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Abstract

A p-local finite group is an algebraic structure with a classifying space which
has many of the properties of p-completed classifying spaces of finite groups.
In our paper [LO], we constructed a family of 2-local finite groups which are
“exotic” in the following sense: they are based on certain fusion systems over
the Sylow 2-subgroup of Spin7(q) (q an odd prime power) shown by Solomon
not to occur as the 2-fusion in any actual finite group. As predicted by Benson,
the classifying spaces of these 2-local finite groups are very closely related to
the Dwyer-Wilkerson space BDI(4). An error in our paper [LO] was pointed
out to us by Andy Chermak, and we correct that error here.
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A saturated fusion system over a finite p-group S is a category whose objects
are the subgroups of S , whose morphisms are all monomorphisms between the
subgroups, and which satisfy certain axioms first formulated by Puig, and also
described at the start of the first section in [LO]. The main result of [LO] is the
construction of saturated fusion systems over certain 2-groups, motivated by a
theorem of Solomon [So], which implies that these systems cannot be induced
by fusion in any finite group. Recently, Andy Chermak has pointed out to
us that the fusion systems actually constructed in [LO] are not saturated (do
not satisfy all of Puig’s axioms). In this note, we describe how to modify that
construction in a way so as to obtain saturated fusion systems of the desired
type, and explain why all of the results in [LO] (aside from [LO, Lemma A.10])
are true under this new construction.

The following is the main theorem in [LO]:

Theorem 1.1 ([LO, Theorem 2.1]) Let q be an odd prime power, and fix
S ∈ Syl2(Spin7(q)). Let z ∈ Z(Spin7(q)) be the central element of order
2. Then there is a saturated fusion system F = FSol(q) which satisfies the
following conditions:

(a) CF (z) = FS(Spin7(q)) as fusion systems over S .

(b) All involutions of S are F -conjugate.

Furthermore, there is a unique centric linking system L = LcSol(q) associated
to F .

We have, in fact, found two errors in our proof of this theorem which we correct
here. The more serious one is in [LO, Lemma A.10], which is not true as stated:
the last sentence in its proof is wrong. This has several implications on the rest
of our construction, all of which are systematically treated here. There is also an
error in the statement of [LO, Lemma 2.8(b)] which is corrected below (Lemma
1.8).

We first state and prove here a corrected version of [LO, Lemma A.10], and then
state a modified version of the main technical proposition, [LO, Proposition
1.2], used to prove saturation. Afterwards, we describe the changes which are
needed in [LO, §2] to prove the main theorem. In the following table, we list
the correspondence between results and proofs in [LO, §2] and those here. This
is intended as a guide to the reader who is not yet familiar with [LO], and who
wants to read it simultaneously with this correction.
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Reference in [LO] Reference here Remarks

Proposition 1.2 Proposition 1.3 more general statement
Theorem 2.1 Theorem 1.1 unchanged
Definition 2.2, Lemma 2.3 — unchanged
Definition 2.4 — omit definition of Γn
Prp. 2.5, Def. 2.6, Lem. 2.7 — unchanged
— Lem. 1.4, Prp. 1.5 added
— Definition 1.6 new definition of Γn
— Lemma 1.7 added
Lemma 2.8 Lemma 1.8 (b) restated,

new proofs of (b), (e)
Proposition 2.9 Proposition 1.9 partly new proof
Lemma 2.10 Lemma 1.10 partly new proof
Proposition 2.11 Proposition 1.11 partly new proof

The only difference between [LO, Lemma A.10] and the corrected version shown
here is that in [LO], we claimed that the “correction factor” Z must lie in a
certain subgroup of order 2 in SL3(Z/2k), which is definitely not the case. Also,
for convenience, we state this lemma here for matrices over the 2-adic integers
Ẑ2 , instead of for matrices over the finite rings Z/2k .

Lemma 1.2 (modified [LO, Lemma A.10]) Let T1 and T2 be the two maximal
parabolic subgroups of GL3(2):

T1 = GL1
2(Z/2) =

{
(aij) ∈ GL3(2) | a21 = a31 = 0

}

and

T2 = GL2
1(Z/2) =

{
(aij) ∈ GL3(2) | a31 = a32 = 0

}
.

Set T0 = T1 ∩ T2 : the group of upper triangular matrices in GL3(2). Assume,
for some k ≥ 2, that

µi : Ti −−−−−→ SL3(Ẑ2)

are lifts of the inclusions Ti −−→ GL3(2) = SL3(2) (for i = 1, 2) such that
µ1|T0 = µ2|T0 . Then there is a homomorphism

µ : GL3(2) −−−→ SL3(Ẑ2),

and an element Z ∈ C
SL3(Ẑ2)

(µ1(T0)), such that µ|T1 = µ1 , and µ|T2 = cZ ◦µ2 .

Proof By [DW1, Lemma 4.4], there is a lifting µ′ : GL3(2) → SL3(Ẑ2) of
the identity on GL3(2); and any two liftings to SL3(Ẑ2) of the inclusion of
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T1 or of T2 into GL3(2) differ by conjugation by an element of SL3(Ẑ2). In
particular, there are elements Z1, Z2 ∈ SL3(Ẑ2) such that µi = cZi

◦ µ′|Ti (for
i = 1, 2). Set µ = cZ1

◦µ′ , and Z = Z1Z
−1
2 . Then µ1 = µ|Ti , and µ|T2 = cZ ◦µ2 .

Since µ1|T0 = µ2|T0 , conjugation by Z is the identity on µ1(T0) = µ2(T0), and
thus Z ∈ C

SL3(Ẑ2)
(µ1(T0)).

Whenever G is a finite group, S ∈ Sylp(G), S0 ⊳ S , and Γ ≤ Aut(S0), then

〈FS(G);FS0
(Γ)〉

denotes the smallest fusion system over S which contains all G-fusion, and
which also contains all restrictions of automorphisms in Γ. In other words, if
F denotes this fusion system, then for each P,Q ≤ S , HomF (P,Q) is the set
of all composites

P = P0
ϕ1

−−−→ P1
ϕ2

−−−→ P2 −−−→ · · · −−−→ Pk−1
ϕk−−−→ Pk = Q,

where for each i, Pi ≤ S , and either ϕi ∈ HomG(Pi−1, Pi), or (if Pi−1, Pi ≤ S0 )
ϕi = ψi|Pi−1

for some ψi ∈ Γ such that ψi(Pi−1) = Pi .

Whenever G is a finite group and S ∈ Sylp(G), an automorphism ϕ ∈ Aut(S)
is said to preserve G-fusion if for each P,Q ≤ S and each α ∈ Iso(P,Q),
α ∈ IsoG(P,Q) if and only if ϕαϕ−1 ∈ IsoG(ϕ(P ), ϕ(Q)). The proof of Theorem
1.1 is based on the following proposition.

Proposition 1.3 (modified [LO, Proposition 1.2]) Fix a finite group G, a
prime p dividing |G|, and a Sylow p-subgroup S ∈ Sylp(G). Fix a normal
subgroup Z ⊳ G of order p, an elementary abelian subgroup U ⊳ S of rank two
containing Z such that CS(U) ∈ Sylp(CG(U)), and a group Γ ≤ Aut(CS(U))
of automorphisms which preserve all CG(U)-fusion, and such that γ(U) = U
for all γ ∈ Γ. Set

S0 = CS(U) and F = 〈FS(G);FS0
(Γ)〉,

and assume the following hold.

(a) All subgroups of order p in S different from Z are G-conjugate.

(b) Γ permutes transitively the subgroups of order p in U .

(c) {ϕ ∈ Γ |ϕ(Z) = Z} = AutNG(U)(CS(U)).

(d) For each E ≤ S which is elementary abelian of rank three, contains U ,
and is fully centralized in FS(G),

{α ∈ AutF (CS(E)) |α(Z) = Z} = AutG(CS(E)).

4



(e) For all E,E′ ≤ S which are elementary abelian of rank three and contain
U , if E and E′ are Γ-conjugate, then they are G-conjugate.

Then F is a saturated fusion system over S . Also, for any P ≤ S such that
Z ≤ P ,

{ϕ ∈ HomF (P, S) |ϕ(Z) = Z} = HomG(P, S). (1)

This proposition is slightly more general than [LO, Proposition 1.2], in that
Γ is assumed only to be a group of automorphisms of CS(U) which preserves
CG(U)-fusion, and not a group of automorphisms of CG(U) itself. This extra
generality is necessary when proving that the fusion systems FSol(q), under our
modified construction, are saturated. The changes needed to prove this more
general version of [LO, Proposition 1.2] are described in Section 2.

Proposition 1.3 is applied with G = Spin7(q), Z = Z(G), and S ∈ Syl2(G),
U ≤ S , and Γ ≤ Aut(CG(U)) to be chosen shortly. The error in [LO] arose in
the choice of Γ, as will be explained in detail below.

We first recall some of the definitions and notation used in [LO]. Throughout,

we fix an odd prime power q , let Fq be a field with q elements, and let Fq be

its algebraic closure. We write SL2(q
∞) = SL2(Fq), Spin7(q

∞) = Spin7(Fq),
etc., for short. For each n, ψq

n

denotes the automorphism of Spin7(q
∞) or of

SL2(q
∞) induced by the field isomorphism (x 7→ xq

n
). We then fix elements

z, z1 ∈ Spin7(q) of order 2, where 〈z〉 = Z(Spin7(q)), set U = 〈z, z1〉, and
construct an explicit homomorphism

ω : SL2(q
∞)3 −−−−−→ Spin7(q

∞)

such that

Im(ω) = CSpin7(q
∞)(U) and Ker(ω) = 〈(−I,−I,−I)〉.

Write

H(q∞)
def
= ω(SL2(q

∞)3) = CSpin7(q
∞)(U) and [[X1,X2,X3]] = ω(X1,X2,X3)

for short. In particular,

z = [[I, I,−I]] and z1 = [[−I, I, I]],

and thus
U =

{
[[±I,±I,±I]]

}

(with all combinations of signs). By [LO, Lemma 2.3 & Proposition 2.5], there
is an element τ ∈ NSpin7(q)

(U) of order 2 such that

τ ·[[X1,X2,X3]]·τ
−1 = [[X2,X1,X3]]
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for all X1,X2,X3 ∈ SL2(q
∞), and such that

NSpin7(q
∞)(U) = H(q∞)·〈τ〉.

We next fix elements A,B ∈ SL2(q) of order 4, such that 〈A,B〉 ∼= Q8 (a
quaternion group of order 8). Most of the following notation is taken from [LO,
Definition 2.6]. We set

Â = [[A,A,A]] and B̂ = [[B,B,B]];

C(q∞) = {X ∈ CSL2(q∞)(A) |X
2k = I, some k} ∼= Z/2∞;

and

Q(q∞) = 〈C(q∞), B〉.

Here, Z/2∞ means a union of cyclic 2-groups Z/2n for all n; equivalently, the
group Z[12 ]/Z. We then define

A(q∞) = ω(C(q∞)3) ∼= (Z/2∞)3,

S0(q
∞) = ω(Q(q∞)3) ≤ H(q∞)

S(q∞) = S0(q
∞)·〈τ〉 ≤ H(q∞)·〈τ〉 ≤ Spin7(q

∞).

In all cases, whenever a subgroup Θ(q∞) ≤ Spin7(q
∞) has been defined, we set

Θ(qn) = Θ(q∞) ∩ Spin7(q
n).

Since Spin7(q
n) is the fixed subgroup of ψq

n
acting on Spin7(q

∞) (cf. [LO,
Lemma A.3]), H(qn) ≤ H(q∞) is the subgroup of all elements of the form
[[X1,X2,X3]], where either Xi ∈ SL2(q

n) for each i, or ψq
n
(Xi) = −Xi for

each i. By [LO, Lemma 2.7], for all n,

S(qn) ∈ Syl2(Spin7(q
n)).

The following lemma is what is needed to tell us how to choose a subgroup
Γn ≤ Aut(S0(q

n)) so that the fusion system 〈FS(qn)(Spin7(q
n));FS0(qn)(Γn)〉 is

saturated. Note that since each element of C(q∞) has 2-power order, it makes
sense to write Xu ∈ C(q∞) for X ∈ C(q∞) and u ∈ Ẑ2 .

Lemma 1.4 Assume α ∈ Aut(A(q∞)) centralizes AutS(q∞)(A(q
∞)). Then α

has the form

α([[X1,X2,X3]]) = [[Xv
1 ,X

v
2 ,X

u
3 ]]

for some u, v ∈ (Ẑ2)
∗ .
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Proof Set

∆0 = AutS(q∞)(A(q
∞)) = 〈c[[B,I,I]], c[[I,B,I]], c[[I,I,B]], cτ 〉

for short. The second equality follows since S(q∞) is by definition generated
by A(q∞) and the four elements listed. Set

A1
def
= 〈z, z1, Â〉 ∼= C3

2 ,

the 2-torsion subgroup in A(q∞). The image of ∆0 ≤ Aut(A(q∞)) in the
group Aut(A1) ∼= GL3(2) (the image under restriction) is the group of all
automorphisms which leave 〈z〉 and U = 〈z, z1〉 invariant (i.e., the group of
upper triangular matrices with respect to the ordered basis {z, z1, Â}).

By assumption, [α,∆0] = 1, and in particular, α∆0α
−1 = ∆0 . Since each

element of ∆0 sends U to itself, this means that each element of ∆0 also sends
α(U) to itself. Also, U is the only subgroup of rank 2 left invariant by all
elements of ∆0 (since ∆0 contains all automorphisms which leave 〈z〉 and U
invariant), and hence α(U) = U .

It follows that α induces an automorphism α′ of A(q∞)/U = (C(q∞)/〈− I〉)3 .
Also, α′ commutes with the following automorphisms of (C(q∞)/〈 − I〉)3 :

(Y1, Y2, Y3) 7→ (Y ±1
1 , Y ±1

2 , Y ±1
3 ) and (Y1, Y2, Y3) 7→ (Y2, Y1, Y3)

since these are induced by automorphisms in ∆0 . Hence α′ has the form
α′(Y1, Y2, Y3) = (Y v

1 , Y
v
2 , Y

u
3 ) for some u, v ∈ (Ẑ2)

∗ . Thus for all X1,X2,X3 ∈
C(q∞),

α([[X1,X2,X3]]) = [[±Xv
1 ,±X

v
2 ,±X

u
3 ]].

Since all elements of C(q∞) are squares, these signs must all be positive, and
α has the form α([[X1,X2,X3]] = [[Xv

1 ,X
v
2 ,X

u
3 ]].

For each u ∈ (Ẑ2)
∗ , let δu ∈ Aut(A(q∞)) be the automorphism

δu([[X1,X2,X3]]) = [X1,X2,X
u
3 ].

Define γ, γu ∈ Aut(A(q∞)) by setting

γ([[X1,X2,X3]]) = [[X3,X1,X2]] and γu = δuγδ
−1
u .

Proposition 1.5 There is an element u ∈ Ẑ2 such that u ≡ 1 (mod 4), and
such that the subgroup Ωu ≤ Aut(A(q∞)) given by

Ωu
def
= 〈AutSpin7(q

∞)(A(q
∞)), γu〉

is isomorphic to C2 ×GL3(2). Furthermore, the following hold:
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(a) The subgroup of elements of Ωu which act via the identity on all 2-torsion
in A(q∞) has order 2, and contains only the identity and the automor-
phism (g 7→ g−1).

(b) For each n ≥ 1,

〈AutSpin7(qn)(A(q
n)), γu〉 ∼= C2 ×GL3(2).

Proof For each k ≥ 1, let Ak ≤ A(q∞) denote the 2k -torsion subgroup. In
particular,

A1 = 〈z, z1, Â〉 ∼= C3
2 , where Â = [[A,A,A]].

Let R1, R2, · · · ∈ C(q∞) ∼= Z/2∞ be elements such that R1 = −I , R2 = A,
and (Ri)

2 = Ri−1 for all k ≥ 2. Thus, |Ri| = 2i for all i. For each k ≥ 1, let

{r
(k)
1 , r

(k)
2 , r

(k)
3 } be the basis of Ak defined by

r
(k)
1 = [[I, I,Rk]], r

(k)
2 = [[Rk, I, I]], and r

(k)
3 = [[Rk+1, Rk+1, Rk+1]].

In particular, r
(1)
1 = z , r

(1)
2 = z1 , and r

(1)
3 = Â. Using these bases, we identify

Aut(Ak) = GL3(Z/2k) and Aut(A(q∞)) = GL3(Ẑ2).

Set

∆0 = AutS(q∞)(A(q
∞)), ∆1 = AutSpin7(q

∞)(A(q
∞)), and ∆2 = 〈∆0, γ〉.

In particular, ∆2 is the group of all signed permutations

[[X1,X2,X3]] 7→ [[X±1
σ(1),X

±1
σ(2),X

±1
σ(3)]]

for σ ∈ Σ3 .

For each i = 0, 1, 2 and each k ≥ 1, let ∆
(k)
i ≤ Aut(Ak) be the image of ∆i

under restriction. By [LO, Proposition A.8], ∆
(1)
1 = AutSpin(A1) is the group of

all elements of Aut(A1) ∼= GL3(Z/2) which send z to itself. Also, ∆
(1)
0 was seen

in the proof of Lemma 1.4 to be the group of all automorphisms of A1 which
leaves both z and U = 〈z, z1〉 invariant; and a similar argument shows that

∆
(1)
2 is the group of all automorphisms of A1 which leaves U invariant. Hence,

with respect to the ordered basis {z, z1, Â} of A1 , each group ∆
(1)
i ≤ Aut(A1)

(i = 0, 1, 2) can be identified with the subgroup Ti ≤ GL3(Z/2) of Lemma 1.2.

By [LO, Proposition 2.5],

CSpin7(q
∞)(U) = H(q∞) ∼= (SL2(q

∞)3)/〈(−I,−I,−I)〉.

An element [[X1,X2,X3]] ∈ H(q∞) (Xi ∈ SL2(q
∞)) centralizes Â

def
= [[A,A,A]]

if and only if [Xi, A] = 1 for each i, or XiAX
−1
i = −A = A−1 for each i.
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Set C = CSL2(q∞)(A). This is an abelian group (the union of the finite cyclic

groups CSL2(qn)(A)), and NSL2(q∞)(A) = C·〈B〉. Hence, since A1 = 〈U, Â〉

and B̂ = [[B,B,B]], we have

CSpin
7
(q∞)(A1) = CH(q∞)(Â) = ω(C3)·〈B̂〉. (1)

Since ω(C3) is abelian (thus centralizes A(q∞)), this shows that the kernel of

each of the projection maps ∆i −−։ ∆
(1)
i is generated by conjugation by B̂ ;

i.e., by the automorphism (g 7→ g−1).

Since each ∆i is finite, their elements all have determinant of finite order in

(Ẑ2)
∗ , hence are ±1 in all cases. Also, for each i, ∆i surjects onto ∆

(1)
i = Ti

with kernel generated by the automorphism (g 7→ g−1) of determinant (−1).
Hence the elements of determinant one in ∆i are sent isomorphically to Ti , and
define a lift

µi : Ti −−−−−−→ SL3(Ẑ2)

with respect to the given bases. In particular, µ1|T0 = µ2|T0 = µ0 .

For all i, j, k ∈ (Ẑ2)
∗ , we define ψi,j,k ∈ Aut(A(q∞)) by setting

ψi,j,k([[X1,X2,X3]]) = [[Xi
1,X

j
2 ,X

k
3 ]]

for all [[X1,X2,X3]] ∈ A(q
∞). Recall that cτ ([[X1,X2,X3]]) = [[X2,X1,X3]] (by

choice of τ ). Since ∆0 = AutS(q∞)(A(q
∞)) is generated by c[[B,I,I]] , c[[I,B,I]] ,

c[[I,I,B]] , and cτ (corresponding to generators of S(q∞)/A(q∞)), µ0 has image

Im(µ0) = µ1(T0) = 〈ψ−1,−1,1, ψ1,−1,−1, cτ 〉,

where ψ−1,−1,1 = c[[B,B,I]] and ψ1,−1,−1 = c[[I,B,B]] .

By Lemma 1.2, there is a homomorphism

µ : GL3(2) −−−−−−→ SL3(Ẑ2),

and an element Z ∈ Aut(A(q∞)) ∼= GL3(Ẑ2) which commutes with all elements
of µ1(T0), such that µ|T1 = µ1 and µ|T2 = cZ ◦ µ2 . By Lemma 1.4, Z = ψv,v,u
(using the above notation) for some u, v ∈ (Ẑ2)

∗ . Since ψv,v,v lies in the center
of Aut(A(q∞)) (it sends every element to its v -th power), we can assume that
v = 1 (without changing cZ ), and thus that Z = ψ1,1,u = δu . Finally, since
δ−1 = ψ1,1,−1 ∈ ∆0 , we can replace δu by δ−u if necessary, and assume that
u ≡ 1 (mod 4).

Under the identification GL3(Ẑ2) = Aut(A(q∞)), we now have

AutSpin7(q
∞)(A(q

∞)) = (g 7→ g−1)× µ(T1)
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and
γu = δuγδ

−1
u = cZ(γ) = µ

((
0 1 0
1 1 0
0 0 1

))
,

where the matrix is that of γ|A1
with respect to the basis {r

(1)
1 , r

(1)
2 , r

(1)
3 }. Also,

T1 is a maximal subgroup of GL3(2) — the subgroup of invertible matrices

which send r
(1)
1 to itself — and so T1 together with this matrix generate GL3(2).

Thus

Ωu = 〈AutSpin7(q∞)(A(q
∞)), γu〉 = 〈g 7→ g−1〉×µ(GL3(2)) ∼= C2×GL3(2). (2)

This proves the first claim in the proposition. Point (a) follows by construction,
since each nonidentity element of µ(GL3(2)) acts nontrivially on A1 . Point (b)
follows from (2), once we know that each element of Spin7(q

n) which normalizes
A1 (hence which normalizes A(qn)) also normalizes A(q∞) — and this follows
from (1).

We are now in a position to define the fusion systems we want. Roughly, they
are generated by the fusion systems of Spin7(q

n) together with one extra auto-
morphism: the cyclic permutation [[X1,X2,X3]] 7→ [[X3,X1,X2]] “twisted” by
the automorphism δu of the last proposition. By comparison, the construction
in [LO] was similar but without the twisting (i.e., done with u = 1), and the
resulting fusion system is, in fact, not saturated.

We regard Q(q∞) = C(q∞)⋊〈B〉 as an infinite quaternion group: BA′B−1 =
A′−1 for each A′ ∈ C(q∞), and each element of the coset C(q∞)·B has order
4. Hence any automorphism of C(q∞) extends to a unique automorphism of
Q(q∞) which sends B to itself.

Definition 1.6 Let u ∈ (Ẑ2)
∗ be as in Proposition 1.5. Let

γ̂, δ̂u ∈ Aut(S0(q
∞))

be the automorphisms

γ̂([[X1,X2,X3]]) = [[X3,X1,X2]]

and
δ̂u([[X1,X2, A

′Bj ]]) = [[X1,X2, (A
′)uBj]]

for all Xi ∈ Q(q∞), A′ ∈ C(q∞), and i, j ∈ Z; and set γ̂u = δ̂uγ̂δ̂
−1
u ∈

Aut(S0(q
∞)). For each n ≥ 1, set

Γn = 〈 Inn(S0(q
n)), cτ , γ̂u〉 ≤ Aut(S0(q

n));

and set
Fn = FSol(q

n) = 〈FS(qn)(Spin7(q
n)),FS0(qn)(Γn)〉.
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In order to be able to apply Proposition 1.3, it is important to know that Γn
is fusion preserving. This follows immediately from the following lemma.

Lemma 1.7 For each n ≥ 1, the automorphisms cτ , γ̂ , δ̂u , and γ̂u all preserve
H(qn)-fusion in S0(q

n).

Proof The fusion in SL2(q
n) is generated by inner automorphisms of its Sylow

subgroup Q(qn), together with the groups Aut(P ) for subgroups P ≤ Q(qn)
isomorphic to Q8 . This follows from Alperin’s fusion theorem, since these are
the only subgroups whose automorphism group is not a 2-group. Thus any
automorphism of Q(qn) — in particular, the automorphism ϕu defined by
ϕu(A

′) = A′u , ϕu(B) = B for A′ ∈ C(qn) — preserves fusion.

Set H0(q
n) = {[[X1,X2,X3]] |Xi ∈ SL2(q

n), ∀i}. Fix a generator Y of C(q2n);
then C(qn) = 〈Y 2〉, and ψq

n

(Y ) = −Y . For each g = [[X1,X2,X3]] ∈ H(qn),
[[ψq

n

(X1), ψ
qn(X2), ψ

qn(X3)]] = [[X1,X2,X3]]; and hence there is some fixed
ǫ = ±1 for which ψq

n
(Xi) = ǫ·Xi for i = 1, 2, 3. When ǫ = 1, this means

that Xi ∈ SL2(q
n) for each i; while if ǫ = −1 it means that Xi ∈ SL2(q

n)·Y
for each i. So every element of H(qn) either lies in H0(q

n), or has the form
g·[[Y, Y, Y ]] for some g ∈ H0(q

n).

Assume g ∈ H(qn) and P,Q ≤ S0(q
n) are such that gPg−1 = Q. Clearly,

P ≤ H0(q
n) if and only if Q ≤ H0(q

n) (H0(q
n) is normal in H(qn)). We claim

that there is h ∈ H(qn) such that

hδ̂u(P )h
−1 = δ̂u(Q) and ch ◦ δ̂u|P = δ̂u ◦ cg|P . (1)

Let Pi, Qi ≤ SL2(q
2n) be the projections of P and Q to the i-th factor (i =

1, 2, 3), and write g = [[X1,X2,X3]] (thus XiPiX
−1
i = Qi). Consider the

following cases.

(a) Assume g ∈ H0(q
n) and P,Q ≤ H0(q

n). Since ϕu preserves fusion in
SL2(q

n), there is Y3 ∈ SL2(q
n) such that Y3ϕu(P3)Y

−1
3 = ϕu(Q3) and

cY3 ◦ ϕu|P3
= ϕu ◦ cX3

|P3
. Then h

def
= [[X1,X2, Y3]] satisfies (1).

(b) Assume g /∈ H0(q
n) and P,Q ≤ H0(q

n). Write g = g′·[[Y, Y, Y ]], where
g′ ∈ H0(q

n). Choose h′ as in (a), so that (1) is satisfied with g, h replaced
by g′, h′ . Then the element h = h′·[[Y, Y, Y u]] satisfies (1).

(c) Finally, assume that P,Q � H0(q
n). Then none of the subgroups Pi, Qi ≤

SL2(q
2n) is contained in SL2(q

n). By the same procedure as was used in
(a), we can find h ∈ H0(q

2n) which satisfies (1); the problem is to do this
so that h ∈ H(qn).
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As noted above, fusion in SL2(q
2n) is generated by inner automorphisms

of Q(q2n) and automorphisms of subgroups isomorphic to Q8 . Hence if Pi
is not isomorphic to Q8 or one of its subgroups, then there is X ′

i ∈ Q(q2n)
such that cXi

|Pi
= cX′

i
|Pi

. If, on the other hand, Pi (and hence Qi) is
isomorphic to Q8 or C4 , then Pi ≤ 〈A,Y rB〉 and Qi ≤ 〈A,Y sB〉 for

some odd r, s ∈ Z, and we can choose k ∈ Z such that X ′
i
def
= Y k ∈ Q(q2n)

has the same conjugation action as Xi . Thus in all cases, we can write
Xi = X ′

iX
′′
i for some X ′

i ∈ Q(q2n) and some X ′′
i ∈ CSL2(q2n)·〈Y 〉(Pi).

The subgroups of Q(q2n) which are centralized by elements in the coset
SL2(q

n)·Y are precisely the cyclic subgroups. (The quaternion subgroups
of order ≥ 8 are all centric in SL2(q

2n).) Hence we can choose elements
Y ′′
i as follows: Y ′′

i = 1 if X ′′
i ∈ SL2(q

n), and Y ′′
i ∈ SL2(q

n)·Y and
centralizes ϕu(Pi) if X ′′

i ∈ SL2(q
n)·Y . We now define

h = [[X ′
1,X

′
2, ϕu(X

′
3)]]·[[Y

′′
1 , Y

′′
2 , Y

′′
3 ]];

then h ∈ H(qn) and satisfies (1).

This shows that δ̂u preserves H(qn)-fusion as an automorphism of S0(q
n). Also,

γ̂ and cτ preserve fusion, since both extend to automorphisms of H(qn); and
hence γ̂u = δ̂uγ̂δ̂

−1
u also preserves fusion.

Let ψ = ψq
n

∈ Aut(Spin7(q
∞)) be induced by the field automorphism x 7→

xq
n

. By [LO, Proposition A.9(a)], if E ≤ Spin7(q
n) is an arbitrary elementary

abelian 2-subgroup of rank 4, then there is an element a ∈ Spin7(q
∞) such that

aEa−1 = E∗ , and we define

xC(E) = a−1ψ(a).

Then xC(E) ∈ E , and is independent of the choice of a.

In the following lemma, we correct the statement and proof of points (b) and
(e). The proof of (e) is affected by both the changes in the statement of (b)
and those in the definition of Γn .

Lemma 1.8 ([LO, Lemma 2.8]) Fix n ≥ 1, set E∗ = 〈z, z1, Â, B̂〉 ≤ S(qn),
and let C be the Spin7(q

n)-conjugacy class of E∗ . Let EU4 be the set of all
elementary abelian subgroups E ≤ S(qn) of rank 4 which contain U = 〈z, z1〉.
Fix a generator X ∈ C(qn) (the 2-power torsion in CSL2(qn)(A)), and choose
Y ∈ C(q2n) such that Y 2 = X . Then the following hold.

(a) E∗ has type I.
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(b) Each subgroup in EU4 which contains Â is of the form

Eijk = 〈z, z1, Â, [[X
iB,XjB,XkB]]〉 or

E′
ijk = 〈z, z1, Â, [[X

iY B,XjY B,XkY B]]〉.

Each subgroup in EU4 is H(qn)-conjugate to one of these subgroups Eijk
or E′

ijk for some i, j, k ∈ Z.

(c) xC(Eijk) = [[(−I)i, (−I)j , (−I)k]] and xC(E
′
ijk) = [[(−I)i, (−I)j , (−I)k]]·Â.

(d) All of the subgroups E′
ijk have type II. The subgroup Eijk has type I if

and only if i ≡ j (mod 2), and lies in C (is conjugate to E∗ ) if and only if
i ≡ j ≡ k (mod 2). The subgroups E000 , E001 , and E100 thus represent
the three conjugacy classes of rank four elementary abelian subgroups of
Spin7(q

n) (and E∗ = E000 ).

(e) For any ϕ ∈ Γn ≤ Aut(S0(q
n)) and any E ∈ EU4 , ϕ(xC(E)) = xC(ϕ(E)).

Proof We prove only points (b) and (e) here, and refer to [LO] for the proofs
of the other points.

(b) Assume first that Â ∈ E ; i.e., that E ≥ A1 = 〈z, z1, Â〉. By definition,
S(qn) is generated by A(qn), whose elements clearly centralize A1 ; and elements
[[Bi, Bj , Bk]] for i, j, k ∈ {0, 1}. Since an element of this form centralizes Â only
if i = j = k , this shows that

E ≤ CS(qn)(〈z, z1, Â〉) = A(qn)·〈B̂〉.

Since A(qn) is a finite abelian 2-group of rank 3, we have E = 〈z, z1, Â, gB̂〉
for some g ∈ A(qn). Also,

A(qn) = ω(C(q∞)3) ∩ Spin7(q
n) =

{
[[X i, Xj , Xk]], [[X iY,XjY,XkY ]]

∣∣ i, j, k ∈ Z
}
,

and hence E = Eijk or E′
ijk for some i, j, k ∈ Z.

Now let E ∈ EU4 be arbitrary. Each element of E has the form [[X1,X2,X3]],
where either Xi ∈ SL2(q

n) for all i, or Xi ∈ SL2(q
n)·Y for all i — and the

elements of the first type (Xi ∈ SL2(q
n)) form a subgroup of index at most 2.

Since U has index 4 in E , this means that there is some g = [[X1,X2,X3]] ∈
ErU for which Xi ∈ SL2(q

n) for all i. Also, |Xi| = 4 for all i, since g /∈
U = {[[±I,±I,±I]]}. Since all elements of order 4 in SL2(q

n) are conjugate
(cf. [Sz, 3.6.23]), this implies that g is H(qn)-conjugate to Â, and hence that
E is H(qn)-conjugate to one of the above subgroups Eijk or E′

ijk .
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(e) By construction, xC(−) is preserved under conjugation by elements of the
group Spin7(q

n). Since Γn is generated by γ̂u and conjugation by elements of
Spin7(q

n), it suffices to prove the result when ϕ = γ̂u . Since u ≡ 1 (mod 4) by
Proposition 1.5, γ̂u(Â) = Â, γ̂u(Eijk) = Ek′,i′,j′ , and γ̂u(E

′
ijk) = E′

k′′,i′′,j′′ for
some i′ ≡ i′′ ≡ i (mod 2), and similarly for the other indices. Hence by (c),
γ̂u(xC(E)) = xC(γ̂u(E)) whenever E = Eijk or E = E′

ijk for some i, j, k ∈ Z.

Now assume E ∈ EU4 is not one of the subgroups Eijk or E′
ijk . By (b), there

is g ∈ H(qn) such that E′ def
= gEg−1 is of this form. Since γ̂u preserves

H(qn)-fusion by Lemma 1.7, there is h ∈ H(qn) such that the following square
commutes:

E
γ̂u
→ γ̂u(E)

E′

cg
↓

γ̂u
→ γ̂u(E

′) .

ch↓

We have seen that γ̂u(xC(E
′)) = xC(γ̂u(E

′)); and also that cg and ch preserve
xC(−). Hence γ̂u(xC(E)) = xC(γ̂u(E)) by the commutativity of the square.

The following is the crucial result needed to apply Proposition 1.3. The state-
ment is exactly the same as that in [LO], but the proof has to be modified
slightly due to the changed definition of Γn (hence of Fn ).

Proposition 1.9 ([LO, Proposition 2.9]) Fix n ≥ 1. Let E ≤ S(qn) be
an elementary abelian subgroup of rank 3 which contains U , and such that
CS(qn)(E) ∈ Syl2(CSpin7(q

n)(E)). Then

{ϕ ∈ AutFn(CS(qn)(E)) |ϕ(z) = z} = AutSpin7(qn)(CS(qn)(E)). (1)

Proof Set

Spin = Spin7(q
n), S = S(qn), Γ = Γn, and F = Fn

for short, and consider the subgroups

R0 = R0(q
n)

def
= A(qn) and R1 = R1(q

n)
def
= CS(〈U, Â〉) = 〈R0, B̂〉.

Then
R0

∼= (C2k)
3 and R1 = R0 ⋊ 〈B̂〉,

where 2k is the largest power which divides qn ± 1, and where B̂ = [[B,B,B]]
has order 2 and acts on R0 via (g 7→ g−1). Also,

〈U, Â〉 = 〈[[±I,±I,±I]], [[A,A,A]]〉 ∼= C3
2
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is the 2-torsion subgroup of R0 . It was shown in the proof of [LO, Proposition
2.9] that

R0 is the only subgroup of S isomorphic to (C2k)
3 . (2)

Let E ≤ S be an elementary abelian subgroup of rank 3 which contains U ,
and such that CS(E) ∈ Syl2(CSpin(E)). There are two cases to consider: that
where E ≤ R0 and that where E � R0 .

Case 1: Assume E ≤ R0 . Since R0 is abelian of rank 3, we must have
E = 〈U, Â〉, the 2-torsion subgroup of R0 , and CS(E) = R1 . Also, by (2),
neither R0 nor R1 is isomorphic to any other subgroup of S ; and hence

AutF (Ri) =
〈
AutSpin(Ri),AutΓ(Ri)

〉
=

〈
AutSpin(Ri), γu|Ri

〉
for i = 0, 1.

(3)
(Recall that AutΓ(Ri) is generated by AutS0(qn)(Ri) and the restrictions of cτ
and γu .) Hence by Proposition 1.5(b),

AutF (R0) =
〈
AutSpin(R0), γu|R0

〉
∼= C2 ×GL3(2).

In other words, if we let A1 = 〈z, z1, Â〉 denote the 2-torsion subgroup of R0 ,
then restriction to A1 sends AutF (R0) onto Aut(A1) with kernel 〈c

B̂
〉 of order

2. Since AutSpin(A1) is the group of all automorphisms of A1 which send z to
itself [LO, Proposition A.8], this shows that

AutSpin(R0) =
{
ϕ ∈ AutF (R0)

∣∣ϕ(z) = z
}
. (4)

In the proof of [LO, Proposition 2.9] (see formula (5) in that proof), we show
the first of the following two equalities:

AutSpin(R1) = Inn(R1)·
{
ϕ ∈ AutSpin(R1)

∣∣ϕ(B̂) = B̂
}

= Inn(R1)·
{
ϕ ∈ Aut(R1)

∣∣ϕ(B̂) = B̂, ϕ|R0
∈ AutSpin(R0)

}
. (5)

The second equality holds since R1 = 〈R0, B̂〉, and since R0 is the unique
abelian subgroup of R1 of index 2. Since γ̂u(R0) = R0 and γ̂u(B̂) = B̂ , this,
together with (3), shows that

AutF (R1) = Inn(R1)·
{
ϕ ∈ Aut(R1)

∣∣ϕ(B̂) = B̂, ϕ|R0
∈ AutF (R0)

}
,

and hence that
{
ϕ ∈AutF (R1)

∣∣ϕ(z) = z
}

= Inn(R1)·
{
ϕ ∈ Aut(R1)

∣∣ϕ(B̂) = B̂, ϕ(z) = z, ϕ|R0
∈ AutF (R0)

}

= Inn(R1)·
{
ϕ ∈ Aut(R1)

∣∣ϕ(B̂) = B̂, ϕ|R0
∈ AutSpin(R0)

}
, (6)
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where the second equality follows from (4). If ϕ ∈ Aut(R1) is such that
ϕ(B̂) = B̂ and ϕ|R0

= cx|R0
for some x ∈ NSpin(R0), then x normalizes

R1 (the centralizer of the 2-torsion in R0 ), cx(B̂) = cy(B̂) for some y ∈ R1 =

R0·〈B̂〉 by (5), so we can assume y ∈ R0 . Since R0 = A(q∞) is abelian
(so [y,R0] = 1), this implies cy−1x|R1

= ϕ, and hence ϕ ∈ AutSpin(R1). So
{ϕ ∈ AutF (R1) |ϕ(z) = z} ≤ AutSpin(R1) by (6), and the opposite inclusion is
clear.

Case 2: Now assume that E � R0 . By assumption, U ≤ E (hence E ≤
CS(E) ≤ CS(U)), and CS(E) is a Sylow subgroup of CSpin(E). Also, E
contains an element of the form g·[[Bi, Bj, Bk]] for g ∈ R0 = A(qn) and some
i, j, k not all even, and hence A(qn) � CS(E). Hence by (2), CS(E) is not

isomorphic to R1 = CS(〈z, z1, Â〉), and this shows that E is not Spin-conjugate
to 〈z, z1, Â〉. By [LO, Proposition A.8], Spin contains exactly two conjugacy
classes of rank 3 subgroups containing z , and thus E must have type II. So by
[LO, Proposition A.8(d)], CS(E) is elementary abelian of rank 4, and also has
type II.

Let C be the Spin7(q
n)-conjugacy class of the subgroup E∗ = 〈U, Â, B̂〉 ∼= C4

2 ,
which by Lemma 1.8(a) has type I. Let E ′ be the set of all subgroups of S which
are elementary abelian of rank 4, contain U , and are not in C . By Lemma 1.8(e),

for any ϕ ∈ IsoΓ(E
′, E′′) and any E′ ∈ E ′ , E′′ def

= ϕ(E′) ∈ E ′ , and ϕ sends
xC(E

′) to xC(E
′′). The same holds for ϕ ∈ IsoSpin(E

′, E′′) by definition of the
elements xC(−) ([LO, Proposition A.9]). Since CS(E) ∈ E ′ , this shows that
all elements of AutF (CS(E)) send the element xC(CS(E)) to itself. By [LO,
Proposition A.9(c)], AutSpin(CS(E)) is the group of automorphisms which are
the identity on the rank two subgroup 〈xC(CS(E)), z〉 ; and (1) now follows.

The proof of the following lemma is essentially unchanged.

Lemma 1.10 ([LO, Lemma 2.10]) Fix n ≥ 1, and let E,E′ ≤ S(qn) be two
elementary abelian subgroups of rank three which contain U , and which are
Γn -conjugate. Then E and E′ are Spin7(q

n)-conjugate.

Proof Consider the sets

J1 =
{
X ∈ SL2(q

n)
∣∣X2 = −I

}

and

J2 =
{
X ∈ SL2(q

2n)
∣∣ψqn(X) = −X, X2 = −I

}
.
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Here, as usual, ψq
n

is induced by the field automorphism (x 7→ xq
n

). It was
shown in the proof of [LO, Lemma 2.10] that all elements in each of these sets
are SL2(q)-conjugate to each other.

Since E and E contain U , E,E′ ≤ CSpin7(q
n)(U). By [LO, Proposition 2.5(a)],

CSpin7(q
n)(U) = H(qn)

def
= ω(SL2(q

∞)3) ∩ Spin7(q
n).

Thus

E = 〈z, z1, [[X1,X2,X3]]〉 and E′ = 〈z, z1, [[X
′
1,X

′
2,X

′
3]]〉,

where the Xi are all in J1 or all in J2 , and similarly for the X ′
i . Also, E and E′

are Γn -conjugate, and each element of Γn leaves U = 〈z, z1〉 and ω(SL2(q
n)3)

invariant. Hence either E and E′ are both contained in ω(SL2(q
n)3), in which

case the Xi and X ′
i are all in J1 ; or neither is contained in ω(SL2(q

n)3), in
which case the Xi and X ′

i are all in J2 . This shows that the Xi and X ′
i are

all SL2(q
n)-conjugate, and so E and E′ are Spin7(q

n)-conjugate.

We are now ready to prove:

Proposition 1.11 ([LO, Proposition 2.11]) For a fixed odd prime power q ,
let S(qn) ≤ S(q∞) ≤ Spin7(q

∞) be as defined above. Let z ∈ Z(Spin7(q
∞)) be

the central element of order 2. Then for each n, Fn = FSol(q
n) is saturated as

a fusion system over S(qn), and satisfies the following conditions:

(a) For all P,Q ≤ S(qn) which contain z , if α ∈ Hom(P,Q) is such that
α(z) = z , then α ∈ HomFn(P,Q) if and only if α ∈ HomSpin7(q

n)(P,Q).

(b) CFn(z) = FS(qn)(Spin7(q
n)) as fusion systems over S(qn).

(c) All involutions of S(qn) are Fn -conjugate.

Furthermore, Fm ⊆ Fn for m|n. The union of the Fn is thus a category
FSol(q

∞) whose objects are the finite subgroups of S(q∞).

Proof We apply Proposition 1.3, where p = 2, G = Spin7(q
n), S = S(qn),

Z = 〈z〉 = Z(G), U = 〈z, z1〉, CG(U) = H(qn), S0 = CS(U) = S0(q
n), and

Γ = Γn ≤ Aut(S0). By Lemma 1.7, γ̂u preserves H(qn)-fusion in S0 . Since
Γ is generated by γ̂u and certain automorphisms of H(qn), this shows that all
automorphisms in Γ preserve H(qn)-fusion.
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Condition (a) in Proposition 1.3 (all noncentral involutions in G are conjugate)
holds since all subgroups in E2 are conjugate ([LO, Proposition A.8]), and
condition (b) holds by definition of Γ. Condition (c) holds since

{γ ∈ Γ | γ(z) = z} = Inn(S0(q
n))·〈cτ 〉 = AutNG(U)(S0(q

n))

by [LO, Proposition 2.5(b)]. Condition (d) was shown in Proposition 1.9, and
condition (e) in Lemma 1.10. So by Proposition 1.3, Fn is a saturated fusion
system, and CFn(Z) = FS(qn)(Spin7(q

n)).

The proofs of the other statements remain unchanged.

In Section 3 of [LO], these corrections affect only the proof of Lemma 3.1. In
that proof, the groups E100 and E001 are not Γ1 -conjugate under the new
definitions; instead E100 is Γ1 -conjugate to a subgroup which is Spin7(q)-
conjugate to E001 (and hence the two are F -conjugate). Also, when showing
that AutF (E001) is the group of all automorphisms which fix z = xC(E001),
it is important to know that all Γ1 -isomorphisms between subgroups in that
conjugacy class preserve the elements xC(−) (as shown in Lemma 1.8(e)), and
not just that Γ1 -automorphisms of E001 do so.

The changes do not affect the later sections. Just note that we are able to
consider FSol(q

n) as a subcategory of FSol(q
kn) for k > 1, because they were

both chosen using the same “correction factor” u ∈ (Ẑ2)
∗ in the definitions of

Γn and Γkn .

2 Proof of Proposition 1.3

Proposition 1.3 follows from Lemmas 1.3, 1.4, and 1.5 in [LO], once they are
restated to assume the hypotheses of this new proposition, and not those of
[LO, Proposition 1.2]. The only one of these lemmas whose proof is affected by
the change in hypotheses is Lemma 1.4, and so we restate and reprove it here.

Lemma 2.1 Assume the hypotheses of Proposition 1.3, and let

F = 〈FS(G);FS0
(Γ)〉

be the fusion system generated by G and Γ. Then for all P,P ′ ≤ S which
contain Z ,

{ϕ ∈ HomF (P,P
′) |ϕ(Z) = Z} = HomG(P,P

′).
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Proof Upon replacing P ′ by ϕ(P ) ≤ P ′ , we can assume that ϕ is an isomor-
phism, and thus that it factors as a composite of isomorphisms

P = P0
ϕ1

−−−→
∼=

P1
ϕ2

−−−→
∼=

P2
ϕ3

−−−→
∼=

· · ·
ϕk−1

−−−→
∼=

Pk−1
ϕk−−−→
∼=

Pk = P ′,

where for each i, ϕi ∈ HomG(Pi−1, Pi) or ϕi ∈ HomΓ(Pi−1, Pi). Let Zi ≤ Z(Pi)
be the subgroups of order p such that Z0 = Zk = Z and Zi = ϕi(Zi−1).

To simplify the discussion, we say that a morphism in F is of type (G) if it is
given by conjugation by an element of G, and of type (Γ) if it is the restriction
of an automorphism in Γ. More generally, we say that a morphism is of type
(G,Γ) if it is the composite of a morphism of type (G) followed by one of type
(Γ), etc. We regard IdP , for all P ≤ S , to be of both types, even if P � S0 .
By definition, if any nonidentity isomorphism is of type (Γ), then its source
and image are both contained in S0 = CS(U). In particular, if Pi � S0 for
any 0 < i < k , then ϕi and ϕi+1 are both of type (G), and we can remove it
and replace the two morphisms by their composite. We can thus assume that
[Pi, U ] = 1 for all 0 < i < k , and hence that Zi ≤ Z(PiU) for all i.

For each i, using [LO, Lemma 1.3], choose some ψi ∈ HomF (PiU,S) such that
ψi(Zi) = Z . More precisely, using points (1) and (2) in [LO, Lemma 1.3], we
can choose ψi to be of type (Γ) if Zi ≤ U (the inclusion if Zi = Z ), and to
be of type (G,Γ) if Zi � U . Set P ′

i = ψi(Pi). To keep track of the effect of
morphisms on the subgroups Zi , we write them as morphisms between pairs,
as shown below. Thus, ϕ factors as a composite of isomorphisms

(P ′
i−1, Z)

ψ−1

i−1

−−−−−→ (Pi−1, Zi−1)
ϕi

−−−−−→ (Pi, Zi)
ψi

−−−−−→ (P ′
i , Z).

If ϕi is of type (G), then this composite (after replacing adjacent morphisms
of the same type by their composite) is of type (Γ, G,Γ). If ϕi is of type (Γ),
then the composite is again of type (Γ, G,Γ) if either Zi−1 ≤ U or Zi ≤ U ,
and is of type (Γ, G,Γ, G,Γ) if neither Zi−1 nor Zi is contained in U . So we
are reduced to assuming that ϕ is of one of these two forms.

Case 1: Assume first that ϕ is of type (Γ, G,Γ); i.e., a composite of isomor-
phisms of the form

(P0, Z)
ϕ1

−−−−→
(Γ)

(P1, Z1)
ϕ2

−−−−→
(G)

(P2, Z2)
ϕ3

−−−−→
(Γ)

(P3, Z).

Then Z1 = Z if and only if Z2 = Z because ϕ2 is of type (G). If Z1 = Z2 = Z ,
then ϕ1 and ϕ3 are of type (G) by Proposition 1.3(c), and the result follows.

If Z1 6= Z 6= Z2 , then U = ZZ1 = ZZ2 , and thus ϕ2(U) = U . Neither ϕ1

nor ϕ3 can be the identity, so Pi ≤ S0 = CS(U) for all i by definition of
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HomΓ(−,−). Let γ1, γ3 ∈ Γ be such that ϕi = γi|Pi−1
, and let g ∈ NG(U) be

such that ϕ2 = cg . Then gCS(U)g−1 ∈ Sylp(CG(U)), so there is h ∈ CG(U)
such that hg ∈ N(CS(U)). Then chg ∈ Γ by Proposition 1.3(c).

Since γ3 preserves CG(U)-fusion among subgroups of S0 , there is g′ ∈ CG(U)
such that cg′ = γ3 ◦ c−1

h ◦ γ−1
3 . Thus ϕ is the composite

P0
ϕ1

−−−−→
(Γ)

P1
chg

−−−−→
(Γ)

hP2h
−1 γ3

−−−−→
(Γ)

γ3(hP2h
−1)

cg′
−−−−→

(G)
P3.

The composite of the first three isomorphisms is of type (Γ) and sends Z to
g′−1Zg′ = Z , hence is of type (G) by Proposition 1.3(c) again, and so ϕ is also
of type (G).

Case 2: Assume now that ϕ is of type (Γ, G,Γ, G,Γ); more precisely, that it
is a composite of the form

(P0, Z)
ϕ1

−−−→
(Γ)

(P1, Z1)
ϕ2

−−−→
(G)

(P2, Z2)
ϕ3

−−−→
(Γ)

(P3, Z3)

ϕ4

−−−→
(G)

(P4, Z4)
ϕ5

−−−→
(Γ)

(P5, Z),

where Z2, Z3 � U . Then Z1, Z4 ≤ U and are distinct from Z , and the
groups P0, P1, P4, P5 all contain U since ϕ1 and ϕ5 (being of type (Γ)) leave
U invariant. In particular, P2 and P3 contain Z , since P1 and P4 do and
ϕ2, ϕ4 are of type (G). We can also assume that U ≤ P2, P3 , since otherwise
P2 ∩ U = Z or P3 ∩ U = Z , ϕ3(Z) = Z , and hence ϕ3 is of type (G) by
Proposition 1.3(c) again. Finally, we assume that P2, P3 ≤ S0 = CS(U), since
otherwise ϕ3 = Id.

Let Ei ≤ Pi be the rank three elementary abelian subgroups defined by the
requirements that E2 = UZ2 , E3 = UZ3 , and ϕi(Ei−1) = Ei . In particular,
Ei ≤ Z(Pi) for i = 2, 3 (since Zi ≤ Z(Pi), and U ≤ Z(Pi) by the above
remarks); and hence Ei ≤ Z(Pi) for all i. Also, U = ZZ4 ≤ ϕ4(E3) = E4 since
ϕ4(Z) = Z , and thus U = ϕ5(U) ≤ E5 . Via similar considerations for E0 and
E1 , we see that U ≤ Ei for all i.

Set H = CG(U) for short. Let E3 be the set of all elementary abelian subgroups
E ≤ S of rank three which contain U , and let E∗

3 ⊆ E3 be the set of all E ∈ E3
such that CS(E) ∈ Sylp(CG(E)). Then for all E ∈ E3 ,

CS(E) = CS0
(E) and CG(E) = CH(E)

since E ≥ U (and S0 = CS(U)). Thus E∗
3 is the set of all subgroups E ∈ E3

which are fully centralized in the fusion system FS0
(H), and so each subgroup

in E3 is H -conjugate to a subgroup in E∗
3 .
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Let γ1, γ3, γ5 ∈ Γ be such that ϕi = γi|Pi−1
for odd i. Let g2, g4 ∈ G be such

that ϕi is conjugation by gi for i = 2, 4. We will construct a commutative
diagram of the following form

(P0, E0)
γ1
→ (P1, E1)

cg2→ (P2, E2)
γ3
→ (P3, E3)

cg4→ (P4, E4)
γ5
→ (P5, E5)

(C ′
0, E

′
0)

ca0↓
γ1
→ (C ′

1, E
′
1)

ca1↓
ch2→ (C ′

2, E
′
2)

ca2↓
γ3
→ (C ′

3, E
′
3)

ca3↓
ch4→ (C ′

4, E
′
4)

ca4↓
γ5
→ (C ′

5, E
′
5)

ca5↓

where E′
i ∈ E∗

3 , C
′
i = CS(E

′
i), h2, h4 ∈ G, and ai ∈ H = CG(U). To do this,

first choose a′0, a
′
2, a

′
4 ∈ H such that E′

i
def
= a′iEia

′
i
−1 ∈ E∗

3 for i = 0, 2, 4, and set
E′
i = γi(E

′
i−1) for i = 1, 3, 5. Then CS(E

′
i) = γi(CS(E

′
i−1)) for i = 1, 3, 5, so

CS(E
′
i) ∈ Sylp(CH(E

′
i)) and E′

i ∈ E∗
3 for all i. So we can choose x0 ∈ CH(E

′
0)

such that x0(a
′
0P0a

′
0
−1)x−1

0 ≤ CS(E
′
0), and set a0 = x0a

′
0 ∈ H . Since γ1 ∈

Aut(S0) preserves H -fusion, there is a1 ∈ H which makes the first square in
the above diagram commute. Now choose x2 ∈ CH(E

′
2) such that

x2
(
(a′2g2a

−1
1 )CS(E

′
1)(a

′
2g2a

−1
1 )−1

)
x−1
2 ≤ CS(E

′
2),

and set a2 = x2a
′
2 and h2 = a2g2a

−1
1 . Upon continuing this procedure we

obtain the above diagram.

Let ϕ̂ ∈ IsoF (CS(E
′
0), CS(E

′
5)) be the composite of the morphisms in the bot-

tom row of the above diagram. Then ϕ̂(Z) = Z , since ϕ and the cai all
send Z to itself. By Proposition 1.3(e), the rank three subgroups E′

i are all
G-conjugate to each other. Choose g ∈ G such that gE′

5g
−1 = E′

0 . Then
g·CS(E

′
5)·g

−1 and CS(E
′
0) are both Sylow p-subgroups of CG(E

′
0), so there is

h ∈ CG(E
′
0) such that (hg)CS(E

′
5)(hg)

−1 = CS(E
′
0). By Proposition 1.3(d),

chg ◦ ϕ̂ ∈ AutF (CS(E
′
0)) is of type (G), so ϕ̂ is of type (G), and hence

ϕ = c−1
a5

◦ ϕ̂ ◦ ca0 is also of type (G).
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