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Maps between classifying spaces revisited

STEFAN JACKOWSKI, JAMES MCCLURE, AND BOB OLIVER

Abstract. In an earlier paper, we developed general techniques which can
be used to study the set of homotopy classes of maps between the classifying
spaces of two given compact Lie groups. Here, we describe more precisely
the general strategy for doing this; and then, as a test of these methods,
apply them to determine the existence and uniqueness of (potential) maps
BG −→ BG′ studied earlier by Adams and Mahmud. We end with a
complete description of the set of homotopy classes of maps from BG2 to
BF4.

In 1976, Adams & Mahmud [3] published the first systematic study of the

problem of determining the homological properties of maps between classifying

spaces of compact connected Lie groups. This was continued in later work by

one or both authors: Adams [2] extended some of the results to the case of

non-connected Lie groups by using complex K-theory; while Adams & Mahmud

[4] identified further restrictions which could be made using real or symplectic

K-theory.

Recently, in [21], the three of us developed new techniques for studying maps

between classifying spaces: techniques based on new decompositions of BG for

any compact Lie group G. The main application in [21] was to the problem

of determining self maps of BG for any compact connected simple Lie group

G. This problem had earlier been studied by several other people (cf. [26], [28],

[16], [18], [19], and [23]). The main missing point was to show that the “unstable

Adams operations” ψk : BG −→ BG are unique up to homotopy.

The main tools which now make possible a more precise study of maps be-

tween classifying spaces are a series of consequences of the proof of the Sullivan

conjecture by Miller (cf. [13]), Carlsson [11], and Lannes [22]. The principal
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result which we use directly is the description, by Dwyer & Zabrodsky [14],

Zabrodsky [33], and Notbohm [24], of map(BP,BG) when G is any compact Lie

group and P is p-toral (an extension of a torus by a finite p-group). The idea of

our approach was to combine these theorems of Dwyer-Zabrodsky and Notbohm

with a new decomposition of BG: a decomposition which approximates BG at

any prime p as a homotopy direct limit of classifying spaces of p-toral subgroups

of G.

In this paper, we show how the same techniques can be used successfully in

other situations, to get information about the existence and uniqueness of maps

BG −→ BG′ when G and G′ are two distinct compact connected Lie groups. We

first describe the general strategy for doing this, taking as our starting point the

work of Adams & Mahmud in [3]. To illustrate how these tools work in practice,

we then take those examples listed in [3] involving (potential) maps between

classifying spaces of distinct rank; and use our methods to determine exactly

which ones actually do exist.

We end with a complete description of the set of homotopy classes of maps

from BG2 to BF4 (Example 3.4). In this case, there are four families of maps,

of which two can be constructed (at least away from the prime 3) as composites

of the inclusion G2 →֒ F4, unstable Adams operations, and Friedlander’s “ex-

ceptional isogeny” on BG2. The maps in the other two families come in pairs,

where one map from each pair can be constructed in a similar fashion, but by

using an inclusion which is defined only between the algebraic groups over F7

instead of the inclusion of compact Lie groups. But the remaining map in each

pair seems to be completely new, and cannot as far as we can tell be constructed

as any composite of algebraically defined maps.

Many of the techniques used here carry over to the case whereG is an arbitrary

compact Lie group (in particular, a finite group). But since they are based on

using Sullivan’s arithmetic pullback square for localizations and completions of

BG′, we do always assume that G′ is connected.

Section 1

Throughout the paper, G and G′ will denote two compact Lie groups, where

G′ is connected. We want to study the set [BG,BG′] of homotopy classes of maps

from BG to BG′. We fix maximal tori T⊆G and T ′⊆G′, and let W = N(T )/T

and W ′ = N(T ′)/T ′ denote the Weyl groups. We also regard W and W ′ as

groups of automorphisms of T and T ′, respectively (note, however, that the

action of W need not be effective if G is not connected).

Our procedure for studying maps BG −→ BG′ can be broken up into three

steps:

Step 1: Admissible maps

For the purposes of this paper, we define an admissible map from G to G′ to be

a homomorphism φ : T −→ T ′ such that for every w∈W there exists w′∈W ′ such
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that w′ ◦ φ = φ◦w. The motivation for this definition comes from the following

result, due in its original form to Adams & Mahmud [3].

Theorem 1.1. For any f : BG −→ BG′, there exists an admissible map

φ : T −→ T ′ such that the following square commutes up to homotopy:

BT
Bφ−−−−→ BT ′

yincl

yincl

BG
f−−−−→ BG′.

(1)

Furthermore, for any other admissible map φ′ : T −→ T ′ such that f |BT≃Bφ′,
φ′ = w ◦ φ for some w∈W ′.

Proof. By [3, Theorem 1.5], there is a homomorphism φ : T −→ T ′ such that

(1) commutes in Q-cohomology. Also, φ is admissible by [3, Corollary 1.8], and

by [3, Theorem 1.7] is unique up to composition by an element in W ′. And by a

result of Notbohm [24, Proposition 4.1], two maps BT −→ BG′ are homotopic if

they induce the same map in K-theory, and hence if they induce the same map

in Q-cohomology. �

A partial converse to Theorem 1.1 is also proven in [3]: any admissible map

φ : T −→ T ′ is induced by some f : BG −→ BG′[ 1
|W | ]; i.e., after inverting those

primes dividing the order of the Weyl group. In fact, the definition of admissible

maps given by Adams & Mahmud in [3] is more general than that given here,

in order to allow for admissible maps corresponding to maps f : BG −→ BG′[ 1n ];

i.e., maps defined only after inverting some finite number of primes.

We want to determine which admissible maps extend to globally defined maps

f : BG −→ BG′ (and if such maps exist, how many there are). When doing this,

it will be useful to write [BG,BG′]φ to denote the set of homotopy classes of

maps which extend a given admissible map φ, and similarly for localizations and

completions of BG′. The next proposition reduces the problem of describing

[BG,BG′]φ to the case of maps to the p-adic completions of BG′.

Proposition 1.2. For any set P of primes and any admissible map φ : T −→
T ′, the map

[BG,BG′(P)]φ
ι−−−−→
∼=

∏

p∈P

[BG,BG′p̂]φ

(induced by completion) is a bijection. Also, if p|∤||W |, then [BG,BG′p̂]φ has

order 1. So in particular (if W 6= 1)

[BG,BG′]φ ∼=
∏

p|||W |
[BG,BG′p̂]φ.

Proof. The bijectivity of ι is shown in [21, Theorem 3.1], using Sullivan’s

arithmetic pullback square for completions and localizations of the simply-

connected space BG′. The fact that [BG,BG′p̂]φ has order 1 whenever p|∤||W |
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is implicit in [30], although it is stated there only for G finite or connected.

Another proof (for arbitrary G) is given in Theorem 1.12 below. �

Note that when G is finite, the last statement in Proposition 1.2 takes the

form

[BG,BG′] ∼=
∏

p|||G|
[BG,BG′p̂].

By [3, Theorem 2.21], for any admissible φ, there is a homomorphism φ̄ :

W −→W ′ such that φ is φ̄-equivariant; i. e., φ̄(w) ◦ φ = φ ◦w for each w∈W . In

general, there can be more than one φ̄ : W −→ W ′ for which φ is φ̄-equivariant.

But in many cases φ̄ is uniquely determined, and the following lemma gives one

condition for this to happen.

Lemma 1.3. Assume that φ : T −→ T ′ is a regular admissible map: an ad-

missible map with either of the following equivalent properties:

(a) CG′(φ(T )) = T ′.

(b) Im[φ̃ : T̃ −→ T̃ ′] is not contained in the kernel of any of the roots of G′.

(φ̃ denotes the universal covering map of φ.)

Then there is a unique homomorphism φ̄ : W −→W ′ for which φ is φ̄-equivariant.

Proof. See [3, Lemma 2.22]. Note, when showing that (b) implies (a), that

the centralizer of any torus in the connected group G′ is connected (cf. [21,

Proposition A.4]). �

We must now consider the problem: given an admissible map φ : T −→ T ′, is

it induced by a map f : BG −→ BG′ between the classifying spaces? And if so, is

the map unique? By Proposition 1.2, φ can be extended to a map f if and only

if it can be extended to fp : BG −→ BG′p̂ for each prime p, and the extension is

unique if it is unique for each completion.

Our procedure for answering these questions is based on p-local approxima-

tions of BG, by homotopy direct limits over certain orbit categories defined as

follows:

Definition 1.4. A subgroup P⊆G is p-toral if it is an extension of a torus by

a finite p-group. A subgroup P⊆G is p-stubborn if it is p-toral, and if N(P )/P

is finite and has no nontrivial normal p-subgroups. We let Op(G) denote the

category of orbits G/P for p-toral P⊆G (and Mor(G/P1, G/P2) is the set of all

G-maps). And Rp(G) ⊆ Op(Γ) denotes the full subcategory of orbits G/P for

p-stubborn P⊆G.

Our procedure for describing maps from BG to BG′p̂ is based on two results

which are summarized in the following theorem. The first says that BG can be

approximated as a limit of BP ′s for p-stubborn subgroups P⊆G, and the second

describes the sets [BP,BG′] for p-toral P . For any pair of groups G1, G2, we let

Rep(G1, G2) := Hom(G1, G2)/ Inn(G2)

denote the set of G2-conjugacy classes of homomorphisms ρ : G1 −→ G2.
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Theorem 1.5. (i) (Jackowski, McClure, & Oliver [21]) For any compact Lie

group G and any prime p, hocolim
−→ G/P∈Rp(G)

(G/P ) is Fp-acyclic. Hence the

projection map

hocolim
−→

(EG/P ) ∼= EG×G
(

hocolim
−→

G/P∈Rp(G)

(G/P )
)
−−−−−−−→ BG

is an Fp-homology equivalence (and EG/P≃BP ).
(ii) (Dwyer & Zabrodsky [14], Notbohm [24]) For any p-toral group P , the

map

B : Rep(P,G′)
∼=−−−−→ [BP,BG′], (1)

which sends ρ to Bρ, is a bijection. Also, for any prime p, the completion map

[BP,BG′] −→ [BP,BG′p̂] is injective, and is bijective if P is a finite p-group.

Proof. Point (i) is shown in [21, Theorem 1.4]. The bijectivity of (1) is

shown in [14] (when P is a finite p-group) and [24] (when P is an arbitrary

p-toral group). Note that this does not require the connectivity of G′.

If P is a finite p-group, then [BP,BG′ p̂] ∼= [BP,BG′] by obstruction theory

(or the fact that BP is p-complete).

Now assume that P is an arbitrary p-toral group, and let f, f ′ : BP −→ BG′

be such that (f)p̂ ≃ (f ′)p̂. Let T ⊆ P be the identity component. For each

n ≥ 1, let Tn ⊆ T be the subgroup of elements of order dividing pn. Choose

subgroups P1 ⊆ P2 ⊆ · · · ⊆ P such that Pn ∩ T = Tn for each n, and such

that the union of the Pn is dense in P (cf. [15, Corollary 1.2]). Then for each

n, (f |BPn)p̂ ≃ (f ′|BPn)p̂, and hence f |BPn ≃ f ′|BPn (since Pn is a finite p-

group). Also, BP p̂ ≃ hocolim
−→

((BPn)p̂) (cf. [15, Proposition 2.3]); and so the

obstructions to constructing a homotopy between f and f ′ lie in

lim
←−

1

n

(
π1(map(BPn, BG

′)f |BPn
)
)
.

By the theorem of Dwyer & Zabrodsky [14], if ρn : Pn −→ G′ is such that f |BPn ≃
Bρn, then π1(map(BPn, BG

′)f |BPn
) ∼= π1(BCG′(Im(ρn))). In particular, these

groups are all finite, so lim
←−

1 vanishes, and f ≃ f ′. �

In Steps 2 and 3 below, we fix a prime p, and consider the problem of deter-

mining the set of homotopy classes of maps BG −→ BG′p̂ which extend a given

admissible map φ : T −→ T ′. Fix a maximal p-toral subgroup Np(T )⊆G: i. e., a
subgroup for which Np(T )/T is a p-Sylow subgroup of N(T )/T . (See, e.g., [21,

A.1 & A.2] for more details about maximal p-toral subgroups.)

Step 2: Rp-invariant representations.

An Rp-invariant representation on G is an element

ρ ∈ Rep(Np(T ), G
′) = Hom(Np(T ), G

′)/ Inn(G′)
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with the property that the representations ρ|P combine to form an element in

the inverse limit:

ρ̂ = (ρ|P )G/P∈Rp(G) ∈ lim
←−

G/P∈Rp(G)

Rep(P,G′).

Equivalently, for any p-stubborn P⊆G and any two homomorphisms i1, i2 : P ֌

Np(T ) induced by inclusions and conjugation in G, ρ◦i1 is conjugate (in G′) to

ρ◦i2. Analogously, we say that ρ : Np(T ) −→ G′ is Op-invariant if its restrictions

define an element in above limit when taken over all G/P ∈ Op(G) (see Definition

1.4). The next proposition says that these two conditions are equivalent.

Proposition 1.6. Any Rp-invariant representation ρ : Np(T ) −→ G′ is Op-

invariant. In particular, if ρ is Rp-invariant, and g, g
′ ∈ Np(T ) have p-power

order and are conjugate in G, then ρ(g) is conjugate to ρ(g′).

Proof. Fix a p-toral subgroup P0⊆Np(T ), and an element x∈G such that

xP0x
−1⊆Np(T ). We must show that the homomorphisms

s1 = ρ|P0, s2 = (ρ|xP0x
−1) ◦ conj(x) : P0 −−−−→ G′

are conjugate in G′. The last statement then follows from the special case P0 =

〈g〉.
Consider the G-complex

ERp(G) = hocolim
−→

G/P∈Rp(G)

(G/P ).

Let Z0⊆Z⊆ERp(G) be its 0- and 1-skeletons. In other words, Z0 is the disjoint

union of the orbits G/P in Rp(G), and Z consists of the mapping cylinders of

all morphisms in Rp(G) attached to Z0. Since ρ is Rp-invariant, the map

f0 =
∐

G/P∈Rp(G)

B(ρ|P ) : EG×G Z0 ≃
∐

G/P∈Rp(G)

BP −−−−−−→ BG′

can be extended to a map

f : EG×G Z −→ BG′.

By [21, Theorems 2.14 & 1.4], (ERp(G))
P0 is Fp-acyclic, and in particular con-

nected. It is the homotopy colimit of the functor which sends G/P to (G/P )P0 ,

and hence its 1-skeleton ZP0 is also connected. It follows that any two G-maps

G/P0 −→ Z are G-homotopic. And if we identify BP0 ≃ EG ×G G/P0 in the

usual way, then Bsi≃f ◦ (EG×G αi), where

α1, α2 : G/P0 −−−−→ G/Np(T ) ⊆ Z0 ⊆ Z

are defined by setting α1(gP0) = gNp(T ) and α2(gP0) = gx−1Np(T ). Hence

Bs1≃Bs2, and s1 is conjugate to s2 by Theorem 1.5(ii). �

By Theorem 1.5(ii), [BP,BG′] ∼= Rep(P,G′) for all p-toral P . So for any

f : BG −→ BG′, f |BNp(T ) ≃ Bρ for some unique Rp-invariant representation
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ρ. Actually, the following slightly stronger version of this observation will be

needed.

Proposition 1.7. For any f : BG −→ BG′p̂ extending φ : T −→ T ′ (i.e., f ∈
[BG,BG′p̂]φ), f |BNp(T ) ≃ (Bρ)p̂ for some unique Rp-invariant representation

ρ : Np(T ) −→ G′.

Proof. Choose finite p-subgroups P1 ⊆ P2 ⊆ · · · ⊆ Np(T ), as in the proof

of Theorem 1.5(ii) above, such that the union of the Pn is dense in Np(T ). By

Theorem 1.5(ii) (the Dwyer-Zabrodsky theorem), for each n, f |BPn ≃ Bρn for

some ρn : Pn −→ G′. We may choose the ρn such that ρn|Tn = φ|Tn for all n.

Also, for each n, ρn+1|Pn and ρn are conjugate in G′, and hence by an element

of CG′(Tn). And since CG′(Tn) = CG′(T ) for n sufficiently large, the ρn can be

successively chosen such that ρn+1|Pn = ρn for all n.

Now let ρ : Np(T ) −→ G′ be the unique continuous extension of ∪∞n=1ρn. In

particular, ρ|T = φ. And since BNp(T )p̂ ≃ hocolim
−→

((BPn)p̂) (cf. [15, Propo-

sition 2.3]), the same argument (involving lim
←−

1) used in Theorem 1.5(ii) shows

that f |BNp(T ) ≃ (Bρ)p̂.

The Rp-invariance of ρ now follows immediately from Theorem 1.5(ii): for

any p-toral P ⊆ G and any σ1, σ2 : P −→ G′, (Bσ1)p̂ ≃ (Bσ2)p̂ if and only if σ1
and σ2 are conjugate in G′. �

The question is now: given an admissible map φ : T −→ T ′, can it be extended

to an Rp-invariant representation, and if so to how many? As will be seen below,

in many concrete cases, this can easily be determined using ad hoc methods. But

we have no general techniques for doing this. In particular, this is the missing

step if we want to construct the unstable Adams operations for the exceptional

Lie groups using this procedure.

The following proposition gives one simple (but very useful) tool for showing

that certain admissible maps do not extend to maps between classifying spaces.

Proposition 1.8. Let φ : T −→ T ′ be an admissible map such that

(i) Ker(φ) is finite (i.e., φ̃ : T̃ −→ T̃ ′ is injective), and

(ii) there exists an element t∈Ker(φ) of p-power order, which is conjugate in

G to some element in Np(T )rT .
Then φ does not extend to any Rp-invariant representation from G to G′. In

particular, Bφ is not the restriction of any map BG −→ BG′p̂.

Proof. Assume that φ extends to an Rp-invariant representation ρ :

Np(T ) −→ G′. Since any p-toral subgroup of G′ is conjugate to a subgroup

of N(T ′), we may assume that Im(ρ) ⊆ N(T ′) (this can be done without chang-

ing ρ|T , but that is not necessary here). By assumption, t is conjugate in G to

some element t1∈Np(T )rT . The conjugation action of t1 on T is nontrivial, and

ρ sends T into T ′ with finite kernel. Thus, the conjugation action of ρ(t1) on

T ′ must be nontrivial. But since ρ is Op-invariant by Proposition 1.6, ρ(t1) is

conjugate to ρ(t) = 1; and this is a contradiction.
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The last statement follows from Proposition 1.7. �

Step 3: Computation of higher limits.

An Rp-invariant representation ρ determines a family of maps, compatible

up to homotopy, from the BP≃EG/P to BG′p̂. The obstructions to extending

these to a map from hocolim
−→

(EG/P ) to BG′p̂ — and hence from BG to BG′p̂

— were described (in a much more general context) by Wojtkowiak in [29].

We use Wojtkowiak’s notation, and write Hgr to denote the category whose

objects are groups, and where MorHgr(G1, G2) = Rep(G1, G2). Also, Gr will

denote the usual category of groups; and p-Hgr ⊆ Hgr and p-Gr ⊆ Gr the

subcategories of finite p-groups. Then lim
←−

2

C
(F ) is defined for any functor F :

C −→ Hgr, and lim
←−

1

C
(F ) is defined for any F : C −→ Gr (cf. [29]).

Theorem 1.9. Fix an Rp-invariant representation ρ : Np(T ) −→ G′, and

define functors

Πρ1 : Rp(G) −→ p-Hgr and Πρn : Rp(G) −→ Z(p)-mod (n ≥ 2)

by setting

Πρn(G/P ) = πn
(
map(BP,BG′ p̂)Bρ|P

) ∼=
{
π1(BCG′ (Im(ρ))) if n = 1

[πn(BCG′(Im(ρ)))]p̂ if n ≥ 2.

Then Bρ extends to a map f : BG −→ BG′p̂ if the higher limits lim
←−

n+1(Πρn)

vanish for all n ≥ 1. If there is such an extension f , then Πρ1 lifts to a functor

Rp(G) −→ p-Gr, and f is unique up to homotopy if the limits lim
←−

n(Πρn) vanish

for all n ≥ 1.

Proof. The formula for the homotopy groups of map(BP,BG′p̂)Bρ|P is im-

plicit in Notbohm [24]; and is shown explicitly in [21, Theorem 3.2(iii)] using the

results in [24]. Note in particular that for any p-toral P⊆G′, π1(BCG′(P )) ∼=
π0(CG′(P )) is a p-group (cf. [21, Proposition A.4]).

By Theorem 1.5(i),

[BG,BG′p̂] ∼=
[

hocolim
−→

G/P∈Rp(G)

(EG/P ), BG′p̂

]
.

So by Wojtkowiak [29], the obstructions to extending Bρ to a map f : BG −→
BG′p̂ lie in the higher limits lim

←−

n+1(Πρn), and the obstructions to uniqueness in

the lim
←−

n(Πρn). Note that once we have found one map f which extends Bρ, then

it can be used to consistently define base points for the map(BP,BG′p̂)f |BP ,

and hence to lift Πρ1 to a functor to p-Gr (so that lim
←−

1(Πρ1) is defined). �

In fact, it is not hard to extend the arguments in [29] to construct a second

quadrant spectral sequence which converges to the homotopy of map(BG,BG′p̂)ρ
— the space of maps which extend Bρ. See also [9] & [10]. Problems with

nonabelian values for Πρ1 do not occur in any of the concrete examples we consider
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in Sections 2 and 3; but they do have to be considered in the proof of Corollary

1.11 below.

One might expect the computation of these higher limits to be quite hard

in general. We did, however, succeed in [21] in developing some very powerful

algorithms which are successful in making these computations in many cases.

They are based on some functors Λ∗(Γ;M), defined (for fixed p) for any finite

group Γ and any Z(p)[Γ]-module M.

More precisely, for any such Γ andM , let Op(Γ) denote the category of orbits

Γ/P for p-subgroups P ⊆ Γ. Let FM : Op(Γ) −→ Z(p)-mod be the contravariant

functor defined by setting FM (Γ/1) = M , and FM (Γ/P ) = 0 for 1 6=P ⊆ Γ. We

then define

Λ∗(Γ;M) := lim
←−

∗

Op(Γ)

(FM ).

The following theorem explains the significance of these functors.

Theorem 1.10. Consider a contravariant functor F : Rp(G) −→ Z(p)-mod.

(i) Assume, for some p-stubborn subgroup P⊆G, that F vanishes except on

the orbit type G/P . Then lim
←−

∗(F ) ∼= Λ∗(N(P )/P ;F (G/P )).

(ii) Assume, for some n ≥ 0, that Λn(N(P )/P ;F (G/P )) = 0 for all p-

stubborn P⊆G. Then lim
←−

n(F ) = 0.

(iii) If p|||Ker[Γ −→ Aut(M)]|, then Λ∗(Γ;M) = 0. If p|∤||Γ|, then Λ0(Γ;M) ∼=
MΓ and Λn(Γ;M) = 0 for all n ≥ 1. If p|||Γ|, then Λ0(Γ;M) = 0. If p2|∤||Γ|, then
Λn(Γ;M) = 0 for all n ≥ 2.

Proof. Point (i) is shown in [21, Lemma 5.4].

To see point (ii), let Np(T ) = P0, P1, . . . , Pk be conjugacy class representatives

for all p-stubborn subgroups of G (there are finitely many by [21, Proposition

1.6]). Assume the Pi are arranged from smallest to largest; i. e., such that (Pi) ⊆
(Pj) implies i≤j. For each 0≤i≤k, define Fi by setting Fi(G/P ) = F (G/P ) if

(P ) = (Pj) for some j≤i, and Fi(G/P ) = 0 otherwise. Then F0⊆F1 ⊆ . . .⊆Fk =

F . By (i), for each i,

lim
←−

n(Fi/Fi−1) ∼= Λn(NPi/Pi;F (G/Pi)) = 0.

The long exact sequence of higher limits for a short exact sequence of functors

(cf, [21, Proposition 5.1]), can now be used to show that lim
←−

n(F ) = 0.

Finally, point (iii) is shown in [21, Propositions 5.5, 6.1, and 6.2]. �

Note that if we only are interested in the existence of maps extending ρ, then

we need only compute higher limits lim
←−

n over Rp(G) for n ≥ 2. The following

corollary to Theorem 1.10 gives some simple sufficient conditions for these to

vanish.

Corollary 1.11. Fix contravariant functors

F : Rp(G) −→ Z(p)-mod, F1 : Rp(G) −→ p-Gr and F2 : Rp(G) −→ p-Hgr.
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(i) Assume for each p-stubborn subgroup P⊆G that either p|∤||N(P )/P |, or

p|||Ker[N(P )/P −→ Aut(F (G/P ))]|. Then lim
←−

1(F1) = 0, and lim
←−

n(F ) = 0 for

all n ≥ 1.

(ii) Assume for each p-stubborn subgroup P⊆G that either p2|∤||N(P )/P |, or
p|||Ker[N(P )/P −→ Aut(F (G/P ))]|. Then lim

←−

2(F2) = 0, and lim
←−

n(F ) = 0 for

all n ≥ 2.

Proof. For the functor F , which takes values in Z(p)-mod, these claims follow

immediately from Theorem 1.10.

Now let Fi be one of the functors F1 or F2. Let G/P be minimal (i.e., P is

minimal) among those objects upon which Fi is nonvanishing. Let F ′i ⊆ Fi be

the subfunctor such that F ′i (G/P ) = Z(Fi(G/P )), and such that F ′i vanishes

on all other orbit types. Then F ′i is a functor to the category of finite abelian

p-groups. So by Theorem 1.10, lim
←−

1(F ′i ) = 0 if p|∤||N(P )/P |, and lim
←−

2(F ′i ) =

0 if p2|∤||N(P )/P |. We may assume inductively that lim
←−

i(Fi/F
′
i ) = 0; and an

examination of the definitions of the nonabelian lim
←−

1 and lim
←−

2 in [29] now shows

that lim
←−

i(Fi) = 0.

As a first illustration of the use of Theorems 1.5 and 1.10, we show how they

apply in the case where p|∤||W |.

Theorem 1.12. (Adams & Mahmud, Wojtkowiak) If p|∤||W |, then any ad-

missible map φ : T −→ T ′ extends to a unique map f : BG −→ BG′p̂.

Proof. The existence of an extension is shown in [3, Theorem 1.10], at least

when G is connected; and existence and uniqueness when G is finite or connected

is shown in [30]. We show here how the result follows from the theory just pre-

sented. When p|∤||W |, then the only p-stubborn subgroups of G are the maximal

tori (any p-toral subgroup P⊆G is contained in a maximal torus, and N(P )/P

is finite). Thus, Rp(G) is equivalent to the category with one object G/T , with

End(G/T )∼=W . In particular, Np(T ) = T , and any admissible map φ is itself

Rp-invariant. Finally, for each i, j ≥ 1,

lim
←−

i(Πφj )
∼= Hi(W ; Πφj (G/T )) = 0

since p|∤||W | and Πφj (G/T ) is p-local. �

We next consider the cases where p2|∤||W |, or where G′ is a matrix group.

These conditions hold for several of the examples from [3] which we study in

Sections 2 and 3. In these cases, we again get some very strong results about

the existence and uniqueness of maps BG −→ BG′p̂.

Proposition 1.13. Fix a prime p. Assume that π0(G) is a p-group, and

that p2|∤||W |. Then p2|∤||N(P )/P | for all p-stubborn subgroups P⊆G. Also, any

Rp-invariant representation ρ : Np(T ) −→ G′ extends to a map BG −→ BG′p̂.
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Proof. Fix a p-stubborn subgroup P⊆G. If P is contained in a maximal

torus, then P is a maximal torus (N(P )/P is finite); and so p2|∤||N(P )/P |. So

we are left with the case where P is not contained in any maximal torus.

Step 1: We start with a general observation. Let H ⊳ P be any normal

subgroup of finite index, let S ⊳ P be the identity component, and let Aut(P,H)

be the group of automorphisms of P leaving H invariant. Then

Ker

[
Aut(P,H)

Inn(S)

(Res, Quot)−−−−−−−−→ Aut(H)

Inn(S)
×Aut(P/H)

]

is a finite p-group. When P is finite, this is shown in [17, Corollary 5.3.3]. If

H = S, then this holds since the kernel can be identified with H1(P/S;S) (any

automorphism α induces the 1-cocycle (g 7→ g−1α(g))). And the general case

now follows since the kernel of each of the maps

Aut(P,H)

Inn(S)
−−→ Aut(S)×Aut(P/S,H/S) −−→ Aut(S)×Aut(H/S)×Aut(P/H)

is a finite p-group.

Assume in addition that H is normalized by N(P ) (i.e., H ⊳ N(P )). We

claim that in this case,

Ker
[
N(P ) −→ Aut(H)× Aut(P/H)

]
⊆ P. (1)

Let K denote this kernel. Since N(P )/P has no nontrivial normal p-subgroups

(by definition of “p-stubborn”), it will suffice to show that the image of K

in N(P )/P is a p-group. For any g ∈ K, conj(g) has p-power order in

Aut(P,H)/ Inn(S), so conj(gp
k

) = conj(x) for some k and some x ∈ T . Hence

gp
k

x−1 ∈ CG(P ) ⊆ P (see [21, Lemma 1.5]), and so gp
k ∈ P .

Step 2: Assume that p|||N(P )/P | (otherwise we are done). Let P ′/P be a p-

Sylow subgroup of N(P )/P . Since P ′ is p-toral, we may assume that P ′⊆Np(T ).
Since P 6⊆ T (and p2|∤||W |), we must have P ′ ⊆ 〈P, T 〉. If P∩T⊳N(P ), then

P ′ ∩ T ⊆ Ker
[
N(P ) −−−→ Aut(P ∩ T )×Aut

(
P/(P ∩ T )

)]
;

and this contradicts (1).

Thus, P∩T is not normal in N(P ). Consider the Frobenius subgroup Φ(P ):

the subgroup generated by all commutators and p-th powers in P (cf. [17, §5.1]).
Then CP (Φ(P ))⊳N(P ), and CP (Φ(P ))⊇P∩T . Since P∩T has index p in P and

is not normal in N(P ), this shows that CP (Φ(P )) = P ; i. e., that Φ(P )⊆Z(P ).
In particular, the conjugation actions of P on Φ(P ) and P/Φ(P ) are trivial

— the first since Φ(P ) is central and the second since [P, P ] ⊆ Φ(P ). So there

is a well defined map

(κ1, κ2) : N(P )/P −→ Aut(Φ(P ))×Aut(P/Φ(P )).

By (1) again, (κ1, κ2) is injective. Furthermore, P ′/P⊆Ker(κ1) (P ′ ⊆ 〈P, T 〉
and Φ(P )⊆T ), P ′/P is a Sylow p-subgroup of N(P )/P ; and so Im(κ1) has order

prime to p. And p|∤||Ker(κ2)|, since (κ1, κ2) is injective.
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Step 3: Identify P/Φ(P ) = V ∼= (Fp)n, set Γ = Im(κ2), and regard Γ as a

subgroup of GLn(Fp). This subgroup has the following properties:

(a) any Sylow p-subgroup of Γ acts as the identity on some codimension

one subspace of V . It suffices to check this on one Sylow p-subgroup of Γ =

κ2(N(P )/P ); e.g., on κ2(P
′/P ). And this acts via the identity on (P ∩T )/Φ(P ),

since P ′ ⊆ 〈P, T 〉. Conversely, any two distinct Sylow p-subgroups of Γ fix

distinct codimension one subspaces, since the stabilizer in Γ ⊆ GLn(Fp) of any
codimension one subspace has a normal (and hence unique) Sylow p-subgroup.

(b) Γ contains no nontrivial normal p-subgroup. Since if 1 6= Q ⊳ Γ is a

nontrivial normal p-subgroup, then (κ1, κ2)
−1(1 × Q) is a nontrivial normal p-

subgroup of N(P )/P (recall that p|∤||Im(κ1)|).
By (b), either p|∤||Γ| (and hence p|∤||N(P )/P |), or Γ contains at least 2 distinct

Sylow p-subgroups A, B. In the second case, let H ⊆ Γ be the subgroup gener-

ated by A and B. Since V A and V B are distinct and have codimension 1 in V ,

V H has codimension 2. Also, the conjugation map H → Aut(V/V H) ∼= GL2(Fp)
must be injective, since its kernel is a normal p-subgroup (Step 1 again); is there-

fore contained in A∩B, and hence fixes all of V . Since p2|∤||GL2(Fp)|, p2|∤||H |; and
so p2|∤||Γ| since H contains a Sylow subgroup of Γ. And finally, since p|∤||Ker(κ2)|,
this shows that p2|∤||N(P )/P |.

Step 4: It remains to prove the last statement. By Corollary 1.11(ii),

lim
←−

n(Πρm) = 0 for any Rp-invariant representation ρ : Np(T ) −→ G′, any m ≥ 1,

and any n ≥ 2 (with n = 2 if m = 1). In particular, ρ lifts to a map BG −→ BG′.

�

The following corollary lists some more consequences of Proposition 1.13, and

also of character theory for representations.

Corollary 1.14. Fix a prime p. Assume that G is connected.

(i) Assume that G′∼=U(n), SU(n), SO(2n+ 1), or Sp(n). Then a homomor-

phism ρ : Np(T ) −→ G′ is Rp-invariant if and only if for any pair g, g′∈Np(T ) of
elements conjugate in G, ρ(g) and ρ(g′) are conjugate in G′. Also, an admissible

map φ : T −→ T ′ has (up to conjugacy) at most one extension to an Rp-invariant

representation ρ : Np(T ) −→ G′.

(ii) Now assume that p2|∤||W |; and that G′∼=SU(n) or U(n), or p is odd and

G′∼=SO(2n+1) or Sp(n). Then any given admissible map φ : T −→ T ′ lifts to at

most one map BG −→ BG′p̂.

Proof. (i) When G′ is one of the groups U(n), SU(n), Sp(n), or SO(2n+1),

character theory applies to show that two homomorphisms ρ1, ρ2 : P −→ G′ are

conjugate if and only if ρ1(g) and ρ2(g) have the same trace for each g ∈ G, if

and only if ρ1(g) and ρ2(g) are conjugate for each g ∈ G. When G′∼=SO(2n+1),

this property holds because O(2n+1)∼=SO(2n+1)×Z/2. Note that it does not
hold for G′∼=SO(2n).

By definition (and Proposition 1.6), a homomorphism ρ : Np(T ) −→ G′ is

Rp-invariant if and only if for each p-toral P⊆Np(T ), and each x∈G such that
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xPx−1⊆Np(T ), the homomorphisms

ρ|P, (ρ|(xPx−1)) ◦ conj(x) : P −−−−−→ G′

are conjugate in G′. So by the remarks on character theory, ρ is Rp-invariant

if and only if ρ(g) is conjugate to ρ(g′) for all pairs g, g′∈Np(T ) of elements

conjugate in G such that either the closures of 〈g〉 and 〈g′〉 are p-toral, or both
lie in T .

If ρ is Rp-invariant and g∈Np(T ) is arbitrary, then g = lim(gi) for some

sequence of elements gi∈Np(T ) of p-power order, each gi is conjugate to some

g′i∈T , and after restricting to a subsequence the g′i converge to some g′∈T con-

jugate to g. Then ρ(g) = ρ(g′) (ρ is continuous); and hence ρ(g) = ρ(g′′) for any

g′′∈Np(T ) conjugate to g.

By the same argument, if ρ, ρ′ : Np(T ) −→ G′ are both Rp-invariant and

ρ|T = ρ′|T , then ρ(g) is conjugate to ρ(g′) for all g∈Np(T ) (since every element

is conjugate to an element of T ); and hence ρ is conjugate to ρ′.

(ii) If p2|∤||W |, then lim
←−

n(Πρn) = 0 for any Rp-invariant representation ρ and

any n ≥ 2 (see Proposition 1.13).

If G′ = U(n), then the centralizer of any subgroup is a product of unitary

groups, and hence connected. If G′ = Sp(n) or SO(2n+1) and p is odd, then the

centralizer of any p-toral subgroup is a product of unitary groups and (possibly)

one symplectic or special orthogonal group, and is again connected. And if

G′ = SU(n), then the centralizer of any subgroup is generated by its connected

component and Z(G′). Thus, in all of these cases, N(P )/P acts trivially on

Πρ1(G/P ); and lim
←−

1(Πρ1) = 0 by Corollary 1.11(i).

This shows that any Rp-invariant representation lifts to a unique map BG −→
BG′p̂. And an admissible map φ : T −→ T ′ extends to at most one Rp-invariant

representation (up to conjugacy in G′): since any two extensions must have the

same character. �

Section 2

We now want to apply these procedures to the examples of admissible maps

given by Adams & Mahmud in [3, Section 2]. For simplicity, we concentrate in

this section on the question of which admissible maps can be realized as maps

BG −→ BG′ (and at which primes p) — and pay less attention to the uniqueness

question.

The first three examples in [3, §2] involve cases where all admissible maps are

zero: and these maps can clearly be realized. Their next four examples involve

unstable Adams operations ψk : BG −→ BG constructed by Wilkerson [28], and

the “exceptional isogenies” of Friedlander [16].

An unstable Adams operation of degree k is a self-map ψk : BG −→ BG which

extends the admissible map φk : T −→ T defined by φk(t) = tk. The following

theorem combines the results of several authors.
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Theorem 2.1. For any compact connected group G and any integer k, there

exists an unstable Adams operation of degree k on BG if and only if (k, |W |) = 1.

Also, any two unstable Adams operations of the same degree k are homotopic.

Proof. For (k, |W |) = 1, the unstable Adams operations were first con-

structed by Sullivan [26] when G = U(n), and then by Wilkerson [28] for arbi-

trary connected G. The necessity of the condition (k, |W |) = 1 was shown by

Ishiguro [19]. And the uniqueness of the maps was one of our main results in

[21]. �

It is thus the remaining examples (2.8 to 2.11) which provide the main interest

here. Those are the examples involving maps between simple groups of different

rank. In all cases, we refer to [3] for more discussion.

In all of these examples, for any admissible map φ : T −→ T ′, we let φ̃ : T̃ −→ T̃ ′

denote its universal covering map. As will be seen, the only primes dividing the

order of W (the Weyl group of G) are 2 and 3 in all cases. So any admissible

map can be realized as a map BG −→ BG′p̂ for p ≥ 5 (see Theorem 1.12 above).

In the first three examples, G is one of the classical groups SU(3) or Sp(3). The

p-stubborn subgroups of all of the classical groups U(n), SU(n), O(n), SO(n),

and Sp(n) can be described explicitly (see [25]). For the results shown here,

however, Proposition 1.13 can be used instead, to avoid having to list all p-

stubborn subgroups.

As one example, given here without proof, consider the group G = SU(3). Set

ζ = exp(2πi/3), and consider the elements

A =




1 0 0

0 ζ 0

0 0 ζ2


 and A1 =




0 1 0

0 0 1

1 0 0


 .

Then the only 3-stubborn subgroups of SU(3) are (up to conjugacy) the groups

N3(T ) = 〈T,A1〉, and Γ3 = 〈A,A1〉.

Note that Γ3 is a group of order 27 with center of order 3, and that

N(Γ3)/Γ3
∼=SL2(F3).

In what follows, (x1, . . . , xn) denotes the usual coordinates in T̃ when G is

one of the groups SU(n)⊆U(n)⊆ Sp(n):

exp(x1, . . . , xn) = diag (exp(2πi · x1), . . . , exp(2πi · xn)) .

Example 2.2. [3, Example 2.8] G = SU(3) and G′ = SU(6). For any k,m ∈
Z, define φk,m : T −→ T ′ by setting

φ̃k,m(x1, x2, x3) = (kx1, kx2, kx3,mx1,mx2,mx3).

Then

(i) for p = 2, 3, φk,m extends to (fk,m)p̂ : B SU(3) −→ B SU(6)p̂ if and only if

each of k,m is 0 or prime to p
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(ii) φk,m extends to a map fk,m : B SU(3) −→ B SU(6) if and only if each of

k,m is 0 or prime to 6.

In all cases, the extension is unique.

Proof. Point (ii) follows from point (i) and Proposition 1.2. And the unique-

ness follows from Corollary 1.14(ii).

Fix p = 2 or 3. If each of k,m is 0 or prime to p, then there are unstable Adams

operations ψk, ψm : B SU(3) −→ B SU(3)p̂ of degrees k and m, respectively (see

[28]). By definition, ψk|BT≃B(t 7→ tk), and similarly for ψm. So if we let fk,m
be the composite

fk,m : B SU(3)
(ψk,ψm)−−−−−→ B SU(3)p̂ ×B SU(3)p̂

⊕−→ B SU(6)p̂,

then fk,m|BT≃Bφk,m.

We now prove the converse. If k ≡ m ≡ 0 (mod p), then all order p elements

of T lie in Ker(φk,m). So by Proposition 1.8, φk,m extends to a map between

the classifying spaces only if φ̃k,m is noninjective, only if k = m = 0.

It remains to consider the case where p∤m, and p | k 6= 0 (or vice versa). In

this case, φ is regular (CG′(φ(T )) = T ′), and so by Lemma 1.3 there is a unique

choice of homomorphism φ̄ : W −→ W ′ for which φ is φ̄-equivariant (namely,

φ̄(w) = w⊕w). Assume that Bφ extends to a map f p̂ : BG −→ BG′p̂; then φ

extends to an Rp-invariant representation ρ : Np(T ) −→ SU(6) by Proposition

1.7.

If p = 3, then set ζ = exp(2πi/3), and consider the matrices

A =




1 0 0

0 ζ 0

0 0 ζ2


 and A1 =




0 1 0

0 0 1

1 0 0




as before. Then ρ(A1)≡A1⊕A1 (mod T ′); and in particular Tr(ρ(A1)) = 0. On

the other hand, since 3|k but 3∤m,

ρ(A) = φ(A) = diag(1, 1, 1, 1, ζm, ζ2m),

and so Tr(ρ(A)) = 3. Thus, A and A1 are conjugate in SU(3) but ρ(A) and

ρ(A1) are not conjugate in SU(6). And since ρ is Rp-invariant, this contradicts

Proposition 1.6.

If p = 2, then set

B =




−1 0 0

0 1 0

0 0 −1


 , B1 =




−1 0 0

0 0 1

0 1 0


 ,

and

S1
α =







z−2 0 0

0 z 0

0 0 z


 : z ∈ S1



 .



16 STEFAN JACKOWSKI, JAMES MCCLURE, AND BOB OLIVER

Then P = 〈S1
α, B,B1〉 is 2-stubborn in G, since

N(P ) ⊆ CG(S
1
α)

∼= U(2)

and

NG(P )/P ∼= NU(2)(P )/P = NSU(2)(P ∩ SU(2))/(P ∩ SU(2))

∼= NSU(2)(Q(8))/Q(8) ∼= Σ3.

Since B is conjugate to B1 in U(2), there is an element in N(P ) which sends B

to B1 and centralizes S1
α. Let x be such an element. Since ρ is Rp-invariant,

there is an element y of SU(6) for which the composites ρ◦conj(x) and conj(y)◦ρ
are equal. Then y centralizes φ(S1

α); i.e., ρ(B1) is conjugate to ρ(B) = φ(B) in

CSU(6)(φ(S
1
α)) = SU(6) ∩

(
U(1)×U(2)×U(1)×U(2)

)
.

Also, ρ(B1)≡B1⊕B1 (mod T ′); and one now checks (by comparing traces) that

this is impossible. �

Example 2.3. [3, Example 2.9] G = SU(3) and G′ = SU(6). For any k,m ∈
Z, define φk,m : T −→ T ′ by setting

φ̃k,m(x1,x2, x3)

= (kx1+mx2, kx2+mx3, kx3+mx1, kx1+mx3, kx2+mx1, kx3+mx2).

Assume that k,m 6= 0, and that k 6=m (otherwise φk,m is one of the maps in [3,

Example 2.8]). Then

(i) φk,m does not extend to any map (fk,m)2̂ : B SU(3) −→ B SU(6)2̂.

(ii) φk,m extends to a map (fk,m)3̂ : B SU(3) −→ B SU(6)3̂ if and only if

(k+m, 3) = 1; in which case the extension is unique.

Proof. Uniqueness follows from Corollary 1.14(ii): any admissible map ex-

tends to at most one homotopy class of maps between the classifying spaces.

Under the given assumptions on k andm, φ is always regular: CG′(φ(T )) = T ′.

So by Lemma 1.3, φ̄ : W −→W ′ ∼= Σ6 is uniquely defined. And one easily checks

that the image of any element of Wr1 is fixed-point free as a permutation on

6 objects. In other words, for any p, any extension of φ to ρ : Np(T ) −→ G′,

and any g∈Np(T )rT , ρ(g) has no nonzero diagonal entries, and hence has trace

zero.

p = 2: Consider the elements

B =




−1 0 0

0 −1 0

0 0 1


 and B1 =




0 1 0

1 0 0

0 0 −1




in Np(T ). Then for any Rp-invariant representation ρ : Np(T ) −→ SU(6) extend-

ing φ = φk,m,

ρ(B) = φ(B) = diag
(
(−1)k+m, (−1)k, (−1)m, (−1)k, (−1)k+m, (−1)m

)
.
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Under the conditions on k and m, this cannot have trace zero. On the other

hand, we noted above that Tr(ρ(B1))=0 6=Tr(ρ(B)). Since B1 and B are conju-

gate in G = SU(3), this contradicts the assumption that ρ is R2-invariant (see

Proposition 1.6).

p = 3: Set ζ = exp(2πi/3) again, and set

A =




1 0 0

0 ζ 0

0 0 ζ2


 and A1 =




0 1 0

0 0 1

1 0 0




in Np(T ). By definition,

φ(A) = diag(ζm, ζk−m, ζ−k, ζ−m, ζk, ζm−k).

Then Tr(φ(A)) = 0 if and only if exactly one of the numbers k,m, k −m is a

multiple of 3, if and only if 3∤(k+m).

If φ lifts to a map BG −→ BG′3̂, then it extends to some Rp-invariant rep-

resentation ρ : N3(T ) −→ G′. We saw earlier that Tr(φ(A1)) = 0, and so φ(A)

must also have trace 0. And we just saw that this implies 3∤k +m.

Conversely, if 3∤k +m, then define ρ : Np(T ) = 〈T,A1〉 −→ G′ by setting

ρ|T = φ, ρ(A1) = A1 ⊕A1.

This is easily seen to be a well defined homomorphism, which is Rp-invariant

by Corollary 1.14(i). So by Proposition 1.13, ρ extends to a map BG −→ BG′3̂.

�

As was shown by Adams & Mahmud [3, Proposition 2.16 and other re-

marks in Section 2], Examples 2.2 and 2.3 here give a complete list of all non-

nullhomotopic maps BSU(3) −→ BSU(6) or BSU(3) −→ BSU(6)p̂.

Example 2.4. [3, Example 2.10] G = Sp(3) and G′ = Sp(4). Define φ : T −→
T ′ by setting

φ̃(x1, x2, x3) = (x1 + x2 + x3,−x1 + x2 + x3, x1 − x2 + x3, x1 + x2 − x3).

Then φ extends to a unique map f p̂ : B Sp(3) −→ B Sp(4)p̂ for all odd p, but does

not extend to any map when p = 2. In particular, Bφ is not the restriction of

any map B Sp(3) −→ B Sp(4).

Proof. If p ≥ 5, then p∤|W |, and so φ extends to a (unique) map f p̂ :

B Sp(3) −→ B Sp(4)p̂ by Theorem 1.12.

If p = 2, then note first that diag(−1,−1, 1)∈Ker(φ), and that this element is

conjugate to elements in N(T )rT . Hence, by Proposition 1.8, φ does not extend

to any map B Sp(3) −→ B Sp(4)2̂.
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Now set p = 3. We can take Np(T ) = 〈T,A1〉, where A1 =




0 1 0

0 0 1

1 0 0


.

Define ρ : Np(T ) −→ G′ = Sp(4) by setting ρ|T = φ, and

ρ(A1) =




1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0


 = (1)⊕A1.

Using Corollary 1.14(i), it is not hard to check that ρ is Rp-invariant. And by

Proposition 1.13, ρ lifts to a map f 3̂ : B Sp(3) −→ B Sp(4)3̂; which is unique by

Corollary 1.14(ii). �

Section 3

The last example (Example 2.11 in [3]) involves the groups G2 and F4, and

illustrates some of the techniques which can be used when working with excep-

tional Lie groups. This is the most interesting case of those we consider here.

It is the only case where we find new maps BG −→ BG′ (without finite localiza-

tion); i. e., maps which are not composites of maps constructed earlier. It is also

the only case where we give a complete classification of the homotopy classes in

[BG,BG′].

This result can be loosely described as follows. Following the notation of

Adams & Mahmud, we say that a map f : BG2 −→ BF4 has type (k,m) if the

following diagram commutes in rational cohomology:

B SU(3)
(ψk,ψm)−−−−−→ B(SU(3)×C3

SU(3))

incl

y incl

y

BG2
f−−−−→ BF4.

Here, the vertical maps are induced by inclusions of subgroups (see Lemmas 3.2

and 3.3 below), and ψk and ψm are the unstable Adams operations on B SU(3).

Also, type (k,m) is equivalent to type (−k,−m), but not to type (m, k) (the

two SU(3) factors are embedded asymmetrically in F4). Then every map from

BG2 to BF4 has type (k,m) for some k and m. Aside from the null homotopic

maps (k = m = 0), there are for each k > 0 prime to 6 unique homotopy classes

of maps of type (k, 0) and (k,−k), and two homotopy classes each of maps of

types (k, k) and (k, 2k).

The maps of type (1, 0) are induced by an inclusion ι : G2 −→ F4, and the

(k, 0) are the composites of Bι with unstable Adams operations on BG2. Also,

the maps of type (k,−k) can be obtained, though only away from the prime 3,

as composites of maps of type (k, 0) with the “exceptional isogeny” on BG2 [16].

Of the remaining homotopy classes of maps, it is the two classes of type (1, 1)

which are the most fundamental: the pairs of maps of type (k, k) and (k, 2k) are
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obtained by composing the maps of type (1, 1) with unstable Adams operations

and (away from the prime 3) the exceptional isogeny on BG2. In [32], Testerman

constructs a homomorphism σ : G2(F7) →֒ F4(F7), which is remarkable because

its image is a maximal connected subgroup of F4(F7). Via homotopy equivalences

of Friedlander and Mislin [31], σ induces maps (BG2)p̂ −→ (BF4)p̂ of type (1, 1)

for all primes p 6= 7 (this is discussed in more detail at the end of the section). In

other words, the homomorphism between algebraic groups provides a different

construction of one of the two homotopy classes of maps of type (1, 1) (and a

way of distinguishing the two classes).

The following lemma contains two general facts which are very useful when

making computations in the exceptional Lie groups.

Lemma 3.1. Let G be any compact connected Lie group.

(i) (Borel) If G is simply connected, then the centralizer of any element in G

— or the fixed point set of any automorphism — is connected.

(ii) Fix a maximal torus T⊆G and an element g∈T . Let W = NG(T )/T

and Wg = NC(g)(T )/T be the Weyl groups of G and of the centralizer CG(g),

respectively. Then the number of elements in T conjugate (in G) to g is just the

Weyl group index [W : Wg].

Proof. (i) See [5, Theorem 3.4 and Corollary 3.5] (or [8, p.48, Théorème 1]).

(ii) By [1, Lemma 4.33], two elements of T are conjugate in G if and only if

they are conjugate by an element of W . The result is then immediate. �

The groupsG2 and F4 each comes in only one “version”: the simply connected

groups are center-free (cf. Bourbaki [7, §VI.4], where the center of the simply

connected group is denoted P (R)/Q(R)). From now on, we fix G = G2 and

G′ = F4; let T⊆G and T ′⊆G′ be maximal tori, and let W,W ′ be the Weyl

groups. As before, T̃ and T̃ ′ denote the universal covers of T and T ′, respectively.

We will also need to study the integral lattices of G and G′:

Λ = Ker[T̃ −→ T ] and Λ′ = Ker[T̃ ′ −→ T ′].

The next two lemmas collect for later use information about some of the

subgroups of G2 and F4. Note (cf. [8, p.40, Prop. 15]) that any isomorphism

between the root systems and integral lattices of two compact connected Lie

groups extends to an isomorphism between the groups themselves. This fact

is very useful when working with the exceptional Lie groups, and in particular

when identifying the centralizers of elements.

Lemma 3.2. We can identify T̃ = T̃ (G2) = {(x1, x2, x3) ∈ R3 :
∑
xi = 0}

(with the usual inner product); such that the set of roots of G2 is

R =
{
±(xi − xj),± 2x1−x2−x3

3
,± 2x2−x1−x3

3
,± 2x3−x1−x2

3

}
⊆ T̃ ∗

(where 1≤i<j≤3); and such that the integral lattice is

Λ =
{
(n1, n2, n3) ∈ Z3 :

∑
ni = 0

}
.
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(i) All elements of order 2 in G2 are conjugate to each other, and the central-

izer of any such element is isomorphic to SO(4) ∼= Sp(1)×C2
Sp(1).

(ii) G2 contains a unique conjugacy class of subgroups isomorphic to (C2)
3.

For any such A ∼= (C2)
3 in G2, CG2

(A) = A and NG2
(A)/A∼=GL3(F2).

(iii) G2 contains exactly 6 conjugacy classes of 2-stubborn subgroups, with

representatives P1, . . . , P6 as listed below. They are all presented as subgroups

of Sp(1)×C2
Sp(1) ⊆ G2. Also, Q⊆N⊆Sp(1) are the subgroups Q = 〈i, j〉 (the

quaternion group of order 8), and N =
〈
S1, j

〉
.

P N(P )/P

P1 = N×C2
N = N2(T ) 1

P2 = N×C2
Q 1× Σ3

P3 = Q×C2
N Σ3 × 1

P4 = Q×C2
Q Σ3 × Σ3

P5 = 〈S1×C2
S1, (j, j)〉 ∼= T ⋊ C2 Σ3

P6 = 〈(i, i), (j, j), (1,−1)〉 ∼= (C2)
3 GL3(F2).

Furthermore, all morphisms in R2(G2) between the G2/Pi listed here are com-

posites of automorphisms of the orbits, and of the maps induced by the given

inclusions.

(iv) There is a unique conjugacy class of subgroup SU(3)⊆G2. Also, there is

a semidirect product SU(3)⋊C2⊆G2, where C2 acts on SU(3) by complex conju-

gation.

(v) G2 contains exactly two conjugacy classes of 3-stubborn subgroups, pre-

sented in the following list as subgroups of SU(3):

P N(P )/P

〈T,A1〉 = N3(T ) C2×C2

〈A,A1〉 GL2(F3).

Here, A,A1 ∈ SU(3) again denote the matrices

A =




1 0 0

0 ζ 0

0 0 ζ2


 and A1 =




0 1 0

0 0 1

1 0 0




Proof. The description of the root system of G2 is given in Bourbaki [7,

§VI.4.13] (the description there is slightly different, but is clearly equivalent).

Note that the last three roots as given above are equal (as functions on T̃ ) to

the coordinate functions ±x1, ±x2, and ±x3 — but the form given above makes

clearer their lengths and angles relative to the other roots.

The description of Λ follows easily from the fact that the integral lattice is

the group of elements in T̃ whose value on each root is integral. This property

of the integral lattice holds in general for connected center-free groups (cf. [1,

Proposition 5.3]).

(i) Set g̃ = (12 ,− 1
2 , 0) ∈ T̃ , and let g = exp(g̃). Then g has order 2. By

Lemma 3.1(i), CG(g) is connected (and it clearly has maximal torus T ). The
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roots of CG(g) are precisely those roots of G which take integral values on g̃:

namely, ±(x1 − x2) and ± 1
3 (2x3 − x1 − x2). Since these roots are orthogonal,

the centralizer has type A1 × A1. Also, the integral lattice is generated by the

elements

e1 = (1,−1, 0) : (x1 − x2)(e1) = 2 1
3 (2x3 − x1 − x2)(e1) = 0

e2 = (−1,−1, 2) : (x1 − x2)(e2) = 0 1
3 (2x3 − x1 − x2)(e2) = 2

and 1
2 (e1+e2). Upon comparing these with the integral lattices for Sp(1) ∼= SU(2)

and SO(3), one sees that CG(g) ∼= Sp(1)×C2
Sp(1).

Finally, by Lemma 3.1(ii), the number of elements in T conjugate to g is

|W |/4 = 3. Since this accounts for all elements of order 2 in T , we see that all

elements of order 2 in G are conjugate to g.

(ii) Assume that A = 〈g1, g2, g3〉 and A′ = 〈g′1, g′2, g′3〉 are both isomorphic

to (C2)
3. (Possibly A = A′ with different bases.) We want to show that there

exists x∈G such that xgix
−1 = g′i for each i.

Since g1 is conjugate to g′1, we may assume that g′1 = g1. Then

A,A′ ⊆ CG2
(g1) = H1

∼= Sp(1)×C2
Sp(1).

Upon inspection, we see that all noncentral elements of order 2 in H1 are conju-

gate in H1 to (i, i). So we may assume (upon conjugating A and A′ by elements

of H1) that g
′
2 = g2 = (i, i).

We now have

A,A′ ⊆ CG2
(g1, g2) = H2 = (H1)

(i,i) = 〈S1×C2
S1, (j, j)〉.

Then g3 and g′3 are both conjugate (in H2) to (j, j). This shows that A is

conjugate to A′; and also that

CG2
(A) = (H2)

(j,j) = A.

Also, NG2
(A)/A∼=GL3(F2), since we have just shown that any automorphism of

A is an inner automorphism in G2.

(iii) Fix a 2-stubborn subgroup P⊆G2, and let 2Z(P ) be the 2-torsion sub-

group of its center. If rk(2Z(P )) = 1, say 2Z(P ) = 〈g〉, then NG(P ) = NC(g)(P ),

and so P is also 2-stubborn in C(g)∼=Sp(1)×C2
Sp(1). By [21, Proposition 1.6],

the 2-stubborn subgroups of Sp(1)×C2
Sp(1) are precisely the groups of the form

P ′×C2
P ′′, where P ′, P ′′ are 2-stubborn in Sp(1). Also, the only 2-stubborn

subgroups of Sp(1) are Q and N (just check the list of all 2-toral subgroups).

Conversely, if P = P ′×C2
P ′′ where P ′ and P ′′ are 2-stubborn in Sp(1), then

NG(P )/P∼=N(P ′)/P ′×N(P ′′)/P ′′, and so P is 2-stubborn in G = G2. Note

that the subgroups N×C2
Q and Q×C2

N are not conjugate in G2 — since if they

were it would have to be via an element in the centralizer CG2
(g).

Now assume that 2Z(P ) = 〈g1, g2〉 has rank 2. Since C(g1) is connected,

〈g1, g2〉 is contained in a maximal torus, and is hence the 2-torsion in some

maximal torus T. One now checks that P⊆CG2
(g1, g2) = T⋊C2. This group
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is normal in N(P ), and N(P )/P has no nontrivial normal 2-subgroups. Hence

P = T⋊C2. Conversely, to check that this group is in fact 2-stubborn, note that

N(P )/P∼=W/C2
∼= Σ3.

If rk(2Z(P )) ≥ 3, then by part (ii), P ∼= (C2)
3 and N(P )/P ∼= GL3(F2).

Now let α : G/Pi −→ G/Pj be anyG-equivariant map. Choose x ∈ G such that

α(Pi) = xPj ; then x−1Pix ⊆ Pj . By inspection of the individual possibilities

for (i, j), we see that Pi ⊆ Pj , and that x−1Pix is conjugate by an element

of N(Pj)/Pj to Pi (⊆ Pj). Hence, after replacing α by its composite with an

automorphism of G/Pj , we may assume that x−1Pix = Pi. And in this case

x ∈ N(Pi), and α is the composite of an automorphism of G/Pi with the map

induced by the inclusion Pi ⊆ Pj .

(iv) Take g = exp(13 ,
1
3 ,− 2

3 ). Then CG2
(g) has roots ±(xi − xj), and hence is

isomorphic to SU(3). Also, since (x 7→ x−1)∈W (note that this is in the Weyl

group of Sp(1)×C2
Sp(1) ⊆ G2), we see that complex conjugation on SU(3)

is inner in G2. Thus, there exists a∈NG2
(〈g〉) such that conj(a) is complex

conjugation on SU(3). Then a2∈Z(SU(3)) = 〈g〉, and since |g| = 3 we may

take a to have order 2. Thus, the normalizer of 〈g〉 is a semidirect product

SU(3)⋊C2 ⊆ G2.

Now let H be any other subgroup of G2 isomorphic to SU(3), and let

g′ ∈ Z(H) ∼= C3 be a generator. We want to show that H is conjugate to

the centralizer CG2
(g) ∼= SU(3) just constructed, and it will suffice to show that

g′ is conjugate to g. We may assume that g′ ∈ T . Since W ∼= Σ3 × C2 acts

on T̃ by permuting coordinates and changing all signs, we see that g′ must be

conjugate either to g = exp(13 ,
1
3 ,
−2
3 ), or to exp(13 ,

−1
3 , 0). And since the only

roots in the centralizer of this last element are ±(2x3 − x1 − x2)/3, g
′ must be

conjugate to g.

(v) Fix a 3-stubborn subgroup P ∈ G2. We may assume that it is contained

in the maximal 3-toral subgroup N3(T ) = 〈T,A1〉 ⊆ SU(3). Set z = diag(ζ, ζ, ζ);

then z ∈ P since CG2
(P ) = Z(P ) [21, Lemma 1.5]. Also, P 6⊆ T (since N(P )/P

is finite and T is not 3-stubborn); and so (up to conjugation) we may assume

that A1 ∈ P . Furthermore, P % 〈z, A1〉, since that subgroup is contained in a

torus. By inspection, no cyclic subgroup of T strictly containing 〈z〉 is normalized

by A1, and so we must have 〈z, A〉 ⊆ P (the subgroup of 3-torsion in T ). In

particular, since CG2
(z) = SU(3), CG2

(P ∩ T ) = CSU(3)(P ∩ T ) = T .

If P ∩ T ⊳ N(P ), then CG2
(P ∩ T ) = T and 〈T, P 〉 = N3(T ) are also normal-

ized by N(P ). In particular, NN3(T )(P )/P is normal in N(P )/P , is a 3-subgroup

(cf. [21, Lemma A.3]), and must be trivial since P is 3-stubborn. And this is

possible only if P = N3(T ) = 〈T,A1〉.
Now assume that P ∩ T is not normal in N(P ). Choose x ∈ N(P ) such

that x(P ∩ T )x−1 6= P ∩ T , and set Q = x(P ∩ T )x−1 for short. Choose any

y ∈ Q r T . Then y ∈ A±11 T , and [y,Q ∩ T ] = 1 since Q is abelian. This implies

that Q∩T ⊆ 〈z〉; and hence (since Q has index 3 in P ) that P = 〈A,A1〉. And in
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this case, P/〈z〉 ∼= (C3)
2, and one easily checks that the induced homomorphism

NG2
(P )/P −−−−→ Aut(P/〈z〉) ∼= GL2(F3)

is an isomorphism. �

One way frequently used to describe G2 directly is as the group of auto-

morphisms of the Cayley numbers C: a division algebra on R8 which contains

the quaternions as a subalgebra H ⊆ C. Under this description, the subgroup

SU(3)⊆G2 can be regarded as the group of automorphisms α∈Aut(C) such that

α(i) = i (such an α acts complex linearly on the remaining coordinates). This

shows that G2/ SU(3)∼=S6: the set of unit vectors orthogonal to 1 ∈ C. Also,

Sp(1)×C2
Sp(1)∼=SO(4) can be regarded as the group of those α∈Aut(C) for

which α(H) = H. See [27, Appendix A.5] for more details.

Lemma 3.3. We can identify T̃ ′ = T̃ (F4) ∼= R4 (with the usual inner product),

such that the set of roots of F4 is

R′ =
{
±xi (1≤i≤4), ±xi±xj (1≤i<j≤4),

1

2
(±x1±x2±x3±x4)

}
⊆ (T̃ ′)∗;

and such that the integral lattice is

Λ′ =
{
(n1, n2, n3, n4) ∈ Z4 :

∑
ni even

}
.

Also, |W ′| = 27·32, and W ′ contains all signed permutations of the coordinates

in R4. Furthermore:

(i) Every element in F4 is conjugate to its inverse.

(ii) If g̃ and g̃′ are two liftings to T̃ ′ of an element g∈T ′, then

‖g̃‖2 ≡ ‖g̃′‖2 (mod Z) if |g| = 2,

and

‖g̃‖2 ≡ ‖g̃′‖2 (mod
1

3
Z) if |g| = 3.

Here, ‖g̃‖ denotes the norm of g̃ ∈ T̃ ′ ∼= R4, and |g| denotes the multiplicative

order of g ∈ T ′.

(iii) There are 2 conjugacy classes of elements of order 2 in F4:

(I) ‖g̃I‖2 ∈ Z, CF4
(gI) ∼= Spin(9)

(II) ‖g̃II‖2 ∈ Z+ 1

2 , CF4
(gII) ∼= Sp(1)×C2

Sp(3)

(iv) There is a unique conjugacy class of subgroups (C2)
3∼=A⊆F4 with the

property that all elements of order 2 in A are conjugate to each other in F4. For

any such A, all elements of order 2 in A have type (II); CF4
(A)∼=A×SO(3), and

NF4
(A)/CF4

(A) = Aut(A)∼=GL3(F2).

(v) Set g = exp(13 ,
1
3 ,

1
3 , 1)∈T ′. Then CF4

(g) is the image of a map

θ : SU(3)×C3
SU(3) →֒ F4

whose restriction to the maximal tori is given by

˜(θ|T×T ) ((x1, x2, x3), (y1, y2, y3)) = (x1+y3, x2+y3, x3+y3, y1−y2 = 2y1+y3).



24 STEFAN JACKOWSKI, JAMES MCCLURE, AND BOB OLIVER

Also, NF4
(〈g〉) is a semidirect product (SU(3)×C3

SU(3))⋊C2, where C2 acts on

each SU(3) factor by complex conjugation.

Proof. The description of the root system of F4, and the order of its Weyl

group, are given in Bourbaki [7, §VI.4.9]. The Weyl group is generated by

reflections in the kernels of the roots, and hence contains all signed permutations

of the 4 coordinates (consider the roots xi and xi − xj). Since F4 is centerfree,

its integral lattice Λ′ is just the group of elements in T̃ ′ whose value on each root

is an integer (cf. [1, Proposition 5.3]).

(i) As a special case of the above remarks, W ′ contains the automorphism

(t 7→ t−1). Thus, g is conjugate to g−1 for all g∈T ′; and hence for all g∈F4.

(ii) This follows from the fact that if x ∈ 1
2Z, y ∈ 1

3Z, and x ≡ x′ and y ≡ y′

(mod Z), then

x2 ≡ (x′)2 (mod Z) and y2 ≡ (y′)2 (mod
1

3
Z)

(iii) See [21, Proposition 6.12]. By Borel’s theorem (Lemma 3.1), the central-

izer of any element in F4 is connected. By Borel & Siebenthal [6] (and a study

of the root system for F4), F4 contains Spin(9) and Sp(1)×C2
Sp(3) as maximal

connected subgroups. Hence, these groups must be the centralizers of their cen-

tral elements gI , gII of order 2. Alternatively, this can be shown by taking the

following explicit elements, and computing the roots of their centralizers:

gI = exp(0, 0, 0, 1): roots ±xi, ±xi±xj
gII = exp(12 ,

1
2 , 0, 0): roots ±x3,±x4,±x1±x2,±x3±x4,

±(x1−x2)±x3±x4

2

A comparison of the orders of the Weyl groups (W ′ =W (F4) has order 2
7 ·32)

shows that each maximal torus contains three elements conjugate to gI and 12

conjugate to gII . So this accounts for all elements of order 2. The norms of gI
and gII are immediate from the explicit formulas above.

(iv) Assume first that A = 〈g1, g2, g3〉 ∼= (C2)
3 is such that all elements of

order 2 in A have type (I). Then A⊆CF4
(g1)∼=Spin(9). Since Spin(9) is simply

connected, CF4
(g1, g2) is again connected by Lemma 3.1(i). Since any maximal

torus of CF4
(g1, g2) which contains g3 also contains g1 and g2, A must be con-

tained in a maximal torus of F4. And this contradicts the fact that each maximal

torus contains only 3 elements of type (I).

Now assume that A = 〈g1, g2, g3〉 and A′ = 〈g′1, g′2, g′3〉 are both isomorphic to

(C2)
3, and that all elements of order 2 in A,A′ have type (II). (Possibly A = A′

with different bases.) Since g1 is conjugate to g
′
1, we may conjugate A′ to arrange

that g′1 = g1. Then A,A
′⊆CF4

(g1) = H1
∼=Sp(1)×C2

Sp(3). Upon inspection, we

see that all noncentral elements in H1 of type (II) are conjugate in H1 to

h1 = (i, diag(i, i, i)) or h2 = (1, diag(−1, 1, 1)).

And g1·h2 does not have type (II) (where g1 = (−1, I) = (1,-I)). Thus, g2, g
′
2

are both conjugate to h1, and we may assume (by conjugating by appropriate
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elements of H1) that g
′
2 = g2 = h1. We now have

A,A′ ⊆ CF4
(g1, g2) = H2

∼= CH1
(h1) ∼= 〈S1×C2

U(3), (j, j · I)〉.

Finally, we see that g3, g
′
3 must both be conjugate (in H2) to (j, jI). This shows

that A is conjugate to A′; and that

CF4
(A) ∼= (H2)

(j,jI) ∼= A× SO(3).

Also, NF4
(A)/CF4

(A)∼=GL3(F2), since we have just seen that any automorphism

of A is an inner automorphism in F4.

(v) The centralizer CF4
(g) is connected by Lemma 3.1(i), and it contains T ′

as a maximal torus. The roots of CF4
(g) are precisely those roots of F4 which

take integer values on (13 ,
1
3 ,

1
3 , 1): namely,

±(xi − xj)(1 ≤ i < j ≤ 3),±x4,± 1

2
(x1 + x2 + x3 ± x4). (1)

The homomorphism θ̃ : T̃ (SU(3)×C3
SU(3)) −→ T̃ ′, defined by setting

θ̃((x1, x2, x3), (y1, y2, y3)) = (x1 + y3, x2 + y3, x3 + y3, y1 − y2),

is an isomorphism of vector spaces and integral lattices, and its dual sends the

roots in (1) bijectively to the roots of SU(3) ×C3
SU(3). Since an isomorphism

between root systems and integral lattices induces an isomorphism between com-

pact connected Lie groups (cf. [8, p.40, Prop. 15]), θ̃ extends to an isomorphism

θ : SU(3)×C3
SU(3)

∼=−−−−→ CF4
(g) ⊆ F4.

By point (i), g is conjugate to g−1 in F4. In particular, there exists a∈NF4
(〈g〉)

such that conj(a) is complex conjugation on both SU(3) factors in the centralizer.

Then a2∈Z(CF4
(〈g〉)) = 〈g〉, and (since |g| = 3) we can take a of order 2. This

shows that NF4
(〈g〉) is a semidirect product (SU(3)×C3

SU(3))⋊C2; and finishes

the proof of the lemma. �

Note, in part (iii) above, that θ(SU(3)× 1) is the factor which contains long

roots of F4: in keeping with the notation in [3, Example 2.11]. As noted in [3],

there is a subgroup G2 of F4 such that θ(SU(3) × 1)⊆G2⊆F4. One way to see

this is to consider the elements of order 2 in the maximal torus of θ(1×SU(3)):

namely, g1 = exp(0, 0, 0, 1) and g2, g1g2 = exp(12 ,
1
2 ,

1
2 ,± 1

2 ). We have seen that

CF4
(g1)∼=Spin(9), and so θ(SU(3)×1)⊆CF4

(g1, g2)∼=Spin(8). If we regard G2 as

the group of automorphisms of the Cayley numbers, then the induced inclusion

G2⊆SO(8) lifts to Spin(8) (G2 being simply connected), and its restriction to

SU(3)⊆G2 is the composite SU(3)⊆U(3)⊆U(4)⊆SO(8). This is isomorphic to

the above inclusion of θ(SU(3) × 1) into C(g1, g2); and so this inclusion factors

through G2.

The following result now completely classifies homotopy classes of maps from

BG2 to BF4.
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Example 3.4. [3, Example 2.11] Set G = G2 and G
′ = F4. Use the inclusions

SU(3)⊆G2 and SU(3)×C3
SU(3)⊆F4 defined above to identify

T̃ = T̃ (G2) = T̃ (SU(3)) and T̃ ′ = T̃ (F4) = T̃ (SU(3))× T̃ (SU(3)).

Under this identification, define φ = φk,m : T −→ T ′ (any k,m ∈ Z) by setting

φ̃(x) = φ̃k,m(x) = (kx,mx) (for any x ∈ T̃ (G2) = T̃ (SU(3)))

Then

(i) φ extends to a map (fk,m)2̂ : BG2 −→ (BF4)2̂ if and only if either k =

m = 0, or k is odd and m ∈ {0,±k, 2k}. The extension is unique if m = 0

or m = −k; otherwise there are exactly two distinct homotopy classes of maps

which extend φ.

(ii) φ extends to a map (fk,m)3̂ : BG2 −→ (BF4)3̂ if and only if each of k,m

is 0 or prime to 3; and the extension is unique up to homotopy.

(iii) φ extends to a map fk,m : BG2 −→ BF4 if and only if either k = m = 0,

or (k, 6) = 1 and m ∈ {0,±k, 2k}. The extension is unique if m = 0 or m = −k.
If m = k or m = 2k, then there are exactly two distinct homotopy classes of

maps which extend φ.

Furthermore, for any f : BG2 −→ BF4, f |BT ≃ Bφk,m for some k and m.

Proof. We first check that the φk,m are admissible. By construction, they

are equivariant with respect to the diagonal inclusion

W (SU(3))
∆−−−−−→ W (SU(3))×W (SU(3)) ⊆W ′.

Also,W =W (SU(3))×〈w〉, where w(t) = t−1 for all t ∈ T . Choose w′ ∈W ′ such

that w′(t) = t−1 for all t ∈ T ′ (Lemma 3.3(v)). Then the φk,m are equivariant

with respect to the homomorphism

∆× (w 7→ w′) :W −−−−→W ′;

and hence are admissible.

Now let φ be any nontrivial admissible homomorphism from G2 to F4. If φ

is equivariant with respect to the diagonal inclusion ∆ : Σ3 −→ Σ3×Σ3 as above,

then (by Schur’s lemma) φ must be equal to φk,m for some k,m. By [3, Theorem

2.21], there is some homomorphism φ̄ : W −→ W ′ such that φ is φ̄-equivariant,

and φ̄ is injective since φ̃ is. We will show that φ̄ can be chosen so φ̄|Σ3 is

conjugate in W ′ to ∆, and hence that φ is conjugate by an element of W ′ to

some φk,m.

To see this, fix elements a, b ∈ W (SU(3)) ⊆ W such that |a| = 3 and |b| = 2

(so bab−1 = a−1). Write elements inW ′ as matrices with respect to the standard

basis for T̃ ′ ∼= R4; then

A1 =




0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1


 and B1 =




0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1



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generate the first Σ3 factor, and

A2 =




1

2 − 1

2 − 1

2 − 1

2

− 1

2

1

2 − 1

2 − 1

2

− 1

2 − 1

2

1

2 − 1

2

1

2

1

2

1

2 − 1

2


 and B2 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1




generate the second. Note that A1 acts via rotation by 2π/3 on the plane Pl1 =

{(x, y,−x−y, 0)} and fixes Pl2 = {(x, x, x, y)} = Pl⊥1 , while A2 rotates Pl2 and

fixes Pl1.

Since 〈A1, A2〉 is a Sylow 3-subgroup ofW ′, we may assume that φ̄(a) is one of

the elements A1, A2, or A1A2. If φ̄(a) = A1, then Im(φ̃) = Pl1, since this is the

unique A1-invariant subplane in T̃
′ upon which A1 acts by rotation. The relation

bab−1 = a−1 forces φ̄(b) to leave both Pl1 and Pl2 invariant, and to act on Pl1
via a reflection. Define φ̄′ : W −→ W ′ by setting φ̄′(a) = A1A2; φ̄

′(w) = w′

(these are again the elements which act via (t 7→ t−1)); and φ̄′(b) = φ̄(b) or

φ̄(b)·B2 according to which one acts as a reflection on Pl2. This is a well defined

homomorphism — 〈a, b〉 ∼= Σ3 acts on each Pli via the standard 2-dimensional

representation — and φ is φ̄′-equivariant since Im(φ) = Pl1.

The same argument applies if φ̄(a) = A2, and shows that φ̄ can always be

chosen such that φ̄(a) = A1A2. Consider the homomorphism µ : W ′ −→ GL4(F2)

induced by the action of W ′ on Λ′/2Λ′, with respect to the basis

{
(2, 0, 0, 0), (1, 1, 1, 1), (1,−1, 0, 0), (0, 1,−1, 0)

}

of the integral lattice Λ′ ⊆ T̃ ′. It is not hard to see that Ker(µ) = {±I}, and
that

Im(µ) =

{(
X Y

0 Z

)
: X,Z ∈ GL2(F2), Y ∈ M2(F2)

}
.

Also, µ(A1) =
(
I
0
0
α

)
, µ(B1) =

(
I
0
0
β

)
, µ(A2) =

(
α
0
0
I

)
, and µ(B2) =

(
β
0
0
I

)
;

where α =
(
0
1
1
1

)
and β =

(
1
0
1
1

)
. Hence, since any element of order 2 in GL2(F2)

is conjugate to β (conjugate by an element of 〈α〉), we may assume that

µ(φ̄(a)) =

(
α 0

0 α

)
and µ(φ̄(b)) =

(
β X

0 β

)

for some X . The relations b2 = 1 and bab = a−1 imply that X = 0 or β.

Since
(
I
0
α
I

)(
β
0
β
β

)(
I
0
α
I

)−1
=

(
β
0

0
β

)
, we may assume that X = 0; i.e., that

φ̄(b) = ±B1B2. And if we set U =
(
0
1
−1
0

)
⊕

(
0
−1

1
0

)
∈ W ′, then [U,A1A2] = I

and UB1B2U
−1 = −B1B2; and this finishes the proof that φ̄|Σ3 is conjugate to

the diagonal inclusion.

It remains to determine which of the φk,m extend to maps from BG2 −→
(BF4)p̂ (for p = 2, 3), and to count the number of homotopy classes of such
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maps. As before, we identify

SU(3) = CG2

(
exp(

1

3
,
1

3
,
−2

3
)
)
⊆ G2.

Fix an embedding

θ : SU(3)×C3
SU(3) −−−→ F4 :

where Im(θ) = CF4

(
exp(13 ,

1
3 ,

1
3 , 1)

)
and (by Lemma 3.3(v))

θ̃|T
(
(x1, x2, x3), (y1, y2, y3)

)
= (x1 + y3, x2 + y3, x3 + y3, y1 − y2).

Using this, we get the explicit formula

φ̃k,m(x1, x2, x3) = (kx1 +mx3, kx2 +mx3, kx3 +mx3,mx1 −mx2). (1)

Recall (Lemma 1.3) that φ is regular if and only if Im(φ̃) is not contained in the

kernel of any root of F4. Using this last criterion, one checks that φ is regular

unless either k = 0, or m = 0, or k = −m, or k = 2m.

p = 3: If φ = φk,m is trivial, then any extension f : BG2 −→ (BF4)3̂ of Bφk,m
is null homotopic (cf. [21, Theorem 3.11]).

Now fix (k,m) 6= (0, 0), and assume that φ = φk,m lifts to a map f : BG2 −→
(BF4)3̂. We first show that each of k,m must be 0 or prime to 3. If k and

m are both multiples of 3, then all elements of order 3 in T lie in Ker(φ), and

this contradicts Proposition 1.8. If one of k or m is prime to 3 and the other a

nonzero multiple of 3, then φ is regular by the above remarks. So there is only

one possible induced map φ̄ :W −→W ′, and by the remarks at the beginning of

the proof it must be ∆.

Again consider the matrices

A =




1 0 0

0 ζ 0

0 0 ζ2


 and A1 =




0 1 0

0 0 1

1 0 0




of order 3 in SU(3) ⊆ G2. These are conjugate in SU(3); and, in fact, ev-

ery element in 〈T,A1〉 r T is conjugate in SU(3) to A. From the previous

paragraph, we see that φ̄(A1T ) = θ(A1, A1)·T ′. Hence, for any Rp-invariant

representation ρ : N3(T ) = 〈T,A1〉 −→ F4, ρ(A1) ≡ θ(A1, A1) (mod T ′).

Thus ρ(A1) is conjugate to (A,A); but since ρ is Rp-invariant it is also con-

jugate to ρ(A) = (1, A±1) or (A±1, 1). And a norm computation, using Lemma

3.3(ii), shows that (A,A) = exp(− 1
3 , 0,− 2

3 ,− 1
3 ) cannot be conjugate in F4 to

(A, 1) = exp(0, 13 ,− 1
3 , 0) or (1, A) = exp(− 1

3 ,− 1
3 ,− 1

3 ,− 1
3 ).

Construction of R3-invariant representations: Now assume that k and m each

is 0 or prime to 3. Extend φ = φk,m to

ρ : N3(T ) = 〈T,A1〉 −−−−→ SU(3)×C3
SU(3) ⊆ F4
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by setting

ρ(A1) =





θ(1, A1) if k = 0

θ(A1, 1) if m = 0

θ(A1, A1) otherwise.

This clearly gives a well defined homomorphism, and we claim that it is R3-

invariant.

We must show, for any pair P, P ′ ⊆ N3(T ) of 3-stubborn subgroups of G2, and

any x ∈ G2 such that xPx−1 ⊆ P ′, that the maps ρ|(xPx−1) and conj(x)◦ (ρ|P )
are conjugate in F4. Consider the 3-stubborn subgroups of G2 listed in Lemma

3.2(v). For any subgroup P ′′ ⊆ 〈T,A1〉 isomorphic to 〈A,A1〉, P ∩ T = 3T (the

3-torsion subgroup); and hence P ′′ is conjugate to 〈A,A1〉 by an element of T .

Hence, we need only consider the cases where x ∈ N(T ) (where the maps are

conjugate since φ is admissible); or where P = 〈A,A1〉 and x ∈ N(P ). And in

this latter case, ρ|(xPx−1) and conj(x)◦ (ρ|P ) are conjugate in Im(θ), since they

have the same character in each SU(3)-factor.

Uniqueness of the R3-invariant representations: Assume that ρ′ : 〈T,A1〉 −→
F4 is another R3-invariant representation. If φ is regular, then

ρ′(A1) ∈ ρ(A1)·CF4
(T ) = ρ(A1)·T ′.

Also, ρ(A1) = θ(A1, A1) in this case, and every element in ρ(A1)T
′ is conjugate

by an element of T ′ to ρ(A1). So ρ and ρ′ are conjugate.

Now assume that φ is not regular. Consider the elements g1 = exp(13 ,
1
3 ,

1
3 , 1)

and g2 = exp(13 ,− 1
3 , 1,

1
3 ), where in both cases CF4

(gi) ∼= SU(3)×C3
SU(3). If

m = 0 or k = 0, then φ(T ) is the maximal torus in one of the factors of CF4
(g1),

while if k = −m or k = 2m then φ(T ) is the maximal torus in one of the factors

of CF4
(g2). Fix η : SU(3)×C3

SU(3) −→ F4 such that Im(φ) = η(T×1). Note

that (since g1 and g2 are conjugate by an element of W ′), η is conjugate in F4 to

θ, except possibly with the factors reversed. Now, CF4
(φ(T )) = η(T×C3

SU(3)),

and

Im(ρ), Im(ρ′) ⊆ η(〈T,A1〉×C3
SU(3)).

And after conjugating, we may assume that Im(ρ), Im(ρ′) ⊆ η(〈T,A1〉×C3
T ).

Write ρ(A1) = η(x, y) and ρ′(A1) = η(x′, y′), where x, x′ ∈ A1T , and y, y
′ ∈ T .

Since y3 = (y′)3 = 1, we may assume that y, y′ ∈ 〈A〉. Since A and A−1 are

conjugate in SU(3), we may assume that y, y′ ∈ {1, A}. And since any element

in A1T is conjugate to A1, we may assume x, x′ = A1. Finally, ρ(A1) and

ρ′(A1) must be conjugate in F4 — since both are conjugate to φ(A) — and

hence η(A, y) must be conjugate to η(A, y′). And since η is conjugate in F4 to

θ (except possibly with the factors switched), formula (1) can be used to show

that y = y′, and hence that ρ = ρ′.

Existence and uniqueness of maps: It remains to check that the appropriate

higher limits vanish. By Lemma 3.2(v) again, G2 contains up to conjugacy two

3-stubborn subgroups: P1 = 〈T,A1〉 and P2 = 〈A,A1〉. Also, N(P1)/P1 has

order prime to 3, and 32|∤||N(P2)/P2|.
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The main problem is to determine the centralizer of ρ(P2). Set z =

diag(ζ, ζ, ζ) ∈ SU(3) ⊆ G2. If 3 ∤ k+m, then by (1),

ρ(z) = ρ(exp(
1

3
,
1

3
,− 2

3
)) = exp(±(

1

3
,
1

3
,
1

3
, 1));

and CF4
(ρ(P2)) = CIm(θ)(ρ(P2)). If 3|k+m, then ρ(z) = 1, and CF4

(ρ(P2)) =

CCF4
(ρ(A))(ρ(A1)), where

ρ(A) = ρ(exp(
1

3
,− 1

3
, 0)) = exp(

k

3
,
−k

3
, 0,

2m

3
)

is conjugate to exp(13 ,
1
3 ,

1
3 , 1). In either case, CF4

(ρ(P2)) is the centralizer of a 3-

subgroup of SU(3)×C3
SU(3), and hence is either connected or has 3 components.

In particular, the action of N(P2)/P2 on

Πρ1(G/P2) ∼= π0(CF4
(ρ(P2)))

has order at most 2. By Corollary 1.11, lim
←−

i(Πρ1) = 0 for all i ≥ 1, and lim
←−

i(Πρn) =

0 for all i, n ≥ 2. By Theorem 1.9, ρ (and hence φ) extends to a unique homotopy

class of maps f : BG2 −→ (BF4)3̂.

p = 2: By [21, Theorem 3.11], the trivial homomorphism φ0,0 extends to a

unique (null homotopic) map. So we restrict attention to the case φ = φk,m for

(k,m) 6= (0, 0).

Assume that φ extends to an Rp-invariant representation ρ. Note that

NSU(3)(T )rT ⊆ NG2
(T )rT contains elements of order 2, which are conjugate

to any given element of order 2 in T (Lemma 3.2(i)). So by Proposition 1.8, for

each g∈T = T (G2) of order 2, φ(g) 6= 1. Also, φ(g) must have type (II) in F4

by Lemmas 3.2(i,ii) and 3.3(iv). This is the case if and only if k is odd: since by

formula (1), φ(g) has type (I) if k is even and m is odd, and φ(g) = 1 if k and

m are both even.

Assume now that k is odd.

Uniqueness of the R2-invariant representation: Fix some φ = φk,m, and as-

sume that ρ, ρ′ : N2(T ) −→ F4 are two R2-invariant representations which extend

φ. We must show that they are conjugate.

Fix g ∈ T of order 2, set h = φ(g), and identify

CG2
(g) = Sp(1)×C2

Sp(1), N2(T ) = N×C2
N, and CG2

(h) = Sp(1)×C2
Sp(3).

The images of ρ and ρ′ lie in CF4
(h); and ρ and ρ′ lift to homomorphisms

ρ̃, ρ̃′ : N×N = 〈S1, j〉 × 〈S1, j〉 −−−→ Sp(1)×Sp(3).

The easiest way to check this last step is to take the pullbacks of Sp(1)× Sp(3)

along ρ and ρ′, and check that they both must be isomorphic to N×N .

Since ρ is R2-invariant, there is some x ∈ F4 such that xρ(z, j)x−1 = ρ(z, i)

for all z ∈ S1. In particular, x ∈ CF4
(h), and hence lifts to x̃ ∈ Sp(1)× Sp(3)

such that x̃ρ̃(z, j)x̃−1 = ±ρ̃(z, i) for all z. The sign (±) must be constant (by

continuity); and since (1, i) is conjugate to (1,−i) in N×N we may assume that
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x̃ρ̃(z, j)x̃−1 = ρ̃(z, i) for all z. In particular, ρ(z, j) is conjugate to ρ′(z, j); and

in fact ρ(z, z′j) is conjugate to ρ′(z, z′j) for all z, z′ ∈ S1 (since z′j is conjugate

in N to j). The same argument applies to all other cosets of T in N2(T ). Thus,

ρ̃ and ρ̃′ have the same characters in Sp(1) and Sp(3), and hence are conjugate.

And hence ρ and ρ′ are conjugate.

Existence and uniqueness of maps: Before going further, we must specify

more precisely some of the identifications already used. Set g = exp(12 ,− 1
2 , 0) ∈

G2. Then

φk,m(g) = exp(
k

2
,−k

2
, 0,m) =

{
h1 = exp(12 ,− 1

2 , 0, 0) if m is even

h2 = exp(12 ,− 1
2 , 0, 1) if m is odd.

By Lemmas 3.2(i) and 3.3(iii), we know that the centralizers of these elements

are the images of embeddings

σ : Sp(1)×C2
Sp(1) −→ G2 and τ1, τ2 : Sp(1)×C2

Sp(3) −→ F4.

So if we choose N2(T ) ⊆ Im(σ), it then follows that Im(ρ) ⊆ Im(τi) (where

i = 1, 2 depending on the parity of m).

Let S ⊆ Sp(1)×C2
Sp(1) and S′ ⊆ Sp(1)×C2

Sp(3) denote the standard max-

imal tori. Upon checking the roots of these centralizers, we see that σ and the

τi can be chosen to satisfy the following formulas:

(σ̃|S)(x, y) = (x+ y,−x+ y,−2y)

(τ̃1|S′)(x1;x2, x3, x4) = (x1 + x2,−x1 + x2,−x3 − x4,−x3 + x4) (2)

(τ̃2|S′)(x1;x2, x3, x4) = (x1 + x2, x1 − x2,−x3 + x4,−x3 − x4).

For example, if m is even, then the roots of CF4
(h1) are ±x1±x2, ±x3±x4,

±x3, ±x4, ± 1
2 (x1+x2±x3±x4) (i.e., the roots of F4 whose value on (12 ,−k

2 , 0, 0)

is integral). And these are the roots of Im(τ1).

The idea of the proof is now to push all computations into the centralizers

CG2
(g) and CF4

(φ(g)). So we start by identifying the composite (τ1|S′)−1 ◦ φ ◦
(σ|S). This splits into two cases, depending on whether m is even or odd.

Case 1. k odd and m even: In this case, (1) and (2) yield the formula

((τ1|S′)−1 ◦ φ ◦ (σ|S))̃ (x, y) = (kx; ky − 2my, ky +m(y − x), ky +m(x+ y)) .

(3)

Case 1a. m 6= 0, 2k: Consider the subgroup P = σ(Q×C2
N)⊆G2 (see Lemma

3.2(iii)). There is x ∈ N(P ) such that x(i, 1)x−1 = (j, 1) and x centralizes

σ(1×S1). Hence, since ρ is Rp-invariant, ρσ(j, 1) must lie in and be conjugate

to ρσ(i, 1) in

CF4
(φσ(1 × S1)) = τ1

(
CSp(1)×C2

Sp(3)(exp(R · (0; k − 2m, k +m, k +m)))
)

= τ1
(
Sp(1)×C2

(U(1)×U(2))
)
.
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(Recall that the centralizer of any subtorus is connected.) By (3),

τ−11 ρσ(i, 1) = τ−11 φσ(i, 1) = exp(
k

4
; 0,−m

4
,
m

4
) =


±i,




1 0 0

0 ±1 0

0 0 ±1






and so τ−11 ρσ(j, 1) must have the form

τ−11 ρσ(j, 1) =


z,




1 0 0

0 ±1 0

0 0 ±1






for some z ∈ Sp(1) conjugate to i. In addition (since ρ is a homomorphism) this

element must act on

τ−11 ρσ(S1 × 1) = exp(R·(k; 0,−m,m))

via (z 7→ z−1); and this is impossible.

Case 1b. m = 2k: In this case, (3) takes the form

((τ1|S′)−1 ◦ φ ◦ (σ|S))̃ (x, y) = (kx;−3ky, 3ky− 2kx, 3ky + 2kx) . (3a)

We extend this to a homomorphism ρ̄ : N×C2
N −→ Sp(1)×C2

Sp(3) by setting

ρ̄(z, 1) =


zk,




1 0 0

0 z−2k 0

0 0 z2k




 ρ̄(1, z) =


1,



z−3k 0 0

0 z3k 0

0 0 z3k






ρ̄(j, 1) =


j,




−1 0 0

0 0 1

0 1 0




 ρ̄(1, j) =


1,




−j 0 0

0 0 j

0 j 0




 .

and set ρ = τ1 ◦ ρ̄ : N×C2
N −→ F4. Note in particular that

ρ̄(i, 1) =


±i,




1 0 0

0 −1 0

0 0 −1




 and ρ̄(1, i) =


1,




±i 0 0

0 ∓i 0

0 0 ∓i




 .

We claim that the composite

ρ = τ1 ◦ ρ̄ : N2(T ) = N×C2
N −−−−→ F4

is R2-invariant. To show this, it suffices using Lemma 3.2(iii) to check that for

any of the subgroups Pi ⊆ N×C2
N listed there (i = 1, . . . , 6), and any x ∈ N(Pi),

the homomorphisms τ1 ◦ ρ|Pi and τ1 ◦ (ρ|Pi) ◦ conj(x) are conjugate in F4.

The case P6
∼= (C2)

3 follows from Lemma 3.3(iv), once one has checked that

all elements of order 2 are sent to elements of type (II) in F4. To see this, note

that for any 1 6= x ∈ P6, ρ(x) is conjugate in Im(τ1) to φσ(i, i) or φσ(1,−1),

both of which have type (II).

For i = 1, . . . , 4, this is straightforward, and the homomorphisms are in fact

always conjugate in Sp(1)×C2
Sp(3) (i.e., before composing with τ1). In the case

P1 = N×C2
N , there is nothing to prove (N(P1)/P1 = 1). In the next two cases,
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P2 = N×C2
Q and P3 = Q×C2

N , the arguments can be greatly simplified by

conjugating elements of Sp(3) with the matrices



1 0 0

0 j 0

0 0 1


 and



j 0 0

0 i/
√
2 i/

√
2

0 −1/
√
2 1/

√
2




respectively. Note also that the centralizer in U(2) of the matrix
(

0
−j

j
0

)
is SU(2).

The last case, P4 = Q×C2
Q, follows from the two previous ones.

It remains to consider the case P5 = 〈T, γ〉, where we write γ = σ(j, j) for

short. Fix any x ∈ N(P5) = N(T ). Since φ is admissible, there is y ∈ N(T ′) ⊆
F4 such that ρ(xax−1) = yρ(a)y−1 for all a ∈ T . Also, ρ(γ), yρ(γ)y−1, and

ρ(xγx−1) all have the same conjugation action on ρ(T ), and hence lie in the

same coset of CF4
(ρ(T )) = T ′. From the formula ρ(γ) = τ1(j, j·I), we see that

any two elements in ρ(γ)T ′ are conjugate by an element of T ′. And this shows

that conj(y′) ◦ ρ = ρ ◦ conj(x) (on P5 = 〈T, γ〉) for some y′ ∈ T ′y.

The higher limits lim
←−

i(Πρn) can now be computed using Theorem 1.10 (and the

formula for Πρn in 1.9); together with the computation Λ∗(GL3(F2); (F2)
3) = 0

of [21, Proposition 6.3]. The results are summarized in the following table:

P N(P )/P CF4
(ρ(P )) Λ0(NP/P ; Πρ1(−)) Λ1(NP/P ; Πρ1(−))

N×C2
N 1 (C2)

2 (Z/2)2 0

N×C2
Q 1× Σ3 (C2)

2 0 0

Q×C2
N Σ3 × 1 (C2)

3 0 Z/2
Q×C2

Q Σ3 × Σ3 (C2)
3 0 0

T ⋊ C2 Σ3 2(T
′) ∼= (C2)

4 0 (Z/2)2

(C2)
3 GL3(F2) (C2)

3× SO(3) 0 0.

Note for example that whenever there is P ′ % P such that C(ρ(P ′)) = C(ρ(P )),

then (N(P ) ∩ P ′)/P acts trivially on all homotopy groups of BC(ρ(P )), and

hence Λ∗(NP/P ; Πρn(G/P )) = 0 for all n by Theorem 1.10(iii).

In all other cases (n > 1 or i > 1), Λi(N(P )/P ; Πρn(G/P )) = 0. Since the

Λi are the higher limits of the quotient functors of a certain filtration of Πρn
(see Theorem 1.10(i)), these computations show that lim

←−

1(Πρ1) = Z/2, and that

lim
←−

i(Πρn) = 0 for all (i, n) 6= (1, 1). It follows that ρ (and hence φk,2k) extends to

exactly two homotopy classes of maps (fk,2k)2̂, (f
′
k,2k)2̂ : BG2 −→ (BF4)2̂. This

last step, the existence in this situation of exactly two extensions, follows from

the arguments in Wojtkowiak [29], even though it is not stated explicitly there.

Case 1c. m = 0: In this case, formula (3) simplifies to give

((τ1|S′)−1 ◦ φ ◦ (σ|T ))̃ (x, y) = (kx; ky, ky, ky). (3b)

In other words, τ−11 φσ(z, w) = (zk, wk·I) for any (z, w)∈S1×C2
S1. This can

now be extended to a homomorphism ρ : σ(N×C2
N) −→ F4 (N =

〈
S1, j

〉
) by

setting ρσ(j, 1) = τ1(j, I) and ρσ(1, j) = τ1(1, j·I).
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We check that ρ is R2-invariant, by again referring to the list of 2-stubborn

subgroups of G2 in Lemma 3.2(iii). Invariance with respect to conjugation and

inclusion of the subgroups N×C2
Q, Q×C2

N , and Q×C2
Q is easily checked (and

holds within Im(τ1)∼=Sp(1)×C2
Sp(3)). Invariance for the subgroup T⋊C2 fol-

lows automatically from the fact that φ is admissible. And invariance for the

subgroup (C2)
3⊆G2 follows from Lemma 3.3(iv) (uniqueness of (C2)

3⊆F4) —

after checking that all elements of order 2 in N×C2
N are sent to elements of

type (II) in F4.

The higher limits lim
←−

i(Πρn) can again be computed using Theorem 1.10 (and

1.9); together with the computation Λ∗(GL3(F2); (F2)
3) = 0 of [21, Proposition

6.3]. This time, we get the following table:

P N(P )/P CF4
(ρ(P )) Λ0(NP/P ; Πρ1(−)) Λ1(NP/P ; Πρ1(−))

N×C2
N 1 O(3) Z/2 0

N×C2
Q 1× Σ3 O(3) 0 0

Q×C2
N Σ3 × 1 O(3) 0 0

Q×C2
Q Σ3 × Σ3 O(3) 0 0

T ⋊ C2 Σ3 (C2)
2× SO(3) 0 Z/2

(C2)
3 GL3(F2) (C2)

3× SO(3) 0 0.

Also, Λi(N(P )/P ; Πρn(G/P )) = 0 whenever i > 1, or n > 1 and i > 0. So in

this case, lim
←−

0(Πρn)
∼= πn(B SO(3)) for all n, and lim

←−

i(Πρn) = 0 whenever i > 0.

Thus, by Theorem 1.9, ρ, and hence φk,2k, extend to a unique homotopy classe

of map (fk,0)2̂ : BG2 −→ (BF4)2̂.

Case 2. k odd and m odd: These cases can be handled by the same straight-

forward procedure as that carried out in Case 1. But it is much simpler to use

Case 1 directly, together with the relation

φk,m ◦ ǫ = φ−k+2m,k+m

given in [3, Example 2.11]. Here, ǫ denotes the restriction to the maximal torus

T ⊆ G2 of the “exceptional isogeny” Φ : (BG2)2̂ −→ (BG2)2̂ constructed by

Friedlander [16]. Since Φ is a homotopy equivalence, we can define (for any odd

k):

(fk,k)2̂ = Φ−1 ◦ (fk,2k)2̂ and (fk,−k)2̂ = Φ ◦ (f−k,0)2̂.
And the same argument shows that (fk,−k)2̂ is unique, and that φk,k extends to

exactly two maps.

Conversely, if k and m are odd and (fk,m)2̂ is defined, then (f−k+2m,k+m)2̂ =

Φ ◦ (fk,m)2̂ is also defined. So either k+m = 0 or k+m = 2(−k+2m) by Case

1. And these relations imply that m = ±k. �

Among the maps fk,m : BG2 −→ BF4 constructed above, f1,0 is (aside from

f0,0) the only one which is induced by a homomorphism between the (real)

compact Lie groups. See the remarks before Example 3.4 on embedding of G2
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as a subgroup of F4. It is not hard, using Lemmas 3.2(ii) and 3.3(iv), to show

that any two such subgroups are conjugate.

There are irreducible complex representations V 27 of G2 andW 26 of F4 (with

dimensions as given by the superscripts). It is not hard to check that V |T ∼=
(W |φ1,1(T )) ⊕ ǫ, where ǫ denotes the trivial 1-dimensional representation (and

that this relation holds for no other φk,m). This shows in particular that there

is no homomorphism of type (1, 1): since W |φ1,1(T ) is not the weight system

(restriction to T ) of anyG2-representation. In characteristic 7, the corresponding

representation V (F7) of G2(F7) contains a 1-dimensional fixed subspace, and

Testerman’s embedding σ : G2(F7) −→ F4(F7) in [32] is characterized by the

property that W (F7)|σ(G2(F7)) ∼= V (F7)/F7. Hence the map

σ∗ : (BG2)p̂ ≃ BG2(F7)p̂ −−−−→ BF4(F7)p̂ ≃ (BF4)p̂,

defined for any p 6= 7 using the equivalences of Friedlander and Mislin [31,

Theorem 1.4], has type (1, 1).
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Tôhoku Math. Jour. 13 (1961), 216–240
6. A. Borel & J. De Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie

clos, Comment. Math. Helv. 23 (1949), 200–221
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