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Abstract. Let G be a compact Lie group, and let π be any prime
or set of primes. We construct a “π-perfection map”: a continuous
function from the space of conjugacy classes of all closed subgroups
of G to the space of conjugacy classes of π-perfect subgroups with
finite index in their normalizer. We use this to show that the
idempotent elements of the Burnside ring of G localized at π are
in bijective correspondence with the open and closed subsets of the
space of conjugacy classes of π-perfect subgroups of G with finite
index in their normalizer.

1. π-perfection

Let π be a collection of primes, and let π′ denote its complement. A
discrete group H is π-perfect if it has no nontrivial solvable quotient
π-groups. Any finite group H contains a unique maximal π-perfect
subgroup, which we denote here Hπ. Equivalently, Hπ is the minimal
normal subgroup of H such that H/Hπ is a solvable π-group. It is easy
to see that Hπ is the terminal subgroup in the decreasing sequence
of subgroups defined by setting H0 = H , and letting Hn be the sub-
group generated by the commutator [Hn−1, Hn−1] and all π′-elements
of H . All groups are ∅-perfect, while the {all primes}-perfect groups
are exactly the perfect groups in the usual sense.

A compact Lie group H will be called π-perfect if the group π0(H) =
H/H0 of its connected components is π-perfect. Hence the maximal
π-perfect subgroup H ′

π of an arbitrary compact Lie group H is the
preimage in H of the maximal π-perfect subgroup of H/H0. When H
is a closed subgroup in a compact Lie group G, there is a variant of
this construction with better properties, where we replace H ′

π by an
associated subgroup Hπ of G with finite index in its normalizer.
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Let G be a compact Lie group. We give the space of closed subgroups
of G the Hausdorff topology induced by any metric on G. The topology
is compact Hausdorff and independent of the metric.

Definition 1.1. Let Ψ(G) be the space of conjugacy classes of closed

subgroups of G, regarded as a quotient space, with the quotient topology,

of the space of all closed subgroups of G. Let Φ(G) be the subspace of

Ψ(G) consisting of conjugacy classes of subgroups of G with finite index

in their normalizer.

Both Ψ(G) and Φ(G) are countable compact metric spaces, and
hence totally disconnected. For any H ≤ G, we let (H) ∈ Ψ(G) denote
its conjugacy class.

Given a subgroup H ≤ G, there is a canonical way (up to conjugacy)
to include H into a subgroup K ≤ G with finite index in its normalizer
such that the quotient group K/H is a torus.

Definition 1.2. Define

ω : Ψ(G) −−−−−−→ Φ(G)

as follows. For any H ≤ G, let K/H be a maximal torus in NG(H)/H,

and set ω(H) = (K).

By [3, 5.7.5(ii)], the preimage in NG(H) of a maximal torus in
NG(H)/H has finite index in its normalizer. So ω is well defined.
The map ω is continuous, and is a retraction of Ψ(G) onto Φ(G).

Definition 1.3. The π-perfection of a closed subgroup H in a compact

Lie group G is Hπ
def
= ω(H ′

π).

We denote the π-perfection map by Pπ : Ψ(G) −−→ Φ(G). Note that
Hπ depends on the ambient group G, not only on H and π.

The map Ψ(G) −−→ Ψ(G) given by sending H to its maximal π-
perfect subgroup H ′

π is not continuous. The main result of this paper
is the following theorem.

Theorem 1.4. Let G be a compact Lie group. The π-perfection map

Pπ : Ψ(G) −−−−−−→ Φ(G)

is a continuous map.

Section 2 is devoted to a proof of this theorem. In Section 3, we give
an application of the theorem to the Burnside ring A(G) of a compact
Lie group. We prove that the idempotent elements in the Burnside
ring A(G), after localizing at π, are in bijective correspondence with
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open and closed subsets of the space of conjugacy classes of π-perfect
subgroups of G with finite index in its normalizer.

2. Proof of the main theorem

In this section, we prove Theorem 1.4. We will need to refer to the
following well known facts about compact Lie groups.

Proposition 2.1. Let G be any compact Lie group.

(1) (Montgomery & Zippin [8]) For any sequence {Hi} of subgroups

of G which converges to some H ≤ G, there are elements gi ∈ G
such that gi → e and giHig

−1
i ≤ H for all i sufficiently large.

(2) If there is a sequence {Hi} of finite subgroups of G which con-

verges to H ≤ G, then H0 is a torus.

(3) The group Out(G) of outer automorphisms of G is discrete.

(4) For any H ⊳ G such that G/H is a torus, CG(H)0 is a torus, and

G = CG(H)0·H.

Proof. (1) This follows, for example, from [4, I.5.9]: for any neighbor-
hood U ⊆ G of e, there is a neighborhood V of H such that K ⊆ V
implies gKg−1 ≤ H for some g ∈ U .

(2) By (1), we can assume Hi ≤ H for all i. By Jordan’s theorem
[4, IV.6.4], there is some j = j(H) such that every finite subgroup
of H contains a normal abelian subgroup of index at most j. Choose
abelian normal subgroups Ai ⊳ Hi of index less or equal to j. By the
compactness of the space of subgroups of G, there is a subsequence
{Aij} which converges to A in the space of subgroups of H . Then A
is an abelian normal subgroup of H , and [H : A] ≤ j. So H0 ≤ A is a
torus.

(3) Let fi ∈ Aut(G) be a sequence of automorphisms converging
to an automorphism f . Let Gfi, Gf ≤ G × G denote the graphs of
these maps. The sequence {Gfi} converges to Gf , so by (1), Gfi is
subconjugate (hence conjugate) to Gf for i sufficiently large. Hence fi
and f are equal in Out(G) for i large enough.

(4) Since H ⊳ G, the group G/(CG(H)·H) is contained in Out(H),
which is discrete by (3). Hence G and CG(H)·H have the same identity
component. Since G/H is connected, this implies

G/H = (CG(H)·H)/H ∼= CG(H)/Z(H) ∼= CG(H)0/(Z(H) ∩ CG(H)0).
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So G = CG(H)0·H , CG(H)0/Z(H)0 is a connected finite covering group
of a torus and hence a torus, and CG(H)0 is an extension of a torus by
a torus and hence itself a torus. �

We give a useful description of ω(H).

Lemma 2.2. Let G be a compact Lie group, and let H ≤ G be any

closed subgroup. Then ω(H) = (TH) for any maximal torus T in

CG(H).

Proof. By definition, ω(H) = (K) for any K ≤ NG(H) such that K/H
is a maximal torus of NG(H)/H . Since K/H is a torus, Lemma 2.1(4)
implies that CK(H)0 is a torus and K = CK(H)0·H .

Let T be any maximal torus in CG(H)0. Then CK(H)0 is a torus
in CG(H)0 and hence subconjugate to T , while TH/H is a torus in
NG(H)/H and hence subconjugate to K/H . This shows that K =
CK(H)0·H is conjugate to TH , and hence that (TH) = (K) = ω(H).

�

The continuity of ω follows easily from Lemma 2.2. For any sequence
{Hi} of subgroups of G converging to some H ≤ G, we can assume
Hi ≤ H by (1), and hence CG(Hi) ≥ CG(H). The sequence of central-
izers {CG(Hi)} converges to CG(H), since otherwise (after passing to
a subsequence, using the compactness of G) there would be elements
gi ∈ CG(Hi) converging to g /∈ CG(H), which is impossible. Proposi-
tion 2.1(1) then implies that CG(Hi) = CG(H) for i sufficiently large.
Hence for any maximal torus T of CG(H), ω(Hi) = (THi) (i large) by
Lemma 2.2, and the sequence {(THi)} converges to (TH) = ω(H).

Lemma 2.3. Let G be a compact Lie group, and let K ⊳ H ≤ G be a

pair of closed subgroups such that H/K is a torus. Then ω(H) = ω(K).

Proof. Set S = CH(K)0 for short; then S is a torus and H = KS by
Lemma 2.1(4). Let T ≤ CG(K) be any maximal torus which contains
S. Then T is also a maximal torus of CG(H) = CG(KS), and ω(H) =
(HT ) = (KT ) = ω(K) by Lemma 2.2. �

We are now ready to prove the main theorem.

Proof of Theorem 1.4. Since every element of Ψ(G) has a countable
neighborhood basis, it suffices to show, for every sequence {Hi} of
closed subgroups of G which converges to a subgroup H , that there
is a subsequence {Hij} such that {Pπ(Hij )} converges to Pπ(H). By
Lemma 2.1(1) again, we can assume that Hi ≤ H for all i.
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The space of closed subgroups of G is a compact metric space, so
any sequence has an accumulation point. Hence after restricting to a
subsequence, we can assume that {(Hi)

′
π} converges to some subgroup

H ≤ H . Since (Hi)
′
π is normal in Hi for each i, it follows by taking

limits that H ⊳ H .

Clearly, Hi surjects onto H/H0 for i sufficiently large, and hence

(Hi)
′
π surjects onto the π-perfect group H ′

π/H
0. So H surjects onto

H ′
π/H

0, and in particular H ′
π/H is connected.

Since H is normal in H , Lemma 2.1(1) tells us that H0
i ≤ H for i

sufficiently large. In particular, the image Ki of Hi in H/H is a finite

subgroup for i large, and the sequence {Ki} converges to H/H. By

Lemma 2.1(2), this implies that (H/H)0 is a torus, and hence (since

H ′
π/H is connected), that H ′

π/H is a torus.

Thus ω(H) = ω(H ′
π) = Pπ(H) by Lemma 2.3. By the continuity of

ω, the sequence {Pπ(Hi)} = {ω((Hi)
′
π)} converges to ω(H), and this

finishes the proof of the theorem. �

3. Idempotents in the Burnside ring with π′ inverted

For any ring R, we let R(π) denote the localization of R at the set of
primes π; i.e., R with the primes in the complement π′ inverted. For
example, R({p}) = R(p): the localization of R at p.

The Burnside ring of a compact Lie group was defined by tom Dieck
[3]. It generalizes the Burnside ring of a finite group; and (additively)
can be regarded as the free group with basis the set of orbits G/K for
all (K) ∈ Φ(G); i.e., all conjugacy classes of subgroups K ≤ G which
have finite index in their normalizer. For each closed subgroup H ≤ G,
let φH : A(G) −−→ Z be the homomorphism φH(G/K) = χ((G/K)H).
Let C(Φ(G),Z) be the ring of continuous integral valued functions on
Φ(G), and set

φ =
(

φH

)

H∈Φ(G)
: A(G) −−−−−−→ C(Φ(G),Z).

Then φ is injective, and identifies A(G) as a subring of C(Φ(G),Z).

For each H ≤ G, set q(H, 0) = φ−1
H (0) and (for any prime p)

q(H, p) = φ−1
H (pZ). If H ′

⊳ H and H/H ′ is a torus, then clearly
φH′ = φH . Hence q(H, 0) = q(ω(H), 0) and q(H, p) = q(ω(H), p) for all
H . The minimal prime ideals of A(G)(π) are precisely the ideals q(H, 0)
for all conjugacy classes of subgroupsH in Φ(G), and q(H, 0) = q(H ′, 0)
if and only if (H) = (H ′) in Φ(G). The maximal ideals of A(G)(π) are
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the ideals q(H, p) for all conjugacy classes (H) ∈ Φ(G) and all p ∈ π.
Two maximal ideals q(H, p) and q(K, l) in A(G)(π) are equal if and only
if p = l and (Hp) = (Kp) in Φ(G) (see [1, Prop. 8 & Theorem 4] or [7,
XVII 3.3]). These are the only prime ideals. The closure of q(H, 0) in
the Zariski topology consists of q(H, 0) and the q(H, p) for all p ∈ π.

It is well known that the idempotent elements of a commutative
unital ring R are in bijective correspondence with the open and closed
subsets of the prime ideal spectrum specR. For any topological space
X , let Π0(X) denote the space of components of X with the quotient
topology from X . This is a totally disconnected Hausdorff space.

Definition 3.1. Let Φπ(G) denote the subspace of Φ(G) consisting of

conjugacy classes of π-perfect subgroups of G with finite index in its

normalizer.

Note that Φ∅(G) = Φ(G). Since the π-perfection map is continuous
and Φ(G) is Hausdorff, we get the following.

Proposition 3.2. The space Φπ(G) of conjugacy classes of π-perfect
subgroups of G with finite index in their normalizer is a closed subspace

of Ψ(G).

We define a map β : Φπ(G) −−→ Π0(specA(G)(π)) by sending the
conjugacy class of H to the component of q(H, 0). As pointed out in
[7, XVII.5.5] the continuity of the π-perfection map allows us to prove
the following theorem.

Proposition 3.3. The map

β : Φπ(G) −−−−−−→ Π0(specA(G)(π))

is a homeomorphism.

Proof. We already noted that for all H ≤ G, q(H, 0) is in the same
component as q(H, p) for all primes p ∈ π. There is a sequence of
normal extensions from H ′

π to H with p-group quotients for various
p ∈ π. From this, it follows that q(H, 0) is in the same component as
q(H ′

π, 0). Since Hπ/H
′
π is a torus, q(Hπ, 0) = q(H ′

π, 0).

The map α′ : specA(G)(π) −−→ Φπ(G), defined by sending q(H, p)
and q(H, 0) to Hπ, is well defined. The composite map

Φ(G)× specZ(π)
q

−−−−−→ specA(G)(π)
α′

−−−−−→ Φπ(G)

is continuous since it is equal to the composite

Φ(G)× specZ(π)
pr

1−−−−−→ Φ(G)
Pπ−−−−−→ Φπ(G)
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of the projection and π-perfection maps. The map

q : Φ(G)× specZ(π) −−→ specA(G)(π)

is an identification [6, V.5.7]. So α′ is continuous. Since Φπ(G) is totally
disconnected, we get that α′ factors through the space of components
of specA(G)(π). This gives a continuous map

α : Π0(specA(G)(π)) −−→ Φπ(G)

that sends the component containing q(H, 0) to Hπ. The maps α and
β are inverses of each other. Also, β is continuous since q is continuous.
Hence α and β are mutually inverse homeomorphisms. �

In the case π = ∅, this result was proved by tom Dieck [2]. Propo-
sition 3.3 gives the following description of the idempotent element of
A(G) localized at a set of primes.

Theorem 3.4. There is a bijection between open and closed subsets of

Φπ(G) and idempotent elements of A(G)(π). Let eU denote the idempo-

tent element of A(G)(π) corresponding to an open and closed subset U
of Φπ(G). The image of eU in C(Φ(G),Z(π)) is described by φH(eU) = 1
if Hπ ∈ U , and φH(eU) = 0 if Hπ 6∈ U . �

Note that Lemma 2.1(1) implies that the conjugacy class of any
abelian subgroup of G with finite index in its normalizer is an open
and closed point in Φ(G). This observation, together with Theorem
3.4, is used in [5].
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