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1 Introduction

The first result of this paper (Theorem 2.1) is a fixed point theorem for
planar homeomorphisms and describes a situation where we can answer the
following question: given such a homeomorphism h and a compact disc
D ⊂ R2 disjoint from the fixed point set Fix(h), does this disc contain the
whole positive orbit O+ = {hn(x) | n ∈ N} of a point x ∈ D? The proof
depends mainly on Bell’s Theorem ([Be]), which asserts that h has a fixed
point in every non-separating invariant continuum of the plane.

Section 3 provides an application of Theorem 2.1 to the study of an orien-
tation preserving homeomorphism h of R2 near an isolated fixed point p. We
will show that, up to small and compactly supported perturbations (which
do not alter the fixed point set Fix(h)), one can suppose that h is conjugated
on a suitable circle around p with a “canonical homeomorphism” which
depends only on the Lefschetz index ind(h, p) of h at the point p (Theo-
rem 3.4). As a matter of fact, this lemma, which has several applications
(see Section 3), is asserted in a paper of Schmitt ([Sc]) but the proof is
there very difficult to follow and seems to contain a gap. Another proof,
due to Slaminka ([Sl]), strongly uses the fact that every point x /∈ Fix(h)
is a wandering point. In particular, it does not apply when ind(h, p) =
1. We will see that our arguments, in contrast with the earlier ones, are
valid for every value of the fixed point index. Then we will be able to
confirm Schmitt’s Theorem: for every n ∈ Z, the space Hn of all orientation
preserving homeomorphisms h of R2 such that the origin o is the only fixed
point and ind(h, o) = n, endowed with the compact-open topology, is path
connected (Theorem 3.7).
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2 A dynamical property

2.1 Notations and conventions

R2 is equipped with the metric d(m,m′) = ‖m − m′‖, where ‖ · ‖ is the
euclidian norm. The topology of R2 induces a topology on every subset
X ⊂ R2.

For Y ⊂ X ⊂ R2, ClX(Y ), IntX(Y ) and FrX(Y ) = ClX(Y ) \ IntX(Y )
denote respectively the closure, the interior and the frontier of Y relative to
X. More briefly, we will write ClR2(Y ) = Y , IntR2(Y ) =

◦
Y and FrR2(Y ) =

Fr(Y ).
Unless the contrary is stated, a simple closed curve C ⊂ R2 is positively

oriented. If x, y are two points on C, [x, y]C (resp. (x, y)C) denotes the
closed arc (resp. the open arc) from x to y for the choosen orientation on
C.

Finally, we set B = {m ∈ R2 | ‖m‖ ≤ 1} and rB = {m ∈ R2 | ‖m‖ ≤ r}.

2.2 Statement of theorem

Theorem 2.1 Let h be a homeomorphism of R2 (preserving or reversing
the orientation) and D ⊂ R2 a topological closed disc bounded by the simple
closed curve C = Fr(D).

Assume we can find two arcs α = [a, b]C and β = [b, a]C such that
D ∩ h−1(β) = ∅ and h−1(D) ∩ α = ∅ (see fig.1).

Then, if
⋂

n∈N
h−n(D) 6= ∅, there exists a point m ∈ D such that h(m) ∈ D

and h2(m) = m.
Furthermore, if h preserves the orientation, we can choose m to be a

fixed point (that is, h(m) = m).
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2.3 Plane topology

This paragraph is devoted to more or less well known results, which will be
basic tools in the proof of Theorem 2.1. We give some of their proofs when
they do not appear in the literature.

Proposition 2.2 Let K1 and K2 be two connected compact sets included
in a topological closed disc D ⊂ R2. Suppose there exist two points a, c in
K1 ∩Fr(D) and two points b, d in K2 ∩Fr(D) such that a, b, c, d are met in
this order on C = Fr(D).

Then K1 ∩K2 6= ∅.

The proof is left as an exercice to the reader.

Proposition 2.3 (see for example [WD, exercice 9 page 113]) Let K be a
connected compact set in R2 and X a connected component of R2 \K.

Then Fr(X) is a connected set.

Corollary 2.4 Let K be a connected compact set included in a topological
closed disc D ⊂ R2, K 6= D, and X a connected component of D \K.

Then the frontier FrD(X) = X \ X of X relative to D is a connected
set.
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Proof : If K ⊂ ◦
D, this is an obvious consequence of Proposition 2.3. Then

we can suppose K∩Fr(D) 6= ∅. Using the Schoenflies Theorem, we can also
assume that D = {z ∈ C | |z| ≤ 1} and 0 /∈ K. Define a homeomorphism f
of the sphere S2 = C ∪ {∞} by the formula

f(z) =
z

|z|2 if z ∈ C \ {0}, f(0) = ∞, f(∞) = 0.

Clearly, the set K ′ = K ∪ f(K) ⊂ R2 is compact and connected. If X ⊂ ◦
D

then X is also a connected component of R2\K ′ and then FrD(X) = Fr(X)
is connected by Proposition 2.3. If X ∩Fr(D) 6= ∅, then (X ∪ f(X)) \ {∞}
is a connected component of R2 \ K ′ and then Fr ((X ∪ f(X)) \ {∞}) is
connected. One can check that

Fr ((X ∪ f(X)) \ {∞}) = FrD(X) ∪ f(FrD(X))

and this implies the connectedness of FrD(X). 2

Definition 2.5 Let Y ⊂ X ⊂ R2 and m1 6= m2 be two points in X \ Y . It
is said that Y separates m1 and m2 in X if m1 and m2 do not belong to the
same connected component of X \ Y . For X = R2, we will simply write “Y
separates m1 and m2”.

Definition 2.6 A set X ⊂ R2 is simply connected if its complement S2\X
in S2 = R2 ∪ {∞} is connected.

If X is a bounded set, this is clearly equivalent to the connectedness of
R2 \X.

Properties 2.7 (1) If Xi ⊂ R2, i ∈ I, is a family of simply connected
sets, then

⋂

i∈I

Xi is simply connected.

(2) A compact set K ⊂ R2 separates two points m1 and m2 if, and only if
one of its connected component separates m1 and m2. Consequently,
K is simply connected if and only if each of its connected component
is simply connected.

Proof : (1) Since ∞ ∈ S2 \Xi for all i in I, S2 \
(⋂

i∈I

Xi

)
=

⋃

i∈I

S2 \Xi is

connected.
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(2) : If a connected component L of K separates m1 and m2, so does
K. Conversely, suppose there is no connected component of K separating
m1 and m2. We recall the following result (known as the Zoretti Theorem,
see [Wh, page 35]) :

If L is a connected component of a compact set M ⊂ R2 and ε is any
positive number, then there exists a simple closed curve J which encloses L
and is such that J ∩M = ∅, and every point of J is at distance less than ε
from some point of L.

Let g be a homography of S2 such that g(m2) = ∞ and consider the
compact set K1 = g(K) ⊂ R2. Choose r > 0 such that K1 ⊂ rB and
m0 /∈ 2rB. It is sufficient to prove that K1 does not separate m0 and g(m1).

Let Li be a connected component of K1. Since the connected components
of R2 \ Li are path connected, there exists a path αi ⊂ R2 \ Li from g(m1)
to m0. Note that Li is also a connected component of the compact set
Mi = K1 ∪αi and applying the Zoretti Theorem with L = Li, M = Mi and
ε = r gives a simple closed curve Ji bounding a topological closed disc Di

such that Li ⊂
◦

Di, Ji ∩K1 ⊂ Ji ∩Mi = ∅ and Di ∩ αi = ∅. Repeating this
construction for every connected component of K1, we obtain a finite open
covering

K1 ⊂
◦

Di1 ∪ . . .∪
◦

Din

where we can suppose Dij 6⊂ Dik for j 6= k. Then one can check that the set

R2 \




n⋃

j=1

Dij





 ∪

n⋃

j=1

Jij

is connected, disjoint from K1 and contains both g(m1) and m0. 2

Corollary 2.8 Let K be a compact set in a topological closed disc D ⊂ R2,
K 6= D, and two points mi ∈ D \K (i = 1, 2).

Then K separates m1 and m2 in D if, and only if one of its connected
component separates m1 and m2 in D.

Proof : By the Schoenflies Theorem, we can assume that D = {z ∈ C | |z| ≤
1} and 0 /∈ K. Suppose that K separates m1 and m2 in D and consider the
homeomorphism f of S2 defined in the proof of Corollary 2.4. It is easily
seen that

K separates m1 and m2 in D ⇐⇒ K ∪ f(K) separates m1 and m2
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then we obtain with Proposition 2.7 (2) a connected component L′ of K ∪
f(K) which separates m1 and m2. It is not difficult to deduce that a con-
nected component L of K separates m1 and m2 in D. 2

Theorem 2.9 (Cartwright-Littlewood-Bell Theorem) Let h be a homeo-
morphism of R2 (preserving or reversing the orientation) and K ⊂ R2 a
connected and simply connected compact set.

If h(K) = K then h possesses a fixed point in K.

When h preserves the orientation, this result is known as the Cartwright-
Littlewood Theorem (see [CL] or [Br1]). The general case is proved in [Be].

Corollary 2.10 Let h and K be as in Theorem 2.9.
If we suppose only h(K) ⊂ K, then h possesses also a fixed point in K.

Proof : Define K ′ =
⋂

n∈N
hn(K). Then K ′ is a connected compact set (as a

decreasing intersection of connected compact sets) and is simply connected
by Property 2.7 (1). Since h(K) ⊂ K we have h(K ′) = K ′ and Theorem
2.9 gives a fixed point in K ′ ⊂ K. 2

2.4 Proof of Theorem 2.1

From now on, we suppose
⋂

k∈N
h−k(D) 6= ∅.

2.4.1 The sets Dn, n ∈ N ∪ {∞}

Notations 2.11 ∀n ∈ N, set Dn =
n⋂

k=0

h−k(D) and D∞ =
⋂

k∈N
h−k(D).

Lemma 2.12 Fr(Dn) ⊂ β ∪ h−n(α) ∀n ∈ N.

Proof (by induction on n) : The result is obvious for n = 0. If we suppose
it is true for n we obtain :

Fr(Dn+1) = Fr
(
h−1(Dn) ∩Dn

) ⊂ h−1 (Fr(Dn)) ∪ Fr(Dn)
⊂ h−1(β) ∪ h−(n+1)(α) ∪ β ∪ h−n(α).

But Fr(Dn+1) ∩ h−n(α) ⊂ Dn+1 ∩ h−n(α) ⊂ h−n(h−1(D) ∩ α) = ∅ and
Fr(Dn+1) ∩ h−1(β) ⊂ D ∩ h−1(β) = ∅, so we have
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Fr(Dn+1) ⊂ β ∪ h−(n+1)(α). 2

Proposition 2.13 Every connected component of D∞ is simply connected
and meets the arc β.

Proof : First we prove, for n ∈ N, that every connected component of Dn

meets the arc β : recall the intersection U1 ∩U2 of two Jordan domains is a
disjoint and countable union

∐

i

Vi, where each Vi is a Jordan domain such

that Fr(Vi) ⊂ Fr(U1) ∪ Fr(U2) (see for example [Ke]). It follows that

∀n ∈ N,
◦

Dn=
n⋂

k=0

h−k(
◦
D) =

∐

i

Vn,i

where each Vn,i is a Jordan domain such that Fr(Vn,i) ⊂
n⋃

k=0

h−k(Fr(D))

and precisely, with Lemma 2.12, Fr(Vn,i) ⊂ Fr(Dn) ⊂ β ∪ h−n(α). Then
every topological closed disc V n,i = Vn,i ∪ Fr(Vn,i) meets the arc β. Now
note that we have Fr(Dn) \ β ⊂

⋃

i

Fr(Vn,i); there is nothing to prove for

n = 0; let n ≥ 1 and m ∈ Fr(Dn) \ β ⊂ h−n(α). Since Dn ⊂ Dn−1 and
h−n(α) ∩ h−n+1(α) ⊂ h−n+1(h−1(D) ∩ α) = ∅ we have also

m ∈ Dn−1 \ (β ∪ h−n+1) ⊂ ◦
Dn−1

and then there exists a neighbourghood V of m in R2 such that V ⊂ ◦
Dn−1

and h−n(α) divides V into exactly two connected components A and B, with

A ⊂ h−n(
◦
D) and B ⊂ h−n(R2 \D) (see fig. 2).

h

B

A

m -n
)α(

fig. 2
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We obtain

A ⊂ h−n(
◦
D) ∩ ◦

Dn−1 =
◦
Dn =

∐

i

Vn,i ,

then there exists an index i0 such that A ⊂ Vn,i0 and m ∈ Fr(Vn,i0). It fol-
lows that Dn ⊂ β∪

⋃

i

V n,i and then, for n ∈ N, every connected component

of Dn meets β.
Let c∞ be a connected component of D∞ and, for n ∈ N, cn the con-

nected component of Dn which contains c∞. We have clearly

c∞ ⊂
⋂

n∈N
cn ⊂ D∞.

Furthermore,
⋂

n∈N
cn is connected (as a decreasing intersection of connected

compact sets) and then c∞ =
⋂

n∈N
cn meets the arc β.

Finally, the simple connectedness of c∞ is an obvious consequence of
Properties 2.7. 2

Notation 2.14 π0(D∞) denotes the set of all connected components of D∞.

2.4.2 Two order relations on π0(D∞)

Remark that D∞ ⊂ D1 ⊂ D \ α. Then for every c ∈ π0(D∞) there exists
a (unique) connected component of D \ c which contains α. We define a
relation ¿ on π0(D∞) in the following way :

For c1 and c2 in π0(D∞), we will write c1 ¿ c2 if either c1 = c2 or c1

is contained in a connected component of D \ c2 which does not contain α
(see fig. 3).
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Proposition 2.15 (1) The relation ¿ is a (partial) ordering of π0(D∞).

(2) (existence of maximal elements for ¿)

∀c1 ∈ π0(D∞) ∃c2 ∈ π0(D∞) such that

{
c1 ¿ c2 ,
c2 ¿ c3 ⇒ c2 = c3 .

Proof : (1) (i) Suppose c1 ¿ c2 and c1 6= c2. Let A be the connected
component of D \ c2 which contains α. Since ∅ 6= FrD(A) = A \A ⊂ c2, the
set A ∪ c2 = A ∪ c2 is connected and satisfies

α ∪ c2 ⊂ A ∪ c2 = A ∪ c2 ⊂ D \ c1 .

This excludes the situation c2 ¿ c1.
(ii) Let c1 ¿ c2, c2 ¿ c3 with c1 6= c2 and c2 6= c3. Suppose c1 ∪ α is

contained in a connected component A of D \ c3. Since c1 ¿ c2 and c1 6= c2

we have A 6⊂ D \ c2, that is A ∩ c2 6= ∅, and then c2 ⊂ A which gives a
contradiction with c2 ¿ c3.

(2) For c ∈ π0(D∞), define

Maj(c) = {c′ ∈ π0(D∞) | c ¿ c′}.

We need the following lemma :

Lemma 2.16 The set Maj(c) is totally ordered by ¿.
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Proof of Lemma 2.16 : Suppose Maj(c) is not reduced to {c}. Let c′ 6= c′′

be in Maj(c). If c′ = c (resp. c′′ = c) we have obviously c′ ¿ c′′ (resp.
c′′ ¿ c′). Then we can assume c′ 6= c and c′′ 6= c. We note A′ (resp. A′′) the
connected component of D \ c′ (resp. of D \ c′′) which contains c. If c′′ ⊂ A′

then c′′ ¿ c′. If c′′ ∩A′ = ∅ then we have

c ∪ c′ ⊂ A′ ∪ c′ = A′ ∪ c′ ⊂ D \ c′′ .

Since A′ ∪ c′ = A′ ∪ c′ is connected, it is contained in A′′ and then c′ ¿ c′′.
2

continuation of the proof of Proposition 2.15 (2) : If Maj(c1) = {c1}
just set c2 = c1. If c ∈ Maj(c1) and c 6= c1 we let A(c) be the connected
component of D \ c which contains c1. For convenience, set A(c1) = ∅ and
then define

A =
⋃

c∈Maj(c1)

A(c) ⊂ D, K = FrD(A).

Thus A is an open set in D disjoint from the arc α and K = A \A.
(i) We have K ⊂ D∞ :
Let m ∈ K and U a connected neighbourhood of m in D. Since m ∈ A

there exists c ∈ Maj(c1) such that U ∩ A(c) 6= ∅. On the other hand,
m /∈ A(c) so U ∩ (D \A(c)) 6= ∅. It follows from the connectedness of U
that ∅ 6= U ∩ FrD(A(c)) ⊂ c ⊂ D∞. The assertion is proved because U is
arbitrary small and D∞ is closed.

(ii) α and c1 are not in the same connected component of D \K :
We have the partition D \K =

(
D \A

) ∐
A. The set D \A is an open

set in D and contains α (because A = A ∪K ⊂ A ∪D∞ ⊂ D \ α) whereas
A is an open set in D and contains c1.

(iii) K is a connected set :
Suppose there exists a partition K = K1

∐
K2 where Ki is a non empty

closed set in K (i = 1, 2). Then there exist two open sets Ω1 and Ω2 in
R2 such that Ki ⊂ Ωi (i = 1, 2) and Ω1 ∩ Ω2 = ∅. Let m ∈ K1 and
U ⊂ Ω1 a connected neighbourhood of m in D. The proof of (i) above gives
c1,1 ∈ Maj(c1) such that

∅ 6= FrD(A(c1,1)) ∩ U ⊂ FrD(A(c1,1)) ∩ Ω1 .

Furthermore, it is easily seen that

c1 ¿ c ¿ c′ ⇒ A(c) ⊂ A(c′)
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and we obtain precisely FrD(A(c))∩Ω1 6= ∅ for every c À c1,1. In the same
way, there exists c1,2 ∈ Maj(c1) such that FrD(A(c))∩Ω2 6= ∅ for every c À
c1,2. According to Lemma 2.16, we can suppose c1,2 ¿ c1,1 and c1 6= c1,1.
For every c ∈ Maj(c1,1) ⊂ Maj(c1), FrD(A(c)) = A(c)\A(c) is a connected
set (see Corollary 2.4) then there exists m(c) ∈ FrD(A(c)) \ (Ω1

∐
Ω2) and

one can define
X(c) = {m(c′) | c ¿ c′}.

It follows from Lemma 2.16 that the set

B = {X(c) | c ∈ Maj(c1,1)}
is the basis of a filter F on D and by compactness of D there exists a filter
F1 finer than F which converges to a point m ∈ D.

Let U be an open neighbourhood of m in D. Then

X(c1,1) ∈ B ⊂ F ⊂ F1

and U ∈ F1 so X(c1,1) ∩ U 6= ∅, that is there exists c À c1,1 such that
m(c) ∈ U . Since m(c) ∈ FrD(A(c)) ⊂ A(c) we obtain

m ∈
⋃

c∈Maj(c1)

A(c) = A .

On the other hand, we have m /∈ A : indeed m ∈ A(c), c ∈ Maj(c1),
would imply A(c) ∈ F1 and as above one could find c′ À c such that m(c′) ∈
A(c). But c ¿ c′ implies A(c) ⊂ A(c′) then we would have m(c′) ∈ A(c′)
which is absurd. Thus we have obtained

m ∈ K = K1

∐
K2 ⊂ Ω1

∐
Ω2 .

Suppose for example that Ω1 is a neighbourhood of m in R2. Then

D ∩ Ω1 ∈ F1 and X(c) ∩ (D ∩ Ω1) 6= ∅ for every c ∈ Maj(c1,1)

which gives a contradiction with m(c′) /∈ Ω1
∐

Ω2 for all c′ ∈ Maj(c1,1).
(iv) It follows from (i) and (iii) that K is contained in a connected

component c2 of D∞. It remains to be checked that c2 possesses the required
properties. Let c be in Maj(c1). If c 6= c2 , we have by the construction
K ∩ A(c) = ∅ and therefore c2 ∩ (A(c) ∪ c) = ∅. Furthermore, the set
A(c) ∪ c = A(c) ∪ c is connected and satisfies

c ∪ c1 ⊂ A(c) ∪ c = A(c) ∪ c ⊂ D \ c2
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so it is contained in the connected component A(c2) of D\c2 which contains
c1. According to (ii), A(c2)∩α = ∅.This proves simultaneously c1 ¿ c2 and
c ¿ c2. 2

Notation 2.17 E = {c ∈ π0(D∞) | c is maximal for the ordering ¿}

Now consider the natural ordering ≤ of β provided by the positive orien-
tation of C ( for x and y in β, x ≤ y simply means that b, x, y, a are met
in this order on C). Clearly, the ordered set (β,≤) has the properties of
the interval [0, 1] ordered as usual. Especially, every set X ⊂ β admits a
least upper bound Sup(X) ∈ β and a greater lower bound Inf(X) ∈ β which
belongs to X if X is closed.

Keeping in mind Proposition 2.13, we have the following result which
will be a convenient criterion to use with the order ¿ :

Proposition 2.18 Let c1 6= c2 be in π0(D∞). The following properties are
equivalent :

(1) c1 ¿ c2

(2) ∀x ∈ c1 ∩ β, Inf(c2 ∩ β) < x < Sup(c2 ∩ β)

(3) ∃x ∈ c1 ∩ β such that Inf(c2 ∩ β) < x < Sup(c2 ∩ β).

Proof : (1) ⇒ (2) Let x ∈ c1 ∩ β. If x /∈ [Inf(c2 ∩ β), Sup(c2 ∩ β)]C then
either the arc [b, x]C or the arc [x, a]C joins α and c1 in D \ c2, which
contradicts c1 ¿ c2.

(2) ⇒ (3) is obvious.
(3) ⇒ (1) Suppose α ∪ c1 is included in a connected component A of

D \ c2. Since A is also path connected, there exists a path γ ⊂ A from x to
a point y ∈ α. We obtain with Proposition 2.2

∅ 6= γ ∩ c2 ⊂ A ∩ c2 = ∅
which is absurd. 2

Proposition and definition 2.19 The set π0(D∞) is totally ordered by
the relation ¹ defined as follows :

c1 ¹ c2 ⇔ Inf(c1 ∩ β) ≤ Inf(c2 ∩ β).

The verification is easy and left to the reader. As usual, c1 ≺ c2 will
mean c1 ¹ c2 and c1 6= c2.
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Proposition 2.20 In the (totally) ordered set (E ,¹), every non empty sub-
set F ⊂ E admits a least upper bound.

Proof : Set x0 = Sup

( ⋃

c∈F
c ∩ β

)
. Since D∞ is a closed set, there exists

c0 ∈ π0(D∞) such that x0 ∈ c0.
(i) c0 ∈ E : suppose there exists c1 ∈ π0(D∞) such that c1 6= c0 and

c0 ¿ c1. According to Proposition 2.18 we have

Inf(c1 ∩ β) < x0 < Sup(c1 ∩ β)

and, by the definition of x0, we obtain an element c ∈ F and a point x ∈ c∩β
such that

Inf(c1 ∩ β) < x ≤ x0 < Sup(c1 ∩ β).

If c 6= c1, we deduce again from Proposition 2.18 that c ¿ c1, which is not
possible because c ∈ F ⊂ E . We obtain therefore c = c1 ∈ F and then

Sup(c1 ∩ β) ≤ x0 < Sup(c1 ∩ β)

which is absurd.
(ii) c0 is a upper bound for F : suppose there exists c1 ∈ F such that

c0 ≺ c1. Then

Inf(c0 ∩ β) < Inf(c1 ∩ β) ≤ Sup(c1 ∩ β) ≤ x0 ≤ Sup(c0 ∩ β)

and it follows from Proposition 2.18 that c1 ¿ c0 which gives a contradiction
with c1 ∈ E .

(iii) c0 is the least upper bound of F : let c1 ∈ E such that c1 ≺ c0.
Then Inf(c1 ∩ β) < Inf(c0 ∩ β) ≤ x0. Since c0 ∈ E and using Proposition
2.18, we obtain also

Sup(c1 ∩ β) < Inf(c0 ∩ β) ≤ x0

then there exist c ∈ F and x ∈ c ∩ β such that

Sup(c1 ∩ β) < x ≤ x0.

Since c1 ∈ E , we obtain with Proposition 2.18

Inf(c1 ∩ β) ≤ Sup(c1 ∩ β) < Inf(c ∩ β) ≤ x

and then c1 ≺ c is not an upper bound for F . 2
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2.4.3 A map ϕ from E to E
Proposition and definition 2.21 For every c ∈ π0(D∞) there exists a
unique c′ ∈ π0(D∞) such that c ⊂ h−1(c′).
Furthermore, we have : c ∈ E ⇒ c′ ∈ E.
We obtain a well-defined map ϕ from E to E by setting ϕ(c) = c′.

Proof : For the first part of the proposition, just note that D∞ ⊂ h−1(D∞).
Then, for every c ∈ π0(D∞), there exists a unique c′ ∈ π0(D∞) such that
h−1(c′) is the connected component of h−1(D∞) containing c. Let c1

′ 6= c2
′

be in π0(D∞) such that c1
′ ¿ c2

′.
It is enough to prove :

(
c1 ∈ π0(D∞), c1 ⊂ h−1(c1

′)
)
⇒ (c1 /∈ E) .

Let C2 ⊂ π0(D∞) be the family of all connected components of D ∩
h−1(c′2) and, for every c ∈ C2, Maj(c, C2) = {c′ ∈ C2 | c ¿ c′}.

Since D∩h−1(c′2) is a closed set, one can replace Maj(c1) by Maj(c1, C2)
in the proof of Proposition 2.15 (2) and obtain the following result :

∀c1 ∈ C2 ∃c2 ∈ C2 such that

{
c1 ¿ c2 ,
(c2 ¿ c3 , c3 ∈ C2) ⇒ (c2 = c3).

We denote Cmax = {c ∈ C2 | (c ¿ c′ , c′ ∈ C2) ⇒ (c = c′)} and, for every
c ∈ Cmax

• B(c) the connected component of D \ c which contains α ,
• Ac the set of the connected components of D \ c which are disjoint from
α.

Since ∅ 6= A \A ⊂ c for every connected component A of D \ c, the set

K(c) = D \B(c) =


 ⋃

A∈Ac

A


 ∪ c

is connected.
Note that the set K =

⋃

c∈Cmax

K(c) is closed : suppose there exists a

sequence (mk)k∈N which converges to a point m and satisfies

∀k ∈ N , ∃ ck ∈ Cmax such that mk ∈ K(ck), with K(ck) 6= K(cl) for k 6= l.
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By the construction, the K(c), c ∈ Cmax, are pairwise disjoint therefore

lim
k

d (mk, F rD(K(ck))) = 0.

Since FrD(K(ck)) ⊂ ck ⊂ D ∩ h−1(c′2) there exists c ∈ C2 such that m ∈ c
and we obtain m ∈ K(c′), where c′ ∈ Cmax satisfies c ¿ c′.

Furthermore, one can check that the K(c), c ∈ Cmax, are exactly the
connected components of K. We deduce from the connectedness of D\K(c)
and from Corollary 2.8 that D \K is connected.

Suppose c1 ⊂ D \K. Since α ∩ h−1(D) = ∅ and c1 ⊂ D ∩ h−1(D), we
have

∅ 6= (D \K) ∩ FrD(D ∩ h−1(D)) ⊂ (D \K) ∩ h−1(α)

and there exists a connected component Y of (D \K)∩h−1(D) which meets
both c1 and h−1(α). Then h(Y ) ⊂ D is connected, disjoint from c′2, and
joins h(c1) ⊂ c′1 and α. This contradicts c′1 ¿ c′2 and we obtain therefore
c ∈ Cmax such that c1 ∩ K(c) 6= ∅. Since c1 ∩ c ⊂ h−1(c′1 ∩ c′2) = ∅ there
exists A ∈ Ac containing c1. Thus c1 ¿ c and c1 /∈ E . 2

Proposition 2.22 If h preserves (resp. reverses) the orientation then ϕ
preserves (resp. reverses) the order ¹ of E.
Proof : Let ci be in E and ci

′ = ϕ(ci) (i = 1, 2). Suppose we have c1 ¹ c2

and c1
′ 6= c2

′. Since c2 ∈ E , we obtain with Proposition 2.18

Inf(c1 ∩ β) ≤ Sup(c1 ∩ β) < Inf(c2 ∩ β)

Furthermore, c1 ∩ h−1(c2
′) ⊂ h−1(c1

′ ∩ c2
′) = ∅ then there exists a point

x ∈ β such that

Sup(c1 ∩ β) < x < Inf(c2 ∩ β) and [Sup(c1 ∩ β), x]C ∩ h−1(c2
′) = ∅.

Now choose a point y ∈ (a, b)C . As in the proof of Proposition 2.21, we
denote by Ci ⊂ π0(D∞) (i = 1, 2) the set of all connected components of
D ∩ h−1(ci

′). Since c1 ∪ [Sup(c1 ∩ β), x]C is connected and disjoint from
h−1(c2

′), observe that if a connected component c ∈ C2 separates x and y
in D then c1 and α are not contained in the same connected component of
D \ c, which is not possible because c1 ∈ E . On the other hand, it is clear
that c1 does not separate x and y in D. The set {c1} ∪ C2 is exactly the
set of all connected components of c1 ∪

(
h−1(c2

′) ∩D)
)

and it follows from
Corollary 2.8 that there exists a path

γ ⊂ D \
(
c1 ∪

(
D ∩ h−1(c2

′)
))
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from x to y. Furthermore, γ can be chosen to be a simple arc which intersects
Fr(D) only in its endpoints x and y. Thus c1 (resp. c2) is included in the
topological closed disc D1 (resp. D2) bounded by the simple closed curve
C1 = [y, x]C∪γ (resp. C2 = [x, y]C∪γ) and D1∩D2 = γ. Let z2 ∈ (a, y)C and
m2 ∈ c2. Since c2 ∈ E , we obtain again with Corollary 2.8 that D∩h−1(c1

′)
does not separate m2 and z2 in D and then there exists a path

γ2 ⊂ D \
(
D ∩ h−1(c1

′)
)

from m2 to z2. If necessary, we can modify γ2 and obtain γ2 ⊂ D2 \ γ,
a /∈ γ2.

With the Schoenflies Theorem, we can assume that D = {z ∈ C |
|z| ≤ 1}, a = 1, b = −1 and h−1(β) is a horizontal segment below D (say

for example h−1(β) = [−1, 1] × {−2}) such that h−1(
◦
D) is above h−1(β).

Choose two simple arcs µi (i = 1, 2) in such a way that

• the endpoints of µ1 (resp. of µ2) are b and (−1,−2) (resp. a and
(1,−2)),

• C? = α ∪ µ1 ∪ h−1(β) ∪ µ2 forms a simple closed curve,

• the topological closed disc D? bounded by C? contains D ∪ h−1(D)

(see fig. 4).

µ µ1 2

γ

z2

c21c

h
-1

)

h
-1

(

c’2(

β )

γ2

b a

x

y

fig. 4
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Define K2 = h−1(c2
′) ∪ γ2 ⊃ c2 ∪ γ2. Thus K2 is a connected compact

set included in D? \h−1(c1
′) and contains neither a nor b. Denote Xa (resp.

Xb) the connected component of D? \ K2 which contains a (resp. b). It
follows from Proposition 2.2 that Xa 6= Xb. Since

c1 ∪ [Sup(c1 ∩ β), x]C ∪ γ ∪ [y, b]C

joins c1 ⊂ h−1(c1
′) and b in D? \ K2, we have h−1(c1

′) ⊂ Xb and then
Xa ∩ h−1(c1

′) = ∅.
• If h preserves the orientation, this implies c1

′ ¹ c2
′: otherwise, since

c1
′ ∈ E (see Proposition 2.21), we obtain with Proposition 2.18

Inf(c2
′ ∩ β) ≤ Sup(c2

′ ∩ β) < Inf(c1
′ ∩ β) .

As h preserves orientation, h−1(
◦
D) is (locally) on the left of h−1(C) and

therefore h−1(b) = (−1,−2), h−1(a) = (1,−2). Thus the connected set
h−1 ([Inf(c1

′ ∩ β), a]C)∪µ2 joins h−1(c1
′) and a in D? \K2, a contradiction.

• If h reverses the orientation, we obtain c2
′ ¹ c1

′ : otherwise, since c2
′ ∈ E ,

we have with Proposition 2.18

Inf(c1
′ ∩ β) ≤ Sup(c1

′ ∩ β) < Inf(c2
′ ∩ β) .

Realizing that h−1(
◦
D) is now (locally) on the right of h−1(C), we can see

that h−1 ([b, Inf(c1
′ ∩ β)]C) ∪ µ2 is connected and joins h−1(c1

′) and a in
D? \K2, a contradiction. 2

We can now prove Theorem 2.1 :
Let x0 = Inf(D∞ ∩ β). Since D∞ is closed, x0 belongs to a connected

component cl (l for “left”) of D∞ and cl is clearly the minimal element of
the ordered set (π0(D∞),¹). Furthermore, it is an obvious consequence of
Proposition 2.18 that cl ∈ E . If h preserves (resp. reverses) the orientation,
define Φ = ϕ (resp. Φ = ϕ ◦ ϕ). According to Proposition 2.22, Φ maps E
into E and preserves the order ¹ .

Assertion : Φ possesses a fixed point c? ∈ E .

We can suppose cl ≺ Φ(cl). Then consider F = {c ∈ E | c ≺ Φ(c)} and
c0 ∈ E the least upper bound of F (see Proposition 2.20). If Φ(c0) ≺ c0,
there exists c1 ∈ F such that Φ(c0) ≺ c1 ¹ c0 and we obtain both

Φ(c1) ¹ Φ(c0) ≺ c1 (since Φ preserves the order ¹) and c1 ≺ Φ(c1),
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which is absurd. Thus we have c0 ¹ Φ(c0), and we can assume c0 ≺ Φ(c0).
Consequently, we obtain Φ(c0) /∈ F , that is Φ ◦Φ(c0) ¹ Φ(c0). On the other
hand,

c0 ¹ Φ(c0) ⇒ Φ(c0) ¹ Φ ◦ Φ(c0)

and then Φ(c0) = Φ ◦ Φ(c0). The assertion is proved.
We have obtain the following :

• if h is an orientation preserving homeomorphism, then

c? ⊂ h−1 (ϕ(c?)) = h−1 (Φ(c?)) = h−1(c?)

and Corollary 2.10 gives a fixed point for h in c?.
• if h is an orientation reversing homeomorphism, then ϕ(c?) ⊂ h−1 (ϕ ◦ ϕ(c?))
implies

c? ⊂ h−1 (ϕ(c?)) ⊂ h−2 (ϕ ◦ ϕ(c?)) = h−2(Φ(c?)) = h−2(c?)

and Corollary 2.10 gives a fixed point for h2 in c?. Furthermore, h(c?) ⊂
ϕ(c?) ⊂ D. Theorem 2.1 is proved. 2

3 Canonical position

We begin with two definitions :

Definition 3.1 Let h and h′ be two homeomorphisms of R2. It is said that
h′ is a free modification of h if there exists a finite sequence h1, . . . , hn which
satisfies

h1 = h, hn = h′

∀i = 1, . . . , n− 1 hi+1 = ϕi ◦ hi (or hi+1 = hi ◦ ϕi )

where each ϕi is a planar homeomorphism supported on a countable union∐

j

Di,j of pairwise disjoint topological closed discs Di,j such that hi(Di,j) ∩

Di,j = ∅ for every pair (i, j).

Definition 3.2 Let h be a planar homeomorphism and C ⊂ R2 a simple
closed curve disjoint from the fixed point set Fix(h), bounding the topological
closed disc D.

It is said that h is in a canonical position on C if the following conditions
are satisfied :
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(C1) h(C) intersects C transversely and only finitely often,

(C2) D ∩ h(D) is connected,

(C3) Card (C ∩ h(C)) = 2|n− 1|
where n is the index ind(h,C) of C with respect to h (see [Sl, page 430]);
furthermore, if x belongs to the intersection I = C ∩ h(C), then either the
arc (x, h(x))h(C) or the arc (h(x), x)h(C) is disjoint from I ∪ h(I).

See examples in figure 5, where h is supposed to preserve the orientation
and where C ′, a′, b′ denote respectively h(C), h(a), h(b).

C

C’

n=1 n=2

C

C’

b’

a

a’

b

fig. 5

The following properties are well known and easily checked :

Properties 3.3 Let h′ be a free modification of a planar homeomorphism
h and C ⊂ R2 a simple closed curve such that C∩ Fix(h) = ∅. Then there
exists an isotopy (ht)0≤t≤1 from h0 = h to h1 = h′ such that Fix(ht) =
Fix(h) for every t. Consequently, we have ind(h,C) = ind(h′, C).

When C surrounds an isolated fixed point p of h (and is close enough
to p), n = ind(h,C) is nothing but the Lefschetz index ind(h, p) of p and
the purpose of this section is to find a free modification of h which is in a
canonical position on C. As mentioned in the introduction, this idea is due
to Schmitt and is a central point in several papers (see [Sc], but also [Bo],
[Br2], [PS] and [Sl]). Nevertheless, it is not possible to obtain the condition
(C2) with the arguments in [Sc] (see [Bo, section 5]). To avoid this difficulty,
Slaminka ([Sl]) modifies both the homeomorphism h and the simple closed
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curve C. We follow his strategy and adapt his proof in such a way it works
for every value of the Lefschetz index of p.

Theorem 3.4 Let p be an isolated fixed point of an orientation preserving
planar homeomorphism h and a circle C bounding a closed disc D such that
p ∈ ◦

D, D∩ Fix(h) = {p}.
Then there exist a free modification h′ of h and a simple closed curve C ′

bounding a topological closed disc D′ ⊂ D such that

(1) p ∈
◦

D′,

(2) h′ is in a canonical position on C ′.

Proof : The condition (C1) can be obtained adapting the proof of theorem
A1 in [Ep, Appendix]. These details are left to the reader. Then we follow
the proof in [Sl] from “Reduction to a connected component”, page 434. We
consider the disc F0 bounded by µ and γ, as described page 436. Observe
that F0 satisfies the hypothesis of Theorem 2.1 (see [Sl, figure 8]) and F0∩
Fix(h) = ∅ then (as asserted page 437) there exists an integer n ≥ 1 such
that

(?) h−n(F0) ∩ h−n+1(F0) ∩ . . . ∩ F0 = ∅
but this property depends no more on Brown’s lemma and is now valid for
every value of the fixed point index. Furthermore, it is true but not obvious
that property (?) is sufficient to remove the intersection of γ with C : since
[Sl] contains no proof, the reader is referred to [Bo, lemme 5.4]. Performing
a finite number of removals, we are reduced to the case where (C1) and (C2)
are satisfied. Afterwards, proceed as explained in [Sl]. One can also obtain
(C3) following [PS] from “reduction to canonical form”, page 471. 2

Remark 3.5 The reader can observe that the removal of the arcs such as
γ above has to be inserted in [PS] to complete the proof.

Remark 3.6 Given a neighbourhood U of p, we can choose the disc D small
enough to have h|R2\U = h′|R2\U . Furthermore, there exists a neighbourhood
V of p such that h|V = h′|V .

Using Theorem 3.4, we can confirm the following result:

Theorem 3.7 (Schmitt’s Theorem, see [Sc]) For every n ∈ Z, the space
Hn is path connected.

Proof : Just replace in [Sc] the process to obtain a canonical position by
Theorem 3.4. 2
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