Lefschetz index for orientation reversing planar
homeomorphisms.

Marc Bonino
Université Paris 13, Institut Galilée, Département de Mathématiques
Avenue J.B. Clément 93430 Villetaneuse (France)

e-mail: : bonino@math.univ-parisi3.fr

ABSTRACT: we prove that an isolated fixed point of an orientation reversing homeomor-

phism of the plane always has Lefschetz index 0 or +1.

1 Introduction

If U is an open subset of R? and p € U an isolated fixed point of a continuous
map h : U — R2, the Lefschetz index of h at p, denoted by Ind(h, p), is the
winding number of the vector field h(z) — z on any simple closed curve
surrounding p and close enough to p. There is plentiful literature where this
fixed-point index plays an important role, for example to detect other fixed
points, or to obtain local and/or global dynamical properties for surfaces
homeomorphisms.

Throughout this paper, the map h is a (local) homeomorphism and we
will focus on the set of all the possible values for the Lefschetz index. It is
well known that, for every integer n € Z, there exists an orientation preser-
ving planar homeomorphism h,, which has the origin o as an isolated fixed
point and such that Ind(h,,0)= n (see for example [1]). Surprisingly, M.
Brown announced in the same paper that for an orientation reversing homeo-
morphism of the plane, the Lefschetz index is one of the three values -1,0
or +1, but no proof of this result has been given until now. This motivated
the writing of this paper, where we will show precisely the following:

Theorem: Let V, W be two connected open subsets of R? containing the
origino and h : V. — W = h(V') be an orientation reversing homeomorphism
which possesses o as an isolated fized point.

Then Ind(h,0) € {—1,0,+1}.
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2 Index on a Jordan curve

For completeness, we recall briefly in this section some classical results and
definitions.

If C is a Jordan curve (i.e. a simple closed curve in R?, i.e. a subset of R?
homeomorphic to the unit circle St), then R?\ C has exactly two connected
components and C is their common frontier. The bounded one (resp. the
unbounded one) is named the interior domain (resp. the exterior domain)
of C' and is denoted by int(C) (resp. by ext(C)). A subset of R? which is
the interior domain of a Jordan curve is said to be a Jordan domain. In this
paper, a Jordan curve C' is always counter-clockwise oriented. This yields
an ordering relation (defined up to circular permutation) on C. If z,y are
two points on C, [z,y]c (resp. (z,y)c) denotes the closed arc (resp. the
open arc) on C from x to y for this orientation of C'.

Let u : S' — C be a homeomorphism which endows the Jordan curve
C = u(S') with its counter-clockwise orientation. If X is a subset of IR?
containing C and f : X — R? a continuous map without fixed point on
C, the degree of the map z — (f(u(2)) — u(2))/||f(u(2)) — u(2)| (z € SY)
does not depend on the choice of u. It is named the index of f on C and
is denoted by Ind(f,C). Now, if X is open and p € X is an isolated fixed
point of f, choose a disk neighborhood D of p, so small that D C X and
f has no other fixed point in D. Then the index of f is the same on any
Jordan curve C lying in D and such that p € int(C), and this common value
defines the Lefschetz index Ind(f,p) of f at the point p.

3 Proof of the Theorem

In the following, we will write respectively X and 0X for the closure and
the frontier of a set X C R2.

Choose once and for all a circle C' around o, so that the closed disk
D = int(C) is contained in V' N W and o is the only fixed point of A in D.
First, observe there are two cases where the index can be easily computed:
o if (D) C D then Ind(h,0)=1,

e if D C h(D) then, since h reverses the orientation, Ind(h, 0)= — Ind(h~!, 0)
=-1.

From now on, we exclude these two simple situations, that is we suppose
h(int(C)) ¢ int(C) and int(C) ¢ h(int(C)).

It is well known since Kerékjarto that every connected component of the
intersection of two Jordan domains is again a Jordan domain. We need a
more precise description, which can be stated as follows. All the assertions
in Proposition 3.1 and their proofs are contained in the first section of [2].

Proposition 3.1 Let U, U’ be two Jordan domains containing the origin o,
such that U ¢ U' and U' ¢ U. Denote by U AU’ the connected component



of UNU" which contains o and by OU A OU' the frontier of U AU’ .

(1) We have a partition

(P) oUANOU' = ((0U AUy noU noU") | J o | B;

iel  jeJ
where

— I, J are non-empty and at most countable sets,

— for every i € I, o; = (a;,bi)ou is a connected component of
ounu’,

— for every j € J, B; = (¢j,dj)aur is a connected component of
ou'nU.

(2) for every j € J, U AU is contained in the Jordan domain bounded
by B; U [dj, cjlou-

(8) OU AOU' is homeomorphic to OU. In particular, it is a Jordan curve.

(4) Three points a,b,c of (OU ANOU')NAU (resp. of (OU ANOU')NAU') are
met in this order on QU (resp on OU’) if and only if they are met in
the same order on OU A OU’.

Let us consider the partition (F},) and the arcs a; and [; that we obtain
when we apply Proposition 3.1 with U = int(C) and U’ = int(h~1(C)) =
r=YU).

Let ¢ be the inversion in the circle C and I' = C' A h=1(C) the Jordan
curve given by Proposition 3.1. Since ¢ is a homeomorphism of R?\ {o},
¢(I') is also a Jordan curve.

Now, define a map H from I' U ¢(T) to R? by setting

h(z) iftzel
Hiz)= { h6()) if = € B(T)

Clearly, H is well-defined, continuous and fixed-point free. Since H(¢(I")) =
h(I") € D C int(p(T")), we have Ind(H, ¢(I'))= 1. We have also H = h on T’
and consequently Ind(H,T")= Ind(h,T") = Ind(h, o).

Observe that, for every j € J, the set C; = 3; U ¢(j3;) is a Jordan curve
such that (¢j,d;j)c C int(Cj) and (dj,cj)c C ext(Cj;). The orientations
induced on f; by C; and I' are opposite (see Figure 1). Furthermore, the
B; are pairwise disjoint open arcs in h=Y(C) and then, for a given ¢ > 0,
there is only a finite number of indexes j € J such that the diameter of 3;
is superior to e. It follows that there are only finitely many indexes j € J
such that Ind(H, C;) # 0.
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Figure 1: The curves I' and ¢(I)

Bringing together the above remarks , we obtain the formula:

(x)  1=Ind(H,¢()) =Ind(h,0)+ > Ind(H,C}).
JjEJ

Keeping in mind that, for every j € J, we have H(C;) = h(B;) =
[h(d;), h(cj)]c, we now state three basic lemmas:

Lemma 3.2 If [h(dj), h(Cj)]C N [Cj, dj]c =0, then Ind(H, CJ) = 0.

Proof: It is enough to remark that H(C;) = [h(d;), h(cj)lc C (dj,cj)c C
ext(Cj).

Lemma 3.3 If the set [h(d;), h(cj)|cNcj, djlc is non empty and connected,
then Ind(H,C;) = 1.

Proof: This is clear if [h(d)),h(cj)]c C [¢j,djlc because we have then
H(Cj) C int(Cj). The following argument allows us to be reduced to
this case; Denote [z1,22]c = [h(d;), h(cj)]lc N [¢j,dj]lc. Let (r¢)o<i<1 be
a strong retracting deformation of the arc [h(d;), h(c;)]c onto its subarc
[21,22)c. The maps 1, 0 H|g; : C; — R* (0 < t < 1) are fixed-point
free because C; Nr(H(C))) C {¢j,d;} and, if H(c;) = h(cj) € |21, 22]c
(resp. if H(d;) = h(d;) € [#1,22]c) then [22,h(c;)]lc = [dj, h(cj)]c does
not contain the point ¢; (resp. [h(d;),z1]c = [h(d}),cjlc does not con-
tain the point d;). Since the map t + Ind(r; o H|g;,Cj) is continuous
and r1(H(C;)) = [z1,22]c C [¢j,dj]lc C int(C}), we obtain Ind(H,C;) =
Ind(?‘l o H‘CJij) =1.




Lemma 3.4 There are at most two indezes j € J such that [h(d;), h(cj)]cN
[cj,dj]lc is non empty.

Proof: Suppose that we can find three distinct arcs g;, (k € {1,2,3}) among
the §; such that [h(d;, ), h(cj, )]lc Ncj,, dj,]c # 0. Since h has no fixed point
on C, it is the same to write (h(dj,),h(cj.))c N (¢j.,dj)c # O and then
one can choose a point zj € (ji such that h(xzy) € (¢j,,d;.)c. Renaming
the indexes ji if necessary, one can suppose that 3;,, 3;,, 3;, are met in this
order on h=1(C).

On one hand, since x; € (jr and h reverses the orientation, we must
have h(z3),h(x2), h(z1) in this order on C. On the other hand, we know
from Proposition 3.1 (4) that the points ¢;,,d;,, ¢j,,dj,, ¢js, dj; are met in
this order on h~1(C), on T and on C. With h(xx) € (cj,,dj, )c, we obtain
now that h(xy),h(x2), h(zs) are in this order on C. This is not possible
because the points h(xy) (k € {1,2,3}) are pairwise distinct.

We can now complete the proof of the Theorem: If, for every j € J, the
set [h(dj), h(cj)lc N ¢, dj]c is either empty or connected, the result is an
obvious consequence of formula (x) and of Lemmas (3.2)-(3.4).

Otherwise, there exists an arc 8 = (¢, d),-1(¢) among the 3; such that
¢, h(c), h(d),d are met in this order on C. According to Proposition 3.1 (2)
and (4), the points d, a;, b;, ¢ are met in this order on C and on h=*(C) for
every i € I. It follows that ¢, h(c), h(b;), h(a;), h(d),d are in this order on C.
Thus, we obtain @; N [A(b;), h(a;)]c = 0. For convenience, let us define now
g = h~1. Of course, one can use Proposition 3.1 with U = int(C') and U’ =
int(¢71(C)) and then obtain a corresponding partition (P,) for C' A g~1(C).
But C A g~1(C) is nothing but h(C' A h~1(C)) and therefore the partition
(P,) can be written using the arcs o; and ; of (P,). Precisely:

(P) CAgHC) = ((Crg HENNCg(C)) | hB) U hles)
j€J iel
Observe that the arcs h(a;) = (h(b;), h(a:))4-1(c) play the same role in (F)
as the arcs ; in (Py). Since o = g(h(a;)) is disjoint from [h(b;), h(a;)]c
for every i € I, we see that we are reduced to the previous situation if we
replace h by g. Then we obtain Ind(h,0) = —Ind(g,0)= —1. The Theorem
is proved.
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