariant map between finite
proper G-CW-complexes, and let E ′ → X be a G-vector bundle. Then there is a G-vector
bundle E → Y such that E ′ is a summand of ϕ∗E.

Proof : Let m be the maximum dimension of any fiber of E ′. By Corollary 2.8, there
is a G-vector bundle F → Y such that each fiber F |y is a multiple of the regular Gy-
representation. After possibly replacing F by some iterated direct sum with itself, we can
assume that for each x ∈ X , (ϕ∗F )|x ∼= F |ϕ(x) contains at least m copies of the regular
representation of Gx; and hence that there is a Gx-linear injection of E ′|x into (ϕ∗F )|x. This
extends to a monomorphism of G-vector bundles from E ′|Gx into (ϕ∗F )|Gx, which by Lemma
1.3 extends to a bundle map fx : E ′ → ϕ∗F covering the identity on X . In particular, fx is
a monomorphism over some open G-invariant neighborhood Ux of Gx in X .

Since X/G is compact, we can choose x1, . . . , xn ∈ X such that X is covered by the
sets Ux1 , . . . , Uxn

. The sum of the fxi
is then a monomorphism f : E ′ → ϕ∗(F n) of bundles

covering the identity on X . The image of f is a G-invariant subbundle of ϕ∗(F n) (cf.
[3, Lemma 1.3.1]). And via a Hermitian metric on F , it is seen to be a G-vector bundle
summand.

The Mayer-Vietoris exact sequence follows as a consequence of Lemma 3.7.
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Lemma 3.8 (Mayer-Vietoris sequence) Assume G is discrete. Let

A
i1−−−→ X1

i2

y j1

y

X2
j2−−−→ X

be a pushout square of finite proper G-CW-complexes, where i1 and j2 are inclusions of
subcomplexes. Then there is a natural exact sequence, infinite to the left

. . .
d−n−1

−−−→ K−n
G (X)

j∗1⊕j∗2−−−→ K−n
G (X1)⊕K

−n
G (X2)

i∗1−i∗2−−−→ K−n
G (A)

d−n

−−→

. . . −−→ K−1
G (A)

d−1

−−→ K0
G(X)

j∗1⊕j∗2−−−→ K0
G(X1)⊕K

0
G(X2)

i∗1−i∗2−−−→ K0
G(A).

(1)

Proof : We first show that the sequence

KG(X)
j∗1⊕j∗2−−−→ KG(X1)⊕KG(X2)

i∗1−i∗2−−−→ KG(A) (2)

is exact, and hence that sequence (1) is exact at K−n
G (X1) ⊕ K−n

G (X2) for all n. Clearly
the composite in (2) is zero. So fix an element (α1, α2) ∈ Ker(i∗1 − i∗2). By Lemma 3.7,
we can add an element of the form ([j∗1E

′], [j∗2E
′]) for some G-vector bundle E ′ → X , and

arrange that α1 = [E1] and α2 = [E2] for some pair of G-vector bundles Ek → Xk. Then
i∗1E1 and i

∗
2E2 are stably isomorphic, and after adding the restrictions of another bundle over

X (Lemma 3.7 again), we can arrange that i∗1E1
∼= i∗2E2. Lemma 1.5 now applies to show

that there is a G-vector bundle E over X such that j∗kE
∼= Ek (k = 1, 2), and hence that

([E1], [E2]) ∈ Im(j∗1 ⊕ j
∗
2).

Assume now that A is a retract of X1. We claim that in this case,

Ker[KG(X)
j∗2−→ KG(X2)]

j∗1−−−→
∼=

Ker[KG(X1)
i∗1−→ KG(A)] (3)

is an isomorphism. It is surjective by the exactness of (2). So fix an element [E] − [E ′] ∈
Ker(j∗1 ⊕ j

∗
2). To simplify the notation, we write E|X1 = j∗1E, E|A = i∗2j

∗
2E, etc. (But we

are not assuming that j1 and i2 are injective.) Let p1 : X1 → A be a retraction, and let
p : X → X2 be its extension to X . Using Lemma 3.7, we can arrange that E|Xk

∼= E ′|Xk

for k = 1, 2. Upon applying Lemma 3.7 to the retraction p : X → X2, we obtain a G-
vector bundle F ′ → X2 such that E ′ is a summand of p∗F ′. Upon stabilizing again, we can
assume that E ′ ∼= p∗F ′, and hence that F ′ ∼= E ′|X2 and E ′|X1

∼= p∗1(F
′|A) ∼= p∗1(E

′|A). Fix
isomorphisms ψk : E|Xk

→ E ′|Xk
covering IdXk

. The automorphism (ψ2|A)◦(ψ1|A)−1 of E ′|A
pulls back, under p1, to an automorphism ϕ of E ′|X1; and by replacing ψ1 by ϕ◦ψ1 we can
arrange that ψ1|A = ψ2|A. Then ψ1 ∪ ψ2 is an isomorphism from E to E ′, and this proves
(3).
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We now return to the general case. For each n ≥ 1,

K−n
G (A) = Ker[KG(A× S

n)→ KG(A)]

∼= Ker[KG(X ∪A×• (A× S
n))

incl∗
−−−→ KG(X)] (by (3))

∼= Ker[KG((X1 ×D
n) ∪A×Sn−1 (X2 ×D

n))
(−,•)∗

−−−→ KG(X)], (hty. invar.)

the last step since ((X1×•) ∪ (A×Dn)) is a strong deformation retract of X1 ×D
n. Define

d−n : K−n
G (A) → K−n+1

G (X) to be the homomorphism which makes the following diagram
commute:

0 −−−→ K−n
G (A) −−−→ KG((X1×Dn) ∪A×Sn−1 (X2×Dn))

(−,•)∗

−−−→ KG(X) −−−→ 0

d−n

y incl∗

y Id

y

0 −−−→ K−n+1
G (X) −−−→ KG(X × Sn−1)

(−,•)∗

−−−→ KG(X) −−−→ 0

We have already shown that sequence (1) is exact at K−n
G (X1)⊕K

−n
G (X2) for all n. To see

its exactness at K−n+1
G (X) and K−n

G (A) (for any n ≥ 1), apply the exactness of (2) to the
following split inclusion of pushout squares:

X1 ∐X2 −−−→ X1 ∐X2y
y

X −−−→ X
y

y

X −−−→ X

incl
−−−→

(X1 ∐X2)× Sn−1 −−−→ (X1×D
n)∐ (X2×D

n)
y

y

X × Sn−1 −−−→ (X1×D
n) ∪A×Sn−1 (X2×D

n)
y

y

X −−−→ (X1×S
n) ∪A×• (X2×S

n).

The upper pair of squares induces a split surjection of exact sequences whose kernel yields
the exactness of (1) at K−n+1

G (X). And since

Ker
[
KG((X1×S

n) ∪A×• (X2×S
n)) −−−→ KG(X)

]

∼= Ker
[
KG((X1×S

n)∐ (X2×S
n)) −−→ KG(X1 ∐X2)

]
∼= K−n

G (X1)⊕K
−n
G (X2)

by (3), the lower pair of squares induces a split surjection of exact sequences whose kernel
yields the exactness of (1) at K−n

G (A).

Excision, and the long exact sequence for a pair, follow as immediate consequences of
the Mayer-Vietoris sequence.

Lemma 3.9 (Excision) Assume G is discrete. Let

ϕ : (X,A) −−−−−→ (Y,B)

be a map of finite proper G-CW-pairs, such that Y ∼= B∪ϕ|AX. Then

ϕ∗ : K−n
G (Y,B) −−−−−→ K−n

G (X,A)

is an isomorphism for all n ≥ 0.
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Proof : For each n, the square

X −−−→ Yy
y

X ∪A X −−−→ Y ∪B Y

is a pushout, and X is a retract of X ∪AX . So its Mayer-Vietoris sequence splits into short
exact sequences

0 −−→ K−n
G (Y ∪B Y ) −−−−→ K−n

G (X ∪A X)⊕K−n
G (Y ) −−−−→ K−n

G (X) −−→ 0.

And hence K−n
G (Y,B) ∼= K−n

G (X,A).

Lemma 3.10 (Exactness) Assume G is discrete, and let (X,A) be a finite proper G-CW-
pair. Then the following sequence, extending infinitely far to the left, is natural and exact:

. . .
δ−n−1

−−−→ K−n
G (X,A)

i∗
−−−→ K−n

G (X)
j∗

−−−→ K−n
G (A)

δ−n

−−−→ K−n+1
G (X,A)

i∗
−−−→

. . .
δ−1

−−−→ K0
G(X,A)

i∗
−−−→ K0

G(X)
j∗

−−−→ K0
G(A).

Proof : This follows immediately from the Mayer-Vietoris sequence for the square

A −−−→ Xy i2

y

X
i1−−−→ X ∪A X.

In the nonequivariant case, K(X) ∼= K(X) for any finite dimensional CW-complex X :
since any mapX → BU factors through some BU(n). The following example shows that this
is no longer true in the equivariant case, even for actions of finite groups: the Mayer-Vietoris
sequence need not be exact in this situation.

Example 3.11 Fix any finite group G 6= 1. Define X = (G× R)/ ∼, where (g, n) ∼ (1, n)
for any g ∈ G and any n ∈ Z. For each n ∈ Z, set An = (G× [n− 1

2
, n+ 1

2
])/(G×{n}). Set

X1 =
∐

n∈ZA2n, X2 =
∐

n∈ZA2n+1, and X0 = X1 ∩X2. Let ik : Xk → X and jk : X0 → Xk

(k = 1, 2) denote the inclusions. Then the sequence

KG(X)
(i∗1 ,i

∗
2)−−−−−−→ KG(X1)⊕KG(X2)

j∗1−j∗2−−−−−−→ KG(X0)

is not exact.
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Proof : For each n, KG(An) ∼= R(G) (each An is equivariantly contractible); and the kernel
of the restriction mapKG(An)→ KG(An∩X0) is (under this identification) the augmentation
ideal IR(G). Choose representations Vn, Wn (all n ∈ Z) such that dim(Vn) = dim(Wn),
Hom(Vn,Wn) = 0, and {dim(Vn)} is unbounded. Then the element

(
{[V2n×A2n]− [W2n×A2n]}n∈Z, {[V2n+1×A2n+1]− [W2n+1×A2n+1]}n∈Z

)

lies in Ker(j∗1 − j
∗
2), but not in Im(i∗1, i

∗
2).

We now consider products on K∗
G(X) and on K∗

G(X,A). For any proper G-CW-complex
X , tensor product of G-vector bundles makes KG(X) into a commutative ring, and all
induced maps f ∗ : KG(Y )→ KG(X) are ring homomorphisms. For each n,m ≥ 0,

K−n−m
G (X) ∼= Ker[K−m

G (X × Sn) −−→ K−m
G (X)]

= Ker
[
KG(X × S

n × Sm) −−→ KG(X × S
n)⊕KG(X × S

m)
]
,

where the first isomorphism follows from the usual Mayer-Vietoris sequences. Hence

KG(X × S
n)⊗KG(X × S

m)
mult ◦ (p∗1⊗p∗2)−−−−−−−−→ KG(X × S

n × Sm)

restricts to a homomorphism

K−n
G (X)⊗K−m

G (X) −−−−→ K−m−n
G (X).

By applying the above definition with n = 0 or m = 0, the multiplicative identity for
KG(X) is seen to be an identity for K∗

G(X). Associativity of the graded product is clear,
and graded commutativity follows upon showing (using a Mayer-Vietoris sequence) that
composition with a degree −1 map Sn → Sn induces multiplication by −1 on K−n(X).
This product thus makes K∗

G(X) into a ring. Clearly, f ∗ : K∗
G(Y ) → K∗

G(X) is a ring
homomorphism for any G-map f : X → Y .

For a finite proper G-CW-pair (X,A), K∗
G(X ∪A X) → K∗

G(X) is a split surjection and
ring homomorphism (and split by a ring homomorphism), and so its kernel is a K∗

G(X)-
module. For any X = X1 ∪A X2, where (X1, A) is a finite proper G-CW-pair, the boundary
map in the corresponding Mayer-Vietoris sequence is K∗

G(X)-linear, since it is defined via
a certain map between spaces which commutes with their (split) projections onto X . And
hence the boundary maps in the long exact sequence for a pair (X,A) are K∗

G(X)-linear,
since they are defined to be the boundary maps of a certain Mayer-Vietoris sequence all of
whose spaces map to X .

It remains to prove Bott periodicity in this situation. Recall that K̃(S2)
def
= Ker[K(S2)→

K(pt)] ∼= Z, and is generated by the Bott element B ∈ K̃(S2): the element [S2×C]− [H ] ∈

K̃(S2), where H is the canonical complex line bundle over S2 = CP1. For any finite proper
G-CW-complex X , there is an obvious pairing

K−n
G (X)⊗ K̃(S2)

⊗
−−−−→ Ker[K−n

G (X × S2)→ K−n
G (X × pt)] ∼= K−n−2

G (X),
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induced by (external) tensor product of bundles. Evaluation at the Bott element now defines
a homomorphism

b = b(X) : K−n
G (X) −−−−→ K−n−2

G (X),

which by construction is natural in X . And this is then extends to a homomorphism

b = b∗(X,A) : K−n
G (X,A) −−−−→ K−n−2

G (X,A)

defined for any finite proper G-CW-pair (X,A) and all n ≥ 0.

Theorem 3.12 (Equivariant Bott periodicity) Assume G is discrete. Then the Bott
homomorphism

b = b(X,A) : K−n
G (X,A) −−−−−→ K−n−2(X,A)

is an isomorphism for any discrete group G and any finite proper G-CW-pair (X,A) (and
all n ≥ 0).

Proof : Assume first that X = Y ∪ϕ (G/H × Dm), where H ⊆ G is finite and ϕ :
G/H × Sm−1 → Y is a G-map; and assume inductively that b(Y ) is an isomorphism. Since

K−n
G (G/H × Sm−1) ∼= K−n

H (Sm−1) and K−n
G (G/H ×Dm) ∼= K−n

H (Dm),

the Bott homomorphisms b(G/H×Sm−1) and b(G/H×Dm) are isomorphisms by the equiv-
ariant Bott periodicity theorem for actions of finite groups [4, Theorem 4.3]. The Bott map
is natural, and compatible with the various boundary operators in the Mayer-Vietoris se-
quence (in non-positive degrees) for Y , X , G/H × Sm−1, and G/H × Dm; and so b(X) is
an isomorphism by the 5-lemma. The proof that b(X,A) is an isomorphism for an arbitrary
proper finite G-CW-pair (X,A) now follows immediately from the definitions of the relative
groups.

We are now ready to prove the main theorem. Define, for all n ∈ Z,

Kn
G(X,A) =

{
K0

G(X,A) if n is even

K−1
G (X,A) if n is odd.

For any finite proper G-CW-pair (X,A), define the boundary operator δn : Kn
G(A) →

Kn+1
G (X,A) to be δ : K−1

G (A)→ K0
G(X,A) if n is odd, and to be the composite

K0
G(A)

b
−−−−−→

∼=
K−2

G (A)
δ−2

−−−−−→ K−1
G (X,A)

if n is even.

Proof of Theorem 3.2: We have already proven excision (Lemma 3.9) and homotopy in-
variance (Lemma 3.3). The long exact sequence of a pair follows from that in negative
degrees (Lemma 3.10), and the fact that the Bott map is natural and commutes with the
boundary operators δ−n. The same holds for the product structure which comes from that
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on K−n
G (X,A). For any X = X1 ∪A X2, the boundary map in the corresponding Mayer-

Vietoris sequence is K∗
G(X)-linear, since it is defined via a certain map between spaces which

commutes with their (split) projections onto X . And hence the boundary maps in the long
exact sequence for a pair (X,A) are K∗

G(X)-linear, since they are defined to be the boundary
maps of a certain Mayer-Vietoris sequence all of whose spaces map to X . The other claims
are immediate.

We next consider the Thom isomorphism theorem for proper actions of infinite discrete
groups. This first requires a slight detour. The Thom class of a G-vector bundle E is an
element in KG(D(E), S(E)), where S(E) ⊆ D(E) denote the unit sphere and disk bundles
in E (with respect to some G-invariant metric). This is most easily defined in terms of a
chain complex of vector bundles over D(E), and we must first explain how such a chain
complex determines an element in K-theory.

A G-vector bundle chain complex over a proper G-CW-pair (X,A) is a finite-dimensional
chain complex (C∗, c∗) of G-vector bundles over X whose restriction to A is acyclic. In other
words, for some N > 0,

0 −−→ CN
cN−−−→ CN−1

cN−1
−−−→ · · ·

c3−−−→ C2
c2−−−→ C1

c1−−−→ C0 −−→ 0

is a sequence of G-vector bundles and bundle maps, such that cn−1◦cn = 0 for all n, and such
that restriction to the fibers over any x ∈ A is exact. When G is compact, the monoid of G-
vector bundle chain complexes over (X,A), modulo an appropriate submonoid, is isomorphic
to KG(X,A) by a theorem of Segal [18, Proposition 3.1]. In a later paper, we will prove this
in our present setting, for proper actions of infinite discrete groups. But for now, all we need
to know is that any such complex defines an element of KG(X,A) in a natural (functorial)
way.

Fix a G-vector bundle chain complex (C∗, c∗) over (X,A). For each n, set C ′
n =

Im(cn+1|A) = Ker(cn|A). Each C ′
n ⊆ Cn is a G-invariant subbundle: this follows by induc-

tion on n, since the kernel of the surjection Cn|A
cn
−։ C ′

n−1 is a subbundle (cf. [12, Theorems
5.13 & 6.3]). Let C ′′

n ⊆ Cn|A be any G-invariant complementary bundle to C ′
n; defined,

for example, using a G-invariant Hermitian metric on Cn. Thus, for each n, cn sends C ′′
n

isomorphically to C ′
n−1. Set Codd = ⊕n∈ZC2n+1 and Cev = ⊕n∈ZC2n, let fC : Codd|A → Cev|A

be the sum of the isomorphisms

C ′
2n+1

(c2n+2)−1

−−−−−→
∼=

C ′′
2n+2 and C ′′

2n+1

c2n+1
−−−−→

∼=
C ′

2n.

Finally, define

[C∗, c∗] = [Codd ∪fC Cev]− [Cev ∪Id Cev] ∈ Ker
[
KG(X ∪A X)

i∗2−−→ KG(X)
]
= KG(X,A).

This is independent of the choice of C ′′
n, since there is an affine structure on the space of all

complementary bundles (and hence a homotopy between any two of them).

Now let p : E → X be an n-dimensional G-vector bundle over a proper G-CW-complex
X , and set pD = p|D(E). Consider the cochain complex of G-vector bundles (Λkp∗DE, δ)
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over (D(E), S(E)), which over any v ∈ D(E) takes the form

0 −−→ Λ0Ep(v)
∧v
−−−→ Λ1Ep(v)

∧v
−−−→ Λ2Ep(v)

∧v
−−−→ . . .

∧v
−−−→ ΛnEp(v) −−→ 0.

Here, ∧v denotes the exterior product with the element v ∈ Ep(v). One easily checks that
this sequence is exact for all v not in the zero section of E.

There is a technical problem here: D(E) and S(E) do not have natural structures as
G-CW-complexes, and so K∗

G(D(E), S(E)) is not defined in Definition 3.1. It is not difficult,
however, to modify the definitions (and the proof of Theorem 3.2) to include this case: either
by showing that (D(E), S(E)) has the G-homotopy type of a finite proper G-CW-pair, or
via a more general definition of equivariant cellular complexes, or by constructing K∗

G(−)
as an equivariant cohomology theory for all proper G-spaces with compact quotient. This
last approach will be taken by the authors in a later, more technical, paper. For now, we
just assume that equivariant K-theory has been defined, in some way or other, for disk and
sphere bundles of G-vector bundles over finite proper G-CW-complexes.

Definition 3.13 For any G-vector bundle E over X, the Thom class of E is the element

λE ∈ K
0
G(D(E), S(E)),

defined to be the class of the cochain complex (Λ∗(p∗DE), δ) over (D(E), S(E)) as defined
above. The Thom homomorphism is the composite

TE : K∗
G(X)

p∗
D−−−−→
∼=

K∗
G(D(E))

·λE−−−−→ K∗
G(D(E), S(E)),

where the second map is multiplication with the Thom class.

Theorem 3.14 (Thom isomorphism theorem) Assume G is discrete. Then for any G-
vector bundle p : E → X over a finite proper G-CW-complex X, the Thom homomorphism

TE : K∗
G(X)

∼=
−−−−→ K∗

G(D(E), S(E))

is an isomorphism.

Proof : Assume first that X = G/H × Y , where Y = Sn−1 or Dn, and where E|Y ∼= V × Y
for some H-representation V . Then

Kn
G(X) ∼= Kn

G(G/H × Y )
∼= Kn

H(Y );

and

Kn
G(D(E), S(E)) ∼= Kn

G

(
G×H(D(V )× Y ), G×H(S(V )× Y )

)

∼= Kn
H

(
D(V )× Y, S(V )× Y

)
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(the last step by Lemma 3.4). So in this case, TE is an isomorphism by the Thom isomorphism
theorem for actions of finite groups [4, Theorem 4.3].

Now assume that X = Y ∪ϕ (G/H ×Dn), where H is finite, ϕ : G/H × Sn−1 → Y is a
G-map, and TE|Y is an isomorphism. There is a relative Mayer-Vietoris sequence involving
the groups K∗

G(D(E|A), S(E|A)) for A = X , Y , G/H×Dn, and G/H×Sn−1: this follows
immediately from the usual Mayer-Vietoris sequence and our definition of the relative groups.
Since all maps in both Mayer-Vietoris sequences — for X and for (D(E), S(E)) — are
K∗

G(X)-linear (Lemma 3.8), they commute with the Thom homomorphisms. So TE is an
isomorphism by the 5-lemma.

So far, we have worked entirely with complex K-theory. To finish the section, we note
that the results of this section all hold in the real case as well. Define KOG(X), for any
discrete G and any finite proper G-CW-complex X , to be the Grothendieck group of real
G-vector bundles over X , and extend this to a functor KO−n

G (X,A) as in Definition 3.1. The
key to proving the exactness properties of KG was Lemma 3.7 (given ϕ : X → Y , any bundle
over X is contained in the pullback of a bundle over Y ); and this automatically holds in
the real case using the forgetful and induction functors between complex and real G-vector
bundles. Bott periodicity still holds, but with period eight: just as in the complex case, this
reduces to the Bott periodicity theorem for KOG(−) when G is a finite group, which was
shown in [4, Theorem 6.1]. We thus get:

Theorem 3.15 For any discrete group G, the groups KO−n
G (X,A) extend to a multiplicative

equivariant cohomology theory on the category of finite proper G-CW-pairs. In particular,
KO∗

G(−) is a homotopy invariant contravariant functor, satisfies excision, and there are
exact sequences

· · · −−−→ KOn
G(X,A) −−−→ KOn

G(X) −−−→ KOn
G(A) −−−→ KOn+1

G (X,A) −−−→ · · · .

There are natural Bott periodicity isomorphisms KOn
G(X)

b(X)
−−−→

∼=
KOn−8

G (X). For any

finite subgroup H ⊆ G, there are natural isomorphisms KO∗
G(G/H) ∼= KO∗

H(pt), and in
particular KO0

G(G/H) ∼= RO(H).

4. The completion theorem

Given a discrete group G, we prove here a completion theorem, analogous to that of
Atiyah and Segal [6] for actions of compact Lie groups. We show that for any finite proper
G-CW-complex X , K∗(EG×GX) is the completion of K∗

G(X) with respect to a certain
ideal. When the universal space EFIN (G) (see Definition 2.1) for the family FIN of finite
subgroups of G has the G-homotopy type of a finite-dimensional G-CW-complex, and there

24



is an upper bound on the order of finite subgroups of G, then the ideal in question is that
generated by the augmentation ideal of KG(EFIN (G)).

In fact, as in the theorem of Atiyah and Segal, we prove an isomorphism not just of
inverse limits, but also of inverse systems. This has the advantage that it gives a stronger
result (Theorem 4.3), and it easily implies that

{
(EG×GX)(n)

}
satisfies the Mittag-Leffler

condition and has vanishing lim←−
1. It is also needed in the proof of Theorem 4.3, which is

carried out by induction over the number of cells using a version of the five-lemma.

We first fix our notation for handling pro-groups (by which we always mean pro-abelian
groups). For the definitions in full generality, see [6, §2]. For simplicity, all pro-groups dealt
with here will be indexed by the nonnegative (or positive) integers. We write (G,α) for the
inverse system

α3−−−→ G3
α2−−−→ G2

α1−−−→ G1
α0−−−→ G0,

and also write αj
i = αi◦ · · · ◦αj−1 : Gj → Gi for j ≥ i (αi

i = IdGi
). For the purposes here,

it will suffice (and greatly simplify the notation) to work with “strict” pro-homomorphisms:
homomorphisms f : (G,α)→ (H, β) such that fi : Gi → Hi, and βi−1◦fi = fi−1◦αi−1, for all
i. Kernels and cokernels of strict homomorphisms are defined in the obvious way.

A pro-group will be called pro-trivial if for each i ≥ 0, there is some j ≥ i such that
αj
i = 0. A strict homomorphism f : (G,α) → (H, β) is a isomorphism of pro-groups if

and only if Ker(f) and Coker(f) are both pro-trivial, or, equivalently, for each i ≥ 0 there
is some j ≥ i such that Im(βj

i ) ⊆ Im(fi) and Ker(fj) ⊆ Ker(αj
i ). A sequence of strict

homomorphisms

(G,α)
f

−−−−−→ (G′, α′)
f ′

−−−−−→ (G′′, α′′)

will be called exact if f ′
i◦fi = 0 for each i, and if the pro-group

{
Ker(f ′

i)/ Im(fi)
}
i≥0

is
pro-trivial. The following result will be needed.

Lemma 4.1 Fix any commutative noetherian ring A, and any ideal I ⊆ A. Then for any
exact sequence M ′ →M →M ′′ of finitely generated A-modules, the sequence

{M ′/InM ′} −−−−→ {M/InM} −−−−→ {M ′′/InM ′′}

of pro-groups (pro-A-modules) is exact.

Proof : It suffices to prove this when the sequence is short exact. RegardM ′ as a submodule
of M , and consider the exact sequence

0 −−→
{

(InM)∩M ′

InM ′

}
−−−→ {M ′/InM ′} −−−→ {M/InM} −−−→ {M ′′/InM ′′} −−→ 0.

By [5, Theorem 10.11 on page 107], the filtrations {(InM)∩M ′} and {InM ′} of M ′ have
“bounded difference”: i.e., there exists k > 0 such that (In+kM)∩M ′ ⊆ InM ′ for all n. The
first term in the above exact sequence is thus pro-trivial, and so the remaining terms define
a short exact sequence of pro-groups.
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To avoid ambiguity, for any proper G-CW-complex X , the augmentation ideal IKG(X) ⊆
KG(X) is defined to be the set of elements represented by virtual G-vector bundles of di-
mension zero on all connected components. In other words,

IKG(X) = Ker
[
KG(X)

dim
−−−−→

∏
π0(X)/G

Z
]
,

where the ring homomorphism dim sends [E] to the map from π0(X)/G −→ Z which assigns
to the G-orbit through a path component C ⊂ X the dimension of the fiber Ex for any
point x ∈ C. Given a G-map f : X −→ Y , the ring homomorphism f ∗ : KG(Y ) −→
KG(X) induces a map f ∗ : IKG(Y ) −→ IKG(X). Similarly, when working with ordinary
nonequivariant K-theory, we define

IK∗(X) = Ker
[
K∗(X)

Res
−−−−→

∏
π0(X)

K∗(pt)
]
.

Lemma 4.2 Let X be a CW-complex of dimension n−1. Then any n-fold product of ele-
ments in IK∗(X) is zero.

Proof : Write X = Y ∪ A, where Y and A are closed subsets, Y contains X(n−2) as a
deformation retract, and A is a disjoint union of (n−1)-disks. Fix elements v1, v2, . . . , vn ∈
IK∗(X). We can assume by induction that v1 · · · vn−1 vanishes after restricting to Y , and
hence that it is the image of an element u ∈ K∗(X, Y ). Also, vn clearly vanishes after
restricting to A, and hence is the image of an element v ∈ K∗(X,A). Their product is
thus the image in K∗(X) of the element uv ∈ K∗(X, Y ∪ A) = 0 (cf. [12, II.5.8]), and so
v1 · · · vn = 0.

Fix any finite proper G-CW-complex X , and any map f : X → L to a finite dimensional
proper G-CW-complex L whose isotropy subgroups have bounded order. Regard K∗

G(X) as
a module over the ring KG(L). Set I = IKG(L). For any n ≥ 0, the composite

In·K∗
G(X) ⊆ K∗

G(X)
proj∗

−−−→ K∗
G(EG×X) −−−→ K∗(EG×GX)

res
−−−→ K∗((EG×GX)(n−1))

∼=
−−−→ K∗((EG×GX)(n−1))

is zero, since the image is contained in IK∗((EG×GX)(n−1))n = 0 which vanishes by Lemma
4.2. (Recall that K∗(Y ) ∼= K∗(Y ) for finite dimensional Y , since any map Y → BU factors
through some BU(n).) This thus defines a homomorphism of pro-groups

λX,f :
{
K∗

G(X)
/
In·K∗

G(X)
}
n≥1
−−−−−→

{
K∗

(
(EG×GX)(n−1)

)}
n≥1

.

As usual, (−)̂I denotes completion with respect to an ideal I.

Theorem 4.3 (Completion theorem) Let G be a discrete group. Fix a finite proper G-CW-
complex X, a finite dimensional proper G-CW-complex L whose isotropy subgroups have
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bounded order, and a G-map f : X → L. Regard K∗
G(X) as a module over KG(L), and let

I = IKG(L) be the augmentation ideal. Then

λX,f :
{
K∗

G(X)
/
In·K∗

G(X)
}
n≥1
−−−−−→

{
K∗

(
(EG×GX)(n−1)

)}
n≥1

.

is an isomorphism of pro-groups. Also, the inverse system
{
K∗

(
(EG×GX)(n)

)}
satisfies the

Mittag-Leffler condition. In particular,

lim←−
1K∗

(
(EG×GX)(n)

)
= 0,

and λX,f induces an isomorphism

K∗
G(X )̂I

∼=
−−−−−→ K∗(EG×GX) ∼= lim←−K

∗
(
(EG×GX)(n)

)
.

Proof : Assume that λX,f is an isomorphism. Then the system
{
K∗

(
(EG×GX)(n)

)}
n≥1

satisfies the Mittag-Leffler condition because
{
K∗

G(X)/In
}

does. In particular,

lim←−
1K∗

(
(EG×GX)(n)

)
= 0, and so K∗(EG×GX) ∼= lim←−K

∗
(
(EG×GX)(n)

)
(cf. [6, Proposi-

tion 4.1]).

It remains to show that λX,f is an isomorphism.

Step 1 Assume first that X = G/H , for some finite subgroup H ⊆ G. Then the following
diagram commutes

KG(L)
f∗

−−−→ K∗
G(G/H)

pr1−−−→ K∗(EG×GG/H)

evf(eH)

y eveH

y∼= q

y∼=

R(H) −−−→
∼=

K∗
H(∗)

pr2−−−→ K∗(BH),

where evf(eH) sends the class of a G-vector bundle E → L to the class of the fiber E|f(eH)

considered as anH-representation and the other maps are the obvious ones. Also, pr2 induces
an isomorphism of pro-groups

{
K∗

H(∗)/IR(H)n·K∗
H(∗)

}
n≥1
−−−−→

{
K∗

(
(BH)(n−1)

)}
n≥1

by the theorem of Atiyah and Segal [6] (where IR(H) denotes the augmentation ideal of
R(H)). We want to show that pr1 induces an isomorphism of pro-groups

{
K∗

G(G/H)/In·K∗
G(G/H)

}
n≥1
−−−−→

{
K∗

(
(EG×G G/H)(n−1)

)}
n≥1

.

So we must show that for some k, IR(H)k ⊆ I ′
def
= evf(eH)(I).

This means showing that the ideal IR(H)/I ′ is nilpotent; or equivalently (since R(H) is
noetherian) that it is contained in all prime ideals of R(H)/I ′ (cf. [5, Proposition 1.8]).
In other words, we must show that every prime ideal of R(H) which contains I ′ also
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contains IR(H). Fix any prime ideal P ⊆ R(H) which does not contain IR(H). Set
ζ = exp(2πi/|H|), and A = Z[ζ ]. By a result of Atiyah [2, Lemma 6.2], there is a prime
ideal p ⊆ A and an element s ∈ H such that

P = {v ∈ R(G) |χv(s) ∈ p}.

Also, s 6= 1 since P 6⊇ IR(H). Set p = char(A/p) (possibly p = 0). By [2, Lemma 6.3], we
can assume that s has order prime to p.

By Corollary 2.9 (or Corollary 2.8 if p = 0), there is a G-vector bundle E → L such
that p∤ dim(E), and such that (E|x)|〈s〉 is a multiple of the regular representation of 〈s〉. In
particular, χE|x(s) = 0. Set k = dim(E), and v = [Ck] − [E|x] ∈ R(H). Then ([Ck×L] −
[E]) ∈ I, so v ∈ I ′. Also, χv(s) = k 6∈ p, so v 6∈ P, and thus P 6⊇ I ′.

Step 2 We now prove the theorem by induction over the dimension of X and the number of
cells in a given dimension. It holds when dim(X) = 0 by Step 1. So assume that dim(X) =
m > 0. Write X = Y ∪ϕ

(
G/H×Dm

)
, for some attaching map ϕ : G/H×Sm−1 → Y , where

λY,L is an isomorphism. Consider the Mayer-Vietoris sequence of Lemma 3.8:

−−−→ K∗
G(X) −−−→ K∗

G(Y )⊕K
∗
G(G/H×D

m) −−−→ K∗
G(G/H×S

m−1) −−−→

for X as a pushout of Y and G/H×Dm ≃ G/H over G/H×Sm−1. All terms in this sequence
areKG(X)-modules and all homomorphisms KG(X)-linear, and the KG(L)-module structure
on each term is induced from the KG(X)-module structure. So if we let I ′ ⊆ KG(X) be the
ideal generated by the image of I, then dividing out by (I ′)n is the same as dividing out
by In for all terms. In addition, KG(X) is noetherian (in fact, a finitely generated abelian
group), and so the Mayer-Vietoris sequence above induces an exact sequence of pro-groups

−−−−→
{
K∗

G(X)/In
}
n≥1
−−−−→

{
K∗

G(Y )/I
n ⊕K∗

G(G/H×D
m)/In

}
n≥1

−−−−→
{
K∗

G(G/H×S
m−1)/In

}
n≥1
−−−−→

by Lemma 4.1. (We write here M/In for M/InM for short.) Since the obvious strict map
of progroups {

K∗
(
(EG×GX)(n−1)

)}
n≥1
−→

{
K∗

(
EG(n−1)×GX

)}
n≥1

is an isomorphism of progroups, the various long exact Mayer-Vietoris sequences of the
pushouts EG(n−1) ×G X = EG(n−1) ×G Y ∪Id×Gϕ

(
EG(n−1) ×G (G/H × Dm)

)
yield a long

exact sequence of progroups

−−−−→
{
K∗

(
(EG×G X)(n−1)

)}
n≥1
−−−−→

{
K∗

(
(EG×G Y )

(n−1)
)
⊕K∗

(
(EG×G (G/H×Dm))(n−1)

)}
n≥1
−−−−→

{
K∗

(
(EG×G (G/H×Sm−1))(n−1)

)}
n≥1
−−−−→

The 5-lemma for pro-groups (whose proof is essentially the same as that of the usual
5-lemma), together with the induction hypothesis applied to Y and G/H × Sm−1, and Step
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1 applied to G/H × Dm ≃G G/H , now proves that λX,f is an isomorphism of pro-groups.

As one immediate consequence of Theorem 4.3, we get:

Theorem 4.4 Let EFIN (G) be the universal space for the family FIN of finite subgroups
of G (introduced in Definition 2.1). Set I = IKG(EFIN (G)).

(a) If EFIN (G) has the G-homotopy type of a finite dimensional G-CW-complex and there
is an upper bound on the orders of the finite order subgroups of G, then for any finite
proper G-CW-complex X,

K∗(EG×GX) ∼= K∗
G(X )̂I .

(b) If EFIN (G) has the G-homotopy type of a finite G-CW-complex, then

K∗(BG) ∼= K∗
G(EFIN (G))̂I .

Note that when G is finite, EFIN (G) ≃ ∗ and KG(EFIN (G)) ∼= R(G). So in this case,
Theorem 4.4 is exactly the theorem of Atiyah and Segal. If G is torsion free, then any proper
G-action is free, and so Theorems 4.3 and 4.4 follow immediately from Lemma 4.2.

Notice that the formulation in Theorem 4.4 doesn’t apply to all discrete groups G, but
only to those with bounded torsion and for which EFIN (G) is finite dimensional. One of the
interesting features of Theorem 4.3 is that one doesn’t complete with respect to one single
canonical ideal of KG(X), but rather an ideal which depends on the choice of another space
L . Thus, different choices of ideals yield the same result. In an attempt to give an intrinsic
choice of ideal, we give the following third formulation of the completion theorem.

Theorem 4.5 Let X be any finite proper G-complex. Define

S = {x ∈ IKG(X) | resXH (x) ∈ Im[R(H)→ KH(X
H)], all finite H ⊆ G}.

Here, R(H) → KH(X
H) sends a representation to the product bundle. Let I be the ideal

generated by S. Then
K∗(EG×GX) ∼= K∗

G(X )̂I .

Proof : Let F be the family of subgroups of isotropy subgroups of X , and let L be the
(dim(X) + 1)-skeleton of EF(G). Choose any G-map f : X → L (unique up to homotopy
by Lemma 2.2(b)). Let J ⊆ KG(X) be the ideal generated by f ∗(IKG(L)). Then J ⊆ I ⊆
IKG(X). So

{
K∗

(
(EG×GX)(n)

)}
n≥1
∼=

{
K∗

G(X)
/
Jn·K∗

G(X)
}
n≥1
∼=

{
K∗

G(X)
/
IKG(X)n·K∗

G(X)
}
n≥1

,
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as inverse systems by Theorem 4.3, and so they are all isomorphic to the inverse system

{
K∗

G(X)
/
In·K∗

G(X)
}
n≥1

.

The result now follows upon taking inverse limits.

The completion theorem, in the above forms, also holds for KOG(X), as described in
Theorem 3.15. This can be proven in the same way as Theorem 4.3 above, but the classifying
spaces for real G-vector bundles do not have simply connected fixed point sets, and hence
a more complicated form of the obstruction theory used in Section 2 is needed. Instead of
including those details here, we will prove this result in a different way in a later paper,
using an equivariant version of the Chern character.

5. Proper actions of Lie groups

Recall (Definition 3.1) that we write K−n
G (−) to denote the graded functor defined via

G-vector bundles, also when G is a positive dimensional Lie group. Certain properties of
K−n

G (−), such as homotopy invariance (Lemma 3.3), were shown to hold in this generality.
It was our proof of excision, and of the long exact sequence for a proper G-CW-pair, which
required the assumption that G is discrete. In order to help explain exactly what goes
wrong for Lie groups, we now exhibit an explicit example of a group G for which K−n

G is not
a cohomology theory, and for which the completion theorem fails: even after replacing K−n

G

by the “correct” equivariant K-theory.

Phillips [15] has constructed an equivariant cohomology theory K∗
G(−), for any second

countable locally compact group G, on the category of proper locally compact G-spaces.
This is done using infinite dimensional G-vector bundles with Hilbert space fibers. When G
is a Lie group (or in any situation where G-vector bundles are defined), there is an obvious
natural transformation

ϕG(X) : K∗
G(X) −−−−→ K∗

G(X)

for proper G-CW-complexes. Phillips [15, Example 9.11] also constructs G and X for which
not all elements of K0

G(X) are represented by (finite-dimensional) G-vector bundles over X ;
i.e., for which ϕG(X) is not surjective. In these terms, what we have shown in Section 3
is that ϕG(X) is an isomorphism whenever G is discrete and X is a finite G-CW-complex.
(Since it is an isomorphism for orbits: KG(G/H) ∼= R(H) ∼= KG(G/H) for any finiteH ⊆ G.)
In a later, more technical paper, we will extend this result (still for discrete G) to arbitrary
proper G-spaces with compact orbit space.

Phillips has also shown [16, Theorems 3.3 & 5.3] that ϕG(−) is an isomorphism whenever
the space of connected components of G is compact, and that the completion theorem holds
for KG(−) whenever G is a Lie group with finitely many connected components. The key to

30



showing this is a theorem of Abels [1], which says that any such group G contains a maximal
compact subgroup K, such that any proper G-space X with paracompact orbit space maps
to the quotient G/K. This means that X ∼= G×KY for some K-space Y , and hence that
KG(X) ∼= KK(Y ) ∼= KK(Y ) ∼= KG(X) if X/G is compact.

In order to explain from our point of view what goes wrong for nondiscrete groups, we
now construct a Lie group G, which is somewhat simpler than that used by Phillips, together
with examples to show that K∗

G satisfies neither excision nor exactness. In particular, K∗
G

is not a cohomology theory, and so ϕG(−) is not in general an isomorphism. We also show
that the completion theorem fails for KG(−).

Set T = S1×S1, the 2-torus, and let α ∈ Aut(T ) be the automorphism α(x, y) = (x, xy).

Write G = T
α
⋊ Z: the semidirect product determined by α. We also need to consider the

subgroup
K = 1× S1 = {g−1·α(g) | g ∈ G}

(note that G/K ∼= (T/K)× Z).

Lemma 5.1 Let X be any proper connected (G/T )-CW-complex. Then for any G-vector
bundle E → X, K acts via the identity on E. In particular, for any closed G-invariant
subcomplex A ⊆ X, K∗

G(X,A)
∼= K∗

G/K(X,A).

Proof : For each x ∈ X , the fiber E|x is a T -representation. Since X is connected, these
representations are all isomorphic to some given T -representation V . Also, V and α∗V
are T -isomorphic, because multiplication with the generator z ∈ Z defines an α-equivariant
linear isomorphism from E|x to E|zx. For any irreducible T -representationW , with character
χW ∈ Hom(T, S1), either the χW ◦αn are all distinct, or χW = χW ◦α and K = {g−1α(g) | g ∈
G} ⊆ Ker(χW ). Since dim(V ) <∞, this shows that V must be a sum of irreducible (T/K)-
representations, and thus that K acts on each fiber of E via the identity.

The last statement now follows immediately from the definitions.

It is now easy to see that Lemma 3.7 fails for G. For example, set (X,A) = (R,Z) with
the G-action induced by the translation action of Z = G/T , and let V be a T -representation
upon which K does not act trivially. Then G×TV is a G-vector bundle over A = Z ∼= G/T ,
and it cannot be embedded into any G-vector bundle over X = R since K acts nontrivially.

More generally, let G be any Lie group and let (X,A) be any finite G-CW-pair. If E0 → A
is any G-vector bundle, then an obvious necessary condition for being able to embed it in
a G-vector bundle over X is to be able to choose the fibers: to find for each x ∈ X a Gx-
representation Vx, such that E0|x embeds into Vx for each x ∈ A, and such that the Vx in
any connected component of XH (for any H ⊆ G) are all isomorphic as H-representations.
For discrete G, we can always choose the Vx to be appropriate multiples of the regular
representation of Gx, and this was the first (and easiest) step towards proving Lemma 3.7.

In contrast, for the group G = T
α
⋊ Z, the above example shows that this first step of the

proof fails: we cannot even choose the representations Vx.
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Given this example, it is not at all surprising that excision and exactness fail for K∗
G(−).

By homotopy invariance,

K∗
G(R,Z) ∼= K∗

G(R, [0,
1
2
]+Z) and K∗

G(Z× I,Z× ∂I) ∼= K∗
G([

1
2
, 1]+Z, {0, 1

2
}+Z),

and hence these should be isomorphic if excision holds for K∗
G(−). However:

Example 5.2 For G as above,

K−n
G (R,Z) ∼=

{
R(T/K) if n is odd

0 if n is even
and K−n

G (Z× I,Z× ∂I) ∼=

{
R(T ) if n is odd

0 if n is even.

Thus, excision does not hold for K∗
G(−). Furthermore,

K−n
G (R) ∼= R(T/K) (for all n) and K−n

G (Z) ∼=

{
R(T ) if n is even

0 if n is odd,

and so there is no long exact sequence in K∗
G for the pair (R,Z).

Proof : By Lemma 3.5 and Lemma 5.1,

K−n
G (R,Z) ∼= K−n

G/K(R,Z) ∼= K−n
(T/K)×Z

(R,Z)

∼= K−n
T/K(R/Z, pt) ∼= K−n−1

T/K (pt) ∼=

{
R(T/K) if n is odd

0 if n is even;

and

K−n
G (R) ∼= K−n

G/K(R) ∼= K−n
(T/K)×Z

(R) ∼= K−n
T/K(R/Z) ∼= K−n

T/K(pt)⊕K
−n−1
T/K (pt) ∼= R(T/K)

(for all n). Also, by Lemma 3.4,

K−n
G (Z× I,Z× ∂I) ∼= K−n

T (I, ∂I) ∼= K−n−1
T (pt) ∼=

{
R(T ) if n is odd

0 if n is even;

and similarly

K−n
G (Z) ∼= K−n

T (pt) ∼=

{
R(T ) if n is even

0 if n is odd.

All of these groups are R(T/K)-modules (via the isomorphism G/(K×Z) ∼= T/K), and
all natural maps between them are R(T/K)-linear. But there is no R(T/K)-linear exact
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sequence K0
G(R) → K0

G(Z) → K−1
G (R,Z), since the middle term is infinitely generated and

the others finitely generated.

In fact, ϕG(R) is an isomorphism in this case; i.e., K0
G(R) ∼= K0

G(R) ∼= R(T/K). To see
this, consider the composite

K0
G(R)

ϕG(R)
−−−−−→ K0

G(R)
i∗

−−−−−→ K0
G(Z),

where i : Z → R denotes the inclusion. Under the identifications K0
G(R) ∼= R(T/K)

(see Example 5.2) and K0
G(Z) = K0

G(G/T )
∼= R(T ), i∗◦ϕG(R) corresponds to the inclusion

R(T/K) →֒ R(T ) defined by regarding T/K-representations as T -representations. We have
seen, in the proof of Lemma 5.1, that R(T/K) = R(T )α: the subgroup of elements fixed by
composition with α ∈ Aut(T ). The map i∗ is injective since K0

G(R,Z) ∼= K0
G(Z×I,Z×∂I) =

0. Hence it remains to show that the image of i∗ is contained in R(T )α. This follows since the
action of α on K0

G(Z) = K0
G(G/T )

∼= R(T ) corresponds to the map t∗ : K0
G(Z) −→ K0

G(Z) in-
duced by the G-map t : n 7→ n+1, and since the analogous G-map t : R→ R is G-homotopic
to the identity.

This can now be used to show that the completion theorem (stated in terms of K∗
G or

K∗
G) fails for this group G. Consider the space X = Z. Since RH = R is contractible for any

compact subgroup H ⊆ G, R ≃ ECPCT (G) is a universal proper G-CW-complex. Then

Im[KG(R)
i∗

−−−→ KG(Z) ∼= R(T )] = R(T/K),

while
K0(EG×GZ) ∼= K0(BT ) ∼= R(T )ÎR(T ) 6= R(T ) ̂IR(T/K)

∼= K0
G(Z) ̂IR(T/K).

Here, the completions of R(T ) with respect to IR(T ) and IR(T/K) are distinct since

R(T )ÎR(T )
∼= Z[[x, y]] % Z[[x]][t, t−1] ∼= R(T ) ̂IR(T/K) (where y = t− 1).

In the example constructed above, the reason for the failure of representing KG(−) by
G-vector bundles and of the completion theorem comes down to the fact that the isotropy
subgroup in question is positive dimensional, and hence has infinitely many irreducible repre-
sentations. For example, one of the key lemmas which makes possible our results for actions
of a discrete group G is that any finite proper G-CW-complex has a G-vector bundle over
it whose fibers are free as representations of the isotropy subgroups — and this makes sense
only if the isotropy subgroups are finite. It is thus natural to ask whether these results hold
for any Lie group G and any finite proper G-complex X all of whose isotropy subgroups are
finite. This does, in fact, turn out to be the case — KG(X) ∼= KG(X) and K(EG×GX)
is a completion of KG(X) — but proving it requires working out the details of obstruction
theory for Lie group actions, which is more complicated than that used in Section 2.
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