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Abstract

We classify all reduced, indecomposable fusion systems over finite 2-groups of
sectional rank at most 4. The resulting list is very similar to that by Gorenstein
and Harada of all simple groups of sectional 2-rank at most 4. But our method
of proof is very different from theirs, and is based on an analysis of the essential
subgroups which can occur in the fusion systems.
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Introduction

A saturated fusion system JF over a finite p-group S is a category whose objects
are the subgroups of S, whose morphisms are injective homomorphisms between
subgroups, and where the morphism sets satisfy certain axioms first formulated by
Puig and motivated by the properties of conjugacy relations among p-subgroups of
a finite group. In particular, for each finite group G and each Sylow p-subgroup
S < G, the category Fs(G) whose objects are the subgroups of G and whose
morphisms are those homomorphisms induced by conjugation in G is a saturated
fusion system over S. We refer to Puig’s paper [Pg], and to [AKO] and [Cr], for
more background details on saturated fusion systems.

A saturated fusion system F is reduced if it contains no nontrivial normal p-
subgroups, and no proper normal subsystems of p-power index or of index prime
to p. All of these concepts are defined by analogy with finite groups; the precise
definitions are given in Section 1.2. The class of reduced fusion systems is larger
than that of simple fusion systems, although a reduced fusion system which is
not simple has to be fairly large. We refer to main theorems in [AOV1] for the
motivation for defining this class.

The sectional p-rank of a finite group G is the largest possible value of rk(P/Q),
where Q 4 P < G are p-subgroups and P/Q is elementary abelian. When G is
a p-group, we just call this the sectional rank, and denote it 7(G). In their book
which appeared in 1974, Gorenstein and Harada [GH]| gave a classification of all
finite simple groups whose sectional 2-rank is at most 4.

A fusion system is indecomposable if it is not isomorphic to a product of fusion
systems over smaller p-groups. The following theorem, where we list all reduced,
indecomposable fusion systems over finite 2-groups of sectional rank at most 4, is the
main result of this paper. We refer to the end of the introduction for the notation
used for certain central products and semidirect products. When ¢ is a prime power
and n > 2, UT),(q) denotes the group of upper triangular matrices over F, with
1I’s on the diagonal. Also, we write L.} (q) = PSL,(q) and L, (q) = PSU,(q)-

A fusion system is simple if it contains no nontrivial proper normal subsystems.
We refer to [AKO, Definition 1.6.1] for the precise definition of a normal subsystem.
Here, we just note that a reduced fusion system F over S is simple if S contains
no nontrivial proper subgroup strongly closed in F.

THEOREM A. Let F be a reduced, indecomposable fusion system over a non-
trivial 2-group S of sectional rank at most 4. Then one of the following holds.
(1) S = Dox for some k > 3, and F is isomorphic to the fusion system of L3 (q)
(when va(q £ 1) = k).

(2) S = 8Dyx for some k >4, and F is isomorphic to the fusion system of L?jf (q)
(when va(q £ 1) =k —2).
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S =2 Cor 1 Cy for some k > 2, and F is isomorphic to the fusion system of
Ly (q) (when vay(q F1) = k).

—1,t
S 22 (Cor x Oor) x C% for some k > 2, and F is isomorphic to the fusion
system of Ga(q) (when va(q 1) =k), or of Mia (if k = 2).

S 2 (Do Xy Dor) X Cy 2 (Qar Xy Qor) X Cs for some k > 3, and F
is isomorphic to the fusion system of PSp,(q) (when vo(q®> — 1) = k), or of
GL4(2) = Ag (if k=3).

S =2 Dor 1 Cy for some k > 3, and F is isomorphic to the fusion system of
LE(q) (whenvy(q£1) =k —1), or of Aio (if k = 3).

S 2 SDor 1 Cy for some k > 4, and F is isomorphic to the fusion system of
LE(q) (when vy(g£1) =k —2).

S contains a normal subgroup T = UT3(4), where [S:T] < 4 and Autg(T) is
generated by field and/or graph automorphisms; and F is isomorphic to the
fusion system of PSLs(4), Ljf(q) for ¢ = £5 (mod 8), Mas, Mas, McL, Jo,
Js, or Ly.

Conversely, if G is any of the groups listed in (1)-(8) and S € Syly(G), then Fs(G)
is indecomposable and reduced, and is in fact simple.

Certain simple groups with sectional 2-rank 4, such as those with abelian Sylow

2-subgroup, do not appear in the above list because their fusion system is not
reduced. (See Proposition 1.12(b) for more detail.) A few other simple groups,
such as A7 and My, fail to appear because their fusion system is isomorphic to
that of another simple group in the list.

It will be convenient to have names for some of the classes of 2-groups which

appear in the statement of Theorem A. See the end of the introduction for an
explanation of the notation used, especially that used for semidirect products.

DEFINITION 0.1. Fix a finite 2-group S.
S e€Dif S= Dyn for some n > 3.

S e Qif §= Qs for some n > 3.
SeSif S= SDyn for some n > 4.
S eWif §= Cyn 1 Cy for some n > 2.

SGVifS%AzcgorS%(AXCQA);CgforsomeAEDorAGS.

A

SegGifS=(ConxCyn)x C3 forn>2 and for \ = —1or A =2""1—-1

(the latter only if n > 3). (When A = —1, these are all of type Ga(q) for
odd q.)

S € U if there is T < S such that T = UT3(4), and Cgz(1)(T/Z(T)) =
T/Z(T).

Juxtaposition of these symbols denotes union; e.g., DSQ is the family of 2-
groups which are (nonabelian) dihedral, semidihedral, or quaternion.
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e If C is among the classes listed above, then S € CxC if S = 51 x S2 where
51,59, €C.

Note that UT4(2) & (Dg x¢, Ds) % Cs € V (Lemma C.4).

ProoF OoF THEOREM A. Fix a reduced, indecomposable fusion system F over
a 2-group S of sectional rank at most 4. By the results of Section 3, summarized
in Theorem 3.1, S € DSWGUY or S has type Aut(Mi2). If S has type Aut(Mi2),
then by Proposition 4.3, there are no reduced fusion systems over S.

By [BMO, Theorem A(d)], if F is the fusion system (at the prime 2) of
PSU, (q) for some odd prime power ¢, then it is also the fusion system of PSL,,(q")

for any ¢’ such that (¢’) = (—q) as closed subgroups of Z; . Hence for each state-
ment in Theorem A about fusion systems of PSLF(q), it suffices to handle the
linear case.

When S € DSW, F is as described in (1)—(3) by [AOV1, Propositions 4.3 &
4.4] and [AOV2, Proposition 3.1]. When S € G, F is as in (4) by Proposition 4.2;
and when S € V (cases (5)—(7), and including the case S = UT4(2)) by Propositions
5.1, 5.5, and 5.6.

Assume S € U: an extension of UT3(4) as described above. The isomorphism
classes in U are listed in Lemma 6.2(a). Reduced fusion systems over 2-groups of
type Mag or Ja (denoted Sy and Sp in Lemma 6.2) are listed in [OV, Theorems
4.8 & 5.11]. The remaining cases are handled in Propositions 6.4, 6.5, and 6.6.

Conversely, assume G is one of the simple groups listed in (1)—(8), fix S €
Syly(G), and set F = Fs(G). Then O*(F) = F and Oz(F) = 1 by Proposition
1.12(a,b). Also, by [Gdl, Theorem A] and [Ft, Theorem 1], S has no proper
subgroups strongly closed in G. Hence F is indecomposable, and if it has any
proper normal subsystems, they must be over S, and hence contain 0¥ (F) by
[AOV1, Lemma 1.26]. So F is reduced and simple if O% (F) = F.

If Se DS orSeW, then Aut(S) is a 2-group by point (b) or (a), respectively,
in Corollary A.10. If S € V and S 2 UT4(2), or if S has type Ly, then #(5) # @
(see Definition 2.1) and hence Aut(S) is a 2-group by Corollary 2.5. If S € G, then
Aut(S) is a 2-group by Proposition 4.2. Hence O% (F) = F in all of these cases by
Proposition 1.12(c), and F is reduced and simple.

If S is of type Mag or Ja, then F is reduced by [AOV1, Proposition 4.5]. If § =
UT4(2) or UT5(4), then F is reduced by Proposition 5.1 or 6.4, respectively. [

The main idea behind our proof of Theorem A is to analyze and classify re-
duced fusion systems by studying their essential subgroups. These are subgroups
whose automorphisms generate the fusion system (see Definition 1.1 and Proposi-
tion 1.6), and we refer to Theorem 3.1 for a brief summary of results in Section 3
describing them. The main tools used for handling essential subgroups are Bender’s
classification of finite groups with strongly 2-embedded subgroups [Be, Satz 1], and
Goldschmidt’s classification of amalgams of index (3, 3) [Gd2, Theorem A].

It is unclear to me whether or not this paper, when combined with the deep
group theoretic results classifying finite simple groups having Sylow 2-subgroups
in certain families, gives a shorter proof of the Gorenstein-Harada theorem than
that in [GH]. In any case, that is not our goal here. Our proof of Theorem A is
organized very differently from that by Gorenstein and Harada, by setting focus
on the essential subgroups in the fusion systems rather than on the centralizers of
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involutions, and we hope that this approach can give some new insight into the
classification of these groups.

The paper is organized as follows. Section 1 is mostly a review of background
results on fusion systems. The properties of certain families of subgroups of 2-
groups are studied in Section 2, and this is applied in Section 3 to describe the
(potential) essential subgroups and prove Theorem 3.1. This is then followed by
three chapters dealing with fusion systems over the families G, V, and U, respec-
tively. Fusion systems over groups in the families DSW were studied in the earlier
papers [AOV1] and [AOV2]. Background results on groups and actions on groups
are then collected in the appendices.

Notation and terminology: Most of the notation used here is standard
among group theorists. For a prime p, “p-group” always means a finite p-group.
For a group G, Z;(G) denotes the i-th term in the upper central series for G; thus
Z1(G) = Z(G) and Z;11(G)/Z:(G) = Z(G/Z;(G)). Also, G# = G~{1}, and I(G)
is the set of involutions in G (elements of order 2). When G and H are finite groups,
and Z is identified as a subgroup of Z(G) and of Z(H), then G xz H denotes the
central product:

GxzH=(GxH)/{(z,z2")|z€ Z}.
When G is a finite group and S is a 2-group, S is “of type G” if S is isomorphic
to a Sylow 2-subgroup of G. Also, Cy,, D,, Q., and SD,, denote cyclic, dihedral,
quaternion, and semidihedral groups of order n, and 2?4 = QsXc,RQs = Dgx¢,Ds
214 — Dy xc, Qs. When H < G is a subgroup, we write

(HY) = (H|g € G)

for the normal closure of H in G.
As perhaps less standard notation, for a group G, we set

G* = @q/[a,q),

and

the abelianization of G; and let
[¢] = a-Inn(G) € Out(G)

denote the class of a € Aut(G).
When A is a finite abelian group, B is cyclic, and A € Z is prime to |A|, we let

A
Ax B denote the semidirect product in which a generator of B acts on A via a — a*.

t
When A is any group and B is cyclic, then (A4 x A) x B denotes the semidirect
product where a generator of B exchanges the two factors A, and similarly for

(Axz A) x B when Z < Z(A). Similarly, when A is abelian, (A x A) A>74t C2 is the
semidirect product where one generator of C2 acts via g — g* and the other acts
by exchanging the factors.

When ¢ = 2¥ and n > 2, UT,,(q) € Syly(SL.(q)) denotes the subgroup of strict
upper triangular natrices. For 1 < ¢ < j < n and a € Fg, ef; € UT,(q) is the
elementary matrix whose unique nonzero off-diagonal entry is a in position (4, j).
When ¢ = 2, we write e;; = e}j.

I would like very much to thank Andy Chermak for first telling me about
Goldschmidt’s classification of amalgams. That was when I became convinced that
this project should be possible. I would also like to thank the referee for going

through the paper in great detail and making many very helpful suggestions.



CHAPTER 1

Background on fusion systems

A saturated fusion system over a p-group S is a category F whose objects are
the subgroups of S, and where for each P,Q < S, Morz(P, Q) is a set of injective
homomorphisms from P to @ which includes all morphisms induced by conjugation
in S, and which satisfies a set of axioms which are described, for example, in [AKO,
§1.2], [BLOZ2, Definition 1.2], or [Cr, Definition 4.11]. We write Homz(P, Q) =
Mor £(P, Q) to emphasize that the morphisms are all homomorphisms.

The following terminology for subgroups in a fusion system will be used fre-
quently. Recall that a subgroup H < G is strongly p-embedded if p||H|, and
pt|HNIH] for g € GNH.

DEFINITION 1.1. Fix a prime p, a p-group S, and a saturated fusion system F
over S. Let P < S be any subgroup.

e Let P7 denote the set of subgroups of S which are F-conjugate (isomorphic in
F) to P. Similarly, g7 denotes the F-conjugacy class of an element g € S.

P is fully normalized in F (fully centralized in F) if |Ng(P)| > |Ns(R)|
(|Cs(P)| < |Cs(R)|) for each R € P7.

Pis fully automized in F if Auts(P) € Syl,(Autz(P)).

P is F-centric if Cg(P') = Z(P') for all P’ which is F-conjugate to P.

e P is F-essential if P is F-centric and fully normalized in F, and Outz(P)
contains a strongly p-embedded subgroup. Let Ex denote the set of all
F-essential subgroups of S.

P is central in F if every morphism ¢ € Homz(Q,R) in F extends to a
morphism ¢ € Homz(PQ, PR) such that ¢|p = Idp.

e P is normal in F if every morphism ¢ € Homxz(Q,R) in F extends to a
morphism ¢ € Homz(PQ, PR) such that ¢(P) = P.

e For any ¢ € Aut(S), ¥F denotes the fusion system over S defined by
Hom. (P, Q) = ¢ o Homz (¢~ (P),~ (@) o 0" (all P,Q < )

By analogy with finite groups, the maximal normal p-subgroup of a saturated
fusion system F is denoted O,(F). Also, for any P < S, Nx(P) C F is the largest
fusion subsystem over Ng(P) in which P is normal. If P is fully normalized in F,
then Nz (P) is a saturated fusion system by, e.g., [AKO, Theorem 1.5.5].

Since we will have frequent need to refer to the “Sylow axiom” and the “ex-
tension axiom” for a saturated fusion system, we state them here in the form of a

5



6 1. BACKGROUND ON FUSION SYSTEMS

proposition. (These conditions are used to define saturation in [BLOZ2] and other
papers.)

ProposITION 1.2 ([AKO, Proposition 1.2.5]). A fusion system F over a p-
group S is saturated if and only if the following two conditions hold.

(I) (Sylow axiom) If P < S is fully normalized, then P is fully centralized and
fully automized.

(IT) (Extension axiom) For each P,Q < S and ¢ € Isor(P,Q) such that Q is
fully centralized, if we set N, = {g € Ng(P)|%cy € Auts(Q)}, then ¢
extends to some ¢ € Homzr(N,, S).

PRrROPOSITION 1.3. Let F be a saturated fusion system over a p-group S.

(a) For each P < S, and each R € P” which is fully normalized in F, there is
» € Homz(Ng(P), Ng(R)) such that o(P) = R.

(b) IfQ < P < S are such that Q is characteristic in P, Q 1is fully normalized in
F, and P is fully normalized in Nx(Q), then P is fully normalized in F.

(¢c) Assume Q@ < P < S, where P is fully normalized in F, Ng(Q) = Ng(P), and

Ns(#(@)) N Ns(¢(Ns(P))) < Ns(o(P)) V¢ € Homz(Ns(P),S5).  (1.1)
Then Q is also fully normalized in F.

PROOF. (a) See, e.g., [AKO, Lemma 1.2.6(c)].

(b) By (a), there are ¢ € Homz(Ng(P),S) and ¢ € Homz(Ns(p(Q)), Ns(Q))
such that ¢(P) is fully normalized in F and ¥(p(Q)) = Q. Also, ¢(Ng(P)) <
Ns(¢o(P)) < Ng(9(Q)) since Q is characteristic in P.

Set x = 9y; then x € Homp, (q)(Ns(P), Ns(Q)) since x(Q) = Q. Since P is
fully normalized in Nx(Q) (and since Ng(P) < Ng(Q)), x(Ns(P)) = Ng(x(P)).
Since (Ng(@(P))) < Ng(x(P)), this proves that ¢(Ng(P)) = Ng(¢(P)), so P is
fully normalized in F since ¢(P) is.

(c) By (a), there is ¢ € Homz(Ng(Q), S) such that ¢(Q) is fully normalized. If
@ is not fully normalized, then Ng(p(Q)) > ©(Ng(Q)) = ¢(Ng(P)). Hence by
Lemma A.1(a), Ns(o(Q)) N Ns(o(Ns(P))) > ¢(Ng(P)). Together with (1.1), this
shows that Ng(¢(P)) > ¢(Ng(P)), contradicting the assumption that P is fully
normalized in F. O

The next theorem is a special (much weaker) version of the model theorem,
first shown in [BCGLO1]. That theorem says that if F is a saturated fusion
system and Q < F is normal and centric, then there is a unique “model” G for
F: a unique group G which realizes the fusion system F and contains ) as normal
centric subgroup.

THEOREM 1.4 ([AKO, Proposition I1I11.5.8(a)]). Let F be a saturated fusion
system over a p-group S, and let Q < S be an F-centric subgroup which is fully
normalized in F. There is a finite group M such that Ns(Q) € Syl,(M), Q < M,

CM(Q> < Q, and M/Q = Out]\/[(Q) = Out;(Q).
PROOF. Since @ is F-centric, it is normal and centric in the normalizer fusion

system Nz(Q). Hence Nx(Q) is constrained in the sense of [BCGLO1, §4] or
[AKO, §1.4]. So by the model theorem [BCGLO1, Proposition 4.3] or [AKO,
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Theorem 1.4.9(a)], there is a finite group M (a “model” for Nz(Q)) which satisfies
the above conditions (and also Fng(q)(M) = Nx(Q)). O

The following lemma on automorphisms will also be useful.

LEMMA 1.5. Let F be a fusion system over a p-group S. Let @ I P < S
be a pair of subgroups both fully normalized in F, such that Q is F-centric and
normalized by Autxz(P). Set

Out(P, Q) = Nau(p)(Q)/Tnn(P) = {a € Aut(P)[a(Q) = Q}/Inn(P),
and let
R: Out(P, Q) ———— Nou(g)(Outp(Q))/Outp(Q)
be the homomorphism
R([a]) = [ale]-Outp(Q).
Here, [a] € Out(P) denotes the class of o € Aut(P). Then the following hold.
(a) R sends Outxz(P) isomorphically to Noys,(@)(Outp(Q))/Outp(Q).

(b) Assume that p = 2, and that either Z(Q) has exponent 2 and P/Q acts freely
on some basis of Z(Q), or that |Z(Q)| = |P/Q| = 2. IfT < Out(P,Q) is
any subgroup such that R(T') = Nout (@) (Outp(Q))/Outp(Q) and Outs(P) €
Syl,(T'), then I' = Out #(P).

PROOF. By [OV, Lemma 1.2], R is well defined and Ker(R) = H'(P/Q; Z(Q)).
In particular, Ker(R) is a p-group since Z(Q) is a p-group. Also, Outz(P) <
Out(P, Q) since Autz(P) normalizes Q.
(a) By the extension axiom (and since Cs(Q) < @ and @ is fully normal-
ized), R sends Outz(P) onto Nou,(@)(Outp(Q))/Outp(Q). Also, Outs(P) €
Syl,(Out#(P)) since P is fully normalized, so Ker(R|ou,(p)) < Outg(P) since
Ker(R) is a p-group. Hence if a € Autz(P) and [o] € Ker(R), then a = ¢, for
some g € Ng(P), g € PCs(Q) = P since [a|g] € Outp(Q) and @ is F-centric, and
thus [a] = 1 in Outz(P). So R|out,(p) is injective.
(b) If Z(Q) has exponent 2, and the conjugation action of P/Q permutes freely
some basis for Z(Q), then R is injective by [OV, Corollary 1.3], and the result is
immediate.

If |P/Q| = |Z(Q)| = 2, then each element in Ker(R) is represented by some
a € Aut(P) such that alg = Id, and a(g) € ¢Z(Q) for all ¢ € P~Q. Thus
|[Ker(R)| < 2, and in particular, Ker(R) < Z(Out(P,Q)). By (a), R sends Out z(P)
isomorphically onto Noy (@) (Autp(Q))/Outp(Q). By a similar argument, for I' <
Out(P,Q) as in (b), R sends I' isomorphically onto Noys (o) (Autp(Q))/Outp(Q).
Since Ker(R) is central,

Out(P, Q) = Ker(R) x Outz(P) = Ker(R) x T.
In particular, Outz(P) and I" have the same p’-elements. By assumption, Outg(P)
is a Sylow p-subgroup of both Outz(P) and I, and hence Outz(P) =T O
1.1. Essential subgroups in fusion systems

Recall that Ex denotes the set of F-essential subgroups of a fusion system F.
We begin with Alperin’s fusion theorem for fusion systems, in the form originally
proven by Puig.
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PROPOSITION 1.6 ([AKO, Theorem 1.3.5]). Let F be a saturated fusion system
over a p-group S. Then each morphism in F is a composite of restrictions of
automorphisms in Autz(S), and in OP (Autz(P)) for P € Ex.

LEMMA 1.7. Let F be a saturated fusion system over a p-group S, and assume
P e Eg. Then Op(Outz(P)) =1, and Outz(P) acts faithfully on P/Fr(P).

PRrROOF. Since Outz(P) has a strongly p-embedded subgroup, O,(Outz(P)) =
1 (cf. [AKO, Proposition A.7(c)]). The kernel of the action of Autz(P) on P/Fr(P)
is a p-group by Lemma A.9, so Outz(P) acts faithfully since O,(Autz(P)) =
Inn(P). O

The next two results give some necessary conditions for a subgroup to be es-
sential. They were in fact proven in [OV] as conditions for a subgroup to be
“critical”, but by [OV, Proposition 3.2], a subgroup of S which is F-essential for
some saturated fusion system over S is a critical subgroup of S.

LEMMA 1.8 ([OV, Lemma 3.4]). Let F be a saturated fusion system over a
p-group S. Let P < S, let © be a characteristic subgroup in P, and assume there
is g € Ng(P)\P such that

(i) [g,P] < O-Fr(P), and
(ii) [g,0] < Fr(P).
Then ¢q € Op(Aut(P)), and hence P ¢ Er.

The proof of Lemma 1.8 is based on the fact that O,(Outxz(P)) = 1 (Lemma
1.7). The next proposition is based on Bender’s classification [Be, Satz 1] of groups
with strongly 2-embedded subgroups.

ProPOSITION 1.9 ([OV, Proposition 3.3(c)]). Let F be a saturated fusion sys-
tem over a 2-group S. Fiz P € Ex, and let k be such that |Ng(P)/P| = 2*. Then
tk(P/Fr(P)) > 2k.

1.2. Reduced fusion systems

We now consider the class of reduced fusion systems, as defined in [AOV1].
First recall the following definitions from [BCGLOZ2].

DEFINITION 1.10. Let F be a saturated fusion system over a p-group S.
(a) The focal subgroup of F is the subgroup
foc(F) Lef (s7't]s,te S, tes’)y=(s""a(s)|s€P<S acAutr(P)).
(b) The hyperfocal subgroup of F is the subgroup
hyp(F) = <571a(s) | seP<Sac Op(Autf(P))>.

For any saturated fusion subsystem Fy C F over a subgroup Sy < S,

(¢) Fo has p-power index in F if Sy > hyp(F), and Aut g, (P) > OP(Autz(P)) for
all P < Sp; and

(d) Fo has index prime to p in F if Sy = S, and Autz,(P) > O (Autz(P)) for
all P < S.
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By [BCGLO2, Theorem 4.3], each fusion system F over a p-group S contains a
unique minimal saturated fusion subsystem OP(F) (over hyp(F)) of p-power index,
and OP(F) = F if and only if hyp(F) = S. By [BCGLO2, Theorem 5.4], each
such F contains a unique minimal saturated fusion subsystem OP (F) (over S) of
index prime to p, and O? (F) = F if and only if Aut,, 7 (8) = Aut#(9).

DEFINITION 1.11. A reduced fusion system is a saturated fusion system F such
that Op(F) =1, OP(F) = F, and O” (F) = F.

For any saturated fusion system F, the reduction of F is the fusion system
ted(F) which is defined as follows: first set Fo = Cr(O,(F))/Z(Op(F)), and then
let ved(F) C Fp be the minimal subsystem which can be obtained by alternately
taking OP(—) and O (=). A certain concept of “tameness” for fusion systems is
defined in [AOV1], and the main results there state that a reduced fusion system
is tame if and only if it is not the reduction of any exotic fusion system. Thus
Theorem A, together with the result that all of the fusion systems listed in the
theorem are tame (to be shown in later papers), imply that all fusion systems over
2-groups of sectional rank at most 4 are realizable.

In many, but not all cases, the 2-fusion system of a simple group is reduced. The
following proposition, which is based on a theorem of Goldschmidt, is an attempt
to make this statement more precise.

PROPOSITION 1.12. Let G be a finite simple group. Fiz S € Syly(G), and set
F = Fs(G). Then
(a) O*(F)=F;

(b) O2(F) =1 if S is nonabelian and G is not isomorphic to a unitary group
PSU3(2™) (n >2) nor to a Suzuki group Sz(22"Y) (n > 1); and

(c) O%(F)=F if Outg(S) =1 (in particular, if Aut(S) is a 2-group).
Thus Fs(G) is reduced whenever the assumptions in (b) and (c) hold.

Proor. (a) By the focal subgroup theorem for groups (cf. [G, Theorem 7.3.4]
or [Sz2, Theorem 5.2.8]), foc(F) = [G,G] N S. Hence foc(F) = S since [G, G| = G,
so hyp(F) = S and hence O?(F) = F by [AOV1, Theorem 1.22(a)] or [AKO,
Corollary 1.7.5]. (See also Proposition 1.14(b).)
(b) Assume O3(F) # 1, and set A = Z(O2(F)) # 1. Then A < F (cf. [AKO,
Proposition 1.4.4], or Lemma 1.15 below), and hence is strongly closed in S with
respect to G. Since G is simple, G is the normal closure of A in G. By a theo-
rem of Goldschmidt [Gd1, Theorem A], either S is abelian, or G = PSU3(2") or
Sz(227+1).
(c) See BCGLOZ2, Theorem 5.4] or [AKO, Theorem 1.7.7(a,b)]. O
Note that Oute(S) = 1 whenever Ng(S) = S. Of course, 0% (Fs(@)) = Fs(G)

in many cases when Outg(S) # 1, but it seems to be very difficult to find more
general conditions which imply this.

1.3. The focal subgroup

We now list some conditions on a 2-group S, or on a saturated fusion system
F over S, which imply that F (or all saturated fusion systems over S) have proper
subsystems of 2-power index. All of these are based on Proposition 1.14, which
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says that this is equivalent to showing that foc(F) < S. So we need techniques for
computing the focal subgroup, or for showing that it is properly contained in S.
The following definitions are useful when doing this.

DEeFINITION 1.13. Let F be a saturated fusion system over a p-group S. For
each P < S, define

Aut(P) = {O”(Autf(P)) itP=9

OP(OP (Aut(P))) if P < S.
Set foc(F, P) = ([Aut’=(P), P]®): the normal closure in S of [Aut’(P), P].

For example, if P < S and Autz(P) = X3 x Cs, then Aut’z(P) = Cs.

Recall that for any group P and any H < Aut(P), [H, P] is normal in P (cf.
[G, Theorem 2.2.1]). Thus foc(F,S) = [Aut=(S), 5], and [Autxz(P),P] < P for
each P. So when P < S, foc(F, P) is the subgroup generated by all [Aut>(Q), Q]
for @ S-conjugate to P.

PrOPOSITION 1.14. The following hold for any saturated fusion system F over
a p-group S.

(a) FEach morphism in F is a composite of restrictions of morphisms in Inn(S)
and in Aut’z(P) for P=S or P € Ex, and

foc(F) = (S, S, foc(F, P) | P € Ex U{S}).

(b) OP(F)=F <= foo(F) =8 <= S = (Joo(F,P)|PecEruU{S}). In
particular, these all hold if F is reduced.

(¢c) If P<S, and T < Aut’z(P) is such that Aut’z(P) < Inn(P)T, then
(Autx(P), P] = T, P).

Proor. (a) By Proposition 1.6, each morphism in F is a composite of restric-
tions of automorphisms in Autx(S) = Aut’(S)Inn(S), and in O (Autxz(P)) =
Aut’z(P)Auts(P) for P € Ex. Hence F is generated by restrictions of automor-
phisms in Inn(S) and in Aut’>(P) for P € Ex U {S}, and

foc(F) = ([S. 8], [Aut’=(P), P]| P € Ex U{S}).

Since this is clearly normal in S (each subgroup S-conjugate to an essential subgroup
is essential), we can replace the commutators [Aut’z(P), P] by their normal closures
foc(F, P).

(b) The first equivalence is shown in [AOV1, Theorem 1.22(a)] or [AKO, Corol-
lary 1.7.5]. The second follows from (a), since for U < S, U[S, S| = S implies U = S
(cf. [G, Theorems 5.1.1 & 5.1.3]). The last statement follows from the definition
of a reduced fusion system.

(c¢) Assume I' < Autz(P) < Inn(P)I'. Then
Autz(P) = OP(Inn(P)T) = (°T |« € Inn(P)):

by definition when P = S, and since Inn(P)T’ < OF' (Autz(P)) when P < S. Also,
Inn(P)T normalizes [T, P] and hence acts on P/[I", P] (cf. |G, Theorem 2.2.1(iii)]),
and I' acts on P/[I", P] via the identity. Since Aut’(P) is the normal closure of T’
in Inn(P)T, it also acts trivially on P/[I', P], and so [Aut=(P), P] = [T, P]. O
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We next note three consequences of Proposition 1.14. The first one provides a
simple condition for showing that a subgroup is normal in a fusion system, and is
a slightly strengthened version of [AKO, Proposition 1.4.5].

LEMMA 1.15. Let F be a saturated fusion system over a p-group S. Fiz a
normal subgroup @ < S. Then @ is normal in F if and only if for each P €
ErU{S}, P> Q and Aut’=(P) normalizes Q.

ProOF. The condition is clearly necessary for () to be normal. Conversely,
if P> @ and Aut’>(P) normalizes @ for each @ € Ex U {S}, then by Propo-
sition 1.14(a) (and since @ < S), each ¢ € Homzg(P;, P2) extends to some @ €
Homgz(P1Q, P,Q) such that p(Q) = Q, so Q@ < F. O

LEMMA 1.16. Let F be a saturated fusion system over a p-group S.

(a) If P < S is not fully normalized in F, then there are R € Ex and a €
Aut’z(R), such that R > Ng(P) and «(P) is not S-conjugate to P.

(b) Assume P < S and Sy < S are such that Sy > [S,S] and [Autz(P),P] £
So. Then there is R € Ex U {S} such that R > Q for some Q € P” and
foc(F, R) £ So.

PRrROOF. (a) Assume P < S is not fully normalized. By Proposition 1.3(a),
there is ¢ € Homz(Ng(P), S) such that |[Ng(¢(P))| > |Ns(P)|. By Proposition
1.14(a), there are a sequence of subgroups Ry, ..., R, € Ex U{S}, automorphisms
a; € Autz(R;), and restrictions §; of «y, such that ¢ = B0+ 0 81. If aq(P) is
S-conjugate to P, then we can replace Ry by S and «; by an element of Inn(S),
without changing ¢(P). If Ry = S, then we can define R = a;'(R;) and af =
oy ta;a, and get a shorter sequence R, ..., RY, without changing | Ng(¢(P))|. We
can thus arrange that Ry € Ex and a3 (P) not be S-conjugate to P. This proves
(a), with (R, ) = (Ry,a1).

(b) Choose 3 € Autr(P) and g € P such that 3(g)g~* ¢ So. By Proposi-

tion 1.14(a), there are F-essential subgroups R,...,R,, each of which contains

a subgroup F-conjugate to P, and automorphisms v; € Aut’z(R;) or (if R; = 5)

vi € Inn(S), such that 8 = +), o o7 where ] is a restriction of 7;. Set

gi = Yo 0(g) (and go = g). Hence B(g)g™' = gmgy' ¢ So. So there

is 1 < i < m such that gig;, ¢ So, and v; ¢ Inn(S) (1; € Aut’=(R;)) since

[vi, Ri] £ [5,S]. Thus foc(F, R;) £ So. O

LEMMA 1.17. Let S be a 2-group such that S/[S,S] = Can x A where A has
exponent at most 2", Set So = {g € S ’ ¢ e [S,5]}, and let F be a reduced
fusion system over S. Then there are subgroups P € Er and @ < P such that
P/Q = Con X Con and P ﬁ So. Furthermore, for any R < P such that R < Sy and
P/R = Cyn, there are g € R and o € Aut’=(P) such that a(g) € P~\Sy and hence
R{a(g)) = P.

PROOF. By definition, Sy is characteristic in S. Also, [S:Sp] = 2 since by
hypothesis, S/[S, S] contains no subgroup Caon x Can. Hence

foc(F,S) = ([Aut(S), S]°) < Sp.

By Proposition 1.14(b) (and since F is reduced), there is a subgroup P € Er
such that foc(F, P) £ Sp. Set

POZ{96P|92n_1€[PaP]}§SO~
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Thus P, is characteristic in P, and Py < Sp. Since Aut’(P) = 0%(0% (Autx(P)))
is generated by automorphisms of odd order, there is @ € Aut’z(P) of odd order
such that [o, P] £ Sp, and hence such that « acts nontrivially on P/P,. So P/Py,
must be noncyclic (Corollary A.10(a)). If a,b € P are elements whose classes are
distinct of order 2 in P/ Py, then the classes of a? " and ¥ are distinct of order
2 in P/[P,P]. Thus P/[P, P] has a subgroup ([a],[b]) = Can x Can, and hence a
quotient group isomorphic to Con X Con.

Now assume R < PN.Sp is such that R < P and P/R = Csx. Since [a, P] £ Sy,

there is h € P NSy such that a(h) ¢ Sy. Since P/R is cyclic and [S:S] =2, P =

R(a(h)), and PN Sy = R{a(h?)). Thus there is m € Z such that g % ha(h?™) € R,

and a(g) € a(h)Fr(P) C P~\.Sy. So P = R{a(g)). O

As examples of how Lemma 1.17 can be applied, there are no reduced fusion
systems over either of the groups C3 x C; (where Cy acts freely on a basis) or
(Cy x Cy) x Cy (where Cy acts via the matrix (% §) € GL2(Z/4)): neither group
has a subquotient isomorphic to Cy x Cjy.

The next proposition gives another way to handle the focal subgroup of a fusion
system.

PrOPOSITION 1.18. Let F be a saturated fusion system over a 2-group S.
(a) Set So = Q1(Z(S)) and S1 = SoN[S,S], and assume |Sy/S1| = 2. Then for
g € So~51, g ¢ foe(F).

(b) LetU < S be such that Autxz(S) normalizes U, and U < [P, P] for each P < S
of index 2. Assume g € S\[S,S] is such that [g,S] < U, g*> € U, and each
a € Autx(S) sends the coset g[S, S] to itself. Then g ¢ foc(F).

(¢) LetU < S be such that Aut z(S) normalizes U, and U < Fr(P) for each P < S
of index 2. Assume g € S\Fr(S) is such that [g,S] < U, g*> € U, and each
a € Autz(S) sends the coset gFr(S) to itself. Then g ¢ foc(F).

In any of these cases, F is not reduced.

PROOF. Point (a) is shown in [AKO, Corollary 1.8.5].

To prove (b), we refer to [AKO, §1.8] for some of the properties of the transfer
homomorphism trfr: S —— S/[S, 5] for a saturated fusion system F over S. In
particular, Ker(trfz) > foc(F). Let g € S be as above, and let [g] € S2P = S/[S, 9]
be its class. By assumption, [g] # 1.

For P < S, let trfp: $* —— P2P be the usual transfer homomorphism (cf.
[AKO, Lemma 1.8.1(b)]). If [S:P] = 2, then trf([g]) = [gzgz—"] for any choice of
x € S\P: this follows from the construction in [AKO] upon taking coset represen-
tatives {1,z}. Since gzgz~! € g2[g,S] C U < [P, P] by assumption, trfp([g]) = 1.
Since this holds for each P < S of index 2, trfp([g]) = 1 for each P < S since
transfers compose (cf. [AKO, Lemma 1.8.1(d)]).

By assumption, for each a € Autz(S), a([g]) = [g]- So by [AKO, Proposition
1.8.4(a)], trfr(g) = [g]* # 1, where k = |Outz(S)| is odd. Thus trfz(g) # 1, so
g ¢ foc(F) since Ker(trfx) > foc(F), and foc(F) < S. By Proposition 1.14(b), F is
not reduced.

The proof of (c) is similar, but carried out by regarding trfz as a homomorphism
to S/Fr(S), and replacing P?* by P/Fr(P) for each P < S. O



CHAPTER 2

Normal dihedral and quaternion subgroups

The definitions and results in this chapter will be applied in Section 3, when
analyzing certain essential subgroups (those of index 2 in their normalizer). Recall
that 7(S) denotes the sectional rank of a 2-group S.

DEFINITION 2.1. Let S be a 2-group with r(S) < 4.

(a) A (nonabelian) dihedral or quaternion subgroup @ < S will be called strongly
automized if two of the three subgroups of index 2 in @ are Ng(Q)-conjugate.

(b) Z'(S)={Q < S|Q € DQ and is strongly automized}.
(c) %(S) is the set of all Yy < S such that Yy = C4, 257 or Qg x Qs, and
Ns(Yy)/Fr(Yy) =2 Dg 1 Cs.

(d) #(S) = {{(Y0)%) | Yo € %(S)}: the set of all normal closures in S of sub-
groups in %,(S).

The sets 2°(S) and #/(S) will play a central role in the next chapter (see
Theorem 3.1 and Proposition 3.9), when identifying and characterizing essential
subgroups. Most of this chapter is aimed at describing 2-groups for which one of
these sets is nonempty. The next definition will be used later in this chapter, but
is placed here for easier reference.

DEFINITION 2.2. Let S be a 2-group such that #'(S) # @ (and hence #,(S) #

). Fix a subgoup Yy € %(S).
(a) Set

A (Yo) = {T < Out(Yp) | T' > Autg(Yp) and I' = SOF (2) = B3 Ca}

g (Yo) = {T < Out(Yp) | T > Autg(Yp) and I' = SO; (2) = 55}

5(Yo) = o5 (Yo) U g (Yo) .
(b) Let Zs(Yy) be the set of unordered pairs {Uy, Us} of subgroups of Y such that

o fori=1,2,U; 1Yy, and U; = C? or Qg;

o [U1,Us] <U;NU; < Fr(Uy) and Yy = U1Us; and

e cach element of Autg(Yp) either normalizes Uy and Us or exchanges them.

(c) Elements I' € o/5(Yy) and {U1,Us} € %s(Yy) are compatible if each a €
Aut(U;) (i = 1,2) extends to some « € Aut(Yp) such that [a] € T

When Yy € #,(S), and F is a reduced fusion system over S, we will show that
Out£(Yy) € “5(Yy) (Propositions 3.9(a) and 3.11(b.1)). Thus this set contains
the “candidates” for Outz(Yp). The sets %s(Yy) and the compatibility relation

13
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will be used to help identify Outz(Yy) among the elements of «75(Yy) (Proposition
3.11(b.2)), and also when determining the list of all essential subgroups in F (see
Proposition 3.11 and Lemma 5.2). We will see in Lemma 2.9 that this compatibility
relation defines a bijection between %s(Yy) and 75 (Yy).

LEMMA 2.3. Let P < S be 2-groups, where P = Dg 1 Cy and r(S) < 4. Then
Z(8) = Z(P) = Cs, |Ns(P)/P| = 2, and Ns(P)/Z(S) = Ds1Cy. IfV < P and
V = C4, then Ng(V) = P.

PROOF. Let Q < P be the unique subgroup isomorphic to 2}~_+4 (see Lemma
C.5(a)). Then Ng(P) < Ng(Q). Since r(S) < 4 = r(Q/Z(Q)), Cs(Q) < Q by
Lemma A.6(a). Thus Z(S) = Z(Q) = Z(P), and the homomorphism

i Ns(Q)/Z(S) = Ns(Q)/Z(Q) ——— Aut(Q) = Aut(Qs)1Cs = 541Gy
induced by conjugation is injective. Also, |[Ng(P)/Z(S)| > |P/Z(P)| = 2° since
Ng(P) > P by Lemma A.1(a). Thus Ng(P)/Z(S) = Dg 1 Cy, a Sylow 2-subgroup
of Aut(Q). Also, Ns(Q) = Ng(P), and |[Ng(P)/P| = 2.

Assume V < P and V = C4. Then VNQ is one of six subgroups of @ isomorphic
to C3 (Lemma C.5(a) again), these subgroups are permuted transitively by Aut(Q),
so none is normalized by a Sylow 2-subgroup of Aut(Q). Hence VNQ ¢ Ng(P), so
V 4 Ng(P). If Ng(V) > P, then Ny (py(V) > P by Lemma A.1(a), V J Ng(P)
since |[Ng(P)/P| = 2, and we just saw this is impossible. So Ng(V') = P. O

Recall that Z;(G) denotes the i-th term in the upper central series for G. Thus

LEMMA 2.4. Let S be a 2-group such that r(S) < 4 and % (S) # &. Let m be
such that |S| = 2™. Then the following hold.

(a) For each 0 <i<m—5,|Z;(S)| =2 Also, S/Zp_7(S) = Dg1Cy, S/[S,S] =
Cs, and

PLS = P>Z, 5(S) or P=2Z/(S)forsome0<i<m-—6. (2.1)

For each Yy € %(S), Fr(Yy) < S.

(b) For eachY € #(S), Y > Z,,_5(S), the image of Y in S/[S, S| has order 2,
and Y/ Zm—7(S) = C3 or 217*. IfY is the normal closure of Yo € %(S), then
[Y:Yy] = 2% for even k. There are at most two subgroups in % (S) of index 8
in S and at most one subgroup of index 4 in S. IfY1,Ys € #(S) and Y7 # Yo,
then Y1 i YQ.

(¢) Foreach 0 <i<m—17, Zi12(S)/Z:(S) = C3, and for each 0 < i < m — 8,
ZZ+3(S)/Z1(S) = C4 X CQ.

(d) IfY € Z(S) has index 4 in S, then m > 8 and Y/Z,,_s(S) = Dg x Ds.

PRrROOF. Fix a subgroup Yy € #,(S5), and let Y € #/(S) be its normal closure
in S. Let j =0, 1,2 be such that 29 = |Fr(Yy)|. We first claim that Fr(Yy) = Z;(S).
This is clear when j = 0, and follows from Lemma A.6(a) when j = 1.

Assume j = 2, and hence Yy = Qs x Qg. Set Yo = Yo/Z(Yy), and X =
XZ(Y())/Z(Y()) for X S Y(). Fix Ul,UQ ﬂ YO such that Ul = Qg and Y() = U1 X UQ.
Let z; € Z(U;) be a generator, and set z = z120. For g = gZ(Yy) € (Yo)#
and i = 1,2, g> = 2 if and only if g € U;. Hence under the (faithful) action
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of Outg(Yy) =& Dg on Yy, each element either normalizes the U; or exchanges
them, and there is some g € Ng(Y)) which exchanges them. Hence 9z; = 29, and
Z(Ns(Yy)) = (2) < Z(Yp). So Fr(Yy) = Z(S) by Lemma A.6(b).

Write Z; = Z;(S) for short (for all ¢ > 0). Let

NS(YE)):N0<N1<N2<"'<N»,‘:S

be such that N; = Ng(N;_1) for i > 0.

(a) We just showed that Fr(Yy) = Z;(S5) < S.

By definition of %,(S), No/Z; = Dg!Cy. If Ny < S, then by Lemma 2.3
(applied to the inclusion No/Z; < S/Z;), |Zj11/Z;| = |Z(S/Z;)| = 2, |N1/No| = 2,
and N1/Z;41 = DslCs. Upon repeating this procedure, we see that forall 1 <4 < r,

|Zj+i/Zj+i-1| =2, |Ni/Ni—1| =2, and N;/Z;ji; = Dg1Co. (2.2)
Since |S| = |N,.| = 2™, |Zj4r| = 2™~ 7 = 277" and thus
j+r=m-—"1. (2.3)

In particular, S/Z,,_7 = Dg 1 Cy. Since |Zo(Dg 1 Co)| = 4, |Zpm—5| = 2™75. Point
(2.1) now follows from Lemma A.2. In particular, [S,S] > Z,,_7, so S/[S,S] = Cs
(the abelianization of Dg1Cy).

(c) By Lemma A.6(a), Cg;z, (No/Z;) < No/Z; for all i < j+2 (i.e., all i such that
r(No/Z;) = 4). Since Z>(Dsg 1 Cs) = C3, | Z;(No)| = 2¢ = |Z;| for such 4, and thus

Zi(No):Zi for all 1< J+2.

If YO = Qg X Qs, then Zl(No) = CQ, 22 = ZQ(N(]) = Z(YE)) = 022, and
Z3 = Z3(Np) = Cy x Cy since all elements of order 2 in Yj are in its center.

If Yy = 214 then Yy /Z(Yy) = Yo/Z; has 5 involutions which lift to involutions
in Yy (Lemma C.2(a)). Four of these are permuted by Outy,(Yo) & Dg while the
fifth is fixed. Hence Zy = Z3(Ng) = C3, and Z3 = Z3(Np) = Cy x Cs since there
are no involutions in Z3\ Zs.

If Yy = 23_+4, then Yy/Z(Yy) = Yo/Z1 has a basis {a1, as, as, as} such that each
of the subgroups (a1, as) and (a3, as) both lifts to a quaternion subgroup of Yy, and
such that Auty,(Yo/Z1) & Dg is generated by the permutations (12), (34), and
(13)(24) (with respect to this indexing). Thus Z/Z; = (ajazazas), so Zy = C3;
and Zg/Zl = <a1a2,a3a4>, SO Z3 = 04 X CQ.

Now assume Yy = Cj. Since Ny/Zy = Dg 1 Co and r((N1/Z2)/Z(N1/Z3)) = 4,
Cs/z,(N1/Z3) < N1/Z3 by Lemma A.6(a). Hence Zz < Ni. Also, Ny = Dg C,
S0 Zo = Z5(Ng) = C3. If Ng < S (if m > 8), then for x € N3\ Ny, ¢, exchanges Yy
with the other normal subgroup in Ny isomorphic to C§ (see Lemma C.5(a), and
recall that Ng(Yy) = Ny by Lemma 2.3). Hence ¢, acts on Z3(Ng) = Cy X Dg by
exchanging the two subgroups C3, and so Z3 = Z3(N;) = Cy x Cs.

Thus Zy =2 C% in all cases, and Z3 = Cy x Cy if m > 8. For each 1 <i < m —8,
Zivo)Z; =2 C3 and Z;43/Z; = Cy x Cy by a similar argument applied to N;_;/Z; <
S/Z; it i > j (vecall N;_;/Z; = Dg1Co by (2.2) and i —j=r+ (i +7—m) <r by
(2.3)), or to No/Zy < S/Zy if i =1 and j = 2. If i = m — 7, then S/Z; = D1 Cs
by (a), and Zi+2/Zi = ZQ(Dg ! CQ) = C22
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(b) Let Y; be the normal closure of Yy in N;, and set Y = Y,.: the normal closure
of Yy in S. We claim that for each ¢ <m — 7 — j,

C3  ifiis even

2.4
23_“'4 if 4 1s odd. (24)

Y, > Zj+i and Y;/Z]JFZ = {

This holds by definition when i = 0. If i is even and Y;/Z;4+; & C3, then by (2.2),
Ni/Zj; = Dgl Cy is the normalizer of Y;/Z;,; in S/Z;1 by the last statement
in Lemma 2.3, so Y;/Z;; is N;i1-conjugate to the other normal subgroup C3 in
Ni/Zj—i-i (see Lemma C5(a)) Thus }/71+1/Zj+’i = Dg X Ds, and YVZ‘_;,_l/Zj_;'_H_l =
Dg x¢, Dg = 21++4. If 7 is odd and Yi/ZjJri ~ 2}r+47 then since this is the only
subgroup of N;/Z;, of this isomorphism type (Lemma C.5(a) again), ¥; < N;i.
Hence in this case, Y;11 = Y; and Yi11/Z;4 ;41 = C4. This proves (2.4).

In particular, [Y:Yy] = |Y;| /247 = |V, /Z,,;|-2"~* is always an even power of
2.

Wheni=r,s0N; =S, and i = m—7—7j by (2.3), (2.4) implies that Y > Z,,,_,
and that Y/Z,,_7 = C3 or 2. Since S/Z,,_7 = Dg 1 C5 contains exactly two
normal subgroups isomorphic to Cj and one isomorphic to 2?4 (Lemma C.5(a)),
% (S) contains at most two subgroups of index 8 and at most one of index 4 (and
none of any other index). Also, since none of these three subgroups of Dg 1 Cy is
contained in any other by Lemma C.5(a), no member of #(S) is contained in any
other member.

(d) Y € #(S) and [S:Y] = 4, then Y > Y} since [S:Yy] > [No:Yp] = 8. So
NO = NS(YQ) < S, and 2™ = |S| > 2|N0‘ = 28+j. AISO, Nmfgfj/meg = Dg ZCQ,
as seen in the proof of (a). Let Y < Np—g—j be such that ?/Zm_s >~ Dg X Dsg.
Then }7/me7 = Dg ¢, Dg = 2}r+4, and Y = Y since there is a unique such
subgroup in S/Z,,—7. Thus Y/Z,,_s = Dg X Ds. ]

As one example, set S = (a1, b1, az,ba,t) = Dan } Cy, with the presentation of
Notation 5.4. Then #(S) = {Y1,Ys, Y3}, where Y1 = (a?,b1,a3,b2) = Don-1 X
1)271717 }/2 = (a%,albl,ag,a2b2> = Dgn—l X Dgn—l, and Yg = <a1a2,a%,b1b2,t> =

Q2n XCQ QQn.

COROLLARY 2.5. If S is a 2-group such that r(S) < 4 and #(S) # &, then
Z(S) = @ and Aut(S) is a 2-group.

PROOF. Let m be such that 2™ = |S|. By Lemma 2.4(a), there is a sequence
of subgroups 1 < Z; < Zy < ... < Z,,_7 < S characteristic in S such that | Z;| = 2
for each ¢ and S/Z,,—7 & Dg 1 Cy. Since Aut(Dg ! Cs) is a 2-group by Corollary
A.10(c), Aut(S) is a 2-group by Lemma A.9.

If R e 2°(S), then by definition, R < S, is dihedral or quaternion of order at
least 8, and is strongly automized in S. By Lemma 2.4(a), either R = Z;(S) for
some i <m—>5,0r R > Zp,—5(S5). If m > 8, this is impossible since Z3(S) =2 Cyx Cy
by Lemma 2.4(c).

If m = 7, then R contains Z3(S) = C3 (Lemma 2.4(c) again) as a normal
subgroup. Hence R = Dg. Since Z5(S) < R is normal in S, this contradicts the
assumption that R is strongly automized. O

We next look at conditions which imply that a subgroup ¥ < S lies in #/(S).
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LEMMA 2.6. Let S be a 2-group with r(S) < 4. Assume Y = ©109 < S, where
{01,023} is an S-conjugacy class, ©; = Do (k> 3) or Qo (k > 4) and is strongly
automized in S fori=1,2, [01,05] <01NO2 < Z(5), and ©®1NO2 =1 if ©; € D.
Then the conjugation action of S/Y onY/[Y,Y] = Cy permutes transitively a basis,
and one of the following holds.

(a) IfS/Y 2 C2 or Ds, thenY € %(S), and
{YO < %(S) ‘ Yy < Y} = {Ule | U; < @7;, U, = 022 or Qg}, (25)

where this set consists of one S-conjugacy class if S/Y = Dg and two classes if
S/Y = C3. Also, if Yo = UrUs € %(S) as in (2.5), then {U1,Us} € Us(Yo).

(b) IfS/Y 22 Cy, then S/[S,S] = Cy x Cy and ¥ (S) = @.

PrOOF. By the 3-subgroup lemma [G, Theorem 2.2.3], and since [0, 03] <
Z(5),

[[@1,@1],@2} =1 and [[@27@2]7@1] =1. (2.6

Set Z* = Z(@l)Z(®2> Then Y/Z* = (@1/2(@1)) X (@2/2(@2))7 SO Z(Y) <

ZQ(@l)ZQ(@g). If 2129 € Z(Y), where z; € ZQ(@»L) < [@Z,@J, then [Zi,@i} =
[2122,0;] =1 (i = 1,2) by (2.6), so 2122 € Z(01)Z(02). Thus Z(Y) = Z,, and
|Z(Y)| < 4. Also, Z(S) < Z(Y) by Lemma A.6(a) and since r(Y/Z(Y)) = 4. If
|Z(Y)| =4, then Z(Y) = Z(©1) x Z(O3), and Z(S) < Z(Y) since ©; and O, are
S-conjugate. Thus |Z(S)| = 2 in all cases, and Z(S) = Z(Y) = Z(©1) = Z(05) if
01 N0y #1.

We first check that

=

U, S@l, UQS@Q, Ui%CQQ (lfG)lE'D) or QS (lfGZEQ) -
U Us 22 Oy, 2474 21 Jor Qg x Qs. (2.7)

This is clear whenever [Uy,Us] = 1 (recall that ©; N Oy = 1 if ©; € D). If
[@1,@2] = [Ul, U2] = Z(S), then Ui = Qs, |C’U1 (U2)| Z |U1 n [@1, @1]‘ =4 by (26),
and so UyU, =2 2114 by Lemma C.2(a).

For each ¢ = 1,2, let Q;1,Q2 < ©; be the two noncyclic subgroups of index 2.
Set Q = {Qi; 4,5 = 1,2}. We first claim that the conjugation action of S/Y on
Q is faithful. Assume otherwise: then there is © € S\Y such that 2 € Ng(Q;;)
for each i,j. Fix U; < @41 as in (2.7). Each subgroup of @;; which is isomorphic
to U; is ©;-conjugate to U;, and Autg(U;) = Aute,(U;) € Syly(Aut(U;)). Hence
there are elements z; € ©; (i = 1,2) such that ¢;|y, = ¢4, |v,- Upon replacing
by zx;'zy !, we can assume that [z, U1Us] < [01,0,]. If [01,05] = Z(S), then
U; = Qg, and U;U; is extraspecial of order 2° by (2.7). So ¢.|v,v, € Inn(U1Us) in
all cases. But this is impossible, since U1Us is centric in S by Lemma A.6(a) (and
since r(U1Us) = 4 by (2.7) again).

Thus S/Y acts faithfully on Q. Also, Q;; is S-conjugate to Q2 (©; is strongly
automized) and ©; is S-conjugate to ©,. Hence S/Y acts transitively on Q, and
S/Y = C2, Cy4, or Dg. Furthermore, each Qi; has image in Y?2P of order 2, the
involutions in these images form a basis for Y =~ @3 x @3> =~ (4, and thus S/Y
permutes this basis transitively.

(a) Assume S/Y = C3 or Ds. Fix indices j1,j2 € {1,2}. There are elements
g,h € S\Y such that 9Q1;, = Q2j, and "Q;; = Q2 for i = 1 and i = 2, and such
that g2, h? € Y. In particular, ¢g exchanges ©1 and O9, and (cg, c) acts freely and
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transitively on Q. Set g = dydy where d; € ©;. Then dy = gd1g~! (mod ©1 N Oy)
since [g,d1d2] =1, so

(gdi")? = gdi'gdit =dy'g?di =1 (mod ©1NOy).

Upon replacing g by gd; ', we can arrange that ¢ € ©; N0, < Z(Y).

Choose Uj < Q1;, such that Uy = C3 if ©; € D or U = Qs if ©1 € Q. Set
Us = 9Uf < Qqj, and Yy = UFU;s. Since g2 € Z(Y), g € Ns(Yy). By (2.7),
Yy = O3, 24 21 or Qs x Qs.

Set Ni = N@,i(Ui*), so that N1N2 = Ny(}/o*) and NlNQ/FI‘(YO*) = Dg X Dg.
For each z € Ng(0©1)\Y, ¢, exchanges Q;; with @2 for either or both i = 1,2,
and hence cannot normalize Y. Thus Ng(Y;) = N1 Nz(g) for g as above. Also,
IN; = N3_; and g2 € Fr(Yy), so Ns(Yy)/Fr(Yy) = Dg 1 Ca. Hence Yy € %(S) in
this case, and Y € #/(S) since it is the normal closure of Y in S. Moreover, for
any U; < Q1j, and Us < Qa;, isomorphic to Uy and Uy, U1Us € %(S) since it is
Y-conjugate to Y. Since ji,j2 € {1,2} were arbitrary, this proves that the right
hand side in (2.5) is contained in the left hand side.

Set % = {Yo € %(S)|Yo < Y}. Since no subgroup in #/(S) is contained
in any other (Lemma 2.4(b)), Y is the normal closure of each Yy € %;. For each
Yo € %, [Y:Yp] is an even power of 2 by Lemma 2.4(b). So if |Y| = 2™ for even
m, then ©1 N Oy = 1, and Yy = CF or Qg x Qs. If Yy = CF, then its images
under projection to each ©; have order at most 4, hence have order exactly 4, so
U =YyNO; =2 fori=1,2 (and ©; € D). If Yy = Qg x Qg, then a similar
argument shows that U; = Yo N ©; = Qg for i = 1,2 and ©,; € Q. So (2.5) holds
in this case. Also, Yy = Uy X Us, each element of Auts(Yy) normalizes Uy and Us
or exchanges them since each element of S normalizes or exchanges the ©;, and so
{U1,Us} € %s(Yy) (Definition 2.1(e)).

If |Y| is an odd power of 2, then Z(S) = Z(Yy) = Z(Y) = ©1N0O2, ©; € Q, and
the hypotheses of the lemma hold after replacing S, Y, and ©; by S/Z(S), Y/Z(S),
and ©;/Z(S). For each Yy € %,(S) contained in Y, |Yy| = 2° since [Y:Yp] is an even
power of 2, so Yy/Z(S) = C3, Yo/Z(S) € %(S/Z(S)), and Yy = UUs for some
U; < ©; with U; = Qg. This finishes the proof of (2.5), and {Uy,Us} € %s(Yy) by
an argument similar to that used in the last paragraph. N

By (2.5), there are exactly four Y-conjugacy classes %7 C %, (4,5 € {1,2}),
where %ij is the set of those U1U; such that Uy < Q1; and Uz < Qq;. If S/Y = Cz,
then S = Y (g, h) where g and h are as defined above, and %'t U%(?? and Z'2 U%?!
are the two S-conjugacy classes in %. If S/Y = Dg, then there is also a € S such
that “Q11 = Q12 and “Q21 = @21, so these two sets are S-conjugate.

(b) Assume S/Y = (4. Since S/Y permutes the basis B transitively, Y/[5,S] =
Y/[S,Y] =2 Cs, and S/[S,S] = Cy x Cy since if S/[S, S] were cyclic then S would
be cyclic. Thus #(S) = @ by Lemma 2.4(a). O

The next lemma can be regarded as a converse to Lemma 2.6(a), but with the
extra (necessary) hypothesis (2.8) added.

LEMMA 2.7. Let S be a 2-group with r(S) < 4 and % (S) # @. Choose Yy €
2(S), and let Y € Z(S) be its normal closure in S. Fix {Uy,Us} € %s(Yy), and
assume that

U is not S-conjugate to any other subgroup of Uy Z»(5). (2.8)
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Then there is an S-conjugacy class {1,042} of subgroups such that U; < ©;, Y =
@1@2, and

Yo=Cy = ©,cDor0O=C% andY =0, x O,
Yo =22i™ = ©,cQand[0,,0,] <0, N6, =Z(9),
}/OgQ8XQ8 - 0,€QandY =067 x O,.

ProoF. If Yy = Y, then the lemma holds (with ©; = U;) by definition of
Us(Yo). So assume Y > Y.

Case 1: Assume that Yy =2 C3 or Qg x Qs, and thus that Yo = U; x U,. Set
So = Cs(Z3(S)). Since |Z2(S)| = 4 by Lemma 2.4(a), [S:Sp] = 2. We prove the
lemma in this case by induction on |S].

Set Ng = Ng(Yp) and S = Y Ny. By Lemma 2.3 and since Y > Y, the two
normal subgroups of No/Fr(Yy) 2 Dg Cy isomorphic to Cy are Ng(Np)-conjugate
and hence are both contained in Y/Fr(Yy). Hence [Ng:Y N Ny] < 2. Also, YV =
{(Yo)®) < Sy since Yy < Sp < S, and Ny £ Sy since Uy and U, are Np-conjugate
(by definition of %s(Yy)) but not So-conjugate. Thus [S:Y] = [No:Y N Ny] = 2, and
Y =505, = Cg(Zg(g)) (where Z2(§) = Z5(S) by Lemma 2.4(a) again). Let Y be
the normal closure of Yj in S (hence that in V). Then Ng(Yp) = No,s0 Yy € %(S)
and Y € Z(S). Also, {Uy,U,} € 5(Yp), and (2.8) holds in S.

Now, S < S, since [S Y] > 4 by Lemma 2.4(b) while [S Y] = 2. So by
the induction hypothesm Y = @1 X @2, where {91, @2} is an - conjugacy class,
U<G) Y, and@ EDQor@—U C’2

Let &2; be the Sp-conjugacy class of @Z, and set & = P1US5. ThenY = (&),
since Y is the normal closure in S of Yy = U;U; and hence that of @)1@)2 > Y.
Since (:)Z- <Y, the hypotheses of Lemma B.6 hold with Y in the role of S. By that
lemma, there are subgroups ©; <Y such that ©; < (&;) < ©,75(S), ©; € DSQ,
and Y = @1 X @2.

Set Py = () for short. If @1 = Py, then ©; < Sy, and hence {01,045}
is an S-conjugacy class which satisfies the conditions in the lemma. So assume
otherwise: assume Py = 0125(5) = ©1 x Z(5). Then ©; < P; with index 4
(recall 0, < Y), so 0, > [P1,P1] = Fr(P;) with index 2. Hence for each Q € %,
the image of @ in P1/Fr(P;) 2 C3 has order 2. So || > 3, and || = 4 since
| 21| = [S50:Ns(0:)] < [So:Y] =

The image in P1/Z(S) of each @ € & is one of the two noncyclic subgroups
of index 2. Hence there is Q € @1 such that Q #+ @1 and QZ(5) = @122(3).
Let ¢ € Sy be such that Q = 961 Since @1 is the normal closure of U; in
Py = 0, x Z(9), there is x € Oy such that 9(*U;) £ @1. Let y € ©1 be such that
97Uy < (YUy)Zo(S). Then Uy # Y 92Uy < Uy Z5(S). Since this contradicts (2.8),
we now conclude that ©1 = Py = (Z7;). Thus ©; € D or ©; € Q (depending on
whether Uy 2 C3 or Qg), and the lemma holds in this case.

Case 2: Now assume that Yy 2 2174, Set Z = Z(S), S = S/Z, and X = XZ/Z
for each X < S. The hypotheses of the lemma hold for Yy < Y < S, where
{(U.,Us} € %% (YO) and U; = C3. In particular, (2.8) holds since U;Z5(S) =

U.Z(S) = UlZQ(S). So by Case 1, there is an S-conjugacy class {©1, 05} such
that Y = ©1 x O, and ©; € D. Let ©;, <Y be the preimage of ©; Y.
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By construction, ¥ = 0105, and [01,05] < ©; N O3 < Z. So the only thing
to check is that ©; € Q for i = 1,2. Since ©; > U; & Qg and Z = [U;, U],
(0,)?P = (0,)*P = C2. So ©; € DSQ by Proposition B.2, and ©; € Q since it is
generated by subgroups conjugate to U; € Q (recall Y = ((U1U,)%) = ((U;)%)). O

The following example helps illustrate why condition (2.8) is needed in the last
lemma. It also shows that Zg(Yy) can be empty for Yy € %,(S) when Yy = Qs X Qs.

ExXAMPLE 2.8. Fix n > 4. Set S = (ay,by,a2,be,t) = A1As(t), where for
i1=1,2, A; = <ai,bi> = Q2'7L7 |CL1| = 2”71, and |bl‘ = 4. AlSO, [bl,bg] = [al,a2] =1,
[a1,be] = [az,b1] = b3b3 € Z(9), t? = 1, ta; = ag, and 'b; = by. In particular,
S/<b%7b%> = Don—1 1Cs.

Set U; = (a2" " b)) = Qg (i = 1,2), and set Yy = U1Us = Qs x Qs. Then
Ng(Yy)/(b2,b2) = Dg 1 Ca, s0 Yy € % (S). Also, ((Y)®) = O x Oy € Z(S5), where
@i = (af,bﬁ = an—l for i = 1,2. If n > 5, then {Ul,UQ} S %S(Yo), but (28)
does not hold in this case, and the conclusion of Lemma 2.7 also fails to hold since
{01,032} is not an S-conjugacy class. If n =4 (so Y = Yj), then %5(Yp) = @.

We are now ready to look at the sets @/5(Yy) of Definition 2.2, and the com-
patibility relation defined there between elements of <75 (Yy) and %s(Yp).

LEMMA 2.9. Let S be a 2-group such that r(S) < 4 and % (S) # @. Then the
following hold for each Yy € %,(S).
(a) Yo = (4, 21;'4, or Qs X Qs, Outg(Yy) = Dg, and the action of Outg(Yy) on
Yo /Fr(Yo) = CF is faithful and permutes a basis.

(b) For each I' € 5(Yy), there is a unique pair {Uy,Us} € Us(Yo) which is
compatible with T'. 1If, furthermore, U < Yy is such that U = C3 or Qs,
|Nauts(vo)(U)] = 4, and each o € Aut(U) extends to o € Aut(Yp) such that
[&} erl, then U € {Ul,UQ}.

(c) If Yy =2 C3, 2™, or Qs x Qs, then for each {Ur,Us} € %s(Yy), there is a
unique subgroup T' € /g (Yy) which is compatible with {Uy, Us}.
If Yo = CF or 2" then for each {Uy, U} € %s(Yy), there is a unique
subgroup T € /5 (Yo) which is compatible with {Uy,Us}.

Proor. (a) By Definition 2.1, Ng(Yp)/Fr(Yy) & Dg 1 Cs, where Y/Fr(Yy) &
C4. Hence Outg(Yp) = Ns(Yy)/Yo = Dg, and its action on Yy/Fr(Yy) is faithful
and permutes a basis.

(b,c) We consider separately the cases I' 2 331 Co and T" & 3s.

Case 1: T' & SO} (2) ¥ B31C,. IfT < Out(Yp) and I' = 3 Co, then there
are exactly two subgroups Hy, Hy < T of order 3 with rk([H;, Yy /Fr(Yp)]) = 2. (If
H < T is any other subgroup of order 3, then rk([H;, Yo/Fr(Yp)]) = 4.) Let oy €
Aut(Yp) be of order 3 such that [o;] € Out(Yp) generates H;, and set U; = [ay, Yo
Then {Uy,Us} € %s(Yy) and is compatible with T'.

If U <Y is as in point (b), then the condition on extending automorphisms
implies that U = [a, Y] for some « € Aut(Yp) of order 3 such that [a] € T'. Since
Uy and U, are independent of the choice of {(«;) (any two choices are conjugate by
an element of Inn(Yp)), U € {Uy,Us}.

Conversely, if {Uy, Uz} € Zs(Yy), then let I' < Out(Yp) be the group of (classes
of) all automorphisms of Y; which either normalize the U; or exchange them. (Note
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that [Uy,Us] = 1 since Yy % 2'%) Then I' = £312Cy, T' > Outg(Yp), and hence
I' € @ (Yp) is the unique element which is compatible with {Uy,Us}. This proves
(c).

Case 2: T = S0;(2) & Xs. Assume first that Yy = C3. Fix a basis
B = {e1,e2,e3,e4} for Yy which is permuted transitively by Autg(Yp), ordered so
that Autgs(Yp) contains the transpositions (ej e2) and (eses). Set z = ejeszegeq,
the generator of Cy (Auts(Yp)), and set e} = e;z for i = 1,2,3,4. Since Auts(Yp)
permutes the fifteen involutions in V' in orbits of length 4,4,4,2,1, and the orbit
{e1e3,e1e4, €0e3,e2e4} is not a basis, B’ = {e],e), ek, e} is the only other basis
which is permuted transitively by Auts(Yp). Let I', TV < Aut(Yp) be the subgroups
of automorphisms which permute the sets BU {z} and B’ U {z}, respectively. Set
ep = e, = z for convenience.

For any A € /5 (Yp), by Proposition D.1(d), Yy is the orthogonal module
for A, since otherwise it cannot contain Autg(Yp). Thus A acts on YO# with an
orbit of length 5 the product of whose elements is the identity. This orbit contains
four elements permuted transitively by Autg(Yp) and which generate Y, (since the
A-action is irreducible) and one which is fixed. Thus A permutes one of the sets
BU{z} or B"U{z}. It follows that &5 (Yp) = {I',I"}.

Assume U < Yj is such that U = C3, |[Nauts(ve)(U)| = 4, and each o € Aut(U)
of order 3 extends to a € I' < Aut(Yp) of order 3. Since rk([8,Yy]) = 2 for each
B €Tl = %5 of order 3, U = [a,Yp]. Also, a permutes cyclically e;,e;, ey for
some triple 4,4,k € {0,1,2,3,4} of distinct indices, and hence U = (e;e;, e;ex).
The only such triples of indices which are normalized by a subgroup of index 2 in
Autg(Yp) are {eg,e1,e2} and {eq, e3,e4}, so U € {Uy,Usz} where Uy = (€], e5) and
Uy = (€4, ¢e)). Thus {Uy,Us} is the only pair in %s(Yy) which is compatible with
I', and the U; are the only subgroups which satisfy the hypotheses in the second
statement in (b). Similarly, {(e1,e2), (e3,€4)}, is the only pair in %s(Yy) which is
compatible with I'. This proves (b) and (c) when Yy = C3.

Now assume that Yy = 27 and set Z = Z(Y}) for short. Then I' = Out(Yp)
is the unique element of @s(Yy). Let ag,aq,...,as € Yy be such that {a;Z]0 <
i < 4} are the five cosets of noncentral involutions in Yy (Lemma C.2(a)). Then
apaiazazays € Z. Each element of order 4 in Yj lies in a;a;Z for some unique pair of
distinct indices 4, j. So each quaternion subgroup has the form U = (a;a;, arar) for
indices i # j and k # ¢, and {4, j} N {k,(} # @ since otherwise a;a;ara, has order
2. Thus U = (a;a;, a;ay) for some triple of distinct indices i, j, k, and U = [«, Y}]
for any o € Aut(Yp) of order 3 which permutes cyclically the cosets a;Z,a,Z, arZ.
Thus there are exactly ten quaternion subgroups in Y. Since Outg(Yp) = Dy fixes
one of the cosets a;Z and permutes the other four transitively, it permutes the ten
quaternion subgroups in two orbits of length 4 and one of length 2. Thus there is a
unique pair {Uy, Us} € Zs(Yo) (the orbit of length 2). Since U; = [a;, Yo] (i = 1,2)
for some ay, as € Aut(Yp) of order 3, this pair is compatible with T O

We now look at 2-groups S for which 27(S) # @.

LEMMA 2.10. Fiz a 2-group S and a subgroup A € Z°(S). Let A < A be the
cyclic subgroup of index 2 (the one which is normal in S if A = Qs ), fix a generator
a € A, and set Ag = (a®). Let Ag < A be dihedral or quaternion of order 8, and
set T = Cg(Ao).
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(a) [S:TA] =2, and for all g € S\TA, 9b = a’b for some odd j. Also, TAy < S,
S/TAO = DS, and TA/TAO = Z(S/TA())

(b) There is x € S\TA such that “a = a'*** for some ¢ € Z, *b = ab, and
x? =a't fort € T and i odd. Also, A =[S, A].

(¢) Ify € TAx, where z is as in (b), then either |y| > |a|, or ly| = |a|, Z(A) <
Fr(T), and (y)y N A=1.

PRrROOF. (a) Most of this was shown in [AOV2, Lemma B.3], but we give a
slightly different argument here. Recall that by Definition 2.1, A € 27(S) implies
that A < S, A € DQ, and A is strongly automized in S. Also, A < S: by
assumption if A = Qg, and since A is characteristic in A if A 22 Qs.

Set B = {a*). Then A/B = Dg, and Aut(A/B) = (a, ) = Dg where

a—a a—a!

o { by P { bish

(Here, g € A/B denotes the class of g € A). Consider the homomorphism

¥: S —— Aut(A/B) =2 Dy
induced by conjugation. For t € T = Cg(Ag), b = b and ‘a = a**** for some i,
so t € Ker(y)). Thus TAy < Ker(1)). Conversely, if g € Ker(¢)), then 9b = a*b
and 9a = a***1 for some j,k € Z, so [ga®™,b] = 1 whenever m € Z is such that
m(4k + 1) = —j (mod |a]). Also, [ga®™,a] € B, so ga®™ € T and g € T Ap. This
proves that Ker(¢)) = T Ay and hence that TAy < S.

Since ¥(A) = ¥(TA) = Inn(A/B) = (a?, 8), and since there is € S such

that ¢ (z) ¢ Inn(A/B) (A is strongly automized), ¢ is onto. Thus S/T A, =
Aut(A/B) = Dg. Also, [S:TA] = |Out(A/B)| = 2, and Z(S/TAp) = TA/T Ay.
For g € S\TA, ¢(g) ¢ Inn(A/B) and hence 9b = a’b for odd j.
(b) Choose z € 1~!(a). Thus x € S\TA, ®b = a™b for some m = 1 (mod 4), and
upon replacing x by an appropriate element of xAg, we can arrange that *b = ab
(and still ¥ (z) = «). Also, ¥(2?) = a® = 1(a), so 2 € aT Ay. Since a acts via the
identity on A/B, we have “a = a'*4 for some ¢ € Z.

Thus A = ([z,b]) <[5, A]. Conversely, [S,A] < A since A/A < Z(S/A).

(c) Assume y € TAzxz. Then T Apy has order 4 in S/T Ay = Dy since y € TAgx
or y € TApax, so y> = a*t for t € T and k odd. Set 2" = |a|. Since t € Cs(Ay),
ta = a'*™ for some m. Then y* = a*(*a)*t? = a?*(1+2™)2 Upon iterating this
procedure, we get that 42" = a*2" 2" " £ 1, and so 32" = a®" 2" '. Thus
cither [y| > 2" = ||, or [y| = 27, 2" = 2", and thus Z(A) = (a2" ') < Fx(T).
In the latter case, 42" & A since 12~ € T~Z(A), so (y) NA=1. O

The next lemma provides a necessary condition on certain 2-groups S with
2 (S) # @ for there to be a nontrivial automorphism of odd order.

LEMMA 2.11. Fiz a 2-group S with r(S) < 4, and a normal dihedral subgroup
A QS with |A| > 8. Set Z = Z(A), let Ag < A be dihedral of order 8, and assume
Z s a direct factor of Cs(Ag). Let 1 # G < Aut(S) be a subgroup of odd order,
and set T =[G, S]. Then

(a) T<S,[T,Al=TNA=1, and [S:TA] < 2; and
(b) |G| =3, and T = Qs or Cox x Car for some k > 1.
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ProOOF. Let A < A be the cyclic subgroup of index 2, let a € A be a generator,
and fix b € Ag\A. Set Ag = (a?) and Z = Z(A). Set T = Cs(Ag). By assumption,
there is Ty < T such that T' = TyZ and ToN Z = 1. For each t € T, since T
centralizes the subgroup of order 4 in A, ta = a'*** for some k. Thus [T, A] < (a*).

Step 1: We first show that for each o € G,
a(Ag) = Ao and a(TA)=TA. (2.9)

By Lemma B.7, a(Z) = Z. If Ay > Z (if |A| > 4), then by Lemma B.7 applied to
S/Z, a sends the subgroup of order 4 in A to itself. Upon iterating this procedure,
we get that a(Ag) = Ap.

If A is not strongly automized, then for each g € S, [g,b] € Ay, so [ga’,b] = 1
for some i, and ga® € T or ga’b € T. Thus S = TA, and o(TA) = TA trivially.

Now assume that A is strongly automized in S. By Lemma 2.10(a,b), [S:TA] =
2, and there is z € S\TA such that *a = a'*t* for some ¢ and *b = ab. If
|A| > 16, then T'A(x) is the centralizer of AgN Ay (the subgroup of order 4 in Ayp),
so a(TA(x)) = TA(z).

If |A| =8, then T'= Cs(A) <8 and TA 2Ty x A. Since A < [S,5] <TA by
Lemma 2.10(b), a(a) € TA, and hence

[TA a(a)] < [TA,TA Na([S,a]) <ToNAy=1.

Thus TA < Cgs(a(a)) = a(Cs(a)) = a(TA{z)). Let t € T and i € Z be such
that a(a) = ta’. Then a® = a(a®) = t?a*, so i is odd, and b ¢ Cg(a(a)). Thus
a(TA(z)) = TA(x) or TA(bz), the same holds for o(T A(z)) for all i, and since
|| is odd, we get a(T' A{x)) = T A{x).

Thus a(T'A(x)) = TA(z), independently of |A|. Hence

[a(T'A), S] = [a(T'A), (T A(x))][(T A), (D))
< [TAl2), TA{2)|a([TA, b)) < (TAg)a(Ag) = T A,.

Since Z(S/TAg) = TA/T Ay by Lemma 2.10(a) again, this proves that a(T'A) =
TA. Also, a induces the identity on S/TA =2 C3 since it has odd order and sends
the class of x to itself, and hence a(T'A) = T'A. This finishes the proof of (2.9).
Step 2: Now, TA/{a*) = Ty x Dg (recall that Ty N A =1 and [Ty, A] = [T, A] <
{a*)). By (2.9), each a € G¥ induces an automorphism of TA/{a*) which sends
Ao/(a*) = Z(A/{a*)) toitself. So by the Krull-Schmidt theorem (Theorem A.8(b)),
a(TAp/{a*)) = TAg/{a*). Thus a(TAg) = T Ag. Also, a(TA) = TA since Ap is in
the Frattini subgroup of T'A but not those of T'Ag(b) or T'Ap(ab). To summarize,

a(TAg) =TAy, «o(TA)=TA, and «o(TA)=TA. (2.10)

Now, |4, = Id since Aut(Ap) is a 2-group by Corollary A.10(a). Since a # Id
and || is odd, (2.10) together with Lemma A.9 imply that the automorphism
of TAp/Ap induced by « is nontrivial. Since r(Tp) < r(S) — r(Dg) < 2 (recall
To x Ay < 8), Ty =2 TAg/Ap is metacyclic by Lemma B.1(a). By Lemma B.1(c),
either Ty = Con x Con for some n > 1, or Ty = Qs.

By Lemma A.9 and since Tp/Fr(Tp) = C3, |Aut(Tp)| = 3-2™ for some m. So

|G| = 3, since G acts faithfully on T'Ayg/Ag = Ty, and G acts via the identity on

TAjy by (2.10) and Lemma A.9. oT < , 9] <TAp, an ence T = , T Ag
S/T Ay b d A9. So T ¥ . 8] < TAy, and h G.TA

(see [G, Theorem 5.3.6]). Also, T Ay = T Ay, since [G, T Ag/Ao] = TAg/Ay in either
case (T'Aog/Ap = Can x Con or Qs).
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Since G centralizes Ay, T = |G, S] also centralizes Ag. Thus [TAg, Ao] =
[TA(),A()] =1. AlSO,

TN Ay =[G, TA) N Cra,(G) N Ay < [TAy, TA)N Ay < [T,T]NAg=1,

where the second relation holds by [G, Theorem 5.2.3]. Finally, T<8 (cf. [G,
Theorem 2.2.1(iii)]), and hence

[T,A]<TNA=(TNTA)NA
=TN(TNA)A) =T N (Ca(Ao)Adg) =TNAg=1. O



CHAPTER 3

Essential subgroups in 2-groups of sectional rank
at most 4

We now analyze the different possibilities for F-essential subgroups when F is a
saturated fusion system over a 2-group S with 7(S) < 4. It will be convenient to use
the following shorthand to refer to the different “types” of F-essential subgroups
R < S which can occur. We say that R has

type (I) when |[Ng(R)/R| > 4,
type (II) when |Ng(R)/R| =2 and R is not normal in S, or
type (III) when |S/R| = 2.

We let ESTI), Egl), and Egn) denote the sets of F-essential subgroups of types (I),

(IT), and (IIT), respectively, so that Ex = Eg) U Egl) U Egn)' For each Y < S,

Er(Y)={P € Er |foc(F,P) =Y},

EP (V) =EP NEx(Y), etc.
The results in this chapter are summarized in the following theorem, formulated
in terms of the sets 27(S) and #/(S) of Definition 2.1.

THEOREM 3.1. Let F be a reduced, indecomposable fusion system over a 2-group
S such that r(S) < 4.

(a) IfReEY, then R~ C} or 244, and S = UT4(2) €V or S € U.

(b) If R e BV then either
(b.1) foc(F,R) € Z'(5), R is as in Lemma 3.8(a), and S € DSWG; or
(b.2) foc(F,R) € #(S) and S € UV; or

(b.3) foc(F,R) ¢ #(S), Z(S) =3, foc(F,R) = C3 or UT3(4), R is as in
Lemma 3.7(b), and S € U.

(¢) If Ex = E(}I-H) (i.e., E(]_I-) = E(;-I) =), then S = Dg, C41Cy, or UT4(2), or
S has type Mi2 or Aut(Mis), or S € U.

PrOOF. (a) If R € E(JTI)7 then by Lemma 3.3, |Ns(R)/R| = 4. By Proposition 3.5,
Ng(R)/R % Cy. The result thus follows from Proposition 3.4.

(b) Assume R € ESV. If joc(F, R) € #(S), then S € UV by Proposition 3.12,
and (b.2) holds.

If foc(F, R) ¢ #/(S), then by Lemma 3.6(b), we are in one of the following two
situations:

25
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e If 3.6(b.i) holds, then we are in the situation of Lemma 3.7(b): S € U, Z'(S) =
3, foc(F, R) = C3 or UT3(4), and (b.3) holds.

o If 3.6(b.ii) holds, then (since F is reduced and foc(F, R) ¢ #/(S)) we are in the
situation of Lemma 3.8(a). In particular, foc(F, R) € Z°(S), so S € DSWG
by Proposition 3.14, and (b.1) holds.

(c) This is shown in Proposition 3.15. O

In this chapter, in addition to proving Theorem 3.1, we also collect more de-
tailed information about the essential subgroups: information which will be useful
in later chapters when analyzing the fusion systems themselves.

The following lemma limits the possibilities for F-automorphism groups of
essential subgroups of type (II) or (III).

LEMMA 3.2. Fiz a 2-group S with r(S) < 4, a saturated fusion system F over
S, and a subgroup R € Ex. Assume that either R € E(;-I), or R € Egu) and

-1
‘Eg-H)| > 2. Then Ollt]:(R) = 23, 23 X 03, or (Cg, X Cg,) X Cg.

PROOF. Assume otherwise. By Lemma 1.7, Outz(R) acts faithfully on the
quotient R/Fr(R), and hence is isomorphic to a subgroup of GLs(2) = Ag. By the
Sylow axiom, |Outz(R)| = 2m for some odd m, so |O2 (Outz(R))| = m by Burn-
side’s normal p-complement theorem [G, Theorem 7.4.3]. By Proposition D.1(a),
and since Out z(R) is not isomorphic to one of the groups listed above, Out £ (R) is

isomorphic to a subgroup of Cy5 >24 Cy or (C3 x Ag) x Cy, and in particular, contains
a subgroup Aut%(R)/Inn(R) = Dyo. By Lemma D.8, Fr(R) < Z(R).

If R e E(;-I), set Sy = Ng(R), fix € Ng(Sp)~Sp such that 22 € Sy, and
set @ = *R and Aut%(Q) = c,Aut:(R)c;!. Then Sy = RQ since [Sp:R] = 2.
If R e E(;-H) (thus [S:R] = 2) and |E(}I-H)\ > 2, choose Q € Egn) different from
R, and choose Aut%(Q) < Autz(Q) such that Aut%(Q)/Inn(Q) = ¥3 or Dyg. In
either case, let "4 RN Q < R be the largest subgroup which is normalized by
Aut%(R) and by Aut%(Q). Since T < R and Out%(R) = Dy acts irreducibly on
R/Fr(R) = C3, T <Fr(R) < Z(R), and hence Cs(T) > R.

Thus T is not centric in S. This situation is impossible by [AOV2, Theorem
4.5 or 4.6(a)]: Outz(R) cannot contain Do when T (as defined here) is not centric
in S. (]

3.1. Essential subgroups of index 4 in their normalizer

We begin with a very general lemma on essential subgroups of index 4 in their
normalizer, and then make it more explicit in two propositions.

LEMMA 3.3. Let F be a saturated fusion system over a 2-group S. Assume
R < S is an F-essential subgroup with [Ng(R)/R| > 4 and rk(R/Fr(R)) < 4. Then
rk(R/Fr(R)) = 4, Outz(R) acts faithfully on R/Fr(R), and one of the following
holds: either
(a) Ng(R)/R = Cy permutes freely some basis of R/Fr(R); or

(b) Ns(R)/R = C2 permutes freely some basis of R/Fr(R); or
(¢) Ns(R)/R=C3 acts on R/Fr(R) with tk(Cr/m(r)(Ns(R)/R)) = 2.
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2 2
Also, Out z7(R) =2 C15 X Cy, C5 x Cy, or (C5 x C3) x Cy in case (a); Outz(R) = As
and R/Fr(R) is its orthogonal module in case (b); and Outr(R) = As or C3 x As
and R/Fr(R) is its Lo(4)-module in case (c).

Proor. By Proposition 1.9, rk(R/Fr(R)) > 4. Since the opposite inequality
holds by assumption, rk(R/Fr(R)) = 4. Also, Outs(R) = Ng(R)/R = C3 or Cj.
By Lemma 1.7, Outz(R) acts faithfully on R/Fr(R), and hence is isomorphic to a
subgroup of GL4(2) = As.

Set I' = Out£(R). If Outg(R) = C4, then [I'/O2 (T')| = 4 by Burnside’s normal
p-complement theorem (cf. [G, Theorem 7.4.3]). The involution in Outg(R) is not

central in I since I" has a strongly 2-embedded subgroup, so I & (5 >24 Cy, Cs >2404,
or (C5 x C3) x C4 by Proposition D.1(a). In either of the first two cases, Outg(R)
acts on R/Fr(R) = Cj via the Galois action on Fig, hence permutes a basis by
the Hilbert normal basis theorem. If Oy (I") = C5 x C5, then Outg(R) acts by
exchanging the two irreducible factors in R/Fr(R), and acts on each by exchanging
the elements in a basis.

If Outs(R) = C2, then I'/Oq (') = A5 by Bender’s theorem on groups with
strongly 2-embedded subgroups [Be, Satz 1] and since |Out(A4s)| = 2. Hence by
Proposition D.1(a,d), I' & A5 or A5 x Cs3, and R/Fr(R) is its orthogonal module
(in case (b)) or La(4)-module (case (c)). O

We now deal separately with the cases where Ng(R)/R = C3 or Cy. As in
Proposition D.1(d), when V = F3 is an As- or Y5-module, we call it the “Ly(4)-
module” if V|4, is the natural module for SLy(4) = As, and the “orthogonal
module” if it is the natural module for €, (2) = As.

PRrROPOSITION 3.4. Let F be a saturated fusion system over a 2-group S with
r(S) < 4. Assume R € Ex is such that Ns(R)/R = C3. Then R = Cj or 2,
|S| < 27, and either R <4 S and S/Fr(R) = UT4(2), or R = C3 and Ng(R) =
UT3(4). If F is reduced, then S = UT4(2) or S €U.

PROOF. By Lemma 3.3, Outz(R) = A5 or C3 x A5 and acts faithfully on
R/Fr(R) = C3. By Theorem 1.4, there is a finite group G such that Ng(R) €
SylL,(G), R 4 G, Cg(R) < R, and G/R = Outg(R) = O3(Outz(R)) = As. Then
R = C4 or 217 by Lemma D 4.

Since any nontrivial extension of C3 by As splits by [GH, Lemma II.2.6],
G/Fr(R) splits over R/Fr(R). Hence by Lemmas C.4(a) and C.7, Ng(R)/Fr(R) is
isomorphic to Cy 1 CF = C§ x C3 =2 UT4(2) (if R/Fr(R) is the orthogonal module
for As), or to UT5(4) (if R/Fr(R) is the Ls(4)-module).

Case 1: Assume Ng(R)/Fr(R) = UT3(4). If R =2 2% then Out(R) = %5, and
this group acts on R/Fr(R) as the orthogonal module, contradicting our assump-
tion. Thus R~ C3. If R < S, then S = UT5(4) € U, so assume R 4 S.

Set T = Ng(R). Since T = UT35(4) contains exactly two subgroups Q, R
isomorphic to C3, each element of Ng(T)~\T exchanges them, and thus T has
index 2 in its normalizer. Set Sp = Ng(T'). Then Sy € U (see Definition 0.1), so T'
is characteristic in Sy by Lemma C.9. Hence S = Sy € U by Lemma A.1(b), and
|S| = 27.

Case 2: Assume Ng(R)/Fr(R) = UT4(2). Since Fr(R) =1 or Z(Ng(R)), Fr(R)
is characteristic in Ng(R). Also, R/Fr(R) = Cj is the unique abelian subgroup
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of rank 4 in Ng(R)/Fr(R) (Lemma C.4(a)), so R is characteristic in Ng(R), and
S = Ng(R) by Lemma A.1(b). Thus R <5, and S/Fr(R) = UT4(2).

Now assume F is reduced; we must show that S = UT,(2) or S € U. If R = C3,
then S 2 S/Fr(R) = UT4(2), so assume R = 2" Set Z = (2) = Z(R) = Fr(R).
Let U < S be such that U/Z is the unique subgroup of S/Z = UT,(2) isomorphic
to 2/* (Lemma C.4(b)). Then Z(U) = [U,U] = C% by Lemma D.3 (or by explicit
computations), so U is special of type 2274, Also, there is a € Autg(S) of order 3
since Ng(S)/R = A4, a acts nontrivially on U/(RNU) and on RNU, and trivially
on Z(U) since it fixes Z = Z(S). Thus Cy/zw)(a) = 1.

By Lemma D.2, either U & UT3(4), or U & Qs X Qg, or U/{zx) = 2%:‘4 for
exactly two of the involutions z € Z(U). Fix 2’ € Z(U)\Z. Since U/(z) = 214
and U/(2') 2 U/(z2') (#/ and 2z’ are S-conjugate), the last case is impossible.

If U =2 Qg xQs, then I(U) C Z(U) < R. By Lemma C.4(c), I(S/Z) C (R/Z)U
(U/Z), so I(S) € R. All noncentral involutions in R = 2'** are F-conjugate to
each other since Autz(R) = As (see Lemma C.2(a)). Since Z(F) = 1, they are all
F-conjugate to z, and so z’ € z7. By the extension axiom and since Cg(z') = U,
there is ¢ € Homz (U, S) such that ¢(z') = 2. Then p(U)/Z 2 U/{2') = Qg x C3
is a subgroup of index 2 in S/Z = UT4(2), which is impossible by Lemma C.4(c).

Thus if F is reduced, then U = UT3(4), and S € U. O

We next consider essential subgroups R such that Ng(R)/R = Cy.

PROPOSITION 3.5. Let F be a saturated fusion system over a 2-group S with
r(S) < 4. Assume R € Ex with Ng(R)/R = Cy. Then R 48 (so S/R = Cy),
|R| <25, and F is not reduced.

ProOOF. By Theorem 1.4, there is a finite group G such that Ng(R) € Syl,(G),
R <G, Ce(R) < R, and G/R = Outg(R) = Outx(R). By Lemma 3.3, G/R =
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Outz(R) acts faithfully on R/Fr(R) = C4, and is isomorphic to C5 x Cy, C15 3 Cy,
or (C3 x C3) x Cy4. So by Lemma D.8 (if G/R contains a subgroup isomorphic to
C5 x Cy) or Lemma D.7 (if G/R = (C5 x C3) x Cy), we have

R= (4%, 2™, Qs x Qs, or is of type PSU3(4). (3.1)

Set So = Ng(R) for short. By Lemma A.6(a,b), either R = C3; or Z(R) =
Z(So); or Z(R) > Z(So), |Z(R)| =4, R = Qs x Qg or is of type PSU3(4), and
Z(R) = Z5(Sp) since all involutions in R are central (cf. [Sz2, Lemma 6.4.27(iii)]
when R is of type PSU3(4)). Thus Fr(R) is characteristic in Sy in all cases. By
Lemma 3.3(a), So/Fr(R) = Cy 1 Cy = C§ x Cy where So/R = C4 permutes freely
some basis of R/Fr(R). So by Lemma A.4(b), R/Fr(R) is the only abelian subgroup
of rank 4 in Sy/Fr(R), and hence R is characteristic in Sop = Ng(R). Thus R < S
(So = S) by Lemma A.1(b). In particular, S2° = (Cy 1 C4)*” = Cy x Cy.

It remains to show that F is not reduced. Assume otherwise. By Lemma
1.17, there are subgroups Q@ < P < S such that S = RP and P/Q = Cy x Cy.
Furthermore, by the same lemma, there are elements g,h € P and o € Aut’=(P)
such that h = a(g), g € R, and S = R(h). In particular, g ¢ [P, P] since
h* ¢ R>[S,9].

Now, 4 < |h| = |g| < 4, so |h| = |g| = 4 and R has exponent 4. Thus R is
nonabelian. Set T = [h2, R]. For z € R, [z, h?]~* = [h2,z] = "’ [z, h?] since h* = 1.
Thus ¢z inverts 7', and T is abelian. Also, T' < R by [G, Theorem 2.1(iii)], and its
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image in R/Fr(R) has rank 2 (since ¢, permutes freely a basis for R/Fr(R)). By
inspection of the list in (3.1), T' > Fr(R).
If g € T, then g = [g, h?] € [P, P], which is impossible by the above remarks.
Thus g ¢ T. Upon regarding R/Z(R) as an Fy[(h)] = F5[C4]-module, we have
R/Z(R) = Fa[h]/(h* — 1) = Fa[h]/(h — 1)*.

Since the polynomial ring Fo[X] is a PID, R/Z(R) contains a unique Fa[(h)]-
submodule of rank k for each 0 < k < 4 (generated by (h — 1)4_k under the
above identification). Since g ¢ T, the subgroup generated by g and iterated con-
jugates with h has rank at least 3 in R/Z(R), so the image of @ in R/Z(R) has
rank at least 2, and Q > T. But this is impossible, since Q > Z(R) and ¢ ¢ Q.
We conclude that F is not reduced. (]

3.2. Essential pairs of type (II)

Let F be a saturated fusion system over a 2-group S. An F-essential pair of
type (IT) in F is a pair of subgroups (R1, R2) such that

[ Rl,RQ S Egl),
e Ng(R1) = Ns(R2) = RiRy < S, and
e Ry = 7R for some x € Ng(RyRs)\Ri Ry where 22 € Ry R,.

The F-essential pairs play a key role when describing fusion systems containing
essential subgroups of type (II).

We first show that each F-essential subgroup of type (II) lies in an F-essential
pair of type (II), and prove some of the basic properties of such pairs.

LEMMA 3.6. Let F be a saturated fusion system over a 2-group S with r(S) < 4,
and assume Ry € Ex is of type (I1). Then there is a subgroup Re € Ex of type (II)
such that (Ry, R2) is an F-essential pair of type (II). Set R = RiRes = Ng(Ry) =
Ng(Rsy), and let x € Ng(R)\R be such that 2> € R and *Ry = Rs.

(a) Fori=1,2, 0¥ (Outr(R;)) = X3 or (Cs x C3) x Cy. There are subgroups
Aut%(R;) < Autz(R;) and Out%(R;) = Aut%(R;)/Inn(R;) < Outx(R;)
such that Outg(R;) < Outg_-(Ri) =~ Y3 and chutg_-(Ri)cgl = Autgr(Rg,i).
(b) For Aut%(R;) as in (a), let T < Ry N Ry be the largest subgroup normalized
by Aut%(Ry) and by Aut%(Rz). Then x € Ns(T), and either
(bi) T=RiNRe, Cs(T)<T, and Ng(T) = R(z); or
(b.ii) T < RiNRy and CR(T) f T.
(c) For Out%(R;) as in (a), there are groups G1 > R < Gy and an isomorphism

B € Iso(G1,Ga2), such that [G;:R] = 3, R; 4 G;, OutOF(Ri) = Outg, (R;) &
Gi/R; (i=1,2), and B|r = cz|Rr-

PROOF. Set R = Ng(R1), choose z € Ng(R)~R such that 2> € R, and set
Ry = R;. Then Ry € EY, Ng(Ry) = "R = R, and R = Ry R, since the R; are
distinct of index 2 in R. Thus (Ri, R2) is an F-essential pair of type (II).
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(a,c) The first statement in (a) follows from Lemma 3.2, and the others imme-
diately from that. Point (c¢) follows from the model theorem (Theorem 1.4); we
refer to [AOV2, Theorem 4.6] for more details. The uniqueness in the choice of T'
implies that « € Ng(T).

(b) If Cs(T) £ T, then T < Ry N Ry by [AOV2, Theorem 4.6(a.ii)]. So it remains
to prove that

Cr(T)<T = T=RiNR,and Ng(T)=R{x). (3.2)

If Cr(T) < T, then by [AOV2, Theorem 4.6(b)], Outs(T) = Ng(T')/T acts
faithfully on T/Fr(T'). Since rk(T/Fr(T)) < 4, Ng(T')/T is isomorphic to a sub-
group of GLy(2) = Ag. In particular, Ng(T')/T contains no elements of order 8.

Set R12 = Rl n Rg for short. Then R/R12 = (Rl/Rlz) X (Rg/ng) = 022, (%
exchanges the two factors R;/R12, and hence R{z)/Ri2 = Ds. If Ng(T') > R(z),
then there is g € Ny () (R(z))\R(z) such that g* € R(z) (Lemma A.1). Since
g ¢ R= Ng(R;) (i =1,2), g ¢ Ns(R), and hence 9(R/R12) # R/R12. In other
words, R(z)/Ri2 = Dg is strongly automized in R(x,g)/Ri2. By Lemma 2.10(c),
applied with R(z, g)/R12 and R(x)/R;2 in the role of S and A = T'A, R(x, g)/R12
contains an element of order 8, which is a contradiction. (In fact, R{z, g)/R12 = D1s
or SD16.)

Thus Ng(T) = R{xz). Now assume T < Rj3. By the maximality of T, the
amalgam (G1/T > Ri2/T < G3/T) of (c) is primitive of index (3,3) as defined
in [Gd2]. Hence it is one of those in Goldschmidt’s list (Table 1 and Theorem
A in [Gd2]). Since G1/T = G3/T and |R;/T| > 4, we have G;/T = ¥4 x Ck,
R/T = Dg x C¥, and R;/T = CZ™* for some k = 0, 1.

Choose elements y; € R;~Rys (i = 1,2). Thus y? € T (since R;/T = C2tF),
and (zy1)? = y192 (mod Ryz). So (y1y2)? = [y1,92] Z 1 (mod T), and zy; T has
order 8 in R(z)/T, which is impossible. This finishes the proof of (3.2). O

Recall (Definition 1.13) that for a fusion system F over a p-group S, we set
Aut’(R) = OP(O (Autx(R))) if R < S and Aut’=(S) = OP(Autx(S)), and let
foc(F, R) be the normal closure in S of [Aut’=(R), R].

In the next two lemmas, we examine F-essential pairs of the two types described
in points (b.i) and (b.ii) of Lemma 3.6. A priori, this type depends on the choice of
subgroups Aut%(R;) < Autz(R;), but we will see in each case that Autz(R;) = Y3
or (3 X X3, and hence that this choice is unique.

LEMMA 3.7. Let F be a saturated fusion system over a 2-group S with r(S) < 4.
Let (R1, Ra) be an F-essential pair of type (11), choose subgroups ¥g = Outo]_-(Ri) <
Outz(R;) as in Lemma 3.6(a), and assume we are in the situation of Lemma
3.6(b.i). Thus T = R; N Ry in the notation of that lemma. Then one of the
following holds.
(a) If foe(F,R;) € #(S), then T € %(S), [Autr(R;),Ri] < T < foe(F, R;),
Autz(T) € 5(T) (Definition 2.2), and either

o Outz(T) =2 X310y, and T = Cj, 2}~_+4, or Qs X Qs; or

o Outy(T) = X5, T = CF or 21, and T/Fr(T) is the orthogonal module
for Out=(T).
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(b) Iffoc(F,Ry) & Z(S), then T = C} and is the Lo(4)-module for Outz(T) = X5
or (As x C3) x Cy. Also, S €U, [Aut’=(R1),R1] =T, and foc(F,Ry) =T or
foc(F,Ry) = UT3(4). If #(S) # @, then |S| = 28, S/Z(S) = Dg1Cy, and
foc(F, R1)/Z(S) = 21+

Also, in all cases, Z'(S) = @, and for i = 1,2, Outg,(T) £ O*(Outx(T)), and

Out}-(Ri) = 23.

PROOF. Set R = R1Ra, let (G; > R < G2) be an amalgam as in Lemma
3.6(c), and set Out%(R;) = Outg, (R;) < Outx(R;). Thus R = Ns(R;) = Ns(Rs),
[Gi:R] = 3 and Out%(R;) = X3 i = 1,2). Let x € Ng(R)~R be such that 22 € R
and Ry = *Ry. By assumption, T = R; N Ry is normal in both G; and Gs.

By Lemma 3.6(b), T is centric in S and Outg(T) & Ng(T) = R{x). f T* € TZ
is fully normalized, then there is ¢ € Homz(Ng(T'), Ng(T*)) such that o(T) =T*
(Proposition 1.3(a)), Ng(T*) = ¢(Ns(T)) by the same lemma applied to ¢(R;),
¢(R), ¢(x), etc. Thus T is fully normalized in F. So by Lemma 1.5(a),

Out]:(Ri) = NOut]:(T)(OUtRi, (T))/OutRi (T) for ¢ = 1, 2. (33)
If Outg, (T) < O?(Outx(T)) for some i = 1,2, then
Outg, (T) < [Out£(T), Out#(T)],

and by the focal subgroup theorem for groups [G, Theorem 7.3.4], Outg, (T) is
conjugate in Outz(T') to the center of Outg(T) = Ds. Hence R; is F-conjugate to
the third subgroup R3 < R of index 2 containing 7. Since Rz < R(z), this would
contradict the assumption that Ry is F-essential (hence fully normalized). Thus
Outg, (T) £ O*(Outx(T)).

Let 2 € Out(T) be such that (x) = Outg, (T). Thus z ¢ O*(Out#(T)). By
(3.3) and since O3 (Outx(R;)) = 1 (Lemma 1.7), O2(Cout,(7)(2)) = (x). Hence by
Proposition D.1(f), Outz(T) = X310 Cs, X5, or 'Ly(4) = (As x C3) x C3. So in all
cases, by (3.3) and since Outz(R;) is not a 2-group, we have Outz(R;) = 3.

By Theorem 1.4, there is a finite group G such that Ng(T) € Syl,(G), T < G,
Ce(T) < T, and Owtz(T) = Outg(T) = G/T. If Outxg(T) = X3 Cq, then
by Lemma D.7, T = (3, 2}’_+4, or Qg X Qs. If Outx(T) = X5 or I'Ly(4), then by
Lemma D.4, T = C§ or 2'™. Finally, if T = C4 and Out#(T) = X5, then Out #(T)
acts on O3 as either the Lo(4)-module or the orthogonal module.

In all cases, G/Fr(T) splits as a semidirect product

G /Fr(T) 2 (T/Fr(T)) % Out(T): (3.4)

by [GH, Lemma II1.2.6] when Outz(T) = X5 or I'Ly(4), and by [AOV2, Lemma
A.8] when Outx(T) =2 X3 Cs.
We now consider the individual cases.
(a) Assume that either Outz(T) = X350 Co, or Outx(T) = X5 and T/Fr(T) is
the orthogonal module for Outz(7"). We will show that foc(F, R;) € #/(S5), that
2 (S) = @, and prove the other claims in (a) which have not already been shown.
If Outz(T) = X5, then by Proposition D.1(d), T/Fr(T) is generated by an
Out £ (T)-orbit of length 5, and hence Outg(T") permutes a basis. If Outz(T) =
Y31 Cs, let V4, Vo < T/Fr(T) be the irreducible components for the action of the
Sylow 3-subgroup, choose bases for each V; permuted by Nouts(r)(V;), and the
union of these two bases is a basis for T/Fr(T) permuted by Outg(7T). In either
case, Ng(T')/Fr(T) splits over T /Fr(T') by (3.4), and hence Ng(T')/Fr(T) = Ds1Cs.
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Since T' = C, 2}r+4, 2 or Qg x Qg, this proves that T' € %(S). Also, Out#(T) €
As(T) since it is isomorphic to 35 or X3 Cs.

If Out£(T') = 331 Cy, then the Outg, (T") are distinct noncentral subgroups of
order 2 which are conjugate in Outz(T"). Choose a; € Autx(T) of order 3 such
that [[o;], Outg, (T)] = 1 in Outz(T). By the extension axiom (and since T is fully
normalized), each «; extends to a; € Aut’z(R;). Then [a1] # [ag] in Out#(T), so

T Z [Aut;-(Rl),Rl][Aut*}-(Rg),RQ] Z [al,T] [OQ,T] = [<C¥1,012>,T] =T.

Hence [Aut’(R;), R;] < T, and foc(F, R;) = (T°) € Z(S).

Now assume that Outz(T) = 5. Identify these groups in such a way that
Outg, (T) = {(12)) and Out g, (T) = ((34)) (recall that Outg, (T) ¢ O?(Outx(T))).
Let ay,as € Autz(T) be elements of order 3 such that [a;] = (345) and [ag] =
(125). Then (a1, az) = As, so [ag, T][az, T] =T.

For i = 1,2, a; normalizes Autg,(T), so by the extension axiom (and since T'
is fully normalized), «; extends to a; € Autz(R;). In particular, a; € Autz(R;),
S0

T Z [Aut}(Rl), Rl][Aut}(Rg), RQ} Z [041, T} [O[Q, T] =T.
Hence [Aut’(R;), R;] < T, and foc(F, R;) = (T°) € Z(S).

In either case, 2 (S) = @ by Corollary 2.5 and since #'(5) # @.

(b) Assume T =2 Cf is the Ly(4)-module for Out#(T) = XLo(4) or 'Ly(4). We
must show that foc(F, Ry) ¢ #/(S), and prove the other claims in (b).

Let G > Ng(T) be as in (3.4), let Gp < G be such that G > T and G /T =
SLy(4), and let T < Ng(T) be such that 7' € Syly(Go). Thus 7 is a semidirect
product of C4 by C2 where C2 acts as UT2(4). So T = UT5(4) by Lemma C.7(a),
T/Z(T) is centric in Ng(T)/Z(T), and hence Ng(T) € U.

Set Sy = Ng(T) = R(x) for short. By (3.4) again, Sy splits as a semidirect
product of C4 by Dg. If S > Sy, then Outg(Sp) exchanges the two subgroups of
T = UT5(4) isomorphic to C:4, and hence [Ns(S0):So] = 2 and N1 % Ng(So) € U.
Hence T is characteristic in Ny by Lemma C.9, and § = Ny € I by Lemma A.1(b).
Thus | S| < 28. Also, [Aut’:(R;), R;] = T, and so joc(F,R;) =T (it T < S) or T.

If @(S) # &, then S > Sy since |S0| =27 = ‘D8202| and Sy 2 Dg Cs.
Hence |S| = 28, and S/Z(S) = Dg ! Cy by Lemma 2.4(a). Also, T ¢ %(95)
(hence T' ¢ #/(S)) since Sy = Ng(T') 22 Dg 1 Cy. Also, T ¢ %(S) since |f| = 26
and T 2 Qs X Qg, and for any Q < T of index 2, |1Z(Q)| > 4 and hence Q is
not extraspecial. Thus no subgroup of 7' lies in 2(S), and T ¢ Z(S). Also,
f/Z(S) = 2}~_+4 (since UT3(4)/Z = 2}~_+4 for each Z < Z(UT3(4)) of order 2).

It remains to show that 2°(S) = &. Assume otherwise: assume @) € 2°(S5).
Thus Q € DQ, @ <5, and Q is strongly automized in S. Since Z5(S) = Z2(Sy) =
Z(f) has order 4, Q > Z(f) by Lemma A.2(b). Thus C3 = Z(f) <1Q, so Q = Dg,

~

and (since Z(T) < 5) @ is not strongly automized in S, a contradiction. O
We next look at essential pairs of type (II) where T' < R; N Ry in the notation

of Lemma 3.6(b). The starting point for doing this is the description in [AOV2,
Theorem 4.6].

LEMMA 3.8. Let F be a saturated fusion system over a 2-group S with r(S) < 4.
Let (Ry, Ry) be an F-essential pair of type (I1), choose subgroups ¥z = Outy(R;) <
Outz(R;) as in Lemma 3.6(a), and assume we are in the situation of Lemma
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3.6(b.17). Thus T < Ry N Ry in the notation of Lemma 3.6(b). Set R = R1Ry =

Ngs(R1) = Ns(R2).
Set Ul = [Aut;(R2)7RZ] Sl R and U = U1U2. Set W = FI‘(U), S* = NS(W),

and let A be the normal closure of U in S,. Then either

(a) S.=S8 and foc(F,Ry)=A € Z(9); or

(b) S. < S, Ns(A) = S§*, [$:5,] = 2, foc(F, Ry) = AA* where A* £ A, {A, A%}
is an S-conjugacy class, [A,A*] < ANA* < Z(S), and ANA*=14if A eD.
In this case, if F is reduced or % (S) # &, then foc(F, Ry) € #(S).

Also, the following hold in both cases.

(c) Either
(cl) U1 2Us2C3,Ux2Dg, A€D, and W = Z(U) = Z(A) = Cy; or
(c2) Uy 2Uy>Qs, UQs, A€ Q, and W = Zy(U) = Zy(A) = C.

(d) Fori = 1,2, U; is fully normalized in F, and R; = U;,Cs(U;). If U; = C3,
then it is a direct factor of R;.

(e) Fori=1,2, Outz(R;) = 35 or C5 x X3.
and

PrROOF. Let G; > R < G be as in Lemma 3.6(c). Thus R; <4 G;
Owt(R;) = Outg, (R;) =2 X5 for i = 1,2. Set U; = RNO2(G;) < Rand U = U, Us.
We first prove (e), and then use that to show that Ui =U; and U =U.

(e) By [AOVZ2, Theorem 4.6(a)], there is a subgroup T < R; N Ry such that

~

R, =U;T® and R = ﬁT', and such that either

171-%022, U = Dy, and [T',ﬁ] =T°NU =1, or (3.5)
U; = Qs, U = Quq, and [T*, U] < T* N U = Z(D). (3.6)

In particular, since [T**, U] < [U;, U;] in both cases,
R, R;| = [UT*,U;T*] = [U,U,][T*, T*] < [U, Ui]Fr(R;).
PN ~ —1
So I‘k([R, RZ/FI‘(RZ)]) < I‘k([U, Ul/FI"(Ul)]) = 1. Hence Out]:(Ri) % (03 XCg) X 02,
and by Lemma 3.2, Outz(R;) = X3 or C5 x X3.
In particular, O? (Autz(R;)) = Autg, (R;), and hence
Aut;:(R,) =0? (Autgi (Rz)) = AUtOQ(Gi)(Ri)-
For any Q € Syl;(G)), Q < 0%(G;) < R;Q (recall R; < G; and G;/R; = ¥3). Thus
Autg(R;) < Aut’z(R;) < Inn(R;)Autg(R;). So
Ui = RNO*Gy) = RN (Q[Q, R)) = [Q, Ri] = [Autx(R:), Ri] = U
where the fourth equality holds by Proposition 1.14(c) (applied with Autg(R;) in
the role of T').
(c) By Lemma 3.6(b), T is not centric in S. So points (c.1) and (c.2) follow
from [AOV2, Theorem 4.6(a)] and since U; = U;. Note that since A < S, and
[S:S.] = 2, the S-conjugacy class of A has order at most 2, and hence is {A, A*}.
(d) By [AOV2, Theorem 4.6(a)] again, T* < Cg,(Uy) < T*U;. So Ry =T°U; =
UiCs, (Uy). Since W = Fr(U) < Uy, Cs(Uy) < Ng(W) = S, so Cs(Uy) =

Cs, (Uy), and Ry = U1Cs(Uy). By Lemma 3.6(c), there are 8 € Iso(G1,G2) and
x € Ng(R) such that B(R) = R, B|r = cz|r, and B(R1) = "Ry = Rz. Then
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IUl = 6(U1) = U27 and so R2 = le = Uzcs(Uz). If Uz = 022 (Z = 1,2), then
UNT*=1by (3.5), and hence U; is a direct factor of R; = T*U;.

For i = ].,2, R=UT* = URZ S NS(Uz) S NS(Uch(Uz)) = NS(Ri) = R,
so Ng(U;) = Ng(R;). Since R; is fully normalized, U; is also fully normalized by
Proposition 1.3(c), applied with U; < R; in the role of @ < P. Note that since
R = Ng(R;), (1.1) takes the form Ng(¢(U;)) N Ns(p(R)) < Ng(¢(R;)) for each
¢ € Homz(R, S), and this holds since R; = U;Cgr(U;).

(a,b) By (e), foc(F, Ry) is the normal closure of U; in S. Also, Uy = RN O?%(G)
and Us = RN O%(Gy) are S-conjugate by the conditions on G; and G5 in Lemma
3.6(c). Since A is the normal closure of U = U U, in S,, this shows that foc(F, Ry)
is the normal closure of A in S.

If S, =5, then A < S, so foc(F,R;) = A. Also, A is fully automized in S
since it is the normal closure of U; < A, so A € Z°(S).

Assume for the rest of the proof that S, < S. Thus A ﬂ S. Also, S, <
Ng(A) < Ng(W) = S, since A < S, by construction and W is characteristic in
A. Thus S, = Ng(W). If A € D, then S, = Cs(Z(A)), and [S:S.] = 2 by Lemma
B.4.

Now assume A € Q, and set Sp = Cg(Z(A)). Thus S, < Sp < S, and
[S0:5s] < 2 by Lemma B.4 applied to A/Z(A) < So/Z(A). If S = S, then upon
applying the lemma again, we get that [S:S,] = 2. If [Sp:9,] = 2, and A is the
normal closure of A in Sp, then A/Z(A) 2 (A/Z(A)) x (A/Z(A)) by Lemma B.3,
SO r(ﬁ) = 4, and Lemma B.4 applied to A<S implies that S = Sy and hence
[S:S.] = 2.

Thus in both cases, [S:Ng(A)] = 2, so foc(F, R1) = AA* where A* = 9A for
any g € S\.S,. Since S, = Ng(W), Z(A) # Z(A*) if A € D, and Zy(A) # Za2(A*)
if Ae Q. So [AA*] < ANA* < Z(A) by Lemma B.3 (applied with A/Z(A) and
A*/Z(A) in the role of P and Q if A € Q and Z(A) = Z(A*)), and ANA* =1 if
AeD.

Assume AA* ¢ #/(S); we must show that #(S) = @ and F is not reduced.
Set Y = AA*. By Lemma 2.6 and since Y ¢ #(S), Z(S) = @, S* = C; x Cy,
S/Y = (4, and the action of S/Y on Y2 = (Cf permutes freely a basis. Also,
Y < S, < S since S, > AA* and [S:5,] = 2.

Assume F is reduced; we must find a contradiction. By Lemma 1.17, there are
subgroups @ 4 P € Ex such that P/Q = Cy x Cy, and such that [Autz(P), P]
surjects onto S/Y = Cy. Then |Ng(P)/P| < 4 by Lemma 3.3, Ng(P)/P % C3
by Proposition 3.4 and since PP is not elementary abelian, and Ng(P)/P % C4
by Proposition 3.5 and since F is reduced. Thus P ¢ Eg). Since #(S) = @ by
Lemma 2.4(a) (52> 22 C3) and P % C3, P is not in a pair of the type described in
Lemma 3.7. By (e) and since [Aut’z(P), P] surjects on to S/Y, P is not in a pair
of the type described in this lemma. Thus P ¢ E(;-I), and hence [S:P] = 2.

Fix g € P\.S,, choose a1,b; € A such that [A:{a1)] = 2 and by € A~(ay),
and set as = 9ay,by = 9b; € A*. Then by = 9°b; = atby, where i is odd since
¢, permutes freely a basis of Y2P. Also, biby ' € [S,S], so biby € Fr(S) < P, and
g(b1b2)(b1b2)_1 = (bQGibl)(blbg)_l = ali (mod [A,A*] < Z(A)) Thus ai,as €
[P, P], so P/[P, P] = ([g], [b1b2]) = C4 x C3 contains no subgroup Cy x Cy, which
contradicts our original assumption. Hence this situation is impossible. ([
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We now summarize the results in Section 3.1 and in the last two lemmas, as
they apply when #(S) # .

PRrROPOSITION 3.9. Let F be a saturated fusion system over a 2-group S such
that 7(S) < 4 and #(S) # @. Let Z, < S be the unique normal subgroup such
that S/Z, = Dg 1 Cy. Let Y1,Y2,Y3 <SS be the distinct normal subgroups such that
Yi/Z, 2 Y5/Z, = C§ and Y3/Z, = 2.

(a) Outx(S) =1, and Exr = Ex(Y1) UEx(Ys) UE£(Y3). If F is reduced, then

Ex(Y;) # & for each i =1,2,3.

(b) IfY; € Z(S) (somei=1,2,3), then Ex(Y;) C E(FH). Also, each R € Ex(Y;)
is in an F-essential pair of the form described in Lemma 3.7(a) or 3.8(b).

(¢) IfYi ¢ #(S) (somei=1,2,3) and R € Ex(Y;), then i = 3, and either

(c.1) REe Egl), |R| = 2°, Y3 & UT3(4), and R is in an F-essential pair of
the form described in Lemma 3.7(b); or
(c2) ReEWY, R>Ys, and Y3 = 21, Qs x Qs, or UT3(4).

PROOF. By definition of #/(9), |S| > 27, with equality only if S 22 DgiCs. Also,
(Dg1Cy)*P = O3, DgiCy contains no subgroup isomorphic to 217 by Lemma C.5(a),
and contains none isomorphic to UT3(4) by Lemma C.5(b). So by Propositions 3.4
and 3.5, Eg) = @. By Lemma 2.4(b) and Corollary 2.5, #'(S) C {Y1, Y>3, Y3}, and
Aut(S) is a 2-group (hence Autz(S) =1).

By Corollary 2.5, 2°(S) = @. So if R € ESY, then by Lemma 3.6(b.1,b.2),
R is in an F-essential pair of the form described in Lemma 3.7(a) or 3.8(b) (if
foc(F,R) € Z(9)), or in Lemma 3.7(b). In the latter case, |R| = 2°, foc(F,R) =
Y3 ¢ #(S), Y3 = UT5(4), and we are in the situation of (c.1).

We claim that

R € Ef of type (III) = R > Y3, foc(F,R) =Y3, Y5 ¢ #(5), and
Vs 2247 Qs x Qs, or UT3(4). (3.7)

Once this has been shown, points (b) and (c) then follow. Also, for each R € Er,
foc(F, R) =Y; for some i = 1,2,3, and hence Ex = U?:l Ex(Y;). Finally, if F is
reduced, then S = (foc(F, R) | R € ExU{S}) by Proposition 1.14(b), foc(F, S) =1
since Aut=(S) = 1, and so Ex(Y;) # & for each ¢ = 1,2, 3 since no two of the Y;
generate S.

It remains to prove (3.7). Assume R € Egn). In particular, [S:R] = 2 and
Aut(R) is not a 2-group. Set |S| = 2™, and for each 0 < i <m —5, set Z; = Z;(5)
for short. Let €h(R) be the set of subgroups characteristic in R.

We first show, for each 1 < i < m — 6, that

(i) either Z; € €h(R) or Z;_1 € €h(R); and

(i) if Z;,Z;—1 € €h(R), then Z; € €h(R) for each j <.
To prove (i), assume Z; € €h(R) for some 0 < j < m — 8, and let P <9 S be
such that P/Z; = Q1 (Z(R/Z;)). Thus P € €h(R). By Lemma 2.4(a), and since
|P| > 29%1 either P = Zj, for k = j+1,j+2, or P > Z;,3. Since P/Z; is elementary
abelian, and Z;43/7Z; = Cy x Cy by Lemma 2.4(c), this last case is impossible. Thus
Zjt1 € €h(R) or Zj19 € €h(R), and (i) now follows by induction on i.
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If i > 2, Z; and Z;_, are both characteristic, and Z;_5 is not, then ¢ > 3
(Zo € (gh(R)), Zi_3 € %h(R) by (1), Zl'/Z»L‘_Q = 022 and Zi/Zl'_g ~ Oy x Cy
by Lemma 2.4(c), so Z;_2/Z;_3 = Fr(Z;/Z;_3) is characteristic in R/Z;_g, which
contradicts our assumption. Point (ii) now follows by induction on i.

By (i), either Z, = Z,,,_7 € €h(R) or Z,,_¢ € €h(R) (or both). Since Fr(R) <
S, and [S:Fr(R)] < 2° since r(R) < 4, Fr(R) > Z,,_5(S) > Z, by Lemma 2.4(a)
again. If Z, € €h(R), then Aut(R/Z,) is not a 2-group by Lemma A.9 and since
Aut(R) is not a 2-group, so R/Z, = (2}7*) x C5 by Lemma C.5(b). Since Y3 < S
is the unique subgroup such that Y3/Z, = 21" (Lemma C.5(a)), R > Y3.

If Z, is not characteristic in R, then m > 8 since Z, # 1, Z—8, Zm—6 € €h(R)

by (i), and s0 Zy_s & Ch(R) by (ii). Thus R/Zm—g < S/Zm—s = (Ds X, Dg) %
Cy = UT4(2) with index 2, R/Z,—¢ %# 21++4 (that would imply Z,,_5 = Fr(R) €
€h(R)), and Aut(R/Z,,_¢) is not a 2-group by Lemma A.9 (recall Z,,_¢ < Fr(R)).
So R > Y3 by Lemma C.4(c).

We have now shown that R > Y5. Also, Y3 € €h(R), since Y3/Z, < S/Z, and
Y3/Zm—6¢ < S/Zm—¢ are the unique subgroups of their isomorphism type (and Z.
Or Zy,—¢ is in ¥h(R)). Since

S/FI‘(YP,) = S/Zm_6 = (Dg ! Cz)/Z(Dg l 02)

t
= (Dg Xy DS) x Cy & UT4(2) = Oy 022

(see Lemma C.4(a,b)), Outs(Y3) = S/Y3 = C3 acts faithfully on Y3/Fr(Y3) = C3,
permuting a basis freely. Hence Out z(Y3) also acts faithfully on Y3 /Fr(Y3) (Lemma
A9). Fix Id # a € Autz(R) of odd order, and set ag = aly, € Autz(Y3).
Then [[ag], Outr(Y3)] = 1 in Outz(Y3), so these commute as automorphisms of
Y3/Fr(Y3) = C4, which implies that || = 3 and ag acts on Y3/Fr(Y3) with trivial
fixed component. Thus foc(F, R)Fr(Y3) = Y3, so foc(F,R) = Y3 (cf. [G, Theorem
5.1.1)).

Now, Z,,—¢ = Fr(Y3) € €h(R), and hence Z,,_; € €h(R) for each even 6 <
j <mby (i) and (ii). If m = 7, then Y3 = 21+*. If m > 8, then Z(Y3/Zy—s) = O3
by Lemma D.3, so by Lemma D.2, Y5/7,,,_s = Qs x Qs, UT3(4), or a certain special
2-group of type 22+ which contains a characteristic subgroup P/Z,, s = C3. This
last case is impossible, since then P > Z,,,_5 by Lemma 2.4(a), while Z,,,_5/Z,,_g =
04 X CQ by Lemma 24(C) If m > 97 then Z(Yg/Z"L_g) = m—G/Zm—Q = 023
by Lemma D.3, which again contradicts Lemma 2.4(c). Thus m < 8, and Y3 is
as described in (3.7). Finally, Y3 ¢ #(S) by Lemma 2.4(d), since Y3/Z,,_s ¥
Dg X Dg. O

Recall Definition 2.1(e): for a 2-group S and Yy € %,(S), %s(Yy) is the set of
all pairs {Uy, Us} such that U; = C2 or Qg, [Uy,Us] < U1NU, < Fr(Uy), Yy = UyUs,
and each element of Outg(Yy) = Dg either normalizes the U; or exchanges them.

LEMMA 3.10. Let F be a saturated fusion system over a 2-group S such that
r(S) <4 and #(S) # @. Fix Yy € %(S). Then Yy is fully normalized in F, and
for each {Uy,Us} € Us(Y), Uy and Uy are fully normalized in F.

PROOF. Set Z = Fr(Yp) for short. By Lemma 2.4(a), Z 4 S.

We first prove that Yj is fully normalized. By Proposition 1.3(a), there is
¢ € Homz(Ng(Yp),S) such that ¢(Yp) is fully normalized. Set Y7 = ¢(Yp) and
Zl = (p(Z) = FI'(Yl) S] NS(YI) Then (P(NS(YO))/Zl = Ns(Yo)/Z = Dg { CQ. By
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Lemma 2.3, applied with Ng(Z1)/Z1, ¢(Ns(Yy))/Z1, and Y1/Z; in the role of S,
P,and V, Ng(Y1)/Z1 = ¢(Ns(Yo))/Z1, and hence Y is also fully normalized.

Now fix {Uy,Us} € %5(Yp). It remains to show, for ¢ = 1,2, that U; is fully
normalized. Assume otherwise. Set M = Ny, (v,)(U;). By Lemma 1.16(a), there is
an F-essential subgroup R > Ng(U;) > M. We will show that this is impossible.

By Definition 2.1(e), M/Z has index 2 in Ng(Yy)/Z = Dg Co, and normalizes
the two complementary subgroups U, Z/Z = UsZ/Z = C% in Yy/Z = Cj. Hence
M =Yy{g1, g2) where rk([g;,Yo/Z]) =1, so M/Z = Dg x Ds.

By Proposition 3.9 and since |R| > 26, either foc(F, R) € #(S) and R is as
described in 3.9(b), or R € Egn) and is as described in 3.9(c). In the former case, R
is in an essential pair of the type described in Lemma 3.7(a) or 3.8(b). We consider
these three cases individually.

If R is in a pair as in 3.7(a), then it contains a subgroup T' < R of index
2, where T' € %(S) and hence T = Cj, 21++4, 2174 or Qs x Qg. Thus

T/Z < R/Z > M/Z =~ Ds x Dg

and [R/Z:T/Z) = 2. 1f |T/Z| < 25, then R = M, and T/Z is isomorphic to a
subgroup of index 2 in Dg x Dg. Hence T surjects onto Dg, which is impossible in
all cases. If |[T/Z| > 25, then Z = 1 and T = Qg x Qg, which is also impossible
since Qg X Qg contains only three involutions while each subgroup of index 2 in
Dg x Dg contains more.

IfR € Egn) , then a similar argument applies using Proposition 3.9(c), except
that we could have T = UT3(4). In this case, |R| = 27 and |S| = 2%. By Lemma
2.4(a), |Z(S)| = 2 and S/Z(S) = Dg 1 Cy. By Proposition 3.9(c) again, T/Z(S) is
the unique subgroup of S/Z(.S) isomorphic to 2?‘4.

If Z =1, then Yy = C3, M = Dg x Dg, and Ng(Yy) = Dg! Cy. Thus
M/Z(S) = M/Z(Ns(Yy)) = 21, Hence M/Z(S) = T/Z(S), which is impossible
since M 2 T.

If Z #1, then |M| =27 = |R|,so M = R and |Z| = 2. Then R/Z = Dg x Dsg,
T/Z=T/Z(S)=2\"™ R >T, and this is impossible.

If R is in a pair as in 3.8(b), then there is V < R such that either V = C2
and is a direct factor of R, or V 2 Qg and R = VCgs(V). By Lemma A.6(c)
(applied with R, V, and M or Yj in the role of S, U, and Q), V < M, and V <Y}
if Z#1. If Z =1, this is impossible since M = Dg x Dg contains no subgroup
isomorphic to Qg, and no direct factor isomorphic to C3.

If Z+#1,then V <Yy, s0VZ/Z=2Chfori<2 and VZ/Z is a direct factor
in M/Z = Dg x Dg. Hence i =0, V < Z, so V =2 C3 and is a direct factor in M,
which is impossible. ([

We now make a more precise analysis, for a fusion system F over S, of essential
subgroups R such that foc(F, R) € #(S).

Recall that D denotes the class of nonabelian dihedral 2-groups. It will be
useful — in the following proposition only — to let D be the extended class of
dihedral 2-groups including the group Dy = C2. Thus S € D if S € D or S = C2.
By extension of Definition 2.1, a subgroup P = C2 is strongly automized in S > P
if Autg(P) # 1.

PrOPOSITION 3.11. Let F be a saturated fusion system over a 2-group S such
that r(S) < 4 and #(S) # @. FizY € #(S), and assume that Ex(Y) # &. Let
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% be the set of all Yy € %(S) whose normal closure is Y ; equivalently, those which
are contained in'Y . Then the following hold.

(a) There is a pair of subgroups ©1,01 <Y such that
(a.1) {©1,02} is an S-conjugacy class and ©; € DQ;

(a2) [01,05] <O1NO, < Z(S), 01Ny =1ifO;, €D, and Y = 0,0,;

and

(a.3) for each U < ©1 or U < Oy such that U = C3 or Qs, Autz(U) =
Aut(U).

Furthermore, ©1 and Oy are strongly automized in S.

(b) Let ©1,02 <Y be as in (a). Let % (Y') be the set of all U such that U < ©4
or U < Oy, and U = C? or Qg. Then all subgroups in %r(Y) are S-conjugate
to each other, and
For each Yy € %,

(b.1) Outz(Yp) € “5(Y0), so Outz(Yy) = X31Cy or X5, and

(b.2) {YonN©1,YyN Oz} € %s(Yo) and is the unique element of its isomor-
phism type compatible with Out z(Yp) in the sense of Definition 2.2(b).

(¢c) Let «r(Y) be as in (b). For each U € Ur(Y), if we set R =UCs(U), then
(c.1) U is fully normalized in F,

(c2) ReEWP(Y),
(c.3) [Autyz(R),R] =U, and
(c4)

Aut’=(R) = O*(Inn(R)(«)) for some o € Aut’z(R) of order 3 which
normalizes U and induces the identity on R/U, and such that o|cg ) =
Id if U = Qs.

C

PRrROOF. In Step 1, we prove that there are subgroups U;,Us, T, R < S such
that

T e %, {Ul, UQ} S gZ/S(T‘)7 Aut}-(Ul) = Aut(Ul), and (39)
R=U,Cs(Uy) € EY(Y) and [Aut’=(R), R] = Uy. (3.10)

Then, in Step 2, we apply this to prove the proposition.

Step 1: By assumption, Ex(Y) # @. By Proposition 3.9, each F-essential pair
(P1, Py) of subgroups in Ex(Y') = E(;-I) (Y) has the form described in Lemma 3.7(a)
or 3.8(b).

Assume first that there is a pair (Pi, P2) is as described in Lemma 3.8(b).
Set R = P, and U; = [Autz(Py), P1]. Then (3.10) holds by Lemma 3.8(b), and
hence Autz(U;) = Aut(U;). By the same lemma, there is an S-conjugacy class
{A,A*} such that A € DQ, |A] > 16 if A € Q, Y = foc(F,P) = AA*, and
[A,A*] < AN A* < Z(S). The hypotheses of Lemma 2.6(a) thus hold. By that
lemma, for any Us < A* with Uy = Uy, U1 Uy € %, and {Ul,UQ} S %S(UlUQ).
Thus (3.9) also holds in this case.

Now assume (for the rest of Step 1) that there is a pair (Py, P2) is as described
in Lemma 3.7(a), and none as described in 3.8(b). Set T = P; N P,. By Lemma
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3.7(a), T € %, Y = foc(F, Py) is its normal closure in S, and Outx(T) = X3 Cy
or X5. In particular, Outz(T) € #5(T).

Let {Uy,Us} € %s(T) be the unique element compatible with Outz(T) €
s(T). Fix p € Aut(Ur) of order 3. Since {Uy,Us} is compatible with Outz(T)
(Definition 2.2(b)), 8 extends to an automorphism in Autz(T'), and in particular,
B € Autz(U;). This proves (3.9).

By Lemma 2.4(a,b), there is a unique normal subgroup Z, < S of index 27, and
there is a unique triple of subgroups Y, Y2, Y3 < S such that Y1 /Z, £ Y, /Z, = Cs
and Y3/Z, = 217, By the same lemma, Y € #(S) C {1, Y2, Y3}.

Set R = U1Cs(Ur). Set &7 = {¥1, Y2, Ys}\{Y} and Sy = Fr(S)(#”). Since the
images in S/Fr(S) 2 C3 of the subgroups Y3, Y2, Y3 have rank 1 and are independent
(Lemma C.5), [S:Sp] =2 and Y N Sy < Fr(S).

Since U, is fully normalized by Lemma 3.10 and R = U1Cs(Uy), 8 € Autz(Uy)
extends to € Aut #(R). Since the normal closure of U; in S is the normal closure
of U1Us = T and hence equal to Y there is h € Up~\Fr(S) C Y~\Fr(S) such that
B(h) € Fr(S). Thus [Autz(R ﬁ So, so by Lemma 1.16(b), there is Q € Ex
such that Q > R* for some R* 6 R7, and foc(F, Q) £ So. Hence Q € Ex(Y).

Assume first that |Q| > 4-|T|. If @ is in a pair of type (3.7a), then it contains
a subgroup T € %(S) with index 2. Also, |T| > |T| and T € %(S). By Lemma
2.4(b), [Y:T] and [Y:T] are both even powers of 2, and hence T = Qg x Qg and
T = C4. By construction, Q > R* € R” where R = U;Cs(U;) > T = C4. Since
[Q:ﬂ =2, T contains a subgroup isomorphic to C3, which is impossible. Thus Q
is in an F-essential pair of type (3.8b), contradicting our assumption that there is
no such pair.

Thus |Q| = 2|T|. Then Q € R and [R:T] = 2. Since Q € Ex(Y) € EXY
(Proposition 3.9(b)), |Ns(Q)/Q| = 2, so R is fully normalized in F and hence also
F-essential. In particular, Outz(R) = X3 by Lemma 3.7. Upon replacing B by an
appropriate power, we can assume that | B\ | =3 in Autz(R), and hence that

B € Aut’(R) = 0*(0? (Aut£(R))) < Inn(R)(3).

By Proposition 1.14(c), [Aut’-(R), R] = [B, R]. Also, 3(T) = T by the condition
deﬁning T in Lemma 36( ) T/U1 = Ug/(Ul n UQ) = 022 or Qs, and R/T = Cg
acts on Us as a subgroup of order 2 in Out(Usz) = ¥3. Thus no automorphism of
T/U; of order 3 extends to R/Uy, and ,73’\ induces the identity on R/U; by Lemma
A.9. This proves that [Aut>=(R), R] = [5, R] = U;. Finally, foc(F,R) =Y since Y
is the normal closure in S of T" and hence of U;.

This finishes the proof of (3.10).

Step 2: Let Uy, Us, T = U Uy, and R = U;1Cs(Uy) be as in (3.9) and (3.10).
Since {Uy,Us} € %s(T), Uy is fully normalized in F by Lemma 3.10. By (3.9),
there is § € Autx(Uy) of order 3. By the extension axiom, § extends to some
B € Autz(R).

Set W = U;1Z5(S). We first check that condition (2.8) in Lemma 2.7 holds.
Assume otherwise: then there is g € S such that Uy # 9U; < W. In particular, since
W =U1Z5(S) =9U1Z2(S), g € Ns(W). By (3.10), U; = [Auwt’=(R), R] < Ng(R).

If U3 NU; = 1, then W = U, Z(S) since Uy N Z3(S) # 1, so WCs(W) =
U1Cs(U1) = R. Hence g € Ng(R) and g ¢ Ng(Us), a contradiction.
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If Uy NUy = Z(S), set Z = Z(S), and S = S/Z, Uy = Uy /Z, etc. Then R =
5105(51) since each element of S which centralizes U; = U /Z acts on Uy = Qs
via an inner automorphism. Since W = U, Z(S), this shows that WC’g(W) =R,
s0 g € Ng(R)~Ng(U;), which again is a contradiction.

Thus condition (2.8) in Lemma 2.7 holds. Let {1,053} be as in that lemma.
Let %#(Y) be the set of subgroups of the ©; isomorphic to C3 or Qs.

(a) By Lemma 2.7, (a.1) and (a.2) hold, and ©; > U;.

IfY =T, then ©; = U; for i = 1,2. By definition of %g(Y), there is a
subgroup A < Outg(Y) = Dg of order 4 which normalizes U; and Us. If A induces
the identity on the images of Uy and Uy in Y/Fr(Y), then (since T' = U Us) it
induces the identity on T'/Fr(T), which is impossible since Outg(T') acts faithfully
on this quotient. Thus for each 4, there is g € Ng(U;) such that ¢, acts nontrivially
on U;/Fr(U;) = C3, so ©; = U; is strongly automized in S.

If Y > T, then it is the normal closure of T" and hence of U; or Us. Since
{©1,0,} is an S-conjugacy class, Z#(Y) contains the S-conjugacy class of Uy, and
each O, is generated by subgroups in that class. Since ©; contains two ©;-conjugacy
classes of subgroups isomorphic to C2 or Qg, neither of which generates ©;, both
conjugacy classes must be S-conjugate to Uy. Thus Z#(Y) is the S-conjugacy class
of Uy, and ©; and O, are strongly automized in S. Since Autx(U;) = Aut(Uy),
this also proves (a.3).

(c) We just showed that %z(Y") is the S-conjugacy class of U;. So it suffices to
prove (¢) when U = U;. Points (c.2) and (c.3) hold for U; by (3.10), and we already
saw that U; is fully normalized.

The image of Aut’(R) = 0?(0? (Autz(R))) in Outr(R) has order 3 since
Outx(R) = X3 or X¥3xC5 (Lemmas 3.7 and 3.8(e)). Hence Aut’xz(R) < Inn(R){a) <
0% (Autx(R)) for some o € Aut’(R) of order 3, so Aut(R) = O? (Inn(R)(c)).
Also, a normalizes U; and is the identity on R/U; by (c.3). If U3 = Qs, then
« induces the identity on Z(U;) and on Cs(Uy)/Z(U;), and hence on Cs(U;) by
Lemma A.9. This proves (c.4).

(b) Fix Yy € %. We have already seen that %x(Y") is the S-conjugacy class of
Ul. Set sz = YO N @1

Y =T =Y, € %, then {01,005} = {U;,Us} € %s(Y) by assumption. So
assume Y > T. Then ©1 > Uy, so ©; = Dyn for n > 3 or Qon for n > 4. Hence the
hypotheses of Lemma 2.6 hold by (a); and (3.8) (Z#=(Y) is the set of all Yy N©; for
i=1,2 and Yy € %) follows from Lemma 2.6(a). By the same lemma, Yy = V4 V5
and {Vl,VQ} € %S(YE))

It remains to prove (b.1) and the compatibility statement in (b.2). Recall
(Lemma 2.9(a)) that there is a basis of Yy /Fr(Y) which is permuted by Outg(Yp) =
Ds. Let B < Outg(Yy) be the subgroup generated by products of two disjoint
transpositions, and let 71,72 € Outs(Yy) be the two classes which act as trans-
positions. (Thus rk([v;, Yo/Fr(Yo)]) = 1, while rk([8, Yy /Fr(Yy)]) = 2 for 8 €
B#.) In particular, no element in Outg(Yy)~\B is Outz(Yp)-conjugate to any el-
ement in B. By the focal subgroup theorem for groups (see [G, Theorem 7.3.4]),
Outs(Yp) N [Outz(Yp), Outz(Yy)] < B, and thus 71,72 ¢ O*(Out#(Yp)).

Now, (v1,72) is the normalizer in Outg(Yy) of V4 and of V3, and we can index
them such that v; acts nontrivially on V;/Fr(V;) and trivially on Va_;/Fr(V3_;).
Set R* = V1Cs(V4). By (c), and since Vi € Z#x(Y), R* € Ex(Y), and there
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is * € Autz(R*) of order 3 which normalizes V; and acts trivially on R*/Vj.
Thus [8*|y,] € Out#(Yp) is inverted by 71, and normalizes (hence centralizes) v2 €
Outg-(Yp). Since Couts(vy)(12) = (11,72), this gives O2(Coutr(vy)(12)) = (12)-
Since Outg(Yp) acts faithfully on Yy /Fr(Yp), Out#(Yy) acts faithfully by Lemma
A.9. Also, Out#(Yp) 2 T'Lo(4) since Outg(Yy) = Dg permutes a basis of Yy /Fr(Yp).
So by Proposition D.1(f), applied with 5 in the role of z, Out #(Yy) = 3351 Cs or
5. Thus Out#(Yp) € #5(Yy). By (c.4), Out=(Yp) is compatible, in the sense of
Definition 2.2(b), with {Yo N ©1,Yy N Oz} € %s(Ys). O

PROPOSITION 3.12. Let F be a reduced fusion system over a 2-group S such
that r(S) <4 and % (S) # &. Then S € UV.

PROOF. Assume S ¢ U and S % Dg ! Cy. By Lemma 2.4(a), |S| > 28, there
is a unique normal subgroup 1 # Z, < S of index 27, and S/Z, = Dg1C5. Let
Y1,Y3,Y3 <5 be the three distinet normal subgroups such that Y1 /Z, & Y, /Z, &
C34 and Y3/Z, = 217", By Lemma 2.4(b), #(S) C {1, Y, Y3}.

By Proposition 3.9(a), Er = Ex (Y1) UE£(Y2) UE£(Y3), and Ex(Y;) # @ for
each i = 1,2,3. Also, Y3 % UT3(4) since S ¢ U, and |Y3| > 26 since |S| > 28. So
by Proposition 3.9(b,c), for each i = 1,2,3 and each R € Ex(R;), either

o YV, € #(S) and Ex(Y;) C E(}I), and R is in an F-essential pair
as described in Lemma 3.7(a) or 3.8(b); or (3.11)

o i=3Ys¢ ¥(S),Er(Ys) = EM'V Y5 = Qs xQs, and [R:Y3] = 2.

Together with Proposition 3.11(a) (applied when Y; € #/(.5)), this proves that for
each i = 1,2, 3, there are subgroups ©,1,0,2 <Y, where

|Y;‘ = 2" for m even — Gij €DQ, Y, =0;; X O (312)
Y;| =2" for modd = ©;; € Q, [0;1,0,2] <O0;1 N Oz =Z(S). (3.13)

(Note that Y; 2 C3 since |S| > 28 and [S:Y;] < 23.) Also, by Proposition 3.11(a.1),
{©:1,0;2} is an S-conjugacy class if Y; € #/(9), and in particular, if 1 = 1, 2.
We claim that
for some ¢t =1,2,3,Y; € D x D. (3.14)
To see this, note first that since F is reduced, Z(S) 4 F, so by Lemma 1.15, there
is R € Er and a € Aut’z(R) such that «(Z(S)) # Z(S). Let i be such that
R € Bx(Y)).

Let Ry < R be any subgroup such that r(Ry/Z(Ro)) = 4. By Lemma A.6(a)
and since Autx(R) does not normalize Z(S), Z(S) < Z(R) < Z(Rp). Thus
|Z(Ro)| > 4. If Ry = Qg x Qsg, then there is a unique element z € Z(Ry)* such
that z = g2 for 9 classes gZ(Ro) € (Ro/Z(Ro))*, so (z) is characteristic in Ry. If
Aut’z(R) normalizes Ry, then it also normalizes (z), so (z) # Z(S). Each element of
odd order in Aut’s(R) centralizes the two elements in Z(R)\(z), and each element
in Autg(R) centralizes (z) and Z(S). Thus Aut’z(R) centralizes Z(Ry) > Z(S),
which is impossible. We conclude that

there is no Rg < R such that r(Rg/Z(Rp)) = 4, and such that either

|Z(Ro)| =2, or Ry 2 Qs X Qs and is normalized by Aut’z(R). (3.15)

If R e Egl)(Yi) is in an essential pair as in Lemma 3.7(a), then there is a
subgroup 7' < R such that T € #;(S) and Aut>z(R) normalizes T. By (3.15),
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T2 21i+4 and T2 Qg X Qg. Thus T = Cél If©;1,0,0 € @, then TNO,;; < Z(@il)a
so the image of T under projection to Y;/0;; has rank at least 3, which is impossible
since 7(Y;/0;1) < 7(0;2) = 2. Thus 0,1,0;2 € D, and so Y; € D x D.

If R is in a pair as in Lemma 3.8(b), then R = UCg(U) for some U =2 C2 or
Qs, and [Autz(R),R] = U. By Lemma 3.8(b,c), U < A for some A € DQ in a
conjugacy class {A, A*} such that [A,A*] < ANA* < Z(S), |Al > 16if A € O,
and V; = Ax A*if A e D. If AJA* € Q, then U = Qg, and R > UA™ since
Auta-(U) < Inn(U). Choose U* < A* with U* = Qg and set Ry = UU*. Then
Autz(R) normalizes Ry since [Aut’>(R),R] = U < Ry. Either [U,U*] = 1 and
Ry = 21" or Qs x Qg; or [U,U*] # 1, [Fr(A),U*] = 1, and hence Ry = 21 by
Lemma C.2(a) (with U, U* in the role of Ay, Ay). Since this contradicts (3.15), we
have A, A* € D, and hence ¥; = A x A* € D x D by (3.12) and (3.13).

Finally, if R € EX™(Y3), then Y3 & Qs x Qs, and Aut’-(R) normalizes Y3 since
foc(F, R) = Y3. This again contradicts (3.15), and finishes the proof of (3.14).

Case 1: Assume |S| is an odd power of 2. Then |Y;| = |Ya| = 2" and V3| = 2m*!
for some even m. SoY; = ©;1 X ©; for i = 1,2 by (3.12), and Y3 ¢ D x D by
(3.13). Hence by (3.14), for i = 1 or i = 2, ©;; = Oy € D.

Set Zi; = Z(0i;). Set So = Cs(Z2(S)), where Z(S) < Z3(S) = C3 by Lemma
2.4(c). Hence [S:Sp] = 2. For i = 1,2, {©;1,0,2} is an S-conjugacy class by
Proposition 3.11(a.1) (and since Y; € Z(S) by (3.11)), s0 Zj1 Zi2 1 S, and Z;1 Z;5 =
Z5(S) < Z(Sp) by Lemma 2.4(a). Thus no element of Inn(Sp) can exchange 63
with @Z‘Q, SO ®ij | S for all Z,j = 172

Let z1,22 € Z3(S) be the two elements not in Z(S). After renumbering, if
necessary, we can assume that Z;; = (z;) for i, j = 1,2. By Lemma B.6, applied
with Sy and {©;;]i,j = 1,2} in the role of S and &2, Sy = I'y x I'y, where for
eachj =1,2, Fj S DSQ, Z(F]) = <Zj>, and F]‘ < @lj@2j < FjZ(F3_j). Then
I't 2 I'y, and I'; € DS since Oy or Oy; is dihedral. Also, for any g € S\.Sy,
So =T'1 x 9Ty by Lemma B.3 (Z(9T'1) = (921) = (z2)), so upon replacing I's by
9T'1, we can assume that I'y and ' are S-conjugate.

Fix g € S\.Sp, and let r, s € I'; be such that g = r-9s = 9s-r. Then s = r and
[g%,7] = 1 since [g,¢%] =1, so

(1g) = 1IN = (o) (o) = 1.
Set h =r~1g; then h? = 1, and so S = T'; 1 Cy € V in this case.

Case 2: Now assume |S| is an even power of 2. Set Z = (z) = Z(S). Then
[Yi| = |Yo| = 2™ for odd m, so by (3.13), for i = 1,2, ©;; N O;2 = Z(S) and
0,1,0;2 € Q. An argument similar to that used in Case 1, applied to S/Z, Y;/Z,
and ©,;/Z, shows that S/Z(S) = D1C, for some D € D. Here, D is dihedral since
it is generated by two of the subgroups ©;;/Z, which are dihedral or C3. Thus
S = (a1, az,b1,be,t), where D; = (a;,b;) € DSQ for i = 1,2, |a;| > 8, [D;:(a;)] = 2,
[D1,Ds] < Dy N Dy = Z, and t? € Z. Upon replacing by by baz or as by asz, if
necessary, we can arrange that ‘a; = as_; and 'b; = b3_; for i = 1, 2.

Choose w; € {(a?) of order 4. Since [a;, D3_;] < Z, [w;, D3_;] < [a?,D3_;] = 1.
If [a1,be] = z, then [ajwa,ba] = 1. So after replacing a; by ajws and as by asw,
if necessary, we can arrange that [a, bs] = [a2,b1] = 1. Also, upon replacing b; by
b;ws_; if necessary, we can arrange that b? = b3 = 1.

To get more information about relations between these generators, we now look

more closely at Y3. We have Z, = (af,a3) since it is the unique normal subgroup
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of S such that S/Z, = Dg1 Cy. Also, Y3/Z, = 21" by definition of Y3, and hence
Y = (aray ', t,araz, bibs).

By (3.14) (and since Y1,Ys ¢ D x D), Y3 € D x D. Set A = (ajaz,a1a5") =
(ajas,a?). Thus A is abelian by the above remarks ([a?,az] = 1). By Lemma C.1,
A is the unique subgroup of Y3 € D x D which is abelian of rank 2 and index 4, and
of the three involutions in A, exactly two are squares of elements in Y3\ A. Since
wyws and wlu)gl are S-conjugate, z is not the square of any g € Y3\ A. Hence
t2 = 1, [bl,bz] = (b1b2)2 = 1, and [al,ag] = [albl,agbz] = (a1b1a2b2)2 =1 (note
that (a2b2)2 = t((albl)Q) = (a1b1)2 S Z) Thus D; = (ai,bi> e DS (recall b? = 1),
[Dl,DQ} = ]., Dl n DQ = <Z>, tDl = DQ, and so S = (Dl X(z} DQ) X <t> eV. O

It remains to look more closely at essential subgroups of the type described in
Lemma 3.8(a).

LEMMA 3.13. Fiz a 2-group S with r(S) < 4, and a reduced fusion system F
over S. Assume the following:

(i) There is a normal subgroup A < S which is quaternion of order at least 16.
Let A < A be the cyclic subgroup of index 2, and fir b € ANA.

(ii) There is a subgroup P < S of index 2, and an automorphism o € Aut(P) of
odd order, such that A < P, b ¢ P, cyoc,' = o~ ! (mod Inn(P)), o(A)N
A =1, and such that conjugation by a generator of o(A) exchanges the two
noncyclic subgroups of index 2 in A.

Then S € GWV.

PROOF. Set A = A-a(A). We will prove the following statements:
(a) AQS, A=Axa(A), a(Ad)=A4, o] =3, Cz(0) = 1;
(b) P = AV where V =Cp(c) and ANV = 1;

(c) thereist € Absuch that cioc; ' = 0~ € Aut(P), [V, 1] =1, 12 =1, [t, A] = A,
and A(t) =2 A1 Cy;

(d) V = P/A is cyclic, and there is p € Hom(V, (Z/2")*) (where 2" = |A|) such
that *g = g*(") for all z € V, g € A; and

(e) p is injective, |V| < 2, and 271 4+ 1 ¢ Im(u).
Then by (c) and (e), either V=1 and S~ A1Co € W, or [V| =2, 8 = A x (t,V)

o~

where V acts on A via (g g*) for A\=—1o0r 2”71 —1,and S € G.

(a) Let Aq,As < A be the noncyclic subgroups of index 2 in A, and set Sy =
Ng(A1) = Ng(Az). Fix a generator a € A, and set y = o(a). Then y ¢ Sy by
assumption. Since A and o(A) are both normal in P, [A,0(A)] < ANo(A), where
ANo(A) =1 by assumption. Thus A= A x A. Since [A,b] < A, A < P(b) = S.

By Lemma A.11 (applied to the action of ([¢], [cp]) on P?P), and since [b, P] <
[b,S] < A is cyclic, {[0],[cs]) = X3 as a subgroup of Aut(P?P). Also, (o) acts
faithfully on PP by Lemma A.9, so o has order 3 in Aut(P).

Since (o) € Syly(Inn(P)(0)), there is h € P such that cppoc,, = o~! in
Aut(P). Set = hb for short. Then o(y) = o~ 1(a) € ?(U(A)) < Asince A < S and
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A<S. Thus o(A) = A. Also, C3(0) = 1 since |o| = 3 and ¢ acts nontrivially on
A/Fr(A).

(b) Since [b,P] < A < A, ¢, induces the identity on P/A. Since |o| is odd and
[0] is inverted by [c,] in Out(P), o induces the identity on (P/A)?P, and hence on
P/ﬁ by Lemma A.9. Since Cz(c) = 1, each coset gA in P/E contains a unique
clement fixed by 0. Thus P = AV = VA, where V = Cp(o), and ANV =1.

(c) Recall that £ € Qb = VAb. Let u € V and t € Ab be such that { = ut.
Then oc o™t = Co(u) = Cu, 5O ctcrct_1 = cu,ltﬂjc;}l?: c;to e, = 07t in Aut(P).
Also, ¢¢| 7 = cp|3, and ¢; induces the identity on P/E > V since [b, P] < A. For
each v € V, since ¢; normalizes (o) in Aut(P), ¢; sends C, 7(0) = {v} to itself. So
[V,t] = 1. Finally, [¢;2,0] = 1 in Aut(P) since ¢, inverts o, so t* € C'3(0) = 1.

In particular, coc; |3 = 071 ;. Also, ao(a)o?(a) = ayo(y) € C3(0) = 1, so
o(y) = a~'y~L. Since ¢;(a) = a~!, ¢ sends the o-orbit {a,y,a"'y~'} to the orbit
{a=1, ay,y~'}, and thus by = ay. Hence [b, E} = A, and E(t) =~ A Cy since ¢
exchanges y and ay.

-~

(d) For each z € V, ¢, commutes in Aut(A) with o and with ¢, = ¢ since
[0, V] =[t,V] = 1. Hence ¢, (A) = A since the elements of A are the only ones in
A which are inverted by ¢, (the two involutions in ANA are exchanged). Also, ¢,
sends o-orbits to g-orbits, and so ¢, (a) = a* and ¢, (y) = y* for some odd 4. In other
words, there is u € Hom(V, (Z/2")*), where 2" = |A|, such that c,(g) = ¢*(®) for
each z € V and each g € A

Since A 48, (a,y?) = AN Sy 9 S. Also, [b, So] < (a?), and we just saw that

[V, (a,y?)] < {a® y*). Thus (a,y%b,V)/(a® y*) = C3 x V, and so V is cyclic since
r(S) <4.
(e) Set Z = Z(A). Assume V # 1 (otherwise there is nothing to prove). Let
v € V be the element of order 2. If u(v) = 1, then Q,(Z(S)) = Z(v), while
2 (Z(S))N[S,S] = Z. So v ¢ foc(F) by Proposition 1.18(a), which contradicts
Proposition 1.14(b) (F is reduced). Thus p(v) # 1, and pu is injective.

Since S = AV(t) where [t,V] = 1, [S,S] = [t, A][V,A] > AQ;(A). Hence
Cs([S,8)) < Cs(u(A)) = P, so Cs([S, 8]) < Cp(A) = A. Thus A = Cs([S, 9))
is characteristic in S. So Aut(S) is a 2-group by Lemma A.9, applied to the chain
Fr(S) < AFr(S) < P < S (where |AFr(S)/Fr(S)| = 2 since a,y? € Fr(S)). It
follows that Outz(S) = 1.

Set U = €, (A), and let # € V be a generator. If [V| > 4, then for each Q < S
of index 2, either Q > A and [Q, Q] > [#2,A] > U, or Q * A, there is 2/ € 2ANQ,
and [Q,Q] > [2/,Fr(A)] > U. Also, u(v) = 27~! + 1, since it has order 2 and
is a square in (Z/2")*. So [v,5] = [v,A] = U, v2 = 1, and F is not reduced
(v ¢ foc(F)) by Proposition 1.18(b) applied with v in the role of g.

Thus V = (v) where v2 = 1. Since n > 3, U = Q;(A) < Fr(Fr(4)) < Fr(Q)
for each Q < S of index 2. If pu(v) = 2"=! + 1, then [v,5] = [v, 4] = U. So by
Proposition 1.18(c), v ¢ foc(F) and F is not reduced, a contradiction. O

PROPOSITION 3.14. Fiz a 2-group S with r(S) < 4, and a reduced, indecom-

posable fusion system F over S. Assume that there is some R € Eg-l) such that
foc(F,R) € Z'(S). Then S € DSWG.
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PROOF. By Lemma 3.3 and Propositions 3.4 and 3.5, if EY # @, then § =
UT4(2) or S € U. Since Z(UT4(2)) = @ by Lemma C.4(e), and 2 (S) = @ for
S € U by Lemma C.9, Eg-) =g

Since Z'(S) # @, #(S) = @ by Corollary 2.5. So by Lemmas 3.7 and 3.8,

(R1, R2) an F-essential pair of type (II) =
foc(F, R;) € Z°(S), and (Ry, R2) as in Lemma 3.8. (3.16)

Fix an F-essential pair (Ry, R2) of type (II), and set A = foc(F, Ry) € Z°(S).
By Lemma 3.8(a,c), A = Don for n > 3 or A = Qan for n > 4. Let A I A
be the cyclic subgroup of index 2, fix a generator a € A, and choose b € ANA.
Set Z = Z(A). Let Ag < A be the subgroup of order 8 which contains b. Set
T = Cgs(Ap). By Lemma 2.10(a,b), [S:TA] = 2.

If A € D, then by Lemma 3.8(c,d), R; = U;Cs(U;) where U; = C3 is a direct
factor of R; and U1Us = Dg. So we can assume Ay = U;Us. Thus

AeD = thereis Ty < T such that T'= Ty x Z. (3.17)
Throughout the proof, when P € Ex U {S}, we write Ap = foc(F, P).

Step 1: Assume E(IH # &, and fix P € E(HI). Then P > [S,S], and hence
P > A by Lemma 2.10(b) We will show that elther

(i) P>Aand A€ Q;or

(i) P>A,Z £ Ap=C3orQs, and Ap £ Z(9); or
(iii) P#AA, A<Ap=Qs, and |[A] =4; or

) P#AandSeWg.

IV

Case 1: P > A. Since Autz(P) is generated by Autg(P) and automorphisms
of odd order, it normalizes Z by Lemma B.7 (and since A < 5).

If A € Q, then (i) holds. So assume A is dihedral, and set T = [Aut’=(P), P].
Since Outg(P) € Syly(Outz(P)) has order 2, O*(Outz(P)) has odd order by
the Thompson transfer lemma [Th, Lemma 5.38(a.i)] or by Burnside’s normal p-
complement theorem [G, Theorem 7.4.3]. Hence Autz(P) < Inn(P)-H for some
H < Aut’:(P) of odd order, and T = [H, P] by Proposition 1.14(c).

Since Z is a direct factor in T' = Cg(Ag) by (3.17), Lemma 2.11 applies with
P, UyU,, and H in the roles of S, Ag, and G. By that lemma, |[H| =3, T < S,
[T,A] = TNA =1, and either T 2 Cym x Com (some m > 1) or T = Qs. For
g € S\P, ¢cg normalizes Aut}-( ) = 02(0? (Aut£(P ))), and hence 97 = T. Thus
T < S, and so Ap = T. T = Com x Com, then T7 < T = Cs(Ag) since T
is nonabelian, r(Ty) < 2 since S contains a subgroup isomorphic to Ty x Dg and
r(S) < 4, and Ty = Com 2 Cq since any extension of Com X Com by Outz(P)
Y3 (with faithful action) is split (cf. [AOV2, Lemma A.8]). Hence m = 1 since
r(C4 1 Cy) = 3, and Ty = Dg. We conclude that Ap =2 C2 or Qg and Ap % Z(S)
and thus that (ii) holds.

Case 2: P # A. Since A< P,b¢ P and Ay < Fr(P). Also, [b, P] = [b,5] =
A, s0 A ﬁ Fr(P) by Lemma 1.8 and since P € Ex.

Set P = P/Fr(P), and X = XFr(P)/Fr(P) for X < P. Thus [b,P] = A
has rank 1, and C3(b) = PNTA. By Lemma A.11, and since Outz(P) acts
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faithfully on P (Lemma 1.7), Outz(P) = I'y x I's where I'y & 35 and I'; has
odd order, and where [I'1, P] has rank 2 and [Ty, P] £ C5(b) = PNTA. Hence
Autz(P) < Inn(P){o) for some o € Aut’=(P) of order 3 for which [o] € I'y, and
such that o(A) £ TA. Set y = o(a).

By Lemma 2.10(a,b), there is 2 € S\TA such that zaz~! = a'T#¢ (some ¢ € 7Z)
and xbz~! = ab. Also, A % Qg by Lemma 3.8(a,c). We consider the following two
subcases.

Case 2a: P #* A and y = o(a) € TAbz. Thus yay~! = a**~! for some
k € Z, and ([y,a]) = (a?) = Ay.

Since A,0(A) < P, we have 4y = [0(A),4] < g(A) N A. So Ay < (y),
[y, Ag] = 1, and this implies that A9 = Z and |A| = 4. Hence A = Dg since
A % Qg Set Q = 0(A)A < P. Then Q = A(y) = Qg since yay~! = a~! and
ly| = |a| = 4, and Q € 27(9) (in particular, Q@ < S) since [b,y] = a*!.

Now, [T,y] = [T,Q] < QNT = Z since @ < Sand T = Cg(A) < §. We
already saw that [0, P/Fr(P)] has rank 2 and contains the image of [b,y] = a™!,and
hence is equal to QFr(P)/Fr(P). So [0, P] < QFr(P). Since 0® = cyoc, ' (mod
Inn(P)), o2(a) is P-conjugate to c,(y~!) € y=1A C Q, so o(y) = o%(a) € Q
and hence 0(Q) = Q. Since o induces the identity on P/QFr(P), it induces the
identity on P/Q by Lemma A.9, so @ = [0,P]. Hence Q = [Autz(P), P] by
Proposition 1.14(c) and since Aut’z(P) < Inn(P)(c). Since @ < S, we conclude
that @ = foc(F, P) = Ap, and hence that (iii) holds.

Case 2b: P > A and y = o(a) € TAxz. By Lemma 2.10(c), |y| = |A]
implies that Z < Fr(T), so A is quaternion (Lemma 3.8(c,d)), and (y) N A = 1.
Also, |A] > 16 since A % Qg. Hence S € WG by Lemma 3.13.

Step 2: From now on, we assume that S ¢ WG. We next show that there
is an F-essential pair (Q1,Q2) of type (II) for which Ag, is dihedral. Assume
otherwise; in particular, assume A € Q. We will show that Z < F), contradicting
the assumption that F is reduced.

IfP=SorPe E(}I-H), then by (i)—(iv), either P > A, or Ap = Q = Qs and
Z(Q) = Z. In either case, each odd order element of Aut’>(P) centralizes Z (by
Lemma B.7 when P > A), and hence Aut’z(P) centralizes Z. If P € ESTH)7 then
by (3.16) and Lemma 3.8(a,c,d), P = UCs(U) for some U = Qg (since Ap € Q by
assumption), [Aut’z(P), P] = U, and hence Aut’=(P) acts trivially on Cs(U), and
in particular on Z(S) > Z. Since Eg) = ¢, Lemma 1.15 now implies that Z < F.
Step 3: We can thus assume (Rj, Ry) was chosen so that A = Apg, is dihedral.
We next show that for each P € Ex U {S} with Ap # 1, either

(v) Ap £TA, Ap € DQ, and Ap > A with index 2; or

(vi) Ap <TA, Ap € DQ, and ApA/A < Z(TA/A); or
Ap <TA, ApeDQor Ap=C3, Ap £ Z(5), and Z %« Ap; or
Ap 2Ty = Coym X Com for some m > 1.
(1)

By points (i)—(iv) and since A € D and S ¢ WG, each subgroup in Ex
satisfies (v) or (vil). When P = S and Out(S) # 1, then by the Schur-Zassenhaus
theorem (cf. [G, Theorem 6.2.1]), there is 1 # G < Autz(S) of odd order such
that Autz(S) = Inn(S)G, and [Aut’=(S),S] = [G, S] by Proposition 1.14(c). By
Lemma 2.11, [G,S] < S (so Ag =[G, 5]), As < Cs(A) <T,AsnNZ =1, and

(vii

)
)
)
)

(viii
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[S:AgA] <2 =[S:TA]. Hence T'= Z x Ag, and Ag = Ty. By the same lemma,
Ag = Qg or Com x Com, so either (vii) or (viii) holds.

Now assume P € Eg-l). Then Ap € Z7°(S) by (3.16), and hence Ap € DQ. If
P e EgI) is such that Ap £ TA, and h € Ap~\TA, then by Lemma 2.10(a), hp =
a'b for some odd i. Hence {[b,h]) = A < [S,Ap]. Also, [S,Ap] is cyclic of index 2
in Ap since Ap € Z°(5) (is strongly automized). Since [S, Ap] < [S,S] < TA and
TAo < TA by Lemma 2.10(a), there is no cyclic subgroup in [S, Ap] which strictly
contains A, and thus A =[S, Ap] and |[Ap/A| = 2. So (v) holds in this case.

IfPe Eg-l) is such that neither (v) nor (vi) holds, then Ap < TA and [T, Ap| £
A. We must show that Z £ Ap. Let g = ta’tV € Ap and u € T be such that t € T
and [u,g] ¢ A. Then [ba g} =a% ¢ [Sa AP]a [u,g] = [u,t] (mOd <a4i> < [S’ AP])?
and hence [u,t] € [S,Ap]~A. Thus [S, Ap] is cyclic since Ap <5 and Ap € DQ,
and 1 # [u,t] € [T,T]N[S,Ap]. Hence Z(Ap) < [T,T], and Z & Ap by (3.17).

Step 4: If T is abelian, then by [AOV2, Proposition 5.1], S € DSW. So assume
T =Ty X Z is nonabelian, and set
P ={Ap =foc(F,P)|PcErU{S}and Ap #1}.

Then S = (&) by Proposition 1.14(b) and since F is reduced. By (v)—(viii) and
since T' is nonabelian, for each P € Ex U {S} with Ap # 1, either Ap € DQ, or
Ap = 022 and AP f Z(S)

Since T = Toyx Z by (3.17), TA/A =2 T'/Z = T is nonabelian. Hence subgroups
satisfying (v) and (vi) cannot generate S, so there is some Ap € & which satisfies
(vil), and Z £ Ap. Then by Lemma B.6, S = S; x S, for Sy, 53 € DSQ. So F is
decomposable by [O1, Theorem B], contradicting our original assumption. O

3.3. Essential subgroups of index 2 in S

It remains to handle reduced fusion systems all of whose essential subgroups
have type (III).

PROPOSITION 3.15. Let F be a reduced, indecomposable fusion system over a
2-group S with r(S) < 4, and assume all F-essential subgroups have index 2 in S.
Then S is isomorphic to Dg, UT4(2), or C41Cs, or S €U, or S has type Mo or
Aut(M12).

ProOF. By Lemma 1.15, if Ex = &, then S < F, while if Ex = {R}, then
R 9 F. Thus |[Ef| > 2 since F is reduced. By Lemma 3.2, for each R € E,

—1
Out}-(R) = 23, 23 XCg, or (03 XO3) X 027 and rk(R/Fr(R)) =4if |Out}-(R)| = 18.
Let Ex be the set of all pairs (R,I") for R € Ex and I' < Autz(R) such that

e I'>Inn(R) and T def I'/Inn(R) = X3; and

o if Out7(R) = (Cs x C3) % C, then Cr i) (O*(T)) has rank 2.
Thus each R € Ex appears in exactly one pair in E 7, except when Outrz(R) &
(C3 x C3) _><11 Cs, in which case it appears in two pairs. By the above remarks,
VReEr, Autik(R)=0%*0?(Autz(R))) < (I'|(R,I) € Ez.) (3.18)

Set Ex = {(R;,T;)|i € I} for some indexing set I.
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For each J C I, set Ry = ﬂjej R;, and let T; < R; be the largest subgroup
normalized by I'; for each j € J. Also, set

Ly = (7|1, |y €T; for some j € J) < Autx(Ty).

If T; is centric in S, then by Theorem 1.4, there is a group G; such that S €
SYIQ(GJ), TJ < GJ, CGJ(TJ) < TJ, and AutGJ(TJ) = FJ. Thus GJ/TJ =
I;/Inn(Ty). When J = {i,j}, we write R;; = Ry, T;; = T, etc., and similarly
with sets of one, three, or four indices. Note that if R; = R;, then T;; = R;; = R;
since R; = R; is normal in G; and in G;. By the maximality condition on Tj;,

for distinct 7,5 € I, (Gi/Tij > S/T;; < Gj/Tij) is a primitive amalgam
of the type classified by Goldschmidt in [Gd2, Theorem A].
Case 1: Assume Tj; = R;; for each 7,5 € I with ¢ # j. Then for each 7, I';
normalizes R;; for each j # %, and hence normalizes their intersection R;. Also,
Autz(S) sends Ry to itself since it permutes the F-essential subgroups. Thus R; is
normalized by Autz(S) and (by (3.18)) by Aut>(R) for each R € Ex, so Ry < F
by Lemma 1.15. Since F is reduced, R; = 1, so S is elementary abelian, which
implies S < F.
Case 2: Assume, for some i # j, that T}; is not centric in S. Set T'=T;; < 5. By
[AOV2, Theorem 4.5], there is a subgroup U < S, and a finite completion I" of the
amalgam (G,;/T > S/T < G;/T), such that [S:TU] < 2, [U,T| =1,|UNT| < 2,
S/T € Syly(T"), and U and I' are one of the pairs in Table 3.1:

(3.19)

itfTNU =1: it | TnU|=2: | fS=TU: | if [S:TU] = 2:
U U r r
Dsg Q16 Ag P
Cy1Cs does not occur Us(3) Aut(Us(3))
(Cix )% C2 | type 2Mis Mis Aut(My)
TABLE 3.1

Assume U = Dg. If S = UT, then S 2 U x T. If [S:UT] = 2, then S/T =
Ds x Cy (i.e., it has type Xg) by the above table; and since U and T are both
normal in S, S = U x T(x) for some z. In either case, by [O1, Theorem B], F
is isomorphic to a product of reduced fusion systems one of which over U = Ds.
Hence S = Dg (T' = 1) since F is indecomposable.

Assume U = Qi6, and fix a,b € U such that |a| = 8 and b ¢ (a). Then
a* € Z(S) since U < S. By Lemma B.7, a(a*) = a* for each a € Autz(S) of
odd order. By Lemma 1.15 and (3.18) and since Oz(F) = 1, there is k € I and
a € T, < Autz(Ry) of order 3 such that a(a?) # a*. By Lemma B.7 (with Ry, in
the role of S), R NU must be abelian. Since [U:R, NU] = 2, R, NU = (a), so
b ¢ Ry, and ba(at)b™! = a~t(a?) since cpac, = a™! (mod Inn(Ry)) by definition
of Ez. In particular, a(a*) ¢ Cs(U) > T, so the image of a(a) in §/T = Dg x Cy
has order 8, which is impossible.

If U = Cy2Cy, then r(U) = 3, so r(T) = 1 and hence T is cyclic. If T = 1,
then either S = U = C41Cy, or S is a Sylow 2-subgroup of Aut(SU3(3)) and hence
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of type Mia (cf. [Gd2, Table 1]). If T # 1, then Q1(Z(S)) = 0 (Z(U)Z(T)) = C3
(recall U 9 S). If Q1(T) £ [S,S], then there are no reduced fusion systems over S
by Proposition 1.18(a). If 7' # 1 and Q1(T) < [S, 5], let Ty < T be the subgroup
of index 2; then [S:TU| = 2, S/U is nonabelian since TN [S,S] # 1, so S = TU(x)
where 22 € ToU, and r(S/Ty) = r(S/T) + r(T/Ty) = 5 since S/T has type My
(r(S/T) =4).

Now assume U is of type Mis or 2Mi5. Then T < U since M5 has sectional
2-rank 4. So S is a Sylow 2-subgroup in Mo or Aut(Mis), or in a 2-fold central
extension of one of those groups. We must eliminate this last possibility.

Assume S contains a subgroup Sy < S of type 2M13, and let Z = (z) < Z(S) be
the subgroup in the center of 2My5. Let a, b, r,t € Sy be elements whose classes
a,b,r,t € So/Z satisfy the presentation of Notation 4.1 (with n = 2). Set @ =
(z,a% ab,r,t) < Sp; thus @/Z ~ 2}~_+4, and Z(@) = (z,a?b?) = C% by Lemma
D.3. There is a € Autz(Q) of order 3 such that a(z) = z (hence al 45y = 1d)

and C@/Z(@)(a) =1 (cf. [A2, Lemma 5.3(2)]). Let Oy,...,O5 be the orbits of the

a-action on (@/Z(@))#, where (upon letting @,b,7,f € S/Z(Q) denote the classes
of a,b,r,t) O = {ab~!,b%t,abt} and Oy = {ab,ab~'7t,b?rt} are the images of
the two quaternion subgroups in Q /Z, and a? € Os, 7t € Oy, and abit € Os (the
products of ab~' € O; with the three elements in 03). The elements in each O;

lift to elements of @ with the same square z; € Z(@) (since a|Z(@) = Id), where

T1,x € aQbQZ, x3 = 1 since a? is F-conjugate to a?b? or a2b2z, and zy =25 € Z

since 7t is S-conjugate to abrt = *(rt). This information suffices to show that
Q % UTs(4) and Q % Qs x Qs. So either 24 = x5 = 1 and Q = (Q/Z) x Z;
or [Q,Q] = Z(Q) and by Lemma D.2, Q/(z) = 247 for exactly two of the three
involutions z € Z(Q)#. In either case, Q/(a2b?) % Q/(a?b’z), so a®b? and a2b’z
are not S-conjugate, and hence Z(S) = Z(Q) = (a2b?, z).

If $/Z has type Mys (ie., S = Sp), then Q/Z(S) is the unique abelian subgroup
of S/Z(S) of rank 4. If S/Z has type Aut(Mi2) (]S/So| = 2), then an outer
automorphism of My acts on @/Z (@) by exchanging the classes ab and ab™!,
hence exchanging O; and Os. (See the description of the extension amalgam in
[Gd2, (3.8)], or Proposition 4.3(b) below.) Thus Outg(Q) = C2 permutes freely
a basis for Q/Z(S) = C4, and again Q/Z(S) is the unique abelian subgroup of
S/Z(S) of rank 4 (Lemma A.4(b)). So in either case, Q is characteristic in S.

If z is F-conjugate to a2b? or a?b’z, then by the extension axiom (and since

Out £(S) has odd order), there is 8 € Autz(S) of odd order which permutes cycli-
cally the involutions in Z(S) = Z(@) Then ﬂ(@) = @, which is impossible since
one of the elements in a?b*Z is a square in @ and the other is not. So by Lemma
1.15 and since Z(F) = 1, there must be R € Ex (of index 2) and v € Aut#(R) such
that v(z) # z. In particular, Z(R) > Z(S), and by Lemma A.3, R = Cs(V) where
V = Q1(Z2(S)) = (2,a? b%) = C3. But each element in V\.Z is F-conjugate to
a?b? or a?b?z, so none of them can be conjugate to z. Hence this situation is
impossible.
Case 3: Now assume that Tj; is centric in S for each i,j € I. By [AOV2,
Lemma 4.2(e)], Outg, (Ti;) = G;/Ti; and Outg, (T3;) = G;/T;; both act faithfully
on T;; /Fr(T;;) for all 4, 5. Since r(T;;) < 4, this implies that G;/T;; is isomorphic
to a subgroup of GL4(2), and hence that S/T;; contains no element of order 8.



50 3. ESSENTIAL SUBGROUPS IN 2-GROUPS OF SECTIONAL RANK AT MOST 4

Recall that (G,;/T;; > S/T;; < G;/T;;) is a Goldschmidt amalgam by (3.19).
If R, # Rj, then |S/T;;| > |S/R;i;| = 4, and |S/T;;| > 8 if T;; < R;;. So from
the list in [Gd2, Table 1] of possible amalgams (and since Cy ! Cy does contain
elements of order 8), we see that S/T;; = Cy (if R; = R;), C3 (type G3, when
T;; = R;j), Ds (type G3 or G3), or Dg x C (type G3). Also, when S/T;; & Ds,
then R;/T;; = O9(Gi/T;;) = C3, and similarly for R;/T;;, regardless of whether
the amalgam has type G2 or Gj3.

Assume S/T;; = Dg x Cy. Set fij =T';;/Inn(T;;) for short. Then (G;/T;; >
S/T;; < G;/T;j) is the Yg-amalgam, and hence O?(I';;) has index 2 in I';;. By
Proposition D.1(g), fij contains a subgroup Ag, A7, or GL3(2) with index 2; and
hence I';; = 3¢ since this is the only possible extension of one of these groups with
Sylow 2-subgroup Dg x Cy. (Neither Ag x Cs nor GL3(2) x Cs is contained in
GL4(2) = Ag.) But this is impossible by Lemma D.6.

Thus S/T;; = Dg whenever T;; < R;;, and by Case 1, there is at least one
such pair ¢,j € I. Fix such ¢, j, and set T' = T;;. By Proposition D.1(g), and since
O?(T;;) = I';; by the focal subgroup theorem, I';; < Outx(T) is isomorphic to Az,
Ag, or PSLy(7) = GL3(2). Hence by [GH, Theorem IL.B], T = C3, Cj, or C3 x Cj.
(Recall that Out(2:74) = %)

If T =T, = C3, then T;; = Autg,,(T;;) = GL3(2). By Lemma D.5(a),
S = UT4(2) or S has type Mys. So we can assume T 2 C3.

T = Tij = C4 X 0237 then Fij = GL3(2) = Aut(T)/Og(Aut(T)) (Lemma Ag)
Set V.= 0(T) = C3 and Z = Fr(T). By Lemma D.5(c), the I';;-action on V
is decomposable, that on T/Z is indecomposable, and G/[G, V] = Cy X ¢, SLa(7).
Since Z(F) = 1, there is @ < S of index at most 2, together with 5 € Aut#(Q),
such that 8(Z) # Z. We can assume that Q@ = Cs(8(Z)) (otherwise 5(Z) <
Z(S) and we can take Q = S). Then (Z) < Z(Q), and since [T:Cr(g)] > 4
for each involution g € S\T (1k([g,T/Z]) = 2 by Lemma D.5(b)), 8(Z) < V.
Hence T' < Cs(B(Z)) = Q. The image in S/T = Dg of any abelian subgroup of
S/|G, V] = Cy x¢, Q16 is cyclic, so the image of 5(T) is cyclic, hence has order at
most 2 since 8(Z) < T. Thus [TNA(T)| =24, Fr(TNB(T)) < Fr(T)NFr(B(T)) = 1,
so TNB(T) =V and hence (V) =V. Then S(T) =T since T = Cq(V'), which is
impossible since S(Fr(7T)) # Fr(T).

Thus T 2 Cy x C3. So we can now assume, for i, j € I, that

Tij <Rij - S/le >~ Dy, RZ/legR]/TZJ gCZZ, and Tij %Cé

(3.20)
and Fij = A67 A7, or GL3(2)

Case 3a: Assume there is a unique subgroup 7' < S such that S/T = Dg and
T = T;; for some (possibly more than one) pair of indices i, j € I. We just showed
that T'=2 C3. Set Ty = T'N R;. Then R; > Fr(S) since |S/R;| = 2 for each i € I,
so Tp > T NFr(S) > [T, 5], and [T, S] # 1 since T is centric in S by assumption.

Now, Autz(S) normalizes T' by its uniqueness, and it normalizes T, since it
permutes the R;. By Lemma 1.15 and (3.18), and since Ty ¢ F (F is reduced),
there is kK € I such that I'y, does not normalize T,. Then I'y, and Rj have the
following properties:

(a) Ty does not normalize T'N Ry: Since Iy does not normalize the subgroup Ty =
Myer (T N Rye), there is £ such that I'y does not normalize 7' N Ry,. Either
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Ryp > Ty = T, in which case I';, does not normalize T'=T N Ry, or Ryp = Tiy
is normalized by I'y in which case T'N Ry is not.

(b) Rix =Ty and R = Ty: If Ri > Ty, then Ty, = T = T N Ry, is normalized
by T'x, contradicting (a). By a similar argument, R = T)j.

(¢) Ty does normalize R;j;: Since I'y normalizes T, = Ry and T, = R by (b),
it also normalizes R;jr = R N Rjy.

(d) T'i; normalizes TN Ry: By (b), I'; normalizes T;; N Ty, = TN Ry, =T N Ry,
and I'; normalizes T;; N Ty, = T N R, =T N Ry.

(e) Riji is nonabelian, and |R;;/(T N Ry)| =2: Since T # Fr(S) while R;j, >
Fr(S5), Rijr > TN Ry, and so |Rijk/(T N Ry)| = |Rij/T| = 2. Since I';; <
Aut(T) normalizes T N Ry, by (d), and since O2(I';;) = 1 by (3.20), I';; acts
faithfully on TN Ry by Lemma A.9. Hence for € R;;,~(TNRy), [x, TNRy] #
1, and so R;;; is nonabelian.

Since I'y, = X3 acts on R;j, without normalizing T'N Ry, by (a) and (c), where
R;;; is nonabelian by (e), it must permute T'N Ry, in an orbit of three different
elementary abelian subgroups of index 2 in R;j;,. But this is impossible: R;j;, would
be a semidirect product of T'N Ry, = C3* (m = 3,4) with Ca, |[Rijk, Riji]| = 2 by
Lemma A.4(a), and so R;jr = Dg X C3"~? contains only two elementary abelian
subgroups of index 2.

Case 3b: Thus there are (at least) two distinct subgroups V,W < S such that
V =T, < Rjj and W = Ty < Ry for some i # j, k # ¢ in I. By (3.20),
S)V2S/W==Dgand V=W =2Cj. Set X =VNW.

If [V:X] =2, then VIW/V <.5/V = Dg implies that VW = R;;, and similarly,
VW = Ryy. Since there are only three subgroups of index 2 in .S containing VIV,
{R;,R;} N {Ry, R¢} # @, and we can assume R; = Ry. Then R;/V = R;/W = C3
by (3.20), so R;/X = C3. Hence R; > VW >V > X > Fr(R;), where [X:Fr(R;)] <
2, and these cannot all be normalized by I'; (Lemma A.9). Hence I'y # T, so
Outz(R;) = (C5 x C3) X Cy and rk(R; /Fr(R;)) = 4. Also, V/Fr(R;) and W/Fr(R;)
have rank 2 and are normalized by I';/Inn(R;) and Ty /Inn(R;), respectively, where
Cr, (k) (0?(T;)) and Cg, /pe(r,)(O*(Tk)) have rank 2 by definition of Er. This
implies that V/Fr(R;) and W/Fr(R;) are equal or complementary, and since [V:V N
W] = 2, they must be equal. This contradicts our assumption that V' # W.

Thus [V:X] > 4. Since VIW/V < S/V = Dg, we have VIV/V = V/X =
W/X = C% and so [S:VW] = 2. Since R; and R; are the unique subgroups of S
such that R;/V =2 C3 =2 R;/V, VW = R; or R;. Thus there is an automorphism of
VW of order 3 which normalizes V. Also, [V, W] = X, since otherwise »(VW) > 5.
So VW = UT3(4) by Lemma C.7(b), and hence S € U. O



CHAPTER 4

Fusion systems over 2-groups of type G5(q)

Throughout this chapter, we will be working with 2-groups S € G, using the
following notation for elements and subgroups of S.

NOTATION 4.1. For some n > 2 and some A = —1 or (if n > 3) 2”_1 -1,

S = Spa = (a,b,r,t), where A Lef {a,b) = Con x Cgn, (r,t) = C2, rar~! = a’,
rbr~t = b tat™! = b, tht~! = a. Set
277,72 271,71

A1 = <abil,a2n71t> = Qa1 Uy = <(ab71) , @ t> =2Qs P=UA,
AQ = <Clb_)" a2nflrt> >~ Q2“+1 U2 — <(Clb)2n 2 2n—1’rt> o~ QS P2 _ UQAI
Zi={’hlge s} (i=12) Q=214 Ay = A(r).
Define 71 € Aut(Py), 72 € Aut(P,), and o € Aut(A,), each of order 3, by setting

Tilcg(wy) = 1d, o(r) = r, and letting 7; act on U; and o on A as follows:
mlos @2 e P s (@) e (a2
T2lu, : @) = bt s (b)Y et o (ab)?
ola: a = b — a 1p~t — a

Thus when n = 2, U; = A; and P, = P, = Q. Note that [Aq,Ag] = 1 if
A= —1, and [A}, Ag] = ((ab)?"” 1) Z(S) if A= —1+2""1. So in either case, for
i=1,2, Auta,_,(P;) <Inn(F;) and hence P, = U;Cs(U;).

PROPOSITION 4.2. Assume S = S, » is as in Notation 4.1. Then Aut(S) is a

2-group. If]: is a reduced fusion system over S, then

(a) A

(b) Er = {A+} UP1UP (so Er ={Q,A+} ifn=2); and

(c) either n = 2, Outz(Q) = ([r75 '], [ca)) = £3, and F is isomorphic to the

fusion system of Mio; or

n =2, Outr(Q) = ([r1],[r2], [ca]) = (C5 x C3) x Ca, and F is isomorphic to
the fusion system of Ga(q) for each ¢ = £3 (mod 8); or

n > 3, Autz(P;) = (r, Autg(P;)) for i = 1,2, and F is isomorphic to the
fusion system of G2(q) for each odd prime power q such that va(¢*—1) = n+1.

PRrROOF. By Lemma A.4(b), and since |S/[S,S]| = 8, A is the unique abelian
subgroup of index 4 in S. Hence Aut(S) is a 2-group by Lemma A.9, applied to
the chain Fr(S) < A < A4 < S of characteristic subgroups. So Outz(S) = 1.

We claim that

2 (8) = {A1, Mg, (ab™ 1, 1), (ab™,1t) } . (4.1)

52
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Fix some A € 2°(S). By Definition 2.1, A = (C) = BU{C}, where B is cyclic and
C is an S-conjugacy class of elements of order 2 (if A € D) or 4 (if A € Q). Also,
C ¢ A since A is nonabelian. If C C Ar, then v € B=ANA, which
is impossible since B is cyclic. If C C At, then since each S-conjugacy class in At
has the form {(ab=!)igt|i € Z} for some g € A, and since (a’t)? = (ab)?, C is the
conjugacy class of ¢ or of a" 't, and A = {ab=1 t) or (ab‘l,cﬂ"flt) = A;. Bya
similar argument, if C C Art, then A = (ab=>,rt) or (ab=*,a2" 'rt) = A,.

(b) When n = 2 (hence A = —1), Er = {Q, A+} by [AOV2, Proposition 3.2].
(This also follows upon making minor changes to the argument below.)

Assume n > 3. If V < S is elementary abelian of rank 4, then VNA = Q,(A) =
(a® ", b2n71> and VA =S, so VN At # &, which is impossible since V is abelian.
Hence S has rank 3, and in particular, S ¢ UV.

Thus by Theorem 3.1(a,b), E(fl) =g;and R € Eg-l) implies that foc(F, R) €
Z'(S) and R is as in Lemma 3.8(a,c,d,e). By that lemma, if R € ESTH), then there
are V. < A € Z(5) such that V = C% or Qg, R = VCs(V), and A = foc(F, R).
Also, if V = C2, then V is a direct factor in R. In this last case, V is S-conjugate
to ((ab)2" ", t) or ((ab)®" ", rt), neither of which is a direct factor in its centralizer.
Thus V =2 Qs and is S-conjugate to Uy or Us, and R is S-conjugate to Py or Ps.
Also, by definition of U; in the statement of Lemma 3.8,

for i = 1,2, Pi S E]: - [Aut;-(Pi),Pi] = Ul and fOC(]:,Pi) = Ai. (42)

Now assume R € E(;-H). Thus [S:R] = 2, so (ab,a?) = Fr(S) < R, and Aut(R)
is not a 2-group. Set Ay = Fr(S) = (ab,a?). If R # A, then R = Ay(g, h) for some
g € Ar and h € At, |[g, Ao]| = L|Ag| > 8, |[h, Ap]| > 27! > 4, and |[gh, Ao]| > 4.
So by Lemma A.4(b), Ap is the unique abelian subgroup of index 4 in R. Also,
Aut(Ap) is a 2-group (Corollary A.10(a)), Aog(g) is characteristic in R, so Aut(R)
is a 2-group by Lemma A.9. Thus R > A. If R = A(t) or R = A(rt), then
R/[R, R] & Can x Cy, and Aut(R) is a 2-group by Corollary A.10(a) again. Thus
R = A+ == A<T’>

This proves that Ex C {A}UZ,US,. By (4.2), if P, € Ef, then foc(F, P;) =
A, If Ay € Eg, then [Autz(A41),A;] = foe(F,Ay) < Asince A < Ay is
characteristic of index 2. Since no two of the subgroups A, A;, Ay generate S,
Er ={A,}U P UPs.

(a) Assume A = —1+2""! (and hence n > 3). Set U = “Us,, Py = U;Cs(Us) =
“Py, and 75 = c,7c, ' € Autz(P5). Then

U, U3] = [((ab=)?" " a®" ' t), ((ab)®" " ,ab—2a®" rt)] = ((ab)®" ) = Z(9),

so Autyy (Up) < Inn(U;) and Auty, (Us) < Inn(Us). It follows that U; < Py and
Us < P,.

Set Qo = U1Uy = 2" (Lemma C.2(a)). Since A;Ay/Z(S) 2 Dyn X Dan, and
since each g € S\NA1A, acts on each A;/Z(S) = Dan by exchanging the two non-
cyclic subgroups of index 2, Ng(Qo) = Na,a,(Qo) = Na, (U1)Na,(Usz) and hence
INs(Qo)/Qo| = 4. By Lemma 1.16(a), and since no essential subgroup contains
Ns(Qo) by (b), Qo is fully normalized in F. Also, Ti|g,, 75|, € Autz(Qo). For
g € Na,(U)\Uy, ¢4y, ¢ Inn(Uy) while ¢glyy € Inn(Uy). Hence Outz(Qo) =
Out(Qo) = ¥5 by Lemma C.2(b). Since this contradicts the Sylow axiom, we
conclude that \ # —1 + 2771,

271—2 2n—2
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(¢) Since A is the unique abelian subgroup of index 2 in Ay, the quotient group
Out(A4)/O2(0Out(Ay)) injects into Aut(A/Fr(A)) = X3 by Lemma A.9. Thus
Outr(Ay) = X3 since Ay is essential, and Outz(Ay) = ([v],[ce]) for some v €
Autz(Ay) of order 3. Set v = [, ¢;] € Autz(A4); then [v] = [y]7! in Outz(A4)
and (v, ¢t) < Autz(Ay) is dihedral. So upon replacing v by some appropriate
power of 7/, we can assume that (v,c¢;) = 33 as a subgroup of Autz(A4). Also,
CA(’)/) = 1 since CQI(A) (’}/) =1.

Set g = ab. Then g-y(9)v*(9) € Ca(y) =1, [t,g] = 1, and ty(g)t~" = *(g).
Since C4(y) = 1, 7y acts on the coset Ar fixing exactly one element h, and c;(h) = h
since ¢; normalizes () in Autz(Ay). Define ¢ € Aut(S) by setting ¢(g) = a=1b71,
o(v(9)) = a, ¢(v*(g)) = b, ¢(h) = r, and ©(t) = t. Upon replacing F by ¢F (and
7 by #v), we can assume that 7 = o, and hence that Outz(A.) = ([o], [c;]).

By Lemma 3.8, for i = 1,2, Autz(FP;) = 33 or Y3 x C3. In the latter case, by
the extension lemma, there is an element of order 3 which extends to an element in
Autz(Ng(F;)), which is impossible since Outz(S) = 1 and no essential subgroup
contains Ng(P;). Thus Autz(P;) = (Autg(F;), ) for some 6 € Aut’z(P;) of order
3. By (4.2), [0, P;] = Uj, so §(U;) = U;, and §|cgw,) = Id (and Lemma A.9). So
§ € 7 Auty;, (P;), and hence

1= 1,2, n>3 — Aut]:(Pi) = <Auts(Pi),Ti>. (43)

Case 1: Assume 7; € Autz(F;) for ¢ = 1,2. Thus F is the fusion system over S
generated by Inn(S), o € Aut(A,), and the 7; € Aut(U;Cs(Uy)).

Let g be a prime power such that v2(¢?> — 1) = n + 1, and set G = G2(q) and
G = Gy(F,) > G. For any = € I(G), Cq(z) = SLa(F,) X ¢, SLy(Fy): this follows,
for example, from the description of centralizers in [Ca2, Theorem 3.5.3]. Hence
Cg(z) contains a subgroup SL2(q) X ¢, SLa2(g) with index 2 (see, e.g., [K1, Theorem
A]), so the Sylow 2-subgroups of G contain Qgnt1 X, Qont1 = @ with index 2,
and are contained in S = Qan+2 X, Qon+2. Fix generators ci,dy, ca,ds € §, where
(ciydi) = Qontz, || = 27F1 and 2 = 2" = " = &2 = d% € Z(S), and define
xX: S — S by setting

x(a) = cica, X(b) = ¢ tea, X(r) = didz, Xt =c3"dy.

This defines an isomorphism from S onto some 7' € Syl,(G), and x preserves fusion
in P; and P; since G > SLs(q) X ¢, SLa2(q). Since Fr(G) is reduced by Proposition
1.12, F = Fr(G).

Case 2: Now assume 7; ¢ Autz(P;) for i =1 or 2. Thus n =2 by (4.3), and P, =
P=Q = 2f4. Each automorphism of @ either normalizes the A; or exchanges
them, and an automorphism of odd order must normalize them. Hence Aut’>(Q) <
(11,72,Inn(Q)). Since S = foc(F) = (foc(F, A4), foc(F,Q)) and foc(F, Ay) =
A, we must have foc(F,Q) = [Aut>z(Q),Q] = Q. So Outz(Q) must be one of
the groups ([11], [72], [et]), ([1172], [ce]), or {[T175 '], [ci]), and we are assuming 7; ¢
Autz(Q). If Outz(Q) = ([r172], [ct]), then the subgroup (a?,b% r) is normalized
by Autz(Q) and by Autx(A,), and hence by Lemma 1.15 is normal in F. This is
impossible since F is reduced, so Out#(Q) = ([1175 '], [ca]).

By [A2, Lemma 5.3(2)], M7 contains as involution centralizer a split extension
of 217 by 3 where each of the Qs factors is normal. (Note that S = @ x (ar).)
The fusion system of M5 is reduced by Proposition 1.12. Hence F is the fusion
system of M, in this case. O
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It remains to look at fusion systems over a Sylow subgroup of Aut(M;s2).

PROPOSITION 4.3. Set S = S5 _1 with the presentation in Notation 4.1. Let
F be the fusion system over S generated by Inn(S), o € Aut(A,), and 1175 ' €
Aut(Q). Then F is isomorphic to the fusion system of Mia. Define 5 € Aut(S) by
setting B(a) = ab?®, B(b) = a?b=1, B(r) =r, and B(t) = rt.
(a) The class of B generates Out(S, F) = Cs.

(b) Set S = S{u), where ugu™! = B(g) for g € S, and u*> = 1. Then S is of type
Aut(Mlz).

(¢) There are no reduced fusion systems over S.

PROOF. Set G = Mjs. By the proof of Proposition 4.2(c), we can identify S
as a Sylow 2-subgroup of G with F = Fg(G).

(a) By direct computation, o = ¢, and #7; = 73_; (mod Inn(Q)) for i = 1, 2.
Hence 8 € Aut(S, F). Also, S(A1) = Ay and B(Ag) = A;.

Assume ¢ € Aut(S) is fusion preserving. Then ¢(A) = A since A < S is
the unique abelian subgroup of index 4 (Lemma A.4(b)). By (4.1) in the proof of
Proposition 4.2, either ¢ normalizes the subgroups A; 2 Qg, or it exchanges them.

Assume p(A;) = A; for i = 1,2. After composing with inner automorphisms,
we can assume that p(ab) = ab and p(ab™!) = ab~!. Also, ¢(r) = r (the unique
involution in A = A(r) fixed by o), and ¢ sends the og-orbit of ab to itself. Since
©|(a2 42y = 1d, this proves that |4, = Id. Finally, since (A1) = Ay, ¢(t) = a'b’t
for some i, j, 4|(i + j) since ¢(a®t) = a*"2bt € A1, and 2|i since [r, ¢(t)] = 1. Upon
replacing ¢ by ¢ o o, we can arrange that ¢ = Id.

Thus ¢ € Aut(S,F) and ¢(4A;) = A; (i = 1,2) imply that ¢ € Inn(S). So
Out(S, F) has order 2 and is generated by the class of 3.

(b) Set H = Ng(A). Then H = AK, where K = (r,t,s) = D1o, |s| =3, [s,r] =1,
ts =571 and *g = o(g) for g € A (see, e.g., [Gd2, (3.8)]).

By [A2, Lemma 5.9(1,3)], |Out(G)| = 2, and no o € Aut(G)~Inn(G) central-
izes S. Hence by (a), Aut(G) = G(v) for some v such that ¢,|s = 5 and (since
%2 = Idg) v? € Z(S). Then YA = A, so YH = H. By Lemma A.7, applied
with H, A, K, and (r,t) in the role of G, Q, H, and Hy, “(s) = 9(s) for some
g € Ca(r,t) = (a®b?). So upon replacing v by a?b?v if necessary, we can assume
that ?(s) = (s), hence that [v?, H] = 1, and so v? = 1. Thus S{v) € Syl,(Aut(G))
is isomorphic to S.

(c) By Lemma A.4(b) and the commutator relations in S (and since |S/[S, §]| = 8),

Q/Z(8) is the only abelian subgroup of rank 4 in S/Z(S), and so Q is the only
extraspecial subgroup of order 2° in 5. Also, Z(S) = (a2b?), Z5(5) = (a2, b%), and
Z5(5) = (a?,b2,ab,r). By Lemma A.2(b), each normal subgroup of order 8 in §
contains Z5(S) and is contained in Z3(3), hence is abelian, and thus 2°(5) = @.
Also, #(S) = @ since |S| = 27 and S % Dg1 Cs.

Assume there is T < S such that T = UT3(4). Then Z(T) < S implies
Z(T) = Z5(S) = (a?,b*) (Lemma A.2(b) again), so T = Cg((a?,b%)) = (a, b7, u).
Since I(UTs(4)) = A¥ UAY where A; = C% and A, N Ay = Z(T) (Lemma C.6(a)),
a subgroup of index 2 in UT3(4) has at most 19 involutions, and has exactly 19
only if it contains A; or Ag. Since |[I({a,b,7))| = |Z(T)#| + |rA| = 19, and since
r({a,b,r)) = 3, this proves that T" 2 UT3(4), and hence that S ¢U.
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Let F be a reduced fusion system over 5. Since 2 (S) = @ = #(5) and S ¢ U,

~

Theorem 3.1 implies that each F-essential subgroup has index 2 in S.

If v € Autz(S) has odd order, then v(Q) = @, and [y|g] € Out(Q) normalizes
Outg(Q) = C3. Since Out(Q) = £30Cy, this implies that [y|q] = 1, and hence that
Ylg = Id. Since Cg(Q) < @, 7 induces the identity on §/Q, and hence v = Idg by
Lemma A.9. Thus Outz(5) = 1.

Assume P < S is F-essential of index 2; thus P > Fr(:q\) = (ab,a,7). If P > Q,
then foc(F,P) < Q. If P > A and P # Q, then either P = A(r,u) 2 A x C3 or
P = A{tu) &2 A x C4, and in either case, foc(F,P) < A. This leaves the two
subgroups

Ql = <at7ab7 a27r7 u> [Ql)Ql] = (aQ,bQ,r> Ql/[Qlan] = 04 X 02
QQ = <at7aba az,r, tu> [Qlan] = (az,bQ,abr> QQ/[QQ?QQ] = 04 X 02-

By Corollary A.10(a), Aut(Q@;) is a 2-group for ¢ = 1,2, so neither can be F-
essential. R
Thus foc(F) < AQ = S < S, so by Proposition 1.14(b), F is not reduced. O



CHAPTER 5

Dihedral and semidihedral wreath products

We next study reduced fusion systems over 2-groups in V. These are the groups
where the set of subgroups #/(S) plays a central role. The one exception to this is
the case S = UT4(2) (where #(S) = @) which we handle first.

Note, in the statement of the following proposition, that PSU4(2) =& PSp,(3)
(cf. [Ta, Corollary 10.19]).

PROPOSITION 5.1. Assume S = UT4(2). Let F be a fusion system over S such
that O2(F) = 1. Then F is isomorphic either to the fusion system of GL4(2), or
to that of PSp,(q) for each ¢ = £3 (mod 8).

PRrOOF. By Lemma C.4(a,b), there are unique subgroups @, A < S such that
Q =2\ and A = C4. Set Z = (z) = Z(S). Let A1,Ay < Q be the unique
subgroups isomorphic to Qg; thus [A1,As] =1 and Aj N Ay = Z.

Define automorphisms

~v € Aut(S), v € Z(Aut(9)), and T1, T2 € Aut(Q)

as follows. Fix some t € ANQ); then 'A; = Ay by Lemma C.4(b). Choose any
71 € Aut(Q) which acts with order 3 on A; and via the identity on A,, and set
Ty = ctrlc;l € Aut(Q). Then ¢; commutes with 7179 = 7271, so there is v € Aut(5)
of order 3 such that v|g = 772 and ~(t) = t. Finally, set ¢(g) = g if g € @ and
©(g) = zg if g € S\Q. Then ¢ € Z(Aut(S5)) since a(Q) = Q for each o € Aut(S).
Let By, By, Bs < S be the three subgroups of index 2 which contain A. Since
S = 031 C3 by Lemma C.4(a), B; & C31Cy for each i. Choose v; € I(B;~\A),
and set V; = Cp,(v;) = (v;) x Ca(v;) = C3. Note that V; = (I(B;~\A)), so V; is
independent of the choice of v;, and is characteristic in B; since A is. By Lemma
C.4(d), v permutes the B; transitively, and hence also permutes the V; transitively.
We claim that
nry (Vi) =V;  fori=1,23. (5.1)
To see this, let ¥ be the set of all V < @ such that V =2 C3. Each involution in Q
has the form g; g2 where g; € A;\Z. Hence for each V' € ¥, there is x € Iso(Aq, Ag)
such that V =V, def (z,9x(g9)| g € A1). Also, V), =V, if X’ € x-Inn(A;). Hence
|7] = |Out(Qs)| = 6, each of the automorphisms 71 and 72 permutes ¥ freely, and
(11, 72) = C5 x C3 permutes it in two orbits of length 3. Since v permutes the set
{V1,Vo,V3} C ¥ freely, it must be one of the orbits, is permuted freely by 71, 7o,
and 7172 = 7|g, and hence is pointwise fixed by 775 !, This proves (5.1).
We next claim that
there are exactly two bases Bi,By C A which are
permuted freely by Autg(A) = C2, and ¢(B;) = Bs.

By Lemma C.4(a), there is at least one such basis B, and B; C A\Q since it is
normalized by S and generates A. Thus ¢(b) = bz for each b € By. If p(B1) = By,

(5.2)

57
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then B; is the union of two cosets of Z, which is impossible since (B;) = A. Thus
B and ¢(B;) are distinct orbits of Auts(A), so By U p(B1) = ANQ, and these are
the only such bases.

Let F be a saturated fusion system over S such that Oy(F) = 1. By points
(b.1)=(b.3) in Theorem 3.1, if R € ESTH), then either foc(F,R) € Z°(S) U#(S) or
S € U. By Lemma C.4(e), 2°(S) = @. Also, Z(S) = @ since |S| < |Dg1Ca| =27,
and S ¢ U (S % UT3(4)) since A < S is the unique subgroup isomorphic to Cj.
Thus E(fH) =o.

By Theorem 3.1(a), if R € EY, then R = C# or 2% Since [S:R] > 4,
this implies Eg-) C {A}. By Lemma C.4(c), the only subgroups of index 2 in
S whose automorphism groups are not 2-groups are () and the B;. Thus Ex C
{A? Qa B17 BQ7 B3}

For i = 1,2,3, Outz(B;) = Cputr(a)(Cv;)/(cv;) by Lemma 1.5(a). Also, since
Outg(B;) € Syl,(Outz(B;)) and |Outg(B;)| = 2, Outz(B;) has a strongly embed-
ded subgroup if and only if Oy(Outxz(B;)) = 1. Hence

fori=1,2,3, B; € Er <— OQ(CAut]:(A)(C’Ui)) = <Cv,->- (53)

If Q ¢ Ex, then all F-essential subgroups and S contain A as a characteristic
subgroup, so A < F by Lemma 1.15, and Oa(F) # 1. Thus Q € Ex. The
images of (1172) and (1175 ') in Out(Q) = £31C, are the only subgroups of order 3
normalized by Outs(Q). Since ([r172], Outs(Q)) = Cs while ([r7; '], Outs(Q)) =
Y3, Out £(Q) must be equal to ([1175 '], Outs(Q)) = X3 or to ([r1], [12], Outs(Q))
03 X 23.

If 172 € Autz(Q), then since it normalizes Auts(Q), it extends to some ' €
Autz(S) by the extension axiom. Also, v € {, ¢}, since @ € Aut(S) and a|g =
Idg imply a € (). If ¥/ = ¢, then since ¢ € Z(Aut(S)), (v')* = ¢ € Autx(S

b

IR

which contradicts the Sylow axiom. Thus 7/ = ~. Since Q is characteristic in S,
restriction induces an isomorphism Outz(S) = Cout,(@)(Outs(Q))/Outs(Q) by
Lemma 1.5(a), so F has either

Type (1): Outz(Q) = ([r175 '], Outs(Q)) = X5 and Outz(S) = 1; or

Type (2): gut;(Q) = ([m],[r2], Outs(Q)) = C5 x X3 and Outx(S) = ([7]) =
3.

If F has type (1), then Ny, (a)(Auts(A))/Auts(A) = Outz(S) = 1 by Lemma
1.5(a). Thus Autz(A) does not contain a subgroup isomorphic to As, so A ¢ Ex by
Lemma 3.3(b,c). If Ex = {Q}, then Q S F. f Ex = {Q, B;} for some i = 1,2, 3,
then since V; < S is characteristic in B; (as shown above), each automorphism of
B; sends V; to itself. Also, 775 *(V;) = Vi by (5.1), so V; < F in this case.

Since Oz(F) = 1, this shows that at least two of the B; must be in Er.
Upon replacing F by 7' F for appropriate i, we can arrange that B, By € Er.
Then Ox(Causy(a)(co;)) = (cv,) for i = 1,2 by (5.3), so by Proposition D.1(e.1),
Outr(A) = X3 x X3. Then ¢,, = ¢y,v, € Aut(A) inverts Oz(Autz(A)) = Cs x Cs,
80 Cauty(4)(Coy) = Autg(A), and Bs ¢ Ex by (5.3) again.

Now, O3(Autz(A)) = C5 x C5 is determined by a choice of two complementary
subgroups Wy, Wy < A of rank 2, and since O3(Autz(A)) is normalized by Autg(A),
each ¢,, (i =1,2,3) either normalizes the W; or exchanges them. Since ¢,, inverts
Os(Autz(A)), there is i € {1, 2} such that {W7, Wa} is the pair {(B}), (B/)}, where
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B}, B! C B, are the two (cg,)-orbits. Thus Autr(A) is determined by B;, and upon
replacing F by #F, if necessary, we can assume that ¢ = 1.

By Lemma 1.5(b), Autrz(B;) is determined by Autz(A) in all cases. So F is

uniquely determined by the choice of Autz(A), which we just saw is determined by
the choice of basis Bj.
If F has type (2), then by Proposition D.1(e.2) (and since Outg(A) permutes
a basis for A), Outr(A) = Ay or As. Then B; ¢ Ex for i = 1,2,3 by (5.3), so
Er C {A,Q}, with equality since otherwise @ < F. Hence Autz(A) = A; by
Lemma 3.3(b), and A is the orthogonal module since rk(C'4(S)) = 1 (Proposition
D.1(d)).

Thus the action of Autz(A) has an orbit B* of length 5, where Autg(A) = C2
acts on B* with one orbit of length 4 and one fixed point z. Since the action is
irreducible, (B*) = A and [] 5. 9 € Ca(Autz(A)) = 1. So B*~\{z} is a basis for
A, and hence equal to By or By by (5.2). Upon replacing F by F if necessary, we
can assume that B* = By U {z}, and hence that Autz(A) acts as the group of all
even permutations of this set.

Both types: We have now shown that up to isomorphism, there are at most
two saturated fusion systems F; and Fy with O(F) = 1, one of each type (1) and
(2), respectively. Set G1 = GL4(2), set Go = PSp,(q) for any prime power g = +3
(mod 8), and choose S; € Syly(G;). We can take S; = UT4(2) =2 S. Let Q < 51
be the subgroup of triangular matrices with zero in the entry (2, 3); then Q = 21++4
and Ng,(Q)/Q = X3, so Fg, (G1) = Fi has type (1).

By [CF, §1], Sp,(q) has Sylow 2-subgroups isomorphic to Qg1 Cs, so Sy =

(Qs X, Qs) 3 Cy = S. By Proposition 1.12(b), O2(Fs,(G2)) = 1. Furthermore,

t
G2 contains (Spy(q) X o, Sp4(q)) X Ca, Spy(q) =2 SLa(q) contains a subgroup Qg x Cs,
and so Fg,(G2) = F> has type (2). O

Before continuing with the other cases, we need a lemma which helps to make
more explicit how we apply the results shown in Section 3.2. Recall that for a
saturated fusion system F over S and Y 9 S, Ex(Y) denotes the set of all F-
essential subgroups R < S such that foc(F, R) =Y.

LEMMA 5.2. Let F be a saturated fusion system over a 2-group S such that
r(S) <4 and #(S) # @. FizY € % (S), and assume that Ex(Y) # @. Let %, be
the set of all Yy € %,(S) whose normal closure is Y. Let ©1,05 <Y and

Ur(Y)={U<0,;li=1,2, U’ECg or Qs}.
be as in Proposition 3.11(a). Then the following hold.
(a) Ex(Y)=E%Y)UE%(Y), where
o ES(Y) = {Yolg) | Yo € %, Autz(Yo) =300, g € Ns(Yo),
¢ €Yy, cg exchanges Yy N ©; and Yy N @2}
o E$(Y) ={UCs(U) |U € %r(Y)}.
(b) For each R€ Ex(Y), R>Y; for some Yy € %.

() If P=Yy(g) € EX(Y), and I' < Aut(P) is such that Auts(P) € Syl,(I") and
{Vlve |7 €T} = Nawer(vo) (Autp(Yp)), then T = Autz(P).
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PROOF. We first claim that
P>Yye%, |P/Yo| =2, tk([P,Yy/Fr(Yo)]) =2 = Yychar. P. (54)

In all cases, Fr(Yp) is characteristic in P: either Fr(Yy) = 1, or Fr(Yy) = Z(P); or
Yo & Qs x Qs, |Z(P)| = 2, Yo/Z(P) = 21** and hence Fr(Yy) = Z»(P). Since
Yy /Fr(Yp) is the unique abelian subgroup of index 2 in P/Fr(Yy) by Lemma A.4(a),
Y) is characteristic in P.

(a) Ex(Y) C EL(Y) UE%(Y). By Proposition 3.9(b) and since Y € #(S5),
Ex(Y) = EfY(Y), and cach F-essential pair (Py, P2) of type (II) in Ex(Y) has
the form described in Lemma 3.7(a) or in Lemma 3.8(b). Set Pio = Py N Ps.

Case 1: Assume (Pp, P») is as in Lemma 3.7(a). By that lemma, P2 € %,
Out]:(Plg) = 33105 or X5, and Outp, (P12) f OZ(Out]:<P12)). If Out]:<P12) =3,
then Pio/Fr(Py2) is the orthogonal module for Outyz(Pi2). Since Outp, (Pi2) £
O?(Outx(P12)), Outp, (P12) is generated by a transposition in ¥5. Thus

Out]:(Plg) = 25 — I‘k([Pl,P12/FI‘(P12)]) =1. (55)

Set U; = P1o N ©; (i = 1,2). By Proposition 3.11(b.2), {Uy,Us} € Zs(P12),
so Pis = UyUs, Uy N Uz < Fr(Py2), and each element of Outg(P2) = Dg either
normalizes the U; or exchanges them. So we can choose bases {b;1,bi2} of U;
(¢ = 1,2) such that B = {b;; |4i,7 = 1,2} is a basis of Pio/Fr(Pi2) permuted by
Outg(Pi2). Then one of the following happens:

e The action of Outp, (P12) exchanges U; and Us. In particular, a generator of
this group acts on B as a product of two disjoint 2-cycles, so Out 7(Py2) % X5
by (55) Thus Out]:(P12) = 23 ! CQ, and P1 S E_%_—(Y)

e The action of Outp, (P12) normalizes each U;. Since Outp, (Py2) = Cs is non-
central in Outg(P12) = Ds (since |Ng(Py)/Pi| = 2), it acts on B as a
2-cycle, and there is exactly one of the groups U € {U;,Us} for which
Outp, (P12) acts trivially on U/Fr(U) = C%. Then [P;,U] < Fr(U), so
Autp, (U) < Inn(U), and P, < UCs(U). If P, < UCg(U), then by Lemma
A.1(a), there is g € Ng(Py)\P; with g € Cs(U). Since Ng(Pj2)/Fr(P2) &
DgCy (P12 € %) and Py < Ng(P12), there is also h € Nyg(p,,)(P1)NPy
which does not centralize U. Since |Ng(Py)/Pyi| = 2, this is impossible, so
P, =UCs(U) € E&(Y).

Case 2: Now assume (P;, P») has the form described in Lemma 3.8(b). By
Lemma 3.8(b,d,e), P, = UCs(U) where U = [Aut’=(Py), P] = C2 or Qg. Thus
Autz(U) = Aut(U), and Y = foc(F, P1) is the normal closure of U in S. By
the same lemma, Y = AA* where {A, A*} is an S-conjugacy class, A, A* € DQ,
U<A [AJA < ANA* < Z(S), and ANA* =1if AJA* € D. Also, A and
A* are strongly automized in S, since A is the normal closure of U in a certain
subgroup S, of index 2 in S.

We must show that U € Z#(Y) (i.e., that U < ©; for i = 1 or 2). Choose
g € S such that 9A = A*, and set U* =9U and Yy = UU*. If Y € %, then U = A
and U* = A* 5o Yo =UU* =Y. 'Y ¢ %, then A = Dyn for n > 3 or Qan for
n >4, and Yy € % by Lemma 2.6(a).

In either case, Yy € %, and {U,U*} = {YoNA,YoNA*} € Zs(Yy) is an Ng(Yp)-
conjugacy class. Let o € Aut’=(P1) be of odd order. Since U = [Aut’=(P1), P1| and
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U <Yy < P, a normalizes U and Yy, and «|y € Autxz(U) has order 3. So
{U,U*} € %s(Yo) is the unique element compactible with Outz(Yp) (unique by
Lemma 2.9(b)), and hence U € %x(Y') by Proposition 3.11(b).
Ex(Y) D EX(Y) UE%L(Y). By Proposition 3.11(c.2), E%(Y) C Ex(Y).
Assume P € E%(Y). Thus P = Y(g) where Y € %, c, exchanges the two
subgroups YpNO;, and Outx(Yy) = ¥35:Cy. Then Yj is characteristic in P by (5.4).
Since Yp is fully normalized (Lemma 3.10), and since Outp(Yp) is not Outz(Yp)-
conjugate to the center of Outg(Yy) = Dg (since Out£(Yp) = X310 Cs), P is fully
normalized in Nx(Yp), and hence also in F by Proposition 1.3(b). So by Lemma
1.5 and since Outp(Yy) is noncentral of order 2 in Outg(Yy) & Dy,

Outz(P) = Nous»(vo) (Outp(Yp))/Outp(Yp) = Xs.

Thus P € Er. Also, [Autz(P),P] < Yy by (5.4), so foc(F,P) < Y. Since
foc(F, P) € #(S) by Proposition 3.9(a), and since no element of #/(S) is strictly
contained in any other (Lemma 2.4(b)), P € Ex(Y) and thus E4(Y) C Ex(Y).

(b) Fix Re Ex(Y). If R € E%(Y), then by definition, R > Y}, for some Y; € ).
If R € E%(Y), then R =UCs(U) for some U € %r(Y'). Also, by definition of
U7 (Y) (Proposition 3.11(b)), U = Y5 N ©; for some Yy € %,(S) and some i = 1, 2.
Set U* = YoNO3_;. By Proposition 3.11(b.2), {U,U*} € %s(Yy), and in particular,
Yo =UU* and [U,U*] < Fr(U) (Definition 2.1(e)). Thus Auty-(U) < Inn(U), and
so Yy =UU*<UCs(U) =R.
(c) Assume P =Y;(g) € E%(Y), where Y € %. Recall that Y} is fully normalized
in F by Lemma 3.10, is F-centric by definition of #4(.5), and is characteristic in P
by (5.4). Also, P/Y, permutes freely a basis for Z(Yp) if Yy = Cj or Qg x Qg, and
|P/Yy| = |Z(Yo)| = 2 if Yy = 24, So by Lemma 1.5(b), for any I' < Aut(P) with
the given properties, I' = Aut z(P). [

We next consider wreath products A Cs for A € DS. 1t is easy to see that
Dg  Cy is a Sylow 2-subgroup of ¥g and hence of Ajg. Since SDa» is a Sylow 2-
subgroup of GLy(g) for appropriate ¢ = 3 (mod 4), SD2-1C5 is a Sylow 2-subgroup
of the groups GL2(q) 1 Cy < GL4(q), and hence of PSL5(q). We next check that
Don 1 Cy is a Sylow 2-subgroup of PSL,(q) for appropriate q.

LEMMA 5.3. Fiz a prime power ¢ =3 (mod 4), and set n = 14+vy(q+1). Then
the Sylow 2-subgroups of PSLs(q) are isomorphic to Dan } Cs.

PROOF. This is most easily seen via the isomorphism PSL4(q) = PQZ (q) (cf.
[Ta, Corollary 12.21]). By [CF, Theorems 2-3] and since ¢ = (mod 4), the general
orthogonal group GOj (q) contains (GO (q)1Cs) x GO3 (q) with odd index, where
GO;t(q) 2 Dygx1) (see [Ta, Theorem 11.4]). Thus the Sylow 2-subgroups of
GO¢ (q) are isomorphic to (Dgn 2 Cy) x C2. The last factor is sent isomorphically
to GOZ(¢)/Q¢ (¢) (in particular, —I € SOF (¢) has nontrivial spinor norm since
—1 is not a square [Ta, p. 163]). Hence Qg (q) = PQ{ (¢q) has Sylow 2-subgroup
isomorphic to Dan ¢ Cs. [l

The following presentation for the groups studied here will be used throughout
the rest of chapter.

NoTATION 5.4. For some n > 3, S = (ay, b1, ag, by, t), where for i = 1,2,

|0,1" = 2”71, |bl‘ = 2, blalb:l = G,)\ A1 d:ef <(11', b1> = D2n or SDQn,

[
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and A = —lor A\=—1+2""2 (and A = —1 if n = 3). Also,
[Al,AQ} = 1, taﬂf_l = az, tblt_l = bg, and t2 =1

271—3

Either Al N AQ = 1, or Al n AQ = Z(Al) = Z(Ag) 1AISO7 set w; = a; and
2z =w? € Z(A;), and set z = 21 = 29 if A; N Ag # 1.

PRrROPOSITION 5.5. Let F be a reduced fusion system over S = A Cs, where
A eDS.
(a) If A = Don for n > 3, then either F is isomorphic to the fusion system of
PSL4(q) for each q such that va(g+1) =n—1, orn =3 and F is isomorphic
to the fusion system of Aqg.

(b) If A= SDon for n >4, then F is isomorphic to the fusion system of PSLs(q)
for each q such that vao(q+1) =n — 2.

PROOF. Let S have the presentation in Notation 5.4, where A1 N Ay = 1. Set
Z, = (a?"",a¥" "), and set

Yi = <a%’a§7b1ab2>a YQ = <a%va%va1blaa2b2>a Y3 = <a1a2_1’a10'27b1b2at>'

Thus S/Z. = Dg ! Cy (the unique normal subgroup of index 27 by Lemma 2.4(a)),
Yi/Z, 2 Y5/Z, = C3, and Y3/Z, = 2/7*. So by Proposition 3.9, Outx(S) = 1,

Er =Er(Y1)UE£(Y2) UEF(Ys), Ex(Y;) CEYY if V; e #(S),

and Ex(Y;) # @ for each i = 1,2, 3.
By Lemma 2.4(b), #'(S) C {Y1,Ys,Y3}. We claim that

{¥1,Ya} ifn=3

5.6
{(V1,Y5,Ys} ifn>4. (5.6)

7(9) = {
When S = Dg1Cy, Y1,Y2 € #(S) by definition, and Y3 ¢ #/(S) by Lemma 2.4(d)
(and since [S:Y3] = 4 and |S| < 2%). This proves (5.6) when n = 3. For n > 4, it
follows from Lemma 2.6(a), except when A 2 SD1g4, in which case Y & Qg X Qg
lies in #,(S) (hence in #/(S)) by definition.
For each i = 1,2,3, let % = %r(Y;) and Ex(Y;) = E%(Y;) UE%(Y;) be as in
Lemma 5.2. Let %; be the set of subgroups P € %,(S) whose normal closure is Y;.
Step 1: We first consider F-essential subgroups associated to Y3. Set

<a1a2, Zgb1b2t> if A, eD

@ - _1a 13 d @ =
31 = (a1a;5 ", zat) an 32 {<z2a1a2,22b1b2t> ifA; €8.

Then @31 = @32 = Q2n7 @31@32 = Yg, and @310@32 = <2122>. AISO, [@31, @32] = 1
if A; € D, while [@31, @32} = <2122> = Z(S) if A; €8.
Case n = 3: If 52 Dg1Cy, then Y3 ¢ #(S) by (5.6), and Ex(Ys) = EX™V by
Proposition 3.9(c) (and since Y3 = 2/7*). Since each automorphism of Y3 either
normalizes the subgroups O3, = Qg or exchanges them, Out(Y3) & 331 Co.

Let 71,72 € Aut(Y3) be the automorphisms of order 3 defined by setting

T (alagl — 2ot — ajast — a1a51> and Ti|e,, =1Id

To: (a1a2 —  z9b1bot — alaglblbgt — alag) and 7-2|@31:Id
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Thus ([r1], [r2]) = O3(Out(Y3)) = O?(Out(Y3)). For R € Ex(Y3), [S:R] = [R:Y3] =
2, Y3 is characteristic in R since it is the only subgroup in S of its isomorphism
type (Lemma C.5(a)), and hence

Out}-(R) = Noutf(y3)(OlltR(Y},))/OutR(Yg) (57
)

by Lemma 1.5(a). Thus Noy(vy)(Outr(Y3)) is not a 2-group, where Out(Ys
Y3005, so R # Y3(as), and thus R is one of the groups

R1 = Y3<b2> or R2 = Y3<a2b2> .

~—

Il

Furthermore, by (5.7), one of the following holds:

Outr(¥s) = ([, [ra], Outs(¥s)) = (Cs x C5) % €2 Br(Ys) = {Ry, Ra}
Outx(Y3) = <[7'17'2],Out5(Y3)> >~ (Cy x X3 Ex(Ys) ={Ri} (5.8)
Outz(Ys) = ([r175 '], Outs(Ys)) = Cp x Xy Ex(Y3) = {Ro}
Let ¢ € Aut(S) be the automorphism v (a;) = a; ', ¥(b;) = abi, ¥(t) = t.
Upon replacing F by ¥ F if necessary, we can assume R; € Ex(Y3).

Case n > 4: By Lemma 2.6(a), %3 is the set of subgroups S-conjugate to one
of the groups

V) = (21, wiwa, bibs, t) = (wiwy ?, zot)-(wiws, zoby bot) 2 21+

Y0(32) = (21, w w2, a1azb1ba, t)

- <w1w2_1, 22t>~<w1w2, 22a1a2b162t> = 2}’_+4 if Az eD

N <’w1’u)2_1, zgt>'<w1w27 a1a2b1b2t> = 21_+4 if Al € S.
By the uniqueness in Lemma C.3, ©3; and O35 are the subgroups ©; which appear
in Proposition 3.11(a). So by definition (Proposition 3.11(b)), % is the set of
subgroups of ©31 or of O35 isomorphic to Qg, and thus the S-conjugacy class of
(wiwy ', 21t).

Now, Outr(YW) € a5(YW) by Proposition 3.11(b.1). Hence Out (VW) =
Out(YO(?f)) = 331 (5 or X5, depending on whether Yo(:;) ~ 214 or 2% By Lemma
5.2(a), Ex(Ys) = E%(Ys) UE%(Y3), where

(i) E%(Y3) is the set of all P =UCs(U) for U € %s3; and
(ii) E%(Y3) is the union of the S-conjugacy classes of
Ry =YW (b)) and Ry =Y (agby). (5.9)
By Lemma 5.2(c), Autz(R;) (¢ = 1,2) is uniquely determined by Autf(%(?f)). For
R=UCs(U) € E%(Y3) (U € %), Aut’z(R) is uniquely determined by Proposition

3.11(c.4): Autxz(UCs(U)) = O?(Inn(UCs(U)){a)) for some a € Aut’x=(UCs(U))
of order 3 which normalizes U = Qg and acts via the identity on Cg(U).

Step 2: We now examine subgroups in Ex(Y;)UEx(Y3) and their automorphisms,
by first showing how this is influenced by the subgroups in E£(Y3). Set
Yor = (21,22, b1, b2) = C5

Vi — (21, 22,a1b1, az2bs) = C3 if A, eD
2 (w1, w2, a1y, asbs) = Qg x Qs if A; € S.
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Then Yy; € %, in all cases, and %, is the S-conjugacy class of Yy; by Lemma 2.6(a)
(or by definition when Yy; = Y;).

Consider the subgroup Ry = Y0(31)<b2> = Yo1 (wrwa,t) (R = Y3(bs) if n = 3).
Since YO(31 ) o 2?4 and ¢p, exchanges the two quaternion factors, Ry = UT4(2) by
Lemma C.4(b), and Yy; < R; is the unique subgroup isomorphic to C3 (Lemma
C.4(a)). We just showed (in (5.8) and (5.9)) that R; € Ex(Y3). Hence Autz(R;)
contains an automorphism of order 3, and it permutes cyclically the three sub-
groups of index 2 which contain Yy (Lemma C.4(d)) and hence acts nontrivally
on Autg, (Yo1) & C%. So Autz(Yp1) % 31 Cs, and hence Autz(Yo;) = X5 by
Proposition 3.11(b.1).

To identify Autz(Yp2), we consider three different cases:

Type (1): Assume Ay,Ay € D and Ry € Ex(Y3). Then Autx(Yoe) = X5 by an
argument similar to the above, applied with Ry in place of R;.

Type (2): Assume Aj,Ay € D and Ry ¢ Ex(Y3). By Step 1, n = 3 and S =
Dg 1 C5. Then Outz(Yoe) = 331 Cy, since otherwise Outz(Ype) & X5
by Proposition 3.11(b.1), which by the extension axiom (and since
Ry = Yo (wiws, t)) would imply Outz(Rs) > Xs.

Type (3): Assume A; € S. Then Yo = Qg X Qs, so Out#(Yo2) = X310 Cy by
Proposition 3.11(b.1).
Thus in each case, Outz(P) is determined up to isomorphism for P € %3, U %ps.
For i = 1,2, let {©;1,0;2} be as in Proposition 3.11(a). Thus Y; = ©;; x ©;
where {©;1,0;2} is an S-conjugacy class (hence both are normal in A;A5), and
©;; € DQ. By the Krull-Schmidt theorem (Theorem A.8(a)) (and after exchanging
indices if necessary), ©11 < (a2,,b,) X (23_,m), and after reindexing if necessary, we
can assume m = 1. Then byzJ € ©y; for some j = 0,1, and “ (b1 2}) = a2b, 2] € O3
since ©11 < A1A,. Thus ©11 = (a%7blzg>, and hence O, =0, = <a§7b22{>. By
a similar argument, ©s; = (a?,a1b;25) for some k = 0,1, and Ogy = 'Oy;.
Define ¢, € Aut(S) by setting ¢;x(t) = t, @r(bi) = bizg_i, and @jr(a;b;) =
aibizéti. Then upon replacing F by %i*F, we have ©1; = (a?,b;) and Oy =
(a%,a1b1). Also, by Proposition 3.11(b), % and %, are the S-conjugacy classes of

<2’2, a2b2> if Ay €D
<’U)2, a2b2> if Ay € 8.

By Lemma 3.11(b.2), for i = 1, 2, Out #(Yp;) is the unique subgroup of Out(Yp;)
of its isomorphism type (as determined above) which is compatible with the pair
{Y0i N ©;1,Y; N O;2} € Us(Yo;) (compatible in the sense of Definition 2.2(b)). In
particular, each automorphism of order 3 of Yo; N ©;; (j = 1,2) extends to an
element of Autz(Yp;). We refer to Lemma 2.9(c) and its proof for more details on
how the above pair determines Outx(Yp;).

By Lemma 5.2(a), for ¢ = 1,2, Ex(Y;) = E&(Y;) UE%(Y;), where E%(Y;) = @
if Autz(Yy;) = 5. Thus E% (Y1) = @. By Lemma 5.2(c), the F-automorphisms of
P € E%(Y>) are uniquely determined by the above information.

Step 3: It remains to determine Autz(R) when R = UCs(U) € E%(Y;) for
U e % (i =1,2). By Proposition 3.11(c.3-4), [Aut’z(R), R] = U in this situation,
and Aut’z(R) = O%(Inn(R)(a)) for some « of order 3 such that a(U) = U and «
induces the identity on R/U. It remains to determine « more precisely.

Ur=01u1NYy =(21,01) and Us =09 NYpe = {
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Consider the group P = UjU,. Each element of Ng(P) either normalizes or
exchanges the two subgroups U; = P N A;, and they are not S-conjugate since
(UP) = Yy while (U$) = Y. Hence Ng(P) = Na,a,(P) = Na, (U1)Na,(Us),
NAl(Ul) = Dg, and NAZ(UQ) = Dg, Qw, or SD16. Thus Outs(P) = Ns(P)/P =
C3.

We claim that P is fully normalized in F. If not, then by Lemma 1.16(a), there
is T € Ex such that T > Ng(P). Let j be such that T € Ex(Y;) (j = 1,2,3). If
T =UCs(U) for some U € %;, then U < Ng(P) by Lemma A.6(c) (applied with
T in the role of S), which is impossible. (Recall that if U = C3, then it is a direct
factor in T.) If T € E%(Y;) for j = 1,2, then Ng(P) < TN A1Ay € %;, which
is also impossible. Finally, Ng(P) £ R, Rs € E%(Y3) as defined in Step 1. Hence
there is no such T' € Ex, and P is fully normalized.

Let 1 € Outa,(P) and z3 € Outa,(P) be the generators. For each i =
1,2, by Proposition 3.11(b.4) and since U; € %;, there is o; € Autx(U;Cs(U;))
of order 3 which normalizes U; and induces the identity on U;Cgs(U;)/U;. Thus
ai(P) = P. Set a; & ay|p € Aut#(P). Since U;As_; < U;Cs(Us), [a] € Out#(P)
normalizes (hence centralizes) Outa,_,(P) = (x3—;). The hypotheses of Proposition
D.1(e.1) thus hold, applied to the action of Outz(P) on P/Fr(P) = Cj, and hence
Outz(P) = %3 x ¥3. If Ay € D, so P = UUy = Cj, then Uy and U, are
the irreducible summands of the action of (aj,as) = C3 x C3. If Ay € S, so
P = 02 x Qg, then a; normalizes Uy by a similar argument applied to P/Fr(P),
and ao normalizes U7 since ag\z(p) = Id. Thus in both cases, a; is the identity on
Us and ay is the identity on U;. This, together with Autz(Yp1) and Autz(Ype),
determine uniquely the automorphism groups Aut’=(U;Cs(U;)) for i = 1,2, and
hence determine Aut’z(R) for each R € EZ (Y1) UE%(Y>2).

For example, Autz(Yp) = 35 is the group compatible with the pair {Uy,tU;} €
%s(Yo1). As shown explicitly in the proof of Lemma 2.9(c), it is the group of
automorphisms of Yy = (21, b1, 22, ba) which permute the set

X = {6122, biz122, 2122, baz1, b22122} .

Any element of Autz(Yo:) which permutes cyclically the first three elements in
X acts on Uy = (z1,b1) with order 3, and any element which permutes cyclically
the last three acts on ‘Uy = (22,b2) with order 3. If R = U;Cs(Uy) € E& (Y1),
then Autz(R) = O?(Inn(R){(a)) where aly,, permutes cyclically the first three
elements in X, fixes the last two, and is the identity on Us. Thus « acts on
R = U; x (baz1,a9bs) with order 3 on the first factor and as the identity on the
second factor.

We have now shown that up to isomorphism, there is at most one reduced
fusion system of each of the three types listed above.

Step 4: It remains to find explicit fusion systems of each type. Assume A; €
D, let g be a prime power such that va(¢ + 1) = n — 1, and identify S with a
Sylow 2-subgroup of G; = PSL4(q) (Lemma 5.3). Since SLs(g) contains subgroups
isomorphic to Qg x C3, 7 contains subgroups Y3 = 2?4 with 9|\Outf(Y3)|. So
Ri, Ry € Ex(Y3) by (5.8) (when n = 3), and Fg(G1) has type (1). Also, Fs(G1)
is reduced by Proposition 1.12.

Next assume S = Dg @ Cs, identify S with a Sylow 2-subgroup of g < Ajy,

and set Gy = Ajg. There are two Ga-conjugacy classes of subgroups isomorphic to
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C3, represented by
Vo = ((12)(34),(13)(24), (56)(78). (57)(68)).
Since Autg, (V1) = 35 and Autg,(V2) = X310 Cs, Fs(G2) has type (2). Again,
Fs(G2) is reduced by Proposition 1.12.
Now assume A; € S, let ¢ be such that va(q+ 1) = n — 2, and identify S with

a Sylow 2-subgroup of GL2(q) 1 C2 < GL4(q), and hence of Gg = PSL5(q). Thus
Fs(G3) has type (3), and Fg(G3) is reduced by Proposition 1.12 again. O

It remains to consider the central wreath products.

t

PROPOSITION 5.6. Let F be a reduced fusion system over S = (A xa, A) x Cy,
where A € DS, and |A| = 2™ forn > 4. Then A = Don, and F is isomorphic to
the fusion system of PSp,(q) for each odd prime power q such that va(q* — 1) = n.

PROOF. Let S have the presentation and subgroups of Notation 5.4, where
n>4, z=2 =2, and Ay N Ay = (z) = Z(S5). Set Z, = (a¥" ", a2" "), and set

Y1 = <a?,a§,b1,b2>, Y2 = <a%,a§,a1b1,a2b2>, Yg = <a1a51,a1a2,b1b2,t>.
Thus S/Z, = Dg Cy (the unique normal subgroup of index 27 by Lemma 2.4(a)),
Yi/Z, 2 Y5/Z, = C4, and Y3/Z, =2 217, So by Lemma 2.4(b),

% (S) C{V1,Ys, Y3}

For j =1,2, set
<a§,w3_jajbj> ifAeD
<a§,ajbj> ifAeS.

Then for i = 1,2, ©;1 = O = Qan-1, [0;1,0,2] = 1 since [w1by, webi] = 1,
0,1 N O3 = (z), and thus ¥; = ©;10;2 = Qan—1 X, Qan-1. Also, set

O3 = <a,1a2_1, t> = Don—1 and O30 = <a1a2, b1b2t> = Don-1,
so that Y3 = ©31030 = Don-1 X Don-—1.

Whenn >5o0ri=3,Y; € #(S) by Lemma 2.6(a). Whenn =4, Y7,Ys> € %(S)
by definition (and since S/(z) = Dg 1 C3), and hence Y1,Ys € #/(S) since they are
normal. Thus #(S) = {Y1,Y2,Y3}. So by Proposition 3.9(a,b), Outx(S) = 1,

Er =B = Ez(Y1)UEz(Y2)UE£(Ys), and Ex(Yi)# @ Vi=1,2,3. (5.10)

For each i = 1,2,3, set % = %r(Y;) as defined in Proposition 3.11(b). For
i=1,2,iff g €Y; = ©0;10;, and g% = z, then g € ©;; UO;s. So for each U < Y;
with U = (g, U < ©;; for some j. Since all such subgroups of Y; are S-conjugate
to each other, this proves that

for i =1,2, % = {U < Y; | U = Qs}. (5.11)

Let Ex(Y;) = E%(Y;) UE%(Y;) be the decomposition of Proposition 5.2(a).
Case 1: Assume Aj,Ay € S. Set Uy = (wy,waby) € 2, Uy = (wa, asbs) € %,
and P = U;U,. The given generators for U; commute with those for Us except that
[waby, agsbs] = z, so P = 2174 by Lemma C.2(a). For i = 1,2, Autp(U;) < Inn(U;)
since [Uy,Us] = Z(S), and hence P < U;Cs(U;). By Proposition 3.11(c.4), there is
a; € Aut’>(U;Cs(U;)) such that |oy| = 3, «;(U;) = U, and «; induces the identity

@1]' = <a?,w3_jbj> and ®2j = {
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on U;Cs(U;)/U;. Thus a;(P) = P and |a;|p| = 3. So by Lemma C.2(b) (with «;
in the role of v;), Outz(P) = X5 or As.

Let v1 € (a1) be such that v% = wi. Then v, normalizes U; and centralizes
Us. Set n = ¢,, € Autg(P). Then n|y, ¢ Inn(Uy) while 5|y, = Id. So by Lemma
C.2(b) again, Outz(P) = 5.

Set Ar = <w3_iai,w3_ibi> = QQn (Z = 1,2). Then [AT,A;} = <Z>7 so each
element of S normalizes or exchanges the A¥, and each element of Ng(P) either
normalizes or exchanges the two subgroups U; = PN A?. Also, U; and U, are not
S-conjugate, since (U{) = Y; while (US) = Ya. Hence

Ns(P) = Na:az(P) = Na:(Ur)Nay (Uz)

= P(v1,v2) where v; € (a;) and v? = w; for i = 1,2.

Thus Outg(P) & Ng(P)/P = C2, so Outg(P) ¢ Syly(Outx(P)), and P is not fully
normalized in F.

By Lemma 1.16(a) and since P is not fully normalized, there is an F-essential
subgroup R > Ng(P). Let i = 1,2,3 be such that R € Ex(Y;). If R € E%(Y;),
then there is T < R with |R/T| = 2 and T € %,(S); and since |Ng(P)| = 27,
R = Ng(P) and T = Qs X Qs, which is impossible. If R = UCg(U) € E%(Y;) for
some U € %, then U < Ng(P) by Lemma A.6(c) (applied with R and Ng(P) in
the role of S and @), so Ng(P) contains a direct factor C3 (if i = 3) or a central
factor (Qg, which is also impossible. We thus have a contradiction, and there is no
reduced fusion system over S.

Case 2: Now assume A1, Ay € D. Let %, (i = 1,2,3) be the set of subgroups P €
% (S) whose normal closure is Y;. By Lemma 2.6(a) (or by definition if Y; = 21+%),
for i = 1,2, %; is the set of all U Uy & 2}r+4, where Uy, Us € %, and U; < O, for
j =1,2 by (5.11). By Proposition 3.11(b.1), Outz(U1Uz) = Out(U1Us) = X310 Cy,
and by Lemma 5.2(c), this determines Outz(R) for each R € E%(Y;). Also, E%(Y;)
is the set of subgroups of the form R = UCgs(U) = Qs X¢, Qan for U € %;. By
Proposition 3.11(c.4), Autz(R) = O%(Inn(R)(«)) for some « such that |a| = 3,
a(U) = U, and a|cg @) = Id. Hence Aut’z(R) is also determined uniquely.

It remains to examine the subgroups in Ez(Y3). By Proposition 3.11(a), and
since Y3 = Don-1 X Dgn-1, there is a product decomposition Y3 = ©F; x O3,
such that %4 is the set of subgroups of the ©3;, = Djyn.—1 which are isomorphic
to C32. By Proposition 3.11(b), the subgroups in %3 are all S-conjugate. By the
Krull-Schmidt theorem (Theorem A.8(a)), O%, < Og;(z) (after changing indices
if necessary). Hence % is the S-conjugacy class of (wjw;',t) or of (wywy ', tz).
Define ¢ € Aut(S) by setting ¢|a,a, = Id and ¢(¢) = zt. Upon replacing F by ¢ F
if necessary, we can arrange that %4 is the S-conjugacy class of (wiwsy 1) (and
also that ©%;, = Os3;).

Consider the subgroups

Yo1 = (w1, b1, wa, b2) € % Yy = (wiwy ) x (wiwa, bibat) € o
Yoo = <w17a1b11w27a2b2> S %2 Yo(g?) = <w1w51,t> X <w1w27a1a2b1b2t> c %3.
Set R; = Yoi(t) € E&(Y;) for i = 1,2. Then

Out]:(Rl-) = NOut]:(Yo,y) (OutRi(YOi))/OutRi (YOz) =33
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by Lemma 1.5(a), and the subgroup of order 3 acts nontrivially on the group
AutRj(YO(;)) ~ C2. Also, Ry = Yo(é}) x (b1, w1) and Ry = Y0(32) x {a1by,wr), so
there is a; € Autz(R;) of order 3 which acts nontrivially on R;/ Yo(g). Hence
Aut (YD) % $431C,. By Proposition 3.11(b.2), Aut+(Y2)) 2 5, and is the unique
subgroup in 275 (Yo(;)) associated to {Yo(;) NOs31, Yo(?f) NO3s} € ﬁZ/g(YO(i)). Since each
subgroup in %3 is S-conjugate to Yo(?,l ) or Yo(32 ) (Lemma 2.6(a)), we have now deter-
mined Auty(P) for each P € %3. Also, E%(Y3) = @ since Aut;(YO(;)) % 330 0,.

By Lemma 5.2(a), Ex(Ys) = E%(Y3): the set of all R = UCg(U) for U € %s.
By Proposition 3.11(c.4), Aut’(R) = O?(Inn(R){a)) for some o which induces the
identity on U and on R/U. When U = (wyw; ',t), this shows that o normalizes

Yo(?,l ) and Yo(?? ), hence is uniquely determined on those subgroups, and is uniquely

determined on R = U X (ajasg, bibot) = Y0(31)Y0(§).

This proves that F is completely determined by our choice of %5. So up to
isomorphism, there is at most one unique reduced fusion system over S.

Let q be any prime power such that n = va(¢®> — 1), and set G = PSp,(q). By
[CF, §1], the Sylow 2-subgroups of Sp,(q) are isomorphic to Qan ! C2, and hence

t
those of G are isomorphic to S 2 (Qan X, Q2n) X Cy. The 2-fusion system of G is
reduced by Proposition 1.12, and hence is isomorphic to F as just described. [



CHAPTER 6

Fusion systems over extensions of UT'5(4)

Recall that U is the class of all 2-groups S such that there is T < S with
T = UT3(4) for which T/Z(T) is centric in S/Z(T). We now look at reduced
fusion systems over 2-groups in U, using the following notation for their elements

and subgroups. For the most part, this is the same notation as that used in [OV,
§4-5] (and also in Appendix C).

NoTATION 6.1. Set Sy = UT5(4), the group of strictly upper triangular 3 x 3
matrices over Fy. Let ef; denote the elementary matrix with nonzero entry a in
position (4, 7). Set

A= {((1)(118) = efyeb, ’a,b 615‘4} and Ay = {((1)?2) = edzeh, ’a,b € IE‘4}.
001 001
Let a — @ = a? be the (nontrivial) automorphism of Fy, and write Fy = {0, 1, w,&}.
Note the relation
[edy, €55] = 4% for all a,b € Fy. (6.1)
Let 7 € Aut(Sp) be the graph automorphism defined by transpose inverse; thus

7(el;) = ej_;4—; Let ¢ € Aut(UT3(4)) be the field automorphism ¢(ef;) = ef;,
and set 0 = poT =7To .

.7
Set Sg,r = So X (¢, T), the semidirect product where cy = ¢, ¢, = 7, and

(¢, T) = C3. Let S5 » = So(¢,T) be the nonsplit extension where
So < S;vrv Cop = ¢, cr =T, ¢2 = G%Sv [¢7T] =1, T2 = 6%3'
Set @ = @7 in both groups. Let S7,Sp, Sy < S¢,r and S7, 57,55 < S7 . be the
subgroups generated by Sy, and T, 0, or ¢, respectively.
Note that S7 is a semidirect product, since (e430)% = el3¢p> = 1in S5 - Thus

the choice that % = 1 and not ¢? = 1 was arbitrary, and was made to simplify
some of the later formulas.
We first show that each S € U is isomorphic to one of the groups listed above.

LEMMA 6.2. Each group S € U is isomorphic to one of the groups UT'5(4), Sy,
Sg, S-,—, Si, S¢,-,—, or S;’T.

PrOOF. Assume S € U, and fix T' < S such that
T=UT3(4) and Cg/z(r)(T/Z(T)) =T/Z(T).

Since O2(Out(T)) is the subgroup of all [a] € Out(T) such that « induces the
identity on T/Z(T) (Lemma C.8), the condition that T'/Z(T) be centric in S/Z(T)
implies that Outs(T) N Oz (Out(T)) = 1.

We identify T = Sy = UT3(4) via some choice of isomorphism T = Sy. Set
' = 02(0ut(So)){[¢], []) < Out(Sp). Then I' € Syl,(Out(Sy)) by Lemma C.8,

69
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so Outg(Sy) is Out(Sp)-conjugate to a subgroup of I'. Hence after changing our
choice of identification isomorphism 7' 2 Sj, we can assume that Outg(Sy) <
I'. Since (¢, 7) permutes freely a basis for O2(Out(Sp)) = C4 by Lemma C.8,
H({¢,7); O2(0Out(Sp))) = 0, and similarly for subgroups of (¢, 7). Hence Outg(Sp)
is Out(Sp)-conjugate to a subgroup of ([7], [#]) (cf. [Br, Proposition IV.2.3]), since
both are complementary to O2(Out(Sp)) in a certain subgroup of I'. So upon
changing the isomorphism T 2 Sj again, we can arrange that Outg(Sy) < ([7], [¢]).
The result now follows from the cohomology computations:

H?((¢); Z(So)) = H?((0); Z(S)) =0
H?((1); Z(50)) = Z(S0)
H?((¢,7); Z(S0)) = H*((); (e13)) = (el3)-

These all follow from the formula H?({v); M) = Cas(7)/{zy(z)) when |(y)| = 2 (cf.
[Br, pp. 58-59]), except for the first isomorphism in the third line which follows
from Shapiro’s lemma (cf. [Br, Proposition II1.6.2]). The three nonsplit extensions
of Sp by 7 are isomorphic via the automorphism vy € Aut(Sy) (see Lemma C.8)
which permutes transitively the set Z(T)# = {e$3|a € F;}. So all of them are
isomorphic to S*. g

The following lemma about subgroups of Sy, S, and S* will also be needed.

LEMMA 6.3. Assume S =S, or SZ.
(a) There are exactly three subgroups of S isomorphic to Cy x Cy: the subgroups

) fori=0,1,2.

o 1wt w Wit
H; = <612€237612€23

(b) The only subgroups of S isomorphic to Cy are Ay and As.

PROOF. Set Zy = Z(Sy) = {e{3|a € F4} for short.
(a) If H <Sp has order 16 and contains Zj, then

_ a b c d
H = Zy(elzes3, €12€53)

for some a,b,c,d € Fy. Since [e],,e5,] = €74 € Z(Sy) by (6.1), H is abelian if and
only if ad = be. Thus the three subgroups H; (i = 0,1,2) together with A; = Cj
and A, = C4 are the only abelian subgroups of order 16 in Sy, and the H; are the
only ones isomorphic to Cy x Cjy.

Conversely, for each ¢ = 0,1,2, Q(H;) € H; N (A; U As) = Zp by Lemma
C.6(a), so H; = Cy x Cy since it is abelian of order 16.

Assume H < S is such that H £ Sy and H = Cy x Cy. Then Qi(H) <
Fr(S) < Sp, Qi (H) C (A1 U Ay) since all elements of Sy~ (A1 U As) have order 4,
and Qq(H) = Zj since no element of A;\Zy commutes with any element of Sy7.
Thus H > Zj.

Let g € Sy and h € Sy~\Zy be such that H = (g7, h). Then (g7)? € Z implies
that g7(g) € Zo, and [h,g7] = 1 implies that h7(h)~" € Zy. Since Cg,/z,(7) =
Hy/Zy, we have g,h € Hy. Thus [h,g] = 1 since Hy is abelian, so [h,7] = 1,
and h = 7(h). But this is impossible: h = e{ye53hg for some hy € Zp and some
0+ a € Fy, and 7(h) = e%eSyhg = hels.

(b) Assume P < S and P = C4. Thus |P N Sy| > 8. Since I1(Sy) C Ay U Ag,
there is ¢ € (4;Zp) N P for some i = 1,2. But then P < Cg(z) = A; (recall that
T(Al) = Ag_i), so P = Al O
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We are now ready to list the reduced fusion systems over groups in the class
U, beginning with Sy = UT'3(4) itself.

PROPOSITION 6.4. Fach reduced fusion system over UT3(4) is isomorphic to
the fusion system of PSL3(4).

PROOF. Set S = Sy = UT3(4) and Z = Z(S) = {ef3|a € F4}. Let F be a
saturated fusion system over S such that Os(F) = 1. Each F-essential subgroup
of S contains Z = Fr(S), and thus is normal in S. If P € Eg-)7 then P = C4 by
Proposition 3.4, and hence P = A; or A; by Lemma 6.3(b). If P < .S has index 2,
then [P, P] = Z = Fr(S) by Lemma C.6(b), hence [g, P] < Fr(P) for each g € S\ P,
which by Lemma 1.8 implies P is not essential. Thus Ex C {A;, As}. H Exr = &,
then S < F, while if Ex = {4;}, then A; < F. Since we are assuming Os(F) = 1,
Er = {4, A2}

For each i = 1,2, Autg(A;) = C2, and Ca,(S) = Z has rank 2. Hence by
Lemma 3.3(c), Autz(A4;) = SLa(4) or GLy(4), and is conjugate in Aut(A4;) to
AutGi (Az)7 where G?, = PSL3(4) or PGL3(4)

Fix o € Aut(A;) such that *Autr(4;) = Autg, (41). Upon composing with
an appropriate element of Autxz(A4;), we can assume that o commutes with con-
jugation by el;. Then a(Z) = Z since Z = [els, A1]. Upon composing by ¢|a,
if necessary, we can assume that (a|z)® = Id, and then upon composing by an
appropriate element in Cpy¢(a,)(Autz(A41)) = C3, we can assume that a|z = Id
(and still & commutes with conjugation by el;). Since conjugation by els induces
an isomorphism from A4;/Z to Z, « also induces the identity on A;/Z.

By a similar argument, there is § € Aut(As) such that 8|z = 1d, [3, As] < Z,
and PAutz(Ay) = Autg,(As). Let ¢ € Aut(S) be such that |4, = @ and ¢|a, =
B. (Note that ¢ has the form ¢(g) = gx(g) for some y € Hom(S, Z(S)).) By the
extension axiom (and since all automorphisms of S of odd order normalize 4; and
Ag), for i =1 or 2, Autz(S) = Cs if Autz(A;) = SLa(4), and Aut#(S) = C5 x Cs
otherwise. Thus Autr(A;) = Autr(Asz), Gi1 = G, and *F = Fs(Gy).

We have now shown that each saturated fusion system JF over S such that
Os(F) = 1 is isomorphic to Fg(PSL3(4)) or Fs(PGL3(4)). So if F is reduced, then
it is the fusion system of PSLs(4). O

We now look at extensions of UT'3(4). Since reduced fusion systems over S
and Sy were described in [OV, §4-5], it remains to examine fusion systems over
Sr, 8%, Se,r, and SG .

PROPOSITION 6.5. There are no reduced fusion systems over Sy nor over S*.

PrOOF. Assume S = S, or S in the notation of 6.1. Let F be any reduced
fusion system over S. If P € Eg-), then by Propositions 3.4 and 3.5, P = C3 or
214 The latter case cannot occur (P would have to be normal, and hence contain
Z(S) = Z(Sy) = C2% by Lemma C.9). So E(}I-) C {A1, A2} by Lemma 6.3(b).

Assume P € E(;-I). Since |S| = 27 and S % D1 Cs, Z(S) = 9. By Lemma
C.9, there are no normal dihedral or quaternion subgroups, so 2°(S) = &. So
by Theorem 3.1(b), P is in an F-essential pair of the type described in Lemma
3.7(b). This would require a subgroup 7' = Cj with normalizer of order 27, which

contradicts Lemma 6.3(b). Thus E(;-I) = Q.



72 6. FUSION SYSTEMS OVER EXTENSIONS OF UT3(4)

Now assume P € E;{H); i.e., [S:P] = 2. Then by (6.1) and Lemma 6.3(a),
P 2 H(S) == HO - <€%2653,€‘f263}3> = 04 X C4.
For g € S\P, [g, P] < Hp and
l9, Ho] < [So, So]-[@, Hol = Z(So) = Fr(Ho) < Fr(P).

So by Lemma 1.8, Hj is not charateristic in P. Thus Hy is not the only subgroup
of P isomorphic to Cy x Cy, H; < P for j € {1,2} by Lemma 6.3(a), and P >
HyH; = Sy. So P =5 in this case.

Thus Ex C {A;, A3, S0} Also, [Aut£(S5),S] < Sy since Sy is a characteristic

subgroup of index 2 in S by Lemma C.9. Hence by Proposition 1.14(b), foc(F) < Sy,
and F is not reduced. (I

We now turn to fusion systems over S = Sy - or S} . Set Z = Z(S) = (ej3).
There is an epimorphism y: S —— Dg!C5 with kernel Z, whose inverse is defined
in Table 6.1. Here, we follow Notation 5.4 for elements a;, b;, z;,t € Dg?1Cs. To see

P = X Hai) x b)) | x T (aibi) X (=) X (t)
1 e3sTZ el Z 07 elqedsZ "
— — et
2 €12€55TZ QZ €72€5507 ebeége‘ﬁZ
TABLE 6.1

that this is a well defined isomorphism, it suffices to check that the images under
X! of a1, by, a1by, and z; satisfy the relations needed to lie in a dihedral group,
that conjugation by e}, sends each coset in the first row to the corresponding coset
in the second, and that (el;7,ely@) commutes with (€45e55T, @) (modulo Z).

PROPOSITION 6.6. Let F be a reduced fusion system over S, where S € U and
|S| = 28. Then S = S, ., and F is isomorphic to the fusion system of Lyons’s
group. Also, Out(S,F) = 1, and S, is the unique F-essential subgroup with non-
cyclic center.

PROOF. By Lemma 6.2(a), S & Sy ; or S . So assume S = Sy ; or S . We
use the notation of 6.1 for elements and subgroups of S, and in particular use (6.1)
(without always saying so) for commutator relations among the elements eg-

Step 1: Set
Y1 = x" (21, b1, 22, b2)) = Z(S0) (€12 €53, B)
Yy = x" ({21, a1b1, 22, aba)) = Z(S0)(e12€53, 5253, 0)
Yz = x " '({arag, b1ba, 21, T)) = Sp .
We first show that
vy 22t v, ot and  Yi(efy) = Ai(eds, @) = UT4(2). (6.2)

The third isomorphism follows from Lemma C.4(a), since (els;, @) = C3, and the
(e}, @)-orbit of e, is a basis of A;. Hence V7 = 2/ by Lemma C.4(b), and
since x(Y1) = Y1/Z is the unique abelian subgroup of index 2 in x(Yi(e%,)) =
(21,b1,22,b2,t). Alternatively, Y1 = UjUs where U; = x 1((z;,b;)), Uy and Us
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are both dihedral (if S = Sy ;) or quaternion (if S = 57 ), and [U1,Us] =1 (so
Yi(efy) = UT4(2) by Lemma C.4(b)). As for Y3, the five elements

w 1 1 w W w o w
w1 = €Yy, wWo2 =0, w3 =e13530, wy=e€5565:0, w5 = ere50 (6.3)
all have order 2, and [w;,w;] = e}y for i # j. So the associated quadratic form

(9Z + g*) on Y2/Z has exactly five isotropic points, and by Lemma A.5, it is the
nondegenerate nonhyperbolic form and hence Y 2 21+4,

Since x(Y1) = x(Y2) = C3 and x(Y3) = x(So) = 217, #/(5) C {Y3, Y, Ys} by
Lemma 2.4(b). By Definition 2.1(c,d) and since S/Z = Dg1 Csy, Y1,Ys € %(S),
and lie in #/(S) since they are normal. If Y3 = Sy € #/(S), then since Sy ¢ %,(.5)
(Definition 2.1(c) again), it must be the normal closure of some Yy € #4(.5) of index
4in Sy (Lemma 2.4(b)), Yo = C4, so Yy = A; or Ay by Lemma 6.3(b), which is not
possible since Ng(A1) = So(¢p) 2 Dg 1 Cs. Thus

%(S) = #(S) = {11, Va} (6.4)
Note also that
Aut(S) and Aut(Sp{¢)) are 2-groups: (6.5)

the first by Corollary 2.5 and since #(S) # @, and the second by [OV, Lemma
5.5]. These also follow from the description of Aut(Sp) in Lemma C.8 and since Sy
is characteristic in both groups.

Step 2: By Proposition 3.9(a), Outz(S) = 1,
Er =Ex(Y1)UEx(Y2)UE£(Y3), and Ex(Y;) # @ for each i =1,2,3. (6.6)

By Proposition 3.9(c) and (6.4), Ex(Y;) € EYY for i = 1,2. By Proposition
3.11(b.1),

Vi=2l™ = Outz(¥1) = Out(¥7) = SOF(2) 2 310,
Vo2t —  Outr(Ya) = Out(Ya) = SO; (2) = 55

1%

(6.7)

Next assume R € Ex(Y3). By Proposition 3.9(c) and since Y3 ¢ #/(S), R has
type (II) or (IIT). If R € E(HI)( Y3), then by the same lemma, R > Y5 = Sy. Since
So(¢) ¢ Ex by (6.5), EX (Y3) € {So(6), So(r)}.

Let (Ry, R2) be an F-essential pair of type (II) in Ex(Y3), and set T' = R1 N Ro.
By Theorem 3.1(b), this has the type described in Lemma 3.7(b). Thus T & Cj,
|R1/T| =2, T is the Ly(4)-module for Autz(T) > X5, Outg, (T') £ O*(Out£(T)),
and foc(F, Ry1) = Sy is the normal closure of T. Thus T = A; or As by Lemma
6.3(b).

Since Ng(A1) = So(¢) and rk(C’Al(<e§3,q§>)) = 1, and since A; is the Ly(4)-
module for O?(Autx(A;)) = As, Aut,, 1,.¢) (A1) is not contamed in O?(Autz(A1)).
Hence O?(Autz(A1)) N Autg(A4;) = AutSO(Al) and similarly for As. Thus Ry =
T(x) for some x € Sp(¢)~Sp such that 22 € T, and this implies that Ry is S-
conjugate to A ().

Set H1 = A1<¢> Set N1 = NS(Hl) = A1<6%3,¢)> = Y1<€‘f2>. Then N1 =

t
UT4(2) by (6.2), and UT4(2) = (Qs X¢, @s) x Co by Lemma C.4(b). So Ny €
E% (Y1) C Ex by Lemma 5.2(a), and there is Id # v € Autz(N) of odd order. By
Lemma C.4(d), v permutes transitively the three subgroups of index 2 in N7 which
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contain A;. Thus H; = A;(¢) is F-conjugate to A;(el;) with normalizer Sy(¢),
so H; is not fully normalized, and hence not in Ex. We conclude that:

Ex(Ys) C {50(6),50(7)} . (6.8)

Step 3: By Lemma 5.2(b), for i = 1,2 and R; € Ex(Y;), R; > Y;, and hence
Z(R;) = Z(Y;) = Z(S) = (el3) by Lemma A.6(a). So by (6.6) and (6.8), the only
(possible) subgroup R € Ex with Z(R) > Z(S) is So(7). Since F is reduced,
Z(S) £ O2(F) =1, so So(t) € EF, and there is € Autz(So(T)) of odd order
such that 3|z(s,) has order 3.

For each g € Sy, (g97)% = gr(g9)72. If g7(9) € Z(So) = {e%3|z € F4}, then
g = ef9e55 (mod Z(Sp)) for some a € Fy, which implies that g7(g) = 1. Thus the
only element of Z(Sp) which is the square of an element in the coset So7 is 72.
Since B permutes transitively the elements of Z(Sy)#, this implies that 72 = 1. In
other words, S = Sy -, and there are no reduced fusion systems over S7 _.

Step 4: From now on, we assume S = Sy (i.e., 72 = 1). We can now write
S@ = So<9>, ST = S()<T>, and S¢, = So<¢>

For i = 1,2, let % = Z#(Y;) be as in Proposition 3.11(b). Since Outz(Y;) =
Out(Y;) by (6.7), these sets are uniquely determined by Proposition 3.11(b.2
and they in turn determine the sets Ex(Y;) = E%(Y;) UE%(Y;) (Lemma 5.2(a)
For P € E%(Y;), Autz(P) is uniquely determined by Lemma 5.2(c). For P €
E%(Y;), P =UCgs(U) for some U € %, and by Proposition 3.11(c.4), Autz(P) =
O?(Inn(P)(c)) for some o of order 3 such that o(U) = U and o|cy () = Id. Thus
all F-automorphisms of subgroups in Ex(Y;) UE#(Y3) are uniquely determined by
these conditions.

The elements wy,...,ws € Yy of (6.3) are permuted under the action of
Outx(Y2) = ¥s, and Outg, (Y2) is generated by the elements c.1 and cey,, cor-
responding to the permutations (23)(45) and (24)(35), respectively. Let p €
Out£(Y2) be an automorphism of order 3 which induces the 3-cycle (345) (i.e.,
p permutes cyclically the elements ws, w4, ws). Then p normalizes Autg, (Y2), and
hence by the extension axiom extends to some p € Autx(Sp). We showed in Step
3 that there is 8 € Autz(S;) of order 3 (and thus Ex(Y3) = {Sp, S;} by (6.8)). In
particular, [pls,, 0], [Blsy, 7] € Inn(So).

Recall the description of Aut(Sp) before Lemma C.8:

Aut(Sp) = O2(Aut(Sp))-(T'o x I'1), where T'g = (y0,0) = X3, I't = (71,7) = X3.
Hence p|s, = fyfﬂ and flg, = 73:1 (mod O2(Aut(Sy))),
Outx(So) = (Outs(So), [pls, ], [Bls,]) = X3 x X3

(it cannot be larger by the Sylow axiom), and O2(Out(Sp))-Outx(Sp) = Out(Sy).
So by Lemma A.7, applied with G = Out(Sy), Q@ = O2(G), Hy = Outg(Sp), and
H = (Outs(So), [v0], [1]), there is g € Oz(Aut(Sp)) such that

[o] € Co,(0ut(s0)) (Outs(So)) and  #°Autz(So) = (Auts(So), 70, 71)-

By Lemma C.8, Outs(Sp) =2 C3 permutes freely a basis for Oz(Out(Sp)) = C3,
s0 1k(Co,(0ut(sy)) (Outs(So))) = 1. Define ¢ € Aut(S) by setting ¥(g) = g for
g € Y1Ys and (g) = elsg for g € S\Y1Ys. Since |S/Y1Ys| = 2 and el € Z(9),
this does define an automorphism of S. Also, [¢|s,] centralizes Outg(Sy) since
it extends to S, ¥ls, € O2(Aut(Sp)) since it is the identity modulo Z(Sp), and
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¥|s, ¢ Inn(Sp). (Recall that [g,So] = Z(Sp) for g € So~Z(Sp).) We have now
shown

Co,(0ut(50)) (Outs(So)) = ([¥ls,]) #1 where ¢ € Aut(S), ¥[y,y, =1d. (6.9)

Thus @o € Inn(Sp)(¢|s,), and hence ¢y extends to some ¢ € Aut(S). Upon
replacing F by #F, we can assume that Autz(Sp) = (Auts(So), Y0,71)-

Define 4y € Aut(S;) and 41 € Aut(Sp) by setting 4;|s, = Vi, Yo(7) = 7, and
41(0) = 6. Since H*((0); Z(Sp)) = 0 (since 6 exchanges the elements in the basis
{e¥5,€e53} € Z(Sp)), there is a unique extension of v, to 43 € Out(Syp) (unique
modulo c.1,), and Autx(Sp) = (Auts(Ss),¥1)-

The choice of extension of 7 to S; is not unique. Set

G ={a € Aut(S;)|als, € (10,0)} and V ={a€G|als, =1d}.

Then V =2 Hom(S,/So, Z(So)) = C2, and hence G = ¥4. Also, V N Autz(S,;) =1
by the Sylow axiom. For any v* € Autrz(S;) such that v*|s, = 70, we have
GNAutz(S;) = (v*,ce). By Lemma A.7 (or by a direct check since G = %), there
is a € Cy (cg) such that *(4g) = v*. Then either a = Id, or a(7) = el37. In either
case, a extends to an automorphism @ of S, and upon replacing F by ®F, we can
arrange that Autz(S,) = (Autg(S;),Y0). Also, Outz(S) =1 by (6.5).

Step 5: We have now shown that up to isomorphism, there is at most one reduced
fusion system F over S = S, -. By [Ly, Proposition 2.5], Lyons’ group Ly contains
a subgroup isomorphic to 3McL:2 with odd index. Also, Sy is isomorphic to a Sylow
2-subgroup of McL, and this group has an outer automorphism whose restriction
to Sp is 7 (see, e.g., [AOV1, Table 4.1] and the proof of Proposition 4.5 there). So
by Lemma 6.2(a), Aut(McL) and hence Ly have Sylow 2-subgroups isomorphic to
Sg,ror S5 . Since Aut(Sy ;) and Aut(S} ) are both 2-groups by Corollary 2.5, the
fusion system of Ly is reduced by Proposition 1.12. Hence the Sylow 2-subgroups
of Ly are isomorphic to Sy -, and its fusion system is isomorphic to F.

It remains to prove that Out(S, F) = 1. Fix ¢ € Aut(S,F), and set po = ¢|s,-
Upon replacing ¢ by some other element of ¢ o Inn(.S), we can assume that ¢y €
O2(Aut(So)){y0,71)- Since Aut(S) is a 2-group by (6.5), this implies that ¢ €
O2(Aut(Sp)). Also, [po] € Out(Sp) centralizes Outs(Sy) = (7, ¢), since vy = ¢|s,
where ¢ normalizes each of the subgroups Sy, S;, and S, (since they are pairwise
nonisomorphic). So ¢ € Inn(Sp)(¢|s,) by (6.9). Since ¢ is fusion preserving,
o normalizes Aut #(Sp) = (Auts(So),v0,71), and hence [pg, Autz(Sy)] € Inn(Sp)
(recall that ¢o € O2(Aut(Sp))). Since [¥|s,,Y0] ¢ Inn(Sp) (since 79 does not
normalize Y1Y2 N Sp), this proves that ¢y € Inn(Sp). So without changing [p] €
Out(S), we can assume that ¢ = Id.

Let g,h € Z(Sy) be such that p(7) = g7 and ¢(¢) = he¢. The relations
(h)? = 1 = [g7, he] imply that g, h € (el;). If g = el,, then [Yo, ¢|s.] sends T to
ef3T, 50 ¢|s, does not normalize Autz(S;). Thus g = 1, so ¢ € Autz(g,)(S), and
hence Out(S,F) = 1. O



APPENDIX A

Background results about groups

We collect here several general results about finite groups, especially p-groups,
and their automorphisms.

LEmMA A.l. (a) If P < S are p-groups for some prime p, then P < Ng(P).
(b) If P < S are p-groups, and P is characteristic in Ng(P), then P < S.

PROOF. Part (a) is shown, for example, in [Sz1, Theorem 2.1.6]. To prove (b),
assume P is characteristic in Ng(P). Then each g € Ng(Ng(P)) normalizes P, so
Ng(Ns(P)) = Ng(P), and hence S = Ng(P) by (a). O

Recall that Z;(G) denotes the i-th term in the upper central series for G:
Zy(G) =G, and Z;(G)/Z;-1(G) = Z(G/Z;—1(Q)) for i > 1.

LEMMA A.2. Let S be a p-group, and let Q < .S be a normal subgroup.
(a) IfQ #1, then QN Z(S) # 1.

(b) Assume |Zi(S)| = p* for some k > 1. Then either Q = Z;(S) for some i <k,
or Q > Zi(9). If |Q| = pFT1, then Zi(S) < Q < Zip11(5).

PrOOF. Point (a) holds since @ N Z(S) = Cq(S), and [Co(S)| = |Q| = 0
(mod p). Hence Z(S) < Q if |Z(S)| = p. If |Z(S)| = p and |Q| = p?, then
Q/Z(S) < Z(S8/Z(S)) by (a) again, so @ < Z(S). This proves (b) when k = 1,
and the general case follows by induction on k. O

LEMMA A.3. Fiz a p-group S. Assume Q < S is such that [S:Q)]
Z(Q) > Z(S). Then Q = Cgs(x) for some x € Zy(S)NZ(S). If 1 (Z(Q))

then x can be chosen with order p.

ALl
N
)

PROOF. Set S = S/Z(S), and set P = PZ(S)/Z(S) for each P < S. For each
x € Z(Q)NZ(S), Q < Cs(x) < S, and Q = Cg(x) since [S:Q] = p. Also, W a8
since @ <5, so Z(Q) N Z(S) # 1 by Lemma A.2(a), and x can be chosen so that
xz € Zy(S). It 9(Z(Q)) £ Z(S), then a similar argument, applied to Q4 (Z(Q)),
shows that x can be chosen in Q;(Z(Q)) N Z2(S). O

The next lemma involves abelian subgroups of index 2 or 4 in a 2-group.
LEMMA A.4. Let S be a nonabelian 2-group, and let A < .S be a normal abelian
subgroup.
(a) If [S:A] = 2, and |[g,A]| > 4 for g € S\A, then A is the unique abelian
subgroup of index 2 in S.

(b) If[S:A] =4, and |[g, A]| > 4 for each g € S\A, then either A is characteristic
in S, or S/[S,S] surjects onto (S/A) x (S/A). If in addition, |lg, A]| > 8 for
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some g € S\NA, or |S/[S,S]| < 8, then A is the unique abelian subgroup of
index 4 in S.

PrOOF. Note, for each g € G, that |[g, A]| = |A/Ca(g)]|, since Ca(g) is the
kernel of the homomorphism A M A, while [g, A] is its image.

(a) If [S:A] = 2, and B < S is another abelian subgroup of index 2, then for
9 € BNA, |lg, Al = [A/Ca(g)] < [A/(BNA)| = 2.

(b) Assume [S:A] = 4, and |[g, 4]| > 4 for each g € S\NA. If B < S is another
abelian subgroup of index 4, then AB = S, since otherwise A and B are both
abelian of index 2 in AB, contradicting (a). Also, for each g € S, where g = ab for
a€ Aand b e B, |[g,A]| = |[b, A]| = |A/CA(b)] < |A/(AN B)| = 4. If B is normal,
then S/[S, S| has as quotient S/(AN B) = (S/A) x (S/B), so |S/[S, S]] > 16, and
S/B = S/A if B = p(A) for some ¢ € Aut(S5).

If B4 S, set Sg = Ng(B). Then [S:Sy] = [So:B] = 2 since B < Sy < S by
Lemma A.1, B # *B < Sy for x € S\.5), and thus Sy = B-*B. Set By = BN*B.
Then By < Z(Sp), so Sy N ByA is abelian of index 2 in ByA, |[g, A]|] = 2 for
g € Bo~A by (a), and this contradicts the original assumption. So B must be
normal. O

The next lemma, on quadratic forms over Fy, is very elementary and presum-
ably well known, but we have been unable to find references.

LEMMA A.5. Let V' be an Fa-vector space of dimension 2n (some n > 1), and
let q: V. —— Fy be a quadratic form. Then

(A1)

lg=1(0)| = 22"~1 £ 27~! if q is nondegenerate
lg71(0)] =0 (mod 2") if q is degenerate.

If dim(V') = 4 and q is nondegenerate, then either

e q is hyperbolic, q~1(1) = V1# U VQ# for some complementary pair of 2-dimen-
sional subspaces Vi, Vo <V, and Aut(V,q) = SO (2) = %31 Cy; or

o q1(0)~{0} is a set of 5 points permuted transitively by Aut(V,q) = SO, (2) =
s

PROOF. Point (A.1) is easily checked when n = 1. So fix n > 2, and assume
(A.1) holds for n — 1. If q is degenerate (V+ # 0), then either there is v € V*+
such that q(v) = 1, in which case |g71(0)] = 227! since q(z +v) = q(z) + 1
for each x € V; or V.= Vi L V5 where rk(V1) = 2 and q|y, = 0. In this last
case, set 43 = dlyy; then [q~1(0)] = 4], (0)] where |a3!(0)] = 0 (mod 2"2) by
the induction hypothesis. (See [Ta, Theorem 11.5] for a formula which applies to
nondegenerate forms over arbitrary finite fields.)

Now assume q is degenerate. Then V = V; L V5, where rk(V4) = 2, and ¢; =
qlv, is nondegenerate for i = 1,2. Hence q;*(0) = 2+ and g5 *(0) = 2273 4-£272
for some n,e € {£1}, and so

la= (0)] = lay (O)]+]az " (0)] + lay " (1)-|az " (1)]
— (24 7)(2F 4 2277) 4 (2 — ) (220 — 2" 7)
=221 yen2nl,



78 A. BACKGROUND RESULTS ABOUT GROUPS

When dim(V') = 4, each nondegenerate form is equivalent to ¢ (the hyperbolic
form) or go, where
q1 (21, T2, T3, T4) = T122 + T3T4
CI2(351,$273337374) =T1T2 + x?), + x314 + xi

(see, e.g., [A1, §21] or [Szl, Proposition 3.5.10]). The properties listed above are
easily checked. O

The next two lemmas are is more specialized.

LEMMA A.6. Let S be a 2-group, and let Q < S be such that r(Q/Z(Q)) = r(S5).
(a) In all cases, Cs(Q) < Q. In particular, Z(S) < Z(Ns(Q)) < Z(Q), and
Z(8) =2(Q) if |Z2(Q)] = 2.

(b)  Assume that Q is special of type 221* (i.e., Z(Q) = [Q,Q] = C% and Q/Z(Q) =
C3), and that Z(Ns(Q)) < Z(Q). Assume also that all involutions in Q are
central, or more generally, that the number of classes gZ(Q) € (Q/Z(Q))*
such that g*> = 1 is even. Then Z(Q) = Z(S).

(¢) IfU <8 is such that [S,U] < Fr(U) < Z(S), then U < Q.

PROOF. (a) Since 7(S) = r(QCs(Q)/Z(Q)) = r(Q/Z(Q)) + r(Cs(Q)/Z(Q))
for any pair @ < S, the assumption r(S) = r(Q/Z(Q)) implies that Cgs(Q) =
Z(Q) < Q.

(b) Assume Q is special of type 224 and Z(Ng(Q)) < Z(Q). Thus Z(S) =
Z(Ns(Q)) = (20) for some zy € Z(Q)#. Let 21,22 € Z(Q) be the other two involu-
tions. Set V = Q/Z(Q), let q: V. —— Z(Q) be the quadratic map q(gZ(Q)) = ¢°,
and let q;: V —— Z(Q)/(z;) 2 Fy (i = 0,1,2) be the quadratic form induced by
g. Set m = |q~%(1)|, and for i = 0,1,2, set n; = |q~1(z;)|. Note that n; = na, since
there is g € Ng(Q) such that 9z; = 2.

By assumption, the number k of classes in (Q/Z(Q))* which lift to involutions
in @ is even, so m = k+1 is odd. For each 4, by point (A.1) in Lemma A.5, m+n; =
q; 1 (0) is even, and thus n; is odd. Hence |q;'(0)| = m + ny = 16 — 2n; = 2 (mod
4), so qo is nondegenerate by (A.1l) again. In particular, Z(Q/(z0)) = Z(Q)/{z0),
and thus Z5(S)/{z0) = Z(S/(20)) = Z(Q)/{z0) by (a).

(c) Set Uy =Fr(U) < S for short. Then QU /Uy = (U/Uy)(QUy/Up), where U/Ug
is elementary abelian and [U/Uy, QUy /U] = 1, so either U < QU or r(QU/Uy) >
r(QUy/Up). If r(QU/Uy) > r(QUy/Up), then r(S) > r(QUy/Up) = r(Q/(Q N
Up)) > r(Q/Z(Q)) since QNUy < QN Z(S) < Z(Q). Since this contradicts our
hypothesis, U < QUy, so (UNQ)Fr(U) = U, and hence U < Q (cf. [G, §5.1]). O

LEMMA A.7 ([OV, Proposition 1.8]). Fiz a prime p, a finite group G, and a
normal abelian p-subgroup Q@ < G. Let H < G be such that Q " H = 1, and let
Hy < H be of index prime to p. Consider the set

H={H <G|HNQ=1, QH' =QH, Hy < H'}.
Then for each H' € H, there is g € Cq(Hy) such that H' = 9H.

Throughout the rest of the chapter, we recall some general results about auto-
morphisms.
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THEOREM A.8 (Krull-Schmidt theorem). Let G be a finite group, and assume
G = G1 X -+ X Gy, for some sequence of indecomposable subgroups 1 # G; 1 G.
(a) IfG=G7ix---xG} is a second factorization into nontrivial indecomposables,
then k = £, and there are o € Xy, and B € Aut(G) such that f = Idg (mod
Z(G)) and B(G;) = G ;).

(b) For any a € Aut(G), there is 0 € Xy, such that o(G;Z(G)) = Gy Z(G) for
each 1.

PRrROOF. Point (a) is a special case of the Krull-Schmidt theorem in the form
shown in [Sz1, Theorem 2.4.8]. Note that by [Szl, 1.6.18], a “normal automor-
phism” of G is one which is the identity modulo Z(S). Point (b) follows from (a),
applied with G = a(G;). O

LEMMA A.9. Fiz a prime p, a p-group S, a subgroup Py < Fr(S), and a sequence
of subgroups

PP g---AP, =5
all normal in S. Set
A={aecAut(S)|V0,<i<k-1, a(P,) =P and o, Piy1] < P} < Aut(S):

the group of automorphisms which induce the identity on each of the quotient groups
P;/P,_1. Then A is a p-group. If the P; are all characteristic in S, then A <
Aut(S), and hence A < Op(Aut(S)).

PROOF. See, e.g., |G, Theorems 5.1.4 & 5.3.2]. |

As an easy exercise, Lemma A.9 implies the following list of 2-groups whose
automorphism groups are 2-groups.

COROLLARY A.10. For a 2-group S, Aut(S) is a 2-group if any of the following
hold: either

(a) S is cyclic, or S/[S,S] = Cam X Con form >n > 2; or
(b) S Dyr withk >3, or S Qo or SDor with k > 4; or
(C) Sngx.Dg, DBZCQ, O’I“DgXCQ.

PRrROOF. Each of these follows upon applying Lemma A.9 to an appropriate
chain of characteristic subgroups of S. When S = S; x Sy for S; = Dg, there is
a simpler argument using the Krull-Schmidt theorem (Theorem A.8): each auto-
morphism of S normalizes or exchanges the subgroups S;Z(S) = Dg x Cs, where
Aut(Dg x Cy) is a 2-group. O

LEMMA A.11 ([O1, Proposition 2.3]). Fiz an abelian 2-group A, and a subgroup
G < Aut(A) with |G| = 2m for some odd m. Assume, for each x € I(G), that
x ¢ Z(G) and [z, A] = Con (somen >1). Set G; = 0¥ (G), Gy = C(G1), and
Ay =[Gy, A]. Then Gy = X3, Go has odd order, G = G1 X G, and A1 =2 Can X Can.



APPENDIX B

Subgroups of 2-groups of sectional rank 4

We list here some properties of 2-groups S with r(S) < 4, starting with the
case r(S5) = 2.

Since r(P) < r(P/Q)+r(Q) when @ < P are p-groups, all noncyclic metacyclic
p-groups have sectional rank 2. The converse to this also holds when p = 2, as shown
in the following lemma. It is not true for odd p: the nonabelian groups of order p3
and exponent p have sectional rank 2 and are not metacyclic.

LEMMA B.1. The following hold for any 2-group S with r(S) = 2.

(a) S is metacyclic.
(b) If S contains a subgroup isomorphic to Dg or Qs, then S € DSQ.
(¢) If Aut(S) is not a 2-group, then S = Cox X Car for some k, or S = Qs.

PRrOOF. (a) Assume otherwise, and let S be a counterexample of minimal
order. Thus r(S) = 2, and S is not metacyclic. Also, S is nonabelian, so there is a
central involution z € Z(S) N [S,S]. Set Z = (z).

By the minimality assumption, S/Z is metacyclic. Hence we can choose a,b €
S such that S = (z,a,b) where A Lf (a,z) is normal; and A is noncyclic since
otherwise S would be metacyclic. Also, [S,S] = [b, A] = ([b,a]) (since [b,z] = 1),
so [S, S] is cyclic. Since z € [S, 5] < A, and z is not a square in A, this implies that
[a,b] = z and [S, S] = ().

Thus S/Z is abelian. So we can assume that a and b were chosen so that
S/Z = (aZ) x (bZ). Also, z ¢ (b), since otherwise S would be metacyclic. Set
la| = 27 and |b| = 2F. Then either j = k = 1 and S = Dg; or one of the subgroups
(z,a%,b) or (z,a,b?) is abelian of rank 3. In either case, this contradicts our original
assumption on S.

(b) Since S is metacyclic by (a), there are elements a,b € S such that S = {(a, b),
(a) <8, |a| = 2%, |S/{a)| = 2¢, and bab~! = &’ (j odd). If P < S is isomorphic to
Ds or QQg, then the image of P in S/(a) must have order 2, and thus PN {(a) = Cy.
Since the elements in P~ {(a) invert P N {(a), v inverts PN (a),so £ =1 (sz*l
cannot be a square), and j = —1 or 281 —1 since j2 = 1 (mod 2*). Thus S € DSQ.

(c) See [Cr, Proposition 6.7]. O
The following well known result is needed frequently.

PROPOSITION B.2. Let S be a 2-group such that S/[S,S] = C3. Then either
S=C3, orSeDSQ.

PROOF. See, e.g., [G, Theorem 5.4.5]. O

80
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LEMMA B.3. Let S be a 2-group such that r(S) < 4, and let P,Q < S be
normal nonabelian subgroups such that |Z(P)| = |Z(Q)] = 2 and Z(P) # Z(Q).
Then [P,Q] = PNQ =1, and Cs(PQ) < PQ (i.e., PQ is centric).

PROOF. Since P,Q < S, Z(P),Z(Q) < S, and hence Z(P)Z(Q) < Z(S). If
PNn@Q # 1, then PNQ > Z(P) by Lemma A.2(a) (and since PN Q < P), so
Z(P)<QnZ(S) < Z(Q), a contradiction. Thus [P,Q] < PN = 1.

In particular, r(PQ/Z(PQ)) = 4, since 7(X/Z(X)) > 2 for any nonabelian
2-group X. So Cs(PQ) < PQ by Lemma A.6(a). |

The next lemma is a corollary of Lemma B.3.

LEMMA B.4. Let S be a 2-group such that r(S) < 4, and let P < S be a
nonabelian subgroup such that |Z(P)| = 2. Set S = Cs(Z(P)), and assume P <
So. Then either Sy = S, or r(P) =2 and [S:Sp] = 2.

PROOF. Assume Sy < S. Choose g € Ng(Sp)~Sp such that g € Sy, and
set Q@ = 9P and S; = Sp{g). Then Z(P) # Z(Q) since g ¢ Sy = Cs(Z(P)),
so by Lemma B.3, [P,Q] < PNQ = 1 and Cs(PQ) = Z(PQ). Hence 4 >
r(PQ) > 2r(P) > 2r(P/Z(P)) > 4 implies that r(P) = r(P/Z(P)) = 2 and
r(PQ/Z(PQ)) = 4. R R

Set Z = Z(P)Z(Q) for short. Since Z(S) < Cs(PQ) = Z, Z(S) < Z = C2 is
the subgroup of order 2 distinct from Z(P) and Z(Q). Hence Z(PQ/Z(S))
Z)Z(S). By Lemma A.6(a), and since 7(PQ/Z) = 4, Cs;z(5)(PQ/Z(S)) =

Z/7(S),s0 Z = Z5(S) < S. Thus [S:S,] = [S:Cs(Z)] = 2 since |Autg(Z)| =2. O

The next two lemmas involve 2-groups of sectional rank 2 or 4 which contain
several normal dihedral or quaternion subgroups.

LEMMA B.5. Fiz a 2-group S such that r(S/Z(S)) = 2, and a subgroup Z <
Z(S) of order 2. Let & be a set of subgroups of S such that S = Z(S)(Z?), and
such that for each P € &, PZ(S) < S, and either P € DQ and Z(P) = Z, or
P = C2 and PN Z(S) = Z. Assume also that at least one subgroup in & is
nonabelian. Then there is a subgroup P < S such that Pc DSQ, ]3Z(S) =S, and
PNZ(S)=2Z.

PROOF. For each X < S, let X = XZ(S)/Z(S) be the image of X in § =
S/Z(S), and set Z = {P|P € #}. Thus P < S for each P € &, and S = (2).
Since r(S) = 2 and S is generated by involutions (since each P is generated by
involutions), S ¢ SQ and S/[S, S] = C3, so S € D by Proposition B.2.

If S = C2, then S = P for any nonabelian subgroup P € &, and we set P=r.

Now assume S is nonabelian. We must find P < S such that PeDS Q, P= S,
and PN Z(S) = Z. Let Hy,Hy < S be the two noncyclic subgroups of index 2
(recall S e D). Choose z,y € S whose images ,y € S have order 2, such that each
of 2 and y lies in some P € &, 7 € S\Hy, and §j € S~ Hs. (This is possible since
each P € 2 is generated by elements of order 2.) Thus (Z,7) = S. Set P = (z, ).
Then

. []3, }3} =1[S,5] > Z since ISZ(S) = S; and

e 22 y? € Z, since each lies in some P € & and PN Z(S) = Z.
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Hence P/[P, P] = C2. So P € DSQ by Proposition B.2, and PNZ(S) = Z(P) > Z
with equality since |Z(P)| = 2. O

LEMMA B.6. Fiz a 2-group S with v(S) < 4. Assume S = (&), where &
is a set of normal subgroups of S such that for each P € &2, either P € DQ, or
P = C3% and |[PNZ(S)| = 2. Assume also that not all of the P € & have the
same center (or intersection with Z(S) when P = C3). Then there are subgroups
51,82 IS such that S1,S2 € DSQ, S = 5153, S1NSe =1, and for some partition
P = @11_{@2 Ofgz, SZ S <<@z> S SZZ(S) fOTi: 1,2,

PROOF. Set Z = {P N Z(S) | P e 3”}, and let Z,---,Z,, be the distinct
subgroups in Z. By assumption, m > 2, and each Z; has order 2. For each ¢, set

Assume i # j, P € &, and Q € &;. If P and () are both nonabelian, then
PNQ =1 by Lemma B.3. If P = (2 and Q is nonabelian, then PN Q < Q and
PNZ(S)=2Z; #+ Z; = Z(Q) again imply PNQ = 1. If P~ Q = (3, then either
PNnQ=1o0r|PNQ|=2,P=2;(PNQ),and Q = Z;(PNQ). Thus [P,Q] =1
in all cases, so [A;, A;] =1 for i # j.

If A; is abelian for some 4, then A; < Z(S) since it commutes with the other
Aj, which is impossible since no P € & is contained in Z(S). Thus each A; is
nonabelian. If, for some 4, all subgroups in &; are abelian, then there are P, Q) € &;
such that P = Q = C? and [P, Q] # 1; and PQ = Dg since they are both normal
in S. So after replacing P and @) by PQ in this situation, we can assume each &;
contains a nonabelian subgroup.

If m > 3, then for P, € &; nonabelian (i = 1,2,3), P3 < Cg(P1P), and
Cs(P1Py) = Z(P,Py) by Lemma B.3. Since this is impossible, m = 2, S = A; Ao,
[A1,Ag] =1, and hence A; N Ay < Z(S) and Z(A;) < Z(S) (i =1,2).

For each X < S, let X = XZ(S)/Z(S) be the image of X in S = S/Z(S).
Then S = A; x Ay, so 7(A;) =2 (i = 1,2) since 7(S) < 4 and A; = A;/Z(A;) is
noncyclic. So by Lemma B.5, applied with A;, &;, and Z; in the role of S, &, and
Z, there is S; < A; such that S; € DSQ, S; = A;, and Z(S;) = S; N A; = Z;. By
Lemma B3, Z(S) < 5152, so S = Slsg = Sl X SQ. O

LEMMA B.7. Let S be a 2-group such that r(S) < 4, and let Q < S be a normal
nonabelian subgroup such that |Z(Q)| = 2. Then for every o € Aut(S) of odd order,

a(Z(Q)) = Z(Q).

ProoF. If a(Z(Q)) # Z(Q), then Q, a(Q), and a?(Q) are three normal non-
abelian subgroups with distinct centers of order 2. So by Lemma B.3, o?(Q) <
Cs(Qa(Q)) = Z(Qa(Q)), which is impossible. O
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Some explicit 2-groups of sectional rank 4

In this chapter, we collect some (mostly) technical results about subgroups and
automorphisms of certain 2-groups, such as 217, UT4(2), and UT5(4). We begin
with products of dihedral groups.

LEMMA C.1. Assume S € D xD: a product of two nonabelian dihedral groups.
Then there is a unique abelian subgroup A < S of index 4 and rank 2. Of the three
elements in Z(S)*, exactly two are squares of elements in SN\ A.

PRrROOF. Fix dihedral subgroups D; = (a;,b;) (i = 1,2) such that S = Dy x Dy
and [D;:(a;)] = 2. If A < S is abelian of index 4, then for each i, the image A; < D;
of A under the projection is abelian, so [D;:4;] = 2 and A = A1 A;. Each A; is
cyclic since A has rank 2, so A = (a1, a9) is the unique such subgroup.

Let z; be the generator of Z(D;). If g € S\A, then either ¢ € b1 A and
g% € (a3), or g € by A and ¢? € (a?), or g € bibeA and g*> = 1. Thus 21 and 25 can
occur as squares of such elements, while z;z, cannot. O

We now look at certain 2-groups, beginning with 214,

LEMMA C.2. Assume S = AlAQ, where Al = AQ = Qg, [Al,Ag] = Al ﬁAg =
Z(A1) = Z(A2), and |Ca,(Az)| = 4. Then the following hold.
(a) S = 2% There are exactly five involutions in S/Z(S) = C§ which lift to
involutions in S, and they are permuted transitively by Out(S) = X5.

(b) Let T < Aut(S) be a subgroup which contains Inn(S). Assume, for each i =
1,2, that there is v; € T of order 3 such that v;(A;) = A; and vi|a, # Id.
Then [Aut(S):T] < 2. If in addition, there is n € T such that n(4;) = A;
(i=1,2), n|la, ¢ Inn(A1), and n|a, € Inn(Ay), then I' = Aut(S).

PROOF. Set Z = Z(A1) = Z(As),V=S=S8/Z,and X = XZ/Z for X < S.

Let q: V —— Z be the quadratic form q(gZ) = g%, and let b be its associated
bilinear form (b(gZ,hZ) = [g, h]).
(a) If b is degenerate, then dim(V+) > 2, so V+ = (A)t = (As)*t, which is
impossible since |Ca, (A2)| = 4 (dim(A; N Ag) = 1). Thus b and q are nondegen-
erate, S 2% 2_1:’4 since that group contains exactly two quaternion subgroups (and
they commute), and hence S = 214 >~ Qg x o, Ds.

By Lemma A.5, there are exactly five isotropic points in V' (which lift to involu-
tions in ), and Out(S) = SO(V, q) = SO, (2) = 35 is the group of all permutations
of this set.

(b) By assumption, for i = 1,2, || = 3, 7:(4;) = A;, and v;|a, # Id. Thus
Cs(v:) < Cs(A;), so Cs({y1,72)) = Z(S) = Z. Each subgroup of X5 generated by
two elements of order 3 is isomorphic to Az, A4, or As, and so ([y1], [12]) = 45 (as

83
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a subgroup of Out(S) = X5) since it doesn’t fix any of the five isotropic points in
V=_.

If n(A;) = A, for i = 1,2 and n|a, € Inn(As), then the induced automorphism
7 € Aut(V,q) is the identity on Ay and sends A; to itself. Hence rk(Cy (7)) = 3
(since Czl(ﬁ) # 1), so i permutes the isotropic points in V' as a 2-cycle. Thus
[n] ¢ O?(0Out(S)) = As, and T = Aut(S). O

The next lemma involves other “near central products” of dihedral and quater-
nion groups.

LEMMA C.3. Assume S = A1Aq, where Ay, Ay € DSQ, |Aq|,|Az| > 16, and
[A1,As]) < A1 N Ay =Z(S). Then there is a unique pair of subgroups ©1,02 € Q
such that S = ©102, |0;] = |A;] (1=1,2), and [01,02] < O1 N Oy = Z(S).

PROOF. Set B; = Z3(A;) = C4 for short. Then Z5(S) = BB, since
5/Z(8) = (A1/Z(S)) x (A2/Z(S)) (C.1)
by assumption. Also, B; < Fr(4;) for i = 1,2 since |A;| > 16, so [A;, Bs_;] = 1,

and AZZQ(S) = AiBg_Z‘ = Az Xy C4.
Again fix i = 1,2. We claim that

there is a unique O] < A;Z5(S) such that ©F € Q and |O]| = |A,]. (C.2)

To see this, fix x,y € A; such that A; = (z,y), 22,94% € Z(9), and (wy) < A;
has index 2. There are 2’ € zB; and ¥’ € yB; (unique modulo Z(S)) such that
|z'| =4 = |y|. Set ©F = («/,y’). Then ©F/Z(S) € D since it is generated by two
involutions, and hence ©F € Q. Also, ©fB; = A;B;, ©:NB; = Z(0F) = Z(S), and
so |©F| = |A;|. Any other quaternion subgroup of index 2 in A;B; must contain
elements of order 4 in xB; and yB;, hence contains z’ and ¥y, and is equal to ©}.
By the Krull-Schmidt theorem (Theorem A.8(a)), applied to the factorization
of S/Z(S) in (C.1), for any ©1,05 € Q such that S = 010, and [01,0,] <
01 N = Z(5), ©; < A;Z5(S) (possibly after an exchange of indices). Hence
©; = OF exists and is uniquely determined by (C.2). a

We next look at the group UT4(2).

LEMMA CA4. Set S = UT4(2).

(a) There is a unique abelian subgroup A < S of order 16, A = C3, S splits over
A, and Outg(A) = C2 permutes freely a basis for A (thus S = Co 1 C3).

(b) There is a unique extraspecial subgroup Q < S of index 2, QQ = 21++4, and
t t
S = (Qs X, Qs) X C2 = (Dg x¢, Dg) x Ca.

(c) If P < S has index 2, then either P = Q, or P > A, or P* = C; x Cy and
Aut(P) is a 2-group. All involutions in S are in AU Q.

(d) If1d # « € Aut(S) has odd order, then || = 3, and o permutes transitively
the three subgroups of index 2 which contain A.

(e) There is no normal subgroup P < S with P € DQ.

PrOOF. Fix V = (Fq)* with basis {b1,ba,b3,bs}. For each 0 < i < 4, set
Vi=(bj|1<j<i). Set G=Aut(V) = GL4(2). We identify S with the group of
all & € G which normalize the chain 0 < V3 < Vo < V3 < V. Set Z = Z(S5).
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For o € X4, define 1, € G by setting ¢ (b;) = by(;) for each i.
(a) Set H = {a € Gla(Vz) = Vo} and A = O3(H). The map (o — o — Id)
defines an isomorphism A ——s Hom(V/Va, Vo) = Cf, and H = A x (G12 X G34).
Hence S is H-conjugate to A(t(12),V(34)), and (Y1 2y, P(34)) = C2 permutes freely
the canonical basis for A. Thus S = C3 1 C3. So by Lemma A.4(b), and since
|S/[S, S]| = 8, A is the unique abelian subgroup of index 4 in S.

(e) Assume P < S and P € DQ. Then P & A since it is nonabelian. If g € P\A,

then P > [g,A] = Ca(g) =& C3 since P is normal, so P > (g,Ca(g)) which is

abelian of order 8. This is impossible.

(b) Set K =Cq(Z) ={a e G|la(Vh) =V1, a(V3) =V3} and Q = Oz(K). Set
Wi ={aeqG|lo,V] <V} and Wy ={a € G|aly, =1d}.

Then W1 = W2 = 0:23, W1W2 = Q, and W1 ﬂWQ = Z. 1AISO7 W17W2 S] S, SO
(W1, Ws] < Wi N W, = Z, with equality since @ is nonabelian by (a). Since @
contains no abelian subgroups of order 2* by (a) again, it must be extraspecial, and
so Q = 21++4 = Qg X, Qs since it contains elementary abelian subgroups of rank
3. Since neither of the two quaternion subgroups of @ is normal in S by (e), we get

¢
S 2 (Qs X, Qs) ¥ Cs. Finally, the explicit isomorphisms Dg X ¢, Dg = Qg X ¢, Qs
constructed in [G, p. 205] and in [Szl, pp. 139-140] extend to isomorphisms

(Dg x¢, Ds) >t<1 Cy = (Qs X, Qs) >t< C5 between the semidirect products.

Since [S, Q] = [S, S] has order 23, [S,Q/Z] has rank 2. So by Lemma A.4(a),
applied with Q/Z < S/Z in the role of A < S, Q/Z is the unique abelian subgroup
of index 2 in S/Z, and @ is the unique extraspecial subgroup of index 2 in S.

(c) Since S/Q and S/A are elementary abelian, [S,S] < Fr(S) < @ N A. Since
Autg(A) permutes freely a basis of A by (a), |[S,S]| = |[S,A]] = 8, and thus
[S,S] = Fr(S) = Q N A. So there are 7 subgroups of S of index 2, including @ and
the three which contain A.

Let Ty1,T5,T5 < S be the three subgroups of index 2 in [S,S] which contain
Z = Z(Q). By (b), S/Z = C31Cy, where [S,Q/Z] = [S,S5]/Z = C2%. Hence
S/T; = Dg x Cy for each i = 1,2,3. Let P; < S be the subgroup such that P, > T;
and P;/T; = Cy x Cy. Then T;/Z is nonabelian since Q/Z is the unique abelian
subgroup of S/Z of index 2, so P** = P,/T; = Cy x Cy, and Aut(P;) is a 2-group
by Corollary A.10(a). Also, since Q/T; = C3 (since Q/Z is elementary abelian),
0N (P/)T;) = Z(S/T;) < Q/T;, so I(P;) C @, and hence Q # A. Thus Py, P, P;
are the three subgroups of index 2 which contain neither @) nor A.

In particular, if g € I(S) and g ¢ @, then g ¢ P; U P, U P3. Since each element
of S is contained in at least three subgroups of index 2, g is contained in all three
of the subgroups which contain A, and thus g € A.

(d) If1d # « € Aut(S) has odd order, then by Lemma A.9 and since |A/Fr(S)| = 2,
« has order 3 and acts nontrivially on S/A, and hence permutes transitively the
three subgroups of index 2 containing A. O

LEMMA C.5. Set S = Dgl (.

(a) There are exactly two normal subgroups Vi,Vo < S isomorphic to Cj, one
(normal) subgroup @ < S isomorphic to 23r+4, and no subgroups isomorphic
to 2. The images of Vi, Va, and Q in S/[S, S| = C3 have order 2 and are
linearly independent. Also, QN'V; = C3 fori=1,2.
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(b) If P < Dg1Cy has index 2, and Aut(P) is not a 2-group, then P = UT4(2) &
t
(Qs X¢, Qs) X Cy. There are two such subgroups in Dg ! Cs.

PROOF. Set S = <a1,b1,a2,b2,t> = Dg i CQ, where |az| = 4, ‘b1| = 2, Al d:ef

<(Li,bi> =~ Dy, [Al,AQ] =1, 2 = 1, and tait’l = as—i, tbitil = b3_;. Set Q =
(araz, bibe, a}, t) =2 2174 Set Z = Z(S) = (a2a3) and Zy = Z5(S) = (a?, a3).

(a) If R < S and |R| > 4, then R > Z5 by Lemma A.2(b). If R = C3, then
R < Os5(Z5) = Dg x Dg, and of the four subgroups in Dg x Dg isomorphic to Cj,
only Vi = Zy(b1,bs) and Vo = Zy(a1b1, asbs) are normal in S.

If R < Sand R= 2" or 27 then Z(R) = Z, R/Z and Q/Z are both abelian
of index 4 in S/Z, and so R = Q & 2}:‘4 by Lemma A.4(b). The images of V7, Vs,
and Q in S are generated by the classes of by, a1b;, and ¢, respectively, and thus
are independent. Also, Q NV; = Za(b1be) =2 C3 and Q N Vo = Za(aibiashy) = C5.

(b) Assume P < S has index 2. If Z(P) > Z, then by Lemma A.3, P =
Cs(Z3) =2 Dg x Dg, and Aut(P) is a 2-group by Corollary A.10(c). If Z(P) = Z
and Aut(P) is not a 2-group, then Aut(P/Z) is not a 2-group by Lemma A.9. By
Lemma C.4(b,c), and since S/Z = (Qs X, Qs) 3 Cy, either P/Z is extraspecial
(hence P = Dg x Dg), or P > Q.

Of the three subgroups of index 2 which contain @,

P1 = <a1a2,b1,b27a%7t> = UT4(2) and Pg = <a1a2,a1b1,a2b27a%7t> = UT4(2),

while Ps = (a1, az, biba, t) contains the sequence Fr(P) < Co(Zs) < Cp,(Z3) < P
of characteristic subgroups. (Note that Zy = Q1 (Z2(Ps)).) So Aut(Ps) is a 2-group
by Lemma A.9. (]

Throughout the rest of the chapter, we work with the group UT3(4). We use
the following notation, taken from [OV, §§4-5] and from Notation 6.1, for certain
subgroups of UT'3(4). Set

b b
Al:{(ég(f):e‘fze?s‘a’beﬁ} and AQZ{(éE%):eggeQS‘a,bGM}.
t

Thus A1 = 02(P1) and Ay = O2(P3), where P, P2 are the two maximal parabolic
subgroups in SL3(4) containing UT'3(4). Also,
Z(UT3(4)) =A1NAy = {6?3 | a e ]F4}

LEMMA C.6. Set S = UTs5(4), and Z = Z(S) = A1 N As.

(a) All involutions in S lie in Ay U Ay, and each elementary abelian subgroup of
S is contained in Ay or in As. For each g € ANZ (i = 1,2), Ca,_,(9) =
l9, As—i] = Z.

(b) For each Sy < S of index 2, [Sy, So] = [S,S] = Z.

PROOF. (a) For each g € AjNZ and h € Ay\Z, g = e%yel; and h = eSzed,
for some a,b,c,d € Fy with a,¢ # 0, and [g,h] = [efy,€55] = €35 # 1. Thus
Ca,(g) = |9, A2] = Z, and similarly for h.

If g € S\(A1 U Ay), then g = efyebsess for some a,b,c € Fy where a,b # 0,
and g% = €% # 1. Thus I(S) = A¥ U A¥. Since no element of A;~Z commutes
with any element of Ao\ Z, each elementary abelian subgroup of S is contained in
A or in A,.
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(b) Assume Sy < S has index 2. If Sp N A; < Ay, then S = A;1S5. So for any
g € (SoNA)NZ, [So,5] > [g9,5] = [9,5] = Z by (a). If SoN Ay = Ay, then
So N Ay < As, and a similar argument applies. O

The next lemma gives some criteria for characterizing UT3(4).

LEMMA C.7. Fiz a 2-group S of order 25, and set Z = Z(S). Assume that S is
special of type 2274 ie., Z = [S,5] = C2 and S/Z = Cj. Assume also that there
are subgroups By, By < S such that ByBy = S and By = By = Cy. If either

(a) [g,B1] = Z for each g € Bo~NZ, or
(b) there is Id # a € Aut(S) of odd order such that a(By) = By,
then S = UT3(4).

PROOF. Fix V; < B; which is complementary to Z; thus V; = C3. Let x: Vi X
Vo —— Z be the biadditive commutator map x (v, w) = [v, w].

(a) For each vy € V¥, [v2, B1] = Z by assumption, so x(—,vs) € Hom(Vi, Z) is
surjective, and hence an isomorphism. Thus x(v1,vs) # 1 for each pair (v1,v2) €
Vl# X VQ#, and hence x(v1,—) is an isomorphism for each v, € Vl#.

Fix any e; € V;#, and set e = [e;,ez] € Z#. Choose any isomorphism
p: Z — (Fy, +) such that p(e) = 1, and set

x(—e2) VA

oy

R |=

X(e:)f) VA

]F4 and P2 V2 IF4.

R |=

pP1: Vi

Set 4 = poxo (p;1 X pgl): Fy x Fy —— F4. By construction, p is biadditive,
u(1,a) = a = p(a,1) for each a € Fy, and p(a, —) and p(—, a) are isomorphisms for
each a # 0. So if a # 0,1, then p(a,a) ¢ {0,a}, p(1 +a,1+a) =1+ p(a,a) # 0,
and hence u(a,a) =1+ a = a? So u(x,y) = xy for all x,y € Fy.
p1(v1)

Now define a: S —— UT'3(4) by setting a(vy) = efy ", a(vg) = egg(UQ), and
alz) = eff:(f) for all v; € V; and z € Z. Then by the relation [efy, 53] = €% in

UT5(4), « is an isomorphism.

(b) Let a € Aut(S) be of odd order k > 1, and such that a(B;) = By. Since the
induced action of («) on (S/B1) x (B1/Z) x Z is faithful by Lemma A.9, k = |a| = 3.
Since Z =[S, S] = [S, B1], « induces a nontrivial action on S/B; or on By/Z (or
both).

Assume S 2% UT3(4). By the proof of (a), there are elements v; € Vi# such that
X(v1,v2) = 1. If a(v1) € v1Z, then « acts trivially on By/Z and hence nontrivially
on S/By, so S = Bi(vs,a(v2)), v1 € Z(S), contradicting the assumption that
Z(S)=27=15,5]. Thus a(v1) ¢ v1Z, and a(vs) ¢ v2B; by a similar argument.

Let v} € V; be the unique elements such that v] € a(v1)Z and v5 € a(vs)Bs.
Then V; = (v;,v)), a®(v1) € nviZ, o?(v2) € vavhBy, and x(vi,v2) = 1 =
x (v}, v5) = x(v1v], vavh). Thus [S,S] = (x(V1,V2)) = (x(v1,v5)) has rank 1, which
contradicts the assumption that [S, S] = Z. We conclude that S = UT3(4). O
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Fix w € Fy~{0,1}, and let (¢ — a) € Aut(F4) be the field automorphism.
Thus Fy = {0,1,w,®}. Define o, 71,0, 7 € Aut(UT3(4)) by setting
i
0

w((439) = (1%« (GF)) = (%)
o((435)) = (§35) r((350)) = (hie)

Thus vy and ~y; are conjugation by diag(w, 1,&) and diag(1,®, 1), respectively, while
¢ and T are restrictions of field and graph automorphisms of SL3(4). Set

Ty = (70, 79) and Iy =(y,7).
As subgroups of Aut(UT3(4)), Ty = T'y 2 X3 and [['g,I';] = 1.

LEMMA C.8. Let R be the group of automorphisms of UT3(4) which induce the
identity on UT3(4)/Z(UT3(4)). There are isomorphisms

Aut(UT3(4)) = R-(Ty x T1) = C8 x (X3 x I3),
Out(UT3(4)) = (R/Inn(UT5(4)))-(Do x T'1) 2 C3 x (83 x T3) .
Also, the group (¢, T) =2 C2 permutes freely a basis for Oo(Out(UT3(4))) = C35.

PROOF. Set S = UT3(4) for short. The above descriptions of Aut(S) and of
Out(S) are proven in [OV, Lemma 4.5(a)].

To see that (¢, 7) permutes freely a basis for Oz (Out(S)) = C3, let R; < Aut(S)
(i = 1,2) be the group of automorphisms which induce the identity on Az_; and on
S/Z(S). Thus R/Inn(S) = (R1/Auta,(S))x(Rz/Aut4,(S5)), and 7 exchanges these
two factors. So it suffices to prove that ¢ acts nontrivially on R;/Auta,(S) = C3;
which is easily checked. For example, let p € Ry be the automorphism p(ef,) =
elqpeds and p(esy) = €4, (and p|a, = Id). Then ¢ppe~1p~! sends el, to eiels and
%, to €45e%s, and is not in Inn(UT3(4)). O

Recall that we define U to be the family of 2-groups S such that there is T' < S
where T' = UT'3(4) and Cg/z(1r)(T/Z(T)) =T/Z(T).

LEmMA C.9. If S € U, then there is a unique normal subgroup T < S such that
T = UT3(4). For each Q@ < S with |Q| >4, Q > Z(T) and Q ¢ DQ.

ProOF. Fix T' < S such that T'= UT3(4) and Cg/z((T/Z(T)) = T/Z(T).
Set Z = Z(T) for short. For each Zy < Z of order 2, T/Zy = 211, s0 Z(T/Z,) =
Z|Zy, and Z(S/Zy) = Z/Zy since Cg,z(T/Z) =T/Z. If @ < S and |Q| > 4, then
QNZ>QNZ(S) #1 (Lemma A.2(a)), so either @ > Z or |QN Z| = 2. In the
latter case, set Zyp = Q N Z; then (Q/Zy) N Z(S/Zy) = (Q/Zo) N (Z/Zy) # 1 by
Lemma A.2(a) again, and hence Q > Z.

If @ € DQ, then Q = Dsg since it contains a normal subgroup isomorphic to
C3.S0Q/Z < Z(S/Z) < T/Z by Lemma A.2(a), and Q is abelian, a contradiction.

In particular, if U < S and U = UT3(4), then Z(U) = Z by the first paragraph,
applied with Z(U) in the role of Q. By Lemma C.8, and since the automorphisms
in R induce the identity on T/Z(T), S/T = Auts(T/Z) = C% for k < 2, and this
group acts on T/Z by permuting freely a basis. Hence T'/Z is the unique abelian
subgroup of order 2* in S/Z by Lemma A.4(a,b), so U = T. |



APPENDIX D

Actions on 2-groups of sectional rank at most 4

When studying automorphisms of 2-groups of sectional rank 4, it is natural to
begin by looking at subgroups of GL4(2).

PROPOSITION D.1. Assume V =F3, H < G = Aut(V), and S € Syl,(H).
(a) If Oy (H) # 1, then H is contained in one of the following subgroups:

NG(C3) = 23 X 23 NG(C3) = GL2(4) A CQ = (Cg X A5) el CQ

2 2 (D.1)
NG(Cg X Cg) =~ 3310, NG(Cg,) > (Ci5 1 Cy NG(C7) =~ (7 % Cs.

(b) If Oy (H) =1 and Oz(H) # 1, then Oz(H) is centric in H.

(¢) If Ox(H) =1 and O2(H) = 1, then H is isomorphic to one of the groups
A, for 5 < n <8, 35, X5, or GL3(2). There are two G-conjugacy classes
of subgroups isomorphic to As or X5, three classes of subgroups isomorphic to
GL3(2), and a unique class in each of the other cases.

(d) IfH = As orXs, then either V is the La(4)-module for H (the natural module
for SLe(4) = As), or V is the orthogonal module (the natural module for
S0 (2) & 35, and the reduced permutation module). In the former case, H
acts transitively on V¥, and Cs(V) = [S, V] has rank 2. In the latter case, H
acts on V# with orbits of length 5 and 10, rk(Cs(V)) = 1, and rk([S,V]) = 3.

(e) Assume that S = C3, and that S permutes a basis of V.
(e.1) If there are distinct involutions x1,x2 € S such that S £ O2(Cu(z;)),
then H = 23 X 23.
(e.2) If the three involutions in S are all H-conjugate, then H = Ay or As.

(f) Assume S = Dg. Assume there is a noncentral involution © € S such that
x ¢ O?(H), and such that Oz(Cg(z)) = (x). Then H = X3 Cy, X5, or
(A5 X Cg) X 02 = FL2(4)

(g) Assume S = Dg and O*(H) = H. Then H = Ag, Az, or GL3(2). The first
two are unique up to conjugacy, while Aut(V') contains three conjugacy classes
of subgroups isomorphic to GL3(2).

PROOF. Since G = Ag (cf. [Ta, Corollary 6.7]), this is equivalent to looking at
subgroups of Ag.

(a) Recall that each minimal normal subgroup of H is isomorphic to a product of
simple groups isomorphic to each other (cf. [G, Theorem 2.1.5]). So if O (H) # 1,
then for some odd prime p, H < Ng(A) for some elementary abelian p-subgroup

89
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A < H. Since |G| = 20-3%-5-7, either A € Syl (G) for p = 3,5,7, or A is in one of
the two G-conjugacy classes of subgroups of order 3.

(b) If Oy(H) =1, then the generalized Fitting subgroup F*(H) is a central prod-
uct E(H)O2(H), where E(H) is generated by nonabelian quasisimple subgroups (cf.
[A1, 31.12] or [AKO, Theorem A.13(b)]). If O2(H) # 1, then since the centralizer
of each involution in Ag (hence in H) is solvable, E(H) = 1, and F*(H) = O2(H)
is centric in H (cf. [A1, 31.13] or [AKO, Theorem A.13(c)]).

(c) If Ox(H) =1= Oy(H), then F*(H) # 1 is a product of nonabelian simple
groups. The nonabelian simple subgroups of G & Ag are well known. For example,
this follows from Burnside’s list [Bu, §146] of primitive permutation groups of
degree at most 8. Each simple subgroup of G is isomorphic to A, for 5 <n < 8 or
to GL3(2). Also, there are two G-conjugacy classes of subgroups isomorphic to As
(one each of degree 5 and 6), and three classes of subgroups isomorphic to GL3(2)
(two of degree 7 and one of degree 8).

Set Hy = F*(H). Since no product of two nonabelian simple subgroups is
contained in G (the centralizer of each nonabelian simple subgroup is solvable), Hy
is simple, and H < Ng(Hp). Since O3(H) =1, H 2 (C3 x As) x Cs.

(d) When H = As or X5, we already saw that there are only two possibilities (up
to isomorphism) for V' as an Fo[H]-module. Hence V' must be the Lo(4)-module or
the orthogonal module, as defined above. The other properties are immediate.

(e) Assume S = C% permutes a basis for V: either transitively or in two orbits
of length 2. If O (H) # 1, then H is contained in one of the normalizers listed
in (D.1). By inspection, H must be isomorphic to Co x X3 or ¥3 x 3. (If H <
Ng(A) = (C3 x As) x 2, where |A| = 3, then H £ C(A) since a Sylow 2-subgroup
of Cg(A) permutes no basis, so H = X3 x Cy or X3 x X3.) Hence the situation of
(e.2) cannot occur, and H = Y3 X X3 in the situation of (e.1).

Now assume Oy (H) = 1. If O2(H) # 1, then it is centric in H by (b). Since
H # S (that would satisfy neither of the conditions (e.1) nor (e.2)), H & Ay. If
O2(H) = 1, then H = A5 by (c) and since S = C2.

(f) Assume that S = Dg, and that there is a noncentral involution x € S such
that = ¢ O%*(H) and O9(Cy(z)) = ().

If Ox(H) # 1, then by (D.1) (and since S = Dg), H = (C5 x Ay) x Co,
(C3 x Ags) % Cy, or 230 C5. The first of these cannot occur by the assumption that
there be x € S with Oz(C(x)) = (z).

If Oy (H) =1 and Oz(H) # 1, then O2(H) is centric in H by (b), so H = Dg
or H = ¥4. In both cases, the centralizer of each involution in H is a 2-group,
which contradicts our assumption. If Oy (H) = O2(H) = 1, then by (c) (and since
O?(H) < H), H = %s.

(g) Since S = Dg and O?(H) = H, all involutions in S are H-conjugate by the
focal subgroup theorem, so Oy(H) = 1. By inspection of the different cases in
(D.1), Oz (H) = 1. So by (c), H = Ag, Az, or GL3(2). O

LEMMA D.2. Let S be a special 2-group of type 2274; i.e., [S,S] = Z(S) = C?
and S/Z(S) = C3. Assume o € Aut(S) is an automorphism of order 3 such that
Cs/z(s)(a) = 1 and [o, Z(S)] = 1. Then either S = Qg x Qg or UT3(4); or else
S/(z) =2 24 for two of the three elements z € Z(S)#, S/(z) = Qs x C3 for the
third, and there is a unique subgroup T < S with T = Cj.
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PROOF. Set Z = Z(S) and V = S/Z. Let 21, 20,23 € Z# be the three distinct
elements. Then « induces an automorphism «; of S/(z;) for each i = 1,2,3, and
hence S/(z;) is isomorphic to 2!7* or Qs x C3. (It is nonabelian since [S, 5] = Z,
and none of the other nonabelian central extensions, 2274, Cy x (C4 X, Qs), nOr
C2 x Dg, has an automorphism of order 3 of the required type.) There are five
a-invariant subspaces in V' of rank 2, of which two have nontrivial squares in 2£F+4,
and four have nontrivial squares in Qg x C3. For each i = 1,2,3, let 0(2;) be
the number of those subgroups the squares of whose elements are z;. The 6(z;)
all have the same parity since the sum of any two of them is 2 or 4, and hence
(0(21),0(22),0(z3)) is (up to permutation) one of the triples (1,1,1), (1,1,3), or
(0,2,2). In the first case, S = UT3(4) by Lemma C.7(a), while in the second,
S = Qg X Qg. In the third case, S is a pullback of two copies of 2_1:’4 as described
above, and the “exceptional” subspace lifts to a characteristic subgroup isomorphic
to Cj. g

LEMMA D.3. Fiz a 2-group S, and an elementary abelian subgroup Z < Z(S)N
Fr(S) such that S/Z = 2};"4, Qs X Qs, or UTs(4). Then Fr(S) is elementary
abelian, and Z(S)/Z = Z(S/Z).

PRrROOF. Let m: S —— S/Z be the projection, and set Z = T 1(Z(S/2)) >
Z(S). When S/Z = 21** or Qg x Qs, the relations [g2,g] = 1 for g € S suffice to
show that [S, Z] = 1, and hence that Z = Z(S).

Assume S/Z = UT3(4). We identify these two groups, and use the notation
of 6.1 (also used in Appendix C) for elements of UT'5(4). For g € S/Z,let g€ S
denote some element in 7= 1(g). If g,h € S/Z are such that (g, h) = Cy x Cy, then
[G.h] € Z, s0 [§,h?] = 1 and [g,3%] = 1. Since (g2, h?) = Z(S/Z), this shows that
[§,Z] = 1 for such g. For each u,v € Fy, (etyels, eisesy) = Cy x Cy (by Lemma
6.3(a) or by the relation [e%,, e4s] = €*¥), so [¢%eYs, Z] = 1. Sine §/Z = UTs(4) is
generated by such elements, [S, Z] =1,and Z = Z(S).

Thus Z = Z(S) = Fr(S) (so Z(5/Z) = Z(S)/Z) in all cases. Hence [S, 5] is
elementary abelian, since [g, h]?> = [g,h?] = 1 for g,h € S. Also, Fr(S) =[S, S]Z
since Fr(S/Z) = [S/Z,S/Z], and hence Fr(S) is also elementary abelian. O

We say that a finite group G is strictly 2-constrained if O2(G) is centric in G;
equivalently, F*(G) = O2(G). Let 2Consy denote the class of all finite groups
which are strictly 2-constrained with sectional 2-rank at most 4. Throughout the
rest of the chapter, we list a few results about the structure of such groups. Some
of these are taken entirely or in part from [GH].

LEMMA D4 ([GH, I1.4.1]). Assume G € 2Consy is such that G/O3(G) = As.
Then O(G) is isomorphic to C§ or Dg xc, Qs.

LEMMA D.5. Assume G € 2Consy is such that G/O3(G) = GL3(2). Choose
S € Syly(G), and set Q@ = O2(G) 4 S. Then Q = C3, C3, or Cy x C3.
(a) IfQ=C3, then S = UT4(2) or S has type Mis, and in either case, r(S) = 4.
(b) If Q = C3, then either Q is decomposable as an Autg(Q)-module, or Q is
indecomposable with an invariant subgroup of rank 1 or 3. If Q is decomposable,
then [G,Q] = C3 and G/|G,Q] = SLy(7). If Q is indecomposable, then for
each involution a € Autg(Q), rk([a, Q]) = 2.
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(c) Assume Q = Cy x C3, and set V.= Q1(Q). Then V is decomposable as
an Autg(Q)-module with invariant submodule [G, V] of rank 3, Q/Fr(Q) is
indecomposable, and G/|G,V] = Cy x ¢, SLa(7).

PRrROOF. Set T' = Outg(Q) = GL3(2) for short. The possibilities for @ are

listed in [GH, Proposition I1.3.1].
(a,b) Point (a) is shown in [GH, Lemma II.3.4], and the first statement in (b)
in [GH, Lemma I1.3.7]. If Q = Cj and is I'-decomposable, then since G' does not
have a direct factor Cy (that would imply r(S) = 5 by (a)), G/[G, Q] = SLy(7) by
[GH, Lemma I1.3.8].

If @ = C4 and the conclusion of the last statement in (b) is not true, then
tk([e, Q]) = 1 (and hence rk(Cg(a)) = 3) for each involution o € T since the
involutions are all I'-conjugate. Also, I' & GLs3(2) is generated by three involu-
tions (e.g., the three elementary matrices ej2, e3, and esq). So rk(Co(T')) > 1
and rk([T', Q]) < 3, with equality in each case since T' acts faithfully. Thus @ is
decomposable.

(c) Assume Q = Cy x C3, and set V = Q1(Q) and Z = Fr(Q). By [GH, Lemma
11.3.12], G/V = Cy x GL3(2), and hence Q/Z is I'-indecomposable by (b).

Fix an involution @ € T, and choose g € Q~\V. Then [a,g] € V, and
,g] € Cy(a) since o® = Id. Since Q/Z is indecomposable, rk(Cq,z(®)) =
= 1k(Cy/z(a)) by (b), so Cq(a) <V, [, gv] # 1 for each v € V, and hence
,g] ¢ [, V]. Thus Cy () > [, V], which by (b) implies that V is decomposable.

Thus V = Z x W, where G/Q = GL3(2) acts faithfully on W. In particular,
W =[G, V], and Q/[G, V] = Cy4. So G/[G,V]is a (central) extension of Q/[G, V] =
Cy by G/Q = GL3(2), O*(Q)/[|G,V] = SLy(7) by (b) (and since G/V = Cy x
GL3(2)), and thus G/[G,V] = Cy x ¢, SLa(7). O

LEMMA D.6. If G € 2Consy, then G/O2(G) % 6.

PROOF. This is shown in [GH, Theorem II.B], but since the proof there is
somewhat long and indirect, we give a different argument here. Assume G is strictly
2-constrained with G/O2(G) = ¥g; we will show that G has sectional 2-rank at least
5. Set @ = 02(G). If tk(Q/Fr(Q)) > 4, then we are done, so upon replacing G by
G /Fr(Q), we can assume that Q = C3.

Fix a surjection ©¥: G — Y with kernel @). Since there is a unique conjugacy
class of subgroup Y in GL4(2) (Proposition D.1(c)), we can identify @ with the
group of subsets of even order in {1,2,3,4,5,6}, modulo the relation of identifying
each subset with its complement (and where 1 induces the obvious action of Xg).
Consider the subgroups

T=1{((12),(34),(56)) <% and T =Tn As.

Then T = C3, T = C2, and T acts via the identity on Qo = (12,34) and on
Q/Qo. There is a subgroup I' < ¥4 such that I' & A5 and T € Syly(I") (defined via
the permutation action of A5 on its six Sylow 5-subgroups, or on the six pairs of
opposite vertices in an icosahedron).

Set Gy = o (T"), H = ¢v~Y(T) and H = ¢~1(T). Then Gy = Q x T, since
by [GH, Lemma I1.2.6], any extension of C4 by Ajs splits. Since Cg(T) = Qo has
rank 2, @ is the La(4)-module for I' (Proposition D.1(d)), so Gy is isomorphic to
a parabolic subgroup in SL3(4), and H = UT3(4). Let R be the unique subgroup
R < H such that R # Q and R = C3 (see Lemma C.6(a)).

[o
2
[o
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Let z € H be such that ¢(z) = (12)(34)(56). Then ¢, € Aut(H) induces the
identity on Qg, Q/Qo, and H/Q. Also, ¢,(R) = R since Q,R < H are the only
subgroups isomorphic to Cj. Since [z, H] < Q, [z, R] < RN Q = Qo. Thus ¢,
induces the identity on R/Qq and on Q/Qy, and hence on H/Z(H) = QR/Qo.

Let y € G be such that ¢(y) = (135)(246). Since [z,y] € Ker(¢)) = Q,
[2,y] = [z,y]> = 1 (mod [z,Q] < Qo). Since Cq/q.(y) = 1, this implies that
22 € Qo, and hence that H/Qo = (Q/Qo) x T = C3. O

Two more lemmas of this type are needed. By (C3 x C3) x Cy, we mean the
semidirect product where Cy acts faithfully on C5 x Cs.

LEMMA D.7. Assume G € 2Consy is such that G/O2(G) is isomorphic to
Y3010y or (C3 x C3) x Cy. Then O2(G) is isomorphic to one of the groups C3,
Qs X, Qs, or Qs X Qs.

PROOF. Set Q = O2(@G). Since 331 Cy = (C3 x C3) x Dg contains a subgroup
isomorphic to (C3 x C5) x Cy, it suffices to prove this when G/Q = (C5 x C3) x Cy.
Note that G/@Q contains no normal subgroup of order 3. Set H = O?(G),s0 that
H/Q = Cg X Cg.

Set Z = Fr(Q) and V = Q/Z. By Lemma A.9, H/Q acts faithfully on V, so
rk(V) = 4. Let V4,V2 < V be the two subgroups of rank 2 in which are normal in
H/Z. Thus V =V; x V,. Let

q:V=VxVy,——7Z and b: VXV —Z7

be the quadratic and bilinear maps where q(zZ) = 22 and b(2Z,yZ) = [z, y].

Case 1: Assume Z = Fr(Q) is elementary abelian and [H, Z] # 1. Thus H/Q acts
nontrivially on Z, and since G/@Q contains no normal subgroup of order 3, H/Q
must act faithfully on Z. Hence Z/Cz(H) has rank at least 4. Since r(Q) < 4,
we have rk(Z) = 4 and Cz(H) = 1. Let Zy, Zs < Z be the two subgroups of rank
2 normalized by H. For ¢ = 1,2, let q;: V — Z; and b;: V x V — Z; be the
composites of g and b with projection to Z;.

For each i,j = 1,2, there is g € H of order 3 which acts nontrivially on both V;
and Z;. Since q;|v,: V; = Z; commutes with the action of g, it is either a bijection
or zero, and in particular is linear. Hence q|y, and q|y, are both linear. They are
both nonzero, since otherwise the preimage of V7 or of V5 in () would have rank 6.
Thus they are injective. Also, Im(q|v,) + Im(qlv,) is normalized by the action of
G/@Q, hence must be equal to Z, and thus q|y, @ q|v, is an isomorphism. Since Vi,
Vo, Z1, and Zs are the only subgroups of rank 2 in V or Z normalized by H, we
can assume (after reindexing if necessary) that q(V1) = Z; and q(V2) = Zo.

Thus, for ¢ = 1, 2, there is g € G of order 3 which acts trivially on V; and Z; and
nontrivially on V3_; and Z3_,. Hence for each v € V;, b;(v,w) € Z; is independent
of we Vii, and since Hwevs#,» b;(v,w) =1 (b; is bilinear), b;(v, Va_;) = 1. Thus
b;(V1, Vo) =1for i =1,2,s0 b(V7,V2) =1, and q is linear.

This proves that Q = Cf. Hence G contains a subgroup isomorphic to T' =
(Cy x C4) 2 Cy, which is impossible since 7(T') = 5. So this case is impossible.
Case 2: Next assume Z = Fr(Q) is elementary abelian and [H,Z] = 1. If Z =1,
then Q = O3, so assume Z # 1. Since q commutes with the actions of H/Q on
V =Q/Z and on Z, it sends all elements of Vl# to the same element z; € Z, and
all elements of VQ# to the same element 25 € Z.
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Let g € H be an element of order 3 which acts nontrivially on V5 and trivially
on Vs, and fix w € Va. Then b(v,w) € Z is constant for v € Vi (since the three
elements are permuted transitively by g), Hvevl# b(v,w) = 1 since b is bilinear,
and so b(Vq,w) = 1.

Thus 6(V1,Vs) = 1, and Z = Fr(Q) = (Im(q))) = (21, 22). So either z; = 2,
and Q = 2}r+4, or z1 # z9 and @ = Qg X Qs.

Case 3: Now assume Z is not elementary abelian, and assume G is a minimal
example of this type. Set Zy = Fr(Z). By minimality, Zy is elementary abelian
and central, and Q/Zy = 2_1|_+4 or Qg X Qg by Steps 1 and 2. But then Z = Fr(Q)
is elementary abelian by Lemma D.3, a contradiction. (]

LeEMMA D.8. Assume G € 2Consy is such that G/O3(G) = D1g. Then Oz(G)
is isomorphic to C§ or 2174, or is of type Us(4).

PROOF. Set @ = O2(G) for short. Fix o,7 € Aut(Q) such that |o| = 5,
72 € Inn(Q), and ([o],[r]) = Outg(Q) = D1g. Then Oute(Q) acts faithfully on
Q/Fr(Q) by Lemma A.9, Cq /mq)y(0) = 1, and rk(Cq/mr() (7)) = 2. So o acts on
Q/Fr(Q) with three free orbits of involutions each of which contains an element
of Cq/rr(@)(7) and hence is T-invariant. Fix ai,az,as, a4, a5 € Q whose classes a;
generate Q/Fr(Q) (hence generate @), whose product is trivial in Q/Fr(@Q), and
with indices (modulo 5) chosen such that o(a;) = a;41 and 7(a;) = a_,.

Assume Cg(o) # 1. Then by [GH, Lemma 1.3.9], Q is special of type 2k+4
where 1 < k < 4. Set Z = Fr(Q) = Z(Q) = C5. Then Cz(c) # 1, and hence
[0,Z] = 1 since tk(Z) < 4. Thus there are z,y,z € Z such that x = a?, y =
(a;a;41)? = [ai, ai1], and z = (a;a;12)* = [ai, a;12] for all i (indices again taken
modulo 5). Then 1 = (ajazazaqas)?® = 2° H1§i<j§5[ai7aj] = xyz, s0 Z = Fr(Q) =
(z,vy, 2) has rank at most 2. By [GH, Lemma 1.3.9] again, Q is isomorphic to 2!
or is of type Usz(4).

Now assume Cg(c) = 1. Assume G and @ are minimal such that Q % C3,
and set Z = Fr(Q). By minimality, Z < Z(Q) and is elementary abelian. Also,
rk(Z) > 4 since o acts nontrivially, and rk(Z) = 4 since r(Q) = 4. If @ is abelian,
then Q = C#, G has Sylow subgroups isomorphic to (Cy x Cy)1Cy of sectional rank
5, s0 G ¢ 2Consy.

Thus @ is nonabelian, and so [@,Q] = Z. For each i, set z; = [a;, a;+1a,-1]
Then o(z;) = zi41, and x1xaz32425 € Cz(0) = 1. Also,

€T = [aiaaiJrlaifl} = [ai;aifl}'a([aivaifl])
= [auaiwai—ﬂ = [ai,ai—ﬂ'02([ai,ai—2})-

Since Cz(o) = 1, this implies that [a;,a;—1] = x;412i—2 and [a;, a;—2] = Tip1Tit2
for each i. In particular, Z = [Q, Q] = (x1,...,25). Also, (a;)? € Cz(c%7), so
either (a;)? = 1, or one of the following holds:
(01)2 =T; = (ai+1ai—1)2 = (ai+2ai—2)2 =T

(%‘)2 = Ti41Ti—1 —> (ai+1ai71)2 =

(a:i)* = Tigori o =  (@i420;_2)° = 1.
If any element of @~ 7 has order 2, then () contains an abelian subgroup of rank
5. If (a;)? = z;, then Z{a;,a;110;—1) = Qs x C3. In either case, r(Q) > 5, and so
G ¢ 2Consy. O
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