Exercice 1. Une rotation de SO(3) sera notée par $r = (k, \theta)$ où k est le vecteur unitaire de l'axe de la rotation et θ son angle.

Soient alors $r = (OA, 2\alpha)$ et $s = (OB, 2\beta)$ deux rotations telles que $\frac{\alpha}{\pi}$ et $\frac{\beta}{\pi}$ soient irrationnels. Montrez que si l'on excepté une infinité dénombrable de valeurs pour la mesure c de l'angle entre les axes OA et OB, le groupe engendré par r et s est dense dans SO(3).

Preuve: Si P_3 est le plan OAB et $P_2 = (OA, -\alpha)(P_3)$ alors r s'écrit comme le produit des réflexions par rapport aux plans P_2 et P_3 . De même s est le produit de P_1 et P_2 où $P_1 = (OB, \beta)(P_3)$.

Afin d'approcher une rotation $(k, 2\theta)$, on approche son axe puis son angle. Pour approcher $\mathbb{R}.k$, on approche les plans qu'il détermine avec OA, et OB. D'après le théorème de Jacobi-Kronecker, ils sont respectivement approchés par $P'_2 = (OA, -p\alpha)(P_3)$ et $P'_1 = (OB, q\beta)(P_3)$ si p et q sont des entiers adéquats. Ainsi $\mathbb{R}k' = P'_1 \cap P'_2$ approche \mathbb{R}^k

Puisque $r^p = (OA, 2p\alpha) = (P_3)(P_2')$ et $s^q = (OB, 2q\beta) = (P_1')(P_3)$, on a $s^q r^p = (P_1')(P_2')$ dont la mesure $2\gamma'$ de l'angle est donnée par la formule fondamentale de la trigonométrie sphérique

$$\cos \gamma' = \sin(p\alpha)\sin(q\beta)\cos c - \cos(p\alpha)\cos(q\beta)$$

On cherche $\frac{\gamma'}{\pi}$ irrationnel; la formule précédente montre que si p et q décrivent les entiers et si $\frac{\gamma'}{\pi}$ décrit les rationnels, cos c ne prend qu'une infinité dénombrable de valeurs. On choisit alors c pour que cos c n'appartienne pas à cet ensemble de valeurs. Il en résulte alors que $\frac{\gamma'}{\pi}$ est irrationnel pour tout p,q. Le théorème de Jacobi-Kronecker montre alors que l'on peut choisir n pour que $2n\gamma'$ approche 2θ de sorte que $(s^q r^p)^n$ approche $(k, 2\theta)$.

Exercice 2. Donnez le centre Z de O(q) (resp. Z^+ de $O^+(q)$) et montrez que O(q) est un produit semi-direct de $O^+(q)$ par $\mathbb{Z}/2\mathbb{Z}$; a quelle condition ce produit semi-direct peut-il être pris direct ?

Preuve : Il est clair que $\{Id, -Id\} \subset Z$; réciproquement soit $z \in Z$ et τ_D une réflexion de droite D. On a $z\tau_Dz^{-1} = \tau_D = \tau_{z(D)}$ de sorte que z laisse stable toutes les droites de l'espace; c'est donc une homothétie (résultat classique) et donc $z = \pm Id$.

En ce qui concerne Z^+ remarquons que -Id appartient à $O^+(q)$ si et seulement si n est pair. Pour $n \geq 3$ soit τ_P un renversement de plan P; on a $z\tau_P z^{-1} = \tau_P = \tau_{z(P)}$ de sorte que z laisse stable tous les plans de l'espace. Toute droite étant l'intersection de deux plans, on en déduit de même que z laisse stable toutes les droites de l'espace, soit $Z^+ = \{Id\}$ pour n impair et sinon $Z^+ = Z$ pour n pair. Pour n = 2, il est bien connu que O^+ est commutatif.

Il est clair que la suite exacte $1 \to O^+(q) \longrightarrow O(q) \longrightarrow \mathbb{Z}/2\mathbb{Z} \to 0$ est scindée, un relèvement étant donné par exemple par une réflexion quelconque. Pour obtenir un produit direct, il faut trouver un élément d'ordre 2 qui n'est pas dans O^+ et qui commute à tous les éléments de O^+ ; la seule possibilité est alors -Id en dimension impaire.

Exercice 3. Soit $u \in O(q)$ et $F_u = \{x \in E \mid u(x) = x\}$ et on note $p_u = n - \dim F_u$. Montrez par récurrence sur p_u , que u est le produit d'au plus p_u réflexions. Montrez ensuite que u est le produit d'au moins p_u réflexions.

Preuve: On raisonne par récurrence sur p_u , le cas $p_u = 0$ correspondant à u = Id. Supposons donc $p_u > 0$ et soit $x \in F_u^{\perp}$ non nul et soit $y = u(x) \neq x$ car $x \notin F_u$; on a $y \in F_u^{\perp}$ car F_u étant stable par u, F_u^{\perp} l'est aussi. De plus comme x et y on même norme, on en déduit que (x - y, x + y) = 0 (triangle isocèle). On considère alors la réflexion τ définie par x - y de sorte que $\tau(x - y) = y - x$ et $\tau(x + y) = x + y$ soit donc $\tau(y) = x$ avec $\tau_{|F_u|} = Id$. Ainsi on a $F_u \subset F_{\tau \circ u}$ ce dernier contenant x de sorte que $p_{\tau \circ u} < p_u$ et on conclut par récurrence.

En outre si u est le produit de r réflexions alors F_u est clairement de dimension supérieure ou égale à n-r (l'intersection de r hyperplans) soit donc $p_u \le r$.

Exercice 4. Montrez que pour $n \geq 3$, tout élément de $O^+(q)$ est produit d'au plus n renversements.

Preuve: Le cas n=3 est évident en remarquant que si τ est une réflexion, alors $-\tau$ est un renversement de sorte que le produit de deux réflexions (et donc tout produit d'un nombre pair) est un produit de deux renversements $\tau_1 \circ \tau_2 = (-\tau_1) \circ (-\tau_2)$.

Pour $n \geq 3$, soient τ_1 et τ_2 des réflexions par rapport aux hyperplans H_1 et H_2 et $u = \tau_1 \circ \tau_2$. Soit alors $V \subset H_1 \cap H_2$ un sous-espace de dimension n-3: $u_{|V}=Id$ et V^{\perp} est stable sous u. D'après le cas n=3, on a $u_{V^{\perp}}=\sigma_1\circ\sigma_2$ où σ_1,σ_2 sont des renversements de V^{\perp} . On obtient le résultat en prolongeant les σ_i par l'identité sur V.

Exercice 5. Soient u_1 et u_2 deux symétries orthogonales de même nature (i.e. tels que dim $Ker(u_1 - Id) = \dim Ker(u_2 - Id)$). Montrez que u_1 et u_2 sont conjuguées par $O^+(q)$. En déduire alors que $D(O(q)) = D(O^+(q)) = O^+(q)$.

Preuve: On décompose l'espace $E = E_1 \oplus E_1^{\perp} = E_2 \oplus E_2^{\perp}$ où $E_i = \operatorname{Ker}(u_i - Id)$. On choisit alors des bases orthonormées (e_i^1) et (e_i^2) de E adaptées à ces décompositions. Soit alors u tel que $u(e_i^1) = e_i^2$; u est une isométrie et quitte à changer e_1 en $-e_1$, on peut supposer que u est positive. On vérifie alors immédiatement que $u \circ u_1 \circ u^{-1} = u_2$.

L'inclusion $D(O(q)) \subset O^+(q)$ est évidente; réciproquement soient τ_1 et τ_2 deux réflexions et soit u tel que $u \circ \tau_1 \circ u^{-1} = \tau_2$ de sorte que $\tau_1 \circ \tau_2 = [\tau_1, u]$. Comme tout élément de $O^+(q)$ est le produit d'un nombre pair de réflexions, on obtient bien l'inclusion réciproque.

De même pour montrer que $O^+(q) \subset D(O^+(q))$ pour $n \geq 3$, il suffit de montrer que tout renversement est un commutateur. Soit V un sous-espace de dimension 3 et (e_1, e_2, e_3) une base orthonormée. Soient $\sigma_1, \sigma_2, \sigma_3$ les renversements définis par $(\sigma_i)_{|V^{\perp}} = Id$ et $\sigma_i(e_i) = e_i$ et donc $\sigma_i(e_j) = -e_j$ pour $i \neq j$. On a alors $\sigma_3 = \sigma_1 \circ \sigma_2$. En outre il existe $u \in O^+(q)$ tel que $\sigma_2 = u \circ \sigma_1 \circ u^{-1}$ et donc $\sigma_3 = [\sigma_1, u]$.

Exercice 6. Montrez que pour tout $u \in O(q)$, il existe une décomposition orthogonale

$$E = \operatorname{Ker}(u - Id) \oplus \operatorname{Ker}(u + Id) \oplus P_1 \oplus \cdots \oplus P_r$$

où les P_i sont des plans stables par u, tels que la restriction de u y soit une rotation.

Preuve: On procède par récurrence sur la dimension, les cas n=1 et n=2 étant bien connus. Si u admet une valeur propre réelle (forcément ± 1), c'est terminé (en particulier si n est impair). Sinon soit $\lambda \in \mathbb{C}$ une valeur propre du complexifié de $u_{\mathbb{C}}$, de sorte que $\bar{\lambda}$ est aussi valeur propre. Soit alors $x \in E \otimes_{\mathbb{R}} \mathbb{C}$ un vecteur propre du complexifié relativement à λ et soit \bar{x} son conjugué qui est alors propre pour $\bar{\lambda}$ relativement à $u_{\mathbb{C}}$. Le plan complexe $P = \mathbb{C}x + \mathbb{C}\bar{x}$ est alors invariant par $u_{\mathbb{C}}$. On remarque alors que les vecteurs $\frac{x+\bar{x}}{2}$ et $\frac{x-\bar{x}}{2i}$ sont réels et forment une base de P de sorte que le plan réel qu'ils engendrent et stable sous u.

Exercice 7. - On veut prouver la simplicité de $O^+(3,\mathbb{R})$. Soit donc N un sous-groupe distingué non réduit à l'identité; expliquez pourquoi il suffit de montrer que N contient un renversement.

- Soit alors $u \in N$, une rotation d'axe D et soit P le plan orthogonal à D à l'origine de sorte que la restriction de u à P est une rotation d'angle θ que l'on suppose $0 < \theta < \pi$. Soient alors x et y = u(x) des points de la sphère unité de E; on note d la distance entre x et y. Montrez que pour tout $0 \le d' \le d$, il existe x_1, x_2 des points de la sphère unité à distance d' l'un de l'autre et tels que $x_2 = u(x_1)$.
- Déduire de ce qui précède qu'étant donnés y_1, y_2 des points de la sphère unité distant de d' avec $0 \le d' \le d$, il existe $u' \in N$ tels que $u'(y_1) = y_2$. En considérant la rotation d'axe z et d'angle π/m pour m assez grand, construire un retournement de N et conclure.

Preuve : - Comme les renversements engendrent $O^+(3,\mathbb{R})$ et sont conjugués sous $O^+(3,\mathbb{R})$, il suffit de montrer que N en contient un.

- Un calcul classique donne $d^2=2(1-\cos\theta)$. Soit a un des points de $D\cap S^2$; le résultat découle de l'observation que u envoie le méridien contenant a et x, sur celui contenant a et y et que lorsque x_1 varie de x à a, la distance $||x_1-u(x_1)||$ varie continûment de d à 0. De façon précise, on considère $x+\lambda a$ de norme au carré égale à $1+\lambda^2$ de sorte que $x_1=\frac{x+\lambda a}{\sqrt{1+\lambda^2}}\in S^2$. On a alors $||u(x_1)-x_1||=\frac{d}{\sqrt{1+\lambda^2}}$ de sorte qu'il suffit de prendre $\lambda=\frac{\sqrt{d^2-m^2}}{m}$.

- Soit x_3 (resp. y_3) un vecteur de norme 1 orthogonal au plan engendré par x_1 et x_2 (resp. y_1 et y_2) et soit u tel que $s(x_i) = y_i$ pour i = 1, 2, 3. Il est clair que s conserve le produit scalaire et donc $u \in O(3, \mathbb{R})$; quitte à changer y_3 en $-y_3$, on peut supposer que s est positive. On pose $u' := s \circ u \circ s^{-1} \in N$ et $u'(y_1) = y_2$. Soit alors r_n la rotation d'angle π/n et d'axe a. Comme \mathbb{R} est archimédien, le rapport π/n tend vers 0 quand n tend vers $+\infty$ et donc pour n assez grand $||x - r_n(x)|| \le d$. On pose alors $x_0 = x$ et $x_{i+1} = r_n(x_i)$ avec donc $x_n = -x$. Comme on a $||x_{i+1} - x_i|| \le d$ il existe alors $u_i \in N$ tel que $u(x_i) = x_{i+1}$ de sorte que $v = u_n \circ \cdots \circ u_1 \in N$ et v(x) = -x et v est donc un renversement, d'où le résultat.

Exercice 8. On note H le corps des quaternions et soit G ceux de norme 1: $G = \{a+bi+cj+dk \ / \ a^2+b^2+c^2+d^2=1\}$. On considère alors l'action de G sur H par automorphismes intérieurs. En restreignant cette action à l'ensemble P des quaternions purs, montrez que l'on obtient alors un isomorphisme $G/\{\pm 1\} \simeq O(3,\mathbb{R})^+$. La suite exacte associée est-elle scindée ?

Preuve: On a $P \simeq \mathbb{R}^3$ et on vérifié aisément que l'action de conjugaison de G est \mathbb{R} -linéaire et conserve la norme de sorte qu'elle définit un morphisme de groupes $G \longrightarrow O(3,\mathbb{R})$. On note en outre que $G \simeq S^3$ est connexe et que le morphisme précédent est continue de sorte que l'image de $G \to O(3,\mathbb{R}) \to \{\pm 1\}$ est connexe et donc égale à $\{1\}$. On obtient donc bien un morphisme de groupe $\phi: G \longrightarrow O^+(3,\mathbb{R})$. Montrons la surjectivité: soit $p \in P \cap G$, on a $\phi_p(p) = p$ ce qui prouve que ϕ_p fixe p (et est non triviale), c'est donc une rotation d'axe p. En outre on a $p^2 = -1$ soit ϕ_p d'ordre 2; c'est donc un renversement. On obtient donc tous les renversements, or ceux-ci engendrent $O^+(3,\mathbb{R})$, d'où la surjectivité. Pour le noyau, on a $\phi_g(p) = p$ pour tout $p \in P$ si et seulement si g commute à tous les éléments de P et donc à tous les éléments de P, soit donc $Q \in \mathbb{R} \cap G = \{\pm 1\}$.

Si la suite exacte

$$1 \to \{\pm 1\} \longrightarrow G \longrightarrow^{\phi} O^{+}(3, \mathbb{R}) \to 1$$

était scindée, on aurait un sous-groupe H de G tel que $\phi_{|H}$ soit un isomorphisme de H sur $O^+(3,\mathbb{R})$. Mais alors pour $g \in G$, on aurait g ou -g qui appartiendrait à H. En prenant $o \in P \cap G$, on a $p^2 = (-p)^2 = -1$ soit donc $-1 \in H$, contradiction.

Exercice 9. On considère l'action de $G \times G$ sur H définie par $(q_1, q_2).q := q_1q\bar{q}_2$. Montrez que l'on définit ainsi un isomorphisme $G \times G/\{(1,1),(-1,-1)\} \simeq O(4,\mathbb{R})^+$ et en déduire que $PO(4,\mathbb{R})^+ \simeq O(3,\mathbb{R})^+ \times O(3,\mathbb{R})^+$.

Preuve : L'application ϕ_{q_1,q_2} est clairement \mathbb{R} -linéaire et conserve la norme. Par continuité, on conclut comme précédemment que son image est contenue dans les isométries positives soit donc

$$\phi: G \times G \longrightarrow O^+(4, \mathbb{R})$$

Soit $(q_1, q_2) \in \text{Ker } \phi$, i.e. $q_1 q \bar{q}_2 = q$ pour tout $q \in H$. Pour q = 1, on trouve $q_1 = q_2$ de sorte qu'ensuite q_1 est central et donc $\text{Ker } \phi = \{(1, 1), (-1, -1)\}$.

Pour la surjectivité, soit $u \in O^+(4,\mathbb{R})$, si on a u(1) = 1, comme $P = 1^{\perp}$, on a u(P) = P avec $u_{|P|} \in O^+(3,\mathbb{R})$ et d'après ce qui il existe $q \in G$ tel que $\phi_{q,q} = u$. Si on a u(1) = g, on a alors $\phi_{\bar{g},1} \circ u(1) = 1$ et on conclut grâce au cas précédent. Finalement on obtient donc

$$G \times G/\{(1,1),(-1,-1)\} \simeq O(4,\mathbb{R})^+$$

En passant au groupe projectif, on cherche les couples (q_1, q_2) tels que $\phi_{q_1,q_2} = -Id$, i.e. $q_1q\bar{q}_2 = -q$ pour tout $q \in H$. En faisant q = 1, on obtient $q_1 = -q_2$, puis on voit que q_1 est central soit alors

$$G \times G/V \simeq PO(4, \mathbb{R})^+$$

où $V = \{(1,1), (1,-1), (-1,1), (-1,-1)\}$. En outre la projection canonique $G \to G/\{\pm 1\}$ induit un isomorphisme

$$(G \times G)/V \simeq G/\{\pm 1\} \times G/\{\pm 1\}$$

et donc d'après ce qui précède

$$PO(4,\mathbb{R})^+ \simeq O(3,\mathbb{R})^+ \times O(3,\mathbb{R})^+$$
.

Exercice 10. Le paradoxe de Banach-Tarski (a) On considère les deux rotations vectorielles de \mathbb{R}^3 , u, v dont les matrices dans la base canonique sont

$$U = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \text{ et } V = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1/2 & \sqrt{3}/2 \\ 0 & -\sqrt{3}/2 & -1/2 \end{pmatrix}$$

Soit G le groupe engendré par u et v. Montrez que tout élément $r \in G \setminus \{Id, u\}$ s'écrit de manière unique sous la forme $r = u^{\epsilon_1}v^{n_1}uv^{n_2}u\cdots uv^{n_k}u^{\epsilon_2}$ avec $\epsilon_1, \epsilon_2 \in \{0, 1\}$ et les $n_i \in \{1, 2\}$.

- (b) On définit une partition (I, J, K) de G de la manière suivante
- pour tout $n, (v^2u)^n \in I$;
- pour tout n, $u(v^2u)^n \in J$;
- pour tout n, $vu(v^2u)^n \in K$;
- les éléments de G qui ne sont pas de cette forme appartiennent à I, J, K respectivement suivant que leur écriture commence à gauche par u, v, v^2 respectivement.

Montrez que K = vJ, I = vK et $I = u(J \cup K)$.

Exercice 11. (a) Deux parties A et B de l'espace euclidien \mathbb{R}^3 sont dites superposables et on notera ADB, s'il existe un déplacement r de \mathbb{R}^3 tel que B = r(A). Montrez que l'on définit bien ainsi une relation d'équivalence.

(b) Soit S la sphère unité de \mathbb{R}^3 ; on pose

$$D = \{ x \in S \mid \exists r \in G \setminus \{Id\}, \ r(x) = x \}$$

 $Montrez\ que\ D\ est\ dénombrable\ et\ est\ stable\ par\ G.$

- (c) Les orbites de $S \setminus D$ sous l'action de G, constituent une partition de $S \setminus D$. En utilisant l'axiome du choix, on construit un ensemble T contenant un élément de chaque orbite. En posant A = I(T), B = J(T) et C = K(T), montrez que l'on a ainsi une partition finie (A, B, C, D) de S avec D dénombrable, A, B, C superposables et $A\mathcal{D}(B \cup C)$.
- **Exercice 12.** (a) On appelle découpage d'une partie A de \mathbb{R}^3 , une partition finie $(A_i)_{1 \leq i \leq n}$ de A. On dira que deux parties A, B de \mathbb{R}^3 sont puzzle-équivalentes s'il existe une entier n et des découpages $(A_i)_{1 \leq i \leq n}$ et $(B_i)_{1 \leq i \leq n}$ tels que pour tout $1 \leq i \leq n$, A_i et B_i sont superposables. Vérifiez que l'on obtient bien ainsi une relation d'équivalence que l'on notera \mathcal{P} .
- (b) Soient S_1 et S_2 deux sphères disjointes de rayon 1, de centres respectifs O_1, O_2 et soient (A_1, B_1, C_1, D_1) et (A_2, B_2, C_2, D_2) les découpages obtenus en translatant (A, B, C, D). Montrez que

$$(S \backslash D) \mathcal{P}((S_1 \backslash D_1) \cup (S_2 \backslash D_2))$$

(c) On cherche à éliminer les ensembles dénombrables dans la duplication de la sphère ci-dessus. On veut prouver le résultat suivant: si Σ est une sphère et Δ est un sous-ensemble dénombrable de Σ , alors

$$\Sigma \mathcal{P}(\Sigma \backslash \Delta)$$

Pour cela montrez que l'on peut choisir $\delta \in \Sigma$ tel que $\pm \delta \notin \Delta$. En déduire que l'ensemble des rotations d'axe (O,δ) vérifiant qu'il existe $n \in \mathbb{N} \setminus \{0\}$, $x,y \in \Delta$ tels que $r^n(x) = y$ est dénombrable. Soit alors ρ une rotation n'appartenant pas à cet ensemble, de sorte que les ensembles $\rho^n(\Delta)$ sont deux à deux disjoints. En considérant $U = \bigcup_{n \geq 0} \rho^n(\Delta)$, prouvez le résultat.

(d) On veut désormais dupliquer les boules fermées. Montrez que

$$(K\backslash\{O\})\mathcal{P}((K_1\backslash\{O_1\})\cup(K_2\backslash\{O_2\}))$$

¹En quelque sorte, A est à la fois la moitié et le tiers de la sphère.

En considérant $\Delta = \{(\cos n, \sin n, 0), n \in \mathbb{N}\}$, montrez que la rotation d'axe z et d'angle 1 radian envoie Δ sur $\Delta \setminus \{(1,0,0)\}$. En déduire que

$$K\mathcal{P}K\setminus\{(1,0,0)\}$$

puis le résultat de duplication des boules.

Remarque: De manière plus générale, on peut montrer le théorème suivant

Théorème (Banach-Tarski) Si A et B sont deux parties de \mathbb{R}^3 bornées et d'intérieurs non vides, alors A et B sont puzzle-équivalentes.