Lefschetz index for orientation reversing planar homeomorphisms.

Marc Bonino
Université Paris 13, Institut Galilée, Département de Mathématiques
Avenue J.B. Clément 93430 Villetaneuse (France)
e-mail: : bonino@math.univ-paris13.fr

Abstract

: we prove that an isolated fixed point of an orientation reversing homeomorphism of the plane always has Lefschetz index 0 or ± 1.

1 Introduction

If U is an open subset of \mathbb{R}^{2} and $p \in U$ an isolated fixed point of a continuous map $h: U \rightarrow \mathbb{R}^{2}$, the Lefschetz index of h at p, denoted by $\operatorname{Ind}(h, p)$, is the winding number of the vector field $h(z)-z$ on any simple closed curve surrounding p and close enough to p. There is plentiful literature where this fixed-point index plays an important role, for example to detect other fixed points, or to obtain local and/or global dynamical properties for surfaces homeomorphisms.

Throughout this paper, the map h is a (local) homeomorphism and we will focus on the set of all the possible values for the Lefschetz index. It is well known that, for every integer $n \in \mathbb{Z}$, there exists an orientation preserving planar homeomorphism h_{n} which has the origin o as an isolated fixed point and such that $\operatorname{Ind}\left(h_{n}, o\right)=n$ (see for example [1]). Surprisingly, M. Brown announced in the same paper that for an orientation reversing homeomorphism of the plane, the Lefschetz index is one of the three values $-1,0$ or +1 , but no proof of this result has been given until now. This motivated the writing of this paper, where we will show precisely the following:

Theorem: Let V, W be two connected open subsets of \mathbb{R}^{2} containing the origin o and $h: V \rightarrow W=h(V)$ be an orientation reversing homeomorphism which possesses o as an isolated fixed point.

Then $\operatorname{Ind}(h, o) \in\{-1,0,+1\}$.

[^0]
2 Index on a Jordan curve

For completeness, we recall briefly in this section some classical results and definitions.

If C is a Jordan curve (i.e. a simple closed curve in \mathbb{R}^{2}, i.e. a subset of \mathbb{R}^{2} homeomorphic to the unit circle \mathbb{S}^{1}), then $\mathbb{R}^{2} \backslash C$ has exactly two connected components and C is their common frontier. The bounded one (resp. the unbounded one) is named the interior domain (resp. the exterior domain) of C and is denoted by $\operatorname{int}(C)$ (resp. by $\operatorname{ext}(C)$). A subset of \mathbb{R}^{2} which is the interior domain of a Jordan curve is said to be a Jordan domain. In this paper, a Jordan curve C is always counter-clockwise oriented. This yields an ordering relation (defined up to circular permutation) on C. If x, y are two points on $C,[x, y]_{C}$ (resp. $(x, y)_{C}$) denotes the closed arc (resp. the open arc) on C from x to y for this orientation of C.

Let $u: \mathbb{S}^{1} \rightarrow C$ be a homeomorphism which endows the Jordan curve $C=u\left(\mathbb{S}^{1}\right)$ with its counter-clockwise orientation. If X is a subset of \mathbb{R}^{2} containing C and $f: X \rightarrow \mathbb{R}^{2}$ a continuous map without fixed point on C, the degree of the map $z \mapsto(f(u(z))-u(z)) /\|f(u(z))-u(z)\|\left(z \in \mathbb{S}^{1}\right)$ does not depend on the choice of u. It is named the index of f on C and is denoted by $\operatorname{Ind}(f, C)$. Now, if X is open and $p \in X$ is an isolated fixed point of f, choose a disk neighborhood D of p, so small that $D \subset X$ and f has no other fixed point in D. Then the index of f is the same on any Jordan curve C lying in D and such that $p \in \operatorname{int}(C)$, and this common value defines the Lefschetz index $\operatorname{Ind}(f, p)$ of f at the point p.

3 Proof of the Theorem

In the following, we will write respectively \bar{X} and ∂X for the closure and the frontier of a set $X \subset \mathbb{R}^{2}$.

Choose once and for all a circle C around o, so that the closed disk $D=\overline{\operatorname{int}(C)}$ is contained in $V \cap W$ and o is the only fixed point of h in D. First, observe there are two cases where the index can be easily computed:

- if $h(D) \subset D$ then $\operatorname{Ind}(h, o)=1$,
- if $D \subset h(D)$ then, since h reverses the orientation, $\operatorname{Ind}(h, o)=-\operatorname{Ind}\left(h^{-1}, o\right)$ $=-1$.

From now on, we exclude these two simple situations, that is we suppose $h(\operatorname{int}(C)) \not \subset \operatorname{int}(C)$ and $\operatorname{int}(C) \not \subset h(\operatorname{int}(C))$.

It is well known since Kerékjártó that every connected component of the intersection of two Jordan domains is again a Jordan domain. We need a more precise description, which can be stated as follows. All the assertions in Proposition 3.1 and their proofs are contained in the first section of [2].

Proposition 3.1 Let U, U^{\prime} be two Jordan domains containing the origin o, such that $U \not \subset U^{\prime}$ and $U^{\prime} \not \subset U$. Denote by $U \wedge U^{\prime}$ the connected component
of $U \cap U^{\prime}$ which contains o and by $\partial U \wedge \partial U^{\prime}$ the frontier of $U \wedge U^{\prime}$.
(1) We have a partition

$$
\text { (P) } \quad \partial U \wedge \partial U^{\prime}=\left(\left(\partial U \wedge \partial U^{\prime}\right) \cap \partial U \cap \partial U^{\prime}\right) \bigcup_{i \in I} \alpha_{i} \bigcup_{j \in J} \beta_{j}
$$

where

- I, J are non-empty and at most countable sets,
- for every $i \in I, \alpha_{i}=\left(a_{i}, b_{i}\right)_{\partial U}$ is a connected component of $\partial U \cap U^{\prime}$,
- for every $j \in J, \beta_{j}=\left(c_{j}, d_{j}\right)_{\partial U^{\prime}}$ is a connected component of $\partial U^{\prime} \cap U$.
(2) for every $j \in J, U \wedge U^{\prime}$ is contained in the Jordan domain bounded by $\beta_{j} \cup\left[d_{j}, c_{j}\right]_{\partial U}$.
(3) $\partial U \wedge \partial U^{\prime}$ is homeomorphic to ∂U. In particular, it is a Jordan curve.
(4) Three points a, b, c of $\left(\partial U \wedge \partial U^{\prime}\right) \cap \partial U$ (resp. of $\left.\left(\partial U \wedge \partial U^{\prime}\right) \cap \partial U^{\prime}\right)$ are met in this order on ∂U (resp on ∂U^{\prime}) if and only if they are met in the same order on $\partial U \wedge \partial U^{\prime}$.

Let us consider the partition $\left(P_{h}\right)$ and the $\operatorname{arcs} \alpha_{i}$ and β_{j} that we obtain when we apply Proposition 3.1 with $U=\operatorname{int}(C)$ and $U^{\prime}=\operatorname{int}\left(h^{-1}(C)\right)=$ $h^{-1}(U)$.

Let ϕ be the inversion in the circle C and $\Gamma=C \wedge h^{-1}(C)$ the Jordan curve given by Proposition 3.1. Since ϕ is a homeomorphism of $\mathbb{R}^{2} \backslash\{o\}$, $\phi(\Gamma)$ is also a Jordan curve.

Now, define a map H from $\Gamma \cup \phi(\Gamma)$ to \mathbb{R}^{2} by setting

$$
H(z)= \begin{cases}h(z) & \text { if } z \in \Gamma \\ h(\phi(z)) & \text { if } z \in \phi(\Gamma)\end{cases}
$$

Clearly, H is well-defined, continuous and fixed-point free. Since $H(\phi(\Gamma))=$ $h(\Gamma) \subset D \subset \overline{\operatorname{int}(\phi(\Gamma))}$, we have $\operatorname{Ind}(H, \phi(\Gamma))=1$. We have also $H=h$ on Γ and consequently $\operatorname{Ind}(H, \Gamma)=\operatorname{Ind}(h, \Gamma)=\operatorname{Ind}(h, o)$.

Observe that, for every $j \in J$, the set $C_{j}=\overline{\beta_{j}} \cup \phi\left(\overline{\beta_{j}}\right)$ is a Jordan curve such that $\left(c_{j}, d_{j}\right)_{C} \subset \operatorname{int}\left(C_{j}\right)$ and $\left(d_{j}, c_{j}\right)_{C} \subset \operatorname{ext}\left(C_{j}\right)$. The orientations induced on β_{j} by C_{j} and Γ are opposite (see Figure 1). Furthermore, the β_{j} are pairwise disjoint open arcs in $h^{-1}(C)$ and then, for a given $\epsilon>0$, there is only a finite number of indexes $j \in J$ such that the diameter of β_{j} is superior to ϵ. It follows that there are only finitely many indexes $j \in J$ such that $\operatorname{Ind}\left(H, C_{j}\right) \neq 0$.

Figure 1: The curves Γ and $\phi(\Gamma)$

Bringing together the above remarks, we obtain the formula:
$(*) \quad 1=\operatorname{Ind}(H, \phi(\Gamma))=\operatorname{Ind}(h, 0)+\sum_{j \in J} \operatorname{Ind}\left(H, C_{j}\right)$.
Keeping in mind that, for every $j \in J$, we have $H\left(C_{j}\right)=h\left(\overline{\beta_{j}}\right)=$ $\left[h\left(d_{j}\right), h\left(c_{j}\right)\right]_{C}$, we now state three basic lemmas:

Lemma 3.2 If $\left[h\left(d_{j}\right), h\left(c_{j}\right)\right]_{C} \cap\left[c_{j}, d_{j}\right]_{C}=\emptyset$, then $\operatorname{Ind}\left(H, C_{j}\right)=0$.
Proof: It is enough to remark that $H\left(C_{j}\right)=\left[h\left(d_{j}\right), h\left(c_{j}\right)\right]_{C} \subset\left(d_{j}, c_{j}\right)_{C} \subset$ $\operatorname{ext}\left(C_{j}\right)$.

Lemma 3.3 If the set $\left[h\left(d_{j}\right), h\left(c_{j}\right)\right]_{C} \cap\left[c_{j}, d_{j}\right]_{C}$ is non empty and connected, then $\operatorname{Ind}\left(H, C_{j}\right)=1$.

Proof: This is clear if $\left[h\left(d_{j}\right), h\left(c_{j}\right)\right]_{C} \subset\left[c_{j}, d_{j}\right]_{C}$ because we have then $H\left(C_{j}\right) \subset \overline{\operatorname{int}\left(C_{j}\right)}$. The following argument allows us to be reduced to this case; Denote $\left[z_{1}, z_{2}\right]_{C}=\left[h\left(d_{j}\right), h\left(c_{j}\right)\right]_{C} \cap\left[c_{j}, d_{j}\right]_{C}$. Let $\left(r_{t}\right)_{0 \leq t \leq 1}$ be a strong retracting deformation of the arc $\left[h\left(d_{j}\right), h\left(c_{j}\right)\right]_{C}$ onto its subarc $\left[z_{1}, z_{2}\right]_{C}$. The maps $\left.r_{t} \circ H\right|_{C_{j}}: C_{j} \rightarrow \mathbb{R}^{2}(0 \leq t \leq 1)$ are fixed-point free because $C_{j} \cap r_{t}\left(H\left(C_{j}\right)\right) \subset\left\{c_{j}, d_{j}\right\}$ and, if $H\left(c_{j}\right)=h\left(c_{j}\right) \notin\left[z_{1}, z_{2}\right]_{C}$ (resp. if $H\left(d_{j}\right)=h\left(d_{j}\right) \notin\left[z_{1}, z_{2}\right]_{C}$) then $\left[z_{2}, h\left(c_{j}\right)\right]_{C}=\left[d_{j}, h\left(c_{j}\right)\right]_{C}$ does not contain the point c_{j} (resp. $\left[h\left(d_{j}\right), z_{1}\right]_{C}=\left[h\left(d_{j}\right), c_{j}\right]_{C}$ does not contain the point $\left.d_{j}\right)$. Since the map $t \mapsto \operatorname{Ind}\left(\left.r_{t} \circ H\right|_{C_{j}}, C_{j}\right)$ is continuous and $r_{1}\left(H\left(C_{j}\right)\right)=\left[z_{1}, z_{2}\right]_{C} \subset\left[c_{j}, d_{j}\right]_{C} \subset \overline{\operatorname{int}\left(C_{j}\right)}$, we obtain $\operatorname{Ind}\left(H, C_{j}\right)=$ $\operatorname{Ind}\left(\left.r_{1} \circ H\right|_{C_{j}}, C_{j}\right)=1$.

Lemma 3.4 There are at most two indexes $j \in J$ such that $\left[h\left(d_{j}\right), h\left(c_{j}\right)\right]_{C} \cap$ $\left[c_{j}, d_{j}\right]_{C}$ is non empty.

Proof: Suppose that we can find three distinct $\operatorname{arcs} \beta_{j_{k}}(k \in\{1,2,3\})$ among the β_{j} such that $\left[h\left(d_{j_{k}}\right), h\left(c_{j_{k}}\right)\right]_{C} \cap\left[c_{j_{k}}, d_{j_{k}}\right]_{C} \neq \emptyset$. Since h has no fixed point on C, it is the same to write $\left(h\left(d_{j_{k}}\right), h\left(c_{j_{k}}\right)\right)_{C} \cap\left(c_{j_{k}}, d_{j_{k}}\right)_{C} \neq \emptyset$ and then one can choose a point $x_{k} \in \beta j_{k}$ such that $h\left(x_{k}\right) \in\left(c_{j_{k}}, d_{j_{k}}\right)_{C}$. Renaming the indexes j_{k} if necessary, one can suppose that $\beta_{j_{1}}, \beta_{j_{2}}, \beta_{j_{3}}$ are met in this order on $h^{-1}(C)$.

On one hand, since $x_{k} \in \beta j_{k}$ and h reverses the orientation, we must have $h\left(x_{3}\right), h\left(x_{2}\right), h\left(x_{1}\right)$ in this order on C. On the other hand, we know from Proposition 3.1 (4) that the points $c_{j_{1}}, d_{j_{1}}, c_{j_{2}}, d_{j_{2}}, c_{j_{3}}, d_{j_{3}}$ are met in this order on $h^{-1}(C)$, on Γ and on C. With $h\left(x_{k}\right) \in\left(c_{j_{k}}, d_{j_{k}}\right)_{C}$, we obtain now that $h\left(x_{1}\right), h\left(x_{2}\right), h\left(x_{3}\right)$ are in this order on C. This is not possible because the points $h\left(x_{k}\right)(k \in\{1,2,3\})$ are pairwise distinct.

We can now complete the proof of the Theorem: If, for every $j \in J$, the set $\left[h\left(d_{j}\right), h\left(c_{j}\right)\right]_{C} \cap\left[c_{j}, d_{j}\right]_{C}$ is either empty or connected, the result is an obvious consequence of formula $(*)$ and of Lemmas (3.2)-(3.4).

Otherwise, there exists an arc $\beta=(c, d)_{h^{-1}(C)}$ among the β_{j} such that $c, h(c), h(d), d$ are met in this order on C. According to Proposition 3.1 (2) and (4), the points d, a_{i}, b_{i}, c are met in this order on C and on $h^{-1}(C)$ for every $i \in I$. It follows that $c, h(c), h\left(b_{i}\right), h\left(a_{i}\right), h(d), d$ are in this order on C. Thus, we obtain $\overline{\alpha_{i}} \cap\left[h\left(b_{i}\right), h\left(a_{i}\right)\right]_{C}=\emptyset$. For convenience, let us define now $g=h^{-1}$. Of course, one can use Proposition 3.1 with $U=\operatorname{int}(C)$ and $U^{\prime}=$ $\operatorname{int}\left(g^{-1}(C)\right)$ and then obtain a corresponding partition $\left(P_{g}\right)$ for $C \wedge g^{-1}(C)$. But $C \wedge g^{-1}(C)$ is nothing but $h\left(C \wedge h^{-1}(C)\right)$ and therefore the partition $\left(P_{g}\right)$ can be written using the $\operatorname{arcs} \alpha_{i}$ and β_{j} of $\left(P_{h}\right)$. Precisely:

$$
\left(P_{g}\right) \quad C \wedge g^{-1}(C)=\left(\left(C \wedge g^{-1}(C)\right) \cap C \cap g^{-1}(C)\right) \bigcup_{j \in J} h\left(\beta_{j}\right) \bigcup_{i \in I} h\left(\alpha_{i}\right)
$$

Observe that the $\operatorname{arcs} h\left(\alpha_{i}\right)=\left(h\left(b_{i}\right), h\left(a_{i}\right)\right)_{g^{-1}(C)}$ play the same role in $\left(P_{g}\right)$ as the $\operatorname{arcs} \beta_{j}$ in $\left(P_{h}\right)$. Since $\overline{\alpha_{i}}=g\left(h\left(\overline{\alpha_{i}}\right)\right)$ is disjoint from $\left[h\left(b_{i}\right), h\left(a_{i}\right)\right]_{C}$ for every $i \in I$, we see that we are reduced to the previous situation if we replace h by g. Then we obtain $\operatorname{Ind}(h, o)=-\operatorname{Ind}(g, o)=-1$. The Theorem is proved.

Acknowledgements: I would like to thank P. Le Calvez, who improved a preliminary version of this paper.

References

[1] M. Brown, On the fixed points index of iterates of planar homeomorphisms, Proc. AMS 108 (1990), 1109-1114.
[2] P. Le Calvez and J.C. Yoccoz, Un théorème d'indice pour les homéomorphismes du plan au voisinage d'un point fixe, Annals of Mathematics 146 (1997), 241-293.

[^0]: ${ }^{0} 2000$ MSC: 55 M 20 (54H20)

