
p-STUBBORN SUBGROUPS OF

CLASSICAL COMPACT LIE GROUPS

by Bob Oliver

For any compact Lie group G and any prime p, a p-stubborn subgroup P ⊆ G is a
subgroup which satisfies the following conditions:

(a) P is p-toral (i.e., an extension of a torus by a finite p-group)

(b) N(P )/P is finite

(c) Op(N(P )/P ) = 1: the Sylow p-subgroups of N(P )/P intersect trivially (or equiv-
alently, there is no nontrivial normal p-subgroup 1 6=Q⊳N(P )/P ).

These are the subgroups which were used in [JMO] to approximate the space BG at
the prime p. More precisely, let O(G) denote the “orbit category” of G: the category
whose objects are the orbitsG/H for closed subgroupsH ⊆ G, and whose morphisms are
all G-maps between orbits. Let Rp(G) denote the full subcategory of O(G) consisting
of those orbits G/P for p-stubborn P⊆G. Then for any G and p, the natural projection
map

hocolim
−→

G/P∈Rp(G)

(EG/P ) −−−−→ BG (EG/P ≃ BP )

induces an equivalence in Fp-homology [JMO, §§1–2]. This decomposition of BG, and
the category Rp(G), play a central role in [JMO] and [JMO2] as a tool for describing
sets of homotopy classes of maps from BG to BH for any (other) compact connected
Lie group H.

The main result of this paper — a list of the p-stubborn subgroups of each classical
compact Lie group — was originally obtained while doing preliminary work on [JMO];
but in fact such an explicit result was not needed in that paper. However, recent results
of Notbohm [N], proving in many cases the uniqueness of the completed classifying
spaces BGp̂ (uniqueness among spaces with the same mod p cohomology), do require
a more precise description of the p-stubborn subgroups of the classical compact Lie
groups. And that provides the motivation for publishing this paper now.

In Theorems 6 and 8 below, the p-stubborn subgroups of the matrix groups U(n),
O(n), and Sp(n) are described explicitly for each n and p — in terms of subgroups
defined in Definitions 1 and 2. These results are then extended, in Theorems 10 and 12,
to describe the p-stubborn subgroups of SU(n) and SO(n). In all cases, the p-stubborn
subgroups show a surprisingly simple pattern: being generated from a small collection
of “basic” p-stubborn subgroups by products and wreath products.
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By [JMO, Proposition 1.6(i)], Rp(G̃) ∼= Rp(G) for any compact connected Lie group

G and any finite covering group G̃ of G. So the results here also describe the p-stubborn
subgroups of the simple groups Spin(n), PSU(n), etc.

For a finite group G, the “p-stubborn” subgroups of G are precisely the same as the
“radical” p-subgroups which play a role in the representation theory of finite groups (cf.
[Al]). The description given here of p-stubborn subgroups of the classical matrix groups
is very similar in nature to the description by Alperin & Fong of radical subgroups of
symmetric groups and finite general linear groups [AF, Theorems 2A & 4A].

We first define certain p-stubborn subgroups of Σn, O(n), U(n) and Sp(n): subgroups
which will be seen to generate all other p-stubborn subgroups of the classical groups.

Let σ0, . . . , σk−1 ∈ Σpk denote the permutations

σr(i) =

{
i+ pr if i ≡ 1, . . . , (p− 1)pr (mod pr+1)

i− (p− 1)pr if i ≡ (p− 1)pr + 1, . . . , pr+1 (mod pr+1).

These generate an elementary abelian p-subgroup 〈σ0, . . . , σk−1〉 ∼= (Cp)
k of rank k,

which can be identified with the translation action of (Cp)
k on itself.

Set ζ = e2πi/p, a primitive p-th root of unity. Define matrices

A0, . . . , Ak−1, B0, . . . , Bk−1 ∈ U(pk)

by setting

(Ar)ij =

{
ζ [(i−1)/pr] if i = j

0 if i 6= j
and (Br)ij =

{
1 if σr(i) = j

0 if σr(i) 6= j

(where [−] denotes greatest integer). The Ar are thus all diagonal matrices, and the
Br are the permutation matrices for the σr. These matrices satisfy the commutator
relations

[Ar, As] = I = [Br, Bs] = [Br, As] (r 6= s), and [Br, Ar] = ζ · I.

Finally, let Q(8)⊆S1(j) ⊆ H∗ denote the subgroups

Q(8) = {±1,±i,±j,±k} and S1(j) = {a+ bi, aj + bk | a2 + b2 = 1}.

Definition 1. For each prime p and each k ≥ 0, subgroups

Epk ⊆ Σpk and ΓU
pk ⊆ U(pk)

(
⊆ O(2pk), Sp(pk)

)

are defined by setting
Epk = 〈σ0, . . . , σk−1〉 ∼= (Cp)

k

and
ΓU
pk = 〈u·I, Ar, Br | u ∈ S1, 0 ≤ r ≤ k−1〉 ⊆ U(pk).
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If p = 2, then Ar, Br∈O(2k), and we define

ΓO
2k ⊆ Γ

O

2k ⊆ O(2k) and ΓSp
2k ⊆ Γ

Sp

2k ⊆ Sp(2k)

by setting
ΓO
2k = 〈 − I, Ar, Br | 0 ≤ r ≤ k − 1〉,

Γ
O

2k = 〈α⊕2k−1

, Ar, Br | α ∈ SO(2), 0 ≤ r ≤ k − 1〉,

ΓSp
2k = 〈u·I, Ar, Br | u ∈ Q(8), 0 ≤ r ≤ k − 1〉,

Γ
Sp

2k = 〈u·I, Ar, Br | u ∈ S1(j), 0 ≤ r ≤ k − 1〉.

The groups ΓX
pk sit in central extensions

1 −→ S1 −→ ΓU
pk −→ (Cp)

2k −→ 1

1 −→ {±1} −→ ΓO
2k −→ (C2)

2k −→ 1, 1 −→ {±1} −→ ΓSp
2k −→ (C2)

2k+2 −→ 1;

and the groups Γ
X

pk in (non-central) extensions

1 −→ S1 −→ Γ
O

2k −→ (C2)
2k−1 −→ 1, 1 −→ S1 −→ Γ

Sp

2k −→ (C2)
2k+1 −→ 1

or

1 −→ O(2) −→ Γ
O

2k −→ (C2)
2k−2 −→ 1, 1 −→ S1(j) −→ Γ

Sp

2k −→ (C2)
2k −→ 1.

When describing p-stubborn subgroups of the classical Lie groups, it will be conve-
nient to let G denote one of the classes O, U, or Sp. We make here the usual identifi-
cations G(k) × G(m) ⊆ G(k +m) and G(k) ≀ Σm ⊆ G(km) for k,m ≥ 1. A subgroup
P ⊆ G(n) will be called irreducible if the corresponding P -representation on Rn, Cn,
or Hn is irreducible.

Definition 2. For fixed G = G(n) and fixed p, let TΓ(p,G) ⊆ Tirr(p,G) ⊆ Tprod(p,G)
be the sets of p-toral subgroups of G defined as follows:

(i) TΓ(p,U(p
k)) = {ΓU

pk} for any p and any k ≥ 0,

TΓ(p,O(2pk)) = TΓ(p, Sp(p
k)) = {ΓU

pk} for any odd p and any k ≥ 0,

TΓ(2,O(1)) = {ΓO
1 =O(1)}, TΓ(2,O(2)) = {Γ

O

2 =O(2)},

TΓ(2,O(2k)) = {ΓO
2k , Γ

O

2k} for any k ≥ 2,

TΓ(2, Sp(2
k)) = {ΓSp

2k , Γ
Sp

2k } for any k ≥ 0;

and TΓ(p,G(n)) = ∅ in all other cases.

(ii) Tirr(p,G) is the set of those wreath products in G of the form

P = Γ ≀ Eq1 ≀ · · · ≀ Eqr
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where Γ ∈ TΓ(p,G(m)), qi = pti > 1, and n = m·q1· · ·qr; and where q1 ≥ 4 (t1 ≥ 2) if
Γ = ΓO

1 = O(1).

(iii) If p = 2, or if G = U or Sp, or if G = O and n is even, then Tprod(p,G) is the
set of all products of the form

P = P1 × P2 × · · · × Ps,

where Pi ∈ Tirr(p,G(ni)) for each i (and n = n1 + · · · + ns). If p is odd and G =
O(2m+1) (m ≥ 0), then Tprod(p,G) is the set of all products of the form P × 1 for
P ∈ Tprod(p,O(2m)).

Note that TΓ(p,G) and Tirr(p,G) are both empty if G = G(n) and n is not a power
of p (or not twice a power of p if G = O and p is odd).

The main result of this paper is that for G as in Definition 2, every subgroup in
Tirr(p,G) is p-stubborn (Theorem 6), and every p-stubborn subgroup of G is conju-
gate to a subgroup in Tprod(p,G) (Theorem 8). It will also be specified in Theorem
6 exactly which elements of Tprod(p,G) are p-stubborn. The elements of Tirr(p,G) are
conjugacy class representatives of those p-stubborn subgroups which are irreducible as
representations.

The proofs of Theorems 6 and 8 below involve computing normalizers of the p-
stubborn subgroups, and in particular for the products and wreath products which
occur in Definition 2. The following lemma lists some of the relations which will be
useful when doing this.

Lemma 3. Let G = O, U, or Sp, and set G = G(n).

(i) Assume H ⊆ G has the form

H = (H1)
m1 × · · · × (Hk)

mk ,

where 1 6= Hi ⊆ G(ni) is irreducible for each i (and n =
∑

mini), and where for i 6= j,
either ni 6= nj, or Hi and Hj are not conjugate in G(ni). Then

NG(H) = (NG(n1)(H1)) ≀ Σm1
× · · · × (NG(nk)(Hk)) ≀Σmk

.

(ii) Assume that H ⊆ G has the form H = H0 ≀L, where 1 6= H0 ⊆ G(m) is irreducible
and L ⊆ Σk acts transitively on {1, . . . , k} (and n = mk). Then H is irreducible (as a
subgroup of G(n)). If in addition, (H0)

k ⊳ NG(H), then

NG(n)(H)/H = NG(m)(H0)/H0 ×NΣk
(L)/L.

(iii) Let L ⊆ Σk be any subgroup which acts freely and transitively on {1, . . . , k}.
Then NΣk

(L)/L ∼= Aut(L).

Proof. (i) Let V denote the n-dimensional representation of H ⊆ G(n). Then V ∼=
(V1)

m1 × · · · × (Vk)
mk , where each Vi is an irreducible Hi-representation. The mi
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factors Vi are pairwise nonisomorphic as H-representations, since they are acted upon
by distinct factors Hi in H. Hence, any element in N(H) leaves each (Vi)

mi invariant,
and permutes the individual factors Vi. It follows that

N(H) ⊆ (NG(n1)(H1)) ≀ Σm1
× · · · × (NG(nr)(Hr)) ≀ Σmr

,

and the opposite inclusion is clear.

(ii) If V is the n-dimensional representation of H, then V |(H0)
k splits as a sum of

k pairwise nonisomorphic irreducible representations, which are permuted transitively
by L. So V is irreducible as an H-representation. If (H0)

k ⊳ NG(H), then NG(H) ⊆
NG(n)((H0)

k) = NG(m)(H0) ≀ Σk by part (i).

Fix any element ξ = σ·(g1, . . . , gk) ∈ NG((H0)
k), where gi ∈ NG(m)(H0) and σ ∈ Σk.

Then ξ ∈ NG(H) if and only if for all λ ∈ L ⊆ Σk,

ξλξ−1 = σ·(g1, . . . , gk)·λ·(g1, . . . , gk)
−1·σ−1

=
(
σ(g1g

−1
λ(1), . . . , gkg

−1
λ(k))σ

−1
)
·σλσ−1 ∈ H0 ≀ L.

And since L acts transitively, ξ ∈ NG(H) if and only if g1 ≡ · · · ≡ gk (mod H0), and
σ ∈ NΣk

(L).

(iii) Identify Σk with the group Bij(L) of bijections from the set L to itself, where
L ⊆ Bij(L) is the subgroup given by left translation. Then

NBij(L)(L)/L ∼= {α ∈ NBij(L)(L) |α(1) = 1}

=
{
α ∈ Bij(L) |α(1) = 1, α(g·α−1(x)) = α(g)·x (all x, g ∈ L)

}

= Aut(L). �

Centralizers of subgroups will also play an important role in identifying p-stubborn
subgroups. The following description of the centralizers of subgroups of the classical
groups is well known, but is included here since it will be referred to frequently.

Proposition 4. Let G be one of the classical groups O(n), U(n), or Sp(n), and let
H ⊆ G be any (closed) subgroup. Let V denote the corresponding H-representation: an
n-dimensional vector space over K = R, C, or H, respectively. Write V = (V1)

m1 ×
· · · × (Vk)

mk , where V1, . . . , Vk are distinct (pairwise nonisomorphic) irreducible H-
representations. Then

CG(H) ∼= G1 × · · · ×Gk,

where the Gi are described as follows:

(i) If G = U(n) (K = C), then Gi
∼= U(mi) for each i

(ii) If G = O(n) (K = R), then Gi
∼= O(mi) if Vi has real type, Gi

∼= U(mi) if Vi has
complex type, and Gi

∼= Sp(mi) if Vi has quaternion type. Here, Vi has quaternion type
if it can be given the structure of an H-vector space (upon which H acts H-linearly);
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otherwise Vi has complex type if it can be given the structure of a complex vector space;
otherwise Vi has real type.

(iii) If G = Sp(n) (K = H), then Gi
∼= Sp(mi) if Vi has real type, Gi

∼= U(mi) if Vi

has complex type, and Gi
∼= O(mi) if Vi has quaternion type. Here, Vi has real type if

Vi = H⊗R W for some H-representation W over R; otherwise Vi has complex type if it
is induced up from a C-representation of H; otherwise Vi has quaternion type.

Proof. By definition, CG(H) is the group of invertible matrices in

EndG(V ) ∼=

k∏

i=1

Mmi
(EndG(Vi))

which preserve the inner product. And by Schur’s lemma, each EndG(Vi) is one of the
division algebras R, C, or H as described above. (See [Ad, §3] or [Se, §13.2] for more
details about the distinction between irreducible representations of real, complex, or
quaternion type.) �

When working with subgroups of G = G(n), regarded as representations on the
appropriate n-dimensional vector space V , it is useful to consider the character (i.e.,
trace) χV (g) of elements g ∈ G. When G = Sp, χV (g) means the real part of the sum
of the diagonal elements in the matrix g (this clearly depends only on the conjugacy
class of g ∈ G).

One tool used here for analyzing p-stubborn subgroups is to consider the subgroup
of a given P ⊆ G generated by all elements with nonzero character. The next lemma
describes how this works for subgroups in Tprod(p,G), and helps to motivate some of
the later proofs.

Lemma 5. Fix a prime p, and let G = G(n) be as in Definition 2. Fix any subgroup
P ∈ Tprod(p,G), and define

δ(P ) = 〈g∈P | Tr(g) 6= 0〉.

Then (up to conjugacy) one of the following holds:

(a) If P 6∈ Tirr(p,G) — if P = P1 × P2, where Pi ⊆ G(ni), ni > 0, and n = n1 + n2

— then either δ(P ) = P , or (G,P ) = (O(2),O(1)×O(1)).

(b) If P = Γ ≀ Eq1 ≀ · · · ≀ Eqr (with r ≥ 1), then δ(P ) =
(
Γ ≀ Eq1 ≀ · · · ≀ Eqr−1

)qr
.

(c1) If P = ΓU
pk or Γ

O

2k or Γ
Sp

2k , then δ(P ) ∼= S1

(c2) If P = ΓO
2k or ΓSp

2k , then δ(P ) = {±I}.

Proof. Let V denote the n-dimensional representation of P ⊆ G(n).

(a) Assume first that P splits as a product only in a way such that one of the factors
is trivial. By definition of Tprod(p,G), this can only occur if p is odd, G = O(2m+ 1),
P = P1 × 1, P1 ∈ Tirr(p,O(2m)), and 1 ⊆ O(1). By inspection (see Definition 2), there
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exists a proper normal subgroup H ⊳ P1 such that all elements of P1rH have zero
trace (in O(2m)). Hence all elements of (P1rH) × 1 have trace 1 in O(2m+ 1); these
elements generate P , and so δ(P ) = P in this case.

Assume now that P1 6= 1 6= P2. Set

P ′
1 = 〈g ∈ P1 |χV (g, 1) 6= 0〉 and P ′

2 = 〈g ∈ P2 |χV (1, g) 6= 0〉.

If P ′
1 6= 1, fix elements 1 6= g1 ∈ P1 and 1 6= g2 ∈ P2 such that χV (g1, 1) 6= 0. Then

(g1, 1) ∈ δ(P ), (1, x) or (g1, x) is in δ(P ) for all x ∈ P2, and (x, 1) or (x, g2) is in δ(P )
for all x ∈ P1; and together this implies that δ(P ) = P . Similarly, δ(P ) = P if P ′

2 6= 1.

If P ′
1 = 1 = P ′

2, then V |(P1×1) and V |(1×P2) must both be multiples of the regular
representation (all non-identity elements have zero character). Then n ≥ |P1|·n2 and
n ≥ |P2|·n1, so n1 = n2 and |P1| = |P2| = 2, and hence (G,P ) = (O(2),O(1)×O(1)) in
this case.

(b) By part (a), δ(P ) ⊇
(
Γ ≀ Eq1 ≀ · · · ≀ Eqr−1

)qr
. Note that the exceptional case in

(a) does not occur, since by definition, ΓO
1 ≀ E2 6∈ Tirr(2,O(2)). The opposite inclusion

is clear, since all other matrices in P have zeroes on the diagonal.

(c1,2) These formulas follow immediately from the definitions of the groups. �

We are now ready to describe N(P )/P for P ∈ Tprod(p,G), and to determine which
of these subgroups are p-stubborn. Recall that a p-toral subgroup P ⊆ G is p-stubborn
if and only if N(P )/P is finite and Op(N(P )/P ) = 1, where Op(N(P )/P ) is the inter-
section of the Sylow p-subgroups in N(P )/P .

Theorem 6. Fix a prime p, set G = O, U, or Sp, and let G = G(n) for some n ≥ 1.

(i) Any subgroup P ∈ Tirr(p,G) is both irreducible and p-stubborn in G. If P ∈
Tirr(p,G) is an iterated wreath product of the form

P = Γ ≀ Eq1 ≀ · · · ≀ Eqr (Γ ∈ TΓ(p,G(m)), qi = pti > 1, n = m·q1· · ·qr) (1)

as in Definition 2, then

NG(n)(P )/P ∼= NG(m)(Γ)/Γ×GLt1(Fp)× · · · ×GLtr(Fp),

and NG(m)(Γ)/(Γ) is as given in the following table:

Γ G(m) N(Γ)/Γ

ΓU
pk U(pk) Sp2k(Fp)

ΓU
pk (p odd) O(2pk), Sp(pk) C2× Sp2k(Fp)

ΓO
2k (k 6= 1) O(2k) O+

2k(F2)

Γ
O

2k (k 6= 0) O(2k) Sp2k−2(F2)

ΓSp
2k Sp(2k) O−

2k+2(F2)

Γ
Sp

2k Sp(2k) Sp2k(F2)

(2)
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(ii) A subgroup P ∈ Tprod(p,G) is p-stubborn in G if and only if when written as a
product

P = P1 × · · · × Ps [×1] (Pi ∈ Tirr(p,G(ni)), n = n1 + · · ·+ ns [+1]),

there is no factor Pi with NG(ni)(Pi)/Pi = 1 which occurs (up to conjugacy) with mul-
tiplicity exactly 2 or 4 (if p = 2) or 3 (if p = 3).

Proof. This will be split into three cases. Part (i) is shown for P ∈ TΓ(p,G) in Case
1, and for general P ∈ Tirr(p,G) in Case 2. Part (ii) is shown in Case 3.

Case 1 Consider first P = ΓU
pk ⊆ U(pk). As noted earlier, P sits in a central

extension
1 −→ S1 −→ P −→ (Cp)

2k −→ 1,

where S1 = Z(P ) = Z(U(pk)) is the group of multiples of the identity in U(pk). Also,
P/S1 has basis {A0, . . . , Ak−1, B0, . . . , Bk−1}, where

[Ai, Aj] = I = [Bi, Bj] = [Ai, Bj] (i 6= j) and [Bi, Ai] = ζ·I, (3)

and where ζ = e2πi/p denotes a primitive p-th root of unity.

Let V denote the corresponding representation of P on Cpk

. Consider the subgroup
P0 = 〈S1, A0, . . . , Ak−1〉. This is a group of diagonal matrices; and V |P0 splits a sum of
pairwise nonisomorphic 1-dimensional representations which are permuted transitively
by P/P0 = 〈B0, . . . , Bk−1〉. Thus, V is irreducible (as a P -representation), and so
CU(pk)(P ) = S1 ⊆ P by Proposition 4(i).

In particular, this shows that the homomorphism N(P )/P
conj
−−→ Out(P ) is injective.

To determine its image, for any α ∈ Aut(P ), let Vα denote the representation of P
obtained by composing with α. Then α is induced by an element of N(P ) if and only if
V ∼= Vα as P -representations, if and only if χV (g) = χV (α(g)) for all g ∈ P . And since
χV (g) = 0 for all g ∈ PrS1 (Lemma 5), this is the case if and only if α|S1 = Id.

We have now shown that NU(pk)(P )/P can be identified with the group OutS1(P ) of

outer automorphisms of P which are the identity on S1. Consider the homomorphism

σ : OutS1(P ) −−−−→ Aut(P/S1) ∼= GL2k(Fp)

induced by taking quotients. If α ∈ Aut(P ) induces the identity automorphism on S1

and on the quotient, then it must have the form

α(Ai) = ζri ·Ai and α(Bi) = ζsi ·Bi

for some choice of ri, si ∈ Fp, and α is seen using the relations in (3) to be an inner
automorphism. Thus, σ is a monomorphism. Its image is the group Sp2k(Fp) of all

matrices which preserve the nonsingular form

(
0 Ik

−Ik 0

)
(where Ik ∈ GLk(Fp) is the

identity). So we have now shown that N(P )/P ∼= Sp2k(Fp).
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Let UTk(Fp) and Symk(Fp) denote the sets of k × k upper triangular and symmet-
ric matrices, respectively, over Fp. Here, upper triangular means with 1’s along the
diagonal. The sets

S1 =

{(
A AX
0 (At)−1

) ∣∣∣A ∈ UTk(Fp), X ∈ Symk(Fp)

}

and

S2 =

{(
(At)−1 0
AX A

) ∣∣∣A ∈ UTk(Fp), X ∈ Symk(Fp)

}

are subgroups of Sp2k(Fp), and are seen (by counting) to be Sylow p-subgroups. Since
S1 ∩ S2 = 1, this shows that Op(Sp2k(Fp)) = 1, and finishes the proof that P = ΓU

pk is

p-stubborn in U(pk).

Now assume that P = ΓU
pk , and that G = O(2pk) or Sp(pk) (where U(pk) is regarded

as a subgroup of G in the usual way). The same argument as before shows that P is
irreducible, and that

NG(P )/P ∼= Out(P ) ∼= OutS1(P )× Aut(S1) ∼= Sp2k(Fp)× C2. (4)

In particular, if p is odd, then Op(N(P )/P ) = 1, and P is again p-stubborn in G.

Now assume p = 2, and G = O(2k+1) or Sp(2k). Set P = Γ
O

2k+1 or Γ
Sp

2k , respectively.
Let P ′ = ΓU

2k : a subgroup of index 2 in P . Then P ′ = CP (S
1), where S1 = Z(U(2k))

denotes the identity component of P . In particular, NG(P ) ⊆ NG(P
′). And since P/P ′

is the C2-factor in NG(P
′)/P ′ ∼= Sp2k(F2)×C2 (see (4)), we see that NG(P ) = NG(P

′),
and that N(P )/P ∼= Sp2k(F2). Since O2(Sp2k(F2)) = 1, P is 2-stubborn in G.

Finally, the same arguments applied to the central extensions

1 −→ {±1} −→ ΓO
2k −→ (C2)

2k −→ 1, 1 −→ {±1} −→ ΓSp
2k−1 −→ (C2)

2k −→ 1,

show that they are irreducible (as representations on R2k

or H2k−1

), and that

NO(2k)(Γ
O
2k)/Γ

O
2k

∼= Out(ΓO
2k) ∼= O+

2k(F2)

and
NSp(2k−1)(Γ

Sp
2k−1)/Γ

Sp
2k−1

∼= Out(ΓSp
2k−1) ∼= O−

2k(F2).

Here, O+
2k(F2) is the group of automorphisms of (F2)

2k which leave invariant the qua-
dratic form

q(x0, . . . , xk−1, y0, . . . , yk−1) = x0y0 + · · ·+ xk−1yk−1;

and O−
2k(F2) is the group of automorphisms which leave invariant the form

q(x0, . . . , xk−1, y0, . . . , yk−1) = (x2
0 + x0y0 + y20) + x1y1 + · · ·+ xk−1yk−1.

These are the forms induced by the sqaring maps in ΓO
2k and ΓSp

2k−1 , respectively. By
a theorem of Dieudonné [D, pp. 47–51], for k ≥ 3, any nontrivial normal subgroup
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of O±

2k(F2) contains its commutator subgroup, which is simple and nonabelian. So

O2(O
±

2k(F2)) = 1 when k ≥ 3; and the following list shows that O2(O
±

2k(F2)) = 1 in all

other cases except for O+
2 (F2):

O+
2 (F2) ∼= C2, O−

2 (F2) ∼= Σ3, O+
4 (F2) ∼= Σ3 ≀ Σ2, and O−

4 (F2) ∼= Σ5.

Thus ΓO
2k and ΓSp

2k are 2-stubborn for all k ≥ 0, except for the case ΓO
2 ⊆ O(2) (dihedral

of order 8).

Case 2 Now fix a subgroup of the form P = Γ ≀ Eq1 ≀ · · · ≀ Eqr ⊆ G(n), where
r ≥ 1, qi = pti , Γ ∈ TΓ(p,G(m)), n = m·q1· · ·qr; and q1 ≥ 4 if Γ = ΓO

1 = O(1). Set
n′ = n/qr = m·q1· · ·qr−1, and write P ′ = Γ ≀ Eq1 ≀ · · · ≀ Eqr−1

⊆ G(n′). We may assume
inductively that P ′ is irreducible. By Lemma 5, (P ′)qr is the subgroup generated by all
elements of P of nonzero trace, and is therefore normal in N(P ). So by Lemma 3(ii,iii),
P = P ′ ≀Eqr is also irreducible, and

NG(n)(P )/P ∼= NG(n′)(P
′)/P ′ ×NΣqr

(Eqr)/Eqr
∼= NG(n′)(P

′)/P ′ ×GLtr (Fp).

It now follows by induction on r that

N(P )/P ∼= NG(m)(Γ)/Γ×GLt1(Fp)× · · · ×GLtr(Fp).

Also, Op(GLt(Fp)) = 1 for all t (the subgroups of upper and lower triangular matrices
are two Sylow p-subgroups with trivial intersection); and Op(N(Γ)/Γ) = 1 by Case 1.
So N(P )/P is finite, Op(N(P )/P ) = 1, and P is p-stubborn.

Case 3 Now assume that P is reducible: write P = (P1)
m1×· · ·×(Pr)

mr [×1], where
Pi ∈ Tirr(p,G(ni)), n = m1n1 + · · ·+mrnr (or n =

∑
mini + 1 if p is odd, G = O, and

n is odd); and where the Pi are pairwise nonisomorphic as representations (of the Pi).
Then by Lemma 3(i),

N(P )/P ∼=
(
NG(n1)(P1)/P1

)
≀ Σm1

× · · · ×
(
NG(nr)(Pr)/Pr

)
≀ Σmr

[×{±1}].

Also, Op(N(Pi)/Pi) = 1 for all i by Cases 1 and 2. If N(Pi)/Pi 6= 1, then any nontrivial
normal subgroup of (N(Pi)/Pi) ≀Σmi

intersects nontrivially with (N(Pi)/Pi)
mi , and so

Op((N(Pi)/Pi)≀Σmi
) = 1. And if N(Pi)/Pi = 1, then Op((N(Pi)/Pi)≀Σmi

) = Op(Σmi
);

and Op(Σm) 6= 1 only when (p,m) is one of the pairs (2, 2), (2, 4), or (3, 3). This finishes
the proof of point (ii). �

We now know which of the subgroups in the Tprod(p,G) are p-stubborn, and it remains
to show that they are the only p-stubborn subgroups of the classical groups. The
following general properties of p-stubborn subgroups will be needed.

Lemma 7. Let P be a p-stubborn subgroup of a compact Lie group G. Then the fol-
lowing hold.

(i) Any p-toral subgroup H⊆G which is normalized by N(P ) (i. e., N(P )⊆N(H)) is
contained in P .
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(ii) CG0
(P )⊆Z(P ), and CG(P ) = Z(P ) if G/G0 is a p-group.

Proof. Part (ii) is shown in [JMO, Lemma 1.5(ii)]. Part (i) is essentially shown in the
same lemma, but with a slightly different formulation. For that reason, we repeat the
proof here.

Assume that H * P , and that N(P ) normalizes H. Set H ′ = 〈H,P 〉 % P . Since P
normalizes H, H ⊳ H ′, and H ′ is p-toral since H ′/H is a quotient group of P . Also,
N(P ) ⊆ N(H ′); and

Ker[N(P )/P −→ N(H ′)/H ′] = (H ′ ∩N(P ))/P = NH′(P )/P

is a nontrivial normal p-subgroup of N(P )/P (cf. [JMO, Lemmas A.2 & A.3]). Which
contradicts the assumption that P is p-stubborn. �

We are now ready to show that all p-stubborn subgroups of the classical groups lie
(up to conjugacy) in the Tprod(p,−).

Theorem 8. Fix a prime p, set G = O, U, or Sp, and let G = G(n) for some n ≥ 1.
Then every p-stubborn subgroup of G is conjugate to a subgroup in Tprod(p,G). And if
two subgroups in Tprod(p,G) are conjugate in G, then they are equal, after permuting
irreducible factors if necessary.

Proof. The first statement (all p-stubborn subgroups are conjugate to subgroups in
Tprod(p,G)) will be shown in Steps 1–3: corresponding to the cases of subgroups in
TΓ(p,G), Tirr(p,G), or Tprod(p,G), respectively. The last statement will be shown in
Step 4.

Fix P ⊆ G(n), and let V be the corresponding n-dimensional P -representation. We
write χV (g) for the character (i.e., trace) of an element g ∈ G. As before, when G = Sp,
χV (g) means the real part of the sum of the diagonal entries in the matrix g.

Throughout the first two steps, we assume that P 6= 1 is irreducible and p-stubborn.
Consider again the subgroup

δ(P ) = 〈g ∈ P |χV (g) 6= 0〉 ⊆ P.

We first claim that

[P : δ(P )] < ∞. and 1 6= δ(P )⊳N(P ) (1)

The first statement follows since δ(P ) contains a neighborhood of the identity in P (the
trace is continuous). If G is connected or p = 2, then δ(P ) 6= 1 since −I ∈ CG(P ) ⊆ P
by Lemma 7(ii) (so −I ∈ δ(P )). And if p is odd and G = O(n), then CG0

(P ) ⊆ P by
Lemma 7(ii) again; and so

dim(δ(P )) = dim(P ) ≥ dim(CG(P )) > 0

by Proposition 4 (using [Ad, Lemma 3.62], one checks that any nonfixed irreducible
representation of P has complex type, and hence has centralizer S1).
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Step 1 Assume first that for any subgroup K⊳P such that δ(P )⊆K⊳N(P ), either
V |K is irreducible, or it splits as a sum of isomorphic irreducible K-representations.
We will show that P is conjugate to an element of TΓ(p,G) in this case.

By assumption, V |δ(P ) ∼= W s for some irreducible δ(P )-representation W ; and δ(P )
is generated by elements g for which χW (g) 6= 0. In particular, the representation W

cannot be induced up from any proper subgroup of δ(P ): since if W = Ind
δ(P )
H (W ′) for

some H ⊳ δ(P ) of index p then χW |(δ(P )rH) = 0. Hence by [Se, §8.5, Th. 16] (or the
fact that P is contained in the normalizer of a maximal torus in G), either dim(W ) = 1,
or W ∼= R2. Then δ(P ) is contained in O(2), U(1), or Sp(1); and by using again the
fact that it is generated by elements with nonvanishing trace we see that δ(P ) is cyclic
or S1.

Set

P ′ =
{
g ∈ CP (δ(P )) | gp ∈ δ(P ), [g, P ] ⊆ δ(P )

}
⊳ N(P ).

Since δ(P ) is abelian, we have δ(P )⊆Z(P ′)⊆P ′. Also, Z(P ′)⊳N(P ) by construction,
and hence V |Z(P ′) also splits as a sum of isomorphic irreducible representations (by
the assumption at the start of Step 1). Hence Z(P ′) must also be cyclic or S1, since it
is abelian and has an effective irreducible representation.

Assume now that |Z(P ′)| > 2 or G = U. Recall that V |Z(P ′) is a sum of
isomorphic (effective) irreducible representations: representations of complex type if
|Z(P ′)| > 2. Hence CG(Z(P ′)) is a unitary group by Proposition 4; and in particular
Z(CG(Z(P ′))) ∼= S1. This S1 is normalized by NG(P ); and so S1⊆P by Lemma 7(i).
And since [P :δ(P )] < ∞ by (1), this implies that δ(P ) ∼= S1. Also, since the center of a
p-toral group is p-toral (cf. [JMO, Lemma A.3]), |Z(P ′)| = 2 only if p = 2. So we have
now shown that

δ(P ) = Z(P ′) ∼=

{
S1 if G = U or p is odd

{±1} or S1 if p = 2, and G = O or Sp.
(2)

We next claim that

[P, P ′] ⊆ δ(P ) and CP (P
′) = δ(P ). (3)

The first statement follows from the definition of P ′. To see the second, assume that
CP (P

′)%Z(P ′) = δ(P ). Since CP (P
′)/δ(P ) ⊳ P/δ(P ), and since any nontrivial normal

subgroup of a finite p-group intersects nontrivially with its center, there exists

g·δ(P ) ∈ (CP (P
′)/δ(P )) ∩ Z(P/δ(P ))

of order p. Then g∈P ′ by construction, and so g ∈ P ′∩CP (P
′) = Z(P ′) = δ(P ). And

this contradicts the assumption that g·δ(P ) has order p.

By construction, P ′/δ(P ) is elementary abelian. So there is a central extension

1 −→ δ(P ) −→ P ′ −→ (Cp)
m −→ 1
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for some m. The map
µ : (Cp)

m × (Cp)
m −−−−→ δ(P ),

defined by setting µ(g·δ(P ), h·δ(P )) = [g, h], is bilinear and antisymmetric, and is
nonsingular since δ(P ) = Z(P ′). Hence m = 2k for some k, and there is a basis
a1, . . . , ak, b1, . . . , bk for P ′/δ(P ) such that the ai and bi satisfy the commutator rela-
tions

[ai, aj] = [bi, bj] = [bi, aj] = 1 (i 6= j) and [bi, ai] = ζ := e2πi/p. (4)

Case A Assume here that δ(P )∼=S1. Since S1 is infinitely divisible, we can choose
the ai and bi such that (ai)

p = 1 = (bi)
p for all i. Hence P ′ ∼= ΓU

pk .

Set P ′′ = CP (δ(P )) ⊇ P ′. By (3), [P, P ′]⊆δ(P )∼=S1. So for any x∈P ′′, conjugation
by x is an automorphism of P ′ which induces the identity on P ′/δ(P ) and on δ(P ).
Any such automorphism is inner (as was seen in Case 1 of the proof of Theorem 6);
and so x ∈ 〈P ′, CP (P

′)〉. But CP (P
′) ⊆ P ′ by (3) again, and so we have shown that

CP (δ(P )) = P ′ ∼= ΓU
pk . Also, since S1 ∼= δ(P ) ⊳ P , [P : P ′] ≤ |Aut(S1)| = 2.

Now, V is an irreducible P -representation, and [P : P ′] ≤ 2. If P = P ′, then by
comparing characters (χV |(PrS1) = 0 by assumption), we see that V must be the

standard representation of ΓU
pk on Cpk

, Hpk

, or R2pk

(i.e, the representation given by

the inclusion ΓU
pk ⊆ U(pk)). Thus, G = G(n) = U(pk), Sp(pk), or O(2pk), and P is

conjugate in G to ΓU
pk . As was seen in the proof of Theorem 6,

N(P ′)/P ′ ∼=

{
Sp2k(Fp) if G = U

C2 × Sp2k(Fp) if G = O, Sp .
(5)

Now assume that [P : P ′] = 2. Then p = 2 (P is p-toral), and CG(P ) = Z(P ) =

Z(P ′)P/P ′ ∼= C2 by Lemma 7(ii). In particular, G is an orthogonal or symplectic group

(Proposition 4(i)). Upon comparing characters, we see that V |P ′ ∼= V
s
for some s,

where V is the standard representation of ΓU
2k on R2k+1

, or H2k

. Hence CG(P
′) ∼=

U(s). Also, CG(P
′) has an involution with finite fixed point set (conjugation by any

element of PrP ′); this must be (x 7→ −x) on the Lie algebra, and hence (g 7→ g−1) on
CG(P

′) ∼= U(s). So s = 1, and V |P ′ is irreducible. Also, N(P )⊆N(P ′) (P ′ ⊳ N(P ) by
construction). It follows that P/P ′ must be the C2-factor in N(P ′)/P ′ (see (5)), since
otherwise N(P )/P ∼= NC2×Sp2k(F2)(P/P

′)/(P/P ′) has a normal subgroup of order 2. In

other words, P is conjugate to Γ
O

2k+1⊆O(2k+1) or Γ
Sp

2k⊆ Sp(2k).

Case B Now assume that δ(P ) ∼= {±1}. In particular, by (2), p = 2 and G = O or
Sp. Also, Aut(δ(P )) = 1, so δ(P ) = Z(P ′) = Z(P ).

Using the commutator relations (4), one checks that all automorphisms of P ′ which
fix δ(P ) and P ′/δ(P ) are inner. Relations (3) now apply to show that P = P ′. Also,
CG(P ) = Z(P ) ∼= C2 (Lemma 7(ii)). So by Proposition 4, P is irreducible of real type
(if G = O) or of quaternion type (if G = Sp).

Since Z(P ) = [P, P ] ∼= C2, P is an extra special 2-group (cf. [G, p.183]). So by [G,
Theorem 5.5.2], P is isomorphic, either to a central product of copies of D(8), or to a
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central product of one copy of Q(8) and copies of D(8). Here, D(8) and Q(8) denote
the dihedral and quaternion groups of order 8. In the first case, P ∼= ΓO

2k , and in the

second case P ∼= ΓSp
2k−1 . And by comparing characters (use Lemma 5(c2) and recall

that χV (PrZ(P )) = 0), we see that either G = O(2k) and P is conjugate to ΓO
2k , or

G = Sp(2k−1) and P is conjugate to ΓSp
2k−1 .

Step 2 Now assume that there exists a subgroup K⊳P such that δ(P ) ⊆ K ⊳ N(P ),
and such that V |K splits as a sum of irreducible K-representations not all isomorphic
to each other. Write V |K∼=V1 × · · ·×Vr (r>1), where each Vi is a sum of isomor-
phic K-representations, and where for i6=j the irreducible summands of Vi and Vj are
nonisomorphic.

Since V is irreducible as a P -representation, P/K permutes the Vi transitively. In
particular, they all have the same dimension: set m = n/r = dim(Vi). So (after
conjugating) we may assume that K ⊆ G(m)r.

For each i, let Pi ⊆ P be the subgroup of elements which leave Vi invariant, and let
Ki ⊆ G(m) be the image of Pi in the i-th factor. Then

K ⊆ K := K1 × · · · ×Kq ⊆ G(n).

The Pi are p-toral (Pi ⊇ δ(P ) has finite index in P by (1)), so Ki is p-toral, and the
product K is also p-toral. Since K⊳N(P ), the conjugation action of N(P ) permutes
the Vi, and so K is also normalized by N(P ). Lemma 7(i) now applies to show that
K⊆P .

Now set L = P/K. Then L permutes the Vi effectively and transitively. For any
g∈PrK, there exists by construction an element g′∈g·K which acts via the identity
on each Vi which is invariant under the action of g; and thus χV (g

′) 6= 0 if it leaves
any Vi invariant. But χV (PrK) = 0 by assumption, and hence no summands can
be left invariant under the action of any g ∈ PrK. We can thus regard L as a free
transitive subgroup of Σq. In particular, each Vi is irreducible as a Ki-representation,
since otherwise a splitting of Vi would extend to a splitting of V (and V is irreducible
by assumption).

Now, since L permutes the factors transitively, Vi
∼= Vj for all i and j, and the Ki

are all conjugate to each other in G(m). So after conjugating, we may assume that
K1 = K2 = · · · = Kq; and that for each i some gi ∈ P sends P1 to Pi via the identity.
Then, since L permutes the factors freely, we can identify it with the subgroup L′ ⊆ P
of those elements which permute the Ki identically. In other words, P = K1 ≀ L; and

NG(n)(P )/P ∼= NG(m)(K1)/K1 ×Aut(L)

by Lemma 3(ii,iii). In particular, Op(NG(m)(K1)/K1) = 1, and K1 must be p-stubborn
in G(m). Also, Op(Aut(L)) = 1, and L must be abelian since otherwise Inn(L) is
a nontrivial normal p-subgroup of Aut(L). And L must be elementary abelian, since
otherwise the group of automorphisms fixing pL (the p-torsion subgroup) and L/pL is a
nontrivial normal p-subgroup. Thus, L ∼= (Cp)

k (q = pk), L acts freely and transitively
on {1, . . . , pk}; and it follows that L is conjugate to Epk ⊆ Σpk .
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By induction, P is conjugate to an iterated wreath product Γ ≀ Eq1 ≀ · · · ≀ Eqr , where
qi = pti and (by Step 1) Γ ∈ TΓ(p,G(m)). Note in particular that q1 ≥ 4 if Γ = O(1)
(and p = 2): since O(1) ≀ Σ2 is not 2-stubborn in O(2). This finishes the proof that
P ∈ Tirr(p,G) (up to conjugation) when P is irreducible.

Step 3 Now let P ⊆ G(n) be an arbitrary p-stubborn subgroup. Assume that
the corresponding P -representation factors as a product V1 × . . .×Vs of irreducible
representations. In other words, after conjugating, we may assume that P ⊆ G(n1) ×
· · ·×G(ns), where ni = dim(Vi), and where the image Pi ⊆ G(ni) of P in the i-th factor
is irreducible for each i.

By Lemma 7(ii), CG(n)(P ) = Z(P ) — unless possibly p is odd and G = O in
which case [CG(n)(P ) : Z(P )] ≤ 2. In this latter case, since all nonfixed irreducible
P -representations have complex type, CG(n)(P ) is a product of unitary groups and one

copy of O(m) (where m = dim(V P )). Also, m ≤ 1, since O(m)⊆CG(n)(P )/Z(P ); and
m is the number of trivial summands in V .

In either case, CG(n)(P ) is abelian, so the Vi are distinct as P -representations (Propo-
sition 4), and are permuted by N(P ). Hence N(P )⊆N(P1 × · · ·×Ps), and Lemma 7(i)
now applies to show that P = P1 × · · ·×Ps.

After reindexing (and conjugating), we can write P = (P1)
m1 × · · · × (Pr)

mr , where
the Pi ⊆ G(ni) are irreducible and pairwise nonisomorphic as representations. Then

N(P )/P ∼=
(
NG(n1)(P1)/P1

)
≀ Σm1

× · · · ×
(
NG(nr)(Pr)/Pr

)
≀ Σmr

by Lemma 3(i). Since Op(N(P )/P ) = 1 by assumption, Op(N(Pi)/Pi) = 1 for each i,
and so each Pi is p-stubborn in G(ni). By Steps 1 and 2, Pi is conjugate to an element
of Tirr(p,G(ni)) for each i, and hence P is conjugate to an element of Tprod(p,G).

Step 4 Now assume that P, P ′ ∈ Tprod(p,G) are conjugate in G. Then P ∈ TΓ(p,G)
if and only if V |δ(P ) splits as a sum of pairwise isomorphic irreducible representations.
So P ∈ TΓ(p,G) if and only if P ′ ∈ TΓ(p,G); in which case one easily sees that P = P ′.
If P, P ′ ∈ Tirr(p,G)rTΓ(p,G), then P = P0 ≀ Eq and P ′ = P ′

0 ≀ Eq, where P0, P
′
0 ∈

Tirr(p,G(n/q)) and q = [P : δ(P )] = [P ′ : δ(P ′)]. So by induction on n, P = P ′ in this
case, and the general case follows immediately. �

When working with concrete problems involving the orbit categories Rp(G), it is
useful to know not only the p-stubborn subgroups themselves, but also how they are
included in each other. We next note the conditions for inclusion (up to conjugacy)
between elements of Tprod(p,G(n)).

Proposition 9. Let p be a prime, let G = G(n) be as in Theorem 8, and fix subgroups
P ′, P ∈ Tprod(p,G) such that P ′ is conjugate to a subgroup of P . Then xP ′x−1 ⊆ P
for some permutation matrix x ∈ G = G(n) which permutes the irreducible factors of
P ′. In particular, xP ′x−1 ∈ Tprod(p,G), and P ′ ⊆ P if P ′ is irreducible. Finally, if
P ′ ⊆ P , the inclusion is a composite of products of inclusions of the following types:

(a) ΓX
qq′ ≀ EQ ⊆ ΓX

q ≀ Eq′ ≀ EQ or Γ
X

qq′ ≀ EQ ⊆ Γ
X

q ≀Eq′ ≀ EQ

(b) Γ ≀ EQ ≀ Eqq′ ≀EQ′ ⊆ Γ ≀ EQ ≀ Eq ≀Eq′ ≀ EQ′

15



(c) ΓX
2k ≀ EQ ⊆ Γ

X

2k ≀ EQ

(d) (Γ ≀ EQ)
q ⊆ Γ ≀ EQ ≀ Eq

(e) O(1)×O(1) ⊆ O(2)

(f) O(1) ≀E2q ≀ EQ ⊆ O(2) ≀Eq ≀ EQ

Here, EQ and EQ′ denote arbitrary (possibly trivial) wreath products of the Eq, and Γ

denotes any of the groups ΓX
q or Γ

X

q .

Proof. Fix g ∈ G(n) such that gP ′g−1 ⊆ P . Then gδ(P ′)g−1 ⊆ δ(P ), where δ(−) is
as defined in Lemma 5.

Case 1 Assume first that P is reducible. Write P = P1 × · · · × Ps, where Pi ∈
Tirr(p,G(ni)) (or possibly Ps = 1 and G(ns) = O(1)), and n =

∑
ni. Then P ′ is also

reducible. And after permuting its irreducible factors (or without permuting them if
P ′ ⊆ P ), we get that P ′ = P ′

1 × · · · × P ′
s for some subgroups P ′

i ∈ Tprod(p,G(ni)) (or
Ps = 1) such that P ′

i is (conjugate in G(ni) to) a subgroup of Pi. So it remains to prove
the proposition in the case where P ∈ Tirr(p,G).

Case 2 If P ′ is reducible and P is irreducible, then by Lemma 5(a), either P ′ ∼=
O(1) × O(1) (case (e)), or gP ′g−1 = gδ(P ′)g−1 ⊆ δ(P ). And in the latter case, P is a
wreath product of the form

P = Γ ≀ Eq1 ≀ · · · ≀ Eqr ,

(otherwise gP ′g−1 ⊆ δ(P ) ∼= S1 or {±1}); and

gP ′g−1 ⊆ δ(P ) =
(
Γ ≀ Eq1 ≀ · · · ≀ Eqr−1

)qr

(Lemma 5(b)). So (gP ′g−1 ⊆ P ) is the composite of an inclusion of type (d) with an
inclusion of reducible subgroups. And by induction on n, we are done in this case.

Case 3 Assume here that P ′ ∈ TΓ(p,G) and P ∈ Tirr(p,G). From Definitions 1 and
2, one sees that P ′ ⊆ P for any such pair for which dim(P ′) ≤ dim(P ) (without any
prior assumption of containment up to conjugacy). Also, the inclusion is a composite
of inclusions of type (a) and (c) above. So we are done in this case.

Case 4 Finally, assume that P ′, P ∈ Tirr(p,G), and that P ′ 6∈ TΓ(p,G). Write

P ′ = Γ′ ≀ Eq′

1
≀ · · · ≀ Eq′

s
and P = Γ ≀ Eq1 ≀ · · · ≀ Eqr .

Here s > 0 by assumption; and r > 0 since otherwise δ(P ) ∼= C2 or S1 (in which case
gδ(P ′)g−1 * δ(P )). Also,

gδ(P ′)g−1 = g
(
Γ′ ≀ Eq′

1
≀ · · · ≀ Eq′

s−1

)q′

s

g−1 ⊆
(
Γ ≀ Eq1 ≀ · · · ≀ Eqr−1

)qr
= δ(P ),

where the individual factors are irreducible. Hence qr|q
′
s. By induction on n (and since

permuting the irreducible factors leaves the groups unchanged)

(
Γ′ ≀ Eq′

1
≀ · · · ≀ Eq′

s−1

)q′

s/qr
⊆ Γ ≀ Eq1 ≀ · · · ≀ Eqr−1

(1)
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for some g′ ∈ G(n/qr). If qr = q′s, then we are reduced to the case of a smaller inclusion
of irreducible p-stubborn subgroups. If qr < q′s, then the inclusion (1) is of the type
handled in Case 2. So either it is the inclusion O(1) × O(1) ⊆ O(2) (and gP ′g−1 ⊆ P
is an inclusion of type (f)); or r > 1, qr−1|(q

′
s/qr) and

gP ′g−1 ⊆ Γ ≀ Eq1 ≀ · · · ≀ Eqr−1qr ⊆ Γ ≀ Eq1 ≀ · · · ≀ Eqr−1
≀ Eqr = P.

In other words, we have factored through an inclusion of type (b) in this case; and this
finishes the proof. �

Theorems 6 and 8 describe the p-stubborn subgroups of the matrix groups O(n),
U(n), and Sp(n); but we are mostly interested in the connected simple groups. The
rest of the paper deals with the connection between the p-stubborn subgroups of SU(n)
and of U(n); and between the 2-stubborn subgroups of SO(n) and O(n). In fact, the
categories Rp(SU(n)) and Rp(U(n)) are always isomorphic.

Theorem 10. For and p and any n > 0, the correspondences

P 7→ 〈P, Z(U(n))〉 (for P ⊆ SU(n))

and
P 7→ (P ∩ SU(n)) (for P ⊆ U(n))

define a one-to-one correspondence between the p-stubborn subgroups of SU(n) and those
of U(n); and induce an isomorphism of categories

Rp(SU(n))
∼=

−−−−−→ Rp(U(n)).

Proof. By [JMO, Proposition 1.6(i)], for any connected G, a subgroup P ⊆ G is p-
stubborn if and only if P ⊇ Z(G) and P/Z(G) is p-stubborn in G/Z(G). We thus get bi-
jections between the p-stubborn subgroups of SU(n), SU(n)/Z(SU(n)) ∼= U(n)/Z(U(n)),
and U(n). And since SU(n)/P ∼= U(n)/〈P, Z(U(n))〉 as orbits, this correspondence in-
duces an isomorphism between the orbit categories Rp(−). �

The relation between 2-stubborn subgroups of SO(n) and O(n) is more complicated.

Proposition 11. For any 2-stubborn subgroup P⊆ SO(n), there is a unique 2-stubborn
subgroup ǫP⊆O(n) such that P = ǫP∩ SO(n) and NO(n)(ǫP ) = NO(n)(P ). If P1⊆P2 is
a pair of 2-stubborn subgroups of SO(n), then ǫP1 ⊆ ǫP2.

Proof. If P⊆ SO(n) is 2-stubborn, then define ǫP ⊆ O(n) to be the subgroup such
that ǫP/P = O2(NO(n)(P )/P ). Then ǫP ∩ SO(n) = P , since O2(NSO(n)(P )/P ) = 1.
It follows that NO(n)(ǫP ) ⊆ NO(n)(P ), and NO(n)(P ) ⊆ NO(n)(ǫP ) by construction.
Hence O2(NO(n)(ǫP )/ǫP ) = O2(NO(n)(P )/ǫP ) = 1, and so ǫP is 2-stubborn. The
uniqueness of ǫP is clear.
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It remains to show that ǫP1 ⊆ ǫP2 whenever P1 ⊆ P2. This will be done by induction
on n. In order to carry out the induction step, we consider the following slightly more
general situation. Let P1, P2 ⊆ O(n) be a pair of subgroups, such that xiPix

−1
i ∈

Tprod(2,O(n)) for some x1, x2 ∈ O(n). Set Pi = Pi ∩ SO(n), and assume that P1 ⊆
P2. Assume in addition that (a) NO(n)(Pi) = NO(n)(Pi), and (b) O(1) does not have

multiplicity exactly 2 or 4 in the irreducible decomposition of x1P1x
−1
1 (compare with

Theorem 6(ii)). We claim that under these assumptions, P1 ⊆ P2. We may clearly
assume that P1 * SO(n) (P1 6= P1).

Throughout the following arguments, it is useful to note that (by Definition 2) the
subgroups in Tirr(2,O(n)) which are not contained in SO(n) are precisely those of the
form

O(m) ≀ Eq1 ≀ · · · ≀ Eqr , (1)

where m = 1 or 2, r ≥ 0, and n = m·q1· · ·qr (and q1 ≥ 4 if m = 1 and r ≥ 1). In
particular, each such group contains all diagonal matrices diag(±1, . . . ,±1).

We first check that for each i, Pi has the same decomposition into irreducible represen-
tations as Pi. To see this, it suffices to show that for any (irreducible) P ∈ Tirr(2,O(m)),
the subgroup P := P ∩ SO(m) is also irreducible. If V denotes the P -representation

on Rm, and V |P = V1 ⊕ V2 is reducible, then V ∼= IndPP (V1), and χV (g) = 0 for all
g ∈ PrP . Also, P has the form in (1) above (since it is not contained in SO(m)). And
the only subgroup of that form in which all elements of determinant −1 have zero trace
is the case P = O(2) (and SO(2) is irreducible).

Case 1 Assume first that P2 is reducible. We can assume that P2 ∈ Tprod(2,O(n))

(i.e., x2 = 1); and write P2 = Q21 ×Q22 where Q2j ⊆ O(nj) (j = 1, 2) and n = n1 + n2

(0 < nj < n). Then, since P1 and P1 decompose in the same way, and since P1 splits

as a product of irreducible subgroups, we have P1 = Q11 ×Q12, where Q1j ⊆ O(nj). If
hypothesis (b) holds for both pairs (Q2j, Q1j), then Q1j ⊆ Q2j by induction on n, and

hence P1 ⊆ P2. If hypothesis (b) does not hold, then Q11 and Q12 both contain factors
O(1), and hence neither lies in SO(nj). This implies that Q1j is the image of P1 under

the projection to O(nj) (j = 1, 2), hence that Q1j ⊆ Q2j, and hence that P1 ⊆ P2.

The remaining cases will be handled using the subgroups

δ(Pi) = 〈g∈Pi | Tr(g) 6= 0〉 and δ(Pi) = 〈g ∈ Pi | Tr(g) 6= 0〉

of Lemma 5. Clearly, δ(P1) ⊆ δ(P2). If Pi * SO(n), then xiPix
−1
i contains at least one

factor of the form in (1) above, and hence some diagonal matrix D with a single entry
−1. In particular, since Tr(D) 6= 0 when n 6= 2,

Pi = 〈δ(Pi), Pi〉 whenever n 6= 2. (2)

It thus suffices in the remaining cases to show that δ(P1) ⊆ P2.

Case 2 Assume now that P2 is irreducible, but that P1 is reducible. In this case, it
will be convenient to assume that P1 ∈ Tprod(2,O(n)) (i.e., x1 = 1). Note that n is a

power of 2, since P2 is irreducible. And since P1 is reducible but cannot be a product
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involving exactly 2 or 4 copies of O(1) (and since the case n = 2 is trivial), we may
assume that either P1 = O(2) × O(2), or n ≥ 8. And if P1 = O(2) × O(2), then the
identity component of P1 is a maximal torus in O(4), so P2 = O(2) ≀E2 (the normalizer
of that maximal torus); and P1 ⊆ P2.

Assume now that n ≥ 8. We claim that δ(P1) = P1. This will follow from Lemma
5(a) if we can show that δ(P1) = P1 ∩ δ(P1). This means showing, for any elements
A1, A2 ∈ P1 such that det(Ai) = −1 and Tr(Ai) 6= 0 (i = 1, 2), that A1A2 ∈ δ(P1).
Let Di (for i = 1, . . . , n) be the diagonal matrix with entry −1 in the i-th position
and 1’s elsewhere; and set V = {i |Di ∈ P1}. Since P1 * SO(n), P1 contains at least
one summand of the form in (1); and all irreducible summands not of that form have
dimension a multiple of 4. It follows that |V | > 0, and that |V | ≡ n ≡ 0 (mod 4). For
each i = 1, 2, either there exists ji ∈ V such that Tr(AiDji) 6= 0; or all of the diagonal
components (Ai)jj for j ∈ V are the same, and Tr(AiD) 6= 0 whenever D is the product
of three of the Dj ’s for j ∈ V . In either case, we can find elements A′

i ∈ P1 such that
Tr(A′

i) 6= 0, and such that A1A2 = A′
1A

′
2D for some diagonal matrix D with at most

two entries −1. Since n ≥ 8, Tr(D) 6= 0, and so A1A2 ∈ δ(P1).

This shows that
P1 = δ(P1) ⊆ δ(P2) ⊆ δ(P2).

By Lemma 5, P2 must be a nontrivial wreath product:

x2P2x
−1
2 = Γ ≀Eq1 ≀ · · · ≀Eqr (r ≥ 1) and x2δ(P2)x

−1
2 =

(
Γ ≀ Eq1 ≀ · · · ≀Eqr−1

)qr
.

Thus, δ(P2) is reducible and conjugate to an element of Tprod(2,O(n)); so P1 ⊆ δ(P2) ⊆
P2 by Case 1, and P1 ⊆ P2 by (2).

Case 3 Finally, assume that P1 and P2 are both irreducible. If P1 = O(1) or O(2),
then there is nothing to prove. Otherwise (if we take x1 = 1), P1 ∈ Tirr(2,O(n)) is a
nontrivial wreath product of the form in (1):

P1 = O(m) ≀Eq1 ≀ · · · ≀Eqr (r ≥ 1) and δ(P1) =
(
O(m) ≀ Eq1 ≀ · · · ≀ Eqr−1

)qr

(m = 1 or 2). Then δ(P1)∩SO(n) ⊆ P2, and δ(P1) ∈ Tprod(2,O(n)). So δ(P1) ⊆ P2 (and

hence P1 ⊆ P2), unless δ(P1) = (O(1))4 and P1 = O(1)≀E4 (i.e., condition (b) fails). And
this case cannot occur, since (O(1)≀E4)∩SO(4) = ΓO

4 and NO(4)(O(1)≀E4) 6= NO(4)(Γ
O
4 ).

�

By Proposition 11, for each n, there is a functor

En : R2(SO(n)) −→ R2(O(n)),

defined by setting En(SO(n)/P ) = O(n)/ǫP whenever P ⊆ SO(n) and ǫP ⊆ O(n) are
2-stubborn subgroups such that P = ǫP∩ SO(n) and NO(n)(ǫP ) = NO(n)(P ).

Theorem 12. If 4∤n, then En is an isomorphism of categories. Otherwise, its failure
to be an isomorphism is described (in part) as follows:
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(i) For any 2-stubborn subgroup P⊆O(n), P := P∩ SO(n) is 2-stubborn; and P = ǫP
unless P is conjugate to a subgroup of the form (O(1) ≀ E4)×P ′ for P ′⊆ SO(n−4) (in
which case P 6= ǫP and O(n)/P 6∈ Im(En)).

(ii) Let P ⊆ SO(n) be any 2-stubborn subgroup. Then

{gPg−1 | g ∈ O(n)} = {gǫPg−1∩ SO(n) | g ∈ O(n)}

consists of one SO(n)-conjugacy class if N(ǫP ) * SO(n), and consists of two conjugacy
classes otherwise.

(iii) For any pair P1, P2 of p-stubborn subgroups of SO(n), the map

En : Mor(SO(n)/P1, SO(n)/P2) −−−−→ Mor(O(n)/ǫP1,O(n)/ǫP2)

is injective, and is bijective if ǫP2 * SO(n). Also (when P1 = P2 = P ),

Aut(SO(n)/P ) ∼= Aut(O(n)/ǫP )

unless ǫP ⊆ SO(n) and NO(n)(ǫP ) * SO(n).

(iv) Fix an irreducible 2-stubborn subgroup P ⊆ O(2k) (any k ≥ 0). Then P ⊆
SO(2k) if and only if P is conjugate to one of the groups

ΓO
q0

≀Eq1 ≀ · · · ≀Eqr (q0≥4) or Γ
O

q0
≀ Eq1 ≀ · · · ≀ Eqr (q0≥4). (1)

And for such P , N(P ) ⊆ SO(2k) unless P is conjugate to ΓO
4 .

Proof. If n is odd, then O(n) ∼= SO(n)×{±I}, and En is clearly an isomorphism of
categories.

If n = 4k+ 2, then any 2-stubborn subgroup in O(n) has, up to conjugacy, the form
P = P ′ × O(2) or P = P ′ × O(1) × O(1) for some P ′ ⊆ O(4k). In particular, for any
2-stubborn P ⊆ SO(n), P = (ǫP ∩ SO(n)) by (i). So En is surjective on objects; and is
injective since P = ǫP∩ SO(n) for any P . And finally, since no 2-stubborn subgroup of
O(n) is contained in SO(n), En induces bijections on all morphism sets by (iii).

It remains to prove points (i) to (iv).

(i) Let P⊆O(n) be any 2-stubborn subgroup, and set P = P∩ SO(n). By Theorem
8, we may assume that ǫP ∈ Tprod(2,O(n)); and in particular that it splits as a product
of irreducible p-stubborn subgroups Pi ∈ Tirr(2,O(ni)) (where n =

∑
ni). Let r be

the number of factors for which Pi * SO(ni). If r = 0, then P = P is 2-stubborn in
SO(n) — since every Sylow 2-subgroup of NO(n)(P )/P contains a Sylow 2-subgroup of

NSO(n)(P )/P — and ǫP = P . If r ≥ 2, then NO(n)(P ) = NO(n)(P ) (P is the product
of the projections of P into the irreducible factors); and so again P is 2-stubborn and
ǫP = P . We are left with the case r = 1; and we can just as easily assume here that
P * SO(n) is irreducible. And a quick check of the list of normalizers in Theorem 6(i,ii)

shows that P = O(1) ≀ E4 ⊆ O(4) is the only case where NO(n)(P ) 6=NO(n)(P ) (and

(O(1) ≀E4) ∩ SO(4) = ΓO
4 is 2-stubborn in SO(4)).
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(ii) The set {gPg−1 | g∈O(n)} contains at most [O(n): SO(n)]=2 SO(n)-conjugacy
classes. It contains just one conjugacy class if and only if gPg−1 = xPx−1 for some
g ∈ O(n)r SO(n) and x ∈ SO(n), if and only if NO(n)(P ) = NO(n)(ǫP ) * SO(n).

(iii) Set

X =
{
g ∈ O(n) |P1 ⊆ gP2g

−1
}
=

{
g ∈ O(n) | ǫP1 ⊆ g(ǫP2)g

−1
}
.

Then Mor(SO(n)/P1, SO(n)/P2) ∼= (X∩SO(n))/P2, and Mor(O(n)/ǫP1,O(n)/ǫP2) ∼=
X/ǫP2. So En induces an injection between these morphism sets, and a bijection if ǫP2 *
SO(n). And if P1 = P2 = P , then X = NO(n)(P ) = NO(n)(ǫP ), and NSO(n)(P )/P ∼=
NO(n)(ǫP )/ǫP if and only if ǫP * SO(n) or NO(n)(ǫP ) ⊆ SO(n).

(iv) This follows easily from Theorem 8 (and Definition 2), except for showing that

NO(2k)(P ) ⊆ SO(2k) when P = ΓO
2k (k ≥ 3) or Γ

O

2k (k ≥ 2). When P = Γ
O

2k , this follows

since N(P )/P∼=Sp2k−2(F2) is generated by elements in U(2k−1)⊆ SO(2k).

Now assume P = P = ΓO
2k = 〈A0, B0, . . . , Ak−1, Bk−1〉 (see Definition 1); and

k ≥ 3. Then for 1 ≤ i ≤ k−1, Ai and Bi lie in the simply connected subgroup
SU(2k−1)⊆SO(2k). So the commutators [Ai, Bi] (1 ≤ i ≤ k−1) all lift to the same com-

mutator in P̃⊆ Spin(2k). By symmetry, [A0, B0] lifts to the same commutator (k ≥ 3);

and so only one lifting of−I lies in [P̃ , P̃ ]. On the other hand, for any x∈O(2k)r SO(2k),
conj(x) lifts to a unique automorphism of Spin(2k) which switches the two liftings of
−I; and so x 6∈ N(P ). Thus N(P ) = N(ΓO

2k) ⊆ SO(2k). �

I would like to thank the referee for putting in so much work when reading the first
version of this paper (and to apologize for that being necessary).

References

[Ad] J. F. Adams, Lectures on Lie groups, Benjamin (1969)

[Al] J. Alperin, Weights for finite groups, Proc. Symp. Pure Math. 47, part 1 (1987),
369–379

[AF] J. L. Alperin & P. Fong, Weights for symmetric and general linear groups, J.
Algebra 131 (1990), 2-22

[C] R. Carter, Simple groups of Lie type, Wiley (1972)
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