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In an earlier paper [JMO], we gave a complete description of all homotopy classes
of self maps of the classifying space BG, when G is any compact connected simple Lie
group. In this paper, we extend those results to the case where G is any compact con-
nected Lie group, but only considering self maps of BG which are rational equivalences.
Most of the paper deals with self maps of the p-adic completions BGp̂; and the results
are extended to global maps only at the end.

The first complete description of [BG,BG] for any nonabelian connected Lie group
G was given by Mislin [Ms], for the group G = S3. More recently, in [JMO] (and based
on earlier work by Hubbuck [Hu] and Ishiguro [Is]), we extended Mislin’s result to a
description of [BG,BG] for an arbitrary compact connected simple Lie group G. The
assumption that G be simple was however crucial: examples were given in [JMO, §7] to
show that a similar, simple description of all self maps is unlikely for arbitrary connected
G.

When G is simple, any f : BGp̂ −→ BGp̂ is either a Q-equivalence or nulhomotopic.
The most natural setting for obtaining similar strong results for semisimple or connected
groups seems to be to restrict attention to the Q-equivalences. For example, we will see
in Corollary 2.6 below that for connected G, two Q-equivalences f, f ′ : BGp̂ −→ BGp̂

are homotopic if and only if H∗(f ;Q) = H∗(f ′;Q). This is not the case for arbitrary
self maps, as was shown in [JMO, Example 7.1].

Throughout this paper, p will be a fixed prime, G a fixed compact connected Lie
group, T⊆G a maximal torus, and W = N(T )/T the Weyl group. The monoid of
homotopy classes of Q-equivalences BGp̂ −→ BGp̂ will be denoted [BGp̂, BGp̂]Q, and
the subgroup of homotopy equivalences [BGp̂, BGp̂]h. Let T∞⊆T be the subgroup of
elements of p-power order. A homomorphism φ : T∞ −→ T∞ will be called admissible

[AM, p.5] if it is equivariant with respect to some endomorphism of W ; i.e. if there is
some φ : W −→ W such that φ(wt) = φ(w)φ(t) for all w ∈W and t ∈ T . The monoid of
admissible epimorphisms from T∞ to itself will be denoted AdmEpi(T∞, T∞).

Our first step (Propositions 1.2 and 1.4) is to construct a homomorphism of monoids

Θ : [BGp̂, BGp̂]Q −−−−→ AdmEpi(T∞, T∞)/W,

where W acts on the admissible maps by composition. This is just the p-adic version
of the construction of Adams & Mahmud [AM, Corollary 1.8] (in the special case of
self maps). The map Θ is characterized by the property that Θ(f) = φ·W for any
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f ∈ [BGp̂, BGp̂]Q and any φ : T∞ ։ T∞ such that f |BT≃Bφ. And in this situation, f
is a homotopy equivalence if and only if φ is an isomorphism.

The main result in Section 2 (Theorem 2.5) is that Θ is an injection, and its image
is closed in the p-adic topology. The precise image of Θ is then described in Theo-
rem 3.4. The formulation of of Theorem 3.4 is somewhat technical, but it leads to a
very simple result about homotopy equivalences (Corollary 3.5): Θ restricts to a group
monomorphism

Θh : [BGp̂, BGp̂]h −−−−→ NAut(T∞)(W )/W,

which is an isomorphism except when p = 2 and G contains a direct factor of the form
SO(2n+1)×Sp(n). We also show that all components of map(BGp̂, BGp̂)Q have the
homotopy type of BZ(G)p̂.

At the end of the paper, Sullivan’s arithmetic square for completions and localizations
is applied to obtain the analogous results for Q-equivalences from BG to itself.

Maps f : BGp̂ −→ BGp̂ (or, equivalently, BG −→ BGp̂) are studied here using the
p-local approximation of BG constructed in [JMO, §1]. More precisely, we showed there
that BG is Fp-homology equivalent to the homotopy direct limit of classifying spaces BP
for certain p-toral subgroups P⊆G. The details of this approximation will be recalled
in Section 2 below.

Our general reference for completion techniques and results is Bousfield & Kan
[BK]. For any space X , we let X p̂ denote the Fp-completion of X . Then
map(Y,X p̂)≃map(Y ′, X p̂) for any Fp-homology equivalence Y −→ Y ′ [BK, II.2.8].
Also, if X has finite type and π1(X) is a finite p-group, then π1(X p̂) ∼= π1(X), and

πi(X p̂) ∼= πi(X)p̂ ∼= πi(X) ⊗ Ẑp for each i ≥ 2. This last statement follows from
[BK, VI.5.2] when X is 1-connected; and holds in the general case since the sequence

(X̃)p̂ −→ X p̂ −→ K(π1X, 1) is a homotopy fibration (see [BK, II.5.2(iv)]). Here, X̃
denotes the universal cover of X .

For any pair X, Y of spaces, and any map f : X −→ Y , map(X, Y )f will denote the
space of maps X −→ Y which are homotopic to f .

Partial results similar to those given here have also been obtained by Dietrich Not-
bohm [No2] and Jesper Møller [Mø].

We would like to thank Bill Dwyer for suggesting the formulation of some of the
results in Section 3.

Section 1

We first recall the description by Dwyer-Zabrodsky [DZ] and Notbohm [No1] of the
mapping spaces map(BP,BG), when P is p-toral and G is an arbitrary compact Lie
group.

For any pair G and G′ of compact Lie groups, define

Rep(G,G′) := Hom(G,G′)/ Inn(G′);

the set of G′-conjugacy classes of homomorphisms from G to G′. For any ρ : G −→ G′,
CG′(ρ) will denote the centralizer in G′ of Im(ρ).
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Theorem 1.1. Fix a p-toral group P and a compact connected Lie group G. Let T⊆P
denote the identity component of P , and let T∞⊆T be the set of elements of p-power
order. Then there exists a dense subgroup P∞⊆P such that P∞∩T = T∞; and any two
such subgroups are conjugate by some element of T . Furthermore, if we regard P∞ as
a discrete group:

(i) The maps

Rep(P∞, G)
B

−−−−→
∼=

[BP∞, BGp̂]
res

←−−−−
∼=

[BP,BGp̂]

are bijections.

(ii) For any ρ : P∞ −→ G, the pairing BCG(ρ)×BP∞ −→ BG induces a homotopy
equivalence

êρ : BCG(ρ)p̂
≃

−−−−→ map(BP∞, BGp̂)Bρ

(
≃ map(BP,BGp̂)Bρ

)
.

Proof. This theorem is implicit in the work of Notbohm [No1]. In fact, it is much more
elementary than his results, which involve the analogous description of maps from BP
to BG (without completion).

A choice of P∞ is equivalent to a choice of splitting map for the extension
1 −→ T/T∞ −→ P/T∞ −→ P/T −→ 1. Hence the existence of P∞ will follow if
H2(P/T ;T/T∞) = 0, and its uniqueness will follow if H1(P/T ;T/T∞) = 0. And
these cohomology groups vanish because P/T is a finite p-group and T/T∞ is uniquely
p-divisible.

By construction, P∞ is the union of an increasing sequence P1 ⊆ P2 ⊆ P3 ⊆ . . .
of finite p-groups, and hence BP∞ ≃ hocolim−−−−−→

n

(
BPn

)
. For each n ≥ 1, [BPn, BGp̂] ∼=

Rep(Pn, G), and
map(BPn, BGp̂)Bρ ≃ BCG(ρ)p̂ (1)

for each ρ : Pn −→ G, by a theorem of Dwyer and Zabrodsky [DZ]. In particular,
each component of map(BPn, BGp̂) has finite fundamental group, so the appropriate

lim←−
1π1(−) all vanish, and

[BP∞, BGp̂] ∼= lim←−[BPn, BGp̂] ∼= lim←−Rep(Pn, G) ∼= Rep(P∞, G).

Also, map(BP∞, BGp̂) is the homotopy inverse limit of the spaces map(BPn, BGp̂);
and so by (1)

map(BP∞, BGp̂)Bρ ≃ (map(BP∞, BG)Bρ) p̂ ≃ BCG(ρ)p̂

for any ρ : P∞ −→ G. And map(BP∞, BGp̂)≃map(BP,BGp̂), since the inclusion
BP∞ →֒BP is a Fp-homology equivalence (cf Feshbach [Fe, Proposition 2.3]). �

By Theorem 1.1, for any p-toral P and any compact Lie group G, any two choices
P∞, P

′
∞⊆P are conjugate by some element t∈T (the identity component of P ). Also, if
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tP∞t
−1 = P∞, then t has p-power order in T/(Z(P )∩T ); and so conjugation by t is an

inner automorphism of P∞. It follows that there is a unique natural way to identify the
sets Rep(P∞, G) and Rep(P ′

∞, G) (independently of the choice of t); or in other words
that we can regard Rep(P∞, G) as depending only on P and not on P∞.

An element of Rep(P∞, G) — i. e., a homomorphism from P∞ to G defined up to con-
jugacy in G — will be called a quasirepresentation from P to G. We let QRep(P,G) de-
note the set of all quasirepresentations ϕ : P∞ −→ G (note that the prime p is implicit in

this definition). For example, if T is an n-dimensional torus, then QRep(T, T )∼=Mn(Ẑp).

In these terms, Theorem 1.1(i) says that [BP,BGp̂]∼=QRep(P,G) for any p-toral P
and any compact Lie group G. This is implicit in [No1], where Notbohm also proves
the (much harder) corresponding global result that [BP,BG]∼=Rep(P,G).

The next proposition (except for part (iii)) is analogous to a theorem of Adams &
Mahmud [AM, Corollary 1.11], but stated here for self maps of the p-completion of BG.
The main point is that any self map of BGp̂ lifts to some essentially unique self map
of BT p̂. This applies, in fact, to arbitrary maps between classifying spaces of distinct
compact connected Lie groups (see [AM,Theorem 1.1]), but the following (simpler) case
suffices for our purposes here.

Proposition 1.2. Fix a compact connected Lie group G, let T⊆G be a maximal torus,
and letW = N(T )/T be the Weyl group. Then for any Q-equivalence f : BGp̂ −→ BGp̂,
there exists an epimorphism φ : T∞։T∞, inducing a Q-equivalence fT = Bφ : BT p̂ −→
BT p̂, and such that the following square commutes up to homotopy:

BT p̂
fT

−−−−→
≃

BT p̂

yincl

yincl

BGp̂
f

−−−−→
≃

BGp̂.

(1)

Furthermore, the following hold.

(i) For any other f ′
T = Bφ′ : BT p̂ −→ BT p̂ for which (1) commutes up to homotopy,

there exists w∈W such that φ′ = conj(w) ◦ φ.

(ii) φ is admissible: there is an automorphism β∈Aut(W ), which permutes the re-
flections in W , and such that φ ◦ conj(w) ≃ conj(β(w)) ◦ φ for all w∈W .

(iii) fT is a homotopy equivalence if and only if f is.

Proof. Let T∞ be the subgroup in T of elements of p-power order. By Theorem 1.1
above, there is a homomorphism φ : T∞ −→ G such that f |BT≃Bφ : BT p̂ −→ BGp̂.
After composing φ with an inner automorphism of G, if necessary, we may assume that
Im(φ)⊆T . So from now on, we regard φ as a homomorphism T∞ −→ T∞. Set

fT = Bφ : BT p̂ ≃ (BT∞)p̂ −→ BT p̂;

then square (1) commutes up to homotopy.
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Let ι : T −→ G be the inclusion. For any w∈N(T ), the commutative diagram

BT p̂
w∗−−−−→ BT p̂

Bφ
−−−−→

=fT
BT p̂

yBι

yBι

yBι

BGp̂
w∗−−−−→
≃Id

BGp̂
f

−−−−→ BGp̂.

shows that B(ι ◦ φ ◦ conj(w))≃B(ι ◦ φ). By Theorem 1.1 again, this means that

φ ◦ conj(w) = conj(β(w)) ◦ φ for some β(w) ∈ N(Im(φ)). (2)

Set n = dim(T ). Consider the group H2(BT p̂;Q) ∼= (Q̂p)
n, regarded as a Q̂p[W ]-

representation. By (2), Ker(H2(fT ;Q)) is W -invariant. Also, if Gi is a simple factor in
G with maximal torus Ti = T∩Gi, then H2(BTip̂;Q) is W -irreducible (cf. [Bb1, p. 82,
Proposition 5(v)]). Thus, if H2(fT ;Q) is not an isomorphism, then either it vanishes
on some such summand H2(BTip̂;Q), or it fails to be injective on H2(BT p̂;Q)W =
H2(BZ(G)p̂;Q).And in either case, this contradicts the assumption that f is a Q-
equivalence.

This shows that H2(fT ;Q) is an isomorphism. In particular, since T∞ ∼= (Z[ 1p ]/Z)n,
φ sends T∞ onto itself with finite kernel, and hence fT = Bφ is a Q-equivalence. Also,
since φ : T∞ −→ T∞ is onto, and since W acts effectively on T∞, the element β(w)∈W
which satisfies (2) is unique (for any w∈W ); and β : W −→ W is an automorphism.
Then φ is β-equivariant by construction, and this finishes the proof of (ii).

Assume now that f ′
T : BGp̂ −→ BGp̂ is such that Bι◦fT≃Bι◦f

′
T . Write f ′

T = Bφ′,
where φ′(T∞) = T∞. Then by Theorem 1.1, φ and φ′ are conjugate via some element
g∈G. In particular, gT∞g

−1 = T∞, and so g∈N(T ). In other words, if we set w =
gT∈W , then φ = conj(w) ◦ φ′, and hence fT≃f

′
T ◦w∗. This proves point (i).

It remains to prove point (iii): that fT is a homotopy equivalence if and only if f is.
If f is a homotopy equivalence, then let fT be a lifting of f−1 to BT p̂. The composites

fT ◦fT and fT ◦fT are homotopy equivalences by (i) (the uniqueness of the lifting), and
so fT is also a homotopy equivalence.

Now assume that fT is a homotopy equivalence. Each term in the fibration G/T i−→
BT −→ BG is simply connected, so the completed sequence G/T p̂ −→ BT p̂ −→ BGp̂ is
again a fibration [BK, VI.6.5]. Since square (1) commutes up to homotopy, fT restricts to
a map fG/T : G/T p̂ −→ G/T p̂. Also, i∗ : H∗(G/T ;Q) −→ H∗(BT ;Q) is injective by [Br,
Theorem 20.3(b)], and H∗(G/T ;Z) is torsion free by [Bt]. So for each n, Hn(fT ;Z) is
an automorphism of the lattice Hn(BT ;Z) which sends the sublattice Hn(G/T ;Z) into
itself, and hence it restricts to an automorphism of Hn(G/T ;Z). Thus, H∗(fG/T ;Z)
is an automorphism, and fG/T is a homotopy equivalence. Since fT is a homotopy
equivalence by assumption, f must also be a homotopy equivalence. �

Proposition 1.2 says that there is a well defined map from the monoid of Q-
equivalences BGp̂ −→ BGp̂ to the monoid of admissible epimorphisms T∞։T∞ modulo
the action of the Weyl group. This will be stated more precisely in Proposition 1.4
below, and the map will be shown to be injective in Section 2.
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In [JMO, Theorem 3.4], we saw that when G is simple and p|||W |, then any Q-
equivalence BGp̂ −→ BGp̂ is a homotopy equivalence. This was in turn a generalization
of Ishiguro’s theorem [Is], that unstable Adams operations on BG are defined only
for degrees prime to |W |. The next proposition describes what happens for general
connected G.

Proposition 1.3. Let G be a compact connected semisimple Lie group such that p
divides the order of the Weyl group of each simple component of G. Then any Q-
equivalence f : BGp̂ −→ BGp̂ is a homotopy equivalence.

Proof. Fix a Q-equivalence f : BGp̂ −→ BGp̂. Let fT = Bφ : BT p̂ −→ BT p̂ be the map
of Proposition 1.2, where φ : T∞ −→ T∞ is β-equivariant for some β∈Aut(W ). Since W
is finite, there is some r > 0 such that φr is W -equivariant. Upon replacing f by f r, we
can assume that φ itself isW -equivariant. We will show that φ is an isomorphism: then
fT is a homotopy equivalence, and f is a homotopy equivalence by Proposition 1.2(iii).

Set n = rk(G) = dim(T ). Then H2(Bφ;Q) = H2(fT ;Q) is a W -equivariant au-

tomorphism of H2(BT p̂;Q) ∼= (Q̂p)
n, and sends H2(BT p̂;Z) ∼= (Ẑp)

n to itself. As

a W -representation, H2(BT p̂;Q) ∼= Q̂p ⊗Q H2(BT ;Q) splits as a sum of distinct ir-
reducible summands, one for each simple factor in G (cf. [Bb1, p. 82, Proposition
5(v)]). Hence, for each simple factor Gi⊳G with maximal torus Ti = T∩Gi, H2(Bφ;Q)

restricted to H2(BTip̂;Q) is multiplication by some constant ki ∈ Ẑp.

We must show that p∤ki for all i. Assume otherwise: fix a simple factor Gi⊳G such
that p|ki, set Ti = T∩Gi, and let Wi = N(Ti)/Ti be the Weyl group of Gi. Choose

any w∈NGi
(Ti)rTi of p-power order (p|||N(Ti)/Ti| by assumption), and let t∈Ti be

any element conjugate in Gi to w. Set P = 〈Ti, w〉, a p-toral subgroup. By Theorem
1.1, f |BP∞ ≃ Bφ for some φ : P∞ = 〈Ti∞, w〉 −→ G. Then φ(P∞) = P∞, since the
restriction of φ sends Ti∞ onto itself and is Wi-equivariant (and Wi acts effectively).

Also, since w and t are conjugate in G, φ
i
(w) and φ

i
(t) are conjugate in G for all i (by

Theorem 1.1 again). Since φ(t) = tki and p|ki, we have φm(t) = 1 for some m, and
hence φm(w) = 1. On the other hand, φ : Ti∞ −→ Ti∞ is Wi-equivariant and onto, and

Wi acts effectively on Ti∞; so φ(wTi∞) = wTi∞. And this implies that φ
i
(w) 6= 1 for

all i; which is a contradiction. �

So far, we have associated, to each Q-equivalence f ∈ [BGp̂, BGp̂]Q, an admissible
map φ : T∞։T∞. When formulating later results, it will be convenient to work with
the integral lattice in T instead of with T itself.

Write T = L(T )/Λ, where L(T ) ∼= Rn is the Lie algebra (or universal covering group)
for T , and where

Λ = Ker[exp : L(T ) ։ T ]

is the integral lattice. Set Λp̂ = Ẑp ⊗ Λ = lim←−(Λ/p
nΛ).

Consider the standard isomorphism Hom(T, T )∼=Hom(Λ,Λ), which sends φ : T −→ T
to L(φ)|Λ. We want to define the corresponding isomorphism in the p-adic situation.
One way to do this is to set

L(T∞) = lim←−

(
· · · −→ T∞

p·
−→ T∞

p·
−→ T∞

)
∼= (Q̂p)

n
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(where n = dim(T )); so that Λp̂ = Ker[L(T∞) ։ T∞]. Any φ∈End(T∞) lifts to the
map L(φ) = lim←−(φ)∈End(L(T∞)). The isomorphism

Hom(T∞, T∞)
∼=

−−−−→ Hom(Λp̂,Λp̂) ∼=Mn(Ẑp)

is now defined by sending φ∈End(T∞) to L(φ)|Λp̂. Equivalently, this identification can
be obtained by identifying H2(BT p̂;Z) with Λp̂.

Under this identification, the monoid of epimorphisms from T∞ to itself is identified
with Aut(L(T∞)) ∩ End(Λp̂). An admissible epimorphism is by definition one which is
equivariant with respect to some endomorphism of the Weyl group W ; and if we regard
W as a subgroup of Aut(T∞) this allows us to identify:

AdmEpi(T∞, T∞) ∼= NAut(L(T∞))(W ) ∩ End(Λp̂).

Also, if we let AdmIso(T∞, T∞) denote the group of admissible isomorphisms, then

AdmIso(T∞, T∞) ∼= NAut(T∞)(W ).

As before, [BGp̂, BGp̂]Q denotes the monoid of homotopy classes of Q-equivalences of
BGp̂ to itself, and [BGp̂, BGp̂]h denotes the subgroup of homotopy equivalences. The
following reformulation of Propositions 1.2 and 1.3 was suggested to us by Bill Dwyer
(see also [DW, Proposition 5.5]).

Proposition 1.4. There is a well defined homomorphism of monoids

Θ : [BGp̂, BGp̂]Q −−−−→ AdmEpi(T∞, T∞)/W ∼= [NAut(L(T∞))(W ) ∩ End(Λp̂)]/W,

where Θ(f) = H2(fT ;Q) = L(φ) for any Q-equivalence f : BGp̂ −→ BGp̂ and any lifting
of f to fT = Bφ : BT p̂ −→ BT p̂. Furthermore, Θ restricts to a group homomorphism

Θh : [BGp̂, BGp̂]h −−−−→ AdmIso(T∞, T∞)/W ∼= NAut(T∞)(W )/W

∼= NAut(Λp̂)(W )/W ;

and

[BGp̂, BGp̂]h = Θ−1
(
NAut(T∞)(W )/W

)
∼= Θ−1

(
NAut(Λp̂)(W )/W

)
.

Proof. By definition, an epimorphism φ : T∞ ։ T∞ is admissible if and only if
H2(Bφ;Q) = L(φ)∈Aut(L(T∞)) lies in the normalizer of W . Hence Θ and Θh

are well defined by Proposition 1.2. And by Proposition 1.2(iii), a Q-equivalence
f : BGp̂ −→ BGp̂ is a homotopy equivalence if and only if Θ(f) is an automorphism of
Λp̂. �
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Section 2

Throughout this section, we concentrate on showing that Θ and Θh are injective.
This requires the machinery developed in [JMO].

Recall that a compact Lie group P is called p-toral if the identity component P0 is
a torus, and if P/P0 is a finite p-group. If Wp = Np(T )/T is a Sylow p-subgroup of
W , then Np(T ) is a maximal p-toral subgroup of G in the strong sense that any p-toral
subgroup is conjugate to a subgroup of Np(T ) (cf. [JMO, Lemma A.1]). We now fix
(for the rest of this section) such a maximal p-toral subgroup Np(T ).

Proving the injectivity of the map Θ above means showing that two Q-equivalences
BGp̂ −→ BGp̂ are homotopic if they agree on BT . This will be done using an approxi-
mation of BG by a limit of classifying spaces of p-toral subgroups. So we must first show
that maps f, f ′ : BGp̂ −→ BGp̂ which are homotopic on BT are homotopic on BNp(T );
and hence (by maximality) on BP for all p-toral P⊆G. This was shown in [JMO] in the
special case where f, f ′ are homotopy equivalences; and the next proposition extends
this to the case of Q-equivalences.

Proposition 2.1. Let G be any compact connected Lie group. Assume that f, f ′ :
BGp̂ −→ BGp̂ areQ-equivalences, and that f |BT≃f ′|BT . Then for any p-toral subgroup
P⊆G, f |BP≃f ′|BP .

Proof. Since Np(T ) is a maximal p-toral subgroup, it suffices to show that
f |BNp(T )≃f

′|BNp(T ).

By Theorem 1.1, there are quasihomomorphisms ρ, ρ′ : Np(T ) −→ G such that
f |BNp(T )≃Bρ and f ′|BNp(T )≃Bρ

′. Since f |BT≃f ′|BT , we may assume that ρ|T =
ρ′|T .

Let G′⊳G be the product of those simple factors for which p divides the order of
the Weyl group. Then it suffices to show that ρ and ρ′ are conjugate after restriction
to Np(T )∩G

′. In other words, we are reduced to the case where G = G′. But then f
and f ′ are homotopy equivalences by Proposition 1.3, and so f |BNp(T )≃f

′|BNp(T ) by
[JMO, Proposition 3.5]. �

We now recall some definitions from [JMO]. A p-toral subgroup P⊆G is called p-

stubborn if N(P )/P is finite and contains no nontrivial normal p-subgroups. For exam-
ple, if G = SO(3) and p = 2, then the subgroup P ∼= Z/2 × Z/2 is p-stubborn since
the only normal 2-subgroup of N(P )/P ∼= Σ3 (the symmetric group of order 6) is the
trivial group. Note that a maximal p-toral subgroup is always p-stubborn.

We let Rp(G) denote the category whose objects are orbits G/P for p-stubborn
P⊆G, and where Mor(G/P,G/P ′) is the set of all G-maps between the orbits. By
[JMO, Proposition 1.5], Rp(G) is a finite category, in the sense that it contains finitely
many isomorphism classes of objects, and has finite morphism sets.

One of the main results in [JMO] is that the map

hocolim−−−−−→
G/P∈Rp(G)

(
EG/P

)
∼= EG×G

(
hocolim−−−−−→

G/P∈Rp(G)

(
G/P

))
−−−−→ BG
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(induced by projection) is an Fp-homology equivalence. In particular,

[BGp̂, BGp̂] ∼= [BG,BGp̂] ∼=
[

hocolim−−−−−→
G/P∈Rp(G)

(
EG/P

)
, BGp̂

]
.

This makes it natural to study the restriction map

R : [BGp̂, BGp̂] −−−−→ lim←−
G/P∈Rp(G)

[EG/P,BGp̂] ∼= lim←−
G/P∈Rp(G)

[BP,BGp̂]

∼= lim←−
G/P∈Rp(G)

QRep(P,G)

(where the last step follows from Theorem 1.1).

An Rp-invariant quasirepresentation of G is defined here to be a homomorphism
ρ : Np(T )∞ −→ G′ into some compact connected Lie group G′ which extends (via re-
striction and conjugation) to an element in the inverse limit lim←− QRep(P,G′). Thus, for

any f : BG −→ BG′
p̂, f |BNp(T )≃Bρ for some unique Rp-invariant quasirepresentation

ρ.

For any Rp-invariant quasirepresentation ρ : Np(T )∞ −→ G′ of G,

map(BG,BG′
p̂)[ρ]

will denote the space of “maps of type ρ”: i. e., the space of maps f : BG −→ BG′
p̂

such that f |BNp(T )≃Bρ. The brackets are added to emphasize that this is a (possibly
empty) union of connected components in map(BG,BG′

p̂). We next need to describe
the relationship between the homotopy groups of map(BG,BG′

p̂)[ρ], and those of the
spaces map(BP,BG′

p̂)Bρ|P for p-stubborn P⊆G. When doing this, it is convenient to
use the following functors.

Definition 2.2. For any Rp-invariant quasirepresentation ρ : Np(T )∞ −→ G′ of G,
where G′ is connected, define a contravariant functor Πρ

∗ : Rp(G) −→ Z(p)-mod by setting

Πρ
∗(G/P ) := π∗

(
map(EG/P,BG′

p̂)Bρ|P

)
∼= π∗(BCG′(ρ(P∞)))p̂

for each p-stubborn P⊆G.

When making Πρ
∗ into a well defined functor to abelian groups, there are, of course

problems with choosing base points, and with possibly nonabelian fundamental groups.
This is discussed in detail in Wojtkowiak [Wo]. In all of the cases which occur in this
paper, the centralizer CG′(ρ(P∞)) is abelian, and so these difficulties do not arise.

It is convenient to think of the higher derived functors of inverse limits as “cohomology
groups” of a category. For this reason, and to simplify notation, we write Hi(C;F ) =
lim←−

i(F ) for any contravariant functor F : C −→ Ab defined on a small category C. As
one might expect, the obstructions to the restriction map R displayed above being a
bijection are the higher limits of the functors Πρ

∗.
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Theorem 2.3. Fix a compact connected Lie group G′, and an Rp-invariant quasirepre-
sentation ρ : Np(T ) −→ G′. Then map(BG,BG′

p̂)[ρ] is nonempty if Hi+1(Rp(G); Π
ρ
i ) =

0 for all i ≥ 1, and is connected if Hi(Rp(G); Π
ρ
i ) = 0 for all i ≥ 1.

Proof. See Wojtkowiak [Wo], who deals more generally with spaces of the form
map(hocolim−−−−−→

(
Xα

)
, Y ). �

Theorem 2.3 is a special case of a second quadrant spectral sequence, which converges
to the homotopy of map(hocolim−−−−−→

(
Xα

)
, Y )[f̂ ] for f̂ ∈ lim←− [Xα, Y ]. See Bousfield & Kan

[BK, Propositions XII.4.1 and XI.7.1] and Bousfield [Bf] for details.

We want to show, for a pair f, f ′ : BGp̂ −→ BGp̂ of Q-equivalences, that f≃f ′ if
f |BT≃f ′|BT . We have already seen that f, f ′ ∈ [BG,BGp̂][ρ] for the sameRp-invariant
quasirepresentation ρ; and so they are homotopic by Theorem 2.3 if the higher limits
Hi(Rp(G); Π

ρ
i ) all vanish.

In fact, it will suffice to consider the case where ρ is the inclusion. In this case, we
write Π∗ for Πρ

∗. Thus, for any G/P in Rp(G),

Πi(G/P ) = πi (map(BP,BGp̂)incl) ∼= πi(BCG(P ))p̂ ∼= πi−1(CG(P ))p̂

by Theorem 1.1. Also, for any p-stubborn P⊆G, CG(P ) = Z(P ) [JMO, Lemma 1.5(ii)],
and is in particular abelian. The identity component of CG(P ) is thus a torus, and
hence πi(BCG(P )) = 0 for i ≥ 3. In other words, Πi = 0 for all i ≥ 3. And for i = 1 or
2,

Πi(G/P ) ∼= πi−1(Z(P ))

for each G/P in Rp(G).

We thus need the following computation of the higher limits of the functors Πi.

Theorem 2.4. Fix a compact connected Lie group G. Then if π1(G) is torsion free
and i ≥ 1, or if G is arbitrary and i ≥ 2,

H∗(Rp(G); Πi) ∼=

{
πi−1(Z(G))p̂ if ∗ = 0

0 if ∗ > 0.
(1)

Proof. See [JMO, Theorem 4.1 and Sections 5–6]. When i = 1, this is shown in [JMO]
only when G is simply connected. But if G′ ⊳ G is the maximal semisimple compo-
nent, then G′ is simply connected by assumption, Rp(G) ∼= Rp(G

′) [JMO, Proposition
1.6(i,ii)]; and Π1 is the same on both categories. �

In fact, Theorem 2.4 holds for any compact connected Lie group G. For i ≥ 2, this
is proven in [JMO]. For i = 1, a proof of this was given in the first version of [JMO],
before Notbohm showed us how to get by with the result in the simply connected case.

We are now ready to apply these techniques. The following theorem really consists
of two separate results. But we combine them here, since there is quite a bit of overlap
in the proofs.
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Theorem 2.5. The map

Θ : [BGp̂, BGp̂]Q −−−−→ NAut(L(T∞))(W )/W

defined in Proposition 1.4 is an injection of monoids, and its image is closed in the p-adic
topology.

Proof. The theorem will be shown in three steps. The injectivity of Θ is shown in Step
2, and the fact that Im(Θ) is closed in Step 3. The first step is somewhat more technical,
and is needed (in part) to get around the problem that the higher limits Hj(Rp(G); Πi)
have been completely computed only when π1(G) is torsion free.

Step 1 Let n be the exponent of π1(G/Z(G)0), where Z(G)0 is the identity com-

ponent of the center. Let G̃
γ
−→ G be the finite covering such that π1(G̃) = n · π1(G)

(i.e., the subgroup of all n-th powers in π1(G)). Then G̃ splits as a product G̃ = S×G′,
where S is a torus and G′ is simply connected. For any f : BGp̂ −→ BGp̂, π2(f) sends

π2(BG̃p̂) (⊆ π2(BGp̂)) to itself, so that the composite

BG̃p̂
Bγ

−−−−−→ BGp̂
f

−−−−−→ BGp̂ −−−−−→ K([π1(G)/π1(G̃)]p̂, 2)

is nullhomotopic. Since the fibration BG̃ −→ BG −→ K(π1(G)/π1(G̃), 2) is still a fibra-

tion after completion (cf. [BK, VI.6.5]), this shows that f lifts to a map f̃ : BG̃p̂ −→ BG̃p̂.

Set T̃ = γ−1(T ): a maximal torus in G̃. A homomorphism φ : T∞ −→ T∞ lifts to at

most one homomorphism φ̃ : T̃∞ −→ T̃∞, since two liftings of φ differ by an element of
Hom(T∞,Ker(γ)) = 0.

Write G′ = G1×G2, where G2 is the product of those simple factors for which p

divides the order of the Weyl group. Then T̃ = S×T1×T2, where Ti is a maximal torus

in Gi; and Np(T̃ ) = S×T1×Np(T2) for some maximal p-toral subgroup Np(T2)⊆G2. If

P⊆Np(T̃ ) is a p-stubborn subgroup of G̃, then since N(P )/P is finite (by definition of
p-stubborn), P must have the form P = S×T1×P

′ for some p-stubborn P ′⊆G2.

Now let ρ : Np(T ) −→ G be any Rp-invariant quasirepresentation, and set fP =
B(ρ|P ) : BP −→ BGp̂ for each p-toral P⊆Np(T ). In other words, the fP define an ele-
ment ρ̂ ∈ lim←− [BP,BGp̂]. By [BK, XII.4.1], map(BGp̂, BGp̂)[ρ] is the homotopy inverse

limit (over Rp(G)) of the spaces map(BP,BGp̂)fP .

For each p-stubborn P⊆G we write P̃ = γ−1(P ). By [JMO, Proposition 1.6(i)], the

correspondence G/P ←− G̃/P̃ induces an isomorphism of categories Rp(G) ∼= Rp(G̃).

Also, Theorem 1.1 applies to show that map(BP,BGp̂)fP≃map(BP̃ ,BGp̂)fP ◦Bγ for
each P . Upon taking homotopy inverse limits [BK, XII.4.1], we now get a homotopy
equivalence

map(BGp̂, BGp̂)[ρ]
−◦Bγ
−−−−→

≃
map(BG̃p̂, BGp̂)[ρ◦γ|P̃ ]. (1)

In particular, Bρ extends to a map BGp̂ −→ BGp̂ if and only if it extends to a map

BG̃p̂ −→ BGp̂; and the map defined on BGp̂ is unique if and only if it is unique when

defined on BG̃p̂.
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Step 2 Fix a pair f, f ′ : BGp̂ −→ BGp̂ of Q-equivalences such that f |BT≃f ′|BT .

We want to show that f≃f ′. Choose liftings of f and f ′ to f̃ , f̃ ′ : BG̃p̂ −→

BG̃p̂. Then f̃ |BT̃ ≃ f̃ ′|BT̃ (by the uniqueness of the lifting). By Proposition 2.1,
f |BNp(T )≃f

′|BNp(T )≃Bρ for some ρ∈QRep(Np(T ), G). In other words,

f, f ′ ∈ map(BGp̂, BGp̂)[ρ].

If we can show that f̃ ≃ f̃ ′, then f◦Bγ≃Bγ ◦ f̃≃Bγ ◦ f̃ ′≃f ′◦Bγ, and (1) applies to

show that f≃f ′. So to simplify the notation, we can just assume that G = G̃.

Let ρ∈QRep(Np(T ), G) be an Rp-invariant quasirepresentation such that
f |BNp(T )≃Bρ (Theorem 1.1). We may assume (after conjugating, if necessary) that
ρ(Np(T )∞)⊆Np(T )∞.

Recall (Step 1) that G factors as a product G = S×G1×G2, where S is a torus,
where G1 and G2 are simply connected, and where p divides the orders of the Weyl
groups of all simple summands of G2 but not of any of the simple summands of G1. Let
f2 denote the composite

f2 : (BG2)p̂ ֒−−−→ BGp̂
f

−−−−→ BGp̂
proj
−−−−→ (BG2)p̂.

Then f2 is a Q-equivalence, and is a homotopy equivalence by Proposition 1.3. Upon
composing with 1×f−1

2 , we can thus assume that f |BNp(T2) is homotopic to the inclu-
sion; or equivalently that ρ|Np(T2) is the inclusion of Np(T2) into G.

Now fix a p-stubborn subgroup P⊆G. We may assume that P⊆Np(T ), and hence
(by Step 1) that P = S×T1×P

′ for some P ′⊆Np(T2). In particular, ρ(P ) = P ; and
so upon referring to Definition 2.2, we see that Πρ

∗ = Π∗. Theorem 2.4 now applies to
show that Hi(Rp(G); Π

ρ
j ) = 0 for all i, j > 0. And so f≃f ′ by Theorem 2.3.

Step 3 It remains to show that Im(Θ) is closed in NAut(L(T∞))(W )/W in the p-
adic topology. So consider an element ω = lim

i→∞
(ωi), where ωi·W∈ Im(Θ) for each

i. Let φ, φi : T∞։T∞ be the corresponding admissible maps. We may assume that
φ = lim(φi) in Hom(T∞, T∞) (i. e., not only mod W ).

For each i, choose an extension fi : BGp̂ −→ BGp̂ of Bφi (i. e., ωi = Θ(fi)); and

let f̃i : BG̃p̂ −→ BG̃p̂ be a lifting. Then f̃i|BT̃≃Bφ̃i, where φ̃i∈End(T̃∞) is a (unique)
lifting of φi. Let p

m be the exponent of Ker(γ). If φi and φj agree on all pk+m-torsion

in T , for any k > 0, then φ̃i and φ̃j agree on all pk-torsion in T̃ . Hence, since the φi
converge to φ, the φ̃i converge to some φ̃∈End(T̃∞), and φ̃ is a lifting of φ.

Using Theorem 1.1, choose elements ρi∈QRep(Np(T̃ ), G̃) such that f̃i|BNp(T̃ )≃Bρi.
The ρi are Rp-invariant (by Theorem 1.1 again). We may assume (since the ρi are well-

defined only up to conjugation) that ρi | T̃∞ = φ̃i and Im(ρi)⊆Np(T̃ )∞ for each i. And

since φ̃i(T̃∞) = T̃∞, a counting argument shows that Im(ρi) = Np(T̃ )∞.

Now write Np(T̃ )∞ = ∪∞n=1Pn, where P1⊆P2⊆P3 ⊆ . . . are finite p-groups. For each
n, the set

{ρi|Pn : i ≥ 1} ⊆ Rep(Pn, Np(T̃ ))
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is finite (since Rep(Pn, Np(T̃ )) is finite: this follows easily from [MZ, Theorems 1.10.5
& 5.3]). Hence, we can successively choose elements ρni, where {ρn1, ρn2, . . .} is a
subsequence of {ρn−1,1, ρn−1,2, . . .} for each i (and ρ0i = ρi); and where ρni|Pn and
ρnj |Pn are conjugate for each n and each i, j.

Now set σn = ρnn for each n. Upon replacing the σn by conjugate homomorphisms,
if necessary, we may assume that σn|Pm = σn|Pn for each m≥n. The σn thus converge

to a homomorphism σ : Np(T̃ )∞ −→ G̃; and σ|T̃∞ is conjugate to φ̃ by construc-

tion. For any p-toral subgroup P⊆Np(T̃ ) and any g ∈ G̃ for which gPg−1⊆Np(T̃ ),

(σn|gP∞g
−1)◦ conj(g) is (for each n) conjugate in G̃ to σn|P∞; and so the same holds

for σ. In other words, σ is an Rp-invariant quasirepresentation of G̃.

By Step 1 again, Np(T̃ ) = S×T1×Np(T2), and each p-stubborn subgroup P⊆Np(T̃ )
of G has the form P = S×T1×P

′ for some p-stubborn P ′⊆G2. Also, σ = ρ′ × ρ′′,
where ρ′∈End((S×T1)∞) and ρ′′∈Aut(Np(T2)∞). Set ρ = 1×ρ′′: also an Rp-invariant

quasirepresentation of G̃. For any p-stubborn P ⊆ G̃ contained in Np(T̃ ), ρ(P ) = σ(P )

by construction, and hence Πσ
∗
∼= Πρ

∗ as functors defined on Rp(G̃).

We next want to show that Πρ
∗
∼= Π∗ as functors onRp(G̃). Fix a p-stubborn subgroup

P⊆Np(T̃ ). By [JMO, Lemma 1.5], CG(P ) = Z(P )⊆P . We claim that CG(ρP ) =
Z(ρP ). By [JMO, Proposition A.4], π0(CG(ρP )) is a p-group, and so CG(ρP ) is a union
of p-toral subgroups. Hence, if CG(ρP ) 6⊆ ρP , we can choose g∈CG(ρP ) r ρP of p-
power order, and thus such that 〈g, ρP 〉 is still p-toral. So after conjugating (in G), we

may assume that 〈g, ρP∞〉 ⊆ Np(T̃ )∞. But then ρ−1(g)∈CG(P ) = Z(P ), and this is a
contradiction. Thus, ρ induces isomorphisms

ρP : Π∗(G/P ) ∼= π∗(BZ(P ))
∼=

−−−−→ π∗(BZ(ρP )) ∼= Πρ
∗(G/P )

for each G/P in Rp(G); and this induces an isomorphism Πρ
∗
∼= Π∗ of functors on

Rp(G̃).

Theorem 2.4 can now be applied to show that

Hj(Rp(G̃); Π
σ
i )
∼= Hj(Rp(G̃); Π

ρ
i )
∼= Hj(Rp(G̃); Πi) = 0

for all i, j ≥ 1. Hence map(BG̃p̂, BG̃p̂)[σ] is nonempty (and connected) by Theorem 2.3.

Choose some element f̃∈map(BG̃p̂, BG̃p̂)[σ].

Recall that we are working with the finite covering G̃
γ
−→ G of Step 1. By con-

struction, σ | T̃∞ = φ̃, and hence σ(Ker(γ)) = Ker(γ). So σ factors through
a unique map τ∈End(Np(T )∞), and τ is also an Rp-invariant quasirepresentation.

Since Bγ ◦ f̃∈map(BG̃p̂, BGp̂)τ̂◦γ 6= ∅, formula (1) above applies to show that
map(BGp̂, BGp̂)τ̂ 6= ∅. And for any f∈map(BGp̂, BGp̂)τ̂ , f |BT p̂≃Bτ |BT≃Bφ, so
Θ(f) = ω, and we are done. �

The following corollary to Theorem 2.5 is immediate.

Corollary 2.6. For any pair of Q-equivalences f, f ′ : BGp̂ −→ BGp̂, f≃f
′ if and only

if f |BT≃f ′|BT , if and only if H∗(f ;Q) = H∗(f ′;Q).
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Proof. We have just seen that f≃f ′ if and only if f |BT≃f ′|BT . And f |BT≃f ′|BT
if and only if H∗(f ;Q) = H∗(f ′;Q) by a theorem of Notbohm [No1, Proposition 4.1].
�

Using the same techniques, we get the following description of the individual con-
nected components of the space of Q-equivalences. This result has also been proven
recently by Dwyer & Wilkerson [DW2, Theorem 1.3], using quite different methods.

Proposition 2.7. For any compact connected Lie group G, and any Q-equivalence
f : BGp̂ −→ BGp̂, the natural homomorphism Z(G) × G −→ G induces homotopy
equivalences

BZ(G)p̂
≃

−−−−→ map(BGp̂, BGp̂)Id
f◦−
−−−−→

≃
map(BGp̂, BGp̂)f .

Proof. We first show that the first map is a homotopy equivalence. By the obstruction
theory of Wojtkowiak [Wo] (more precisely, by the version of his result given in [JMO,
Theorem 3.9]), this will follow immediately if the formula for Hj(Rp(G); Πi) in Theorem
2.4 (formula (1)) holds for all i > j ≥ 0, and i = j ≥ 2. So the only case which it remains
to check is that

H0(Rp(G); Π1) := lim←−
Rp(G)

(Π1) ∼= π1(BZ(G)p̂). (1)

Whether or not this holds, we have

π1
(
map(BGp̂, BGp̂)Id

)
∼= lim←−

Rp(G)

(Π1) ∼= lim←−
G/P∈Rp(G)

π0(Z(P ))(p).

So by [JMO, Theorem 4.2], (1) does hold if G is simple. If G is a product of a torus and
simple groups Gi, then Rp(G) is the product of the Rp(Gi) [JMO, Proposition 1.6(ii)];
and so (1) again holds. Finally, if G is arbitrary, then there are monomorphisms

π1(BZ(G)) ∼= π0(Z(G))  lim←−
G/P∈Rp(G)

π0(Z(P ))

and

(
lim←−

G/P∈Rp(G)

π0(Z(P ))
)/

π0(Z(G))  lim←−
G/P∈Rp(G)

π0(Z(P/Z(G))) ∼= π0(Z(G/Z(G))) = 1

(since Rp(G/Z) ∼= Rp(G) by [JMO, Proposition 1.6(i)]). So (1) also holds in this case.

To see that the second map is a homotopy equivalence, let Gs ⊆ G be the maximal
semisimple subgroup, and note that Rp(Gs) ∼= Rp(G) (any p-stubborn subgroup of G
contains the connected component of Z(G), and its intersection with Gs is p-stubborn
in Gs). Hence the obstructions to (f ◦ −) being a homotopy equivalence are the same
for G and Gs, and we can assume that G = Gs is semisimple. In this case, we can write

BGp̂ ≃ (BG1)p̂ × (BG2)p̂ and f ≃ f1 × f2 :
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where p divides the orders of all simple components of G1 but of none of the simple
components of G2. (The simple components for which p does not divide the order of
the Weyl groups all have center and fundamental group of order prime to p.) Then
f1 is a homotopy equivalence by Proposition 1.3, and we can assume f1 = Id. Write
f |BNp(T ) ≃ Bρ. The only p-stubborn subgroups of G2 are the maximal tori, so Πρ

∗
∼=

Π∗, and (f ◦−) is a homotopy equivalence by the Bousfield-Kan spectral sequence again.
�

Section 3

The main goal of this section is to describe the images of the maps

Θ : [BGp̂, BGp̂]Q  NAut(L(T∞))(W )/W

and
Θh : [BGp̂, BGp̂]h  NAut(Λp̂)(W )/W

of Proposition 1.4. The image of Θ is described explicitly in Theorem 3.4. In Corollary
3.5, we then show that Θh is an isomorphism if p 6= 2, or if G contains no factor of the
form Sp(n)×SO(2n+1). The following example shows why this restriction is necessary.

Example 3.1. Assume that p = 2, and that G = Sp(n)×SO(2n+ 1) for some n ≥ 1.
Let T = T1×T2 be the product of the standard maximal tori; where

T1 = Im
[
α : Rn −→ Sp(n)

]
and T2 = Im

[
β : Rn −→ SO(2n+ 1)

]
,

and
α(θ1, . . . , θn) = diag(e2πiθ1 , . . . , e2πiθn) ∈ Sp(n),

β(θ1, . . . , θn) =

(
cos(2πθ1) −sin(2πθ1)
sin(2πθ1) cos(2πθ1)

)
⊕ · · · ⊕

(
cos(2πθn) −sin(2πθn)
sin(2πθn) cos(2πθn)

)
⊕ (1).

Let Λ = Λ1 × Λ2 ⊆ T̃ be the integral lattice for T , and let φ∈Aut(T )∼=Aut(Λ) be the
involution which switches the factors (sending α(θ1, . . . , θn) to β(θ1, . . . , θn) and vice
versa). Then φ is an admissible map for G, but Bφ does not extend to any self map of
BG2̂. In other words,

Θh : Aut(BGp̂) −−−−→ NAut(Λp̂)(W )/W

is not onto in this case.

Proof. Note first that φ is admissible, since Sp(n) and SO(2n+1) have the same Weyl
groups under this identification of their maximal tori. If Bφ could be extended to a
self map of BG2̂, then it would be a homotopy equivalence by Proposition 1.2(iii), and
hence would restrict to a homotopy equivalence between BSp(n)2̂ and BSO(2n + 1)2̂.
But BSp(n)2̂ is 3-connected, while π2(BSO(2n+ 1)2̂) ∼= Z/2. �

The roots in G play an important role in both the statements and the proofs of the
results later in this section. In the next proposition, we collect some of the facts about
roots which will be needed later. But we first set up some notation.
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Let R denote the set of roots of G: regarded as a subset of L(T )∗ = Hom(L(T ),R).
Then the Lie algebra L(G), under the adjoint (conjugation) action of T , splits as a sum

L(G) = L(T )⊕
∑

±θ∈R

Vθ,

where each Vθ is a 2-dimensional irreducible T -representation with character χθ : T −→
S1, and where χθ◦ exp(v) = exp(2πi · θ(v)) for each θ∈R and each v∈L(T ). (Note that
Vθ defines θ only up to sign.) In other words, the roots are defined to be the liftings
to Hom(L(T ),R) of the irreducible characters for the adjoint action of T on L(G). In
particular, since Λ = Ker[exp : L(T ) −→ T ], θ(Λ) ⊆ Z for each θ∈R; and θ(v) ∈ Z (for
v∈L(T )) if and only if exp(v) commutes with all elements of exp(Vθ).

Proposition 3.2. Let R be the set of roots of G, regarded as a subset of
Hom(T, S1)∼=Hom(Λ,Z) ⊆ L(T )∗. Let W = N(T )/T be the Weyl group of G, with
the induced action on L(T ). Let Rs ⊆ R be the set of simple roots with respect to
some fixed Weyl chamber. Assume that L(T ) has been given a fixed W -invariant inner
product. Then the following hold.

(i) W is the group generated by the reflections in the hyperplanes Ker(θ) for θ∈Rs.

Conversely, for any w∈W , if w is a reflection (if T̃w has codimension one), then T̃w is
the kernel of some root θ∈R.

(ii) R =W ·Rs: each root is in the W -orbit of some simple root.

(iii) The inclusion T⊆G induces a surjection Λ ∼= π1(T ) ։ π1(G).

(iv) If Z(G) = 1, then Λ = {x∈L(T ) : R(x) ⊆ Z}.

(v) For each θ ∈ R, there exists a unique element vθ ∈ Λ such that vθ⊥Ker(θ) and
θ(vθ) = 2 (vθ is the nodal vector of θ in the notation of Bourbaki). And π1(G) ∼= Λ/〈vθ :
θ∈R〉.

(vi) For any θ ∈ R, Λ∩Ker(θ)⊥ = Z·vθ or Z · 1
2̄
vθ, where the second possibility occurs

if and only if G contains a direct factor SO(2n + 1) for some n ≥ 1, and θ is a short
root of such a factor.

Proof. The first statement in (i) — thatW is generated by reflections by simple roots —
is shown in [Ad, 5.13(iv) & 5.34]. To see the second statement, note that if wT∈N(T )/T

is a reflection in T̃ , then w∈CG(S) (the centralizer) for some codimension one subtorus
S⊆T . By [Bb2, p.31, Lemma 2], CG(S) % 〈T, w〉 is connected (and nonabelian). So it
must have at least one root θ∈R, and Ker(θ) = S.

Point (ii) is shown in [Bb1, p.154, Prop. 15]. Point (iii) is shown in [Ad, 5.47] or
[Bb2, p.34, Prop. 11]. Point (iv) is shown in [Ad, Proposition 5.3], and is equivalent to
[Bb2, Proposition 8(b)].

Fix some θ∈R, let vθ∈L(T ) be the unique element such that vθ⊥Ker(θ) and
θ(vθ) = 2, and let wθ∈N(T ) be such that wθT∈W is the reflection in Ker(θ). Then
wθ∈Hθ := CG(exp(Ker(θ))), andHθ is a connected subgroup by [Bb2, p.31] again. Also,
L(Hθ) = L(T )⊕Vθ in the notation above; and so Z(Hθ) = Ker(χθ) = exp(θ−1(Z)).
In particular, if v∈L(T ) and θ(v) = 1; then exp(v)∈Z(Hθ), vθ = v − wθ(v), and so
exp(vθ) = [exp(v), wθ] = 1.
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This shows that vθ ∈ Λ = Ker(exp) for each θ∈R. The formula π1(G) ∼= Λ/〈vθ : θ∈R〉
is shown in [Ad, 5.47 & 5.48] and [Bb2, p.34, Prop. 11].

It remains to check point (vi). Fix a root θ∈R. Since θ(Λ) ⊆ Z and θ(vθ) = 2, we
must have

Λ ∩Ker(θ)⊥ = Z · vθ or Z · 12̄vθ.

Assume that the second possibility occurs; i. e., that 1
2̄
vθ ∈ Λ. Fix any other root

η∈Rr{±θ}. Since the projection of η to the line R·θ is <η,θ>
<θ,θ> ·θ, and since (R·θ)⊥(vθ) =

0, we have
< η, θ >

< θ, θ >
=

(
< η, θ >

< θ, θ >
· θ

)
(12̄vθ) = η(12̄vθ) ∈ Z.

In other words, the projection of η to R·θ is an integral multiple of θ. A quick check
of the different possibilities (cf. [Ad, Proposition 5.25]) shows that either η ⊥ θ, or the
angle between η and θ is 45◦ or 135◦ and θ is the shorter root.

By point (ii), we can assume that θ∈Rs. The Dynkin diagram of G thus contains a
node which is not connected to any other node by single or triple lines; and which, if
connected to another node by a double line, represents the shorter of those two roots.
The classification of simple Lie groups now shows that G contains a normal simple
subgroup of type Bn (i. e., H∼=SO(2n+ 1) or Spin(2n+ 1)) for some n ≥ 1.

Assume H⊳G, where H∼=SO(2n+1) or Spin(2n+1). Identify L(T∩H) with Rn via
the map β of Example 3.1. Let xi∈Hom(Rn,R) denote projection to the i-th coordinate,
and let ǫi ∈ Rn denote the i-th element of the standard basis. Then the integral lattice
of H is Zn if H∼=SO(2n+ 1), and < ǫi ± ǫj > if H∼=Spin(2n+ 1). The roots of H are
the elements ±xi and ±xi±xj (for i6=j). Then vθ = ±2ǫi if θ = ±xi, and vθ = ±ǫi ± ǫj
if θ = ±xi±xj . Hence 1

2̄
vθ ∈ Λ = Zn if and only if H∼=SO(2n+ 1) and θ = ±xi.

Thus, 1
2̄vθ ∈ Λ for some θ∈R if and only if θ is a short root of some simple component

H⊳G, where H∼=SO(2n+ 1) for some n ≥ 1. Since Z(SO(2n+ 1)) = 1, this subgroup
is in fact a direct factor of G. �

We now regard a root θ∈R⊆Hom(Λ,Z) also as an element of Hom(Λp̂, Ẑp) or

Hom(L(T∞), Q̂p) (recall that L(T∞) ∼= Q⊗Z Λp̂). We can assume that the W -invariant
inner product on L(T ) takes integer values on Λ (take any integer valued inner product

on Λ and sum over its W -orbit). Hence the inner product extends to a Q̂p-valued inner
product on L(T∞). Note that the cosine of angles between elements is no longer defined
in this setting (since there’s no unique choice of square roots); but the square of the
cosine is defined. It will be convenient to say that two angles α1, α2 are “the same up
to sign” if cos2(α1) = cos2(α2); i. e., if α1 = α2 or α1 = π − α2.

Lemma 3.3. Let ω∈Aut(L(T∞)) be any admissible map; i. e., ω lies in the normalizer
of the Weyl group W⊆Aut(Λ)⊆Aut(L(T∞)). Then ω permutes the components of
L(T∞) corresponding to simple factors of G. The dual map ω∗ sends each root in G to

some Q̂p-multiple of another root; and preserves the angles between roots up to sign.
Furthermore, after replacing ω by w ◦ ω for some w ∈ W if necessary, we may assume
that ω permutes any given set of simple roots of G (again up to scalar multiples);
and hence induces an automorphism of the Dynkin diagram (though possibly reversing
arrows).
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Proof. By Proposition 3.2(i), the kernels of the roots ofG are precisely those hyperplanes
in L(T ) (hence in L(T∞)) for which the corresponding reflection lies in W . Since ω is
equivariant with respect to some automorphism ofW , it permutes the reflections, hence
the kernels of roots, and hence the roots themselves up to scalar multiple.

Write Q ⊗ Λ = V0×V1 × . . .×Vm, where V0 comes from the torus factor in G, and
the V1, . . . , Vm from the simple factors. Then V0 = (Q ⊗ Λ)W , and the spaces C ⊗Q

V1, . . . ,C⊗QVm are distinct irreducible representations ofW (cf. [Bb1, p.82, Proposition

5(v)]). Hence the Q̂p[W ]-representations Vip̂ = Q̂p ⊗Q Vi (1≤i≤m) are also irreducible.
Since ω is equivariant with respect to some automorphism of W , it must permute the
Vip̂. Furthermore, since the W -invariant inner product on each irreducible summand is
unique up to scalar multiple, ω preserves the inner product on each of the V1p̂, . . . , Vmp̂

up to scalar multiple (and Vip̂⊥Vj p̂ for i6=j). Since each root θ∈R lies in one of the
(Vip̂)

∗ for 1≤i≤m, this shows that ω preserves angles between roots up to sign.

Now choose a permutation σ ∈ Σ(R), and elements 0 6=aθ ∈ Q̂p, such that ω∗(θ) =
aθ · σθ for each root θ∈R. Fix a Weyl chamber C, and let Rs be the corresponding
set of simple roots. Since the Dynkin diagram is a union of trees, we can arrange (by
switching pairs of roots ±θ) that for any pair θ1 6= θ2 in Rs, the angle between σθ1 and
σθ2 is between π/2 and π. Then for each θ1, θ2∈Rs, θ1 and θ2 form the same angle as
σθ1 and σθ2.

Let Ts be the intersection of T with the maximal semisimple subgroup of G. Then
L(Ts) =

∑m
i=1 R ⊗Q Vi; and Rs and σ(Rs) are bases of L(Ts) (cf. [Ad, Prop. 5.33]).

There is thus a unique µ : L(Ts)
∼=
−→ L(Ts) such that µ∗(θ/‖θ‖) = σθ/‖σθ‖ for each

θ∈Rs; and µ is orthogonal since σ preserves angles between the simple roots. Also,

µ−1(C) = {x ∈ L(Ts) : σθ(x) ≥ 0 for all θ ∈ Rs}; (1)

and hence µ−1(C) is a union of Weyl chambers. Since the Weyl chambers are permuted
transitively by the orthogonal action of W (cf. [Ad, Theorem 5.13]), they and µ−1(C)
all have the same volume after intersection with the unit ball; and hence µ−1(C) is itself
a Weyl chamber. We can thus assume (after composing ω and µ by some element of
W ) that µ(C) = C. But then (1) implies that

{Ker(θ) : θ ∈ Rs} = {Ker(σθ) : θ ∈ Rs}

(the walls of C = µ(C)); and hence that σ(Rs) = Rs.

In particular, since the nodes in the Dynkin diagram correspond to simple roots of G,
and the connectors correspond to the angles between roots, this shows that σ induces
an automorphism (possibly reversing arrows) of the Dynkin diagram of G. �

We are now ready to show which admissible maps extend to Q-equivalences of BGp̂

to itself. In other words, we will describe the image of the homomorphism

Θ : [BGp̂, BGp̂]Q  AdmEpi(T∞, T∞)/W ∼= [NAut(L(T∞))(W ) ∩ End(Λp̂)]/W

of Proposition 1.4. Roughly, the following theorem says that the only necessary condi-
tions for an admissible epimorphism φ to lift to a self map of BGp̂ are the ones imposed
by Proposition 1.3 and Example 3.1.
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Theorem 3.4. Let G〈p〉⊳G be the product of all simple summands whose Weyl group
has order a multiple of p. Let R⊆Hom(Λ,Z) be the set of roots of G, and let R〈p〉⊆R
be the subset of roots in G〈p〉. For each n ≥ 1, let Gn⊳G be the product of all
normal subgroups isomorphic to SO(2n + 1). Then, for any admissible epimorphism
φ : T∞ ։ T∞, φW∈ Im(Θ) if and only if the following two conditions are satisfied

(a) Ker(φ) ∩G〈p〉 = 1 and

(b) (if p = 2) φ(Gn ∩ T∞) ⊆ Gn ∩ T∞ ∀n ≥ 1;

if and only if ω := L(φ)|Λp̂∈End(Λp̂) satisfies the two conditions

(i) ω∗(R) ⊆ Ẑp ·R and

(ii) ω∗(R〈p〉) ⊆ (Ẑp)
∗ ·R〈p〉.

Proof. We will prove the implications

(φW ∈ Im(Θ))
Step 1

====⇒ (a,b)
Step 2

====⇒ (i,ii)
Step 3

====⇒ (ωW ∈ Im(Θ)).

Step 1 Assume that φW = Θ(f); i. e., f : BGp̂ −→ BGp̂ is such that f |BT p̂≃Bφ.
We will show that φ satisfies conditions (a) and (b) above.

Write G′ = G〈p〉 for short, set G′′ = G/G′, and let α : G′ −→ G and β : G −→ G′′

denote the induced maps. Let T ′ = T∩G′ and T ′′ = T/T ′ be their maximal tori, and
set φ′ = φ|T ′

∞ : T ′
∞ −→ T ′

∞. The composite

BG′
p̂

Bα
−−−−→ BGp̂

f
−−−−→ BGp̂

Bβ
−−−−→ BG′′

p̂

is null homotopic, since it is trivial in rational cohomology (cf. [JMO, Theorem 3.11]).
Hence f◦Bα pulls back along the fibration BG′

p̂ −→ BGp̂ −→ BG′′
p̂ (cf. [BK, VI.6.5])

to a map f ′ : BG′
p̂ −→ BG′

p̂. By Proposition 1.3, f ′ is a homotopy equivalence, and so
Ker(φ′) = Ker(φ)∩G〈p〉 = 1 by Proposition 1.2(iii). This proves point (a).

Now assume p = 2; we must prove condition (b). We have just seen that f restricts
to a self map (and homotopy equivalence) of G〈2〉. So we can assume that G = G〈2〉; i.
e., that G is semisimple and φ∈Aut(T∞).

By Lemma 3.3, φ permutes the simple summands of G. Fix some SO(2n+ 1)∼=H⊳G,
and let H ′⊳G be the simple summand such that φ(T∞∩H) = T∞∩H

′. Since Z(H) = 1,
H must be a direct factor of G (i. e., not just up to a finite covering). Hence T∞∩H

′ is
a direct factor of T∞, and so BH ′

2̂ is a direct factor of BG2̂ (i. e., H ′ is a direct factor
of G up to odd degree covering). The composite

BH 2̂
incl

−−−−−→ BG2̂
f

−−−−−→ BG2̂
proj

−−−−−→ BH ′
2̂

is a homotopy equivalence; so π2(BH
′
2̂) ∼= π2(BSO(2n+ 1)2̂) ∼= Z/2. Also, by Lemma

3.3, H ′ has the same Dynkin diagram as H, except possibly for the direction of the
arrows; and hence (since π1(H

′) 6= 1) must be isomorphic to one of the groups SO(2n+1)
or PSp(n). These two are isomorphic if n ≤ 2; while if n ≥ 3 then

π5(BSO(2n+ 1)) ∼= π5(BO) ∼= 0 and π5(BPSp(n)) ∼= π5(BSp) ∼= Z/2
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(cf. [Ml, p.142]). Thus, H ′∼=H∼=SO(2n+1). Alternatively, this last point can be proven
by showing that any admissible homomorphism between the (2-adic) integral lattices of
SO(2n+1) and PSp(n) (for n ≥ 3) must (after composing with a Weyl group element)
be a scalar multiple of the map used in Example 3.1 — and hence is not an isomorphism.

We have now shown that (for any n ≥ 1), φ permutes those simple factors isomorphic
to SO(2n+ 1) among themselves. This proves condition (b).

Step 2 Let Rs⊆R be the simple roots with respect to some Weyl chamber. Then
R〈p〉∩Rs is a Q̂p-basis for L(Λp̂〈p〉) (cf. [Ad, Proposition 5.33]).

By Lemma 3.3, there is a permutation σ ∈ Σ(R) such that for each θ∈R, ω∗(θ) =

aθ · σθ for some aθ ∈ (Q̂p)
∗. We may assume (by Lemma 3.3 again) that σ(Rs) = Rs.

For each θ∈R, let vθ ∈ Λ be the element defined in Proposition 3.2(v,vi): vθ⊥Ker(θ)
and θ(vθ) = 2. Since ω preserves angles (and in particular orthogonality), we see that
ω(vσθ) = aθ·vθ for each θ.

Assume now that conditions (a) and (b) hold. If p is odd, then by Proposition 3.2(vi),

(Q̂p·vθ) ∩ Λp̂ = Ẑp·vθ for each θ∈R. Hence, since ω(vσθ) = aθ·vθ and ω(Λ) ⊆ Λ, we get

aθ ∈ Ẑp for each θ, and so ω∗(R) ⊆ Ẑp·R.

If p = 2, then let R0⊆R be the set of those roots θ such that 1
2̄
vθ ∈ Λ. By 3.2(vi)

again, the elements θ∈R0 are precisely the short roots of summands SO(2n + 1)⊳G;
i. e., the short roots in the Gn (for n ≥ 1). Also, for each i, φ(Gn∩T∞) = Gn∩T∞
by condition (b), and φ|Gn∩T∞ is injective by (a). Thus, ω restricts to an admissible
automorphism of the 2-adic integral lattice of Gn, which permutes the simple factors
by Lemma 3.3. Also, the only admissible automorphisms of the 2-adic integral lattice
of SO(2n+1) are given by multiplication by scalars a ∈ (Ẑ2)

∗, and so we can conclude

that σ(R0) = R0. The same argument as for odd p now shows that aθ ∈ Ẑ2 for all θ;
and so condition (i) also holds in this case.

Finally, as noted above, the elements of Rs∩R〈p〉 form a Q̂p-basis for L(Λp̂〈p〉). Hence

by (a),

p ∤ det(ω | L(G〈p〉 ∩ T∞)) = ±
∏

θ∈Rs∩R〈p〉

aθ; (2)

and so p∤aθ for θ∈R〈p〉 =W · (Rs∩R〈p〉). And this proves condition (ii).

Step 3a Assume that G = S×H, where S is a torus and H is a semisimple Lie group
with trivial center. We show here that for such G, conditions (i) and (ii) suffice to imply
that ω·W∈ Im(Θ).

Write G = S×H1× . . .×Hm, where the Hm are simple. Let Λ = Λ0×Λ1 × · · ·×Λm

and W =W1× . . .×Wm be the corresponding decompositions of Λ and W . By Lemma
3.3, there is some τ ∈ Σm such that ω(Λip̂) = (Λτi)p̂ for all 1≤i≤m (and ω(Λ0) = Λ0);
and Hi and Hτi have the same Dynkin diagram (up to arrow reversal) for each i. Also,

since ω(R〈p〉) ⊆ (Ẑp)
∗·R〈p〉 (by condition (ii)), the arrow on a double connector can be

reversed only if p 6= 2, and the arrow on a triple connector can be reversed only if p 6= 3.

Recall that Z(Hi) = 1 for all i ≥ 1. Thus, for each i, either Hi and Hτi are
isomorphic, or one of them is isomorphic to SO(2n + 1) and the other to PSp(n) for
some n ≥ 3. And by the remark on reversing arrows in the Dynkin diagram, this last
case can occur only if p 6= 2. By a result of Friedlander [Fr], BSO(2n+1)p̂≃BSp(n)p̂ for
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any n and any odd p. So we can compose ω by Θh(Bα) for some appropriate α∈Aut(G),
to arrange that ω sends each simple factor to itself.

We can now write ω =
∏m

i=0 ωi, where ωi : Λip̂  Λip̂ for each i; and where
φ0 ∈ Θ([BSp̂, BSp̂]Q) by Theorem 1.1. We will be done upon showing that ωi ∈
Θ([BHip̂, BHip̂]Q) for each i. In particular, we can simplify the notation, and assume
that G = Hi is simple.

We have seen that ω∗ permutes the roots and simple roots of G up to scalar multi-
ple, and hence induces an automorphism of the Dynkin diagram of G; possibly reversing
arrows. The only simple groups whose Dynkin diagrams have arrow reversing automor-
phisms are B2 (= SO(5)∼=PSp(2)), G2, and F4. Also, as noted above, such arrow
reversing can occur only if p 6= 2 and G∼=B2 or F4; or if p 6= 3 and Hi

∼=G2. In all of
these cases, self maps BGp̂ −→ BGp̂ have been constructed by Friedlander (in [Fr] again),
to realize the arrow reversing automorphisms. So if necessary we can compose with one
of these maps, to arrange that ω acts on the Dynkin diagram preserving arrows.

Since Z(G) = 1, any arrow preserving automorphism of the Dynkin diagram can
be realized by some automorphism α∈Aut(G) (cf. [Bb2, p.42, Corollaire]). So upon
replacing ω by L(α|T ) ◦ ω for some α, we are reduced to the case where ω∗ acts on the
Dynkin diagrams via the identity, and sends each root to some scalar multiple of itself.
In particular, since the Weyl group W is generated by reflections in the kernels of the
roots (3.2(i)), ω∈End(Λ) is W -equivariant; and is multiplication by some k ∈ Ẑp since

L(T∞) = Q̂p ⊗ Λ is irreducible as a W -representation (cf. [Bb1, p.82]). Also, by (ii),

k ∈ (Ẑp)
∗ if p|||W |.

For such k, unstable Adams operations ψk : BGp̂ −→ BGp̂, have been constructed
by Sullivan [Su] (when G = SU(n)) or Wilkerson [Wi] (in general). And since the
restriction of ψk to BT p̂ is induced by the k-th power map on T , we see that Θ(ψk) = ω.

Step 3b Now let G be arbitrary, and fix some admissible map ω∈End(Λp̂) such

that ω∗(R) ⊆ (Ẑp·R) and ω∗(R〈p〉) ⊆ ((Ẑp)
∗·R〈p〉). We will show that ω extends to a

Q-equivalence BGp̂ −→ BGp̂.

Let n be the exponent of the center of the semisimple part ofG, and let π = {z∈Z(G) :
zn = 1}. Set G = G/π: a quotient group which satisfies the condition in Step 2. Let
Λ ⊇ Λ be the integral lattice in G; then

Λ = {x ∈ Q⊗ Λ : R(x) ⊆ Z, nx ∈ Λ}.

by Proposition 3.2(iv). For any x ∈ Λp̂, n · ωx = ω(nx) ∈ Λp̂ and

R(ωx) = (ω∗R)(x) ⊆ (Ẑp ·R)(x) ⊆ Ẑp

(using (i)). So ω(Λp̂) ⊆ Λp̂; and ω extends to a map f : BGp̂ −→ BGp̂ by Step 2.

Identify Λp̂/Λp̂
∼= πp (the Sylow p-subgroup of π), and let ω′∈Aut(πp) be the map

induced by ω. The composite

BGp̂ −−−−→ BGp̂
f

−−−−→ BGp̂ −−−−→ K(πp, 2)
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is nullhomotopic, since

H2(BG; πp)∼=Hom(π1(G), πp)⊆Hom(π1(T ), πp) (Prop. 3.2(iii))
∼= Hom(Λ, πp) ∼= Hom(Λp̂, πp).

So f pulls back along the fibration BGp̂ −→ BGp̂ −→ K(πp, 2) to a map f : BGp̂ −→ BGp̂;
and f extends the original admissible map Bφ. �

An inspection of the proof of Theorem 3.4 shows, at least when G is semisimple with
trivial center, that [BGp̂, BGp̂]Q is generated by products of unstable Adams operations
on the separate simple factors of G, by automorphisms of G, and by the “exceptional
isogenies” of Friedlander. This is the generalization to connected groups of the theorem
of Hubbuck [Hu], which says that for simple G, [BG,BG] is generated by automorphisms
and unstable Adams operations.

The following description of the self homotopy equivalences of BGp̂ is now easy.

Corollary 3.5. If p is odd, then for any compact connected Lie group G, any admissible
map ω∈Aut(Λp̂) extends to a homotopy equivalence f : BGp̂ −→ BGp̂. In other words,

Θh : [BGp̂, BGp̂]h −−−−→ NAut(T∞)(W )/W ∼= NAut(Λp̂)(W )/W

is an isomorphism of groups in this case. If p = 2, then Θh is onto if and only if G
contains no direct factor of the form Sp(n)×SO(2n+1) (for some n ≥ 1). And if G does
contain such a factor, then Im(Θh) is the subgroup of all elements which send factors
SO(2n+ 1) to factors of the same type.

Proof. Recall that [BGp̂, BGp̂]h = Θ−1
(
NAut(T∞)(W )/W

)
(Proposition 1.4). Using

this, Theorem 3.4 implies that Θh is onto (and hence an isomorphism) if p is odd, or if
p = 2 and G has no direct factor SO(2n+ 1).

If p = 2 and G does contain a factor SO(2n+1), then it can only be sent to another
direct factor which is either isomorphic to SO(2n+ 1), or which has the same integral
lattice (2-adically) and root system R (restricted to this summand). And a check of the
root systems shows that the only other possibility is for it to be sent to a direct factor
Sp(n). Thus, if Θh is not onto, then G must contain a direct factor SO(2n+1)×Sp(n);
and Im(Θh) is the group of all admissible maps which send factors SO(2n+1) to factors
of the same type.

Finally, Example 3.1 shows that Θh is never onto when G has a direct factor SO(2n+
1)×Sp(n). �

Using Sullivan’s arithmetic pullback square for completions and localizations of sim-
ply connected spaces, these results can now be converted to results about global self
maps of BG.

Theorem 3.6. There is a monomorphism

Θ : [BG,BG]Q  AdmEpi(T, T ) ∼= [NAut(Q⊗Λ)(W ) ∩ End(Λ)]/W
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such that for any Q-equivalence f : BG −→ BG, Θ(f) = φW for some φ : T։T with
f |BT≃Bφ.

For each prime p, let G〈p〉⊳G be the product of all simple summands whose Weyl
group has order a multiple of p, and set Λ〈p〉 = Λ∩L(G〈p〉∩T ). For each n ≥ 1, let
Hn⊳G be the product of all normal subgroups isomorphic to SO(2n + 1). Then, for
any φ∈AdmEpi(T, T ), φW∈ Im(Θ) if and only if

(a) Ker(φ) ∩G〈p〉 = 1 for all p|||W |, and

(b) φ(Gn ∩ T ) = Gn ∩ T for all n ≥ 1.

Proof. For any f : BG −→ BG, f |BT ≃ Bφ for some φ : T −→ T by Notbohm’s theorem
[No1]; and ω = L(φ)|Λ satisfies conditions (a,b) since it satisfies them after p-completion
for each p (Theorem 3.4). Thus, there is a well defined homomorphism Θ as above, and
φW∈ Im(Θ) only if φ satisfies the three given conditions.

If Θ(f) = Θ(f ′), then Θ(f) = Θ(f ′) for each p, and so f p̂≃f
′
p̂ for each p by the

injectivity of Θ (Theorem 2.5). And by [JMO, Theorem 3.1], this implies that f≃f ′.

Now fix some admissible map φ : T։T which satisfies conditions (a) and (b). For
each prime p, Theorem 3.4 applies to show that Bφ extends to a Q-equivalence fp :
BGp̂ −→ BGp̂. And then by [JMO, Theorem 3.1] (applied with fT = B(incl ◦φ)), there
exists f : BG −→ BG such that f p̂≃fp for each p, and hence such that f |BT≃Bφ.

Theorem 3.1 in [JMO] was used here to show both uniqueness and existence of maps
f : BG −→ BG. Its proof is based on the homotopy pullback square of mapping spaces

map(BG,BG) −−−−→
∏

p map(BG,BGp̂)y
y

map(BG,BGQ) −−−−→ map(BG, (
∏

pBGp̂)Q),

which is induced by Sullivan’s arithmetic pullback square for BG [BK, VI.8.1]. It also
uses the fact that BGQ and (

∏
pBGp̂)Q are both products of Eilenberg-Maclane spaces.

�

As a final application of these results, we get the following (disappointing) result
about the global self homotopy equivalences of BG.

Corollary 3.7. For any compact connected Lie group G, any homotopy equivalence
f : BG −→ BG is homotopic to Bα for some α∈Aut(G).

Proof. Assume f |BT≃Bφ, where φ∈AdmEpi(T, T ). Then φ∈Aut(T ), since f is a
homotopy equivalence. Set ω = L(φ)|Λ∈Aut(Λ). By Theorem 3.4, ω∗ sends each root
of G to an integral multiple of some other root; and since the simple roots are linearly
independent those integers must be ±1. In other words, ω∗ permutes the roots; and so ω
is an automorphism of the root system with integral lattice. It follows that φ = α|T for
some α∈Aut(G) (cf. [Bb2, p.41, Prop. 17]); and f≃Bα since Θ is injective (Theorem
3.6). �
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