
Nielsen theory and linked periodic orbits

of homeomorphisms of S2

Marc Bonino
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1 Linked periodic orbits

It is well known that every orientation preserving homeomorphism of the
plane R2 with a k-periodic orbit O (k ≥ 2) necessarily has a fixed point (see
[4] or [5], [7], [11]). It is then interesting to know if O is linked with one of
these fixed points. The difficulty to answer this question depends a lot on
the precise sense we give to the word “linked”. Before to discuss briefly this
point, let us observe this general problem has a very natural counterpart in
the framework of orientation reversing homeomorphisms of the sphere S2.
Indeed, every such homeomorphism possessing a k-periodic orbit O (k ≥ 3)
also has a 2-periodic orbit ([2]) and one can ask if O is linked with one of
these 2-periodic orbits. The aim of this paper is to answer this question in
some sense.

For completeness, let us recall what seems to be the deeper form of the
“linking problem”, due to J. Franks: if an orientation preserving homeo-
morphism h of R2 has a k-periodic orbit O (k ≥ 2), is it possible to find a
fixed point z such that the rotation number ρ(O, h|Az) of O in the open an-
nulus Az = R2 \ {z} is non-zero modulo Z ? The only partial results in this
direction are [1] and [10]. Similarly one can ask if an orientation reversing
homeomorphism h of S2 with a periodic orbit O of period at least three also
has a 2-periodic orbit O′ such that ρ(O, h|AO′ ) 6= 0 in Q/Z, where AO′ is the
annulus S2 \ O′. Observe that this makes sense because h|AO′ interchanges
the two ends and reverses the orientation of AO′ so its lifts to the universal
cover ÃO′ = R2 commutes with the deck translations, which allows to define
the rotation number ρ(O, h|AO′ ) as usual. We rather deal in this paper with
another notion of linking, due to J.M. Gambaudo. In what follows, a disc
(resp. a Jordan curve) in a surface S is a subset of S homeomorphic to the
closed unit disc of R2 (resp. to S1). The frontier and the interior of a disc
D ⊂ S are denoted respectively ∂D and Int(D).

Definition 1.1 ([8]) Let O1 and O2 be two periodic orbits of a homeomor-
phism h of a surface S. We say that O1 and O2 are unlinked if there exist
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two discs Di ⊂ S (i = 1, 2) with the following properties:

• ∀i = 1, 2 Oi ⊂ Int(Di),

• D1 ∩D2 = ∅,
• ∀i = 1, 2 h(∂Di) is freely isotopic to ∂Di in S \ (O1 ∪ O2).

Otherwise the orbits O1 and O2 are said to be linked.

B. Kolev proved in [14] that every k-periodic orbit O (k ≥ 2) of an ori-
entation preserving C1-diffeomorphism of R2 is linked with a fixed point in
this sense. His result actually holds for a homeomorphism by using a local
smoothing near the orbit O similarly as in Section 3. The same is also true
for an orientation preserving C1-embedding of the 2-disc ([8]). We also recall
the following definition of P. Boyland which appear to be related with our
result.

Definition 1.2 ([[3], p.265]) Let h be a homeomorphism of an (open or
compact) annulus A. A periodic orbit O of h is trivially embedded in A if
there exists a disc D ⊂ A such that

• O ⊂ Int(D),

• the (non essential) Jordan curves ∂D and h(∂D) are freely isotopic in
A \ O.

We can now state the result which is proved in this paper.

Theorem 1.1 Let h be an orientation reversing homeomorphism of the
sphere S2 with a periodic orbit O of period k ≥ 3. Then there exists a
2-periodic orbit O′ such that one cannot find any Jordan curve C ⊂ S2

separating O and O′ which is freely isotopic to h(C) in S2 \ (O ∪ O′). In
particular

• O and O′ are linked in the sense of [8],

• O is not trivially embedded in the open annulus AO′ = S2 \ O′ in the
sense of [3].

Although the existence of a 2-periodic orbit is a purely topological fact
(see [2]), we will need some part of Nielsen theory based on hyperbolic ge-
ometry to obtain the linking property. Of course a great deal of progress
about surface homeomorphisms has been made since Nielsen, especially from
Thurston’s work. One could probably give an alternate proof of Theorem
1.1 using Thurston’s machinery. Maybe an advantage in using Theorem
2.1 below is to avoid any result involving persistence of periodic orbits un-
der isotopy. The reader interested in the relationship between Nielsen and
Thurston theories is referred to [9] and [12].
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2 Nielsen classes and their index

If M is a compact connected surface with universal covering π : M̃ → M ,
one can define a Nielsen class of a continuous map ψ : M → M as the set
π(Fix(ψ̃)) where ψ̃ : M̃ → M̃ is a lift of ψ and Fix(ψ̃) its fixed point set
(this definition allows a Nielsen class to be empty). The nonempty Nielsen
classes of ψ define a partition of Fix(ψ). Moreover each Nielsen class X
is an isolated subset of Fix(ψ) hence one can define its Lefschetz index
Ind(ψ,X) ∈ Z. There are only finitely many Nielsen classes. See [6] or [13]
for more details.

We suppose from now on that M is orientable, has negative Euler char-
acteristic χ(M) and that ψ is a homeomorphism. Theorem 2.1 below, due
to Nielsen (and maybe a little forgotten), is the main ingredient for proving
our result. It is proved for closed surfaces in [15] (see [17] for an english
translation). The adaptation to the case of surfaces with boundary can be
found in [16]. The paper [9] is also useful to understand Nielsen’s work. We
just recall here the minimal background to make this theorem usable.

One can endow M with a complete hyperbolic structure, with geodesic
boundary if any. Then M̃ can be identified with a convex subset of the
hyperbolic Poincaré disc H2 and its fundamental group F with a group of
orientation preserving isometries of H2. We have simply M̃ = H2 if M has
no boundary and a precise description of M̃ will be recalled below in the
case of a bordered surface. For simplicity, we use the same letter for an
isometry l of H2 and for the linear fractional transformation extending it to
the whole plane C. The fixed point set of every l ∈ F \ {IdM̃} consists of
exactly two points on the boundary circle S1 of H2. Considering the set

GF =
⋃

l∈F\{IdM̃}
Fix(l) ⊂ S1

and its closure E∞ = GF , it turns out that E∞ is the whole circle S1

(resp. a nowhere dense perfect subset of S1) if M is a closed (resp. bor-
dered) surface. If M has boundary ∂M , then M̃ is obtained by considering
all the intervals {In}n∈N connected component of S1 \ E∞ and by remov-
ing from H2 all the hyperbolic half-planes bounded by such an In and the
geodesic joining its endpoints. Then the frontier of M̃ w.r.t. M̃ ∪ E∞ is
π−1(∂M) ∪ E∞ and is topologically a circle. A key result, valid for both
closed and bordered surfaces, is that every lift ψ̃ : M̃ → M̃ of ψ extends
to a homeomorphism (also denoted ψ̃) of M̃ ∪ E∞. Although Nielsen only
deals with orientation preserving homeomorphisms, it is well known that
the extended homeomorphism ψ̃ preserves (resp. reverses) the orientation
of the disc M̃ ∪ E∞ if ψ preserves (resp. reverses) the orientation of M .
We assume now that ψ preserves the orientation. For every lift ψ̃ of ψ we
consider N(ψ̃) = {l ∈ F | l◦ ψ̃ = ψ̃◦ l}. Nielsen proved that N(ψ̃) is a finitely
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generated sugbgroup of F whose minimal number of generators is denoted
by ν(ψ̃), with ν(ψ̃) = 0 if N(ψ̃) = {IdM̃}. Defining

M(ψ̃) = Fix(ψ̃|E∞) and GN(ψ̃) =
⋃

l∈N(ψ̃)\{IdM̃}

Fix(l),

it follows from the definition of ψ̃ on E∞ thatGN(ψ̃) ⊂M(ψ̃). Nielsen defines

an isolated point of M(ψ̃) as being the common endpoint of two intervals
connected components of S1 \M(ψ̃), both of them containing points of E∞.
We follow [9] and we rather use the word N-isolated (“N” for Nielsen). In a
connected component of S1 \M(ψ̃) adjacent to a N-isolated point of M(ψ̃),
the points of E∞ are all moved in the same direction by ψ̃. Thus we get
in the obvious way a notion of attractive or repulsive or neutral N-isolated
point of M(ψ̃). An important remark for our purpose is the following: if
M(ψ̃) contains a neutral N-isolated point then N(ψ̃) is an abelian group
generated by one element l such that M(ψ̃) = Fix(l). We recall finally
that the points of M(ψ̃) in a given connected component of S1 \ GN(ψ̃) do

not accumulate. Consequently the points of M(ψ̃) in such an interval are N-
isolated and alternately attractive and repulsive. The number ofN(ψ̃)-orbits
of attractive N-isolated points of M(ψ̃) is finite and denoted by µ(ψ̃) ∈ N.
If F is generated by only one element l, this definition of µ(ψ̃) must be
modified by considering only the attractive N-isolated points different from
the fixed points of l. We can now state:

Theorem 2.1 (Nielsen, [15], [16]) Let ψ : M → M be an orientation pre-
serving homeomorphism and let X = π(Fix(ψ̃)) be a Nielsen class of ψ.
Then we have

Ind(ψ,X) = 1− µ(ψ̃)− ν(ψ̃)

with the only following exception: if M has no boundary and ψ is isotopic
to IdM , then Ind(ψ,X) ∈ {2− 2g, 0}, where g is the genus of M .

3 Proof of Theorem 1.1

We first remark that there is no loss in supposing that h is a C1-diffeomor-
phism at each point of O. Indeed, for any given ε > 0 one can construct an
isotopy (ht)0≤t≤1 from h0 = h such that every ht coincides with h on O and
outside a ε-neighbourhood of O and h1 is a C1-diffeomorphism on O. For a
small enough ε, all the ht have exactly the same 2-periodic orbits. Moreover,
for any 2-periodic orbit O′ of h and any Jordan curve C ⊂ S2 \ (O∪O′), we
have a free isotopy (ht(C))0≤t≤1 from h(C) to h1(C) in S2 \ (O ∪O′) which
shows that Theorem 1.1 is true for h iff it is true for h1.

Thus we can consider the homeomorphism ϕ : M → M obtained by
blowing-up h|S2\O (see e.g. [[3], p.234]). The surface M is a compact k-
holed sphere (hence χ(M) = 2 − k ≤ −1) having S2 \ O as interior. The
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homeomorphisms ϕ and h coincide on S2\O and the k boundary components
of M are setwise permuted by ϕ with the period k so ϕ and h have exactly
the same 2-periodic orbits. We use in the following the notations from
Section 2.

Lemma 3.1 The image ϕ(X) of a Nielsen class X of ϕ2 is also a Nielsen
class of ϕ2.

Proof. Let ψ̃ be a lift of ϕ2 such that π(Fix(ψ̃)) = X and let ϕ̃ be any lift
of ϕ. We have

Fix(ϕ̃ ◦ ψ̃ ◦ ϕ̃−1) = ϕ̃(Fix(ψ̃)).

Since ϕ̃ ◦ ψ̃ ◦ ϕ̃−1 is also a lift of ϕ2 this proves that π(ϕ̃(Fix(ψ̃))) = ϕ(X)
is also a Nielsen class of ϕ2. ¤

The next lemma was inspired by [14].

Lemma 3.2 Let O′ be a 2-periodic orbit of h (i.e. of ϕ). Suppose that the
conclusion of Theorem 1.1 does not hold with O′. Then the two points of
O′ are in the same Nielsen class X of ϕ2. In particular this Nielsen class is
such that ϕ(X) = X.

Proof. Under this assumption, there exist a Jordan curve C ⊂ S2 separating
O andO′ and an isotopy (αt : S1 → S2\(O∪O′) ⊂M)0≤t≤1 from α0(S1) = C
to α1(S1) = h(C) = ϕ(C). According to the Jordan Theorem, S2 \ C
has exactly two connected components whose closures are two discs D,∆
such that ∂D = ∂∆ = C, say with O ⊂ Int(D) and O′ ⊂ Int(∆). In
particular C bounds the disc ∆ ⊂ M hence (αt)0≤t≤1 can be lifted to an
isotopy (α̃t : S1 → M̃)0≤t≤1. For every t ∈ [0, 1] we write Ct = αt(S1)
and C̃t = α̃t(S1). The Jordan curve C̃t bounds only one disc ∆̃t in the
surface M̃ . The map π induces a homeomorphism from every connected
component of π−1(∆) onto the disc ∆ ⊂M . Since C̃0 is the frontier of such
a connected component, one deduces that ∆̃0 is a connected component of
π−1(∆) and that ∆̃0 ∩π−1(O′) consists of exactly two points ã0, b̃0. The set
ϕ(∆) ⊂M is also a disc containing O′ hence the same arguments show that
∆̃1 is a connected component of π−1(ϕ(∆)) and ∆̃1 ∩ π−1(O′) = {ã1, b̃1}
with ã1 6= b̃1. There exists a lift ϕ̃ : M̃ → M̃ of ϕ such that ϕ̃(∆̃0) = ∆̃1,
say with ϕ̃(ã0) = b̃1 and ϕ̃(b̃0) = ã1. Now observe that we have necessarily
ã0 = ã1 and b̃0 = b̃1 since otherwise one could find t ∈ [0, 1] such that
{ã0, b̃0} ∩ C̃t 6= ∅ so O′ ∩ Ct 6= ∅, a contradiction. This proves that O′
is contained in the Nielsen class X = π(Fix(ϕ̃2)) of ϕ2. Lemma 3.1 and
ϕ(O′) = O′ then imply ϕ(X) = X. ¤

Remark 1 Let O′ be as in Lemma 3.2. We keep the notations C,D,∆
and (αt)0≤t≤1 of the proof above. Considering now the universal covering
p : R2 → AO′ of the open annulus AO′ = S2 \ O′, observe that the isotopy
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(αt : S1 → S2 \ (O ∪ O′) ⊂ AO′)0≤t≤1 can be lifted to an isotopy (ᾰt : S1 →
R2)0≤t≤1 because C bounds the disc D ⊂ AO′. Similarly as in the proof of
Lemma 3.2, the Jordan curves ᾰ0(S1), ᾰ1(S1) bound two discs D̆0, D̆1 in
R2 which are connected components of respectively p−1(D), p−1(h(D)) and
there exists a lift h̆ : R2 → R2 of h|AO′ such that h̆(D̆0) = D̆1. Because O ∩
αt(S1) = ∅ for every t ∈ [0, 1], one deduces that p−1(O)∩D̆0 = p−1(O)∩D̆1,
hence this latter set is a k-periodic orbit of h̆ and consequently ρ(O, AO′) = 0.
This proves that if O was linked with a 2-periodic orbit O′ in the “strong
sense” adapted from Franks (see Section 1) then O′ would also satisfy the
conclusion of Theorem 1.1.

Lemma 3.3 If a Nielsen class X of ϕ2 satisfies ϕ(X) = X then we have
Ind(ϕ2, X) ≤ 0.

Proof. Let ψ̃ be a lift of ϕ2 such that π(Fix(ψ̃)) = X. We can suppose
Fix(ψ̃) 6= ∅ since otherwise X = ∅ has index zero. According to Theorem
2.1, it is enough to prove µ(ψ̃) ≥ 1 under the assumption ν(ψ̃) = 0, i.e.
N(ψ̃) = {IdM̃}. We have then GN(ψ̃) = ∅ hence M(ψ̃) = M(ψ̃) \ GN(ψ̃)

and this set has finite cardinality because it does not accumulate in S1 \
GN(ψ̃) = S1. It cannot contain any neutral point because this would imply

ν(ψ̃) = 1. Since there are as many attractive points as repulsive points
in M(ψ̃) = M(ψ̃) \ GN(ψ̃), we just have to check that M(ψ̃) is nonempty.

Recall that the frontier of M̃ w.r.t. M̃ ∪ E∞, namely π−1(∂M) ∪ E∞, is
homeomorphic to S1 and that an orientation reversing homeomorphism of a
circle has (exactly) two fixed points. Since ψ̃ has no fixed point on π−1(∂M),
it is enough to find a lift ϕ̃ of ϕ such that ψ̃ = ϕ̃2. Pick x̃ ∈ Fix(ψ̃). Since
ϕ(X) = X there exists a lift ϕ̃1 of ϕ such that ϕ̃1(x̃) ∈ Fix(ψ̃). For the
same reason there exists a lift ϕ̃2 of ϕ such that ϕ̃2(ϕ̃1(x̃)) ∈ Fix(ψ̃). Since
ϕ̃2 ◦ ϕ̃1 is a lift of ϕ2 there exists l ∈ F such that l ◦ ϕ̃2 ◦ ϕ̃1 = ψ̃ and we have
l(ϕ̃2(ϕ̃1(x̃))) = ψ̃(x̃) = x̃. One can easily deduce from N(ψ̃) = {IdM̃} that
π induces a one-to-one map from Fix(ψ̃) onto X hence we get necessarily
l = IdM̃ . Thus we obtain ψ̃ = ϕ̃2 ◦ ϕ̃1 and also ψ̃ = ϕ̃1 ◦ ϕ̃2 because
ψ̃ = ϕ̃2 ◦ ϕ̃1 and ϕ̃1 ◦ ϕ̃2 are two lifts of ϕ2 which agree at the point ϕ̃1(x̃).
Writing ϕ̃2 = l ◦ ϕ̃1 for an l ∈ F , it follows that ϕ̃1 ◦ l = l ◦ ϕ̃1 and then
l ∈ N(ψ̃) = {IdM̃}. This gives ϕ̃1 = ϕ̃2 and ψ̃ = ϕ̃2

1. ¤

We can now prove Theoreme 1.1. The Lefschetz trace formula ([6], [13])
gives

∑

X

Ind(ϕ2, X) =
2∑

i=0

(−1)iTr((ϕ2)?,i) = 2

where the summation is over the Nielsen classes of ϕ2 and Tr((ϕ2)?,i) is the
trace of the endomorphism (ϕ2)?,i induced by ϕ2 on the homology group
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Hi(M,Q). Hence there is a nonempty Nielsen class X0 of ϕ2 with positive
index. According to Lemmas 3.1-3.3,X0 is disjoint from Fix(ϕ), i.e. contains
only 2-periodic points of ϕ, and the orbit of any point z ∈ X0 satisfies the
conclusion of Theorem 1.1. ¤
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[11] L. Guillou, Théorème de translation plane de Brouwer et généralisations du
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Math. 53 (1929), 1-76.

7



[16] J. Nielsen, Surface transformation classes of algebraically finite type , Danske
Vid. Selsk. Math.-Phys. Medd. 21, No 2 (1944), 1-89.

[17] J. Nielsen, Collected mathematical papers, Edited by Vagn Lundsgaard
Hansen, Birkhauser Boston, Inc., Boston, MA (1986).

8


