
Lefschetz index for orientation reversing planar

homeomorphisms.

Marc Bonino
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ABSTRACT: we prove that an isolated fixed point of an orientation reversing homeomor-

phism of the plane always has Lefschetz index 0 or ±1.

1 Introduction

If U is an open subset of R2 and p ∈ U an isolated fixed point of a continuous
map h : U → R2, the Lefschetz index of h at p, denoted by Ind(h, p), is the
winding number of the vector field h(z) − z on any simple closed curve
surrounding p and close enough to p. There is plentiful literature where this
fixed-point index plays an important role, for example to detect other fixed
points, or to obtain local and/or global dynamical properties for surfaces
homeomorphisms.

Throughout this paper, the map h is a (local) homeomorphism and we
will focus on the set of all the possible values for the Lefschetz index. It is
well known that, for every integer n ∈ Z, there exists an orientation preser-
ving planar homeomorphism hn which has the origin o as an isolated fixed
point and such that Ind(hn, o)= n (see for example [1]). Surprisingly, M.
Brown announced in the same paper that for an orientation reversing homeo-
morphism of the plane, the Lefschetz index is one of the three values -1,0
or +1, but no proof of this result has been given until now. This motivated
the writing of this paper, where we will show precisely the following:

Theorem: Let V , W be two connected open subsets of R2 containing the
origin o and h : V → W = h(V ) be an orientation reversing homeomorphism
which possesses o as an isolated fixed point.

Then Ind(h, o) ∈ {−1, 0, +1}.
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2 Index on a Jordan curve

For completeness, we recall briefly in this section some classical results and
definitions.

If C is a Jordan curve (i.e. a simple closed curve in R2, i.e. a subset of R2

homeomorphic to the unit circle S1), then R2 \C has exactly two connected
components and C is their common frontier. The bounded one (resp. the
unbounded one) is named the interior domain (resp. the exterior domain)
of C and is denoted by int(C) (resp. by ext(C)). A subset of R2 which is
the interior domain of a Jordan curve is said to be a Jordan domain. In this
paper, a Jordan curve C is always counter-clockwise oriented. This yields
an ordering relation (defined up to circular permutation) on C. If x, y are
two points on C, [x, y]C (resp. (x, y)C) denotes the closed arc (resp. the
open arc) on C from x to y for this orientation of C.

Let u : S1 → C be a homeomorphism which endows the Jordan curve
C = u(S1) with its counter-clockwise orientation. If X is a subset of R2

containing C and f : X → R2 a continuous map without fixed point on
C, the degree of the map z 7→ (f(u(z)) − u(z))/‖f(u(z)) − u(z)‖ (z ∈ S1)
does not depend on the choice of u. It is named the index of f on C and
is denoted by Ind(f, C). Now, if X is open and p ∈ X is an isolated fixed
point of f , choose a disk neighborhood D of p, so small that D ⊂ X and
f has no other fixed point in D. Then the index of f is the same on any
Jordan curve C lying in D and such that p ∈ int(C), and this common value
defines the Lefschetz index Ind(f, p) of f at the point p.

3 Proof of the Theorem

In the following, we will write respectively X and ∂X for the closure and
the frontier of a set X ⊂ R2.

Choose once and for all a circle C around o, so that the closed disk
D = int(C) is contained in V ∩W and o is the only fixed point of h in D.
First, observe there are two cases where the index can be easily computed:
• if h(D) ⊂ D then Ind(h, o)= 1,
• if D ⊂ h(D) then, since h reverses the orientation, Ind(h, o)=− Ind(h−1, o)
= −1.

From now on, we exclude these two simple situations, that is we suppose
h(int(C)) 6⊂ int(C) and int(C) 6⊂ h(int(C)).

It is well known since Kerékjártó that every connected component of the
intersection of two Jordan domains is again a Jordan domain. We need a
more precise description, which can be stated as follows. All the assertions
in Proposition 3.1 and their proofs are contained in the first section of [2].

Proposition 3.1 Let U ,U ′ be two Jordan domains containing the origin o,
such that U 6⊂ U ′ and U ′ 6⊂ U . Denote by U ∧ U ′ the connected component
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of U ∩ U ′ which contains o and by ∂U ∧ ∂U ′ the frontier of U ∧ U ′.

(1) We have a partition

(P) ∂U ∧ ∂U ′ =
(
(∂U ∧ ∂U ′) ∩ ∂U ∩ ∂U ′) ⋃

i∈I

αi

⋃

j∈J

βj

where

– I, J are non-empty and at most countable sets,

– for every i ∈ I, αi = (ai, bi)∂U is a connected component of
∂U ∩ U ′,

– for every j ∈ J , βj = (cj , dj)∂U ′ is a connected component of
∂U ′ ∩ U .

(2) for every j ∈ J , U ∧ U ′ is contained in the Jordan domain bounded
by βj ∪ [dj , cj ]∂U .

(3) ∂U ∧ ∂U ′ is homeomorphic to ∂U . In particular, it is a Jordan curve.

(4) Three points a, b, c of (∂U ∧∂U ′)∩∂U (resp. of (∂U ∧∂U ′)∩∂U ′) are
met in this order on ∂U (resp on ∂U ′) if and only if they are met in
the same order on ∂U ∧ ∂U ′.

Let us consider the partition (Ph) and the arcs αi and βj that we obtain
when we apply Proposition 3.1 with U = int(C) and U ′ = int(h−1(C)) =
h−1(U).

Let φ be the inversion in the circle C and Γ = C ∧ h−1(C) the Jordan
curve given by Proposition 3.1. Since φ is a homeomorphism of R2 \ {o},
φ(Γ) is also a Jordan curve.

Now, define a map H from Γ ∪ φ(Γ) to R2 by setting

H(z) =

{
h(z) if z ∈ Γ
h(φ(z)) if z ∈ φ(Γ)

Clearly, H is well-defined, continuous and fixed-point free. Since H(φ(Γ)) =
h(Γ) ⊂ D ⊂ int(φ(Γ)), we have Ind(H, φ(Γ))= 1. We have also H = h on Γ
and consequently Ind(H, Γ)= Ind(h,Γ) = Ind(h, o).

Observe that, for every j ∈ J , the set Cj = βj ∪ φ(βj) is a Jordan curve
such that (cj , dj)C ⊂ int(Cj) and (dj , cj)C ⊂ ext(Cj). The orientations
induced on βj by Cj and Γ are opposite (see Figure 1). Furthermore, the
βj are pairwise disjoint open arcs in h−1(C) and then, for a given ε > 0,
there is only a finite number of indexes j ∈ J such that the diameter of βj

is superior to ε. It follows that there are only finitely many indexes j ∈ J
such that Ind(H, Cj) 6= 0.
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Figure 1: The curves Γ and φ(Γ)

Bringing together the above remarks , we obtain the formula:

(∗) 1 = Ind(H,φ(Γ)) = Ind(h, 0) +
∑

j∈J

Ind(H, Cj).

Keeping in mind that, for every j ∈ J , we have H(Cj) = h(βj) =
[h(dj), h(cj)]C , we now state three basic lemmas:

Lemma 3.2 If [h(dj), h(cj)]C ∩ [cj , dj ]C = ∅, then Ind(H,Cj) = 0.

Proof: It is enough to remark that H(Cj) = [h(dj), h(cj)]C ⊂ (dj , cj)C ⊂
ext(Cj).

Lemma 3.3 If the set [h(dj), h(cj)]C∩[cj , dj ]C is non empty and connected,
then Ind(H, Cj) = 1.

Proof: This is clear if [h(dj), h(cj)]C ⊂ [cj , dj ]C because we have then
H(Cj) ⊂ int(Cj). The following argument allows us to be reduced to
this case; Denote [z1, z2]C = [h(dj), h(cj)]C ∩ [cj , dj ]C . Let (rt)0≤t≤1 be
a strong retracting deformation of the arc [h(dj), h(cj)]C onto its subarc
[z1, z2]C . The maps rt ◦ H|Cj : Cj → R2 (0 ≤ t ≤ 1) are fixed-point
free because Cj ∩ rt(H(Cj)) ⊂ {cj , dj} and, if H(cj) = h(cj) 6∈ [z1, z2]C
(resp. if H(dj) = h(dj) 6∈ [z1, z2]C) then [z2, h(cj)]C = [dj , h(cj)]C does
not contain the point cj (resp. [h(dj), z1]C = [h(dj), cj ]C does not con-
tain the point dj). Since the map t 7→ Ind(rt ◦ H|Cj , Cj) is continuous
and r1(H(Cj)) = [z1, z2]C ⊂ [cj , dj ]C ⊂ int(Cj), we obtain Ind(H, Cj) =
Ind(r1 ◦H|Cj , Cj) =1.
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Lemma 3.4 There are at most two indexes j ∈ J such that [h(dj), h(cj)]C∩
[cj , dj ]C is non empty.

Proof: Suppose that we can find three distinct arcs βjk
(k ∈ {1, 2, 3}) among

the βj such that [h(djk
), h(cjk

)]C ∩ [cjk
, djk

]C 6= ∅. Since h has no fixed point
on C, it is the same to write (h(djk

), h(cjk
))C ∩ (cjk

, djk
)C 6= ∅ and then

one can choose a point xk ∈ βjk such that h(xk) ∈ (cjk
, djk

)C . Renaming
the indexes jk if necessary, one can suppose that βj1 , βj2 , βj3 are met in this
order on h−1(C).

On one hand, since xk ∈ βjk and h reverses the orientation, we must
have h(x3), h(x2), h(x1) in this order on C. On the other hand, we know
from Proposition 3.1 (4) that the points cj1 , dj1 , cj2 , dj2 , cj3 , dj3 are met in
this order on h−1(C), on Γ and on C. With h(xk) ∈ (cjk

, djk
)C , we obtain

now that h(x1), h(x2), h(x3) are in this order on C. This is not possible
because the points h(xk) (k ∈ {1, 2, 3}) are pairwise distinct.

We can now complete the proof of the Theorem: If, for every j ∈ J , the
set [h(dj), h(cj)]C ∩ [cj , dj ]C is either empty or connected, the result is an
obvious consequence of formula (∗) and of Lemmas (3.2)-(3.4).

Otherwise, there exists an arc β = (c, d)h−1(C) among the βj such that
c, h(c), h(d), d are met in this order on C. According to Proposition 3.1 (2)
and (4), the points d, ai, bi, c are met in this order on C and on h−1(C) for
every i ∈ I. It follows that c, h(c), h(bi), h(ai), h(d), d are in this order on C.
Thus, we obtain αi ∩ [h(bi), h(ai)]C = ∅. For convenience, let us define now
g = h−1. Of course, one can use Proposition 3.1 with U = int(C) and U ′ =
int(g−1(C)) and then obtain a corresponding partition (Pg) for C ∧ g−1(C).
But C ∧ g−1(C) is nothing but h(C ∧ h−1(C)) and therefore the partition
(Pg) can be written using the arcs αi and βj of (Ph). Precisely:

(Pg) C ∧ g−1(C) =
(
(C ∧ g−1(C)) ∩ C ∩ g−1(C)

) ⋃

j∈J

h(βj)
⋃

i∈I

h(αi)

Observe that the arcs h(αi) = (h(bi), h(ai))g−1(C) play the same role in (Pg)
as the arcs βj in (Ph). Since αi = g(h(αi)) is disjoint from [h(bi), h(ai)]C
for every i ∈ I, we see that we are reduced to the previous situation if we
replace h by g. Then we obtain Ind(h, o) = −Ind(g, o)= −1. The Theorem
is proved.
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