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The basic problem of homotopy theory is to classify spaces and maps between
spaces, up to homotopy, by means of invariants like cohomology. In the last decade
some striking progress has been made with this problem when the spaces involved
are classifying spaces of compact Lie groups. For example, it has been shown, for
G connected and simple, that if two self maps of BG agree in rational cohomology
then they are homotopic. It has also been shown that if a space X has the same
mod p cohomology, cup product, and Steenrod operations as a classifying space
BG then (at least if p is odd and G is a classical group) X is actually homotopy
equivalent to BG after mod p completion. Similar methods have also been used
to obtain new results on Steenrod’s problem of constructing spaces with a given
polynomial cohomology ring. The aim of this paper is to describe these results and
the methods used to prove them.

The study of maps between classifying spaces goes back to Hurewicz [Hur, p.
219], who in 1935 showed that

[X, Y ] ∼= Hom(π1X, π1Y )/ Inn(π1Y )

for any pair of aspherical spaces X and Y . This result might suggest a hope that
all maps between the classifying spaces of any pair of compact Lie groups should be
induced by homomorphisms. Much later however, in 1970, Sullivan [Su] provided
the first counterexamples, by constructing maps (called “unstable Adams opera-
tions”) which did not agree even in rational cohomology with any map induced by
a homomorphism. Sullivan’s work then led to a careful investigation by Hubbuck,
Mahmud, and Adams ([Hub1], [AM], [Ad], [AM2]) of the effect that maps between
classifying spaces could have in rational cohomology.

It was the proof of the Sullivan conjecture by Miller ([Mil], [DMN]) and Carlsson
[Ca], and subsequent work by Lannes ([La1], [La2]) which provided the basis for the
large amount of current activity and progress in this subject. It led, for example,
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to the theorems of Dwyer & Zabrodsky [DZ] and Notbohm [No], which describe
[BP,BG] for any p-toral group P and any compact Lie group G. And that, together
with a decomposition, due to the authors, of BG as a homotopy direct limit of BP ’s
for certain p-toral P ⊆ G, has now yielded more general results about mapping sets
[BG,BG′]. In particular, we obtained a complete description of [BG,BG] when G
is connected and simple by showing that homotopy between maps is detected by
rational cohomology in this case.

Decompositions of BG have also led to proofs of uniqueness theorems for classi-
fying spaces in many cases. More precisely, for certain compact Lie groups G and
certain primes p, any p-complete space X for which H∗(X ;Fp) ∼= H∗(BG;Fp) (as
algebras over the Steenrod algebra) is homotopy equivalent to BGp̂. Results of this
form have been proven by Dwyer, Miller & Wilkerson ([DMW1], [DMW2]), and
more recently by Notbohm (unpublished).

Classifying spaces of compact connected Lie groups are notable by (in many
cases) having polynomial algebras as their mod p cohomology, and in having loop
spaces with the homotopy type of finite complexes. Hence the study of classifying
spaces is closely connected to the problem of constructing other spaces with finite
loop space, or with given polynomial algebras (with given Steenrod operations)
as their mod p cohomology. The first “exotic” examples of such spaces were p-
complete spaces whose Fp-cohomology is polynomial on one generator of dimension
2n (i.e., deloopings of S2n−1 at p), constructed whenever n|(p − 1) by Sullivan
[Su]. More examples were then given by Quillen [Q2, §10], Clark & Ewing [CEw],
and Zabrodsky [Za]. The general decomposition of classifying spaces constructed
in [JM2] then helped to motivate the development, by Lannes, Aguade [Ag], and
Dwyer & Wilkerson [DW2], of more systematic ways of constructing new spaces of
this type as homotopy direct limits of familiar spaces.

CONTENTS OF THE PAPER:

1. Prerequisites on homotopy direct limits
2. Homotopy decompositions of classifying spaces
3. Maps between classifying spaces
4. Higher inverse limits
5. Self maps of BG
6. Homotopical uniqueness of classifying spaces
7. Realizations of polynomial algebras

1. Prerequisites on homotopy direct limits

In this section we recall the construction of homotopy colimits of diagrams of
spaces, a construction which plays a central role throughout this survey. The first
approach is based on a construction of Segal [Se]. Let C be a small category (which
can be a topological category, as defined in [Se]), and let F : C → T op be a covariant
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functor into the category of (compactly generated) topological spaces. Define a new
category CF , whose objects are pairs (C, x) for C ∈ Ob(C) and x ∈ F (C), and where

MorCF ((C, x), (C′, x′)) = {f ∈ MorC(C,C
′) : f(x) = x′}.

We regard CF as a topological category with the compact-open topology. Then
the homotopy colimit of F , hocolim

−→
(F ), is defined to be the nerve (geometric re-

alization) BCF . This construction is clearly functorial with respect to continuous
natural transformations of functors on C, and with respect to pullbacks of functors
via continuous functors C′ → C. The natural transformation from F to the point
functor induces a map pF : hocolim

−→
(F )→ BC.

More concretely, hocolim
−→

(F ) is a kind of bar construction: an identification space

of the form

hocolim
−→
C

(F ) =

(

∐

n≥0

∐

x0→··→xn

F (x0)×∆n

)

/

∼,

where each face or degeneracy map between the x0 → · · · → xn gives rise to an
obvious identification between the corresponding F (x0) × ∆n. Regarded in this
fashion, the projection pF : hocolim

−→
(F ) → BC is just induced by projecting each

F (x0)×∆n to its second factor. Note that each fiber (point inverse) of pF has the
form F (x) for some x ∈ Ob(C).

A different but equivalent approach to defining hocolim
−→

(F ) is given by Bousfield

& Kan in [BK]. They consider functors F : C → S∗ defined on an arbitrary small
category C with values in the category of simplicial sets, and regard homotopy
colimits as a special case of the more general construction of a balanced product
(tensor product) X ×C F of F with a contravariant functor X : C → S∗. An elegant
treatment of this viewpoint on homotopy colimits and limits is given in Hopkins
[Ho].

Important examples of homotopy colimits include:

(a) Double mapping cylinders Let C be the “push-out” category:

C = (y1 ← x→ y2).

Then the homotopy colimit of a functor F : C → T op is just the double mapping
cylinder of the maps F (y1)← F (x)→ F (y2).

(b) Mapping telescopes Let C = N be the category obtained from the directed
set of natural numbers. Then for any functor F : C → T op, there is a homotopy
equivalence hocolim

−→
(F ) ≃ Tel(F (1) → F (2) → . . . ) (cf. [BK, XII.3.5]). (Note

however that this is not a homeomorphism.)
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(c) The Borel construction Fix a group G, and let O1(G) be the category of G:
the category with single object ∗, and with End(∗) ∼= G. (This notation is motivated
by that used later for the orbit categories O(G) and Op(G).) Then a functor
F : O1(G) → T op is just a G-space F (∗); and (with an appropriate definition of
EG) hocolim

−→
(F ) is homeomorphic to the Borel construction EG ×G F (∗). If we

allow topological categories, then the last equivalence remains true for continuous
actions of topological groups.

As noted above, the natural transformation into the constant (point) functor in-
duces a map pF : hocolim

−→
(F )→ BC, whose fibers all have the form F (−). When C

is a discrete category, the Leray spectral sequence for pF provides a means of calcu-
lating the cohomology of hocolim

−→
(F ). If f : X → Y is any map (satisfying certain

simple conditions), then the Leray spectral sequence for f is a spectral sequence of
the form

Epq2 = Hp(Y ;Hq(f))⇒ Hp+q(X).

Here, Hq(f) is a sheaf over Y , whose stalk over y ∈ Y is Hq(f−1y) (cf. [Br, §IV.6]
for details). When this is applied to the map pF , then the cohomology groups for
these sheaves over BC are isomorphic to the higher derived functors of inverse limits
of the (contravariant) functors

Hq(F (−)) : C → Ab.

(This can be shown using Lemma 4.2 below.) We thus get the following theorem.

Theorem 1.1. For every covariant functor F : C → T op, there is a spectral se-
quence

Epq2 = lim
←−

p

C

(Hq(F (−)))⇒ Hp+q(hocolim
−→

(F )).

For a more explicit statement, and a proof of Theorem 1.1, see [BK, XII.4.5].
Higher derived functors of inverse limits play an important role throughout this
subject, and will be discussed in more detail in Section 4. Note that in example (a)
the spectral sequence reduces to the usual Meyer-Vietoris exact sequence; in (b) to
the Milnor lemma [Mln]; and in (c) to the Serre spectral sequence of the fibration
F (∗)→ EG×G F (∗)→ BG.

Our own interest in homotopy colimits stems from their use as a tool for con-
structing maps and homotopies. For example, we will be constructing and classi-
fying maps BG→ X , for appropriate compact Lie groups G, by decomposing BG
as a homotopy colimit of simpler spaces, and then comparing maps defined on the
homotopy colimit with maps defined on the individual spaces. This is done using
the next two theorems.
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Theorem 1.2. Fix a discrete category C, and a functor F : C → T op. Let X be
any other space, and consider the map

R : [hocolim
−→
C

(F ), X ]→ lim
←−
c∈C

[F (c), X ]

defined by restriction. Fix an element f̂ = (fc)c∈C ∈ lim
←−

[F (−), X ]; and define

contravariant functors αn : C → Ab (all n ≥ 1) by setting

αn(c) = πn(map(F (c), X)fc)

for all c ∈ Ob(C). Then f̂ ∈ Im(R) if the groups lim
←−

n+1(αn) vanish for all n ≥ 1;

and R−1(f̂) contains at most one element if the groups lim
←−

n(αn) vanish for all

n ≥ 1.

Theorem 1.2 can be proved by a standard obstruction-theory argument in which
one inducts over the simplicial filtration of the homotopy colimit. However, one
must be quite careful about basepoints, and about what happens when α1(c) is not
abelian. These points are handled in detail by Wojtkowiak in [Wo].

Theorem 1.2 is a special case of the following spectral sequence, constructed by
Bousfield & Kan ([BK, XII.4.1 & XI.7.1] and [Bo]). As we will show later, this can

often be used for explicit calculations involving R−1(f̂), even when the obstructions
of Theorem 1.2 do not all vanish.

Theorem 1.3. Let F , R, and f̂ be as in Theorem 1.2. Let map(hocolim
−→

(F ), X)f̂

be the union of the components of the mapping space lying in R−1(f̂). Define
αn : C → Ab by setting

αn(c) = πn(map(F (c), X)fc)

for all c. Then there is a spectral sequence of the form

E2
−p,q = lim

←−

p

C

(αq)⇒ πq−p

(

map(hocolim
−→

(F ), X)f̂

)

which converges strongly if there is an N such that lim
←−

p(αq) vanishes for all q and

all p > N .

Bousfield & Kan construct the spectral sequence of Theorem 1.3 as a special
case of a spectral sequence for a homotopy inverse limit (and with a less restrictive
convergence condition: see [BK, XI.7.1 and IX.5.3]). A more direct proof can be
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given as follows. The skeletal filtration of the homotopy colimit induces a tower
of fibrations of mapping spaces, and the spectral sequence of Theorem 1.3 is the
spectral sequence of this tower of fibrations. There is an explicit chain complex
which calculates lim

←−

i (see Lemma 4.2 below), and by using arguments similar to

Wojtkowiak’s in [Wo] one can show that the E2-term in the spectral sequence is the
homology of this chain complex.

We have seen above that, for any discrete group G, BG is the homotopy direct
limit of the functor F : O1(G) → T op which sends the single object ∗ to a point.
Theorem 1.3 therefore gives a spectral sequence

E2
−p,q = lim

←−

p

O1(G)

(πq(X)) ∼= Hp(G; πq(X))⇒ πq−p(map(BG,X)),

and one might hope that this would be a useful tool for proving results about maps
out of BG. The problem is that this spectral sequence will in general have lots
of differentials, and these seem to be impossible to compute even in the simplest
cases: e.g., when G = Z/2 and X = BSO(3). Our solution to this problem is to
consider more complicated decompositions of BG for which the spectral sequence
of Theorem 1.3 collapses.

2. Homotopy decompositions of classifying spaces

Most recent results involving the homotopy theory of the classifying spaces of
all but the simplest compact Lie groups are based on decompositions of BG as
direct limits of simpler spaces—usually the classifying spaces of other groups. The
first such decompositions were given by mapping telescopes; while later results
involved taking homotopy colimits of more complicated diagrams. In particular,
there are now two general ways to decompose an arbitrary BG, at a given prime p,
in such a way that the pieces are classifying spaces of subgroups of G. These two
general decompositions have both proved quite useful for answering different types
of questions about BG.

The idea of decomposing the classifying space of a Lie group into a telescope
of the classifying spaces of its subgroups goes back to Adams [Ad], who approxi-
mated the classifying spaces of p-toral groups via their finite p-subgroups. This idea
was developed further by Feshbach [Fe], who in his work on the Segal conjecture
for compact Lie groups was interested in extensions of tori by finite groups, and
used their finite subgroups for a similar approximation. More precisely, Feshbach
showed that for any compact Lie group G whose identity component G0 is a torus,
there exists a chain of finite subgroups F1 ⊆ F2 ⊆ · · · ⊆ G such that the natural
map Tel(BFi) → BG induces an isomorphism in cohomology with arbitrary finite
coefficients.
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The approach of Adams and Feshbach was extended to arbitrary compact Lie
groups by Friedlander & Mislin ([FM1], [FM2], [FM3]). For any compact Lie group
G and any prime p not dividing the order of π0(G), they found a chain of finite
groups F1 ⊆ F2 ⊆ . . . (not necessary subgroups of G), and a compatible family
of maps fi : BFi → BG (not necessarily induced by homomorphisms), such that
the limit map f : Tel(BFi) → BG induces an isomorphism in cohomology with
coefficients in any finite π0(G)-module of order not divisible by p. For example,
when G = U(n) (and p is any prime), then this takes the form of a map

Tel(BGLn(Fpm)) ≃ BGLn(F̄p)→ BU(n)

(where F̄p denotes the algebraic closure of Fp).

The use of homotopy colimit decompositions other than telescopes was first in-
troduced by Dwyer, Miller, & Wilkerson for the particular case of G = SO(3).
Consider the following two diagrams, where D(8) denotes the dihedral subgroup of
order 8, Σ4 the octahedral group, and O(2) the normalizer of the maximal torus
SO(2):

SO(3)/D(8) −−−−→ SO(3)/O(2)




y

SO(3)/Σ4

(1)

BD(8) −−−−→ BO(2)




y

BΣ4

(2)

It is not hard to check that the homotopy pushout of diagram (1) is F2-acyclic.
Diagram (2) is obtained by applying the Borel construction EG ×G − to (1); and
hence its homotopy pushout is F2-homology equivalent to EG ×G pt = BG =
BSO(3).

There is another, closely related, decomposition of BSO(3) at the prime p = 2,
which is taken over a more complicated category, but more useful because the pieces
are simpler. Consider the category C which consists of two objects, 1 and 2, and
where End(1) ∼= Σ3 (the symmetric group of order 6), End(2) ∼= 1, |Mor(1, 2)| = 3
(the maps being permuted by End(1) in the obvious way), and Mor(2, 1) = ∅.
Consider the functor F : C → T op given by

F (1) = ESO(3)/((Z/2)2) ≃ B(Z/2)2 and F (2) = ESO(3)/O(2) ≃ BO(2)

(with the obvious induced maps). In other words, F defines a diagram of the
following form:

F =
(

Σ3 	 ESO(3)/((Z/2)2)−→−→−→ESO(3)/O(2)
)

(3)

A cohomology computation, using Theorem 1.1, shows that there is an F2-homology
equivalence hocolim

−→
(F ) → BSO(3). Alternatively, it can be shown directly that
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hocolim
−→

(F ) must be homotopy equivalent to the homotopy pushout of Dwyer,

Miller, & Wilkerson in (2) above. For more information on converting homotopy
colimits to homotopy pushouts in certain cases, cf. S lomińska [Sl].

This approximation of BSO(3) at the prime 2 can, unlike the homotopy-pushout
decomposition, be generalized to all compact Lie groups and all primes. In fact,
this can be done in two essentially different ways, which will be described in the
next two subsections.

2a. Approximation via p-toral subgroups.

Recall that a compact Lie group P is p-toral if its identity component P0 is a
torus and P/P0 is a p-group. The p-toral groups play a similar role for compact
Lie groups to that played by p-groups for finite groups. For example, the “Sylow
theorem” says that any compact Lie group G contains a unique conjugacy class of
maximal p-toral subgroups, that any p-toral subgroup is contained in a maximal
one, and that a p-toral subgroup P ⊆ G is maximal if and only if p ∤ χ(G/P ). For
any given maximal torus T ⊆ G and any Sylow p-subgroup Wp of the Weyl group
W = N(T )/T , the extension

1→ T → Np(T )→ Wp → 1

is a maximal p-toral subgroup.

For any G, let O(G) be the orbit category: the (topological) category
whose objects are the orbits G/H for closed subgroups H ⊆ G, and where
MorO(G)(G/H,G/K) is the space of all G-maps. Let Op(G) be the full subcategory
of orbits G/P for p-toral P ⊆ G. We want to approximate BG as a homotopy
colimit taken over Op(G) or some appropriate subcategory.

When G is finite, then this is motivated in part by the theorem of Cartan &
Eilenberg [CE, Theorem XII.10.1], which says that for any Z(p)[G]-module A,

H∗(BG;A) ∼= lim
←−

G/P∈Op(G)

H∗(BP ;A). (4)

More precisely, H∗(BG;A) is the inverse limit of the functor H∗(EG ×G −;A)
(defined on Op(G)). Formula (4) suggests that BG is Fp-homology equivalent to
the homotopy direct limit of the BP ’s—and this can be confirmed by showing that
the higher limits of the system in (4) all vanish (see [Mis, §2]).

The obvious way to extend this to the case of compact Lie groups is to take
the limit of the BP ’s taken over all p-toral P ⊆ G (i.e., taken over Op(G)). The
main problem with doing this is that we want to work over a discrete category, and
preferably a finite one. For example, we saw that when G = SO(3) and p = 2, it
suffices to consider the 2-toral subgroups (Z/2)2 and O(2).
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Definition 2.1. A closed subgroup P ⊆ G is called p-stubborn if it is p-toral,
if N(P )/P is finite, and if N(P )/P does not contain any nontrivial normal p-
subgroup. We let Rp(G) denote the full subcategory of Op(G) whose objects are
those G/P for p-stubborn P ⊆ G.

For any G and p, the category Rp(G) is finite in the sense that all morphism
sets are finite, and there are finitely many isomorphism classes of objects (i.e.,
finitely many conjugacy classes of p-stubborn subgroups). When G = SO(3), it
is easy to see that the only 2-stubborn subgroups are the groups (Z/2)2 and O(2)
already mentioned above. When p ∤ |W | (W = N(T )/T ), then the only p-stubborn
subgroups of G are the maximal tori: i.e., Rp(G) is equivalent to the category with
one object with automorphism group W .

For finite G, the p-stubborn subgroups are exactly the same as the p-radical
subgroups which play a role in the classification of finite simple groups. They have
also been used by Puig [Pu] for computing cohomology groups. In fact, Puig showed
that H∗(G;A) (for any Z(p)[G]-module A) is the inverse limit of the H∗(P ;A) taken
over all essential p-subgroups P ⊆ G: where the essential subgroups form a proper
subclass of the radical (stubborn) subgroups.

The next theorem is our main approximation result for classifying spaces using
p-stubborn subgroups. Here, G-T op denotes the category of spaces with G-action.

Theorem 2.2. Fix any G and p, and let I : Rp(G) →֒ G-T op be the inclusion.
Then the map

hocolim
−→
Rp(G)

(EG×G I) ∼= EG×G
(

hocolim
−→
Rp(G)

(I)
)

−→ BG

induces an isomorphism of cohomology with Z(p)-coefficients.

Note, in Theorem 2.2, that the individual terms in the homotopy colimit have
the form EG×G (G/P ) ∼= EG/P ≃ BP for p-stubborn subgroups P ⊆ G.

When p ∤ |W |, then by the above remarks (G/T is the only object in Rp(G)),
the homotopy colimit has the form EW ×W BT≃BN(T ). So in this case, Theorem
2.2 recovers a well known result of Borel.

As discussed earlier (diagrams (1) and (2) above), the original decomposition of
BSO(3) as a homotopy pushout of certain orbits was found by first constructing
an F2-acyclic SO(3)-complex as a homotopy pushout, and then applying the Borel
construction. Similarly, when proving Theorem 2.2, it suffices to show that the
homotopy colimit hocolim

−→
Rp(G) (I) is Z(p)-acyclic. The difficult part of doing this

is the following result about transformation groups:

Theorem 2.3. For any compact Lie group G and any prime p, there exists a finite
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dimensional Fp-acyclic G-CW-complex X such that all isotropy groups Gx for x ∈ X
are p-stubborn.

Theorem 2.2 follows from Theorem 2.3 by first constructing a map X →
hocolim
−→

(I), and then showing that it is an Fp-homology equivalence by showing

that it restricts to an Fp-homology equivalence on all fixed point sets of isotropy
subgroups. The key observation when doing this is that for any full subcategory
C ⊆ O(G), (hocolim

−→
C (I))H is contractible for all G/H in C. For the details of these

arguments, see [JMO, Section 1].

The G-CW-complex X of Theorem 2.3 is constructed in two steps. One first
constructs a G-CW-complex all of whose isotropy subgroups are p-toral, and then
one eliminates those which are not p-stubborn (this is the origin of the term p-
stubborn). The proof parallels Oliver’s construction of fixed-point free actions on
acyclic complexes [Ol1], and also uses some arguments from his proof of the Conner
conjecture [Ol2].

2b. Approximation via centralizers of elementary abelian p-subgroups.

Diagram (3) above admits a second generalization to arbitrary compact Lie
groups. For any G, we let Ap(G) be the category introduced by Quillen [Q1],
whose objects are nontrivial elementary abelian p-subgroups, and whose mor-
phisms are restrictions of inner automorphisms of G. Note that SO(3) has pre-
cisely two conjugacy classes of nontrivial elementary abelian subgroups, and that
C(Z/2) ∼= O(2) and C((Z/2)2) ∼= (Z/2)2. Here, C(−) denotes the centralizer of
a subgroup in SO(3). Thus, diagram (3) above can be considered as being in-
dexed over A2(SO(3)), and defined by the functor which sends every elementary
abelian 2-subgroup to the classifying space of its centralizer. This viewpoint has
been generalized in [JM2] to arbitrary compact Lie groups, as follows.

On the opposite category Aop(G), we define a functor

EG×G (G/C(−)) : Aop(G)→ T op

which assigns to every elementary abelian subgroup A ∈ Aop(G) the space EG ×G
(G/C(A)) ≃ BC(A). Projection maps induce a natural transformation a from the
functor EG×G (G/C(−)) to the constant functor BG.

Theorem 2.4. [JM2, Theorem 1.3] The projection maps EG×G (G/C(−)) ։ BG
induce a map

αG : hocolim
−→
Ao

p(G)

(EG×G (G/C(−))) −→ BG

which is an Fp-cohomology isomorphism.



HOMOTOPY THEORY OF CLASSIFYING SPACES OF COMPACT LIE GROUPS 11

The proof in [JM2] of Theorem 2.4 is based on the Bousfield-Kan spectral se-
quence (Theorem 1.1 above) for computing the cohomology of the homotopy col-
imit. One first proves, using the Becker-Gottlieb transfer and Feshbach’s double
coset formula, that

Res : H∗(BG;Fp)→ lim
←−
Ao

p(G)

H∗(EG×G G/C(−);Fp)

is an isomorphism. It then remains to show that the higher inverse limits

lim
←−

i

Ao
p(G)

(H∗(EG×G G/C(−);Fp))

all vanish for i ≥ 1. This is again a consequence of the existence of transfer maps
for the functor H∗(EG ×G G/C(−);Fp). It turns out to be a Mackey functor in
a sense close to the one introduced by Dress (cf. [Dr, §1]). A general, algebraic
theorem is proven in [JM2] (Theorem 4.6 below), which says that all higher inverse
limits vanish for such functors.

Theorem 2.4 was the starting point for a generalization obtained by Dwyer &
Wilkerson [DW1]. The key observation for their generalization was a theorem of
Dwyer & Zabrodsky [DZ], stated as Theorem 3.1 below. In particular, their theorem
says that when A is an elementary abelian p-group and G is a compact Lie group,
then conjugacy classes of homomorphisms A→ G can be identified with homotopy
classes of maps BA → BG. Inclusions correspond to the maps f : BA → BG
such that the induced homomorphism H∗(f∗;Fp) makes H∗(BA;Fp) into a finitely
generated H∗(BG;Fp)-module. Moreover, for any inclusion i : A →֒ G, there is
a natural map ei : BCG(A) → map(BA,BG)Bi into the connected component
containing the map Bi; and ei becomes a homotopy equivalence after p-completion.

These remarks suggest a definition of the category of “elementary abelian sub-
groups of an arbitrary space”. For any X , let Aop(X), be the category whose objects
are homotopy classes of those maps f : BA → X , for which A is a nontrivial ele-
mentary abelian p-group and H∗(f ;Fp) makes H∗(BA;Fp) into a finitely generated
H∗(X ;Fp)-module. Morphisms in Aop(X) are homotopy classes Bϕ : BA′ → BA
of maps over X. A functor Aop(X) → T op is defined, which assigns to every map
f : BA→ X its connected component map(BA,X)f in the mapping space. When
X = BG for a compact Lie group G, then this functor is naturally Fp-homology
equivalent (under the equivalence of categories Aop(BG) = Aop(G)) to the functor
EG×G G/C(−) defined above. This motivates the following theorem:

Theorem 2.5. (Dwyer & Wilkerson [DW1]) Let X be a space whose cohomology
H∗(X ;Fp), as an unstable algebra over the Steenrod algebra, is isomorphic to the
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subalgebra of elements fixed by an action of a finite group on H∗(BT ;Fp) for some
torus T . Then the evaluation map induces an Fp-homology equivalence:

αX : hocolim
−→
Ao

p(G)

(map(B−, X)−)→ BG

The proof of Theorem 2.5 follows from a purely algebraic result which involves
unstable modules over the Steenrod algebra. Similarly to the proof in [JM2] of
Theorem 2.4 above, the proof of Dwyer & Wilkerson is based on the existence of
certain transfer maps.

Dwyer & Wilkerson found various other conditions on X which imply that αX is
an Fp-homology equivalence. They also noted (at the end of [DW1]) that this is not
the case when p = 2 and X = BZ/2∨BZ/2. It would be quite interesting to have a
characterization of the spaces X for which αX is an Fp-homology equivalence, since
such spaces could be expected to have many of the good properties of classifying
spaces.

3. Maps between classifying spaces

The title of this section was first used by Adams & Mahmud [AM], and since then
by many authors. At the beginning of their paper, Adams and Mahmud explained
their interest in the subject as follows: “Let G and G′ be compact connected Lie
groups . . . The object of this paper is to study maps f : BG → BG′, since this
seems to be a case of the homotopy classification problem which is both particularly
interesting and particularly favourable.” This section provides an update of this
problem, and a confirmation of the prediction of Adams and Mahmud.

The results of Adams & Mahmud, both in [AM] and in their later papers [Ad]
and [AM2], classified maps BG → BG′ only up to what was detected by rational
cohomology or K-theory, and constructed maps only after inverting certain primes
in BG′. The main tools which now make it possible to study such maps more
precisely are a series of consequences of the proof of the Sullivan conjecture ([Mil],
[Ca], [La2]). The results of principal importance are those of Dwyer & Zabrodsky
[DZ], and their extension by Notbohm [No].

As mentioned in the introduction, the construction by Sullivan of unstable Adams
operations destroyed the hope that all maps BG→BG′ might be homotopic to maps
induced by homomorphisms. In contrast, the next theorem says that in the special
case when G is p-toral (i.e., an extension of a torus by a finite p-group), then not
only are all maps induced by homomorphisms, but all homotopies between maps
are induced by conjugations, and the higher homotopies also have a group theoretic
description.

For any G and G′, define Rep(G,G′) = Hom(G,G′)/ Inn(G′); i.e., the set of
homomorphisms ρ : G→ G′ modulo conjugation in G′. Since Bα ≃ IdBG′ for any
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α ∈ Inn(G′), there is a well defined map

B : Rep(G,G′)→ [BG,BG′]

defined by sending ρ to Bρ.

Theorem 3.1. (Dwyer & Zabrodsky [DZ], Notbohm [No]) Fix a p-toral group P ,
and any compact Lie group G. Then

B : Rep(P,G)
∼=
→ [BP,BG]

is a bijection, and the completion map

[BP,BG]  [BP,BGp̂]

is injective. Furthermore, for any ρ : P → G,

π∗ (map(BP,BGp̂)Bρ) ∼= π∗ (map(BP,BG)Bρ) p̂ ∼= π∗ (BCG(Im(ρ)))⊗ Ẑp.

Theorem 3.1 was shown by Dwyer & Zabrodsky when P is a finite p-group, and
extended by Notbohm to the case when P is p-toral.

The homotopy isomorphisms in Theorem 3.1 are induced by the map
BCG(Im(ρ)) → map(BP,BG), which is in turn the adjoint to the map
B (Im(ρ)× P → G).

The following corollary to Theorem 3.1 will also be useful in the discussion below.

Corollary 3.2. (Notbohm [No]) Let T be a torus, and let G be any compact con-
nected Lie group. Then two maps f, f ′ : BT → BG are homotopic if and only if
H∗(f ;Q) = H∗(f ′;Q).

Again let G and G′ be compact Lie groups, where G′ is connected. For each prime
p and each p-toral subgroup P ⊆ G (in particular, for each p-stubborn subgroup),
Theorem 3.1 describes the set of homotopy classes of maps BP → BG′, as well as
the homotopy type of each component of map(BP,BG′p̂). This is exactly what is
needed when applying Theorem 1.2 or 1.3 to describe the set of homotopy classes of
maps from the homotopy colimit of the BP ’s to BG′p̂; and hence (using Theorem
2.2) from BG to BG′p̂.

We are now ready to outline our general strategy for applying these techniques
to construct and classify maps BG→ BG′, when G and G′ are compact Lie groups
and G′ is connected. Of particular interest are the cases where G is connected or
finite. As will be seen shortly, the condition that G′ be connected is needed since
we have to be able to apply Sullivan’s arithmetic pullback square for localizations
and completions of BG′.

Now fix G and G′ as above. Choose maximal tori T ⊆ G and T ′ ⊆ G′, and let
W = N(T )/T and W ′ = N(T ′)/T ′ denote the Weyl groups. The construction and
classification of maps BG→ BG′ is carried out in three steps:
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Step 1 Admissible maps.

For the purposes of this survey, we define an admissible map to be a homomor-
phism φ : T → T ′, for which there exists a homomorphism φ̄ : W → W ′ such
that φ is φ̄-equivariant. As noted below, this is more restrictive than the definition
of Adams & Mahmud in [AM]. But the ones we consider are the only ones which
can induce maps BG → BG′ which are defined globally (rather than after a finite
localization).

Theorem 3.3. (Adams & Mahmud [AM, Corollary 1.11]) For any f : BG→ BG′,
there exists an admissible map φ : T → T ′ such that the following square commutes
up to homotopy:

BT
Bφ
−−−−→ BT ′





y
incl





y
incl

BG
f

−−−−→ BG′

(1)

If φ′ : T → T ′ is any other homomorphism for which this square commutes up to
homotopy, then φ′ = w◦φ for some element w ∈ W ′. And conversely, if φ : T → T ′

is any admissible map, then for some n there is a map f : BG → BG′[1/n] which
makes (1) commute up to homotopy.

In fact, Adams and Mahmud showed only that the square in Theorem 3.3 com-
mutes in rational cohomology. But by Notbohm’s lemma (Corollary 3.2 above),
this is equivalent to its being homotopy commutative.

Adams & Mahmud in [AM] actually define an admissible map to be a linear

map φ̃ : T̃ → T̃ ′ between the universal covers, such that for some n ≥ 1, n · φ̃
covers a homomorphism φ : T → T ′ which is admissible in the sense defined above.
Using this definition, their theorem says that square (1) above induces a one-to-one
correspondence between

(i) homomorphisms H∗(BG′;Q) → H∗(BG;Q) which are induced by maps
f : BG→ BG′[1/n] (for some n ≥ 1); and

(ii) W ′-conjugacy classes of admissible maps φ. φ̃ : T̃ → T̃ ′.

We are now left with the problem: given an admissible map φ : T → T ′, is it
induced by some f : BG → BG′? And if so, by how many homotopy classes of
maps? Since we want to answer these by replacing BG by a p-local approximation,
we must first consider extensions of φ to maps BG→ BG′p̂ for the individual primes
p. The following proposition describes how this is done.

Proposition 3.4. Fix an admissible map φ : T → T ′, and let [BG,BG′]φ, and
[BG,BG′p̂]φ, be the sets of homotopy classes of maps whose restrictions to BT are
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homotopic to Bφ. Then

[BG,BG′]φ ∼=
∏

p|||W |

[BG,BG′p̂]φ.

The proof of Proposition 3.4 is based on Sullivan’s arithmetic pullback square
(applied to the simply connected space BG′), together with the facts that that
H∗(BG;Q) vanishes in odd dimensions, and that BG′Q is a product of Eilenberg-
Maclane spaces. The details are given in [JMO, Theorem 3.1]. The reason for
taking the product only over primes dividing the order of W is that [BG,BG′p̂]φ
always has order 1 when p ∤ |W | (see Theorem 3.6 below).

Step 2 Rp-invariant representations.

We now fix a prime p, and consider the problem of determining the set of homo-
topy classes of maps BG→ BG′p̂ which extend a given admissible map φ : T → T ′.
Fix a maximal p-toral subgroup Np(T ) ⊆ G: i.e., a subgroup for which Np(T )/T is
a p-Sylow subgroup of N(T )/T .

By an Rp-invariant representation on G we mean an element

ρ ∈ Rep(Np(T ), G′) = Hom(Np(T ), G′)/ Inn(G′)

with the property that the restrictions of ρ combine to form an element

ρ̂ = (ρ | P )G/P∈Rp(G) ∈ lim
←−

G/P∈Rp(G)

Rep(P,G′).

Equivalently, ρ : Np(T )→ G′ is Rp-invariant if for any p-toral P ⊆ G and any two
homomorphisms i1, i2 : P  Np(T ) induced by inclusions and conjugation in G,
ρ ◦ i1 is conjugate (in G′) to ρ ◦ i2.

By Theorem 3.1, [BP,BG′p̂] ⊇ [BP,BG′] ∼= Rep(P,G′) for all p-toral P . So for
any f : BG→ BG′p̂ which comes from a global map BG→ BG′, f | BNp(T ) ≃ Bρ
for some unique Rp-invariant representation ρ : Np(T ) → G′. The question now
is: given an admissible map φ : T → T ′, can it be extended to an Rp-invariant
representation, and if so to how many?

When G′ is one of the matrix groups U(n), SU(n), Sp(n), or O(n), then Rp-
invariant representations are relatively easy to construct: character theory can be
used to verify that the appropriate pairs of homomorphisms are conjugate. For
example, assume G = G′ = U(n), fix p ≤ n, and let T ⊆ G be the group of diagonal
matrices. For some k prime to n!, consider the admissible map φk : T → T given
by φk(t) = tk. Then N(T ) is the group of monomial matrices (one nonzero entry
in every row and column). Let ρk : Np(T ) → G, be the homomorphism defined
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by raising each entry in a matrix to the k-th power. Then for every x ∈ Np(T ),
Tr(ρk(x)) = Tr(xk); and using this relation one easily checks that ρk isRp-invariant.
Later in this section, we will show how the ρk can be used to give a new construction
of Sullivan’s unstable Adams operations on BU(n).

Several examples are given in [JMO2], where we construct Rp-invariant repre-
sentations (both to matrix groups and to the exceptional Lie group F4), extending
some of the admissible maps studied by Adams & Mahmud in [AM]. But we do
still lack general techniques for doing this. For example, this is the missing step if
we want to construct the unstable Adams operations for the exceptional Lie groups
using these methods.

Step 3 Computation of higher limits.

An Rp-invariant representation ρ determines a family of maps, compatible up to
homotopy, from the BP ≃ EG/P to BG′p̂. The obstructions to extending these to
a map from hocolim

−→
(EG/P ) to BG′p̂—and hence from BG to BG′p̂—have already

been described in Theorems 1.2 and 1.3 above.

It will be convenient to adopt a different notation for higher inverse limits. We
will see in the next section that these groups may be thought of as cohomology
groups of the underlying category with twisted coefficients. Accordingly, from now
on, we write H∗(C;F ) rather than lim

←−

∗

C
(F ) to denote the higher inverse limits of

F : C → Ab.

For a given ρ, define functors

Πρ
1 : Rp(G)→ p-groups and Πρ

n : Rp(G)→ Z(p)-mod (n ≥ 2)

by setting

Πρ
n(G/P ) = πn

(

map(BP,BG′p̂)Bρ|P
)

∼=

{

π1(BCG′(Im(ρ))) if n = 1

[πn(BCG′(Im(ρ)))]p̂ if n ≥ 2.

(Note that for any p-toral P ⊆ G′, π0(CG′(P )) is a p-group by [JMO, Proposition
A.4].) Theorems 1.2 and 1.3 now take the following form:

Theorem 3.5. For any Rp-invariant representation ρ, Bρ extends to a map BG→
BG′p̂ if the higher limits Hn+1(Rp(G); Πρ

n) vanish for all n ≥ 1; and the extension
is unique if Hn(Rp(G); Πρ

n) = 0 for all n ≥ 1. Furthermore, there is a spectral
sequence

Epq2 = Hp(Rp(G); Πρ
q)⇒ πq−p(map(BG,BG′)ρ),

where map(−,−)ρ is the space of maps which extend Bρ.

In Proposition 4.11 below, we will see that there is a number k = k(G, p), such
that Hi(Rp(G);F ) = 0 for all i > k and any F : Rp(G) → Z(p)-mod. So the
spectral sequence of Theorem 3.5 always converges strongly.



HOMOTOPY THEORY OF CLASSIFYING SPACES OF COMPACT LIE GROUPS 17

The last step when constructing maps BG → BG′, or checking whether they
are unique, is thus to compute the higher limits H∗(Rp(G); Πρ

∗). A priori, one
might expect the computation of these higher limits to be quite hard in general.
However, as will be seen in the next section (Theorems 4.8 and 4.9), we have
succeeded in developing some very powerful tools which are successful in making
these computations in many cases.

As a first simple illustration of the application of the methods in this section, we
show how they apply in the case where p ∤ |W |.

Theorem 3.6. [AM] If G is connected and p ∤ |W |, then any admissible map
φ : T → T ′ lifts to a unique map f : BG→ BG′p̂.

Proof. This is shown by Adams & Mahmud in [AM, Theorem 1.10]; but we note
here how it follows from the theory just presented. When p ∤ |W |, then Np(T ) = T ,
and the only p-stubborn subgroups of G are the maximal tori (any p-stubborn
subgroup P ⊆ G is contained in a maximal torus, and N(P )/P must be finite).
In other words, Rp(G) is equivalent to the category with one object G/T , with
End(G/T ) ∼= W .

In particular, φ is automatically Rp-invariant. Also, for each i, j ≥ 1,

Hi(Rp(G); Πφ
j ) ∼= Hi(W ; Πφ

j (G/T )p̂) = 0

(again since p ∤ |W |). So φ extends to a unique map BG→ BG′p̂ by Theorems 3.5
and 2.2 above. �

As a second example, set G = G′ = U(n), fix p and k such that p|n! and
(k, n!) = 1; and consider the Rp-invariant representation ρk : Np(T ) → G defined
above. Then for each i ≥ 1, Πρk

i
∼= Πi, where Πi is defined by setting Πi(G/P ) =

πi(BCG(P ))p̂ for G/P in Rp(G). Also, Hj(Rp(G); Πi) = 0 for all i, j ≥ 1 by
Lemma 5.3 below. Theorem 3.5 thus applies to show that ρk extends to a unique
map ψk : BG → BGp̂. Since ψk|BT ≃ Bφk, where φk : T → T is the k-th power
map, ψk is an unstable Adams operation of degree k on BU(n) (see Definition 5.1
below).

As a last example, we use these procedures to classify maps BΓ→ BSU(2) and
BΓ → BSO(3) for any finite group Γ. Note that in these cases, Proposition 3.4
takes the form

[BΓ, BSU(2)] ∼=
∏

p|||Γ|

[BΓ, BSU(2)p̂] and [BΓ, BSO(3)] ∼=
∏

p|||Γ|

[BΓ, BSO(3)p̂].

Example 3.7. Fix a prime p and a finite group Γ, and let Γp ⊆ Γ be a Sylow
p-subgroup. We consider maps BΓ→ BSU(2)p̂.
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(i) A homomorphism ρ : Γp −→ SU(2) is Rp-invariant if and only if for any pair
of elements g, h ∈ Γp conjugate in Γ, ρ(g) and ρ(h) are conjugate in SU(2).

(ii) Every Rp-invariant representation ρ : Γp → SU(2) lifts to a map fρ : BΓ→
BSU(2)p̂ which is unique up to homotopy.

The above description of [BΓ, BSU(2)] was shown by Mislin and Thomas [MT,
Theorem 3.2], in the case when Γ has periodic cohomology. In the same paper [MT,
Theorem 2.6], they also describe [BΓ, BG] for any arbitrary compact connected Lie
group G and any periodic group Γ satisfying the “2-normalizer condition”.

In all of the examples described in [MT] or in Example 3.7 above, homotopy
classes of maps BΓ→ BG are detected by their restrictions to Sylow subgroups of
Γ; i.e., by the sets Rep(Γp, G). When G = SO(3), this is not always the case.

Example 3.8. Fix a prime p and a finite group Γ, and let Γp ⊆ Γ be a Sylow
p-subgroup. We consider maps BΓ→ BSO(3)p̂.

(i) A homomorphism ρ : Γp −→ SO(3) is Rp-invariant if and only if for any pair
of elements g, h ∈ Γp conjugate in Γ, ρ(g) and ρ(h) are conjugate in SO(3).

(ii) Every Rp-invariant representation ρ : Γp → SO(3) lifts to a map fρ : BΓ→
BSO(3)p̂; and the lifting is unique up to homotopy if p is odd or if Im(ρ) is abelian.
In all other cases, there are at most two homotopy classes of maps BΓ→ BSO(3)p̂
which lift ρ.

(iii) Assume that p = 2 and Im(ρ) ∼= D(2k) for k ≥ 3. Let H1, H2 ⊆ Im(ρ) be
representatives for the two conjugacy classes of subgroups (Z/2)2 ⊆ D(2k), and set
Pi = ρ−1(Hi). Then ρ has two distinct liftings BΓ−→−→BSO(3)2̂ if and only if both
maps

N(Pi)/Pi
conj
−−→ Out(Pi/Ker(ρ))

ρ
−→
∼=

Aut(Hi) ∼= Σ3

are onto, and P1 and P2 are not conjugate in Γ.

Proofs. Point (i) in each case follows from the definition of Rp-invariance; and
the fact that when G = SU(n) or SO(2n + 1), two homomorphisms H → G are
conjugate in G if and only if they have the same character.

Points (ii) and (iii) follow upon showing that for each n ≥ 1, Hm(Rp(Γ); Πρ
n) = 0

for m ≥ 2, and that H1(Rp(Γ); Πρ
1) has order one or two as indicated. This is an

easy consequence of Theorems 4.8 and 4.9 and Proposition 4.10 in the next section.
�

Note in particular that when p = 2 or 3, then any monomorphism from Γp to
SO(3) or SU(2) isRp-invariant. Also, when Γ = GL3(F2) and ρ : Γ2

∼=D(8)SO(3)
is an injection, then point (iii) in Example 3.7 applies to show that there are two
distinct homotopy classes of maps BΓ → BSO(3)2̂ which extend ρ. Another easy
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consequence of these examples is that there are exactly 12 homotopy classes of maps
from BSL(2,F5) to BSU(2) (compare with [Ad, Proposition 1.18]).

The reason the descriptions of [BΓ, BSO(3)] and [BΓ, BSU(2)] are so simple is in
part because they are matrix rings (so conjugacy is easily determined), but mostly
because their subgroups are well known and easily described. Presumably, similar
results can be found (but with more complicated formulations) for maps to (for
example) BSU(3) or BSp(2). However, it seems unlikely that any general result (or
even conjecture) about [BG,BG′] can be formulated, neither for G and G′ arbitrary
(distinct) compact connected Lie groups, nor for G finite and G′ connected.

4. Higher inverse limits

Let C be an arbitrary small category. We write C-mod for the abelian category
of contravariant functors M : C → Ab. The reason for this terminology is that
when C is the category O1(Γ) (recall that this category has a single object Γ/1
and End(Γ/1) ∼= Γ)) then C-mod is just the usual category of Z[Γ]-modules. This
example will be used throughout this section to illustrate some of the abstract
categorical notions via examples related to finite groups.

There is a functor lim
←−

: C-mod→ Ab which assigns to every M its inverse limit,

i.e., the group of compatible families of elements (xc)c∈Ob(C). We want to study

the derived functors lim
←−

i of the inverse limit (cf. [GZ, Appx. 2 §3], where the dual

construction is described in detail). For example, for any Z[Γ]-module M , regarded
as a functor on O1(Γ), lim

←−O1(Γ)
(M) can be identified with the fixed point subgroup

MΓ, and thus the higher derived functors are isomorphic to H∗(Γ;M). In order to

emphasize this analogy with group cohomology, we shall denote the functors lim
←−

i

from now on by
Hi(C;−) : C-mod→ Ab.

The following proposition is just a special case of the usual long exact sequence
induced by derived functors.

Proposition 4.1. For any small category C, and any short exact sequence of func-
tors 0 → M ′ → M → M ′′ → 0 in C-mod, there exists a functorial long exact
sequence

· · · → Hi(C;M ′)→ Hi(C;M)→ Hi(C;M ′′)→ Hi+1(C;M)→ . . . .

Let Z denote the constant functor. One sees easily that for any M in C-mod,

lim
←−
C

(M) ∼= HomC-mod(Z,M).
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Hence, instead of taking an injective resolution for M when computing its higher
inverse limits, one can choose a single projective resolution P∗ of Z, and then
H∗(C;M) ∼= H∗(HomC-mod(P∗,M)) for all M . One way to do this is the following.

For any c ∈ Ob(C), let Ac : C → Ab be the functor where for each x ∈ Ob(C),
Ac(x) is the free abelian group with basis MorC(x, c). For any f : x → y in C,
Ac(f) : Ac(y)→ Ac(x) is induced by the obvious map between bases. Then for any
M in C-mod,

HomC-mod(Ac,M) ∼= M(c).

In particular, Ac is projective. One now checks that there is a projective resolution
of Z

· · · −→
⊕

x0→x1→x2

Ax0
−→

⊕

x0→x1

Ax0
−→

⊕

x

Ax −→ Z −→ 0

where the boundary maps are alternating sums of maps induced by face maps in
the nerve of C. For example, when C = O1(Γ), then this is the usual bar resolution
for Γ. This resolution leads to the following lemma, which is sometimes useful for
proving results about higher limits.

Lemma 4.2. [BK, XI,6.2] For any M in C-mod, H∗(C;M) is the cohomology of
the cochain complex

0 −→
∏

x

M(x) −→
∏

x0→x1

M(x0) −→
∏

x0→x1→x2

M(x0) −→ . . . ,

whose boundary maps are alternating sums of homomorphisms induced by the face
maps in the nerve of C.

In order to describe one of the other properties of higher limits analogous to
group cohomology, we first need to define the Kan extension of a functor. For any
functor F : C → D, the restriction functor F ∗ : D-mod→ C-mod has a right adjoint

F∗ : C-mod→ D-mod.

For any M in C-mod, the functor F∗M is called the right Kan extension of M
along F (cf. [HS, IX.5] or [GZ, Appx. 2, §3]). If F is an embedding onto a full
subcategory, then F ∗ ◦ F∗ = Id [HS, Proposition IX.5.2]; i.e., the Kan extension
provides an ordinary extension from functors on C to functors on D. If F has a
right adjoint functor G : D → C, then F∗ = G∗. But in general, F∗ does not have
to be induced by any functor D → C.

As a special case, consider a pair of groups H ⊆ Γ, and the induced func-
tor F : O1(H) → O1(Γ). In this case, for an arbitrary H-module A, F∗(A) ∼=
HomZH(ZΓ, A) is just the usual induced representation. The following result from
[JM2] thus generalizes Shapiro’s lemma for group cohomology.
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Lemma 4.3. [JM2, Lemma 3.1] Let F : C → D be a functor such that
F∗ : C-mod→ D-mod preserves epimorphisms. Then there is a natural isomorphism

H∗(C;M) ∼= H∗(D;F∗M).

This lemma can be shown by adapting the usual proof of Shapiro’s lemma; or
alternatively using the Leray spectral sequence of the functor F : C → D. Note that
if F∗ = G∗ for some functor G : D → C, then F must preserve epimorphisms.

Of particular interest are the functors whose higher limits all vanish.

Definition 4.4. A functor M ∈ C-mod is called acyclic if H∗(C;M) = 0 for all
i > 0.

Below, we will review various criteria obtained in [JM2] and [JMO] for acyclicity
of functors. The starting point for these results is the following simple observation:

Lemma 4.5. A functor M is acyclic if either of the following condition holds:

(a) M splits off as a direct summand of a acyclic functor

(b) M admits a filtration 0 = M0 ⊆M1 ⊆ · · · ⊆Mn = M such that Mi/Mi−1 is
acyclic for any i = 1, . . . , n.

We begin with a result based on Lemma 4.5(a). Note first that every functor on
a category with final object is acyclic. This, together with Lemma 4.3, provides us
with a large class of acyclic functors, provided that the category C satisfies some
mild assumptions. The splitting needed to apply Lemma 4.5(a) is provided by an
additonal structure on a functor: the Mackey structure (i.e., transfer maps satisfying
the double coset formula). The idea of abstract Mackey functors, generalizing the
relations among the restriction and induction maps for representation rings, was
introduced by Dress (cf. [Dr, Section 1]) in the context of abstract induction theory.
In [JM2], the first two authors define “proto-Mackey functors” (a slightly weaker
notion than Dress’, in particular not assuming the existence of an initial object in
the category); and prove a general criterion for the vanishing of their higher limits
[JM2, Corollary 5.16]. Here we quote only one sample application which is often
useful.

Theorem 4.6. Let p be a prime, and let C be either the category Op(Γ) for a finite
group Γ, or Aop(G) for a compact Lie group G. Then every proto-Mackey functor
C → Z(p)-mod is acyclic.

An important example is the functor Γ/P 7→MP on Op(Γ), which is defined for
any Γ-module M . This functor possesses an evident transfer map and is therefore
acyclic by Theorem 4.6. (Note, however, that in this particular case the composite of
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transfer and restriction is multiplication by the index, so one can give an elementary
proof of acyclicity—see for example Lemma 2.1 of [Mis]).

To apply Lemma 4.5(b) to the computation of higher limits over orbit categories,
we consider the atomic functors: i.e., functors F : C → Ab which vanish on all but
possibly one single isomorphism class of objects. It is easy to see that every functor
on an orbit category—or more generally on a category in which all endomorphisms
are isomorphisms—admits filtrations whose quotient functors are atomic. Note
that an atomic functor is determined by a single End(C)-module for some object
C ∈ Ob(C). The surprising thing is that in some interesting cases, the higher limits
of an atomic functor can be described solely in terms of this module without refering
to the whole category C.

In order to make this explicit, we introduce a new invariant Λ∗(Γ;M), for a finite
group Γ and a Z(p)[Γ]-module M .

Definition 4.7. For any prime p, any finite group Γ, and any Z(p)[Γ]-module M ,
let FM : Op(Γ)→ Ab be the atomic functor concentrated on the free orbit Γ/1 with
FM (Γ/1) = M ; and set

Λ∗(Γ;M) = H∗(Op(Γ);FM).

Note that Λ∗(Γ;M) depends implicitly on the prime p, as well as on Γ and M .
Also, by [JMO, Corollary 1.8], H∗(Op(Γ);F ) ∼= H∗(Rp(Γ);F ) for any finite group Γ
and any F in Op(Γ)-mod (so Λ∗(Γ;M) could just as easily be defined as the higher
limits of a functor over Rp(Γ)).

We now concentrate on functors in Rp(Γ)-mod, where Γ is an arbitrary compact
Lie group. The change of categories lemma (Lemma 4.3) implies easily:

Theorem 4.8. [JMO, Lemma 5.4] For any atomic functor F : Rp(G)→ Z(p)-mod
concentrated on the orbit G/P ,

H∗(Rp(G);F ) ∼= Λ∗(N(P )/P ;F (G/P )).

This method of filtering the higher limits H∗(Rp(G);−) looks quite convenient,
but it is not yet clear why it should be very useful for concrete calculations. The
reason is that for many such computations, most of the groups Λ∗(Γ;M) which
occur are zero. This is due mainly to the following vanishing result, shown in
[JMO, Propositions 5.5 and 6.1].

Theorem 4.9. Fix a prime p, a finite group Γ, and a Z(p)[Γ]-module M . Then

Λ∗(Γ;M) = 0 (for all ∗ ≥ 0) if p|||Ker[Γ→ Aut(M)]|, or if Γ contains a nontrivial
normal p-subgroup.

The following theorem describes some of the other basic properties of the functors
Λ∗, and gives some feel for how these groups behave:
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Proposition 4.10. Fix a prime p, a finite group Γ, and a Z(p)[Γ]-module M .

(a) If p ∤ |Γ|, then Λ0(Γ;M) ∼= MΓ, and Λi(Γ;M) = 0 for i ≥ 1. If p|||Γ|, then

Λ0(Γ;M) = 0.

(b) Λ∗(Γ;M) ∼= Λ∗(Γ/H;M) if H ⊳ Γ is the kernel of the Γ-action on M and
p ∤ |Γ|.

(c) Let Γp ⊆ Γ be a Sylow p-subgroup, and assume |Γp| = p. Then Λ1(Γ;M) ∼=
MN(Γp)/MΓ, and Λi(Γ;M) = 0 for i 6= 1.

Proposition 4.10 is shown in [JMO]: the first two parts in Proposition 6.1, and
the third in Proposition 6.2.

The functors Λ∗ enable us to show the following finiteness result which holds for
an arbitrary functor F : Rp(G)→ Z(p)-mod:

Proposition 4.11. For any G and p, there is some k = k(G, p) such that for any
functor F : Rp(G)→ Z(p)-mod, H∗(Rp(G);F ) = 0 for i > k. If G is finite and its
Sylow p-subgroup has order pm, then we can take k = m.

By [JMO, Proposition 1.6], any Rp(G) contains only finitely many isomorphism
classes of objects (i.e., G contains finitely many conjugacy classes of p-stubborn
subgroups). So upon filtering F by atomic functors, Proposition 4.11 is reduced to
proving the corresponding result for the Λ∗(Γ;M), for finite groups Γ. And this is
shown via induction on the order of Γ, and using the acyclicity (Theorem 4.6) of
the functor F ′M in Op(Γ)-mod defined by F ′M (Γ/P ) = MP .

One important consequence of Proposition 4.11 is that the spectral sequences for
spaces of maps BG→ X p̂ (Theorems 1.3 and 3.5) always converge strongly.

5. Self maps of BG

In Section 3, we discussed our general strategy for constructing and classify-
ing maps between classifying spaces. Those procedures are very effective in many
concrete situations. But it seems unlikely that there is any completely general de-
scription of the sets [BG,BG′] for arbitrary pairs G, G′ of compact connected Lie
groups.

One case where there are general results of this type is that of self maps: either
arbitrary self maps of BG when G is connected and simple, or Q-equivalences
BG→BG when G is any compact connected Lie group. It is these results which are
the subject of this section.

We start by defining the unstable Adams operations on BG. As mentioned ear-
lier, it was Sullivan’s construction of unstable Adams operations on BU(n) which
gave the first examples of maps between classifying spaces not induced by homo-
morphisms.
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Let U =
⋃∞
n=1 U(n) be the infinite dimensional unitary group, and let T∞⊆U be

the subgroup of all diagonal matrices. The Adams operation ψk : K(X)→K(X) de-
termines a (homotopy class of) maps BU→BU , also denoted ψk; and ψk|BT∞≃Bφk
where φk : T∞→T∞⊆U is the k-th power homomorphism. In particular, the in-
duced homomorphism H2i(ψk;Q) is multiplication by ki for each i. This motivates
the following definition.

Definition-Proposition 5.1. Let G be any compact connected Lie group. A self-
map f : BG→BG is called an unstable Adams operation of degree k if any of the
following equivalent conditions hold:

(i) For each i ≥ 0, H2i(f ;Q) is multiplication by ki.

(ii) For any maximal torus T⊆G, the following square commutes up to homotopy:

BT
incl
−−−−→ BG

Bφk





y

f





y

BT
incl
−−−−→ BG

(φk(t) = tk) (1)

(iii) For some embedding (equivalently, all embeddings) G→֒U , the following
square commutes up to homotopy:

BG −−−−→ BU

f





y
ψk





y

BG −−−−→ BU

(2)

Note that by Notbohm’s lemma (Corollary 3.2 above), square (1) commutes up
to homotopy if and only if it commutes in rational cohomology. Similarly, square
(2) commutes up to homotopy if and only if it commutes in rational cohomology:
this follows from arguments involving the Chern character.

Unstable Adams operations were first constructed by Sullivan [Su], for G = U(n)
or SU(n), and any k prime to n!. His idea was to use étale homotopy to relate the
profinite completion BU(n)ˆ to the structure of BU(n) as a variety over C without
topological structure—and then consider the action of the Galois group Aut(C) on
it. This gave unstable Adams operations on the p-completions BU(n)p̂; and they
were then combined to get self maps of BU(n), using Sullivan’s arithmetic pullback
square [Su, §3.4]. This construction was later extended by Wilkerson [Wi] to the
case where G is an arbitrary compact connected Lie group and k is prime to the
order of its Weyl group.

Another approach to constructing unstable Adams operations was given by Fried-
lander in [Fr2], who showed that BG can be approximated by classifying spaces of
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Lie groups over fields of finite characteristic. For example, when k = p is a prime,
then BU(n)q̂≃BGLn(F̄p)q̂ for all primes q 6=p [Fr1]. The Frobenius automorphism
of F̄p then induces an unstable Adams operation (ψp)q̂ of degree p on BU(n)q̂.

Neither of these constructions gave any indication as to whether the unstable
Adams operations are unique up to homotopy. The following theorem answers this
question, and is one of the main results in [JMO].

Theorem 5.2. [JMO, Theorem 4.3] Let G be any compact connected Lie group.
Then for each k, there is up to homotopy at most one unstable Adams operation
ψk : BG→BG of degree k.

For G = SU(2), this result was proved by Mislin [Mis].

The proof of Theorem 5.2 provides another illustration of how the program out-
lined in Section 3 can be applied. To keep things short, we assume k 6= 0 (the case
k = 0 is in fact simpler, but must be considered separately).

Fix a maximal torus T⊆G, and let W = N(T )/T be the Weyl group. We must
show that the admissible map φk : T→T , where φk(t) = tk, has at most one lifting
to a map BG→BG. By Proposition 3.4, it suffices to show that for each p

∣

∣|W |,
there is at most one lifting of φk to a map BG→BGp̂.

Fix p, and let Wp = Np(T )/T be a Sylow p-subgroup of W = N(T )/T . Then
Np(T ) is a maximal p-toral subgroup of G. The first step is to show that φk extends
to at most one Rp-invariant representation (up to conjugacy in G). If we fix one
Rp-invariant representation ρk : Np(T )→G and compare the other representations
to it, we obtain a one-to-one correspondence between the set of all extensions of φk
to representations Np(T )→G and the group H1(Wp;T ). Under this correspondence,
the Rp-invariant representations all lie in the image of H1(W ;T )(p)→֒H

1(Wp;T ).

Also, H1(W ;T ) is a 2-group, and is detected by restriction to the reflections in W .
Using this, it is straightforward to check that any other Rp-invariant representation
must represent the trivial element in H1(W ;T ), and hence is conjugate to ρk. For
the details, see the proof in [JMO, Proposition 3.5].

It remains to show that Bρk : BNp(T )→BGp̂ extends to at most one map
BG→BGp̂. By Theorem 3.5 above, this means showing that the higher limits
Hi(Rp(G); Πρk

i ) vanish for all i ≥ 1. One first checks that Πρk
i
∼= Πi as functors

Rp(G) → Z(p)-mod, where Πi(G/P ) ∼= πi(BCG(P ))p̂. The latter homotopy group
can actually be determined explicitly, since when P is p-stubborn, the centralizer
CG(P ) is equal to the center Z(P ) (see [JMO, Lemma 1.5]), and is in particular the
product of a torus and a finite abelian group. Note, for example, that Πi = 0 for
i ≥ 3, and that Π1(G/P ) is abelian for all P .

The techniques described in Section 4 are now used to show that
Hm(Rp(G); Πn) = 0 for all m,n ≥ 1 (see [JMO, Sections 5 & 6], where this is
shown for simply connected G). To illustrate these computations, we sketch the



26 BY STEFAN JACKOWSKI, JAMES MCCLURE, AND BOB OLIVER

proof when G = U(n) (and the same proof works when G = SU(n) or Sp(n)).

Lemma 5.3. Fix any prime p, and set G = U(n). Then for any i ≥ 1,

Hj(Rp(G); Πi) ∼=

{

0 if j > 0

πi(BZ(G))p̂ if j = 0.

Proof. The proof is based on results and notation from Section 4. Recall in partic-
ular Theorem 4.8: if F is a p-local functor on Rp(G), and vanishes except on one
orbit type G/P , then H∗(Rp(G);F ) ∼= Λ∗(NP/P ;F (G/P )).

Assume first that P⊆G is a p-stubborn subgroup such that

Λ∗(N(P )/P ; Πi(G/P )) 6= 0.

We want to show that P contains a maximal torus. By Theorem 4.9, the kernel
of the action of N(P )/P on Πi(G/P ) ∼= πi(BZ(P ))p̂ must have order prime to p.
In particular, p ∤ |[N(P )∩CG(Z(P ))]/P |; and so P is a maximal p-toral subgroup
of CG(Z(P )) (see [JMO, Lemma A.2]). But Z(P ) is abelian, and hence (since
G = U(n)) is contained in a maximal torus. So CG(Z(P )), and hence P , must
contain maximal tori.

Now let Π̂i ⊆ Πi : Rp(G) → Z(p)-mod be the subfunctor defined by setting

Π̂i(G/P ) = Πi(G/P ) if P contains a maximal torus, and Π̂i(G/P ) = 0 otherwise.
By what was shown in the last paragraph,

Λ∗(NP/P ; (Πi/Π̂i)(G/P )) = 0

for each G/P in Rp(G). So H∗(Rp(G); Πi/Π̂i) = 0 by Lemma 4.5 and Theorem

4.8; and H∗(Rp(G); Πi)∼=H
∗(Rp(G); Π̂i) by Proposition 4.1.

Now fix a maximal torus T , and let W = N(T )/T be the Weyl group. Let
αi : Rp(W )→ Z(p)-mod be the functor

αi(W/Q) = Πi(G/P ) ∼= πi(BZ(P )) ∼= πi−1(TQ). (Q = P/T ⊆W )

It is not hard to see that

H∗(Rp(G); Π̂i) ∼= H∗(Rp(W );αi)

(regard Rp(W ) as a subcategory of Rp(G)). But αi is a Mackey functor in the sense
of [JM2], and so its higher limits vanish by Theorem 4.6 above. More precisely, by
[JMO, Proposition 5.2],

Hj(Rp(W );αi) ∼=

{

0 if j > 0

πi−1(TW ) if j = 0.
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Since TW = Z(G) (G = U(n)), this completes the proof. �

We are now ready to describe the set of homotopy classes of self maps of BG
when G is connected and simple. Note that for such G, Rep(G,G) ∼= {0}∐Out(G),
where 0 denotes the trivial homomorphism and Out(G) the outer automorphism
group. By the smash product of two monoids M1,M2 with zero element is meant
the quotient monoid

(M1 ×M2)/〈(x1, 0) = (0, 0) = (0, x2) : xi ∈Mi〉.

Theorem 5.4. Let G be any compact connected simple Lie group with maximal
torus T and Weyl group W . Then there is a bijection

β : ({0} ∐Out(G)) ∧ {k ≥ 0 : k = 0 or (k, |W |) = 1}
∼=
−→[BG,BG]

of monoids with zero element, which sends (α, k) to ψk◦Bα (for any unstable Adams
operation ψk of degree k). In particular, for any f, f ′ : BG→BG, the following are
equivalent:

(1) f and f ′ are homotopic

(2) f |BT≃f ′|BT : BT→BG

(3) H∗(f ;Q) = H∗(f ′;Q).

Theorem 5.4 was proven in several stages. Hubbuck [Hub1], [Hub2] and Mahmud
(see [AM]) showed, using methods involving the Steenrod algebra, that each f :
BG→BG is the composite of an unstable Adams operation and a map induced by
an automorphism of G. Later, Ishiguro [Is] showed that unstable Adams operations
of type ψk exist only for k = 0 or k prime to the order of the Weyl group of G.
A shorter proof of these results, using Notbohm’s theorem about p-toral groups
(Theorem 3.1 above) is given in [JMO, Theorem 3.4].

As mentioned before, the existence of unstable Adams operations ψk : BG→BG,
whenever (k, |W |) = 1, was shown by Sullivan [Su], Wilkerson [Wi] and Friedlander
[Fr2]. And the last step in the proof of Theorem 5.4 was the result in [JMO] about
uniqueness of unstable Adams operations, stated in Theorem 5.2 above.

The case of self maps of BG for an arbitrary compact connected Lie group
G is much more complicated. In [JMO, Example 7.1], we construct two maps
f, f ′ : BSU(3)→BSO(8) which induce the same map on rational cohomology but
are not homotopic. In particular, this shows that homotopy classes of self maps
of BG are not detected by rational cohomology when G = SU(3)×SO(8) (i.e.,
conditions (1) and (3) in Theorem 5.4 are not equivalent in this case). However, if
one restricts attention to Q-equivalences BG→BG for arbitrary connected G, then
one does get a strong result, analogous to Theorem 5.4. One way of formulating it
is the following.
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Theorem 5.5. [JMO3] Let G be any compact connected Lie group, and let T⊆G
be a maximal torus. Then two Q-equivalences f, f ′ : BG→BG are homotopic if and
only if they have the same effect in rational cohomology, if and only if f |BT≃f ′|BT ,
if and only if f and f ′ are extensions of the same surjective admissible map φ :
T։T .

The set of Q-equivalences is described explicitly as follows. For each prime p
∣

∣|W |,
let G〈p〉 ⊆ G be the subgroup generated by the simple summands of G whose Weyl
group has order divisible by p. For each n ≥ 1, let Hn ⊳ G be the product of
all simple components (normal subgroups) of G isomorphic to SO(2n+1). Then a
surjective admissible map φ : T։T can be extended to a Q-equivalence BG→BG if
and only if the following two conditions hold:

(a) p ∤ |Ker(φ) ∩G〈p〉| for all p
∣

∣|W |; and

(b) φ(Hn ∩ T ) = Hn ∩ T for all n ≥ 1.

In other words, there is a one-to-one correspondence between Q-equivalences
f : BG→BG and admissible surjections φ : T։T which satisfy conditions (a) and
(b) above. There is also a version of Theorem 5.5 dealing with self equivalences of
BGp̂ (also shown in [JMO3]).

The following example shows why condition (b) is needed in Theorem 5.5. Fix
n ≥ 1, and set G = SO(2n+1)×Sp(n). The standard maximal tori T1⊆SO(2n+1)
and T2⊆Sp(n) can be identified in a way such that the map φ which switches them
is an admissible automorphism of the maximal torus T1×T2 = T⊆G. But φ cannot
extend to a self map of BG, since BSO(2n+1) and BSp(n) have distinct homotopy
types at the prime 2.

6. Homotopical uniqueness of classifying spaces

In the last section, we saw that very complete results can be obtained about self
maps of classifying spaces of compact connected simple Lie groups. This is not their
only unusual property. It turns out that in many cases, the p-completed homotopy
types of classifying spaces of compact connected Lie groups are fully determined by
their Fp-cohomology as algebras over the Steenrod algebra Ap. This is of course a
very special phenomenon, even among other classifying spaces: for example, BZ/p2

and BZ/p3 have isomorphic cohomology in this sense, and are p-complete, but they
are not homotopy equivalent.

Proving the uniqueness of BG in this sense means realizing an isomorphism
H∗(X ;Fp)∼=H

∗(BG;Fp) of Ap-algebras by a map BG→X p̂. The starting point
for doing this is a theorem of Lannes (Theorem 6.1 below), which says that when
V is an elementary abelian p-group and X satisfies certain mild conditions, then
any Ap-algebra map H∗(X ;Fp)→H

∗(BV ;Fp) can be realized by a map BV→X p̂

(unique up to homotopy).
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Let U denote the category of unstable modules over the Steenrod algebra Ap,
and let K be the category of unstable Ap-algebras. For example, for any space X ,
H∗(X ;Fp) is in both K and U . For each elementary abelian p-group V , Lannes and
Zarati constructed a functor TV : K → K which is left adjoint to the tensor product
functor −⊗H∗(BV ;Fp). In fact, TV can be regarded as a functor either from K to
itself or from U to itself; and as a functor U → U it preserves exact sequences and
tensor products. For more details, see either [La1] or [La2].

For any space X , the evaluation map map(BV,X)×BV→X induces a map of
cohomology

H∗(X ;Fp)→ H∗(map(BV,X);Fp)⊗H
∗(BV ;Fp);

and this is adjoint to a homomorphism

TV (H∗(X ;Fp))→ H∗(map(BV,X);Fp). (1)

(Indeed, the existence of this homomorphism was the reason for introducing the
functor TV in the first place.) Also, for any algebra K in K,

(TVK)0 ∼= map[HomK(K,H∗(BV )),Fp].

The following theorem thus describes cases in which (1) is an isomorphism.

Theorem 6.1. (Lannes [La2, Théorèmes 0.4–0.6]) Let V be an elementary abelian
p-group, and let X be a p-complete space such that H∗(X ;Fp) is finite in each
dimension. Then the following hold:

(i) [BV,X ] ∼= HomK (H∗(X ;Fp), H
∗(BV ;Fp)) .

(ii) Assume that either TV (H∗(X ;Fp)) vanishes in dimension 1; or that there
is some p-complete space Z and a map Z→map(BV,X) such that the induced
map TV (H∗(X ;Fp))→H

∗(Z;Fp) is an isomorphism. Then the map (1) above is an
isomorphism; i.e.,

H∗(map(BV,X);Fp) ∼= TV (H∗(X ;Fp)).

Lannes’ theorem (part (i), at least) is needed to prove the theorem of Dwyer
& Zabrodsky and Notbohm (Theorem 3.1 above), which plays such an important
role when describing maps between classifying spaces. Lannes’ theorem has thus
appeared indirectly in previous sections (via the use of Theorem 3.1), but in this
one and the next it will be used explicitly.

Theorem 6.1 says in particular that if X and Y are p-complete spaces such that
H∗(X ;Fp) ∼= H∗(Y ;Fp) as Ap-algebras, then map(BV,X) and map(BV, Y ) also
have the same cohomology (componentwise) as Ap-algebras. When X = BG for
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some compact connected Lie group G, then this (with an appropriate choice of V )
can often be used to construct a “maximal torus” BT→Y analogous to the maximal
torus in G. Examples of this procedure will be given in the sketches of the proofs
of Theorems 6.3 and 6.5 below.

We now turn to uniqueness results for classifying spaces. The ones discussed
here are all of the form: for certain G and p, a p-complete space X is homotopy
equivalent to BGp̂ if its Fp-cohomology is isomorphic to that of BG (as algebras over
the Steenrod algebra Ap). The first result of this type was for the group G = SU(2):

Theorem 6.2. (Dwyer, Miller, & Wilkerson [DMW1]) Let p be any prime, and let
X be any p-complete space such that H∗(X ;Fp)∼=H

∗(BSU(2);Fp) as Ap-algebras.
Then X≃BSU(2)p̂.

For p = 2, Theorem 6.2 is proved using the pushout decomposition of BSO(3)
described in diagram (2) of Section 2. First, a 2-complete space Y is constructed, to-
gether with a fibration K(Z/2, 1)→X→Y , such that H∗(Y ;F2) ∼= H∗(BSO(3);F2).
Then, Y is included in a homotopy commutative square

BD(8) −−−−→ BO(2)




y





y

BΣ4 −−−−→ Y

(2)

(and this is of course the hard part). Square (2) induces a map BSO(3)2̂ → Y , which
is shown to be an F2-homology equivalence and hence a homotopy equivalence. And
this map is then lifted to a homotopy equivalence BSU(2)2̂≃X .

If X is a space such that H∗(X ;Fp)∼=H
∗(BSU(2);Fp) (as Ap-algebras) for all

primes p, then Theorem 6.2 says only that X has the same genus as BSU(2); i.e.,
X p̂≃BSU(2)p̂ for all p. Results of Rector [Re] show that the genus of BSU(2)
contains uncountably many distinct homotopy types.

The next theorem is a special case of a general existence and uniqueness theorem
proven in [DMW2]. That full theorem will be stated in Theorem 7.1 below.

Theorem 6.3. (Dwyer, Miller, & Wilkerson [DMW2]) Let G be a compact con-
nected Lie group, and let p be any prime which does not divide the order of the Weyl
group of G. Then for any p-complete space X such that H∗(X ;Fp)∼=H

∗(BG;Fp)
as Ap-algebras, X≃BGp̂.

Theorem 6.3 is proven by showing that any p-complete X for which

H∗(X ;Fp) ∼= H∗(BG;Fp) ∼= H∗(BT ;Fp)
W

is homotopy equivalent to the Borel construction of W acting on BT p̂ (and
BGp̂≃EW ×W BT p̂ when p ∤ |W |: see the discussion following Theorem 2.2 above).
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Let V⊆T be the subgroup of elements of order p. Lannes’ theorem (Theorem 6.1)
is used to construct a map i : BV→X which induces the appropriate map in coho-
mology, and then to show that map(BV,X)i≃BT p̂. This gives a “maximal torus”
for X ; i.e., a map BT p̂→X which induces the usual map H∗(BG;Fp)H∗(BT ;Fp)
in cohomology. The rest of the proof involves showing that i can be extended to a
map EW ×W BT p̂→X defined on the Borel construction.

The most general uniqueness results so far are given in recent work of Notbohm.
It is not yet clear how generally his methods apply, but it seems quite possible that
they could lead to a proof of the following conjecture.

Conjecture 6.4. (Notbohm) Let G be a connected compact Lie group, and let p
be any prime such that H∗(BG;Z) is p-torsion free. Then for any p-complete space
X such that H∗(X ;Fp)∼=H

∗(BG;Fp) as Ap-algebras, X≃BGp̂.

In fact, no counterexamples to Conjecture 6.4 are known, even when H∗(BG;Z)
is not p-torsion free.

The following theorem describes some of the cases of the conjecture which have
been proven by now. The proof has not yet appeared as a preprint, but Notbohm
has been helpful enough to send us the details.

Theorem 6.5. (Notbohm) Conjecture 6.4 holds when p is an odd prime and G is
one of the groups U(n), SU(n), Sp(n), or SO(n).

Notbohm has also proven the conjecture in a number of other cases, including
many of those involving exceptional simple Lie groups.

In order to give a feeling for the techniques used to prove Theorem 6.5, we sketch
the proof in the case when p is odd and G∼=U(n). The proofs in the other cases
differ only in occasional details. The same proof can also be used to prove Theorem
6.3 (but it is much simpler in that case).

Fix a p-complete space X , and let ϕ : H∗(X ;Fp)
∼=
−→ H∗(BG;Fp) be an iso-

morphism of Ap-algebras. Let T⊆G be the standard maximal torus of diagonal
matrices, and let W ∼= Σn be the Weyl group. The goal is to construct an Fp-
cohomology equivalence BG→X realizing ϕ. This is done using the approximation
of BG via classifying spaces of p-stubborn subgroups (Theorem 2.2).

The first step is to construct a map fT : BT→X such that fT ◦Bw≃fT for each
w∈W⊆Aut(G), and such that the following “big triangle” commutes:

H∗(BT ;Fp)
f∗T ր տ (incl)∗

H∗(X ;Fp)
ϕ
−→
∼=
H∗(BG;Fp)
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To do this, let V ∼= (Z/p)n be the p-torsion subgroup in T . Let i ∈ [BV,X ] be the
component corresponding to the inclusion BV →֒BG, under the identification

[BV,X ] ∼= HomK (H∗(X ;Fp), H
∗(BV ;Fp))

∼= HomK (H∗(BG;Fp), H
∗(BV ;Fp)) ∼= [BV,BG]

of Theorem 6.1(i). With proper choice of basepoint x∈BV , the evaluation map

ex : map(BV,X)i → X

is W -equivariant (with the trivial action on X). Also,

H∗(map(BV,X)i;Fp) ∼= H∗(map(BV,BG)incl;Fp) (Theorem 6.2(ii))
∼= H∗(BCG(V );Fp) ∼= H∗(BT ;Fp). (Theorem 3.1)

This isomorphism between the Fp-cohomology rings of map(BV,X)i and BT is equi-
variant with respect to the W -actions on the two spaces. Notbohm then shows that

H2(map(BV,X)i; Ẑp)∼=H
2(BT ; Ẑp) as Ẑp[W ]-modules; and the isomorphism in-

duces a homotopy equivariant homology equivalence [map(BV,X)i]p̂→BT p̂. Since
X is p-complete, ex factors through a map fT : BT→X with the required properties.

The next step is to extend fT to a map fNT : BN(T )→X , and show that the
“little triangle”

H∗(BN(T );Fp)
f∗NT ր տ (incl)∗

H∗(X ;Fp)
ϕ
−→
∼=
H∗(BG;Fp)

commutes. Here, fNT : BN(T ) → X is constructed by obstruction theory, by
regarding BN(T ) as the homotopy colimit of EN(T )/T≃BT over the category
O1(W ) of the free orbit W/1. By Theorem 1.2 above, the obstructions to doing this
lie in the higher limits

Hi+1(W ; πi(map(BT,X)fT )p̂) ∼= Hi+1(W ; πi(BT )p̂) ∼= Hi+1(Σn; (Ẑp)
n) = 0.

The commutativity of the little triangle then follows upon showing that
H∗(BU(n);Fp)→H

∗(BT ;Fp) has a unique lifting to H∗(BN(T );Fp) (as maps of
Ap-algebras).

Now, for each p-stubborn subgroup P⊆N(T ), set fP = fNT |BP . The third step
is to show that the fP are compatible up to homotopy; i.e., that they define an
element in the inverse limit lim

←−Rp(G)
[BP,X ]. This is the trickiest part of the proof.

It requires a choice of conjugacy class representatives for the p-stubborn subgroups
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which have “sufficiently large” intersection with T , and a lemma which compares
the mapping spaces map(BA,X) and map(BA,BT ) for any abelian p-toral group
A.

The last step is to show that the obstructions to extending the fP to a map

BG
∼
←− hocolim

−→
G/P∈Rp(G)

(EG/P )
f
−→ X

all vanish. By Theorem 1.2, they lie in the higher limits

Hi+1(Rp(G);αi), where αi(G/P ) = πi(map(BP,X)fP ).

One first shows that map(BP,X) and map(BP,BG) have the same homotopy
(at least in the relevant components); so that αi(G/P ) ∼= πi(BCG(P ))p̂ for
each p-stubborn P⊆G. Then αi ∼= Πi in the notation of [JMO, §§4-5], and
Hj(Rp(G); Πi) = 0 for all i, j ≥ 1 by Lemma 5.3 above.

7. Realizations of polynomial algebras

For any compact connected Lie group G, H∗(BG;Fp) is a polynomial algebra
over Fp for almost all (and in many cases all) primes p. It is thus natural to ask
which other finitely generated polynomial algebras over Fp can be realized as the
cohomology algebras of spaces.

Recall that if G is a compact connected Lie group with maximal torus T and
Weyl group W , and p is prime to the order of W , then H∗(BG;Fp)∼=H

∗(BT ;Fp)
W ,

and BGp̂ has the homotopy type of the Borel construction EW ×W BT p̂. In other
words, BGp̂ can be constructed in this case as a homotopy colimit involving only
the space BT p̂. This procedure was extended by Clark & Ewing [CEw], to realize
many other polynomial algebras as cohomology algebras of spaces. Later, Adams &
Wilkerson [AW] proved that the methods of Clark & Ewing apply in the following
generality:

Theorem 7.1. [AW], [DMW2] Fix a prime p, and let K∗ be any Ap-algebra which
is polynomial on generators of degrees prime to p. Then there exists a simply con-
nected p-complete space X, unique up to homotopy, such that H∗(X ;Fp)∼=K

∗.

The existence part of Theorem 7.1 is due to Adams & Wilkerson [AW]. They
prove that (for p odd) any such Ap-algebra K∗ has the form K∗∼=H∗(BT ;Fp)

W

for some finite group W , some torus T , and some action of W on H∗(BT ;Fp).
The results of Clark & Ewing [CEw] are then used to realize the W -action as an
action on BT p̂; and K∗ is the cohomology of the Borel construction EW ×W BT p̂.
In fact, Adams & Wilkerson also gave necessary and sufficient conditions for any
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polynomial algebra with Ap-algebra structure to be the fixed point set of some finite
group acting on H∗(BT ;Fp).

The uniqueness part of Theorem 7.1 is shown in [DMW2, Theorem 1.1]. The
proof is essentially the same as that sketched in Section 6 (Theorem 6.3) for the
special case when K∗∼=H∗(BG;Fp) for some G.

Just as in the case of maps between classifying spaces and the uniqueness prob-
lem, the Borel construction must be replaced by more general homotopy colimits
if one wants further results. The first examples of “exotic” spaces with polynomial
Fp-cohomology, where p does divide the degrees of some generators, were given
by Zabrodsky [Za] (who used an ad hoc construction) and Aguade [Ag] (who used
homotopy colimits to recover Zabrodsky’s examples and create new ones). Here,
“exotic” means that they are not the classifying spaces of compact Lie groups. The
following theorem describes the general setup used when realizing these spaces.

Theorem 7.2. (Aguade [Ag]) Fix a prime p, a pair H⊆G of finite groups, and a
finite Fp[G]-module V . Assume that H∗(G;M)∼=H∗(H;M) (induced by the restric-
tion map) for any Fp[G]-module M. Set P ∗ = S∗(V ), the graded symmetric algebra,
where V = P 2. Assume we are given a G-space X0 for which H∗(X0;Fp)∼=P

∗ (as
Fp[G]-algebras), a space X1 with H∗(X1;Fp) ∼= (P ∗)H , and a map f : X0/H→H1

such that H∗(f ;Fp) is the inclusion (P ∗)H →֒P ∗. Then there is a space X such that
H∗(X ;Fp) ∼= (P ∗)G as algebras over the Steenrod algebra.

Aguade applied Theorem 7.2 to realize seven different algebras as cohomology
algebras of spaces. For example, the theorem can be applied to the following triples
(G, p, V ), where V has the obvious structure as an Fp[G]-module:

(GL2(F3), 3, (F3)
2), (W (E7), 5, (F5)

7), (W (E7), 7, (F7)
7), (W (E8), 7, (F7)

8).

Here, W (Ei) denotes the Weyl group of Ei.

To prove Theorem 7.2, Aguade considered the category I = I(G,H), defined for
any pair H⊆G, with two objects 0 and 1 and such that End(0)∼=G, End(1) = 1,
Mor(0, 1)∼=G/H, and Mor(1, 0) = ∅. The spaces X0 and X1 in the hypotheses
of the theorem thus define a functor F : I → T op; and one easily sees that
H0(I;H∗(F (−);Fp))∼=P

G. The assumption H∗(G;M)∼=H∗(H;M) is used when
showing that all higher inverse limits of the functor H∗(F (−);Fp) vanish, and hence
(using Theorem 1.1 above) that H∗(hocolim

−→
(F );Fp)∼=P

G.

Aguade’s examples were all constructed at odd primes. The first example of such
a space at the prime 2 was constructed recently by Dwyer & Wilkerson.

Theorem 7.3. (Dwyer & Wilkerson [DW2]) There exists a 2-complete space BD(4)
whose F2-cohomology is the ring of rank 4 Dickson invariants over F2. In other
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words, as algebras over the Steenrod algebra,

H∗(BD(4);F2) ∼= H∗(B(Z/2)4;F2)GL4(F2).

The space BD(4) is also constructed as the homotopy colimit of simpler spaces,
but this time over a much more complicated category: one which was motivated by
the general decompositions in Theorems 2.4 and 2.5 above. Theorem 2.5 suggests
that if BD(4) exists, then it should be the homotopy colimit of a diagram over the
category of “injective” maps BV→BD(4); or (using Lannes’ theorem) the category
whose objects are A2-algebra homomorphisms

H∗(B(Z/2)4;F2)GL4(F2) → H∗(BV ;F2)

where V is an elementary abelian 2-group and H∗(BV ) is a finitely generated mod-
ule over the Dickson algebra. This category is equivalent to the category A, whose
objects are the four vector spaces Ai = (F2)i for 1≤i≤4, and whose morphisms are
the monomorphisms. A functor F : Ao → T oph is then constructed, where T oph
is the homotopy category, and where F (Ai) = BCSpin(7)(Ai) for an appropriate
choice of embeddings A1⊆A2⊆A3⊆A4⊆ Spin(7). For example, F (A1) = Spin(7),
and F (A4) = A4

∼= (Z/2)4. This step — defining F and checking that it is a well
defined functor to T oph — is the hardest part of the construction of BD(4).

Once F has been constructed, one wants to define BD(4) = hocolim
−→

A (F ), and

then use the spectral sequence of Theorem 1.1 to show that H∗(BD(4);F2) is the
rank 4 Dickson algebra. The calculations in this last step are similar to those used
to prove Theorem 2.5. The problem is that homotopy colimits are defined only for
functors defined to T op; not to the homotopy category. So it is also necessary to
study the obstructions to lifting F to a functor F̃ : A → T op. It is this problem
which will be discussed throughout the rest of the section.

Let F : C → T oph be an arbitrary functor defined on a discrete category C. By
a homotopy lifting of F is meant a functor F̃ : C → T op, together with a fixed

homotopy equivalence α(x) : F̃ (x)
≃
−→ F (x) for all x∈Ob(C), such that for each

x→y in C the obvious square commutes up to homotopy.

The obstructions to constructing a lifting have been studied by Dwyer & Kan:
first for the general lifting problem in [DK1], and then for a certain specialized case
in [DK2]. The problem of constructing a homotopy lifting of F is in fact equivalent
to the problem of constructing the “homotopy colimit” of F in some appropriate
sense. If F does lift to a functor F̃ : C → T op, then hocolim

−→
(F̃ ) is a homotopy

colimit for F. Conversely, once pF : hocolim
−→

(F ) → C has been constructed with

the right properties, then F̃ can be defined by letting F̃ (x) (for x∈Ob(C)) be the
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pullback in the following square:

F̃ (x) −−−−→ hocolim
−→

C (F )




y





y

pF

B(C↓x)
BΦx−−−−→ BC

Here, C↓x is the category over x (Ob(C↓x) = {(y→x) ∈ Mor(C)}), and Φx : C↓x→ C
is the obvious functor.

A functor F : C → T oph is called centric if for each f : x→y in C, the map

Aut(F (x))1 := map(F (x), F (x))Id
F (f)◦−
−−−−−→ map(F (x), F (y))F (f)

is a homotopy equivalence. This is a particularly convenient case to work with,
because the obstructions to lifting F are actually higher inverse limits of functors
on C. And many of the diagrams constructed when working with classifying spaces,
including the decomposition of BG via p-stubborn subgroups (Theorem 2.2), and
the functor F : A → T oph constructed by Dwyer & Wilkerson and described above,
are centric.

The next theorem describes the obstructions to diagram lifting in the special case
where the homotopy functor is centric.

Theorem 7.4. (Dwyer & Kan [DK2]) Let F : C → T oph be a centric functor
from a (small) discrete category C to the homotopy category. For each i ≥ 1, let
αi : C → Ab denote the contravariant functor αi(x) = πi(Aut(F (x))1). Then the

obstructions to the existence of a homotopy lifting of F to F̃ : C → T op lie in the
higher inverse limits lim

←−

i+2(αi), and the obstructions to the uniqueness of such a

lifting lie in the higher limits lim
←−

i+1(αi).

As suggested above, the most direct way to “see” how the obstructions in Theo-
rem 7.4 arise is to try directly to construct an appropriate space hocolim

−→
(F ). More

precisely, we want to construct an identification space

hocolim
−→

(F ) =
(

∐

n≥0

∐

x0→··→xn

F (x0)×∆n
)

/

∼,

where each face map between the x0→· · ·→xn gives rise to an identification between

the corresponding F (x0)×∆n. The “1-skeleton” hocolim
−→

(1)(F ) is easily constructed,

by taking the disjoint union of the F (x) (for all x∈Ob(C)), and then attaching one
copy of F (x) × ∆1 for each morphism x→y. The 2-skeleton is then obtained by
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attaching a copy of F (x) × ∆2 for each x
f
−→ y

g
−→ z in C, using the fact that

F (gf) ≃ F (g) ◦ F (f) (F being a functor to the homotopy category).

The first obstructions to this procedure occur when constructing the 3-skeleton.
For each sequence x0→x1→x2→x3, F (x0)×∆3 can be attached to the 2-skeleton,
except for F (x0)×D2, where D2 ⊆ ∂∆3 is a small disk near the last vertex.

The obstruction to completing the attachment lies in

π1
(

map(F (x0), F (x3))F (x0→x3)

)

∼= π1 (Aut(F (x0))1) = α1(x0).

Thus, for each 3-simplex x0→x1→x2→x3 in BC, we get an obstruction in α1(x0).
Using Lemma 4.2 above, these obstructions can be combined to give an element in
lim
←−

3

C
(α1). This is the first obstruction to constructing hocolim

−→
(F ); and the higher

obstructions are obtained in a similar way.
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mogènes de groupes de Lie compacts, Ann. Math. 57 (1953), 115–207

[Bo] A. Bousfield, Homotopy spectral sequences and obstructions, Israel J. Math. 66
(1989), 54–104

[BK] A. Bousfield & D. Kan, Homotopy limits, completions and localizations, Lecture
Notes in Math. 304, Springer-Verlag (1972)

[Br] G. Bredon, Sheaf theory, McGraw-Hill (1967)

[Ca] G. Carlsson, Equivariant stable homotopy and Sullivan’s conjecture, Inventiones
math. (to appear)

[CE] H. Cartan & S. Eilenberg, Homological algebra, Princeton Univ. Press (1965)

[CEw] A. Clark & J. Ewing, The realization of polynomial algebras as cohomology rings,
Pacific J. Math. 50 (1974), 425–434



38 BY STEFAN JACKOWSKI, JAMES MCCLURE, AND BOB OLIVER

[Dr] A. Dress, Induction and structure theorems for orthogonal representations of
finite groups, Annals of Math. 102 (1975), 291–325

[DK1] W. Dwyer & D. Kan, Realizing diagrams in the homotopy category by means of
diagrams of simplicial sets, Proc. Amer. Math. Soc. 91 (1984), 456–460

[DK2] W. Dwyer & D. Kan, Centric maps and realization of diagrams in the homotopy
category (preprint)

[DMN] W. Dwyer, H. Miller, & J. Neisendorfer, Fiberwise completion and unstable
Adams spectral sequences, Israel J. Math. 66 (1989), 160–178

[DMW1] W. Dwyer, H. Miller, & C. Wilkerson, The homotopic uniqueness of BS3, Alge-
braic topology, Barcelona, 1976, Lecture Notes in Math. 1298, Springer-Verlag
(1987), 90–105

[DMW2] W. Dwyer, H. Miller, & C. Wilkerson, Homotopical uniqueness of classifying
spaces (preprint)

[DM] W. Dwyer & G. Mislin, On the homotopy type of the components of
map∗(BS

3, BS3), Algebraic topology, Barcelona, 1986, Lecture Notes in Math.
1298, Springer-Verlag (1987), 82-89

[DW1] W. Dwyer & C. Wilkerson, A cohomology decomposition theorem (preprint)

[DW2] W. Dwyer & C. Wilkerson, A new finite loop space at the prime two (preprint)

[DZ] W. Dwyer & A. Zabrodsky, Maps between classifying spaces, Algebraic topology,
Barcelona, 1986, Lecture Notes in Math. 1298, Springer-Verlag (1987), 106–119

[Fe] M. Feshbach, The Segal conjecture for compact Lie groups, Topology 26 (1987),
1–20

[Fr1] E. Friedlander, Unstable K-theories of the algebraic closure of a finite field, Com-
ment. Math. Helv. 50 (1975), 145–154

[Fr2] E. Friedlander, Exceptional isogenies and the classifying spaces of simple Lie
groups, Annals of Math. 101 (1975), 510–520

[FM1] E. Friedlander & G. Mislin, Cohomology of classifying spaces of complex Lie
groups and related discrete groups, Comment. Math. Helv. 59 (1984), 347–361

[FM2] E. Friedlander & G. Mislin, Locally finite approximations of Lie groups. I, In-
ventiones math. 83 (1986), 425–436

[FM3] E. Friedlander & G. Mislin, Locally finite approximations of Lie groups. II, Math.
Proc. Camb. Phil. Soc. 100 (1986), 505–517

[GZ] P. Gabriel & M. Zisman, Calculus of fractions and homotopy theory, Springer-
Verlag (1967)

[HS] P. Hilton & U. Stammbach, A course in homological algebra, Springer-Verlag
(1971)



HOMOTOPY THEORY OF CLASSIFYING SPACES OF COMPACT LIE GROUPS 39

[Ho] M. Hopkins, Thesis, Oxford Univ. (1984)

[Hub1] J. Hubbuck, Homotopy representations of Lie groups, New developments in topol-
ogy, London Math. Soc. Lecture Notes 11, Cambridge Univ. Press (1974), 33–41

[Hub2] J. Hubbuck, Mapping degrees for classifying spaces I, Quarterly Journal of Math.
Oxford Ser. (2) 25, (1974), 113–133
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