
FUSION SYSTEMS REALIZING CERTAIN TODD MODULES

BOB OLIVER

Abstract. We study a certain family of simple fusion systems over finite 3-groups, ones
that involve Todd modules of the Mathieu groups 2M12, M11, and A6 = O2(M10) over F3,
and show that they are all isomorphic to the 3-fusion systems of almost simple groups. As
one consequence, we give new 3-local characterizations of Conway’s sporadic simple groups.

Fix a prime p. A fusion system over a finite p-group S is a category whose objects are the
subgroups of S, and whose morphisms are injective homomorphisms between the subgroups
satisfying certain axioms first formulated by Puig [Pu], and modeled on the Sylow theorems
for finite groups. The motivating example is the fusion system of a finite group G with
S ∈ Sylp(G), whose morphisms are those homomorphisms between subgroups of S induced
by conjugation in G.

The general theme in this paper is to study fusion systems over finite p-groups S that
contain an abelian subgroup A E S such that A 5 F and CS(A) = A. In such situations, we
let Γ = AutF(A) be its automizer, try to understand what restrictions the existence of such
a fusion system imposes on the pair (A,Op′(Γ )), and also look for tools to describe all fusion
systems that “realize” a given pair (A,Op′(Γ )) for A an abelian p-group and Γ ≤ Aut(A).

This paper is centered around one family of examples: those where p = 3, where O3′(Γ ) ∼=
2M12, M11, or A6 = O3′(M10), and where A is elementary abelian of rank 6, 5, or 4, respec-
tively. But we hope that the tools we use to handle these cases will also be useful in many
other situations. Our main results can be summarized as follows:

Theorem A. Let F be a saturated fusion system over a finite 3-group S with an elementary
abelian subgroup A ≤ S such that CS(A) = A, and such that either

(i) rk(A) = 6 and O3′(AutF(A)) ∼= 2M12; or

(ii) rk(A) = 5 and O3′(AutF(A)) ∼= M11; or

(iii) rk(A) = 4 and O3′(AutF(A)) ∼= A6.

Assume also that A 5 F . Then A E S, S splits over A, and O3′(F) is simple and isomorphic
to the 3-fusion system of Co1 in case (i), to that of Suz, Ly, or Co3 in case (ii), or to that
of U4(3), U6(2), McL, or Co2 in case (iii).

Theorem A is proven below as Theorem 4.16 (case (i)) and Theorem 5.23 (cases (ii) and
(iii)). As one consequence of these results, we give new 3-local characterizations of the three
Conway groups as well as of McL and U6(2) (Theorems 6.1, 6.2, and 6.3).

All three cases of Theorem A have already been shown in earlier papers using very different
methods. In [vB, Theorem A], Martin van Beek determined (among other results) all fusion
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systems F over a Sylow 3-subgroup of Co1 with O3(F) = 1. In [BFM], Baccanelli, Franchi,
and Mainardis listed all saturated fusion systems F with O3(F) = 1 over a Sylow 3-subgroup
of the split extension E81 o A6, and this includes the four systems that appear in case (iii)
of the above theorem. In [PSm], Parker and Semeraro develop computer algorithms that
they use to list, among other things, all saturated fusion systems F over 3-groups of order at
most 37 with O3(F) = 1 and O3(F) = F . However, our goals are different from those in the
earlier papers, in that we want to develop tools which can be used in other situations within
the framework of the general problem described above, and are using these Todd modules
as test cases.

The proof of Theorem A is straightforward, following a program that also seems to work
in many other cases. Set Z = Z(S). We first show that F = 〈CF(Z), NF(A)〉. We then
construct a special subgroup Q E S of exponent 3 with Z(Q) = [Q,Q] = Z (of order 3 or 9)
and Q/Z(Q) ∼= E81, and show that Q is normal in CF(Z). This is the hardest part of the
proof, especially whenO3′(AutF(A)) ∼= 2M12. Finally, we determine the different possibilities
for O3′(OutF(Q)), and show that this group together with O3′(AutF(A)) determines O3′(F)
up to isomorphism.

Theorem A involves just one special case of the following general problem. Given a prime
p, a finite group Γ = Op′(Γ ), and a finite FpΓ -module M (or more generally, a finite Z/pkΓ -
module for some k > 1), we say that a saturated fusion system F over a finite p-group S
“realizes” (Γ,M) if there is an abelian subgroup A ≤ S such that CS(A) = A, A 5 F , and

(Op′(AutF(A)), A) ∼= (Γ,M). We want to know whether a given module can be realized in
this sense, and if so, list all of the distinct saturated fusion systems that realize it.

In the papers [O1], [COS], and [OR1], we studied this question under the additional
assumption that |Γ | be a multiple of p but not of p2, and the answer in that case was
already quite complicated. In this more general setting, all we can hope to do for now is
to look at a few more cases, and try to develop some tools that can be used in greater
generality. For example, in a second paper [O3] still in preparation, we give some criteria
for the nonrealizability of certain FpΓ -modules. As one application of those results, when
Γ ∼= M11, M12, or 2M12, we show that up to extensions by trivial modules, the only FpΓ -
modules that can be realized in the above sense are the Todd modules of M11 and 2M12 and
their duals (when p = 3), and the simple 10-dimensional F11[2M12]-modules.

As pointed out by the referee, Theorem A in this paper is closely related to the list of
amalgams by Papadopoulos in [Pp]. It seems quite possible that the results in this paper
can be used to strengthen or generalize the main theorem in [Pp], but if so, that will have
to wait for a separate (short) paper.

General definitions and properties involving saturated fusion systems are surveyed in Sec-
tion 1, while the more technical results needed to carry out the programme described above
are listed in Section 2. In Section 3, we set up some notation for working with Todd modules
for 2M12 and M11; notation which we hope might also be useful in other contexts. Case (i)
of Theorem A is proven in Section 4, and the remaining cases in Section 5. The 3-local
characterizations of the Conway groups and some others are given in Section 6. We finish
with two appendices: one containing a few general group theoretic results, and another more
specifically focused on groups with strongly p-embedded subgroups.

Notation and terminology: Most of our notation for working with groups is fairly stan-
dard. When P ≤ G and x ∈ NG(P ), we let cPx ∈ Aut(P ) denote conjugation by x on
the left: cPx (g) = xg = xgx−1 (though the direction of conjugation very rarely matters).
Our commutators have the form [x, y] = xyx−1y−1. If G is a group and α ∈ Aut(G), then
[α] ∈ Out(P ) denotes its class modulo Inn(G). If ϕ ∈ Hom(G,H) is a homomorphism, Q is
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normal in both G and H, and ϕ(Q) = Q, then ϕ/Q ∈ Hom(G/Q,H/Q) denotes the induced
map between quotients. Also, Sylp(G) is the set of Sylow p-subgroups of a finite group G,
S (G) is the set of all subgroups of G, and Z2(G) is the second term in its upper central
series (Z2(G)/Z(G) = Z(G/Z(G))).

Other notation used here includes:

• Epm is always an elementary abelian p-group of rank m;

• pa+b denotes a special p-group P with Z(P ) = [P, P ] ∼= Epa and P/Z(P ) ∼= Epb ;

• p1+2m
+ (when p is odd) is an extraspecial p-group of order p1+2m and exponent p;

• A ◦B is a central product of groups A and B;

• AoB and A.B are a semidirect product and an arbitrary extension of A by B;

• UTn(q) is the group of upper triangular (n×n)-matrices over Fq with 1’s on the diagonal;
and

• ΓLn(q) and PΓLn(q) denote the extensions of GLn(q) and PGLn(q) by their field auto-
morphisms.

Also, 2M12, 2An, and 2Σn (n = 4, 5, 6) denote nonsplit central extensions of C2 by the groups
M12, An, and Σn, respectively.

Thanks: The author would especially like to thank the referee for the many helpful
suggestions, including some several involving potential connections with other papers. He
would also like to thank the Isaac Newton Institute for its hospitality while the paper was
being revised.

1. Background

We begin with a survey of the basic definitions and terminology involving fusion systems
that will be needed here, such as normalizer fusion systems, the Alperin-Goldschmidt fusion
theorem for fusion systems, and the model theorem. Most of these definitions and results
are originally due to Puig [Pu].

1.1. Basic definitions and terminology.

A fusion system F over a finite p-group S is a category whose objects are the subgroups
of S, and whose morphism sets HomF(P,Q) are such that

• HomS(P,Q) ⊆ HomF(P,Q) ⊆ Inj(P,Q) for all P,Q ≤ S; and

• every morphism in F factors as an isomorphism in F followed by an inclusion.

For this to be very useful, more conditions are needed.

Definition 1.1. Let F be a fusion system over a finite p-group S.

(a) Two subgroups P, P ′ ≤ S are F-conjugate if IsoF(P, P ′) 6= ∅, and two elements x, y ∈ S
are F -conjugate if there is ϕ ∈ HomF(〈x〉, 〈y〉) such that ϕ(x) = y. The F -conjugacy
classes of P ≤ S and x ∈ S are denoted PF and xF , respectively.

(b) A subgroup P ≤ S is fully normalized in F (fully centralized in F) if |NS(P )| ≥ |NS(Q)|
(|CS(P )| ≥ |CS(Q)|) for each Q ∈ PF .

(c) The fusion system F is saturated if it satisfies the following two conditions:
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• (Sylow axiom) For each subgroup P ≤ S fully normalized in F , P is fully centralized
and AutS(P ) ∈ Sylp(AutF(P )).

• (extension axiom) For each isomorphism ϕ ∈ IsoF(P,Q) in F such that Q is fully
centralized in F , ϕ extends to a morphism ϕ ∈ HomF(Nϕ, S) where

Nϕ = {g ∈ NS(P ) |ϕcgϕ−1 ∈ AutS(Q)}.

In the following lemma, we describe another important property of fully normalized sub-
groups.

Lemma 1.2 ([AKO, Lemma I.2.6(c)]). Let F be a saturated fusion system over a finite
p-group S. Then for each P ≤ S and each Q ∈ PF ∩ Ff , there is ψ ∈ HomF(NS(P ), S)
such that ψ(P ) = Q.

We next recall a few more classes of subgroups in a fusion system. As usual, for a fixed
prime p, a proper subgroup H of a finite group G is strongly p-embedded if p | |H|, and
p - |H ∩ xH| for each x ∈ GrH.

Definition 1.3. Let F be a fusion system over a finite p-group S. For P ≤ S,

• P is F-centric if CS(Q) ≤ Q for each Q ∈ PF ;

• P is F-essential if P is F -centric and fully normalized in F , and the group OutF(P ) =
AutF(P )/Inn(P ) contains a strongly p-embedded subgroup;

• P is weakly closed in F if PF = {P};
• P is strongly closed in F if for each x ∈ P , xF ⊆ P ; and

• P is normal in F (P E F) if each morphism in F extends to a morphism that sends P
to itself. Let Op(F) E F be the largest subgroup of S normal in F .

• P is central in F if each morphism in F extends to a morphism that sends P to itself
via the identity. Let Z(F) E F be the largest subgroup of S central in F .

Clearly, if P is weakly closed in F , then it must be normal in S.

It follows immediately from the definitions that if P1 and P2 are both normal in F , then so
is P1P2. So Op(F) is defined, and a similar argument applies to show that Z(F) is defined.

The following notation is useful when referring to some of these classes of subgroups.

Notation 1.4. For each fusion system F over a finite p-group S, define

• Ff = {P ≤ S |P is fully normalized in F};
• F c = {P ≤ S |P is F -centric} and F cf = F c ∩ Ff ; and

• EF = {P ≤ S |P is F -essential}.

1.2. The Alperin-Goldschmidt fusion theorem for fusion systems.

The following is one version of the Alperin-Goldschmidt fusion theorem for fusion systems.
This theorem is our main motivation for defining F -essential subgroups here.

Theorem 1.5 ([AKO, Theorem I.3.6]). Let F be a saturated fusion system over a finite
p-group S. Then each morphism in F is a composite of restrictions of automorphisms
α ∈ AutF(R) for R ∈ EF ∪ {S}.
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Equivalently, Theorem 1.5 says that F = 〈AutF(P ) |P ∈ EF ∪ {S}〉. Here, whenever F
is a fusion system over S, and X is a set of fusion subsystems and morphisms in F , we
let 〈X 〉 denote the smallest fusion system over S that contains X . Since an intersection
of fusion subsystems over S is always a fusion system over S (not necessarily saturated, of
course), the subsystem 〈X 〉 is well defined.

In fact, up to F -conjugacy, the essential subgroups form the smallest possible set of
subgroups that generate F .

Proposition 1.6. Let F be a saturated fusion system over a finite p-group S, and let T be
a set of subgroups of S such that F = 〈AutF(P ) |P ∈ T 〉. Then each F-essential subgroup
R < S is F-conjugate to a member of T .

Proof. Fix R ∈ Ff such that R < S and RF ∩T = ∅, and set

Aut0
F(R) =

〈
α ∈ AutF(R)

∣∣α = α|R, some α ∈ HomF(P, S) where R < P ≤ S
〉
.

We will prove that Aut0
F(R) = AutF(R). It will then follow that R is not F -essential (see

[AKO, Proposition I.3.3(b)]), thus proving the proposition.

Fix α ∈ AutF(R). By assumption, there are isomorphisms

R = R0
α1−−−→∼= R1

α2−−−→∼= R2
α3−−−→∼= · · · αk−−−→∼= Rk = R

such that α = αk ◦ · · · ◦ α1, together with automorphisms βi ∈ AutF(Pi) for 1 ≤ i ≤ k such
that 〈Ri−1, Ri〉 ≤ Pi ∈ T and αi = βi|Ri−1

.

By Lemma 1.2 and since R ∈ Ff , for each 0 ≤ i ≤ k, there is χi ∈ HomF(NS(Ri), NS(R))
such that χi(Ri) = R, where we take χ0 = χk = IdNS(R). For each 1 ≤ i ≤ k, set

R̂i−1 = NPi
(Ri−1) and α̂i = (χi) ◦ (βi|R̂i−1

) ◦ (χ−1
i−1|χi−1(R̂i−1)) ∈ HomF(R̂i−1, S).

Then α̂i|R = (χi|Ri
) ◦ αi ◦ (χ−1

i−1|Ri−1
) ∈ AutF(R) for each i.

For each i, Pi > Ri−1 since Pi ∈ T while Ri−1 ∈ RF and RF ∩ T = ∅. Hence R̂i−1 > R
for each 1 ≤ i ≤ k. By construction, α = (α̂k|R) ◦ · · · ◦ (α̂1|R), and so α ∈ Aut0

F(R). Since

α ∈ AutF(R) was arbitrary, this proves that Aut0
F(R) = AutF(R), as claimed. �

The next two lemmas give different conditions for a subgroup to be normal in a fusion
system. Both are consequences of Theorem 1.5.

Lemma 1.7. Let F be a saturated fusion system over a finite p-group S. A subgroup Q ≤ S
is normal in F if and only if it is weakly closed and contained in all F-essential subgroups.

Proof. This is essentially the equivalence (a⇔ c) in [AKO, Proposition I.4.5]. �

In general, strongly closed subgroups in a saturated fusion system need not be normal.
The next lemma describes one case where this does happen.

Lemma 1.8 ([AKO, Corollary I.4.7(a)]). Let F be a saturated fusion system over a finite
p-group S. If A E S is an abelian subgroup that is strongly closed in F , then A E F .
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1.3. Normalizer fusion subsystems and models.

If F is a fusion system over a finite p-group S, then a fusion subsystem E ≤ F over a
subgroup T ≤ S is a subcategory E whose objects are the subgroups of T , such that E is itself
a fusion system over T . For example, the full subcategory of F with objects the subgroups
of T is a fusion subsystem of F . If we want our fusion subsystems to be saturated, then, of
course, the problem of constructing them is more subtle.

One case where this is straightforward is the construction of normalizers and centralizers
of subgroups in a fusion system.

Definition 1.9. Let F be a fusion system over a finite p-group S. For each Q ≤ S, we
define fusion subsystems CF(Q) ≤ NF(Q) ≤ F over CS(Q) ≤ NS(Q) by setting

HomCF (Q)(P,R) =
{
ϕ|P

∣∣ϕ ∈ HomF(PQ,RQ), ϕ(P ) ≤ R, ϕ|Q = IdQ
}

HomNF (Q)(P,R) =
{
ϕ|P

∣∣ϕ ∈ HomF(PQ,RQ), ϕ(P ) ≤ R, ϕ(Q) = Q
}
.

It follows immediately from the definitions that a subgroup Q ≤ S is normal or central in
F if and only if NF(Q) = F or CF(Q) = F , respectively.

Theorem 1.10 ([AKO, Theorem I.5.5]). Let F be a saturated fusion system over a finite
p-group S, and fix Q ≤ S. Then CF(Q) is saturated if Q is fully centralized in F , and
NF(Q) is saturated if Q is fully normalized in F .

We next look at models for constrained fusion systems, and in particular, for normalizer
fusion subsystems of centric subgroups.

Definition 1.11. Let F be a saturated fusion system over a finite p-group S.

(a) The fusion system F is constrained if there is a subgroup Q ≤ S that is normal in F
and F -centric; equivalently, if Op(F) ∈ F c.

(b) A model for a constrained fusion system F over S is a finite group M with S ∈ Sylp(M),
such that S ∈ Sylp(M), FS(M) = F , and CM(Op(M)) ≤ Op(M).

By the model theorem (see [AKO, Theorem III.5.10]), every constrained fusion system has
a model, unique up to isomorphism. We will need this only in the following situation.

Proposition 1.12. Let F be a saturated fusion system over a finite p-group S. Then for
each Q ∈ F cf , the normalizer fusion subsystem NF(Q) is constrained, and hence has a model:
a finite group M with NS(Q) ∈ Sylp(M) such that Q E M , CM(Q) ≤ Q, and FNS(Q)(M) =
NF(Q). Furthermore, M is unique in the following sense: if M∗ is another model for NF(Q),
also with Q EM∗ and NS(Q) ∈ Sylp(M

∗), then M ∼= M∗ via an isomorphism that restricts
to the identity on NS(Q).

Proof. The subsystem NF(Q) is constrained since the subgroup Q is normal and NF(Q)-
centric. So by the model theorem [AKO, Theorem III.5.10], it has a model, and any two
models for NF(Q) are isomorphic via an isomorphism that is the identity on NS(Q). �

1.4. Subsystems of index prime to p.

We next turn to fusion subsystems of index prime to p. By analogy with groups, this really
corresponds to subgroups of a finite group G that contain Op′(G) (but are not necessarily
normal).
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Definition 1.13. Let F be a fusion system over a finite p-group S. A fusion subsystem
E ≤ F has index prime to p if E is also a fusion system over S, and AutE(P ) ≥ Op′(AutF(P ))
for each P ≤ S.

There is clearly always a smallest fusion subsystem of F of index prime to p: the subsystem
Op′
∗ (F) over S generated by the automorphism groups Op′(AutF(P )). The corresponding

result for saturated fusion subsystems is more subtle.

Theorem 1.14. Let F be a saturated fusion system over a finite p-group S. Then there
is a (unique) smallest saturated fusion subsystem Op′(F) ≤ F of index prime to p. This
has the property that for each P ≤ S and each ϕ ∈ HomF(P, S), there are morphisms
ϕ0 ∈ HomOp′ (F)(P, S) and α ∈ AutF(S) such that ϕ = α ◦ ϕ0.

Proof. See [AKO, Theorem I.7.7] or [BCGLO, Theorem 5.4] for the existence and uniqueness
of Op′(F). The last statement follows from Lemma 3.4(c) in [BCGLO], or since the map
θ : Mor(F c) −→ Γp′(F) sends AutF(S) surjectively. �

In fact, the theorems in [AKO] and in [BCGLO] cited above both describe the subsystem
Op′(F) in more precise detail.

Proposition 1.15. For each saturated fusion system F over a finite p-group S, we have
Op′(F)c = F c, Op′(F)f = Ff , and EOp′ (F) = EF .

Proof. By Theorem 1.14, if P ≤ S and Q ∈ PF , then there is α ∈ AutF(S) such that

α(Q) ∈ POp′ (F). From this, it follows immediately that Op′(F) and F have the same centric
subgroups, and the same fully normalized subgroups. To see that they have the same essential
subgroups, it remains to check that OutOp′ (F)(P ) has a strongly p-embedded subgroup if and

only if OutF(P ) does, and this is shown in Lemma B.1. �

We also need the following result, which gives a more precise description of Op′(F), but
under very restrictive conditions on F .

Proposition 1.16. Let F be a saturated fusion system over a finite p-group S, such that

(i) EF 6= ∅ and each member of EF is weakly closed in F , and

(ii) no intersection of two distinct members of EF is F-centric.

Then

(a) AutOp′ (NF (R))(P ) =
{
α ∈ AutF(P )

∣∣α|R ∈ Op′(AutF(R))
}

for each R ∈ EF and each
R ≤ P ≤ S; and

(b) AutOp′ (F)(S) = 〈AutOp′ (NF (R))(S) |R ∈ EF〉.

Proof. For each R ∈ EF , set ER = Op′(NF(R)).

(a) Fix R ∈ EF , and let H be a model for NF(R) (see Proposition 1.12). Then Op′(H) is
a model for ER, and an extension of R by Op′(H/R) ∼= Op′(OutF(R)). Hence

AutER(R) = AutOp′ (H)(R) = Op′(AutH(R)) = Op′(AutF(R)).

Let P be such that R ≤ P ≤ S. Then α ∈ AutER(P ) implies α|R ∈ AutER(R) =
Op′(AutF(R)). Conversely, if α ∈ AutF(P ) is such that α|R ∈ Op′(AutF(R)) = AutER(R),
then by the extension axiom and since α|R normalizes AutP (R), there is β ∈ AutER(P ) such
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that β|R = α|R. So by [AKO, Lemma I.5.6] and since R ∈ F c, there is x ∈ Z(R) such that
α = β ◦ cx, and hence α ∈ AutER(P ).

(b) Set

F0 = 〈Op′(AutF(R)) |R ∈ EF〉 and Op′

∗ (F) = 〈Op′(AutF(P )) |P ≤ S〉

as (not necessarily saturated) fusion systems over S. Thus Op′
∗ (F) is the minimal fusion

subsystem in F of index prime to p. For P ∈ F c, since P is contained in at most one
member of EF by (ii), the sets HomF(P, S) and HomF0(P, S) and groups AutF(P ) and
AutF0(P ) are described as follows:

E HomE(P, S) AutE(P )

F
{
α|P

∣∣α ∈ AutF(R)
} {

α|P
∣∣α ∈ AutF(R), α(P ) = P

}
F0

{
α|P

∣∣α ∈ Op′(AutF(R))
} {

α|P
∣∣α ∈ Op′(AutF(R)), α(P ) = P

}
Table 1.17. In each case, either R is the unique member of EF such that
P ≤ R, or R = S if there is no such member.

In particular, this shows that AutF0(P ) is normal of index prime to p in AutF(P ) for each
P ∈ F c, and hence by [AKO, Lemma I.7.6(a)] that F0 has index prime to p in F . Thus
F0 = Op′

∗ (F) (the inclusion F0 ≤ Op′
∗ (F) is immediate from the definitions). So

AutOp′ (F)(S) =
〈
α ∈ AutF(S)

∣∣α|P ∈ Hom
Op′
∗ (F)

(P, S), some P ∈ F c
〉

=
〈
α ∈ AutF(S)

∣∣α|P ∈ HomF0(P, S) some P ∈ F c
〉

=
〈
α ∈ AutF(S)

∣∣ ∃P ∈ F c, P ≤ R ∈ EF ∪ {S}, β ∈ Op′(AutF(R)), s.t. α|P = β|P
〉

=
〈
α ∈ AutF(S)

∣∣α|R ∈ Op′(AutF(R)) some R ∈ EF ∪ {S}
〉

= 〈AutER(S) |R ∈ EF〉 :

the first equality by [AKO, Theorem I.7.7], the second since F0 = Op′
∗ (F), the third by Table

1.17, the fourth since α|P = β|P implies α|R = β ◦ cx for some x ∈ Z(P ) (see [AKO, Lemma
I.5.6]), and the last by (a) (applied with P = S). �

One can also show that Op′(F) = 〈Op′(NF(R)) |R ∈ EF〉 under the hypotheses of Propo-
sition 1.16. However, that will not be needed here.

1.5. Quotient fusion systems.

Quotient fusion systems of F over S are formed by dividing out by a subgroup of S, not
by a fusion subsystem of F .

Definition 1.18. Let F be a fusion system, and assume Q ≤ S is strongly closed in F .
In particular, Q E S. Let F/Q be the fusion system over S/Q where for each P,R ≤ S
containing Q, we set

HomF/Q(P/Q,R/Q) ={
ϕ/Q ∈ Hom(P/Q,R/Q)

∣∣ϕ ∈ HomF(P,Q), (ϕ/Q)(gQ) = ϕ(g)Q ∀ g ∈ P
}
.

We refer to [Cr, Proposition II.5.11] for the proof that F/Q is saturated whenever F is.
In fact, the definition and saturation of F/Q hold whenever Q is weakly closed in F . This is
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not surprising, since we are looking only at morphisms in F between subgroups containing
Q, so that F/Q = NF(Q)/Q.

If Q is strongly closed in F , then every morphism ϕ ∈ HomF(P,R), for arbitrary P,Q ≤ S,
induces a (unique) morphism ϕ ∈ Hom(PQ/Q,RQ/Q). (Just note that ϕ(P ∩Q) ≤ R∩Q.)
A much deeper theorem states that each such morphism ϕ also lies in F/Q. We refer to
[AKO, Theorem II.5.12] and [Cr, Theorem II.5.14] for proofs of this result first shown by
Puig. In this paper, however, we work with F/Q only in the special case where Q E F , in
which case this property is automatic.

We will need the following lemma, comparing essential subgroups in F and in F/Z when
Z is central in F .

Lemma 1.19. Let F be a saturated fusion system over a finite p-group S, and fix Z ≤ Z(F).
Then for each R ≤ S, R ∈ EF if and only if R ≥ Z and R/Z ∈ EF/Z.

Proof. If R ∈ EF , then R ∈ F c, and hence R ≥ Z(S) ≥ Z. So from now on, we always
assume that R ≥ Z. We will show that the following hold for each R ≤ S containing Z:

(a) R ∈ Ff if and only if R/Z ∈ (F/Z)f ;

(b) the natural map Ψ: OutF(R) −→ OutF/Z(R/Z) is surjective and its kernel is a p-group;
and

(c) R/Z ∈ (F/Z)c if and only if R ∈ F c and Ψ is an isomorphism.

It follows immediately from (a), (b), and (c) and Definition 1.3 that R ∈ EF if R/Z ∈ EF/Z .
Conversely, if R ∈ EF , then Op(OutF(R)) = 1 since OutF(R) has a strongly p-embedded
subgroup (see [AKO, Proposition A.7(c)]), so Ψ is an isomorphism, and R/Z ∈ EF/Z by (a),
(b), and (c) again.

Point (a) is clear, since (R/Z)F/Z = {P/Z |P ∈ RF}, and NS/Z(P/Z) = NS(P )/Z when-
ever Z ≤ P ≤ S.

The natural map Ψ: AutF(R) −→ AutF/Z(R/Z) is surjective by definition of F/Z. If
[α] ∈ Ker(Ψ), where [α] is the class of α ∈ AutF(R), then for some x ∈ R, αcRx induces the
identity on R/Z and (since Z ≤ Z(F)) the identity on Z, and hence has p-power order by
Lemma B.5. So Ker(Ψ) is a p-group, proving (b).

By (a), it suffices to prove (c) when R ∈ Ff and R/Z ∈ (F/Z)f . Assume R/Z ∈ (F/Z)c.
Then CS(R)/Z ≤ CS/Z(R/Z) ≤ R/Z, so R ∈ F c. For each [α] ∈ Ker(Ψ), the class of
α ∈ AutF(R), we have [α] ∈ Op(OutF(R)) ≤ OutS(R), so α = cRx for some x ∈ NS(R) such
that cRx ∈ Aut(R) induces an inner automorphism on R/Z. Hence xZ ∈ (R/Z)CS/Z(R/Z),
so xZ ∈ R/Z since R/Z ∈ (F/Z)c, and x ∈ R. Thus α ∈ Inn(R), and Ψ is an isomorphism
in this case.

Conversely, assume R ∈ F c and Ψ is an isomorphism, and let y ∈ NS(R) be such that yZ ∈
CS/Z(R/Z). Then [y,R] ≤ Z, so [cRy ] ∈ Ker(Ψ) = 1. So cRy ∈ Inn(R), and y ∈ RCS(R) = R
since R is F -centric. This shows that CS/Z(R/Z) ≤ R/Z and hence R/Z ∈ (F/Z)c, finishing
the proof of (c). �

If F is a saturated fusion system over S and P ≤ Q ≤ S, then P E F and Q E F implies
Q/P E F/P : this follows easily from the definitions. However, P E F and Q/P E F/P
need not imply that Q E F , as is seen by the following example. Let p be any prime, set
G = Cp o Σp (wreath product), fix S ∈ Sylp(G) (so S ∼= Cp o Cp), and set F = FS(G). Set
P = Op(G) ∼= Epp . Then P E F and S/P E F/P , but S is not normal in F .
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In the following lemma, we give two conditions under which P E F and Q/P E F/P
does imply that Q E F .

Lemma 1.20. Let F be a saturated fusion system over a finite p-group S, and let P ≤ Q ≤ S
be such that P E F and Q/P E F/P . If Q is abelian, or if P ≤ Z(F), then Q E F .

Proof. Since Q/P is normal, it is strongly closed in F/P , and hence Q is strongly closed in
F . So if Q is abelian, then it is normal by Lemma 1.8. If P ≤ Z(F), then Q is contained in
all F -essential subgroups by Lemma 1.19 and since Q/P is contained in all F/P -essential
subgroups (Lemma 1.7), and so Q E F by Lemma 1.7 again. �

2. General lemmas

As noted in the introduction, in our general setting, we want to analyze a saturated fusion
system F over a finite p-group S with an abelian subgroup A ≤ S and Γ = AutF(A), where
the group A and the action of Op′(Γ ) are given. In this section, we give some of the tools
that will be used in Sections 4 and 5 to do this.

In practice, we don’t get very far without knowing that the subgroup A is normal in S
and weakly closed in F , and this should perhaps be included in our general assumptions.
But in many cases, it follows easily from the weaker assumptions on A and Op′(Γ ).

Lemma 2.1. Let F be a saturated fusion system over a finite p-group S, and let A ≤ S be
such that no member of AF r {A} is contained in NS(A). Then A is weakly closed in F .

Proof. Assume otherwise: then S > NS(A), and hence NS(NS(A)) > NS(A). Choose x ∈
NS(NS(A))rNS(A). Then xA 6= A, contradicting the assumption that A not be S-conjugate
to any other subgroup of NS(A). �

The importance of A being weakly closed in our general situation is illustrated by the
following lemma.

Lemma 2.2. Let F be a saturated fusion system over a finite p-group S, and assume A E S
is an abelian subgroup that is weakly closed in F .

(a) If R ∈ Ff , and R ∈ QF for some Q ≤ A, then R ≤ A.

(b) For each P,Q ≤ A, HomF(P,Q) = HomNF (A)(P,Q). Hence each ϕ ∈ HomF(P,Q)
extends to some ϕ ∈ AutF(A).

(c) No element of CS(A)r A is F-conjugate to any element of A.

Proof. (a) Assume Q ≤ A and R ≤ S are F -conjugate and R ∈ Ff . By the extension
axiom, each ψ ∈ IsoF(Q,R) extends to some ψ ∈ HomF(CS(Q), S). Then CS(Q) ≥ A since
A is abelian, ψ(A) = A since A is weakly closed in F , and so R = ψ(Q) ≤ A.

(b) Assume P,Q ≤ A and ϕ ∈ HomF(P,Q), and choose R ∈ PF that is fully centralized
in F . Then R ≤ A by (a), and there is ψ ∈ IsoF(ϕ(P ), R). By the extension axiom again,

ψ extends to ψ̂ ∈ HomF(A, S) and ψϕ extends to ϕ̂ ∈ HomF(A, S), and ψ̂(A) = A = ϕ̂(A)

since A is weakly closed. Then ψ̂−1ϕ̂ ∈ AutF(A), and (ψ̂−1ϕ̂)|P = ψ−1(ψϕ) = ϕ.

(c) Assume x ∈ CS(A)rA is F -conjugate to y ∈ A. By (a), we can arrange that 〈y〉 ∈ Ff ,
so by Lemma 1.2, there is ϕ ∈ HomF(NS(〈x〉), S) such that ϕ(x) = y. But A ≤ NS(〈x〉),
ϕ(A) = A since A is weakly closed, and this is impossible since ϕ(x) ∈ A and x /∈ A. So no
element in CS(A)r A is F -conjugate to any element of A. �



FUSION SYSTEMS REALIZING CERTAIN TODD MODULES 11

In many of the cases we want to consider, the assumptions we choose on A and on Γ imply
that Op′(F) is simple (see, e.g., [AKO, Definition I.6.1]). For example, if F is a saturated
fusion system over S, and A E S is such that CS(A) = A, and we set Γ = AutF(A) and
Γ0 = Op′(Γ ), and assume also that Ω1(A) is a simple FpΓ -module and Γ0/Op′(Γ0) is a simple
group (and Γ0 � Cp), then either A E F or the fusion system Op′(F) is simple. However,
this will not be needed, and before proving it here, we would first have to define normal
fusion subsystems.

2.1. Proving that F = 〈NF(A), CF(Z)〉.
When analyzing fusion systems in our setting, we first check whether F = 〈NF(A), CF(Z)〉

for some choice of Z ≤ Z(S). The following lemma will be our tool for doing this.

Proposition 2.3. Let F be a saturated fusion system over a finite p-group S, let A E S
be an abelian subgroup that is weakly closed in F , and fix 1 6= Z ≤ Z(S) ∩ A. Then either
F = 〈CF(Z), NF(A)〉, or there are R ∈ EF and α ∈ AutF(R) such that α is not a morphism
in 〈CF(Z), NF(A)〉, and such that α(Z) � A, α(Z) ∈ NF(A)f , and R = CS(α(Z)) =
NS(α(Z)).

Proof. Set F0 = 〈CF(Z), NF(A)〉: the smallest fusion system over S (not necessarily satu-
rated) that contains both CF(Z) and NF(A). We first claim that

NF(Z) ≤ 〈CF(Z),AutF(S)〉 ≤ F0. (2.4)

The second inclusion is clear: AutF(S) = AutNF (A)(S) since A is weakly closed in F by
assumption. If ϕ ∈ HomNF (Z)(P,Q), where P,Q ≥ Z, then since S = CS(Z), ϕ|Z ∈
AutF(Z) extends to some α ∈ AutF(S) by the extension axiom, and ϕ = α ◦ (α−1ϕ) where
α−1ϕ ∈ HomCF (Z)(P, S). This proves the first inclusion in (2.4).

By Lemma 1.2 and since Z ≤ Z(S) is fully normalized in F , for each X ∈ ZF , there is
ψX ∈ HomF(NS(X), S) such that ψX(X) = Z. Set

Z = {X ∈ ZF |ψX ∈ Mor(F0)}.

If ψ′ ∈ HomF(NS(X), S) is another morphism such that ψ′(X) = Z, then ψ′ ◦ ψ−1
X ∈

Mor(NF(Z)), and hence ψ′ ∈ Mor(F0) if and only if ψX ∈ Mor(F0) by (2.4). So Z is
independent of the choices of the ψX .

If X ∈ ZF and X ≤ A, then A ≤ NS(X) and ψX(A) = A, so ψX ∈ Mor(F0). Thus

X ∈ ZF and X ≤ A =⇒ X ∈ Z. (2.5)

If ϕ ∈ HomF(P, S) is such that P ≥ Z and X = ϕ(Z) ∈ Z, then ϕ(P ) ≤ CS(X) since
P ≤ S = CS(Z), so ψX ◦ϕ is defined and in NF(Z) ≤ F0, and hence ϕ = (ψX |ϕ(P ))

−1◦(ψX ◦ϕ)
is also in F0. Thus

for each ϕ ∈ HomF(P, S) with Z ≤ P ≤ S, ϕ(Z) ∈ Z =⇒ ϕ ∈ Mor(F0). (2.6)

Assume F > F0. By Theorem 1.5 (the Alperin-Goldschmidt fusion theorem), there are
R ∈ EF ∪ {S} and α ∈ AutF(R) such that α /∈ Mor(F0). Since AutF(S) = AutF0(S) by
(2.4), we have R ∈ EF . Choose such R and α with |R| maximal. Since R is F -centric, we
have R ≥ Z(S) ≥ Z. Set X = α(Z); then X /∈ Z by (2.6), and hence X � A by (2.5). Also,
R ≤ CS(X) ≤ NS(X) since R ≤ CS(Z) = S.

For each Y ∈ ZFrZ, we have ψY /∈ Mor(F0) by definition of Z. Hence ψY is a composite
of restrictions of automorphisms of members of EF ∪ {S} of order at least |NS(Y )|, and
at least one of these automorphisms is not in F0. So by the maximality assumption on R,
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|R| ≥ |NS(Y )| for all Y ∈ ZF rZ, and in particular, for all Y ∈ XNF (A). Since R ≤ NS(X),
this shows that X is fully normalized in NF(A), and also that R = CS(X) = NS(X). �

Note in particular the following special case of Proposition 2.3.

Corollary 2.7. Let F be a saturated fusion system over a finite p-group S, let A E S be
an abelian subgroup that is weakly closed in F , and fix 1 6= Z ≤ Z(S) ∩ A. Assume that
A E CF(Z) but A 5 F . Then there are R ∈ EF and α ∈ AutF(R) such that α(Z) � A,
α(Z) ∈ NF(A)f , and R = CS(α(Z)) = NS(α(Z)).

Proof. By assumption, CF(Z) ≤ NF(A) < F . So 〈CF(Z), NF(A)〉 6= F , and the result
follows from Proposition 2.3. �

2.2. Normality of subgroups.

The results in this subsection will be useful when showing that certain subgroups, espe-
cially abelian subgroups, are strongly closed or normal in a fusion system.

Lemma 2.8. Let F be a saturated fusion system over a finite p-group S, and let Q E S
be a normal subgroup that is not weakly closed in F . Then there are P ∈ QF r {Q},
R ∈ EF ∪ {S}, and α ∈ AutF(R) such that R ≥ Q, P = α(Q), R = NS(P ), P ∈ NF(Q)f ,
and |R| ≥ |NS(U)| for all U ∈ QF r {Q}.

Proof. Let W be the set of pairs (R,α) where R ∈ EF ∪ {S}, R ≥ Q, α ∈ AutF(R), and
α(Q) 6= Q. Since Q is not weakly closed in F , there is ϕ ∈ HomF(Q,S) such that ϕ(Q) 6= Q,
and hence W 6= ∅ by the Alperin-Goldschmidt fusion theorem (Theorem 1.5).

Choose (R,α) ∈ W such that |R| is maximal. By Lemma 1.2, for each U ∈ QF r {Q},
there is a morphism ϕ ∈ HomF(NS(U), S) such that ϕ(U) = Q. By Theorem 1.5 again,
there is (R1, α1) ∈ W such that |R1| ≥ |NS(U)|, and |R| ≥ |R1| by the maximality of |R|.
Thus |R| ≥ |NS(U)| for each U ∈ QF r {Q}.

Now set P = α(Q). Then P E R since Q E R, so R ≤ NS(P ), with equality since we
just saw |R| ≥ |NS(P )|. Also, P ∈ NF(Q)f since |R| ≥ |NS(U)| for each U ∈ QF r {Q} ⊇
PNF (Q). �

The following is a more technical result that will be needed when proving that Q/Z E
CF(Z)/Z in case (i) of Theorem A.

Proposition 2.9. Let F be a saturated fusion system over a finite p-group S, and let A E S
be an abelian subgroup that is weakly closed in F but not normal. Let 1 = A0 < A1 < · · · <
Am = A be such that [S,Ai] ≤ Ai−1 for each 1 ≤ i ≤ m. Set E0 = F , and for each 1 ≤ i ≤ m,
set Ai = Ai/Ai−1 and Ei = CEi−1

(Ai)/Ai, regarded as a fusion system over S/Ai. (Note that

Ai ≤ Z(S/Ai−1).) Then there are 0 ≤ ` ≤ m− 2, R ≤ S, and α ∈ AutF(R), such that

• R ≥ A`+1, [α,Ai] ≤ Ai−1 for 1 ≤ i ≤ `, and X
def
= α(A`+1) � A;

• R = NS(X), R/A` = CS/A`
(X/A`), and X/A` ∈ NE`(A/A`)f ; and

• R/A` ∈ EE`.

Proof. The fusion systems Ei are all saturated by Theorem 1.10 and [Cr, Proposition II.5.11],
applied iteratively. Also, A/Am−1 is weakly closed in Em−1 since A is weakly closed in
F . All Em−1-essential subgroups contain Z(S/Am−1) ≥ A/Am−1 since they are centric, so
A/Am−1 E Em−1 by Lemma 1.7. Since A 5 E0 = F by assumption, there is 0 ≤ ` ≤ m − 2
such that A/A` 5 E` and A/A`+1 E E`+1.
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We now apply Corollary 2.7, with A/A`, A`+1/A`, and E` in the role of A, Z, and F . Here,
A`+1/A` ≤ Z(S/A`) since [A`+1, S] ≤ A`, while A/A` 5 E` by assumption. Since A/A` is

abelian, it is normal in CE`(A`+1) by Lemma 1.20 and since A/A`+1 E E`+1 = CE`(A`+1)/A`+1.
So by Corollary 2.7, there are R ≤ S containing A`, and α ∈ AutE`(R/A`), such that
R/A` = CS/A`

(α(A`+1)) ∈ EE` , and

X/A`
def
= α(A`+1) � A/A`, R/A` = NS/A`

(X/A`), and X/A` ∈ NE`(A/A`)f . (2.10)

Also, R/A` ≥ Z(S/A`) ≥ A`+1 since R/A` is E`-centric, so R ≥ A`+1.

Set α` = α, and choose αi ∈ AutCEi (Ai+1)(R/Ai) ≤ AutEi(R/Ai) for decreasing indices

i = ` − 1, ` − 2, . . . , 0 so that αi/Ai+1 = αi+1 for each i < `. Set α = α0 ∈ AutF(R);
then [α,Ai] ≤ Ai−1 for each i by by definition of the Ei, and X = α(A`+1) � A since

X/A` = α(A`+1) � A/A`. The other claims listed in the proposition follow easily from
(2.10). �

2.3. Equalities between fusion systems.

We finish the section with two sets of conditions for showing that two fusion systems
over the same p-group are equal. Proposition 2.11 will be applied to the fusion systems
encountered in Section 4, and Proposition 2.13 to those in Section 5.

Proposition 2.11. Let F1 ≥ E ≤ F2 be saturated fusion systems over a finite p-group S.
Assume that Q E S is centric and normal in all three, and that AutF1(Q) = AutF2(Q).
Assume also that the homomorphism

H1(OutF1(Q);Z(Q)) −−−−−→ H1(OutE(Q);Z(Q))

induced by restriction is surjective. Then F1 = F2.

Proof. Let M1 ≥ H ≤ M2 be models for F1 ≥ E ≤ F2 (Definition 1.11), where S ≤ H is a
Sylow p-subgroup of all three. Thus M1 and M2 are both extensions of Q by OutF1(Q) =
OutF2(Q), and the difference of the two extensions (up to isomorphism) is represented by
an element χ ∈ H2(OutF1(Q);Z(Q)) (see [McL, Theorem IV.8.8]). Also, χ vanishes after
restriction to H2(OutE(Q);Z(Q)) since M1 and M2 both contain H, so χ = 0 since OutE(Q)
has index prime to p in OutF1(Q). Thus there is an isomorphism ψ : M1 −→ M2 such that
ψ|Q = IdQ. Note that ψ also induces the identity on H/Q and on S/Q since they inject into
Aut(Q), but need not induce the identity on S.

Set ψ0 = ψ|H ∈ Aut(H). Consider the commutative diagram

H1(M1/Q;Z(Q))
η1

∼=
//

ρ1

��

CAut(M1)(Q)/AutZ(Q)(M1)

ρ2

��

H1(H/Q;Z(Q))
η2

∼=
// CAut(H)(Q)/AutZ(Q)(H)

where η1, η2 are defined as in [OV, Lemma 1.2]. Since ρ1 is surjective by assumption, ρ2 is
also surjective. So there is α ∈ Aut(M1) such that α|H = ψ0cz|H for some z ∈ Z(Q), and
upon replacing α by αc−1

z , we can arrange that α|H = ψ0.

Now set ϕ = ψα−1 : M1

∼=−−→M2. Then ϕ|H = ψ0ψ
−1
0 = IdH , and in particular, ϕ|S = IdS.

Since M1 and M2 are models for F1 and F2, we conclude that F1 = F2. �
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The other criterion we give for two fusion systems to be equal applies only to fusion
systems satisfying some very restrictive hypotheses, which are stated separately for easier
reference.

Hypotheses 2.12. Let F be a saturated fusion system over a finite p-group S. Assume
A,Q E S are such that

(i) EF = {A,Q};
(ii) A is abelian, S = AQ, and CS(A ∩Q) = A; and

(iii) p -
∣∣NAut(A)(O

p′(AutF(A)))
/
Op′(AutF(A))

∣∣.
Note that F = NF(R) if EF = {R} has order 1, while F = NF(S) if EF = ∅. So the next

proposition still holds if we assume EF ⊆ {A,Q} instead of assuming equality. However,
since the extra cases that would be added are rather trivial and will not be encountered in
this paper, we decided to use the more restrictive version.

Proposition 2.13. Let F1 and F2 be two saturated fusion systems over the same finite p-
group S, and let A,Q E S be normal subgroups with respect to which Hypotheses 2.12 hold
for F1 and for F2. Assume also that Op′(NF1(A)) = Op′(NF2(A)) and Op′(AutF1(Q)) =
Op′(AutF2(Q)). Then Op′(F1) = Op′(F2).

Proof. If Hypotheses 2.12 hold for Fi (i = 1, 2), then they also hold for Op′(Fi) (note in
particular that EOp′ (Fi)

= EFi
by Proposition 1.15). So it suffices to prove the proposition

when Fi = Op′(Fi) for i = 1, 2.

Since S = AQ where A and Q are both properly contained in S, we have Q � A and A �
Q. Note that Q is nonabelian, since otherwise CS(A ∩Q) = S, contradicting 2.12(ii). Also,
A and Q are weakly closed in Fi for i = 1, 2, since otherwise, there would be α ∈ AutFi

(S)
with α(A) 6= A or α(Q) 6= Q, which is impossible since α permutes the members of EFi

.

Set

Θ = 〈AutF1(S),AutF2(S)〉 ≤ Aut(S).

Fix R ∈ {A,Q}. Each element of Θ normalizes R since R is weakly closed in F1 and in F2.
For each α ∈ Θ such that α|R = IdR, α also induces the identity on S/R since CS(R) ≤ R
(since R ∈ EFi

by 2.12(i)), and hence α has p-power order. Thus{
α ∈ Θ

∣∣α|R = IdR
}
≤ Op(Θ) (for R ∈ {A,Q}) : (2.14)

this subgroup is normal in Θ since all elements in Θ normalize R.

By points (i) and (ii) in Hypotheses 2.12 and since A and Q are weakly closed, the
conclusions of Lemma 1.16 hold for F1 and F2. (Note that Q ∩ A /∈ F c since it is strictly
contained in the abelian group A.) By Lemma 1.16(b) and since Op′(Fi) = Fi for i = 1, 2
by assumption,

AutFi
(S) =

〈
AutOp′ (NFi (A))(S),AutOp′ (NFi (Q))(S)

〉
(2.15)

for i = 1, 2.

Again fixR ∈ {A,Q}. If α ∈ AutOp′ (NF1 (R))(S), then α|R ∈ Op′(AutF1(R)) = Op′(AutF2(R))

by Lemma 1.16(a), so α|R = β|R for some β ∈ AutF2(S) by the extension axiom and since
α|R is normalized by AutS(R). By Lemma 1.16(a) again, β ∈ AutOp′ (NF2 (R))(S). Also,

α−1β ∈ Op(Θ) by (2.14) and since α|R = β|R. Upon repeating this argument with the roles
of F1 and F2 exchanged, we have shown that

AutOp′ (NF1 (R))(S)Op(Θ) = AutOp′ (NF2 (R))(S)Op(Θ).
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Together with (2.15), this implies that

AutF1(S)Op(Θ) = AutF2(S)Op(Θ). (2.16)

For R ∈ {A,Q}, set

Γ (R) = Op′(AutF1(R)) = Op′(AutF2(R)),

where the last two groups are equal by assumption. Then for i = 1, 2,

AutFi
(R) = Γ (R) · {α|R |α ∈ AutFi

(S)} (2.17)

by the Frattini argument and the extension axiom (and since R E S).

Set Θ(A) = 〈AutF1(A),AutF2(A)〉. Then Γ (A) E Θ(A) since it is normal in each AutFi
(A).

Since NAut(A)(Γ
(A))/Γ (A) has order prime to p by 2.12(iii), we have Op′(Θ(A)) = Op′(Γ (A)) =

Γ (A). By (2.17), for each α ∈ AutF1(A), there are α0 ∈ Γ (A) and α̂ ∈ AutF1(S) such that

α = α0(α̂|A). By (2.16), there is β̂ ∈ AutF2(S) such that α̂−1β̂ ∈ Op(Θ). Set β = α0(β̂|A) ∈
AutF2(A). Then α−1β = (α̂−1β̂)|A has p-power order, hence lies in Op′(Θ(A)) = Γ (A), and we
have shown that AutF1(A) ≤ AutF2(A). A similar argument proves the opposite inclusion,
and thus

AutF1(A) = AutF2(A). (2.18)

For i = 1, 2,

AutFi
(Q) = Γ (Q) ·

{
α|Q

∣∣α ∈ AutFi
(S)
}

= Γ (Q) ·
〈{
α|Q

∣∣α ∈ AutOp′ (NFi (Q))(S)
}
,
{
α|Q

∣∣α ∈ AutOp′ (NFi (A))(S)
}〉

≤ Γ (Q) ·
〈
AutOp′ (NFi (Q))(Q) ,

{
α|Q

∣∣α ∈ AutOp′ (NFi (A))(S)
}〉

= Γ (Q) ·
{
α|Q

∣∣α ∈ AutOp′ (NFi (A))(S)
}

:

the first equality by (2.17), the second by (2.15), and the last since AutOp′ (NFi (Q))(Q) = Γ (Q)

by Lemma 1.16(a). The opposite inclusion is clear, so

AutF1(Q) = AutF2(Q) (2.19)

since Op′(NF1(A)) = Op′(NF2(A)) by assumption.

For R ∈ {A,Q}, consider the homomorphism

Θ = 〈AutF1(S),AutF2(S)〉 ΨR−−−−−→ NAutF1 (R)(AutS(R)) = NAutF2 (R)(AutS(R)),

where AutF1(R) = AutF2(R) by (2.18) or (2.19), and where ΨR is induced by restriction
to R and is surjective by the extension axiom. Hence ΨR sends Op(Θ) into the group
Op(NAutFi (R)(AutS(R))) = AutS(R). So for each β ∈ Op(Θ), there are g, h ∈ S such that

β|A = cAh and β|Q = cQg . Then β(cSg )−1 is the identity on Q and conjugation by hg−1 after

restriction to A, so hg−1 ∈ CS(Q∩A) = A by 2.12(ii), and β(cSg )−1|A = Id. Since S = AQ by

2.12(ii), this shows that β = cSg , and hence that Op(Θ) = Inn(S). So AutF1(S) = AutF2(S)
by (2.16). Since EFi

= {A,Q} by 2.12(i), this together with (2.18) and (2.19) (and Theorem
1.5) shows that

F1 = 〈AutF1(S),AutF1(A),AutF1(Q)〉 = 〈AutF2(S),AutF2(A),AutF2(Q)〉 = F2. �
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3. Todd modules in characteristic 3

We describe here the notation we use in Sections 4 and 5 to make computations involving
Todd modules: first the Todd module for 2M12, and afterwards those for M11 and A6

∼=
O2(M10).

3.1. The ternary Golay code and the group 2M12.

We first set up notation for handling the ternary Golay code G and its automorphism
group 2M12. Our notation is based on that used by Griess in [Gr, Chapter 7] to describe the
ternary Golay code. We begin by fixing some very general notation for describing n-tuples
of elements in a field.

Notation 3.1. For a finite set X = {1, 2, . . . , n} and a field K, we regard KX as the vector
space of maps X −→ K, and let {ei | i ∈ X} be its canonical basis:

{ei | i ∈ X} ⊆ KX where ei(j) =

{
1 if i = j

0 if i 6= j
for i, j ∈ X.

We also set eJ =
∑

j∈J ej for J ⊆ X. Let

PermX(K) ≤ MonX(K) ≤ Aut(KX)

be the subgroups of permutation automorphisms and monomial automorphisms, respectively:
automorphisms that permute the basis {ei} or the subspaces {Kei}, respectively. Thus if
|X| = n, then PermX(K) ∼= Σn and MonX(K) ∼= K× oΣn. Let

π = πX,K : MonX(K) −−−−−→ PermX(K)

be the canonical projection that sends a monomial automorphism to the corresponding per-
mutation automorphism; thus Ker(πX,K) is the group of automorphisms that send each Kei
to itself.

Now set I = {1, 2, 3, 4}, and regard FI3 as the space of 4-tuples of elements of F3 as well
as that of functions I −→ F3. Let T ⊆ FI3 be the tetracode subgroup:

T = {(a, b, b+ a, b+ 2a) | a, b ∈ F3}
=
{
ξ ∈ FI3

∣∣ ξ(3) = ξ(1) + ξ(2), ξ(4) = ξ(1) + ξ(3)
}
.

(3.2)

Thus T is a 2-dimensional subspace of FI3. By [Gr, Lemma 7.3],

Aut(T )
def
=
{
α ∈ MonI(F3)

∣∣α(T ) = T
} ∼= GL2(3) ∼= 2Σ4. (3.3)

More precisely, each linear automorphism of T extends to a unique monomial automorphism
of FI3; and each permutation of I lifts to a monomial automorphism of FI3, unique up to sign,
that acts on T .

Set ∆ = F3×I, so that F∆
3 is a 12-dimensional vector space over F3. Define C1, C2, C3, C4 ∈

F∆
3 by setting

Ci = e(0,i) + e(1,i) + e(2,i) for i ∈ I,

and set C = {Ci | i ∈ I}. Thus e∆ =
∑

i∈I Ci. Define

Gr : FI3 −−−−−→ F∆
3 by setting Gr(ξ) =

∑
i∈I

e(ξ(i),i)

(the “graph” of ξ). Thus for each (c, i) ∈ ∆, Gr(ξ)(c, i) = 1 if c = ξ(i) and is zero otherwise.
Finally, define G < G < F∆

3 by setting

G =
〈
C ∪Gr(T )

〉
and G =

〈
Ci + Gr(ξ)

∣∣ i ∈ I, ξ ∈ T
〉
. (3.4)
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Finally, for i, j ∈ I and ξ ∈ T , we define

Cij = Ci − Cj ∈ G and grξ = Gr(ξ)−Gr(0) ∈ G .

The Ci are clearly linearly independent in G . The relations

Gr(ξ) + Gr(η) + Gr(θ) =
∑
i∈I

ξ(i) 6=η(i)

Ci for all ξ, η, θ ∈ T such that ξ + η + θ = 0 (3.5)

among the Ci and Gr(ξ) are easily checked. So for any F3-basis {ξ1, ξ2} of T ,

G =
〈
C1, C2, C3, C4,Gr(0),Gr(ξ1),Gr(ξ2)

〉
G =

〈
C12, C13, C14, grξ1 , grξ2 , C1 + Gr(0)

〉
.

These elements in each of these two sets are independent in F∆
3 , and hence form bases for G

and G , respectively. So dim(G ) = 7 and dim(G ) = 6.

The subspace G is the ternary Golay code. We refer to [Gr, Lemmas 7.8 & 7.9] for more
details and more properties. Note in particular that G = G ⊥ under the standard inner
product on F∆

3 (i.e., that for which the standard basis {e(c,i) | (c, i) ∈ ∆} is orthonormal).

We next look at automorphisms of G .

Notation 3.6. (a) Set M̂12 = {ξ ∈ Mon∆(F3) | ξ(G ) = G }.
(b) For η ∈ FI3, let trη ∈ Perm∆(F3) be the translation that sends e(c,i) to e(c+η(i),i). Thus

for ξ ∈ F∆
3 , we have trη(ξ)(c, i) = ξ(c− η(i), i).

(c) Fix α ∈ MonI(F3), and let εi ∈ F×3 (i ∈ I) and σ ∈ ΣI be such that α(ei) = εieσ(i) for
all i. Let τ (α) ∈ Perm∆(F3) be the automorphism that sends e(c,i) to e(εic,σ(i)). Thus for
ξ ∈ F∆

3 , we have (τ (α)(ξ))(c, i) = ξ(εσ−1(i)c, σ
−1(i)).

(d) Define

N0 = trT o τ (Aut(T )) =
〈
trη, τ (α)

∣∣ η ∈ T , α ∈ Aut(T )
〉
≤ M̂12,

and set N = N0 × {±Id} ≤ M̂12.

By [Gr, Proposition 7.29], M̂12
∼= 2M12.

Note the following relations, for η, θ ∈ FI3, i ∈ I, and α ∈ MonI(F3):

trη(Ci) = Ci τ (α)(Ci) = Cπ(α)(i)

trη(Gr(θ)) = Gr(θ + η) τ (α)(Gr(θ)) = Gr(α(θ)).

To see the last equality, note that for α ∈ MonI(F3) with εi ∈ F×3 and σ ∈ ΣI as above, and
for θ =

∑
i∈I θ(i)ei in FI3, we have

τ (α)(Gr(θ)) =
∑
i∈I

τ (α)(e(θ(i),i)) =
∑
i∈I

e(εiθ(i),σ(i)) = Gr(θ′)

where θ′ =
∑

i∈I εiθ(i)eσ(i) = α(θ). In particular, these formulas show that the action of N0

on F∆
3 sends G and G to themselves.

Lemma 3.7. We have N = NM̂12
(trT ), and this is a maximal subgroup of M̂12.

Proof. By construction, N ≤ NM̂12
(trT ). Conversely, by [Gr, Theorem 7.20], N is the

subgroup of all elements of M̂12 whose action on ∆ permutes the columns F3 × {i}, and
hence contains the normalizer of trT .
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For the maximality of N ≤ M̂12 (or of N /{±Id} ∼= E9oGL2(3) in M̂12/{±Id} ∼= M12),
see [Co, p. 235] or [A3, p. 8]. Note that if we regard M12 as a group of permutations of 12
points, then N /{±Id} ∼= M9 o Σ3 is the subgroup of those permutations that normalize a
set of three of the points. �

One easy consequence of Lemma 3.7 is that N0 = M̂12 ∩Perm∆(F3). In other words, the

elements of N0 are the only ones in M̂12 that permute the coordinates in ∆ without sign
changes. But this will not be needed later.

To simplify later calculations, we next describe G and the action of N0 on it in terms of
(3×3) matrices over F3. In general, for a vector space V over a field K, we let S2(V ) denote
its symmetric power

S2(V ) = (V ⊗K V )/〈(v ⊗ w)− (w ⊗ v) | v, w ∈ V 〉.
For v, w ∈ V , let [v ⊗ w] ∈ S2(V ) denote the class of v ⊗ w ∈ V ⊗K V , and write v⊗2 =
[v ⊗ v] for short. When α ∈ AutK(V ), we let S2(α) ∈ AutK(S2(V )) be the automorphism
S2(α)([v ⊗ w]) = [α(v)⊗ α(w)].

Definition 3.8. (a) Choose a map of sets λ : I −→ T such that for each i ∈ I, λ(i) 6= 0
and (λ(i))(i) = 0. Define a map of sets

Φ0 : C ∪Gr(T ) −−−−−−→ S2(T ⊕ F3)

by setting
Φ0(Ci) = (λ(i), 0)⊗2 and Φ0(Gr(ξ)) = (ξ, 1)⊗2

for all i ∈ I and all ξ ∈ T .

(b) Define Θ∗ : N0 −−−→ Aut(T ⊕ F3) by setting

Θ∗(trητ (α))(ξ, a) = (α(ξ) + aη, a)

for each η, ξ ∈ T , α ∈ Aut(T ), and a ∈ F3.

We now check that Φ0 and Θ∗ extend to a natural isomorphism from the F3N0-module
G to the group S2(T ⊕ F3) with action of a certain subgroup of Aut(T ⊗ F3).

Lemma 3.9. (a) The map Φ0 of Definition 3.8(a) is independent of the choice of λ, and
extends to a surjective homomorphism Φ: G −→ S2(T ⊕ F3). This in turn restricts to
an isomorphism Φ∗ from G onto S2(T ⊕ F3).

(b) The map Θ∗ of Definition 3.8(b) is an isomorphism from N0
∼= T oAut(T ) onto the

group of all automorphisms of T ⊕ F3 that are the identity modulo T ⊕ 0.

(c) For each β ∈N0 and each γ ∈ G ,

Φ∗(β(γ)) = S2(Θ∗(β))(Φ∗(γ)). (3.10)

Thus Θ∗ and Φ∗ define an isomorphism from G as an F3N0-module to S2(T ⊕F3) with
its natural structure as a module over Θ∗(N0) < Aut(T ⊕ F3).

Proof. (a) For each i ∈ I, the choice of λ(i) is unique up to sign. So Φ(Ci) = (λ(i), 0)⊗2 is
independent of the choice of λ(i).

We first check that
∑

i∈I Φ0(Ci) = 0. It suffices to show that
∑

i∈I λ(i)⊗2 = 0 in S2(T ).
Independently of our choices, {λ(i) | i ∈ I} is a set of representatives of the four subspaces
of dimension 1 in F2

3. So the λ(i) are permuted up to sign by each α ∈ Aut(T ), and the
sum of the λ(i)⊗2 is fixed by each such α. Hence the sum must be zero. (Alternatively, this
can be shown directly by choosing coordinates and then computing with matrices.)
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We next check that the relations (3.5) hold for the images of the elements in C ∪Gr(T )
under Φ0 as defined above. So fix ξ, η, θ ∈ T such that ξ+η+θ = 0. If ξ = η = θ, then (3.5)
clearly holds. Otherwise, ξ−η 6= 0, so there is a unique index j ∈ I such that (ξ−η)(j) = 0.
Then ξ − η = ±λ(j), and so

(ξ, 1)⊗2 + (η, 1)⊗2 + (θ, 1)⊗2 = (ξ, 0)⊗2 + (η, 0)⊗2 + (θ, 0)⊗2

= (ξ, 0)⊗2 + (η, 0)⊗2 + (−ξ − η, 0)⊗2 = −(ξ − η, 0)⊗2

= −(λ(j), 0)⊗2 =
∑

i∈Ir{j}

(λ(i), 0)⊗2,

where the first equality holds since ξ + η + θ = 0, and the last one since
∑

i∈I Φ0(Ci) = 0.

Thus Φ0 extends to a homomorphism defined on a vector space over F3 with basis
C ∪ Gr(T ), modulo the subspace generated by the relations (3.5). This quotient space
is generated by the images of the Ci, as well as those of 0, ξ1, and ξ2 for any basis {ξ1, ξ2}
of T , hence has dimension 7 and is isomorphic to G . So Φ0 extends to a homomorphism Φ
from G to S2(T ⊕ F3).

Now, Φ(〈C 〉) = 〈(η, 0)⊗2〉 = S2(T ⊕ 0) since T # = {λ(i)±1 | i ∈ I}. Hence

Φ(N0) = S2(T ⊕ 0)
〈
(ξ, 1)×2

∣∣ ξ ∈ T
〉

= S2(T ⊕ F3).

Thus Φ is onto, and a comparison of dimensions shows that Ker(Φ) = 〈e∆〉. Since e∆ /∈ G ,
Φ restricts to an isomorphism Φ∗ from G to Sym3(F3).

(b) One easily checks that Θ∗ as defined above restricts to homomorphisms on {trη | η ∈
T } ∼= T and on Aut(T ). So it remains only to check conjugacy relations: for α ∈ Aut(T )
and η ∈ T , we have

Θ∗(α)
(
Θ∗(trη)(Θ∗(α)−1(ξ, a))

)
= Θ∗(α)(α−1(ξ) + aη, a) = (ξ, a · α(η), a)

= Θ∗(trα(η))(ξ, a) = Θ∗(α ◦ trη ◦ α
−1)(ξ, a).

Thus Θ∗ is well defined on N0, and it clearly defines an isomorphism onto the group of
all β ∈ Aut(T ⊕ F3) that are the identity modulo T ⊕ 0.

(c) For each ξ, η ∈ T , i ∈ I, and α ∈ Aut(T ), we have

Φ(trη(Gr(ξ))) = (ξ + η, 1)⊗2 = (Θ∗(trη)(ξ, 1))⊗2 = S2(Θ∗(trη))(Φ(Gr(ξ)))

Φ(τ (α)(Gr(ξ))) = (α(ξ), 1)⊗2 = (Θ∗(τ (α))(ξ, 1))⊗2 = S2(Θ∗(τ (α)))(Φ(Gr(ξ)))

Φ(trη(Ci)) = Φ(Ci) = (λ(i), 0)⊗2 = S2(Θ∗(trη))(Φ(Ci)).

Also, for all α ∈ Aut(T ) inducing the permutation σ ∈ ΣI , and all i ∈ I,

Φ(τ (α)(Ci)) = Φ(Cσ(i)) =
(
λ(σ(i)), 0

)⊗2

=
(
±Θ∗(τ (α))(λ(i), 0)

)⊗2
= S2(Θ∗(τ (α)))(Φ(Ci))

where λ(σ(i)) = ±τ (α)(λ(i)) by definition (and uniqueness up to sign) of the λ(i). Since
G = 〈C ∪Gr(T )〉 and N0 = 〈trη, τ (α) | η ∈ T , α ∈ Aut(T )〉, this proves (3.10). �

To simplify computations still farther, we now describe elements in N0 and A as (3 ×
3)-matrices over F3. Fix an isomorphism T ∼= F2

3 (e.g., by restriction to the first two
coordinates), so that T ⊕F3 is identified with F3

3 and Aut(T ⊕F3) with GL3(F3). We then
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identify S2(T ⊕ F3) with the group Sym3(F3) of symmetric (3 × 3) matrices over F3, by
sending the class [v ⊗ w] (for v, w ∈ F3

3) to 1
2
(v · wt + w · vt). More explicitly,ab

c

⊗
de
f

 is sent to

 ad (ae+ bd) (af + cd)/2
(ae+ bd)/2 be (bf + ce)/2
(af + cd)/2 (bf + ce)/2 cf

 .

Let

Φ: G
∼=−−−−−−→ Sym3(F3) (3.11)

Θ: N0

∼=−−−−−−→
{(

a b c
d e f
0 0 1

) ∣∣∣ a, b, c, d, e, f ∈ F3

ae− bd 6= 0

}
≤ GL3(F3) (3.12)

be the composites of Φ∗ and Θ∗ with the isomorphisms induced by this identification T ∼= F2
3.

Lemma 3.9(c) now takes the following form:

Lemma 3.13. For each β ∈N0 and each ξ ∈ G ,

Φ(β(ξ)) = Θ(β)Φ(ξ)Θ(β)t ∈ Sym3(F3).

As a first, very simple application, we describe the Jordan blocks for actions on A.

Lemma 3.14. There are exactly two conjugacy classes of elements of order 3 in M̂12: those
in one class act on G with three Jordan blocks of lengths 1, 2, 3, and those in the other with

two Jordan blocks of length 3. In particular, for each x ∈ M̂12 of order 3, rk(CG (x)) ≤ 3.

Proof. Each element of order 3 in M12 is the image of a unique element of order 3 in 2M12. So

M̂12 has two conjugacy classes of elements of order 3 since M12 does (see, e.g., [Gr, Exercise

7.34(ii)]). With the help of Lemma 3.13, it is straightforward to check that Θ−1
((

1 0 1
0 1 0
0 0 1

))
acts on G with three Jordan blocks of lengths 1, 2, 3, and that Θ−1

((
1 1 0
0 1 1
0 0 1

))
acts with two

Jordan blocks of length 3. Thus these elements are in different classes, and each element of

order 3 in M̂12 is conjugate to one of them and acts on G in one of these two ways. The
last statement holds since the rank of CG (x) is equal to the number of Jordan blocks. (See
also [Gr, Exercise 7.37].) �

The notation developed in this subsection is summarized in Table 3.15.

Γ = M̂12 =
{
α ∈ Mon∆(F3)

∣∣α(G ) = G
} ∼= 2M12

N0 = trT o τ (Aut(T )) ≤ M̂12

N = N0 × {±Id} =
{
α ∈ M̂12

∣∣α permutes the Ki

}
Θ: N0

∼=−−−−→
{

( A v
0 1 )

∣∣ A ∈ GL2(3), v ∈ F2
3

}
≤ GL3(3)

T = Θ−1(UT3(F3)) ∈ Syl3(N0) ⊆ Syl3(Γ )

A = Φ(G ) = Sym3(F3)

β(X) = Θ(β)XΘ(β)t for β ∈N0, X ∈ A

Table 3.15. Notation used for certain subgroups of Γ = M̂12 and their
action on A = Φ(G ).
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3.2. Notation for the Todd modules of M11 and A6.

We next set up notation to work with the Todd modules of M11 and of A6
∼= O2(M10). In

particular, we get explicit descriptions of the actions of certain subgroups of A6 and M11.

Let G ≤ F∆
3 be as in (3.4) and Notation 3.6. By [Gr, Lemma 7.12], G contains exactly

12 pairs {±θ} of elements of weight 12. Three of those pairs lie in 〈C 〉: the elements of the
form

∑
i∈I εiCi for εi ∈ F×3 and

∑
i∈I εi = 0. (The other nine have the form ±(e∆ + Gr(ξ))

for ξ ∈ T .) By a direct check, for each basis {ξ, η} of T , the six elements{
±((ξ, 0)⊗2 + (η, 0)⊗2), ±((ξ, 0)⊗2 − (η, 0)⊗2)± [(ξ, 0)⊗ (η, 0)]

}
⊆ S2(T ⊕ F3) (3.16)

are the images of the six elements of weight 12 in 〈C 〉 under the isomorphism

Φ∗ : G
∼=−−−−−→ S2(T ⊕ F3)

of Lemma 3.9(a). We want to identify M11 as the subgroup of elements in M̂12 that are the
identity on one of these subspaces, and similarly for M10.

To simplify these descriptions, we identify T with F9 via some arbitrarily chosen isomor-
phism. We adopt the following notation for elements of F9:

F9 = F3[i] where i2 = −1

ζ = 1 + i of order 8 in F×9
φ ∈ Aut(F9) : φ(a+ bi) = a− bi for a, b ∈ F3.

(3.17)

We also write x = φ(x) for x ∈ F9.

Notation 3.18. Assume Notation 3.6 and Table 3.15, and choose an F3-linear isomorphism

κ : T
∼=−−→ F9. Define elements θ1, θ2, θ3 ∈ S2(T ) ≤ S2(T ⊕ F3) by setting

θ1 = S2(κ)−1([1⊗ 1 + i⊗ i])
θ2 = S2(κ)−1([1⊗ 1− i⊗ i+ 1⊗ i])
θ3 = S2(κ)−1([1⊗ 1− i⊗ i− 1⊗ i]).

Set θ∗i = Φ−1
∗ (θi) ∈ G . By (3.16), ±θ∗1, ±θ∗2, and ±θ∗3 are elements of weight 12 in G , and

the only ones in 〈C 〉 ∩ G .

Set K1 = 〈θ∗1〉 and K2 = 〈θ∗2, θ∗3〉, both subspaces of G , and define

M̂11 = NM̂12
(K1) and M̂10 = NM̂12

(K2).

Also, set M̂0
` = O3′(M̂`) and N(`) = N ∩ M̂` for ` = 10, 11, and set T = trT .

Finally, define λ : F×9 〈φ〉 −→ Aut(T ) by setting λ(u) = κ−1(x 7→ ux)κ for u ∈ F×9 and
λ(φ) = κ−1φκ. (Recall that we compose from right to left.) For x ∈ F9 and u ∈ F×9 , set

((x)) = trκ−1(x) ∈ T, [u] = τ (λ(u)) ∈ N, and [φ] = τ (λ(φ)) ∈ N.

Also, for ξ ∈N0, we write −ξ = ξ · (−Id) ∈ N.

For easy reference, we summarize in Table 3.20 some of the basic properties of groups
defined in Notation 3.18.

Lemma 3.19. Assume Notation 3.18. Then for ` = 10, 11, M̂0
` = CM̂12

(K12−`) = CM̂`
(K12−`),

and the groups M̂`, M̂
0
` , N(`), and T are as described in Table 3.20. In particular,

T ∈ Syl3(M̂`) = Syl3(M̂0
` ).
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` = 10 ` = 11

T trT = 〈((x)) |x ∈ F9〉 trT = 〈((x)) |x ∈ F9〉
N(`) T〈[ζ], [φ],−Id〉 T〈[ζ], [φ],−Id〉

N(`) ∩ M̂0
` T〈−[i]〉 T〈−[ζ], [φ]〉

M̂0
`
∼= A6 M11

M̂`/M̂
0
`
∼= D8 C2

Table 3.20. In particular, N(10) = N(11) ∼= (E9 o SD16)× C2.

Proof. By definition (see Notation 3.6(d)), each element of N normalizes the subspace 〈C 〉∩
G , and hence permutes the six elements ±θ1,±θ2,±θ3 (the only elements of weight 12 in
〈C 〉 ∩ G ). Some of these actions are described in Table 3.21.

g ∈ N [ζ] [i] [φ] −Id
gθ∗1 −θ∗1 θ∗1 θ∗1 −θ∗1
gθ∗2 −θ∗3 −θ∗2 θ∗3 −θ∗2
gθ∗3 θ∗2 −θ∗3 θ∗2 −θ∗3

Table 3.21.

Consider, for example, the case [ζ]θ∗2. Set ξ = κ−1(1) and η = κ−1(i), where κ : T
∼=−−→ F9

is as in Notation 3.18. Then

Φ∗(θ
∗
2) = θ2 = S2(κ)−1

(
[1⊗ 1− i⊗ i+ 1⊗ i]

)
= [ξ ⊗ ξ − η ⊗ η + ξ ⊗ η].

Since ζ = 1 + i and iζ = −1 + i, we get

Φ∗(
[ζ]θ∗2) = S2(κ)−1

(
[(1 + i)⊗ (1 + i)− (−1 + i)⊗ (−1 + i) + (1 + i)⊗ (−1 + i)]

)
= [(ξ + η)⊗ (ξ + η)− (−ξ + η)⊗ (−ξ + η) + (ξ + η)⊗ (−ξ + η)]

= [4(ξ ⊗ η)− ξ ⊗ ξ + η × η] = −Φ∗(θ
∗
3).

Hence [ζ]θ∗2 = −θ∗3. The other computations are similar, but simpler in most cases.

Recall that N = (trT o τ (Aut(T ))) × {±Id} (Notation 3.6(d)), where Aut(T ) ∼=
GL2(3) ∼= 2Σ4 by (3.3). Since the element [−1] = [i]2 centralizes K1K2 by Table 3.21,
each element of trT = [[−1], trT ] also centralizes K1K2. Also, each noncentral element of
O2(τ (Aut(T ))) = 〈[i], [ζφ]〉 ∼= Q8 fixes one of the θ∗i and sends the other two to their
negative, and hence each element of order 3 in τ (Aut(T )) acts by permuting the sets {±θ∗i }
(i = 1, 2, 3) cyclically. From this, we conclude that N(10) = N(11) is as described in Table
3.20, and also that

CN(10)(K2) = T 〈−[i]〉 and CN(11)(K1) = T 〈−[ζ], [φ]〉.

In particular, N(10)/CN(10)(K2) ∼= D8 and N(11)/CN(11)(K1) ∼= C2.

It remains only to show that M̂0
` = CM̂`

(K12−`). For ` = 10 or ` = 11, consider the

action of M̂` = NM̂12
(K12−`) on G /K12−`. Since M̂0

10
∼= O3′(M10) ∼= A6 and M̂0

11
∼= M11

by definition of M10 and M11 as permutation groups, and since dim(G /K12−`) = 4 or 5,
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respectively, this quotient is absolutely irreducible as an F3M̂
0
` -module by Lemma 5.2. Hence

CAut(G /K12−`)(M̂
0
` ) = {±Id}, and so

|N(`)/CN(`)(K12−`)| ≤ |M̂`/CM̂`
(K12−`)| ≤ |M̂`/M̂

0
` | ≤ 2 · |Out(M̂0

` )| (3.22)

We just saw that |N(10)/CN(10)(K2)| = 8 = 2 · |Aut(A6)| and |N(11)/CN(11)(K1)| = 2 =

2·|Aut(M11)|, and so the inequalities in (3.22) are all equalities. Hence M̂0
` = CM̂`

(K12−`) =

CM̂12
(K12−`), and the descriptions of N(`) ∩ M̂0

` and M̂`/M̂
0
` in Table 3.20 all hold. �

As seen in Lemma 5.2, there are three different representations that appear under Hy-
potheses 5.1: one of A6 and two of M11. We will refer to these throughout the rest of the
section as the “A6-case” (when Γ0

∼= A6), the “M11-case” (when Γ0
∼= M11 and A is its

Todd module), and the “M∗
11-case” (when Γ0

∼= M11 and A is the dual Todd module).

Lemma 3.23. Assume Notation 3.18. We summarize here the notation we use for the

F3M̂10- and F3M̂11-modules we are working with, and describe explicitly the action of the
subgroup N(10) or N(11).

(a) (A6-case) We identify the Todd module for M̂10 with A(10) def
= F3 × F9 × F3 in such a

way that N(10) acts as follows:

((x))[[a, b, c]] = [[a, b− ax, c+ Tr(xb)− aN(x)]] for x ∈ F9

[u][[a, b, c]] = [[a, ub,N(u)c]] for u ∈ F×9
[φ][[a, b, c]] = [[a, b, c]] and −Id[[a, b, c]] = [[−a,−b,−c]].

(b) (M11-case) We identify the Todd module for M̂11 with A(11) def
= F3 × F9 × F9 in such a

way that N(11) acts as follows:

((x))[[a, b, c]] = [[a, b− ax, c+ bx+ ax2]] for x ∈ F9

[u][[a, b, c]] = [[a, ub, u2c]] for u ∈ F×9
[φ][[a, b, c]] = [[a, b, c]] and −Id[[a, b, c]] = [[−a,−b,−c]].

(c) (M∗
11-case) We identify the dual Todd module for M̂11 with A(11)∗ def

= F9 × F9 × F3 in

such a way that N(11) acts as follows:

((x))[[a, b, c]] = [[a, b− ax, c+ Tr(bx+ ax2)]] for x ∈ F9

[u][[a, b, c]] = [[u−2a, u−1b, c]] for u ∈ F×9
[φ][[a, b, c]] = [[a, b, c]] and −Id[[a, b, c]] = [[−a,−b,−c]].

Proof. (b) Define

κ̂11 : S2(T ⊕ F3) −−−−−−−→ A(11) = F3 × F9 × F9

by setting

κ̂11

(
[(ξ, r)⊗ (η, s)]

)
= [[rs, rκ(η) + sκ(ξ), κ(ξ) · κ(η)]].

This is surjective since A(11) is generated by the elements

κ̂11([(0, 1)⊗ (η, s)]) = [[s, κ(η), 0]] and κ̂11([(1, 0)⊗ (η, 0)]) = [[0, 0, κ(η)]].

Also, κ̂11(θ1) = 0, so Ker(κ̂11 ◦ Φ) = 〈θ∗1〉 = K1 since they both are 1-dimensional. Thus the

action of M̂12 on G induces an action of M̂11 = NM̂12
(K1) on G /K1

∼= A(11).
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For θ ∈ T , trθ(ξ, r) = (ξ + rθ, r) and trθ(η, s) = (η + sθ, s). So if we set x = κ(θ) and
[[a, b, c]] = κ̂11([(ξ, r)⊗ (η, s)]), then

((x))[[a, b, c]] = κ̂11

(
[(ξ + rθ, r)⊗ (η + sθ, s)]

)
= [[rs, (rκ(η) + sκ(ξ)) + 2rsκ(θ), κ(ξ)κ(η) + κ(θ)(rκ(η) + sκ(ξ)) + rsκ(θ)2]]

= [[a, b− ax, c+ bx+ ax2]].

The other formulas follow by similar (but simpler) arguments.

(c) The description of the action of N(11) on A(11)∗ follows from that in (b), together with

the relation 〈gξ, η〉 = 〈ξ, g−1
η〉 for ξ ∈ A(11)∗ and η ∈ A(11), where the nonsingular pairing

A(11)∗ ×A(11) = (F9 × F9 × F3)× (F3 × F9 × F9)
〈−,−〉−−−−−−−→ F3

is defined by
〈
[[a, b, z]], [[y, c, d]]

〉
= yz + Tr(ad+ bc).

(a) This proof is similar to that of (b), except that κ̂11 is replaced by the map

κ̂10 : S2(T ⊕ F3) −−−−−−−→ A(10) = F3 × F9 × F3,

defined by setting

κ̂10

(
[(ξ, r)⊗ (η, s)]

)
= [[rs, rκ(η) + sκ(ξ),Tr(κ(ξ) · κ(η))]].

This is easily seen to be surjective. For i = 2, 3, we have

κ̂10(θ∗i ) = [[0, 0,Tr(1 · 1− i · ı± 1 · ı)]] = 0,

and so Ker(κ̂10) = 〈θ∗2, θ∗3〉 = K2 since they are both 2-dimensional. So the action of M̂12

on G induces an action of M̂10 = NM̂12
(K2) on G /K2

∼= A(11).

The formulas for ((x))[[a, b, c]], [u][[a, b, c]], and [φ][[a, b, c]] follow from arguments similar
to those used in case (b). �

4. The Todd module for 2M12

We are now ready to look at fusion systems that involve the Todd module for 2M12.
Throughout the section, we refer to the following assumptions:

Hypotheses 4.1. Set p = 3. Let F be a saturated fusion system over a finite 3-group S,
and let A ≤ S be an elementary abelian subgroup such that CS(A) = A. Set Γ = AutF(A)
and Γ0 = O3′(Γ ), and assume that rk(A) = 6 and Γ 0

∼= 2M12.

The main result in this section is Theorem 4.16, where we show that if F satisfies these
hypotheses, then either A E F , or F is isomorphic to the 3-fusion system of the sporadic
group Co1.

Standard results in the representation theory of 2M12 show that in the above situation, A
must be the Todd module for Γ = Γ0 or its dual. In fact, we can assume in all cases that it
is the Todd module.

Lemma 4.2. Assume Hypotheses 4.1. Then Γ = Γ0
∼= 2M12, A is the Todd module for Γ ,

and A is absolutely irreducible as an F3Γ -module.

Proof. By § 4 and Table 5 in [Hu], the only 6-dimensional faithful F3Γ0-modules are the
Todd module and its dual, and they are absolutely irreducible and not isomorphic. Also,
Out(Γ0) ∼= Out(M12) ∼= C2, and composition with an outer automorphism of Γ0 sends the
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Todd module to its dual. So the action of Γ0 on A does not extend to any extension of Γ0

by an outer automorphism, and Γ = Γ0 · CΓ (Γ0). As subgroups of Aut(A), we have

CΓ (Γ0) ≤ AutF3Γ0(A) = {±Id} = Z(Γ0),

where AutF3Γ0(A) = {±Id} since A is absolutely irreducible. Hence Γ = Γ0
∼= 2M12.

Now, Out(Γ ) ∼= Out(M12) ∼= C2, and by § 4 in [Hu] again, an outer automorphism of Γ
acts by exchanging the Todd module with its dual. So (Γ ,A∗) ∼= (Γ ,A) as pairs, and we
can assume that A is the Todd module for Γ . �

We next check that under Hypotheses 4.1, A is weakly closed in F and S splits over A.
These are easy consequences of Lemma 3.14.

Lemma 4.3. Assume that A ≤ S and F satisfy Hypotheses 4.1, and let M be a model for
NF(A) (see Proposition 1.12). Then

(a) A is weakly closed in F and hence normal in S, and

(b) S and M both split over A.

Proof. By Lemma 4.2, we have AutF(A) ∼= M̂12, and A ∼= G as F3M̂12-modules.

(a) If A∗ < NS (A) is such that A∗ ∼= E36 and A∗ 6= A, then for x ∈ A∗ rA, A ∩ A∗ ≤
CA(x), where rk(CA(x)) ≤ 3 by Lemma 3.14 and since cAx has order 3 in AutF(A). Hence
rk(AutA∗(A)) ≥ 3, which is impossible since rk(AutS∗(A)) = rk3(2M12) = 2. So A is the
only element of AF contained in NS (A). Hence A is weakly closed in F by Lemma 2.1.

(b) Choose θ ∈M such that cθ is the central involution in AutF(A) ∼= 2M12 (Lemma 4.2).
Then |θ| = 2 or 6, and after replacing θ by θ3 if necessary, we can assume |θ| = 2. Also,
θ fixes at least one element in each coset hA of A in M since the cosets have odd order.
Hence M = ACM(θ) and S = ACS (θ), while A∩CM(θ) = 1 since θ acts as −Id on A. This
proves that CM(θ) and CS (θ) are splittings of M and S over A. �

We use throughout this section the notation set up in Section 3.1 for working with the
Todd module for 2M12, as summarized in Notation 4.4. In Subsection 4.1, we set up notation
for some of the subgroups of S and Γ that we have to work with. All of this is then applied
in Subsection 4.2 to prove Theorem 4.16 describing fusion systems satisfying Hypotheses 4.1.

Notation 4.4. Assume Hypotheses 4.1 and Notation 3.6. Identify

Γ = M̂12
∼= 2M12 and A = Φ(G ) = Sym3(F3),

where M̂12 is as in Notation 3.6(a). Let N0 ≤ M̂12 be as in Notation 3.6(d), set N =
N0 × {±Id}, and let

Θ: N0

∼=−−−−−→
{(

a b c
d e f
0 0 1

) ∣∣∣ a, b, c, d, e, f ∈ F3, ae 6= bd
}
≤ GL3(F3)

be the isomorphism defined by (3.12). Thus

β(X) = Θ(β)XΘ(β)t

for all β ∈N0 and X ∈ A by Lemma 3.13. Finally, define

T = Θ−1(UT3(F3)) ∈ Syl3(N0) ⊆ Syl3(Γ ),

and set

M = Ao Γ and S = AoT ∈ Syl3(M).
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4.1. Some subgroups of Γ and S .

We begin by listing the additional notation that will be needed; in particular, notation to
describe the subgroups of index 3 in T .

Notation 4.5. Define

Z = Z(S) = CA(T) and A∗ = [T,A].

Define elements η0, η±1, η∞, η̂ ∈ T as follows:

ηk = Θ−1
((

1 1 0
0 1 k
0 0 1

))
(for k ∈ F3), η∞ = Θ−1

((
1 0 0
0 1 1
0 0 1

))
, η̂ = Θ−1

((
1 0 1
0 1 0
0 0 1

))
.

Thus T = 〈η0, η∞〉 and Z(T) = 〈η̂〉. For each k ∈ F3 ∪ {∞}, set

Uk =
〈
η̂, ηk

〉
≤ T

Wk =
{
a ∈ A

∣∣ [a, Uk] ≤ Z = Z(S)
}
≤ A (so Wk/Z = CA/Z(Uk))

Qk = WkUk ≤ S

For k ∈ F3, set

Qk =
{
Q ≤ S

∣∣Q ∩A = Wk, QA = UkA
}
.

In addition, we set

Q̂ = A∗U∞ ∼= 33+4.

For 1 ≤ i, j ≤ 3 and x ∈ F3, let axij ∈ A = Sym3(F3) be the symmetric (3 × 3)-matrix
with x in positions (i, j) and (j, i) (or 2x in position (i, i) if i = j) and 0 elsewhere, and set
aij = a1

ij.

The actions of the ηk on A are described explicitly in Table 4.6.

η η
((

t u r
u v s
r s a

)) [
η,
(
t u r
u v s
r s a

)]
ηk =

(
1 1 0
0 1 k
0 0 1

)
(k ∈ F3)

(
t−u+v u+v+k(r+s) r+s

u+v+k(r+s) v−ks+ak2 s+ak
r+s s+ak a

) (
−u+v v+k(r+s) s

v+k(r+s) −ks+ak2 ak
s ak 0

)
η∞ =

(
1 0 0
0 1 1
0 0 1

) (
t u+r r

u+r v−s+a s+a
r s+a a

) (
0 r 0
r −s+a a
0 a 0

)
η̂ =

(
1 0 1
0 1 0
0 0 1

) (
t−r+a u+s r+a
u+s v s
r+a s a

) (
−r+a s a
s 0 0
a 0 0

)
Table 4.6.

Lemma 4.7. Assume Notation 4.4 and 4.5.

(a) We have

Z =
{(

t 0 0
0 0 0
0 0 0

) ∣∣∣ t ∈ F3

}
and A∗ =

{(
t u r
u v s
r s 0

) ∣∣∣ t, u, v, r, s ∈ F3

}
,

and

AutNF (A∗)(A) = AutNΓ (A∗)(A) where NΓ (A∗) = N.
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(b) For each k ∈ F3 ∪ {∞},

Wk =


{(

t u r
u −kr 0
r 0 0

) ∣∣∣ r, t, u ∈ F3

}
if k ∈ F3{(

t u 0
u v 0
0 0 0

) ∣∣∣ t, u, v ∈ F3

}
if k =∞

CA(Uk) =

{
Z if k ∈ F3

W∞ if k =∞

Qk
∼=

{
31+4

+ if k ∈ F3

E35 if k =∞.
NS(Qk) =

{
S if k = 0

A∗T < S if k 6= 0.

(c) More generally, if k ∈ F3 and Q ∈ Qk, then NS(Q) ≥ A if k = 0, and A∩NS(Q) = A∗
if k 6= 0.

Proof. The descriptions of Z and A∗ follow immediately from the formulas in Notation 4.4.
From this, we see that A∗ = [N0,A] and hence is normalized by N . Since N is a maximal
subgroup of Γ by Lemma 3.7, it must be the full normalizer of A∗.

The formulas in point (b) follow easily from those in Table 4.6. (Note, for each k ∈
F3 ∪ {∞}, that T normalizes Qk since it normalizes Uk and Wk.)

If Q ∈ Qk for some k ∈ F3, then an element a ∈ A normalizes Q if and only if [a, Uk] ≤ Wk,
which holds for all a ∈ A if k = 0, but only for a ∈ A∗ if k = ±1. �

Note that for each k ∈ F3, the subgroup Wk〈η̂, a23ηk〉 lies in Qk (since (a23ηk)
3 ∈ CA(ηk) ≤

Wk), but is not extraspecial since [η̂, a23ηk] = [η̂, a23] ∈ Wk r Z. Thus members of the Qk
need not be extraspecial. However, as shown in the next lemma, all subgroups of S not in
A and isomorphic to E35 or 31+4

+ are members of Qk for some k.

Lemma 4.8. Assume Notation 4.4 and 4.5.

(a) There are exactly three abelian subgroups of S of order 35 not contained in A, and all
of them are conjugate to Q∞ ∼= E35 by elements of Ar A∗.

(b) If P ≤ S is extraspecial of order 35, then Z(P ) = Z, and P ∈ Qk for some k ∈ F3. If
in addition, P is weakly closed in NF(Z), then P = Q0.

(c) For each saturated fusion system E over S and each k ∈ F3, Qk is E-centric.

Proof. (a) Assume B ≤ S is abelian and such that B � A and |B| = 35. For each
η ∈ S rA, rk(CA(η)) ≤ 3 by Lemma 3.14, so rk(BA/A) = 2 and rk(B ∩A) = 3. Thus
BA = UkA for some k ∈ F3 ∪ {∞} such that rk(Wk) ≥ rk(CA(Uk)) ≥ 3, and k = ∞ by
Lemma 4.7(a). By the same lemma, B ∩A = W∞.

Thus B = W∞〈b1η̂, b2η∞〉 for some b1, b2 ∈ A uniquely determined modulo W∞. Since
[η̂, η∞] = 1 and A E S , we have

1 = [b1η̂, b2η∞] = b1(η̂b2η̂
−1)(η∞b

−1
1 η−1

∞ )b−1
2 = [η̂, b2][b1, η∞],

and hence
[η̂, b2] = [η∞, b1] ∈ [η̂,A] ∩ [η∞,A] = 〈a12〉.

So by Table 4.6 again, b1 ≡ ax13 and b2 ≡ ax23 (mod W∞) for some x ∈ F3.

In particular, there are at most three subgroups of S isomorphic to E35 and not in A. Since
NS (Q∞) = A∗T has index 3 in S , there are exactly three such subgroups, and they are all
conjugate to Q∞ by elements of ArA∗. More precisely, the three subgroups W∞〈ax13η̂, a

x
23η∞〉

for x ∈ F3 all have the form βQ∞ for some β ∈ 〈a33〉.

(b) Assume that P ≤ S is extraspecial of order 35, and set P0 = P ∩ A. Then P0 and
P/P0 are both elementary abelian (since [P, P ] = Z(P ) ≤ P0), and hence P0

∼= E27 and
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P/P0
∼= E9. So PA = UkA for some k ∈ F3 ∪{∞}, and Z(P ) ≤ CA(Uk). Since Uk = 〈η̂, ηk〉

and CA(η̂) = W∞, this means that Z(P ) ≤ CW∞(ηk), and hence Z(P ) = Z if k ∈ F3 (while
CA(U∞) = W∞). So if k 6= ∞, then [P0, Uk] = Z, and hence P0 ≤ Wk in this case, with
equality since rk(Wk) = 3 for each k (Lemma 4.7). Thus P ∈ Qk if k ∈ F3.

Conjugation by the element ( −I 0
0 1 ) ∈ N lies in AutF(S) = AutNF (Z)(S), and its action

on S exchanges the sets Q1 and Q−1. So no member of either of these is weakly closed
in NF(Z). Each member of Q0 has the form Q = W0〈g1η0, g2η̂〉 for some g1, g2 ∈ A, and
−Id ∈ N sends Q to W0〈g−1

1 η0, g
−1
2 η̂〉. Since c−Id ∈ AutF(S) = AutNF (Z)(S), Q is weakly

closed only if gi ≡ g−1
i (mod W0) for i = 1, 2, which occurs only if g1, g2 ∈ W0 and hence

Q = Q0. Thus Q0 is the only member of Q0 ∪ Q1 ∪ Q−1 that could be weakly closed in
NF(Z).

If k =∞, then
Z(P ) ≤ CA(U∞) ∩ [η̂,A] ∩ [η∞,A] = 〈a12〉

by Table 4.6, and so
P0 ≤

{
a ∈ A

∣∣ [U∞, a] ≤ Z(P )
}

= W∞
with equality since rk(W∞) = 3 = rk(P0). But [U∞,W∞] = 1, so W∞ ≤ Z(P ), a contradic-
tion.

(c) For each k ∈ F3 and each Q ∈ Qk, CS (Q) ≤ CAUk
(Wk) = A since Qk = UkWk is

extraspecial (Lemma 4.7(b)), and hence CS (Q) = CA(Uk) = Z by the same lemma. Since
(Qk)

F ⊆ Q0 ∪ Q1 ∪ Q2 by (b), this proves that Qk is E-centric for each saturated fusion
system E over S . �

Point (c) in Lemma 4.8 is not true if one replaces Qk (for k ∈ F3) by Q∞. IfF and S satisfy

Hypotheses 4.1, then one can show that Q̂ E CF(W∞), and that OutCF (W∞)(Q̂) ∼= 2A4.
(Since F is isomorphic to the fusion system of Co1 by Theorem 4.16, this follows from the

structure of CCo1(W∞) ∼= Q̂.2A4.) The subgroup Q̂ contains exactly four elementary abelian
subgroups of rank 5 (the three described in Lemma 4.8 and A∗), and they are permuted

transitively by OutCF (W∞)(Q̂). So Q∞ ∈ (A∗)
F , and hence is not F -centric.

4.2. Fusion systems involving the Todd module for 2M12.

We now begin to apply results from Section 2. Recall that our goal is to describe all fusion
systems that satisfy Hypotheses 4.1 with A 5 F .

Proposition 4.9. Assume Hypotheses 4.1 with Γ = M̂12 and A as in Notation 4.4, and
set Z = Z(S). Then F = 〈CF(Z), NF(A)〉.

Proof. Assume otherwise. By Proposition 2.3, there are subgroups X ∈ ZF and R ∈ EF
such that X � A, R = CS (X) = NS (X), and Z = α(X) for some α ∈ AutF(R). Fix
x ∈ X rA. In all cases, R∩A = CA(X) = CA(x), since |X| = |Z| = 3 and hence X = 〈x〉.
Also, |x| = 3 since x ∈ X ∈ ZF where Z has order 3. Set R0 = R ∩A.

Case 1: Assume first that |RA/A| = 3, so that RA = A〈x〉 and R = CS (X) = CA(x)〈x〉.
Then AutA(R) ∼= CA/R0(x) ∼= E3m , where m is the number of Jordan blocks of length at
least 2 for the action of x on A, and m = 2 by Lemma 3.14.

Thus |OutA(R)| = 9. Since OutA(R) acts trivially on R0 and |R : R0| = 3, this contradicts
Lemma B.7.

Case 2: Assume that |RA/A| = 9, and hence that AutR(A) = Uk for some k ∈ F3∪{∞}.
If k ∈ F3, then Z = CA(R) < CA(x) by Lemma 4.7(b), and hence Z ≤ [R,CA(x)] ≤ [R,R].
Since X � [R,R], no automorphism of R sends X to Z.
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Now assume k = ∞, so R0 = CA(x) = CA(R) ∼= E27 by Lemma 4.7(b) again. Also,
OutA(R) ∼= CA/R0(U∞) ∼= E9 (see Table 4.6). So by Lemma B.6(b), for each characteristic
subgroup P ≤ R, either |P | ≥ 34 or |R/P | ≥ 34. Since |R| = 35, and since R is not
extraspecial by Lemma 4.8(b), this implies that R ∼= E35 .

Set B = OutA(R) ∼= E9, so that B ≤ OutS (R). Let H < OutF(R) be a strongly 3-
embedded subgroup that contains OutS(R) (recall R ∈ EF), fix g ∈ OutF(R)rH, and set
L = 〈B, gB〉. Then L � H and 3 | |H ∩ L|, so by Lemma B.2(b), the subgroup H ∩ L is
strongly p-embedded in L.

Since rk(CR(B)) = 3 and rk(R) = 5, we have rk(CR(L)) = rk
(
CR(B)∩CR(gB)

)
≥ 1. Also,

rk(R/CR(L)) ≥ 4 by Lemma B.6(b) again, so rk(CR(L)) = 1, and R/CR(L) is a faithful
4-dimensional representation of L. For each x ∈ B#, rk([x,R]) = rk([x, U∞]) = 2, and so
[x,R/CR(L)] has rank 1 or 2, and x acts on R/CR(L) with Jordan blocks of lengths 2 + 2
or 2 + 1 + 1. By Proposition B.10, L ∼= SL2(9) with the natural action on R/CR(L), and
hence rk([x,R/CR(L)]) = 2 for each x ∈ B#. Thus CR(L)∩ [x,R] = 1 for each x ∈ B#. But
this is impossible: from Table 4.6, we see that the subgroups [x,R] are precisely the four
subgroups of rank 2 in W∞ ∼= E27 that contain 〈a12〉, and hence each element of W∞ lies in
at least one of them.

Case 3: Finally, assume that |RA/A| > 9. Then RA/A = S/A ∼= 31+2
+ , and AX = A〈η̂〉.

From Table 4.6, we see that R0 = CA(η̂) = Z〈a12, a22〉 ∼= E27.

From the formulas in Table 4.6 again, we see that Z〈a12〉 ≤ [T , R0] ≤ [R,R], and hence
that Z ≤ [R, [R,R]]. Since [R, [R,R]] ≤ A, it does not contain X, so no automorphism of
R sends X to Z, contradicting our assumptions. �

We next show that Q0 is normal in CF(Z). The following lemma is a first step towards
doing this. From now on, we set Q = Q0, since this subgroup plays a central role in studying
these fusion systems satisfying Hypotheses 4.1.

Lemma 4.10. Assume Hypotheses 4.1, and Notation 4.4 and 4.5, and set Q = Q0. Then

(a) Q is weakly closed in F ;

(b) Q is normal in NNF (A)(Z);

(c) CΓ (Z) ∼= E9 oGL2(3) and NΓ (U0) = NΓ (Z) ∼= (E9 oGL2(3))× C2; and

(d) Z and W0 are the only proper nontrivial subspaces of A invariant under the action of
CΓ (Z).

Proof. (c) Since Z = CA(U0) (see Table 4.6), we have NΓ (U0) ≤ NΓ (Z). Also, NΓ (U0) ≥
NN (U0) ∼= ToE8, so the index of NΓ (U0) in Γ divides 880. By [Gr, Lemma 7.12 & Exercise
7.36], the orbits of Γ acting on the projective space P (A) have lengths 132, 220, and 12, so
Z must be in an orbit of length 220, and hence |NΓ (Z)| = 32 · 96 = |N |.

Recall (Lemma 3.14) that there are two conjugacy classes of elements of order 3 in Γ ,

differing by the number of Jordan blocks for their actions on A. Thus all elements in U#
0

and U#
∞ are in one of the classes, while elements in Uk r 〈η̂〉 for k ∈ {±1} are in the other.

Since CA(U0) = Z while CA(U∞) = W∞ by Lemma 4.7(b), U0 and U∞ are not Γ -conjugate.

As noted earlier (see [Hu, §4]), while A is not isomorphic to its dual A∗ as F3Γ -modules,
the pairs (Γ ,A) and (Γ ,A∗) are isomorphic via an outer automorphism α ∈ Aut(Γ ) r
Inn(Γ ). Hence by Table 4.6,

rk(CA(U0)) = 1 and rk(CA(α(U0))) = rk(CA∗(U0)) = rk(A/[U0,A]) = 3,
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so α(U0) is not Γ -conjugate to U0. Since all elements of order 3 in α(U0) are conjugate to
each other, α(U0) must be Γ -conjugate to U∞. Thus α exchanges the classes of U0 and U∞.

By the description of the action of N on A in Notation 4.4, N normalizes the subgroup
A∗ of index 3 in A. So it also normalizes a subgroup of order 3 in the dual space A∗, and
hence α(N ) ≤ NΓ (X) for some X ≤ A of order 3. The length of the orbit of X under
the action of Γ divides |Γ : N | = 220, so X is in the orbit of Z by earlier remarks, and
α(N ) = NΓ (X) is Γ -conjugate to NΓ (Z). Thus NΓ (Z) ∼= N ∼= (E9 oGL2(3))× C2. Since
N0 acts via the identity on A/A∗, a similar argument shows that CΓ (Z) ∼= N0. Finally,
since U∞ = O3(N ) and α(U∞) is Γ -conjugate to U0, we get that O3(NΓ (Z)) is Γ -conjugate
to U0, so |NΓ (U0)| = |NΓ (α(U∞))| ≥ |NΓ (Z)|. Since NΓ (U0) ≤ NΓ (Z), they must be equal.

(d) Since CΓ (Z) has index 2 in NΓ (Z) = NΓ (U0) by (c), Z and W0 are both invariant
under its action on A (recall W0/Z = CA/Z(U0) by definition). We must show that there
are no other invariant subgroups.

As noted in the proof of (c), the action of CΓ (Z) on A is (up to isomorphism) dual to the
action of N0

∼= E9 oGL2(3) on A. Set

B = Θ−1
({

( A 0
0 1 )

∣∣A ∈ GL2(3)
})

<N0.

Then A splits as a direct sum of the three irreducible F3B-submodules

W∞ =
{(

a b 0
b c 0
0 0 0

)∣∣∣ a, b, c ∈ F3

}
,
{(

0 0 x
0 0 y
x y 0

)∣∣∣x, y ∈ F3

}
,
{(

0 0 0
0 0 0
0 0 z

)∣∣∣ z ∈ F3

}
,

of which only W∞ is N0-invariant. Since N0 = U∞B, it now follows that the only proper
nontrivial F3N0-submodules are W∞ and A∗, and hence (after dualizing) that A also has
only two proper nontrivial F3CΓ (Z)-submodules.

(b) Since M = AoΓ is a model for NF(A) (Lemma 4.3(b)), it suffices to show that Q E
NM(Z) = ANΓ (Z). Since [Q ,A] = [U0,A] = W0 ≤ Q , where the second equality holds
by Table 4.6, we have A ≤ NM(Q). Also, NΓ (Z) = NΓ (U0) by (c), this group normalizes
W0 since U0 normalizes W0 = [U0,A], and hence NΓ (Z) also normalizes Q = U0W0. So
Q E ANΓ (Z).

(a) We first check that

QF ∩Q0 = {Q}. (4.11)

Assume otherwise: assume P ∈ QF ∩ Q0 and P 6= Q . By Lemma 1.2, there is ϕ ∈
HomF(NS (P ),S) such that ϕ(P ) = Q , and A ≤ NS (P ) by Lemma 4.7(c). Then ϕ(A) = A
since A is weakly closed (Lemma 4.3(a)), and ϕ(Z) = Z since Z = Z(NS (P )) = Z(S). (Note
that NS (P ) = U0A or S .) Thus ϕ ∈ Mor(NNF (A)(Z)), so ϕ(Q) = Q by (b), contradicting
our assumption that P 6= Q .

If Q is not weakly closed, then by Lemma 2.8, there are R ∈ EF ∪ {S}, α ∈ AutF(R),
and P ≤ R such that R ≥ Q , P = α(Q) 6= Q , and R = NS (P ). Then P /∈ Q0 by
(4.11), so by Lemma 4.8(b), there is k ∈ {±1} such that P ∈ Qk. By Lemma 4.7(c) again,
R ∩ A = NS (P ) ∩ A = A∗. Also, RA contains both QA = U0A and PA = UkA, so
RA = S and |S/R| = 3. In particular, R E S .

We next claim that

β ∈ AutF(R), β(A∗) = A∗ =⇒ β(Q) = Q . (4.12)

Fix such a β. Since β(A∗) = A∗ and A is weakly closed, β|A∗ extends to some β̂ ∈ AutF(A) =

Γ by Lemma 2.2(b). Also, β(Z) = Z since Z = Z(R), so β̂ ∈ NΓ (Z) = NΓ (U0) by (c), and

β̂ normalizes CA/Z(U0) = W0/Z. So β(W0) = W0, hence β(Q) ∩ A∗ = β(W0) = W0, and
β(Q) ∈ Q0 by Lemma 4.8(b) again. So β(Q) = Q by (4.11), proving (4.12).
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In particular, α(A∗) 6= A∗ = R∩A by (4.12) and since α(Q) 6= Q , so α(A∗) � A, and by
Lemma 4.8(a), α(A∗) is one of the three subgroups A-conjugate to Q∞. Since R E S , all
three of these subgroups are in the AutF(R)-orbit of Q . In particular, Q∞ = U∞W∞ ≤ R,
so R ≥ U∞QA∗ = TA∗, with equality since both have index 3 in S .

Let Aut0
F(R) ≤ AutF(R) be the stabilizer of A∗. We just saw that the AutF(R)-orbit of

A∗ consists of A∗ together with the three subgroups conjugate to Q∞ by elements of A. So
Aut0

F(R) has index 4 in AutF(R). By (4.12), β(Q) = Q for each β ∈ Aut0
F(R), and hence

the AutF(R)-orbit of Q has order at most 4. Since R E S , all three members of the A-
conjugacy class of P ∈ Qk lie in this orbit. Also, the element Θ−1 (( −I 0

0 1 )) ∈ NN0(T ) ≤ M
exchanges the two classes Q1 and Q−1 and normalizes R = TA∗, so the AutF(R)-orbit of
Q has at least three members from each of these classes. Since this contradicts the earlier
observation that the orbit has at most four members, we conclude that Q is weakly closed
in F . �

We are now ready to prove that Q E CF(Z).

Lemma 4.13. Assume Hypotheses 4.1 and Notation 4.5, and again set Q = Q0. Then
Q E CF(Z).

Proof. For 1 ≤ i ≤ j ≤ 3, let Aij ≤ A be the subgroup of those elements represented by
symmetric (3 × 3)-matrices with entries 0 except possibly in positions (i, j) and (j, i). We
also set ∆ = W0A22 = W∞A13, since this “triangular shaped” subgroup appears frequently
in the arguments below.

Define inductively Z = B0 < B1 < B2 < B3 < B4 = B = Q by setting Bi/Bi−1 =
CQ/Bi−1

(S). Thus

B0 = A11, B1 = B0A12, B2 = W0 = B1A13, B3 = B2〈η̂〉, B4 = Q = B3〈η0〉,
and Bi E S for each i since Z and Q are normal.

Assume Q 5 CF(Z). Then Q/Z 5 CF(Z)/Z by Lemma 1.20 and since Z ≤ Z(CF(Z)).
By Proposition 2.9, applied with CF(Z)/Z and Q/Z in the role of F and A, there are ` ≤ 2,
R ≤ S , and α ∈ AutCF (Z)(R) such that

((1)) R ≥ B`+1, α(Bi) = Bi for all i ≤ `, and X
def
= α(B`+1) � Q ;

((2)) R = NS(X) and R/B` = CS/B`
(X/B`); and

((3)) if ` = 0, then R ∈ ECF (Z) and R/Z ∈ ECF (Z)/Z .

Note, in ((3)), that R ∈ ECF (Z) by Lemma 1.19 together with Proposition 2.9.

We will show that this is impossible. Fix an element t ∈ XrQ = α(B`+1)rQ . Thus X =
B`〈t〉 (recall B` E F`). Set R0 = R ∩A, so that R0 = NA(X) and R0/B` = CA/B`

(X/B`)
by ((2)). We claim that

((4)) R � A and hence R0 6= A and t /∈ A;

((5)) |t| = 3; and

((6)) t /∈ η̂A implies R ≤ A〈t, η̂〉.

To see these, note first that if R ≥ A, then α ∈ AutF`
(R) ⊆ Mor(CNF (A)(Z)) since F` ≤

CF(Z) and A is weakly closed (Lemma 4.3(a)). So α(R∩Q) = R∩Q since Q E NNF (A)(Z)
by Lemma 4.10(b), contradicting the assumption that t ∈ α(B`+1)rQ . Hence R � A. Also,
B` ≤ A, while X = B`〈t〉 � A since A 6= R0 = NA(X), so t /∈ A, finishing the proof of
((4)).
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Since B`+1 ≤ Q has exponent 3, so does X = α(B`+1). Hence |t| = 3, proving ((5)). If
t /∈ η̂A, then RA/A ≤ CS/A(t) = 〈tA, η̂A〉, so R ≤ A〈t, η̂〉, proving ((6)).

Since t ∈ S rA by ((4)), and each element in S rA is S -conjugate to an element of ηA
for η = η̂±1 or η±1

k for k ∈ F3 ∪ {∞}, we can arrange that t ∈ ηA for η ∈ {η̂, η∞, η0, η±1}.
The proof now splits up naturally into different cases, depending on the class tA and on `.
The following arguments, covering all possible pairs (tA, `), are summarized in Table 4.14.

` ` = 0 ` = 1 ` = 2

B`

{( ∗ 0 0
0 0 0
0 0 0

)} {( ∗ ∗ 0
∗ 0 0
0 0 0

)} {( ∗ ∗ ∗
∗ 0 0
∗ 0 0

)}

t
∈
η̂A

R0 = ∆ =
{( ∗ ∗ ∗
∗ ∗ 0
∗ 0 0

)}
α−1(t) ∈ [R,R] =⇒ t ∈ [R,R] =⇒
R = ∆〈t, u, v〉 with u ∈ η0A, v ∈ η∞A

Z(R/B1) = R0〈t〉/B1
∼= E27

Z(R/Z〈t〉) = B1〈t〉/Z〈t〉 ∼= C3

}
imposs.

R0 = A∗ =
{( ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ 0

)}
A∗ ∼= E35 , α(A∗) � A

=⇒ R ≥ A∗Q∞
α(A∗) E R =⇒ R = A∗T

R ≥ Q w.cl.⇒ α(Q) = Q

R0 = A

impossible
by ((4))

t
∈
η 0
A

R0 =
{( ∗ ∗ ∗
∗ 0 0
∗ 0 ∗

)}
, R = R0〈t, u〉

where u ∈ η̂A∗, [t, u] = t3 = u3 = 1

[A23, R] ≤ B2〈t〉 = Z2(R)
[A23, B2〈t〉] ≤ ZA13 = Z(Z2(R)

=⇒ R /∈ ECF (Z) (Lem. B.9) imp. by ((3))

R0 =
{( ∗ ∗ ∗
∗ ∗ 0
∗ 0 ∗

)}
R = R0〈t, u〉 with u ∈ η̂A∗

=⇒ α(t) ∈ B2 ≤ [R,R]
while t /∈ [R,R]

R0 = A

impossible
by ((4))

t
∈
η k
A

,
k
∈
{±

1,
∞
}

R0 = Wk =
{( ∗ ∗ r
∗ −kr 0
r 0 0

)}
or
{( ∗ ∗ 0
∗ ∗ 0
0 0 0

)}
R = R0〈t, u〉 where [t, u] ∈ Z

R ∈ Qk, R/Z ∼= E34

Prop.B.10 ⇒AutCF (Z)/Z(R/Z) ∼= (P)SL2(q)

|AutS/Z(R/Z)| = |NS (R)/R| = 33

=⇒ AutS/Z(R/Z) � AutCF (Z)/Z(R/Z)

R0 = ∆ =
{( ∗ ∗ ∗
∗ ∗ 0
∗ 0 0

)}
R = ∆〈t, u〉 for some

t ∈ ηkA, u ∈ η̂A, [t, u] ∈ Z
Set x = α−1(t) ∈ B`+1 rB` : then

CR(x) ∼= CR(t) ≤ C∆(ηk)〈t, u′〉 for
u′ ∈ u∆: nonabelian of order 34

CR(x) ≥ ∆ ∼= E34 if ` = 1
CR(x) ≥W∞〈x〉 ∼= E34 if ` = 2

Table 4.14. In all cases, R0 = R∩A, where R/B` = CS/B`
(t). In the matri-

ces used to describe R0, a “∗” means an arbitrary element of F3, independent
of the other entries.

t ∈ η̂A: Since [η̂,A] = B2 = [η0,A], [t, u] = 1 for some element u ∈ η0A, and hence
R ≥ R0〈t, u〉.

If ` = 0, then R0 = ∆. So α−1(t) ∈ B1 = [∆, η0] = [R0, u] ≤ [R,R], and hence t ∈ [R,R].
This implies that R = ∆〈t, u, v〉 for some v ∈ η∞A, and hence that Z(R) = Z and
Z2(R) = B1〈t〉 ∼= E27.

By the above relations, we have Z(R/B1) = ∆〈t〉/B1
∼= E27, while Z(R/(Z〈t〉)) =

B1〈t〉/Z〈t〉 ∼= C3. So no α ∈ Aut(R) sends B1 into Z〈t〉.

If ` = 1, then R0 = A∗ = ∆A23
∼= E35 . Set E = α(A∗). Then t ∈ α(B2) ≤ E, so E ∼= E35

is not contained in A, and E is A-conjugate to Q∞ = W∞〈η̂, η∞〉 by Lemma 4.8(a).

Since Q̂ = A∗Q∞ E S , this implies that R ≥ Q̂. Thus R = Q̂〈u〉 = A∗〈η̂, η∞, u〉, and
has index 3 in S .
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Let a ∈ A33 be such that u ∈ η0aA∗. The element η0 normalizes both A∗ and Q∞ =

W∞〈η̂, η∞〉. Hence η0 normalizes each of the four subgroups of Q̂ isomorphic to E35 ,
while A33 normalizes A∗ and permutes the other three transitively. Since A∗ E R, we

must have E = α(A∗) E R, and this is possible only if a = 1. Thus R = Q̂〈η0〉 = A∗T .

In particular, Q = B2〈η̂, η0〉 ≤ R, and α(Q) = Q since Q is weakly closed in F by
Lemma 4.10(a). This contradicts the assumption that α(B2) = B1〈t〉 � Q .

If ` = 2, then R0 = A, contradicting ((4)).

t ∈ η0A: Since [η̂,A] = B2 = [η0, A∗], t commutes with some element u ∈ η̂A∗. Thus
R = R0〈t, u〉 by ((6)), where u ∈ η̂A∗, and [t, u] = u3 = 1.

If ` = 0, then R0 = B2A33 (recall W0 = B2). So Z(R) = Z, and R/Z ∼= 31+2
+ × E9. Then

Z2(R) = B2〈t〉 ∼= 31+2
+ ×C3 and Z(Z2(R)) = Z(B2〈t〉) = ZA13, and so both of these are

characteristic in R.

Since [A23, R] ≤ B2 ≤ Z2(R) and [A23, Z2(R)] = [A23, t] = A13 ≤ Z(Z2(R)) (and since
[A23, Z(Z2(R))] = 1), we have R /∈ ECF (Z) by Lemma B.9, contradicting ((3)).

If ` = 1, then R0 = B2A22A33
∼= E35 . So α(t) ∈ B2 ≤ [R0, 〈t, u〉] ≤ [R,R], while

t /∈ [R,R], a contradiction.

If ` = 2, then R0 = A, contradicting ((4)).

t ∈ ηkA for k = ∞,±1: We have Wk ≤ R0 ≤ ∆ in all cases. Since |t| = 3 by ((5)), we
have t ∈ ηkA∗, and t ∈ ηk∆ if k = ±1. This follows from Lemma A.5, together with the
formulas in Table 4.6. So if k = ±1, then [η̂, t] ∈ [η̂,∆] = Z, and we set u = η̂ ∈ R. If
k = ∞, then [η̂, t] ∈ [η̂, A∗] = B1, and [u,R0〈t〉] ≤ Z (hence u ∈ R) for some u ∈ η̂A13. In
all cases, [t, u] ∈ Z, and R = R0〈t, u〉 by ((6)).

If ` = 0, then R0 = Wk, and so R ∈ Qk, and R/Z ∼= E34 in all cases. Since R/Z ∈
ECF (Z)/Z by ((3)), the group AutCF (Z)/Z(R/Z) ≤ GL4(3) has a strongly embedded sub-

group, and hence O3′(AutCF (Z)/Z(R/Z)) ∼= SL2(9) or PSL2(9) by Proposition B.10. So
AutS/Z(R/Z) ∼= NS (R)/R ∼= E9: a Sylow 3-subgroup of (P)SL2(9).

In all cases, NS (R)∩A = A∗. If k = ±1, then NS (R) = A∗〈t, η̂, η0〉, so |NS (R)/R| =
33. If k =∞, then t ∈ Z(R) since α−1(t) ∈ B1 ≤ Z(R), so R ∼= E35 and is S -conjugate
to Q∞ by Lemma 4.8(a). So |NS (R)/R| = |NS (Q∞)/Q∞| = 33, and we also get a
contradiction in this case.

If ` = 1 or 2, then R0 = ∆ and R = ∆〈t, u〉 where u ∈ η̂A13 and [t, u] ∈ Z. Set
x = α−1(t) ∈ B`+1 r B`. Then CR(x) ∼= CR(t), where either CR(t) = C∆(t)〈t〉 ∼= E27,
or C∆(t)〈t, u〉 is nonabelian of order 34. If ` = 1, then x ∈ A, so CR(x) ≥ R0

∼= E34 . If
` = 2, then x ∈ η̂B2 ⊆ η̂∆ (and x ∈ R), so CR(x) ≥ W∞〈x〉 ∼= E34 . So this is impossible
in either case. �

We can now determine OutF(Q). Let Sp∗4(3) ≤ GL4(3) denote the group of matrices that
preserve a symplectic form up to sign. Thus Sp∗4(3) contains Sp4(3) with index 2.

Lemma 4.15. Assume Hypotheses 4.1 and Notation 4.5. Then

OutF(Q) = Out(Q) ∼= Sp∗4(3).

Also,

OutNF (A)(Q) ∼= NM(Q)/Q = ANM(U0)/W0U0

∼= (A/W0)o (NM(U0)/U0) ∼= E27 o (GL2(3)× C2).
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where the action of CM(U0)/U0
∼= GL2(3) on O3(OutNF (A)(Q)) ∼= A/W0 is irreducible.

Proof. The model M for NF(A) is a semidirect product of A by Γ = AutF(A) ∼= 2M12

(Lemmas 4.2 and 4.3(b)). Since Q is weakly closed in F by Lemma 4.10(a), we have
NM(Q) = NM(AU0) = ANΓ (U0), where NΓ (U0) ∼= (E9 oGL2(3))× C2 by Lemma 4.10(c).
The description of OutNF (A)(Q) ∼= NM(Q)/Q is now immediate, where the action of
CM(U0)/U0 on A/W0 is irreducible by Lemma 4.10(d).

Since NF(A) < F by assumption and F = 〈CF(Z), NF(A)〉 by Proposition 4.9, we
have NF(Z) > NNF (A)(Z). Since Q is F -centric by Lemma 4.8(c) and normal in NF(Z)
by Lemma 4.13, NF(Z) constrained and AutF(Q) > AutNF (A)(Q). Since OutNF (A)(Q) is
maximal in Out(Q), we conclude that OutF(Q) = Out(Q) ∼= Sp∗4(3). �

We are now ready to identify all fusion systems satisfying Hypotheses 4.1.

Theorem 4.16. Let F be a saturated fusion system over a finite 3-group S with a subgroup
A ≤ S such that A ∼= E36, CS(A) = A, and O3′(AutF(A)) ∼= 2M12. Assume also that
A 5 F . Then A E S, S splits over A, and F is simple and isomorphic to the 3-fusion
system of Co1.

Proof. By Lemma 4.2, AutF(A) ∼= 2M12 and acts on A as the Todd module. By Lemma
4.3, A is normal in S and weakly closed in F , and S ∼= A o T where T ∈ Syl3(Γ ) is
defined in Notation 4.4. So we are in the situation of Notation 4.4 and 4.5, and can use the
terminology listed there. Set Q = Q0; then Q E CF(Z) by Lemma 4.13, and is the only
subgroup of S isomorphic to 31+4

+ and weakly closed in NF(Z) by Lemma 4.8(b).

Set G∗ = Co1, fix S∗ ∈ Syl3(G), and let A∗ E S∗ be the unique subgroup isomorphic to
E36 . Set Z∗ = CA∗(S

∗) = Z(S∗). By [Cu, Theorem 3.1] (see also the discussion about the
subgroup !333 on p. 424), the fusion system FS∗(G∗) satisfies Hypotheses 4.1.

Let M be a model for NF(A) (see Proposition 1.12), and set M∗ = NG∗(A
∗). By Lemmas

4.2 and 4.3(b), M and M∗ are both semidirect products of E36 by 2M12 acting as the

Todd module, so there is an isomorphism ϕ : M∗ ∼=−−→ M such that ϕ(S∗) = S . Set F∗ =
ϕ(FS∗(G∗)). Thus F∗ is a fusion system over S isomorphic to FS∗(G∗). We will show that
F∗ = F . By construction, NF(A) = NF∗(A).

Set F1 = CF(Z), F2 = CF∗(Z), and E = CNF (A)(Z). Since NF(A) = NF∗(A), E is
contained in F2 as well as in F1. All three of these are fusion systems over S , and Q
is centric and normal in each of them by Lemmas 4.8(c) and 4.13. Also, OutF1(Q) =
OutF2(Q) ∼= Sp4(3) since they have index 2 in OutF(Q) and OutF∗(Q), respectively, where
OutF(Q) = OutF∗(Q) = Out(Q) by Lemma 4.15.

By Lemma 4.15,

OutNF (A)(Q) = AutA(Q)o (NΓ (Z)/U0) ∼= E27 o (GL2(3)× C2),

where the action of CΓ (Z)/U0
∼= GL2(3) on AutA(Q) ∼= A/W0 is irreducible. In particular,

OutE(Q) has no normal subgroup of index 3, and hence

H1(OutE(Q);Z(Q)) ∼= Hom(E27 oGL2(3),Z/3) = 0.

So F1 = F2 by Proposition 2.11.

Thus CF(Z) = CF∗(Z) and NF(A) = NF∗(A). Since F = 〈CF(Z), NF(A)〉 by Proposi-
tion 4.9 again, and similarly for F∗, we have F = F∗.

The 3-fusion system of Co1 was shown to be simple by Aschbacher [A4, 16.10] (see also
[OR2, Theorem A]). �



FUSION SYSTEMS REALIZING CERTAIN TODD MODULES 35

5. Todd modules for M10 and M11

We now look at Todd modules for the Mathieu groups M11 and M10. More generally,
rather than looking only at M10-representations, we work with representations of extensions
of O3′(M10) ∼= A6. We want to determine all saturated fusion systems over finite 3-groups
which involve these modules. Throughout the section, we refer to the following hypotheses.

Hypotheses 5.1. Set p = 3. Let F be a saturated fusion system over a finite 3-group S,
and let A ≤ S be an elementary abelian subgroup such that CS(A) = A. Set Γ = AutF(A)
and Γ0 = O3′(Γ ), and assume that one of the following holds:

(i) rk(A) = 4 and Γ0
∼= A6, or

(ii) rk(A) = 5 and Γ0
∼= M11.

We will see in Lemma 5.5 that A is weakly closed in F under these assumptions.

The irreducible F3A6- and F3M11-modules are, of course, very well known. In particular,
there are only three modules that we need to consider.

Lemma 5.2. There are exactly one isomorphism class of faithful 4-dimensional F3A6-mod-
ules, and exactly two isomorphism classes of faithful 5-dimensional F3M11-modules. All of
these modules are absolutely irreducible.

Proof. We refer for simplicity to [JLPW, p. [4]] for the table of characters of A6 in charac-
teristic 3: there are none of degree 2, two of degree 3 which are not realized as F3A6-modules
(since GL3(3) has order prime to 5), and one of degree 4 which is realized (as the natural
module for A6). This proves the claim for F3A6-modules.

By [Ja, § 7A], there are exactly two isomorphism classes of irreducible 5-dimensional
F3M11-modules, one the dual of the other. In both cases, these are the smallest degrees of
nontrivial Brauer characters. It is well known that they can be realized as F3M11-modules;
we give one explicit construction in Lemma 3.23(b,c). �

Note: Of the two distinct 5-dimensional F3M11-modules, what we call the “Todd module”
is the one that has a set of eleven 1-dimensional subspaces permuted by M11. That one of
the modules has this form is clear by the construction in Notation 3.18.

As noted in the proof of Lemma 5.2, the 4-dimensional F3A6-module is the natural module
for A6: a subquotient of the 6-dimensional permutation module. However, for our construc-
tions here (e.g., when we want to extend it to an F3Aut(A6)-module), it will be easier to
work with it as a quotient module of the Todd module for 2M12 described in Section 4.

5.1. Preliminary results.

The main goal in this subsection is to show that F = 〈CF(Z), NF(A)〉 whenever Hy-
potheses 5.1 hold (Proposition 5.8). But we first describe more explicitly how the notation

of Section 3.2 is used in the situation of Hypotheses 5.1. Recall that T ∈ Syl3(M̂`) by
Lemma 3.19.

Notation 5.3. Assume Hypotheses 5.1 and Notation 3.18 as well as the notation in Lemma

3.23. Identify Γ0 with M̂0
` = O3′(M̂`) for ` = 10 or 11 in such a way that T = AutS(A),

and identify A with A(`) or (in the M∗
11-case) with A(11)∗. Thus Z = Z(S) = CA(T).

Finally, set A∗ = [S,A] = [T,A].
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A6-case M11-case M∗
11-case

A F3 × F9 × F3 F3 × F9 × F9 F9 × F9 × F3[
s, [[a, b, c]]

]
[[0,−ax,Tr(bx)−aN(x)]] [[0,−ax, bx+ ax2]] [[0,−ax,Tr(bx+ ax2)]]

A∗ = [T ,A] 0× F9 × F3 0× F9 × F9 0× F9 × F3

[s,A] {[[0, ax, c]] | a, c ∈ F3} {[[0, ax, c]] |
a ∈ F3, c ∈ F9}

0× F9 × F3

CA(T ) = Z(S) 0× 0× F3 0× 0× F9 0× 0× F3

CA(s) = Z(A〈s〉) {[[0, b, c]] |Tr(bx) = 0} 0× 0× F9 {[[0, b, c]] |Tr(bx) = 0}
Jd. bl. lth. of cs 3 + 1 3 + 2 3 + 2

Table 5.4. In all cases, s ∈ S rA, and x ∈ F9 is such that cs = ((x)) ∈ T .
The last line gives the Jordan block lengths for the action of s on A.

For later reference, we collect in Table 5.4 some easy computations involving some of the
subgroups of A and Γ defined above.

The next lemma gives a first easy consequence of the computations in Table 5.4.

Lemma 5.5. Assume that A ≤ S and F satisfy Hypotheses 5.1. Then A is weakly closed
in F and in particular is normal in S.

Proof. By Lemma 5.2, A is one of the F3Γ0-modules described in Lemma 3.23. From that
lemma and Table 5.4, we see that in all of these cases, NS (A)/A ∼= E9, |CA(x)| = 9 for each
x ∈ NS (A)rA, and |A : CA(NS (A))| ≥ 33. So A is the unique abelian subgroup of index
9 in NS (A), and hence by Lemma 2.1 is weakly closed in F . �

The following properties will also be needed.

Lemma 5.6. Assume Hypotheses 5.1 and Notation 5.3.

(a) In the A6- and M11-cases, for x ∈ SrA and a ∈ A, we have (ax)3 = x3 if and only if
a ∈ A∗. In all cases, x ∈ SrA and a ∈ A∗ implies (ax)3 = x3.

(b) In all cases, if A 5 F , then [S,S] = A∗.

Proof. (a) By Lemma A.5, for a ∈ A and x ∈ SrA, x3 = (ax)3 if and only if [x, [x, a]] = 1;
i.e., if [x, a] ∈ CA(x). By Table 5.4, this holds if and only if a ∈ A∗ in the A6- and M11-cases,
while [x,A∗] = Z ≤ CA(x) in the M∗

11-case.

(b) Assume otherwise: assume [S ,S ] > A∗ = [S ,A]. Then since S/A ∼= E9 in all cases,
[S ,S ] contains A∗ with index 3.

Assume we are in the M∗
11-case. Thus |A/A∗| = 9 (Table 5.4), and hence A∗ < [S ,S ] < A.

By Lemma 3.19, there is an element −[i] ∈ NΓ0(T ), and this extends to α ∈ AutF(S) by
the extension axiom. By the formulas in Lemma 3.23(c), no subgroup of index 3 in A and
containing A∗ is normalized by α. In particular, α([S ,S ]) 6= [S ,S ], which is impossible.

Now assume we are in the A6- or M11-case. Then |A/A∗| = 3 by Table 5.4 again, so
[S ,S ] = A, and S/A∗ is nonabelian of order 27. Let x ∈ S r A and y ∈ S r A〈x〉 be
arbitrary. Then S = A〈x, y〉 and [x, y] ∈ A r A∗. So x3 6= (yx)3 = y(x3) by (a). In
particular, x3 6= 1, and since x was arbitrary, no element of S rA has order 3.

Assume R ∈ EF . Then A ∩ R = Ω1(R) is characteristic in R. For each a ∈ NA(R)r R,
we have [a,R] ≤ R∩A and [a,R∩A] = 1, contradicting Lemma B.9. Thus NA(R) ≤ R, so
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NAR(R) = R, and hence A ≤ R. Thus each F -essential subgroup contains A, contradicting
the assumption that A 5 F . �

In Notation 5.3, we identified O3′(Γ ) = O3′(M̂`) (for ` = 10 or 11). In fact, this extends

to an inclusion Γ ≤ M̂`.

Lemma 5.7. Assume Hypotheses 5.1 and Notation 5.3. Then for ` = 10, 11, N(`) = NM̂`
(T)

and is a maximal subgroup of M̂`. Also, as subgroups of Aut(A), we have

• M̂10 = NAut(A)(Γ0) ≥ Γ if Γ0 = M̂0
10
∼= A6, and

• M̂11 = NAut(A)(Γ0) ≥ Γ if Γ0 = M̂0
11
∼= M11.

Proof. For ` = 10, 11,

N(`) = N ∩ M̂` = NM̂12
(T ) ∩ M̂` = NM̂`

(T ),

where the second equality holds by Lemma 3.7. The maximality of N(`) in M̂` is well known

in both cases, but we note the following very simple argument. If N(`) is not maximal in M̂`,

then since it has index 10 or 55 when ` = 10 or 11, respectively, there is N(`) < H < M̂`

where [H : N(`)] = n for n ∈ {2, 5, 11}. But then H has exactly n Sylow 3-subgroups where
n ≡ 2 (mod 3), contradicting the Sylow theorems.

Now let ` ∈ {10, 11} be such that Γ0 = M̂0
` . Since A is absolutely irreducible as an

F3M̂
0
` -module by Lemma 5.2, we have CAut(A)(M̂

0
` ) = {±Id}, and hence

|M̂`/M̂
0
` | ≤ |NAut(A)(M̂

0
` )/M̂0

` | ≤ 2 · |Out(M̂0
` )|.

These inequalities are equalities by Table 3.20 (and since |Out(A6)| = 4 and |Out(M11)| = 1),

so M̂` = NAut(A)(M̂
0
` ) ≥ Γ . �

We can now begin to apply some of the lemmas in Section 2.

Proposition 5.8. Assume Hypotheses 5.1 and Notation 5.3. Then F = 〈CF(Z), NF(A)〉.

Proof. Assume otherwise, and recall that A E S by Lemma 5.5. By Proposition 2.3, there
are subgroups X ∈ ZF and R ∈ EF such that X � A, R = CS (X) = NS (X), and Z = α(X)
for some α ∈ AutF(R). Set R0 = R ∩A.

Fix x ∈ X r A. Then |x| = 3, since x ∈ X ∼= Z and Z ≤ A has exponent 3. Also,
R0 = CA(X) = CA(x): since either |X| = |Z| = 3 and hence X = 〈x〉, or else we are in the
M11-case and CA(x) = Z = CA(S). Since x acts on A in all cases with two Jordan blocks
(Table 5.4), we have |R0| = |CA(x)| = 9.

Case 1: Assume first that |RA/A| = 3. Then R = R0〈x〉, and hence |R| = 27.

If we are in the A6-case, then each member of the S -conjugacy class of R has the form
CA(y)〈y〉 = R0〈y〉 for some y ∈ xA, and y ∈ xA∗ by Lemma 5.6(a) and since y3 = 1 = x3.
Since CA(x) has index 3 in A∗, there are at most three such subgroups, so |NS (R)/R| ≥
1
3
[S : R] = 9, contradicting Lemma B.6(b).

In the M11- and M∗
11-cases, |NRA(R)/R| = |CA/R0(x)| = 9, since x acts on A with Jordan

blocks of length 3 and 2 (Table 5.4). Thus |OutA(R)| = 9. Since OutA(R) acts trivially on
R0, and |R/R0| = 3, this contradicts Lemma B.7.

Case 2: Now assume that |RA/A| ∼= E9. Thus RA = S and |R| = 81.
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Assume first we are in the A6- or M∗
11-case. Then |Z| = 3 and Z = CA(R) < CA(x).

So there are y ∈ R r A〈x〉 and a ∈ CA(x) r CA(R) such that 1 6= [y, a] ∈ Z, and hence
Z ≤ [R,CA(x)] ≤ [R,R]. Since X � [R,R], no automorphism of R sends X to Z.

Now assume we are in the M11-case. Then R0 = Z and NS (R) = RA∗, so |NS (R)/R| =
|A∗/Z| = 9, and hence R ∼= E81 by Lemma B.6(b). Each element of order 3 in AutS (R) acts
on R with Jordan blocks of length at most 2, so by Proposition B.10, O3′(AutF(R)) ∼= SL2(9)
with the natural action on R. Also, each element of order 8 in NO3′ (AutF (R))(AutS (R))

restricts to an element α ∈ AutF(Z) of order 8 (note that Z = [NS (R), R]), and this in
turn extends to some β ∈ AutF(S) and hence to β|A ∈ AutF(A) since A is weakly closed

in F by Lemma 5.5. But M̂0
11 ≤ AutF(A) ≤ M̂11

∼= M11 × C2 by Lemma 5.7, so F×9 〈φ〉
or its product with {±Id} is a Sylow 2-subgroup of AutF(A), and by Lemma 3.23(b), the
subgroups of order 8 in these groups do not act faithfully on Z. So this case is impossible. �

5.2. The subgroup Q E CF(Z).

So far, we have shown that F = 〈NF(A), CF(Z)〉 in all cases where Hypotheses 5.1 hold.
Our next step in studying these fusion systems is to prove that CF(Z) is constrained by
constructing a normal centric subgroup Q E CF(Z); and proving (as one consequence) that
S splits over A.

Proposition 5.9. Assume Hypotheses 5.1 where A 5 F . Then there is a unique special
subgroup Q E S of exponent 3 such that Z(Q) = Z, Q ∩ A = A∗, and Q/Z ∼= E81, and
ECF (Z) = {Q}. In particular, Q E CF(Z), and Q is weakly closed in F and F-centric.

Proof. Assume Notation 5.3. Define

Q = {Q ≤ S |Q ∩A = A∗, Q/Z abelian of order 34}
Q0 = {Q ∈ Q |Q of exponent 3}.

Recall that [S ,S ] = A∗ by Lemma 5.6(b). Also, S/A∗ is elementary abelian by Lemma
A.1(a), applied to the group S/Z with center A∗/Z.

We will prove that
ECF (Z) ⊆ Q0 and |Q0| ≤ 1. (5.10)

Since F = 〈CF(Z), NF(A)〉 by Proposition 5.8, and since F 6= NF(A) (recall A 5 F by
assumption), we have ECF (Z) 6= ∅. So (5.10) implies that ECF (Z) = Q0 has order 1, and for
Q ∈ Q0, Q E CF(Z) and Q is weakly closed in F . By construction, CS (Q) = CS (T ) = Z,
so Q is also F -centric.

It thus remains to prove (5.10). Set S = S/Z and similarly for subgroups and elements
of S . In all cases, Z(S) = A∗ ∼= E9.

Let ρ : Q/A∗ −→ Z be the homomorphism of Lemma A.1(b) that sends gA∗ to g3. (Note
that ρ is defined on Q = Q/Z in the lemma, but factors through Q/A∗ since A∗ is elementary
abelian.)

A6- and M11-cases: Here, |A/A∗| = 3, so |Q0| ≤ |Q| = 1 by Lemma A.1(c), applied with
S and A∗ in the role of S and Z. Let Q ∈ Q be the unique element. Then ECF (Z)/Z ⊆ {Q}
by [O1, Lemma 2.3(a)] and since Q is the unique abelian subgroup of index 3 in S , and so
ECF (Z) ⊆ {Q} by Lemma 1.19.

Since Q is the only member of Q, it is normalized by AutF(S). By Table 3.20, the element

β0 =

{
−[i] ∈ N(10) ∩ M̂0

10 ≤ AutF(A) in the A6-case

−[ζ] ∈ N(11) ∩ M̂0
11 ≤ AutF(A) in the M11-case
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normalizes AutS (A), and hence extends to some β ∈ AutF(S). Also, by construction of

N(10) = N(11), β permutes the cosets gA∗ for g ∈ Q r A∗ — in two orbits of length 4 in
the A6-case, or one orbit of length 8 in the M11-case — and ρ is constant on each of these
orbits.

In the A6-case, where |Z| = 3, this implies that ρ = 1 and hence Q ∈ Q0. In the M11-case,
where |Z| = 9, it implies that either Q ∈ Q0, or all elements of Q r A∗ have order 9 and
hence A∗ is characteristic in Q . But in that case, Q /∈ ECF (Z) by Lemma B.9, since for
a ∈ Ar A∗, we have [a,Q ] ≤ A∗ and [a,A∗] = 1. We conclude that ECF (Z) ⊆ Q0 in either
case, finishing the proof of (5.10).

M∗
11-case: Now, |A/A∗| = 9. Assume R ∈ ECF (Z). Then R ≥ Z and R ∈ ECF (Z)/Z

by Lemma 1.19, and hence R ≥ Z(S) = A∗. If R is not abelian, then Z(R) = A∗, so
A∗ is characteristic in R, contradicting Lemma B.9 since [x,R] ≤ A∗ and [x,A∗] = 1 for
each x ∈ S r R. Thus R is abelian, and is maximal abelian since it is F/Z-centric. So
R ∈ Q ∪ {A} by Lemma A.1(d), and ECF (Z) ⊆ Q ∪ {A}.

Since N(11) ∼= (E9 o SD16) × C2 is a maximal subgroup of M̂11 by Lemma 5.7 and
normalizes Z by Lemma 3.23(c), we see that AutNF (Z)(A) = CAutF (A)(Z) has index 2 in

N(11) and hence contains T as a normal subgroup. So A /∈ ECF (Z), and ECF (Z) ⊆ Q.

Assume R is not of exponent 3, and set R0 = Ω1(R). Then R0 has index 3 in R by
Lemma A.1(b), and so R0/Z(R0) ∼= E9 where Z(R0) ≤ A∗. Since |A/A∗| = 9 and 9 -
|Aut(R0/Z(R0))|, there is x ∈ A r A∗ such that [x,R0] ≤ Z(R0). Also, [x,R] ≤ A∗ ≤ R0

and [x, Z(R0)] = 1, and by Lemma B.9, this contradicts the assumption that R ∈ ECF (Z).
Thus ECF (Z) ⊆ Q0.

It remains to show that |Q0| ≤ 1. Assume otherwise: assume Q1 and Q2 are both in Q0.
Define ψ : S/A −→ A/A∗ by setting, for each gA ∈ S/A, ψ(gA) = (gA∩Q1)−1(gA∩Q2) ∈
A/A∗. (Note that gA ∩ Qi ∈ S/A∗ for i = 1, 2.) Since (g1)3 = 1 = (g2)3 for gi ∈ gA ∩ Qi,
and g2 ∈ g1ψ(gA), we have [g, [g, ψ(gA)]] = 1 by Lemma A.5. Using the formulas in Lemma
3.23(c), we identify S/A and A/A∗ with F9, and through that identify ψ with an additive

homomorphism ψ̂ : F9 −→ F9 such that

0 = [((x)), [((x)), [[ψ̂(x), 0, 0]]]] = [[0, 0,Tr(x2ψ̂(x)]]

for each x ∈ F9. Thus x2ψ̂(x) ∈ iF3, and

ψ̂(x) ∈

{
iF3 if x = ±1,±i
F3 if x = ±ζ,±ζ3.

Hence ψ̂ is not onto, and either ψ̂(1) = ψ̂(i) = 0 or ψ̂(ζ) = ψ̂(ζ3) = 0. This proves that

ψ̂ = 0 and hence Q1 = Q2, and finishes the proof of (5.10). �

We list some of the properties of these subgroups Q E S in the Table 5.11 for easy
reference. They follow immediately from the descriptions in Lemma 3.23 and Proposition
5.9.

One easy consequence of Proposition 5.9 is that S ∼= AoT .

Corollary 5.12. Assume Hypotheses 5.1 where A 5 F , and let M be a model for NF(A)
(see Proposition 1.12). Then S and M split over A.

Proof. Let Q E S be the special subgroup of exponent 3 of Proposition 5.9. To prove that
S splits over A, it suffices to show that Q splits over Q ∩A = A∗. If |Z| = 9 (i.e., in the
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Γ0
∼= rk(A) rk(Z) |S | Q ∼= |OutS (Q)|

A6-case A6 4 1 36 31+4
+ 3

M11-case M11 5 2 37 32+4 3

M∗
11-case M11 5 1 37 31+4

+ 9

Table 5.11.

M11-case), then we are in the situation of Lemma A.1(d), so there is B ≤ Q abelian of index
9 such that B ∩ A∗ = Z, and any complement in B to Z is a splitting of Q over A∗.

If |Z| = 3, then consider the space Q = Q/Z, with symplectic form b defined by

b(xZ, yZ) = σ([x, y]) for some σ : Z
∼=−→ F3. Following the standard procedure for con-

structing a symplectic basis for Q , we fix a basis {a1, a2} for A∗/Z, choose b1 ∈ Qra⊥1 , and
choose b2 ∈ 〈a1, b1〉⊥ r 〈a2〉. Then {a1, b1, a2, b2} is a basis for Q , and 〈b1, b2〉 ≤ Q is totally
isotropic and lifts to a splitting of Q over A∗.

Since S splits over A, it follows from Gaschütz’s theorem (see [A1, (10.4)]) that M also
splits over A. �

Recall that for ` = 10, 11, we set T = O3(N(`)) ∼= E9, a Sylow 3-subgroup of M̂`, and

set M̂0
` = O3′(M̂`). Also, Γ was chosen so that Γ0 = M̂0

` (see Notation 5.3), and then

Γ ≤ M̂` by Lemma 5.7.

Notation 5.13. Assume Hypotheses 5.1 and Notation 3.18 and 5.3. Let M be a model for
NF(A), and set M0 = O3′(M). Then M splits over A by Corollary 5.12, and we identify

M = Ao Γ ≤ Ao M̂` and M0 = Ao Γ0 = Ao M̂0
` ,

where ` = 10 if Γ0
∼= A6 and ` = 11 if Γ0

∼= M11. Thus S = A o T ∈ Syl3(M) and
Q = A∗ oT ≤ S.

One easily sees that Q is special with Z(Q) = Z and Q/Z ∼= E81. Also, Q has exponent
3 by Lemma 5.6(a), and hence is the subgroup described in Proposition 5.9. In particular,
Q E CF(Z), and ECF (Z) = {Q}.

Recall Notation 3.18 and Lemma 3.19: T = {((x)) |x ∈ F9}, and

N(10) = N(11) =
〈
((x)), [u], [φ],−Id

∣∣x ∈ F9, u ∈ F×9
〉 ∼= (E9 o SD16)× {±Id}.

Lemma 5.14. Assume Hypotheses 5.1 and Notation 5.13, and also that A 5 F . Then
conditions (i)–(iii) in Hypotheses 2.12 hold for F , S, A, and Q.

Proof. Since M is a model for NF(A), we have S ∈ Syl3(M) and M/A ∼= Γ = AutF(A).
Each pair of distinct Sylow 3-subgroups of Γ0 = O3′(Γ ) ∼= A6 or M11 intersects trivially.
Hence for each subgroup R such that A < R < S , S is the unique Sylow 3-subgroup
of M that contains R. So 1 6= OutS (R) E OutM(R) = OutF(R), and hence OutF(R) =
OutNF (A)(R) does not have a strongly 3-embedded subgroup. Thus no such R can be NF(A)-
essential, proving that ENF (A) ⊆ {A}.

By Proposition 5.8, F =
〈
NF(A), CF(Z)

〉
. Hence EF ⊆ ENF (A) ∪ECF (Z) by Proposition

1.6, while ECF (Z) ⊆ {Q} by Proposition 5.9. So EF ⊆ {A,Q}. Also, A ∈ EF by Lemma

B.1 and since Γ0 = O3′(AutF(A)) ∼= A6 or M11 and hence has a strongly embedded sub-
group, and Q ∈ EF since otherwise A would be normal in F . Thus EF = {A,Q}, proving
2.12(i).
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Recall that Q = A∗T . So S = AQ , and CS (Q ∩A) = CS (A∗) = A by the relations in
Lemma 3.23. This proves 2.12(ii).

By Lemma 5.2, A is absolutely irreducible as an F3Γ0-module, where Γ0 = O3′(AutF(A))
as earlier. Thus the centralizer in Aut(A) of Γ0 is {±Id}. Since Out(A6) and Out(M11) are
2-groups, NAut(A)(O

p′(AutF(A)))/Op′(AutF(A)) is also a 2-group, and so 2.12(iii) holds. �

The following notation for elements in Q will be useful.

Notation 5.15. For a, b ∈ F9, and z ∈ F9 (in the M11-case) or z ∈ F3 (in the A6- or
M∗

11-case), set
<<a, b, z>> = [[0, a, z]]((b)) ∈ A∗T = Q.

Thus each element of Q is represented by a unique triple <<a, b, z>>, for a, b ∈ F9 and
z ∈ F3 or F9. We sometimes write <<a, b, ∗>> ∈ Q/Z to denote the class of <<a, b, z>> for
arbitrary z.

We list in Table 5.16 some of the relations among such triples: all of these are immediate
consequences of the definition in Notation 5.15 and the relations in Lemma 3.23.

A6-case M11-case M∗
11-case

<<a, b, z>>·<<c, d, y>> = <<a+ c, b+ d, z + y + µ(b, c)>> where

µ(b, c) = Tr(bc) µ(b, c) = bc µ(b, c) = −Tr(bc)
[[r,0,0]]<<a, b, z>> <<a− br, b, z + rN(b)>> <<a− br, b, z + rb2>> <<a+ br, b, z + Tr(rb2)>>

[u]<<a, b, z>> <<ua, ub,N(u)z>> <<ua, ub, u2z>> <<u−1a, ub, z>>
[φ]<<a, b, z>> <<a, b, z>> <<a, b, z>> <<a, b, z>>
−Id<<a, b, z>> <<−a, b,−z>> <<−a, b,−z>> <<−a, b,−z>>

Table 5.16. Here, a, b, c, d ∈ F9 and u ∈ F×9 in all cases, z, y ∈ F3 in the A6-
and M∗

11-cases, and z, y ∈ F9 in the M11-case. Also, r ∈ F3 in the A6- and
M11-cases, and r ∈ F9 in the M∗

11-case.

The next two lemmas give more information about Out(Q) and OutF(Q). We start with
the case where Γ0

∼= A6.

Lemma 5.17. Assume Hypotheses 5.1, and Notation 5.3 and 5.13, with Γ0
∼= A6. Thus

M0 = AoM̂0
10
∼= E81oA6. Then each α ∈ NAut(Q)(AutS(Q)) extends to some α ∈ Aut(M0).

Proof. Since N(10) = NM̂10
(T ) by Lemma 5.7, we have

NM0(S) = Ao (N(10) ∩ M̂0
10) = S〈β〉 where β = −[i] ∈ N(10), (5.18)

by Lemma 3.19, and β acts on S via
β
(
[[a, b, c]]((x))

)
= [[− a,−ib,−c]]((ix)). (5.19)

For calculations in Out(Q), we use Notation 5.15, and the ordered basis

B =
{
<<1, 0, ∗>>, <<i, 0, ∗>>, <<0, 1, ∗>>, <<0, i, ∗>>

}
for Q/Z. With respect to B, the symplectic form b defined by commutators has matrix
±
(

0 I
−I 0

)
, and conjugation by [[1, 0, 0]] (a generator of OutS (Q)) has matrix

(
I −I
0 I

)
by

Table 5.16.
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We identify Out(Q) with Aut(Q/Z,±b): the group of automorphisms of Q/Z that pre-
serve b up to sign. We have

NAut(Q/Z)(OutS (Q)) = NGL4(3)

(〈
( I I0 I )

〉)
=
{(

A X
0 ±A

) ∣∣A ∈ GL2(3), X ∈M2(F3)
}
,

and hence

NOut(Q)(OutS (Q)) =
〈
( I X0 I ) , ( A 0

0 A ) ,
(
I 0
0 −I

) ∣∣A,X ∈M2(F3), X = X t, AAt = ±I
〉

=
〈
( I X0 I ) , ( A 0

0 A ) ,
(
I 0
0 −I

) ∣∣X = X t, A ∈ {( 1 1
−1 1 ) , ( 1 0

0 −1 )}
〉

∼= E27 o (SD16 × C2).

(5.20)

Here, each element of the form
(
A 0
0 ±A

)
in NOut(Q)(OutS (Q)) is conjugation by some element

of N(10), and hence extends to an automorphism of M0.

It remains to prove the lemma for automorphisms of the form ( I X0 I ) when X = X t.
Define α1, α2, α3 ∈ Aut(S) as follows. In each case, αi|A = Id, and ωi : T −→ A is such
that αi(g) = ωi(g)g for all g ∈ T :

α1

(
[[a, b, c]]((x))

)
= [[a, b+ x, c+N(x)]]((x)) ω1(((x))) = [[0, x,N(x)]]

α2

(
[[a, b, c]]((x))

)
= [[a, b+ x, c− Tr(x2)]]((x)) ω2(((x))) = [[0, x,−Tr(x2)]]

α3

(
[[a, b, c]]((x))

)
= [[a, b+ ix, c+ Tr(ix2)]]((x)) ω3(((x))) = [[0, ix,Tr(ix2)]].

Each of the αi is seen to be an automorphism of S by checking the cocycle condition

ωi(((x+ y))) = ωi(((x))) + ((x))ωi(((y)))

on ωi. (Note the relation N(x+ y) = (x+ y)(x+ y) = N(x) +N(y) + Tr(xy).) The class of
αi|Q as an automorphism of Q/Z has matrix ( I X0 I ) for X = I, ( 1 0

0 −1 ), or ( 0 1
1 0 ), respectively,

and thus the classes [αi|Q ] generate O3(NOut(Q)(OutS (Q))) by (5.20). Since α1 is conjuation
by [[1, 0, 0]], it extends to M0. For i = 2, 3, the automorphism αi extends to S〈β〉 since
[αi, cβ] = 1 in Aut(S): this follows upon checking the relation βωi(((x))) = ωi(((

βx))) using
(5.19).

Recall that Γ0 = M̂0
10
∼= A6. Then NΓ0(T ) = T 〈β〉 (see (5.18)), and the cohomology

elements [ω1], [ω2], [ω3] ∈ H1(T ;A) are all stable under the action of β. Since T ∈ Syl3(Γ0)
is abelian, fusion in Γ0

∼= A6 among subgroups of T is controlled by NΓ0(T ) = T 〈β〉,
and hence the [ωi] are stable under all fusion in Γ0. So they are restrictions of elements
of H1(Γ0;A) by the stable elements theorem (see [CE, Theorem XII.10.1] or [Br, Theorem
III.10.3]), and each αi extends to an automorphism αi of M0 = Ao Γ0 that is the identity
on A. �

The next lemma is needed to handle the cases where Γ0
∼= M11.

Lemma 5.21. Assume Hypotheses 5.1 and Notation 5.13, where Γ0
∼= M11. Let Q E S be

as in Proposition 5.9, set ∆ = OutF(Q) and ∆0 = O3′(∆).

(a) If we are in the M11-case (i.e., if |Z(S)| = 9), then there is γ ∈ AutF(S) of order 2
that acts on Q/Z via (x 7→ x−1). For each such γ, if we set γ = [γ|Q] ∈ OutF(Q), then

∆ ≤ COut(Q)(γ) ∼= ΓL2(9).

If, furthermore, 1 6= U0 < U ∈ Syl3(COut(Q)(γ)), and if ξ ∈ COut(Q)(γ) has 2-power
order and acts on U by (x 7→ x−1), then for H ∼= 2A4 or H ∼= 2A5, there is a unique
subgroup X ≤ COut(Q)(γ) isomorphic to H, containing U0, and normalized by ξ.

(b) If we are in the M∗
11-case (i.e., if |Z(S)| = 3), then there is γ ∈ AutF(S) of order 4

such that [γ|Q] ∈ OutF(Q) centralizes OutS(Q). For each such γ,

∆0 = O3′(COut(Q)(γ|Q)) ∼= SL2(9).
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Proof. Recall that M = Ao Γ is a model for NF(A), and M0 = O3′(M) = Ao Γ0.

(a) Assume we are in the M11-case. By Lemma 3.19 and Table 5.16, the element [−1] ∈
N(11) ∩ M̂0

11 ≤M acts on Q/Z via (x 7→ x−1). Set γ = c[−1] ∈ AutF(S); thus γ has order
2 and inverts Q/Z.

Now let γ ∈ AutF(S) be an arbitrary element of order 2 that acts on Q/Z via (x 7→ x−1),
and set γ = [γ|Q ] ∈ ∆ = OutF(Q). Since Q ∼= UT3(9) by the relations in Lemma 3.23(b),
we can apply Lemma A.2 to the group OutF(Q) ≤ Out(Q). By Lemma A.2(a,c) and since
γ ∈ ∆ has order 2 and inverts all elements of Q/Z, we have COut(Q)(γ) ∼= ΓL2(9). By the
same lemma and since O3(∆) = 1, ∆ is sent isomorphically into Aut(Q/Z), and hence (since
γ is sent to Z(Aut(Q/Z))) we have γ ∈ Z(∆). So ∆ ≤ COut(Q)(γ).

Now fix subgroups 1 6= U0 < U ∈ Syl3(COut(Q)(γ)), and an element ξ ∈ COut(Q)(γ) of
2-power order that acts on U by (x 7→ x−1). In particular, |U | = 9 and |U0| = 3. Since
O3′(COut(Q)(γ)) ∼= SL2(9) ∼= 2A6, there is a surjective homomorphism Ψ: O3′(COut(Q)(γ)) −→
A6 with kernel of order 2 such that Ψ(U0) is generated by a 3-cycle. (Recall that A6 has an
outer automorphism that exchanges the two classes of elements of order 3.) Also, cξ induces
(via Ψ) an automorphism ξ′ of A6. Since ξ′ has 2-power order and inverts all elements in
Ψ(U), it must be inner, and conjugation by a product of two disjoint transpositions. So there
is a unique subgroup X ≤ A6 that contains Ψ(U0), is normalized by ξ′, and is isomorphic
to H/Z(H) (i.e., to A4 or A5). Thus X = Ψ−1(X) is the unique subgroup satisfying the
corresponding conditions in Out(Q).

(b) Assume we are in the M∗
11-case. By Lemma 5.7 (and Notation 5.3),

M̂0
11 = Γ0 ≤ Γ ≤ M̂11,

where [M̂11:M̂0
11] = 2 by Table 3.20. By Table 3.20 and Lemma 5.7, NM̂11

(T )/T =

N(11)/T ∼= SD16×C2, and hence this group has two subgroups of order 8, generated by [ζ]
and −[ζ], of which only the subgroup 〈−[ζ]〉 lies in Γ0. By Table 5.16, these elements act
on Q/Z as follows:

[ζ]<<a, b, ∗>> = <<ζ−1a, ζb, ∗>> and −[ζ]<<a, b, ∗>> = <<ζ3a, ζb, ∗>>. (5.22)

By comparing characteristic polynomials or traces for the actions of the ζ i on F9, we see
that Q/Z splits as a sum of two nonisomorphic irreducible F3C8-modules under the action
of 〈[ζ]〉, while the two summands under the action of 〈−[ζ]〉 are isomorphic.

Set U = OutS (Q) = OutA(Q) ∈ Syl3(∆). Since U ∼= E9 and all elements of order 3 in U
are in class 3C or 3D (see Table 5.16), we have

∆0
∼= 2A6

∼= SL2(9)

by Lemma A.4. In particular, there is an element γ0 ∈ N∆0(U) of order 8 that acts on
Q/Z, as an F3C8-module, with two irreducible summands not isomorphic to each other.
By the extension axiom, γ0 extends to γ0 ∈ AutF(S), and γ0|A ∈ NΓ (T ) has order 8. By
comparison with the formulas in (5.22), we see that γ0|A must be conjugate to [ζ], and hence

does not lie in Γ0. Thus Γ > Γ0, and hence Γ = M̂11
∼= M11 × C2. So cS−[i] ∈ AutF(S),

it has order 4 and acts on A by −[i][[r, s, t]] = [[r, is,−t]] (see Lemma 3.23(c)), and hence
centralizes U = OutS (Q) ∼= A/A∗.

Now let γ ∈ AutF(S) be an arbitrary automorphism of order 4 that centralizes U =
OutS (Q). Since Aut(∆0) ∼= Aut(2A6) ∼= Aut(A6) where Out(A6) ∼= E4, and since each
outer automorphism of Σ6 exchanges 3-cycles with products of disjoint 3-cycles, we have
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CAut(∆0)(U) ∼= CΣ6(V ) = V for V ∈ Syl3(Σ6). Since γ|Q ∈ ∆ acts on ∆0 and centralizes U

(and since γ has order prime to 3), we conclude that c∆0
γ = Id∆0 and hence ∆0 ≤ COut(Q)(γ).

From the list in [Di2] of subgroups of PSp4(3), we see that ∆0
∼= SL2(9) ∼= 2A6 has

index 2 in a maximal subgroup of Sp4(3), and hence index 4 in a maximal subgroup of
Out(Q) ∼= Sp∗4(3). So ∆0 = O3′(COut(Q)(γ)). �

5.3. Fusion systems involving the Todd modules for M10 and M11.

We are now ready to state and prove our main theorem on fusion systems satisfying
Hypotheses 5.1.

Theorem 5.23. Let F be a saturated fusion system over a finite 3-group S, with a subgroup
A ≤ S. Set Γ0 = O3′(AutF(A)), and assume that either

(i) A ∼= E34 and Γ0
∼= A6; or

(ii) A ∼= E35 and Γ0
∼= M11.

Assume also that A 5 F . Then A E S, S splits over A, F is almost simple, and either

(a) Γ0
∼= A6 and O3′(F) is isomorphic to the 3-fusion system of one of the groups U4(3),

U6(2), McL, or Co2; or

(b) Γ0
∼= M11, |Z(S)| = 9, and O3′(F) is isomorphic to the 3-fusion system of Suz or Ly;

or

(c) Γ0
∼= M11, |Z(S)| = 3, and F is isomorphic to the 3-fusion system of Co3.

(Note that (a), (b), and (c) correspond to the A6-, M11-, and M∗
11-cases, respectively.)

Proof. By Lemma 5.5, A E S and is weakly closed in F . By the same lemma, A is the
unique 4-dimensional F3A6-module if Γ0

∼= A6, and A is the Todd module or its dual if
Γ0
∼= M11. Also, S splits over A by Corollary 5.12 and since A 5 F . So we are in the

situation of Notation 5.3 and 5.13, and can use the terminology listed there.

By Proposition 5.9, there is a unique special subgroup Q E S of exponent 3 such that
Z(Q) = Z = Z(S), Q ∩A = A∗, and Q/Z ∼= E81. Also, ECF (Z) = {Q}, so Q E CF(Z).

Set Γ = AutF(A), ∆ = OutF(Q), Γ0 = O3′(Γ ), and ∆0 = O3′(∆) for short.

If |Z| = 3 (i.e., if we are in the A6- or M∗
11-case), then Q ∼= 31+4

+ , and by Table 5.11,
OutS (Q) ∼= S/Q has order 3 (if Γ0

∼= A6) or 9 (if Γ0
∼= M11). Also, all elements of order

3 in Γ0 act on Q/Z with two Jordan blocks of length 2 (see Table 5.16), and hence they
have class 3C or 3D in O3′(Out(Q)) ∼= Sp4(3) by Lemma A.3. So by Lemma A.4, ∆0 is
isomorphic to 2A4, 2A5, (Q8×Q8)oC3, or 21+4

− .A5 if Γ0
∼= A6, while ∆0

∼= 2A6 if Γ0
∼= M11.

If |Z| = 9, then Γ0
∼= M11 and A is its Todd module. Also, Q ∼= UT3(9) by the relations in

Lemma 3.23(b). So Aut(Q)/O3(Aut(Q)) ∼= ΓL2(9) by Lemma A.2(a,b). Since O3(∆0) = 1
(recall Q ∈ EF and hence Out(Q) has a strongly 3-embedded subgroup), ∆0 is isomorphic to
a subgroup of SL2(9). The subgroups of SL2(9) are well known, and since OutS (Q) ∼= S/Q
has order 3, we have ∆0

∼= 2A4 or 2A5.

Thus in all cases, (Γ0,∆0) is one of the pairs listed in the first two rows of Table 5.24. Let
G∗ be the finite simple group listed in the table corresponding to the pair (Γ0,∆0), and fix
S∗ ∈ Syl3(G∗). If G∗ ∼= U4(3), then it has maximal parabolic subgroups of the form E81oA6

and 31+4
+ .2Σ4, so FS∗(G∗) satisfies Hypotheses 5.1, and there are subgroups A∗, Q∗ E S∗

such that A∗ ∼= A, Q∗ ∼= Q , O3′(AutG∗(A
∗)) ∼= A6, and O3′(AutG∗(Q

∗)) ∼= 2A4. In all of the
other cases, we refer to the tables in [A3, pp. 7–40], which show that FS∗(G∗) also satisfies
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Γ0 A6 M11

∆0 2A4 2A5 (Q8 ×Q8)o C3 21+4
− .A5 2A4 2A5 2A6

G∗ U4(3) McL U6(2) Co2 Suz Ly Co3

Table 5.24.

Hypotheses 5.1 with subgroups A∗ ∼= A and Q∗ ∼= Q such that O3′(AutG∗(A
∗)) ∼= Γ0 and

O3′(AutG∗(Q
∗)) ∼= ∆0.

Let M be a model for NF(A) (see Proposition 1.12), and set M∗ = NG∗(A
∗). By Corollary

5.12, applied to F and to FS∗(G∗), we have O3′(M) ∼= A o Γ0
∼= O3′(M∗). Choose an

isomorphism ϕ : O3′(M∗)
∼=−−→ O3′(M) such that ϕ(A∗) = A and ϕ(S∗) = S , and set

F∗ = ϕ(FS∗(G∗)). Then F∗ is a fusion system over S isomorphic to FS∗(G
∗), and we

will apply Proposition 2.13 to show that F∗ = O3′(F).

The fusion system FS∗(G∗) is simple in all cases by Proposition 4.1(b), Proposition 4.5(a),
or Table 4.1 in [OR2]. (See also (16.3) and (16.10) in [A4], which cover almost all cases.) So
F∗ = O3′(F∗). By construction, O3′(NF(A)) = O3′(NF∗(A)). By Lemma 5.14, the fusion
systemsF and F∗ both satisfy Hypotheses 2.12 with respect to A,Q E S . So by Proposition
2.13, to show that O3′(F) = F∗, it remains to show that O3′(OutF(Q)) = O3′(OutF∗(Q)),
and this will be shown by considering the three cases separately. Set

Γ ∗ = AutF∗(A), ∆∗ = OutF∗(Q), Γ ∗0 = O3′(Γ ∗), and ∆∗0 = O3′(∆∗),

and note that ∆0
∼= ∆∗0 in all cases by the choice of G∗.

The A6-case: Since ∆0
∼= ∆∗0 are both subgroups of Out(Q) with the same Sylow 3-

subgroup OutS (Q), Lemma A.4 applies to show that they are conjugate in Out(Q), and
hence ∆0 = γ0∆∗0 for some γ0 ∈ NAut(Q)(AutS (Q)). By Lemma 5.17, γ0 extends to some

γ ∈ Aut(H0), and γ(S) = S since S = QA. So upon replacing F∗ by (γ|S )F∗, we can
arrange that ∆∗0 = ∆0 without changing Γ ∗0 .

The M11-case: Let γ ∈ AutF(S) = AutF∗(S) be as in Lemma 5.21(a): γ has order 2, and
γ|Q acts on Q/Z by inverting all elements. Then ∆0,∆

∗
0 ≤ O3′(COut(Q)(γ|Q)) ∼= SL2(9) ∼=

2A6 by that lemma.

Set U0 = OutS (Q) ∼= C3, and let U ∈ Syl3(COut(Q)(γ|Q)) be the (unique) Sylow 3-

subgroup that contains U0. Set h = −[ζ] ∈ N(11) ∩ M̂0
11 < M0 (see Lemma 3.19), and set

ξ = cSh ∈ AutF(S) = AutF∗(S). Since Q is weakly closed in F and in F∗ by Proposition

5.9, we have ξ
def
= [ξ|Q ] ∈ ∆∩∆∗. So ∆0

∼= ∆∗0 both contain U0 and are normalized by ξ, and
they are both isomorphic to 2A4 or 2A5. Hence ∆0 = ∆∗0 by the last statement in Lemma
5.21(a).

The M∗
11-case: By Lemma 5.21(b), applied to either fusion system F or F∗, there is

γ ∈ AutF(S) = AutF∗(S) of order 4 such that γ|Q commutes with AutS (Q). By the same
lemma, for any such γ, we have ∆0 = COut(Q)(γ) = ∆∗0. Also, in this case, since G∗ ∼= Co3,

we have Out(F∗) ∼= Out(G∗) = 1 by [O2, Proposition 3.2], and hence F = O3′(F). �

The automizers of the subgroups A and Q in each case of Theorem 5.23 are described
more explicitly in Table 5.25. We refer again to [A3, pp. 7–40] in all cases except that of
U4(3).
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A Γ0 Q Γ = AutF(A) ∆ = OutF(Q) G

A6 2Σ4 U4(3)

Σ6 (Q8 ×Q8)oΣ3 U6(2)
A6-case E34 A6 31+4

+
M10 2Σ5 McL

(A6 × C2).E4 21+4
− .Σ5 Co2

M11 (2A4 ◦D8).C2 Suz
M11-case E35 M11 32+4

M11 × C2 (2A5 ◦ C8).C2 Ly

M∗
11-case E35 M11 31+4

+ 2×M11 (2A6 ◦ C4).C2 Co3

Table 5.25. In all cases, F is a fusion system over S = AoT , and is realized
by the group G. Also, A E S is abelian with CS (A) = A and Z = Z(S),
Γ = AutF(A), and Γ0 = O3′(Γ ). The subsystem CG(Z) is constrained with
Q = O3(CG(Z)) and Z = Z(Q).

Note that by [BMO, Theorem A(a,d)], the 3-fusion system of U6(2) is isomorphic to those
of U6(q) for each q ≡ 2, 5 (mod 9), and to those of L6(q) for each q ≡ 4, 7 (mod 9). Thus
U6(2) could be replaced by any of these other groups in the statement of Theorem 5.23.

6. Some 3-local characterizations of the Conway groups

We finish with some new 3-local characterizations of the three Conway groups, U6(2),
and McLaughlin’s group. In each case, the new result is obtained by combining an earlier
characterization of the some group with the classifications of fusion systems in Theorem 4.16
or 5.23. It seems likely that one could get stronger results with a little more work, but we
prove here only ones that follow easily from Theorems 4.16 and 5.23 together with the earlier
characterizations.

We first combine Theorem 4.16 with the 3-local characterization of Co1 shown by Salarian
[Sa], to get the following slightly simpler characterization.

Theorem 6.1. Let G be a finite group. Assume A ≤ S ∈ Syl3(G) are such that

(1) A ∼= E36, CG(A) = A, and NG(A)/A ∼= 2M12;

(2) A is not strongly closed in S with respect to G; and

(3) O3′(CG(Z(S))) = 1 and |O3(CG(Z(S)))| > 3.

Then G ∼= Co1.

Proof. By Salarian’s theorem [Sa, Theorem 1.1], to show that G ∼= Co1, it suffices to find
subgroups H1, H2 ≥ S ∈ Syl3(G) that satisfy the following three conditions:

(i) H1 = NG(Z(O3(H1))), O3(H1) ∼= 31+4
± , H1/O3(H1) ∼= Sp4(3)oC2, and CH1(O3(H1)) =

Z(O3(H1));

(ii) O3(H2) ∼= E36 and H2/O3(H2) ∼= 2M12; and

(iii) (H1∩H2)/O3(H2) is an extension of an elementary abelian group of order 9 by GL2(3)×
C2.

Set Z = Z(S), H1 = NG(Z) and H2 = NG(A). Since H1, H2 ≥ S (recall A E S by
assumption), it suffices to prove (i)–(iii).



FUSION SYSTEMS REALIZING CERTAIN TODD MODULES 47

Set F = FS(G). Then A 5 F by (2), and hence F is isomorphic to the fusion system of
Co1 by (1) and Theorem 4.16. In particular, S is isomorphic to the 3-group S of Notation
4.4 and 4.5, so we can identify S with S and use the notation defined there for subgroups
of S .

Condition (ii) holds by (1). Also, (H1 ∩ H2)/O3(H2) = NH2(Z)/A ∼= NAutF (A)(Z) where
NAutF (A)(Z) ∼= (E9 oGL2(3))× C2 by Lemma 4.10(c), so (iii) holds.

Set P = O3(CG(Z)). Then |P | > 3 by (3), so P > Z. Also, P E CF(Z), so P ≤
O3(CF(Z)) = Q0

∼= 31+4
+ by Lemma 4.13. The action of OutCF (Z)(Q0) ∼= Sp4(3) on Q0/Z ∼=

E81 is irreducible, and hence P = Q0. Thus Q0 = O3(CG(Z)) = O3(H1) since CG(Z) is
normal of index at most 2 in H1 = NG(Z).

Now, Q0 is F -centric by Lemma 4.8, so Z = Z(Q0) ∈ Syl3(CG(Q0)), and hence CG(Q0) =
K×Z(Q0) = K×Z for some K of order prime to 3. Also, K E CG(Z) since Q0 E CG(Z), so
K ≤ O3′(CG(Z)) = 1 by (3). Thus CH1(Q0) = Z = Z(Q0), and hence H1/Q0

∼= OutF(Q0).
Since OutF(Q0) ∼= Sp4(3):2 by Lemma 4.15, this finishes the proof of (i), and hence the proof
of the theorem. �

The following 3-local characterization of Co3 simplifies slightly that shown by Korchagina,
Parker, and Rowley.

Theorem 6.2. Let G be a finite group. Assume A ≤ S ∈ Syl3(G) are such that

(1) A ∼= E35, CG(A) = A, |Z(S)| = 3, and O3′(NG(A)/A) ∼= M11;

(2) A is not strongly closed in S with respect to G; and

(3) O3′(CG(Z(S))) = 1 and |O3(CG(Z(S)))| > 3.

Then G ∼= Co3.

Proof. By the theorem of Korchagina, Parker, and Rowley [KPR, Theorem 1.1], to show
that G ∼= Co3, it suffices to find subgroups M1,M2 ≤ G and A ≤ S that satisfy the following
two conditions:

(i) M1 = NG(Z(S)) is of the form 31+4
+ .C2.C2.PSL2(9).C2; and

(ii) M2 = NG(A) is of the form E35 o (C2 ×M11).

Set Z = Z(S), M1 = NG(Z) and M2 = NG(A); we claim that (i) and (ii) hold for this choice
of subgroups.

Set F = FS(G). Then A 5 F by (2). By Table 5.4 and since |Z| = 3 by (1), A is the

dual Todd module for O3′(AutF(A)) ∼= M11. Hence F is isomorphic to the fusion system of
Co3 by Theorem 5.23(c). In particular, S is isomorphic to the 3-group S of Notation 5.3, so
we can identify S with S and use the notation defined there for subgroups of S .

Condition (ii) holds by (1), and since NG(A)/A ∼= AutF(A) ∼= M11 × C2 by Table 5.25.

Set P = O3(CG(Z)). Then |P | > 3 by (3), so P > Z. Also, P E CF(Z), so P ≤
O3(CF(Z)) = Q ∼= 31+4

+ by Proposition 5.9. Since 5
∣∣ |SL2(9)|, the action of OutCF (Z)(Q) ∼=

SL2(9) on Q/Z ∼= E81 is irreducible, and hence P = Q. Thus Q = O3(CG(Z)) = O3(M1)
since CG(Z) is normal of index at most 2 in M1 = NG(Z).

Now, Q is F -centric by Proposition 5.9, so Z = Z(Q) ∈ Syl3(CG(Q)), and hence CG(Q) =
K × Z(Q) = K × Z for some K of order prime to 3. Also, K E CG(Z) since Q E CG(Z),
so K ≤ O3′(CG(Z)) = 1 by (3). Thus CM1(Q) = Z = Z(Q), and hence M1/Q ∼= OutF(Q).
Since F is the fusion system of Co3, and since OutF(Q) ∼= 2(A6×C2).C2 by Table 5.25, this
finishes the proof of (i), and hence the proof of the theorem. �
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Finally, we combine Theorem 5.23 with results of Parker, Rowley, and Stroth, to get some
new 3-local characterizations of McL and U6(2) as well as of Co2.

Theorem 6.3. Let G be a finite group, fix S ∈ Syl3(G), and set Z = Z(S). Assume A ≤ S
is such that

(1) A ∼= E34, CG(A) = A, and O3′(NG(A)/A) ∼= A6;

(2) A is not strongly closed in S with respect to G; and

(3) O3′(CG(Z)) = 1 and |O3(CG(Z))| > 3.

Then O3(NG(Z)) ∼= 31+4
+ and CG(O3(CG(Z))) = Z. Also, the following hold, where k denotes

the index of O3′(NG(A)/A) in NG(A)/A:

(a) If 5
∣∣ |CG(Z)|, then G is isomorphic to McL, Aut(McL), or Co2, depending on whether

k = 2, 4, or 8, respectively.

(b) If 5 - |CG(Z)|, |O2(CG(Z)/O3(CG(Z)))| ≥ 26, and k ≤ 4, then G ∼= U6(2) or U6(2)oC2

when k = 2 or 4, respectively.

Proof. Set F = FS(G). Then A 5 F by (2). So by (1) and Theorem 5.23(a), O3′(F) is
isomorphic to the fusion system of Co2, U4(3), McL, or U6(2).

Set Q = O3(CF(Z)): an extraspecial group of order 35 with Z(Q) = Z by Proposition
5.9. We claim that Q/Z is a simple F3OutF(Q)-module. Assume otherwise, and consider
the elements a = [[1, 0, 0]] ∈ S and β = [c−[i]] ∈ OutF(Q) in the notation of Tables 3.20
and 5.16. Assume 0 6= V < Q/Z is a proper nontrivial submodule, and choose 0 6= x ∈ V .
If x /∈ CQ/Z(a), then the elements [a, x], β([a, x]), x, β(x) all lie in V and generate Q/Z (see
Table 5.16), contradicting the assumption that V < Q/Z. Thus V ≤ CQ/Z(a), with equality
since V ≥ 〈x, β(x)〉 = CQ/Z(a). But if CQ/Z(a) were a submodule, then by Lemma B.9, Q
would not be F -essential, contradicting Proposition 5.9.

Set P = O3(CG(Z)). Then P > Z by (3), and P ≤ Q since P E CF(Z). Also, P/Z is an
F3OutF(Q)-submodule of Q/Z, so P = Q ∼= 31+4

+ since Q/Z is simple.

Now, Q is F -centric by Proposition 5.9, so Z = Z(Q) ∈ Syl3(CG(Q)), and hence CG(Q) =
K ×Z(Q) = K ×Z for some K of order prime to 3. Also, K E CG(Z) since Q E CG(Z), so
K ≤ O3′(CG(Z)) = 1 by (3). Thus CG(Q) = Z = Z(Q), and hence CG(Z)/Q ∼= OutF(Q).

If 5
∣∣ |CG(Z)/Q| = |OutF(Q)|, then by Table 5.25 again, O3′(F) is the fusion system of

McL or Co2. In the former case, O3′(NG(Z)) ∼= 31+4
+ .2A5 and CG(O3(CG(Z))) = CG(Q) ≤ Q,

so conditions (i)–(iii) in [PSt2, Theorem 1.1] all hold, and G ∼= McL or Aut(McL) by that
theorem (with k = 2 or 4).

If O3′(F) is the fusion system of Co2, then by Table 5.25,

(i) Q = O3(CG(Z)) is extraspecial of order 35, O2(CG(Z)/Q) is extraspecial of order 25,
and CG(Z)/O3,2(CG(Z)) ∼= A5; and

(ii) Z is not weakly closed in S with respect to G.

So G ∼= Co2 by a theorem of Parker and Rowley [PR2, Theorem 1.1]. Also, k = 8 in this
case.

If 5 - |CG(Z)|, |O2(CG(Z)/Q)| ≥ 26, and k ≤ 4, then by Table 5.25, CG(Z)/Q contains 2A4

with index k or (Q8×Q8)oC3 with index k/2, and the first would imply |O2(CG(Z)/Q)| ≤ 25.
SoO3′(F) is the fusion system of U6(2), and CG(Z)/Q contains a normal subgroup isomorphic
to (Q8 × Q8) o C3. Hence CG(Z) is “similar to a 3-centralizer in a group of type PSU6(2)
or F4(2)” in the sense of Parker and Stroth [PSt1, Definition 1.1], and F ∗(G) ∼= U6(2) or
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F4(2) by [PSt1, Theorem 1.3]. The group F4(2) does contain subgroups isomorphic to E81 (a
maximal torus and the Thompson subgroup of a Sylow 3-subgroup), but all such subgroups
have automiser the Weyl group of F4, and so we conclude that G ∼= U6(2) or U6(2)oC2. �

Appendix A. Some special p-groups

In this section, we give a few elementary results on special or extraspecial p-groups and
their automorphism groups. Most of them involve p-groups of the form p2+4 or p1+4

+ , but we
start with the following, slightly more general lemma.

Lemma A.1. Fix a prime p, and let Q be a finite nonabelian p-group such that Z(Q) =
[Q,Q] and is elementary abelian. Set Z = Z(Q) and Q = Q/Z for short. Then the following
hold.

(a) The quotient group Q is elementary abelian, and hence Q is a special p-group.

(b) If p is odd, then there is a homomorphism ρ : Q −→ Z such that gp = ρ(gZ) for each
g ∈ Q.

(c) Assume Q ∼= Ep3 and Z ∼= Ep2. Then there is a unique abelian subgroup A ≤ Q of order
p4 and index p.

(d) Assume |Q| = p4, and |Z| ≤ p2. Then for each g ∈ QrZ, there is an abelian subgroup
A ≤ Q of index p2 such that g ∈ A, and A is unique if [g,Q] = Z ∼= Ep2. If |Z| = p2

and [g,Q] = Z for each g ∈ Q r Z, then there are exactly p2 + 1 abelian subgroups of
index p2 in Q, any two of which intersect in Z.

Proof. Set P = PZ/Z and g = gZ ∈ Q/Z for each H ≤ Q and g ∈ Q. Since [Q,Q] ≤ Z(Q),
the commutator map Q×Q −→ Z is bilinear.

(a) For each g, h ∈ Q, we have [g, h] ∈ Z and [g, h]p = 1 by assumption. Hence [gp, h] = 1
for all h ∈ Q, so gp ∈ Z(Q) = Z, and Q = Q/Z is elementary abelian.

(b) For each g, h ∈ Q, since [h, g] ∈ Z(Q), we have (gh)n = gnhn[h, g]n(n−1)/2 for each n ≥ 1.
(Recall that [h, g] = hgh−1g−1 here.) So if p is odd, then (gh)p = gphp for each g, h ∈ Q.

(c) Assume |Q| = p5 and |Z| = p2. Since |[Q,Q]| > p, there is at most one abelian subgroup
of index p in Q (see [O1, Lemma 1.9]).

Fix a, b, c ∈ Q such that {a, b, c} is a basis forQ ∼= Ep3 , and consider the three commutators
[a, b], [a, c], and [b, c]. Since rk(Z) = 2, one of these is in the subgroup generated by the
other two, and without loss of generality, we can assume there are i, j ∈ Z such that [a, b] =
[a, c]i[b, c]j = [a, ci][b, cj] (recall [Q,Q] ≤ Z(Q)). Then [acj, bc−i] = 1, and hence Z〈acj, bc−i〉
is abelian of index p in Q.

(d) Assume Q ∼= Ep4 and |Z| ≤ p2, and fix g ∈ Q r Z. Then commutator with g defines
a homomorphism χ : Q/Z〈g〉 −→ Z, and this is not injective since rk(Q/Z〈g〉) > rk(Z). So
there is h ∈ Qr Z〈g〉 such that [g, h] = 1 and Z〈g, h〉 is abelian. If [g,Q] = Z ∼= Ep2 , then
χ is surjective, Ker(χ) is generated by the class of h, and hence Z〈g, h〉 is the only abelian
subgroup of index p2 in Q containing g.

Now assume [g,Q] = Z ∼= Ep2 for each g ∈ QrZ, and let A be the set of abelian subgroups

of index p2 in Q. Then each P ≤ Q of order p is contained in A for some unique A ∈ A, and
each such A has p2 − 1 subgroups of order p. So |A| = (p4 − 1)/(p2 − 1) = p2 + 1. �

In the rest of the section, we prove some more specialized results on certain special p-
groups. Recall that for each prime power q and each n ≥ 2, we let UTn(q) denote the group
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of upper triangular (n × n) matrices with 1’s on the diagonal. The groups UT3(q) are a
special case of what Beisiegel calls “semi-extraspecial p-groups” in [Bei].

Lemma A.2. Let p be an odd prime, and set q = pm for some m ≥ 1. Set Q = UT3(q) and
Z = Z(Q), and let

Ψ: Aut(Q) −−−−−→ Aut(Q/Z)

be the natural homomorphism. We regard Q/Z as a 2-dimensional Fq-vector space in the
canonical way.

(a) The image Ψ(Aut(Q)) is the group of all Fq-semilinear automorphisms of Q/Z, hence
isomorphic to ΓL2(q). For α ∈ Aut(Q), we have α|Z = Id if and only if Ψ(α) is linear
of determinant 1.

(b) We have Ker(Ψ) = Op(Aut(Q)) ∼= Hom(Q/Z,Z) ∼= Epn where n = 2m2.

(c) Let γ ∈ Aut(Q) be any automorphism such that Ψ(γ) = −IdQ/Z. Then

CAut(Q)(γ) ∼= COut(Q)(γ) ∼= Ψ(Aut(Q)).

More precisely, each α ∈ Ψ(Aut(Q)) is the image under Ψ of a unique element in
CAut(Q)(γ) and of a unique class in COut(Q)(γ), and hence

Aut(Q) = Op(Aut(Q))o CAut(Q)(γ) and Out(Q) = Op(Out(Q))o COut(Q)(γ).

Proof. (a,b) See [PR1, Proposition 5.3].

(c) Set U = Ker(Ψ) = Op(Aut(Q)) for short. Fix γ ∈ Aut(Q) such that Ψ(γ) = −Id. Then
γ|Z = IdZ since Z = [Q,Q]. Each β ∈ U has the form β(g) = gχ(g) for some χ ∈ Hom(Q,Z)
with Z ≤ Ker(χ), and

(γβ)(g) = γβ(γ−1(g)) = γ(γ−1(g)χ(g−1)) = gχ(g)−1 = β−1(g).

Thus cγ sends each element of U to its inverse, and since γ ∈ α−IU (where α−I ∈ Aut(Q) is
defined as in the proof of (a)), we have γ2 = (α−I)

2 = Id. Note also that CAut(Q)(γ)∩U = 1.

Fix α ∈ Aut(Q). Then [α, γ] ∈ U since Ψ(γ) ∈ Z(Aut(Q/Z)), so cγ sends the coset αU to
itself. Since γ2 = 1 and |αU | = |U | is odd (a power of p), there is some α′ ∈ αU ∩CAut(Q)(γ).
Since CAut(Q)(γ) ∩ U = 1, there is at most one such element α′ ∈ αU centralized by γ.

A similar argument shows that each [α] ∈ Out(Q) is congruent modulo U/Inn(Q) to a
unique class of automorphisms that centralizes the class of γ in Out(Q). �

When working with automorphisms of extraspecial groups 31+4
+ , we will need to know the

conjugacy classes of elements of order 3 in Sp4(3).

Lemma A.3. Let V be a 4-dimensional F3-vector space with nondegenerate symplectic form
b. Thus Aut(V, b) ∼= Sp4(3). There are four conjugacy classes of elements of order 3 in
Aut(V, b).

(a) The elements g ∈ Aut(V, b) in class 3A or 3B are those that act on V with one Jordan
block of length 2 and two of length 1. Also, g ∈ 3A implies g−1 ∈ 3B.

(b) The elements g ∈ Aut(V, b) in class 3C or 3D are those that act on V with two Jordan
blocks of length 2. If B = {v1, v2, v3, v4} is a basis for V with respect to which the form
b has matrix ±

(
0 I
−I 0

)
, and if g has matrix ( I X0 I ) with respect to B, then g ∈ 3C if

det(X) = 1 and g ∈ 3D if det(X) = −1.

Proof. The conjugacy classes of elements of order 3 in Sp4(3) were first determined by Dick-
son, in [Di1, p. 138].
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Fix g ∈ Aut(V, b) of order 3. Its Jordan blocks have length at most 3, so there must be
at least two of them. Thus dim(CV (g)) ≥ 2 and CV (g) ∩ [g, V ] 6= 0, so there are v, w ∈ V
such that {gv − v, w} are linearly independent and lie in CV (g). Also, (gv − v) ⊥ w since g
preserves b, and so W = 〈gv − v, w〉 ≤ CV (g) is totally isotropic.

Fix a basis B = {v1, v2, v3, v4} such that W = 〈v1, v2〉, and with respect to which b has
matrix ±

(
0 I
−I 0

)
. Then g has matrix ( I X0 B ) with respect to B, and B = I and X = X t since

g preserves b. Such a matrix ( I X0 I ) has Jordan blocks of length 2 + 2 if det(X) 6= 0, or
of length 2 + 1 + 1 if det(X) = 0, showing that such elements lie in at least two different
conjugacy classes of subgroups.

If g and h have matrices ( I X0 I ) and ( I Y0 I ), respectively, where X and Y are invertible, then
W = CV (g) = CV (h). So if they are conjugate in Aut(V, b), they are conjugate by a matrix
of the form

(
A 0
0 (At)−1

)
, and hence Y = AXAt and det(Y ) = det(X) det(A)2 = det(X). Thus

there are at least three conjugacy classes of subgroups of order 3, and since there are exactly
three by [Di1], they are distinguished by det(X) when there is a generator of the form ( I X0 I ).

There are 40 maximal isotropic subspaces, each of which is fixed by three subgroups of
the form

〈
( I X0 I )

〉
for det(X) = 1, and six of that form with det(X) = −1. Also, there

are 40 3-dimensional subspaces, each of which is fixed by exactly one subgroup of the form〈
( I X0 I )

〉
with det(X) = 0. Hence there are 120, 240, and 40 subgroups conjugate to 〈( I X0 I )〉

for det(X) = 1, −1, and 0, respectively. Since they are named in order of occurrence in the
group, they correspond to the classes 3C, 3D, and 3AB, respectively. �

Finally, we consider certain subgroups of extraspecial groups of order 35.

Lemma A.4. Assume Q is extraspecial of order 35 and exponent 3. Let 1 6= P ≤ Out(Q)
be such that O3(P ) = 1, O3′(P ) = P , and each element of order 3 in P is of type 3C or 3D.
Then either

(a) P is isomorphic to 2A4, 2A5, or (Q8 × Q8) o C3, in each of which cases there is one
Sp4(3)-conjugacy class containing elements of type 3C and one containing elements of
type 3D; or

(b) P ∼= 21+4
− .A5 or 2A6, in each of which cases there is just one conjugacy class.

Proof. Set Z = Z(Q) and V = Q/Z, and let b be the symplectic form on V defined by taking
commutators in Q. Thus V is a 4-dimensional vector space over F3, and O3′(Out(Q)) ∼=
Aut(V, b) ∼= Sp4(3). Let R ≤ O3′(Out(Q)) be a maximal subgroup that contains P . By a
theorem of Dickson [Di2, § 71] (see also [Mi, Theorem 10]), R must lie in one of five conjugacy
classes.

• If R is in one of the two classes of maximal parabolic subgroups, then O3′(R)/O3(R) ∼=
SL2(3) ∼= 2A4. Since O3(P ) = 1, it follows that P ∼= 2A4.

• If R ∼= Sp2(3) o C2
∼= 2A4 o C2, then P ≤ O3′(R) ∼= 2A4 × 2A4, and V splits as a direct

sum of 2-dimensional F3P -submodules. Each g ∈ P of order 3 is in class 3C or 3D
and hence acts on V with two Jordan blocks of length 2, and thus acts nontrivially
on each of the two direct summands. In other words, each such g acts diagonally on
O2(R) ∼= Q8 × Q8, and so P ≤ (Q8 × Q8) o C3. Hence either P = (Q8 × Q8) o C3,
or P ∼= 2A4 diagonally embedded in 2A4 × 2A4.

• If O2(R) ∼= Sp2(9) ∼= 2A6, then from a list of subgroups of 2A6
∼= SL2(9) (see [GLS3,

Theorem 6.5.1]), we see that P ∼= 2A4, 2A5, or 2A6.



52 BOB OLIVER

• Assume R ∼= 21+4
− .A5, and let P̂ be the image of P in R/O2(R) ∼= A5. Then P̂ ∼= C3, A4,

or A5: these are up to conjugacy the only nontrivial subgroups of A5 generated by
elements of order 3. Also, P acts faithfully on O2(R)/Z(R) ∼= E16. Since O3(R) = 1,
P must be isomorphic to one of the following groups:

P̂ ∼= C3 =⇒ P ∼= Q8 o C3;

P̂ ∼= A4 =⇒ P ∼= A4, 2A4, or 21+3.A4
∼= (Q8 ×Q8)o C3;

P̂ ∼= A5 =⇒ P ∼= A5, 2A5, or 21+4
− .A5.

The groups A4 and A5 cannot occur as subgroups of Sp4(3), since an element of order
3 would have to permute three distinct eigenspaces for the action of O2(A4) ∼= E4,
hence have a Jordan block of length 3, which contradicts Lemma A.3.

Thus P is isomorphic to 2A4, 2A5, (Q8 × Q8) o C3, 21+4
− .A5, or 2A6. By §11 and §46 in

[Di2], there are two conjugacy classes of subgroups isomorphic to 2A4 and two of subgroups
isomorphic to 2A5. Since 2A6

∼= SL2(9) < Sp4(3) has elements of both types 3C and 3D
(the elements ( 1 1

0 1 ) and
(

1 ζ
0 1

)
are in different classes by the criterion in Lemma A.3), the two

classes in each case are distinguished by having elements of type 3C or 3D. Likewise, by
[Di2, § 49], there are two classes of subgroups of the form (Q8×Q8)oC3 (and not isomorphic
to 2A4×Q8), and they are also distinguished by having elements of type 3C or 3D. Finally,
by [Di2, § 61 & § 68], there is just one conjugacy class of subgroups isomorphic to 2A6 and
one of subgroups isomorphic to 21+4

− .A5. �

We finish the section with the following well known and elementary lemma.

Lemma A.5. Fix a prime p. Let G be a finite p-group, let A E G be a normal elementary
abelian p-subgroup, and assume x ∈ G r A is such that xp ∈ A. Let Φx ∈ End(A) be the
homomorphism Φx(a) = [x, a] = xa · a−1. Then for each a ∈ A, (ax)p = xp if and only if
(Φx)

p−1(a) = 1.

Proof. Set U = A〈x〉/A ∼= Cp and u = xA ∈ U , and regard A as an FpU -module. Then

(ax)p = a · xa · · · xp−1

a · xp =
(
(1 + u+ · · ·+ up−1)a

)
· xp = (u− 1)p−1a · xp = Φp−1

x (a) · xp

(in additive notation). So (ax)p = xp if and only if Φp−1
x (a) = 0. �

Appendix B. Strongly p-embedded subgroups

We collect here some of the basic properties, especially for odd primes p, of finite groups
with strongly p-embedded subgroups. All of the results here are proven independently of the
classification of finite simple groups (but see remarks in the proof of Proposition B.10).

Lemma B.1. Let G be a finite group, and let G0 E G be normal of index prime to p. Then
G0 has a strongly p-embedded subgroup if and only if G does.

Proof. Recall (see [HB3, Theorem X.4.11(b)]) that G has a strongly p-embedded subgroup
if and only if there is a partition Sylp(G) = X1 qX2, with X1, X2 6= ∅, such that for each
S1 ∈ X1 and S2 ∈ X2, we have S1 ∩ S2 = 1 (G is “p-isolated” in the terminology of [HB3]).
Since Sylp(G0) = Sylp(G), the lemma follows immediately. �

Lemma B.2. Let G be a finite group with a strongly p-embedded subgroup H < G.

(a) Each proper subgroup Ĥ < G that contains H is also strongly p-embedded in G.
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(b) For each normal subgroup K E G, either HK/K is strongly p-embedded in G/K, or
HK = G, or p - |G/K|.

Proof. (a) Assume H ≤ Ĥ < G. If g ∈ G r Ĥ is such that p | |Ĥ ∩ gĤ|, then there is

x ∈ Ĥ ∩ gĤ of order p. Since H contains a Sylow p-subgroup of Ĥ, there are a, b ∈ Ĥ such
that x ∈ aH and x ∈ gbH. Thus p | |aH ∩ gbH| = |H ∩ a−1gbH|, so a−1gb ∈ H since H is

strongly p-embedded. Hence g ∈ Ĥ since a, b ∈ Ĥ. So Ĥ is also strongly p-embedded in G.

(b) If K E G and HK < G, then HK is strongly p-embedded in G by (a). Hence HK/K
is strongly p-embedded in G/K if p | |HK/K|; equivalently, if p | |G/K|. �

The next few lemmas provides different ways of showing that certain groups do not have
strongly p-embedded subgroups.

Lemma B.3. Fix a finite group G containing a strongly p-embedded subgroup. Let {Ki}i∈I
be a finite set of normal subgroups, set KI0 =

⋂
i∈I0 Ki for each I0 ⊆ I, and assume KI = 1.

Let J ⊆ I be the set of those i ∈ I such that p - |Ki|. Then the following hold.

(a) In all cases, J 6= ∅ and G/KJ has a strongly p-embedded subgroup.

(b) If p2 - |G|, or (more generally) if there is a p-subgroup T ≤ G such that NG(T ) is
strongly p-embedded in G, then there is j ∈ J such that G/Kj has a strongly p-embedded
subgroup.

Proof. Fix S ∈ Sylp(G), and let H < G be the minimal strongly p-embedded subgroup that
contains S.

(a) We show this by induction on |I r J |. If I = J , there is nothing to prove, so assume
I % J , fix i0 ∈ I r J , and set I0 = I r {i0}. Then p | |Ki0| and Ki0 ∩KI0 = 1, so I0 6= ∅ and
[Ki0 , KI0 ] = 1. For each g ∈ KI0 , we have H ∩Ki0 ≤ CH(g) ≤ H ∩ gH, and p | |H ∩Ki0 |
since S contains some Sylow p-subgroup of Ki0 . Thus g ∈ H, and so KI0 ≤ H. So p - |KI0|,
and H/KI0 is strongly p-embedded in G/KI0 by Lemma B.2(b). Since |I0r J | < |I r J |, we
now conclude by the induction hypothesis (applied to the group G/KI0 and the subgroups
{Ki/KI0}i∈I0) that J 6= ∅, and that G/KJ has a strongly p-embedded subgroup.

(b) Assume T ≤ S is such that H = NG(T ) is strongly p-embedded in G. In particular,
if |S| = p, this holds for T = S. We must show that G/Kj has a strongly p-embedded
subgroup for some j ∈ J , and it suffices to do this when I = J and |J | = 2; e.g., when
I = J = {1, 2}. Thus K1 ∩K2 = 1, and p - |Ki| for i = 1, 2. Set K = K1K2.

Assume neither G/K1 nor G/K2 contains a strongly p-embedded subgroup. Then G =
HK1 = HK2 by Lemma B.2(b). Also,

[H ∩K,T ] = [NK(T ), T ] ≤ T ∩K = 1,

and H ∩K = NK(T ) = CK(T ). So for i = 1, 2, we have K = (H ∩K)Ki = CK(T )Ki since
G = HKi, and hence [K,T ] = [Ki, T ] ≤ Ki.

Thus [K,T ] ≤ K1∩K2 = 1. But then K and H both normalize T , so G = HK normalizes
T , contradicting the assumption that H = NG(T ) < G. �

The next lemma is an easy consequence of the well known list of subgroups of PSL3(p).

Lemma B.4. Fix a prime p and n ≥ 2. Let G ≤ GLn(p) be a subgroup such that G � SLn(p),
p2 | |G|, and G acts irreducibly on Fnp . Then n ≥ 4.
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Proof. Since p2 - |GL2(p)|, we have n ≥ 3. From the list of maximal subgroups of PSL3(p)
(see [GLS3, Theorem 6.5.3]), we see that there is no proper subgroup G < SL3(p) (hence
none in GL3(p)) such that G is irreducible on F3

p and p2
∣∣ |H|. So n ≥ 4. �

In the next few lemmas, Φ(P ) denotes the Frattini subgroup of a finite p-group P .

Lemma B.5. Let P be a finite p-group, and let P0 ≤ P1 ≤ · · · ≤ Pm = P be a sequence
of subgroups, all normal in P , and such that P0 ≤ Φ(P ). Let α ∈ Aut(P ) be such that
[α, Pi] ≤ Pi−1 for all 1 ≤ i ≤ m. Then α has p-power order.

Proof. For each such α, α/P0 ∈ Aut(P/P0) has p-power order by [Go, Theorem 5.3.2], and
hence α has p-power order by [Go, Theorem 5.1.4]. �

Lemma B.6. Let F be a saturated fusion system over a finite p-group S, and assume
P ∈ EF . Let P0 ≤ P1 ≤ · · · ≤ Pm = P be a sequence of subgroups such that P0 ≤ Φ(P ), and
such that Pi is normalized by AutF(P ) for each 0 ≤ i ≤ m. Assume also that [P, Pi] ≤ Pi−1

for each 1 ≤ i ≤ m.

(a) If |NS(P )/P | = p, then there is at least one index i = 1, . . . ,m such that rk(Pi/Pi−1) ≥
2, and such that the image of AutF(P ) in Aut(Pi/Pi−1) has a strongly p-embedded
subgroup.

(b) If |NS(P )/P | ≥ p2, then there is at least one index i = 1, . . . ,m such that rk(Pi/Pi−1) ≥
4. If there is a unique such index i, then the image of AutF(P ) in Aut(Pi/Pi−1) has a
strongly p-embedded subgroup.

Proof. Fix i = 1, . . . ,m. Since [P, Pi] ≤ Pi−1, the homomorphism AutF(P ) −→ Aut(Pi/Pi−1)
induced by restriction to Pi contains Inn(P ) in its kernel, and hence factors through a ho-
momorphism ϕi : OutF(P ) −→ Aut(Pi/Pi−1). Set Ki = Ker(ϕi) E OutF(P ).

Assume that α ∈ AutF(P ) is such that its class [α] ∈ OutF(P ) lies in
⋂m
i=1Ki. Thus

[α, Pi] ≤ Pi−1 for each i, so α has p-power order by Lemma B.5 and since P0 ≤ Φ(P ). So⋂m
i=1Ki is a normal p-subgroup of OutF(P ). Since OutF(P ) has a strongly p-embedded

subgroup (recall P ∈ EF), we have Op(OutF(P )) = 1 (recall Op(−) is contained in all Sylow
p-subgroups), and hence

⋂m
i=1 Ki = 1. We are thus in the situation of Lemma B.3.

Recall that NS(P )/P ∼= OutS(P ) ∈ Sylp(OutF(P )). As in Lemma B.3, let J be the set
of all i = 1, . . . ,m such that |Ki| is prime to p, and set KJ =

⋂
j∈J Kj. By Lemma B.3(a),

J 6= ∅ and OutF(P )/KJ contains a strongly p-embedded subgroup.

Without loss of generality, in both points (a) and (b), we can assume that the filtration
by the Pi is maximal. Thus each quotient Pi/Pi−1 is elementary abelian, and the action of
OutF(P ) on it is irreducible.

(a) If |OutS(P )| = p, then by Lemma B.3(b), there is j ∈ J such that Im(ϕj) ∼= OutF(P )/Kj

contains a strongly p-embedded subgroup.

(b) Now assume |OutS(P )| ≥ p2. Recall that the action of OutF(P ) on Pj/Pj−1 is irreducible
for each j ∈ J . So rk(Pj/Pj−1) ≥ 4 for each j ∈ J by Lemma B.4. In particular, if there
is a unique i such that rk(Pi/Pi−1) ≥ 4, then |J | = 1, and OutF(P )/Kj has a strongly
p-embedded subgroup for j ∈ J . �

The next lemma provides another way to show that certain subgroups of a p-group S
cannot be essential in any fusion system over S.

Lemma B.7. Let F be a saturated fusion system over a finite p-group S. Assume P < S
and T ≤ AutS(P ) are such that |T/(T ∩ Inn(P ))| ≥ p2 and [P : CP (T )] = p. Then P /∈ EF .
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Proof. Assume otherwise: assume P is F -essential. Set G = OutF(P ), and set T =
T ·Inn(P )/Inn(P ) ≤ OutS(P ). Thus |T | ≥ p2 by assumption. Let H < G be a strongly
p-embedded subgroup that contains OutS(P ) ∈ Sylp(G). Fix g ∈ G r H, and set K =
〈T, gT 〉 ≤ AutF(P ). Since H is strongly p-embedded and g /∈ H, no p-subgroup of G can
intersect nontrivially with both T and gT , and in particular,

either Op(K) ∩ T ≤ Inn(P ) or Op(K) ∩ gT ≤ Inn(P ). (B.8)

By assumption, CP (T ) has index p in P , and so does CP (gT ). If CP (T ) = CP (gT ), then
K is an abelian p-group, contradicting (B.8). So CP (K) = CP (T ) ∩ CP (gT ) has index
p2 in P , and P/CP (K) ∼= Ep2 . The group of elements of K that induce the identity on
P/CP (K) is a p-group by Lemma B.5, and hence contained in Op(K). Since p2 - |GL2(p)|,
we have [T : Op(K) ∩ T ] ≤ p, and since |T | ≥ p2, this implies Op(K) ∩ T � Inn(P ). But
Op(K) ∩ gT � Inn(P ) by a similar argument, this again contradicts (B.8), and so P cannot
be F -essential. �

The next lemma gives yet another simple criterion for a subgroup not to be essential.
Again, Φ(−) denotes the Frattini subgroup.

Lemma B.9. Let F be a saturated fusion system over a finite p-group S, and fix P ≤ S.
Assume there are subgroups P0 E P1 E · · · E Pk = P , all normalized by AutF(P ), such that
P0 ≤ Φ(P ). Assume also there is x ∈ NS(P )rP such that [x, Pi] ≤ Pi−1 for each 1 ≤ i ≤ k.
Then P /∈ EF .

Proof. By Lemma B.5 and since P0 ≤ Φ(P ), the group Γ of all α ∈ Aut(P ) such that
[α, Pi] ≤ Pi−1 for 1 ≤ i ≤ k is a p-subgroup of Aut(P ), and Γ∩AutF(P ) is normal in AutF(P )
since the Pi are normalized by AutF(P ). So cx ∈ Op(AutF(P )), and either cx ∈ Inn(P ), in
which case x ∈ PCS(P ) r P and hence P is not F -centric, or Op(OutF(P )) 6= 1, in which
case OutF(P ) has no strongly p-embedded subgroup (since Op(−) is contained in all Sylow
p-subgroups). In either case, P /∈ EF . �

We finish by listing the subgroups of SL4(p) that have strongly p-embedded subgroups
and order a multiple of p2. We indicate how to arrange the proof so as to be independent of
the classification of finite simple groups.

Proposition B.10. Fix an odd prime p, let V be a 4-dimensional vector space over Fp,
and let H < G ≤ Aut(V ) be such that p2 | |G| and H is strongly p-embedded in G. Set
G0 = Op′(G). Then either G0

∼= SL2(p2) and V is its natural module, in which case each
element of order p in G0 acts on V with two Jordan blocks of length 2; or G0

∼= PSL2(p2)
and V is the natural Ω−4 (p)-module, in which case each element of order p in G0 acts on V
with Jordan blocks of lengths 1 and 3.

Proof. By Aschbacher’s theorem [A2], applied to the finite simple classical group PSL4(p),
either G is contained in a member of one of the “geometric” classes Ci (1 ≤ i ≤ 8) defined
in [A2], or the image of G in Aut(V )/Z(Aut(V )) ∼= PGL4(p) is almost simple.

By Lemma B.1, G0 = Op′(G) also has a strongly p-embedded subgroup.

Case 1: Assume G is contained in a member of Aschbacher’s class Ck, for some 1 ≤ k ≤ 8.
Since Fp has no proper subfields, the class C5 is empty.

If k = 1 or k = 2, then G0 acts reducibly on V , contradicting Lemma B.6(b).

If k = 3, then G0 is contained in SL2(p2) (where V is the natural module). Since SL2(p2)
is generated by any two of its Sylow p-subgroups (and since they have order p2), G0 cannot
be a proper subgroup of SL2(p2).
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If k = 4 or k = 7, then the restriction of V to G0 splits as a tensor product of 2-dimensional
representations, and G0 is isomorphic to a subgroup of SL2(p)◦SL2(p). By Lemma B.2(b), the
image of G0 in PSL2(p)×PSL2(p) has a strongly p-embedded subgroup. But this contradicts
Lemma B.3(a), applied with Ki the kernels of the two projections to PSL2(p).

The class C6 consists of the normalizers of K ∼= 21+4
± (if p ≡ 3 (mod 4)), or that of

K ∼= C4 ◦ 21+4 (if p ≡ 1 (mod 4)). Thus Out(K) ∼= Σ3 oC2, Σ5, or Σ6, respectively. If k = 6,
then since p2 | |G|, we have p = 3 and K ∼= 21+4

+ , so G0 is a subgroup of SL2(3) ◦ SL2(3), and
G is contained in a member of C7.

Assume k = 8. The class C8 consists of the normalizers of Sp4(p), Ω+
4 (p) ∼= SL2(p)◦SL2(p),

and Ω−4 (p) ∼= PSL2(p2). The symplectic group Sp4(p) is generated by the two parabolic
subgroups that contain S, each of which would be contained in a strongly p-embedded
subgroup if there were one. So G � Sp4(p), and the proper subgroups of this group are
eliminated by again applying Aschbacher’s theorem using similar arguments. The subgroup
SO+

4 (p) is in class C7. This leaves the case G0 ≤ Ω−4 (p) ∼= PSL2(p2) (see [Ar, Théorème 5.21]
or [Ta, Corollary 12.43]), with equality since PSL2(p2) is generated by any two of its Sylow
p-subgroups.

Case 2: It remains to check the cases where the image in PGL4(p) of G is almost simple,
and show that none of them (aside from those already listed) have strongly p-embedded
subgroups. By Tables 8.9 and 8.13 in [BHR], the only almost simple groups that could appear
in this way as maximal subgroups of SL4(p) are normalizers of L2(7) or A7 (if p ≡ 1, 2, 4
(mod 7)), or U4(2) (if p ≡ 1 (mod 6)) in L4(p), or A6, A7 (if p = 7), L2(p) (if p > 7) in
Sp4(p). None of these subgroups can occur when p = 3, which is the only odd prime whose
square can divide the order of the subgroup, so they and their subgroups do not come under
consideration.

The tables in [BHR] were made using the classification of finite simple groups. But lists
of maximal subgroups of PSL4(q) and PSp4(q) for odd q, compiled independently of the
classification, had already appeared in [Mi] for the symplectic case, and in [Bl, Chapter VII]
and the main theorems in [ZS, Su] for the linear case.

Elements of order p: The description of the Jordan blocks for the natural action of
SL2(p2) is clear. So assume V is the natural module for G0 = Ω−4 (p) ∼= PSL2(p2). The iso-
morphism extends to an isomorphism GO−4 (p) ∼= PΓL2(p2) between automorphism groups,
so all elements of order p in G0 have similar actions on V . Hence it suffices to describe the
action of one element t of order p in Ω3(p) ≤ Ω−4 (p). The action of Ω3(p) on F3

p is induced

by the conjugation action of PSL2(p) on the additive group M0
2 (Fp) of (2 × 2)-matrices of

trace 0 (see, e.g., [LO, Proposition A.5]), and using this one easily checks that t acts with
one Jordan block of length 3. �
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