Feuille d'exercices 4

Réseaux

Exercice 1. Dans la suite K est l'un des corps \mathbb{Q} ou \mathbb{R} et V est un K-espace vectoriel de dimension finie n > 0. Une partie Γ de V est un sous-réseau s'il existe une famille libre $\mathbf{e} = (e_1, \dots, e_r)$ de V telle que $\Gamma = \mathbb{Z}e_1 + \dots + \mathbb{Z}e_r$. On dit que \mathbf{e} est une \mathbb{Z} -base de Γ et r est son rang. On dit que Γ est un réseau si r = n.

- $\mathbb{Z} + \sqrt{2}\mathbb{Z}$ est-il un sous-réseau de \mathbb{R} ?
- Soit Γ un réseau de V, \mathbf{e} une \mathbb{Z} -base de Γ et \mathbf{v} une base de V. Montrez que \mathbf{v} est une \mathbb{Z} -base de Γ si et seulement si la matrice de passage de \mathbf{e} à \mathbf{v} appartient à $GL_n(\mathbb{Z})$.
- Soient Γ un réseau de V et $\Lambda \subset \Gamma$ un sous-groupe. Montrez que Λ est un sous-réseau de V et qu'il existe une \mathbb{Z} -base (e_1, \dots, e_n) de Γ , $1 \leq s \leq n$ et $a_1, \dots, a_s \in \mathbb{Z}^{\times}$ vérifiant:
 - $-(a_1e_1,\cdots,a_se_s)$ est une \mathbb{Z} -base de Λ ,
 - $pour 1 \leq i < s, a_i divise a_{i+1}$

En déduire une CNS pour que Γ/Λ soit fini et calculez son cardinal en fonction des a_i .

- On suppose ici $K = \mathbb{Q}$. Soient Γ, Λ des réseaux de V. Montrez que
 - il existe $d \in \mathbb{N} \setminus \{0\}$ tel que $d\Gamma \subset \Lambda$,
 - $-\Gamma + \Lambda$ et $\Gamma \cap \Lambda$ sont des réseaux de V.
- On suppose ici $K = \mathbb{R}$ et on munit V de sa topologie canonique. Montrez que tout sous-groupe discret¹ Γ de V en est un sous-réseau.

Indication: soit (e_1, \dots, e_r) une famille libre maximale de Γ et $\mathcal{K} = \{\lambda_1 e_1 + \dots + \lambda_r e_r; \lambda_i \in [0, 1]\}$. En utilisant le fait que $\mathcal{K} \cap \Gamma$ est fini et en considérant pour $j \in \mathbb{Z}$ et $x = \lambda_1 e_1 + \dots + \lambda_r e_r \in \Gamma$, les $x_j = jx - ([j\lambda_1]e_1 + \dots + [j\lambda_r]e_r)^2$, montrez que $\lambda_i \in \mathbb{Q}$ et conclure.

A quelles conditions est-ce un réseau?

Preuve: (i) $\sqrt{2}$ n'appartenant pas à \mathbb{Q} , $G = \mathbb{Z} + \sqrt{2}\mathbb{Z}$ est dense dans \mathbb{R} ; si G était un réseau on aurait $G = \alpha \mathbb{Z}$ et serait discret, ce qui n'est pas.

- (ii) Si \mathbf{v} est une \mathbb{Z} -base de Γ , la matrice de passage de \mathbf{e} à \mathbf{v} et celle de \mathbf{v} à \mathbf{e} sont à coefficients dans \mathbb{Z} et sont inverses l'une de l'autre, d'où le résultat. Réciproquement soit P (resp. P^{-1}) la matrice de passage de \mathbf{e} à \mathbf{v} (reps. de \mathbf{v} à \mathbf{e}). Comme P est à coefficients dans \mathbb{Z} , le réseau engendré par \mathbf{e} est inclu dans celui engendré par \mathbf{v} ; l'inclusion inverse découle de même du fait que P^{-1} est à coefficients dans \mathbb{Z} .
- (iii) C'est le théorème (??) du cours, i.e. le théorème de la base adaptée, sur les modules de type fini sur un anneau principal. Le quotient Γ/Λ est fini si et seulement si les deux réseaux ont le même rang et alors le cardinal est égal à la valeur absolue du produit des a_i , $1 \le i \le n$.

¹i.e. tel que pour tout compact \mathcal{K} de V, $\mathcal{K} \cap \Gamma$ est fini

 $^{^{2}[\}lambda]$ désigne la partie entière de λ

- (iv) Soient \mathbf{e} et \mathbf{f} des \mathbb{Z} -bases de respectivement Γ et Λ . On note $P = (p_{i,j})_{1 \leq i,j \leq n} \in GL_n(\mathbb{Q})$ la matrice de passage de \mathbf{f} à \mathbf{e} et soit d le ppcm des dénominateurs des $p_{i,j}$, $1 \leq i,j \leq n$, écrits sous formes irréductibles. Il est alors clair que l'on a $d\Gamma \subset \Lambda$.
 - Soit d comme ci-dessus. On a alors

$$d\Gamma \subset \Gamma \cap \Lambda \subset \Gamma$$

$$\Gamma \subset \Gamma + \Lambda \subset d^{-1}\Lambda$$

L'inclusion $\Gamma \cap \Lambda \subset \Gamma$ (resp. $\Gamma + \Lambda \subset d^{-1}\Lambda$) prouve d'après (iii) que $\Gamma \cap \Lambda$ (resp. $\Gamma + \Lambda$) est un sous-réseau de Γ (resp. $d^{-1}\Lambda$). Les autres inclusions montrent que $\Gamma + \Lambda$ et $\Gamma \cap \Lambda$ sont de rang n.

(v) On procède comme suggéré dans l'indication; \mathcal{K} étant compact, $\mathcal{K} \cap \Gamma$ est fini; on note y_1, \cdots, y_s ses éléments . Soit $x = \sum_{i=1}^r \lambda_i e_i \in \Gamma$, $\lambda_i \in \mathbb{R}$. On considère pour $j \in \mathbb{Z}$, $x_j = jx - \sum_{i=1}^r [j\lambda_i]e_i$; $x_j \in \Gamma \cap \mathcal{K}$ de sorte qu'il existe $j \neq k$ tels que $x_j = x_k$, soit $(j-k)\lambda_i = [j\lambda_i] - [k\lambda_i]$ pour $1 \leq i \leq r$ et donc $\lambda_i \in \mathbb{Q}$. Pour $1 \leq i \leq s$, on écrit $y_i = \sum_{k=1}^r \lambda_k^i e_k$ avec $\lambda_k^i \in \mathbb{Q}$ et soit d le ppcm des dénominateurs des λ_k^i écrits sous forme irréductible. De l'égalité $x = x_1 + \sum_{i=1}^r [\lambda_i]e_i$, on en déduit $dx \in \mathbb{Z}e_1 + \cdots + \mathbb{Z}e_r$ soit $d\Gamma \subset \mathbb{Z}e_1 + \cdots + \mathbb{Z}e_r$, soit $\Gamma \subset \mathbb{Z}d^{-1}e_1 + \cdots + \mathbb{Z}d^{-1}e_r = \Lambda$ et ainsi Γ est un sous-groupe du sous-réseau Λ de V et donc Γ est un sous-réseau de V. En outre Γ est un réseau de V si et seulement si Γ est discret et V/Γ est compact.

Exercice 2. On reprend les notations de l'exercice précédent avec $K = \mathbb{R}$. On note μ la mesure de Lebesgue de \mathbb{R}^n , $(\epsilon_1, \dots, \epsilon_n)$ sa base canonique et (.|.) le produit scalaire associé $(\epsilon_i|\epsilon_j) = \delta_{i,j}$. Pour Γ un réseau de \mathbb{R}^n et $\mathbf{e} = (e_1, \dots, e_n)$ une \mathbb{Z} -base de Γ , on pose

-
$$P_{\mathbf{e},\Gamma} = \{\sum_{i=1}^n \lambda_i e_i; \ \lambda_1, \cdots, \lambda_n \in [0,1]\},$$

-
$$D_{\mathbf{e},\Gamma} = \{\sum_{i=1}^n \lambda_i e_i; \ \lambda_1, \cdots, \lambda_n \in [0,1[\},$$

On note $S_{\mathbf{e},\Gamma}$ (resp. $T_{\mathbf{e},\Gamma}$) la matrice de terme général $(e_i|e_j)$ (resp. $(\epsilon_i|e_j)$).

- (a) Montrez que $S_{\mathbf{e},\Gamma} = {}^tT_{\mathbf{e},\Gamma}T_{\mathbf{e},\Gamma}$. En utilisant la formule du jacobien pour le changement de variables dans les intégrales multiples, en déduire l'égalité $\mu(P_{\mathbf{e},\Gamma}) = \sqrt{\det S_{\mathbf{e},\Gamma}}$. Montrez ensuite que $\mu(P_{\mathbf{e},\Gamma})$ ne dépend que de Γ et non de \mathbf{e} ; on dit que c'est la mesure du réseau et on la note $\mu(\mathbb{R}^n/\Gamma)$.
- (b) Une partie \mathcal{D} de \mathbb{R}^n est un domaine fondamental de Γ , si \mathcal{D} est μ -mesurable et si ses translatés par les vecteurs de Γ forment une partition de \mathbb{R}^n . Montrez que $D_{\mathbf{e},\Gamma}$ est un domaine fondamental et que $\mu(\mathcal{D}) = \mu(\mathbb{R}^n/\Gamma)$ pour tout domaine fondamental \mathcal{D} de Γ .
- (c) En utilisant le théorème de la base adaptée, montrez que si $\Lambda \subset \Gamma$ sont des réseaux alors Γ/Λ est fini et

$$\mu(\mathbb{R}^n/\Lambda) = \operatorname{card}(\Gamma/\Lambda)\mu(\mathbb{R}^n/\Gamma)$$

(d) (i) Soit $\varphi : \mathbb{R}^n \longrightarrow \mathbb{R}^n/\Gamma$ la surjection canonique associé au réseau Γ et soit F une partie de \mathbb{R}^n , μ -mesurable vérifiant $\mu(F) > \mu(\mathbb{R}^n/\Gamma)$. Montrez que la restriction de φ à F n'est pas injective.

- (ii) Déduire de (i), le théorème de Minkowski: soient Γ un réseau de \mathbb{R}^n et A une partie μ -mesurable, convexe, symétrique par rapport à O et vérifiant $\mu(A) > 2^n \mu(\mathbb{R}^n/\Gamma)$, alors $A \cap \Gamma \neq \{O\}$.
- (iii) Montrez que si C est un convexe compact de \mathbb{R}^n , symétrique par rapport à O tel que $\mu(C) \geqslant 2^n \mu(\mathbb{R}^n/\Gamma)$ alors $C \cap \Gamma \neq \{O\}$.
- (iv) Soit v_n le volume de la boule unité fermée de \mathbb{R}^n . Montrez qu'il existe $\gamma \in \Gamma$ différent de O et de norme inférieure ou égale à deux fois la racine n-ième de $v_n^{-1}\mu(\mathbb{R}^n/\Gamma)$.

Preuve: (a) L'égalité $S_{\mathbf{e},\Gamma} = {}^tT_{\mathbf{e},\Gamma}T_{\mathbf{e},\Gamma}$ découle directement des formules classiques du cours d'algèbre bilinéaire en remarquant par exemple que $T_{\mathbf{e},\Gamma}$ est la matrice de passage de la base \mathbf{e} à la base canonique; ainsi on a $\det S_{\mathbf{e},\Gamma} = (\det T_{\mathbf{e},\Gamma})^2 \geqslant 0$. En outre, par la formule du changement de variable dans une intégrale multiple via le jacobien, on a $\mu(P_{\mathbf{e},\Gamma} = \int_{P_{\mathbf{e},\Gamma}} d\mu = \int_0^1 \cdots \int_0^1 |\det T_{\mathbf{e},\Gamma}| dx_1 \cdots dx_n$, soit $\mu(P_{\mathbf{e},\Gamma}) = \sqrt{\det S_{\mathbf{e},\Gamma}}$.

 $\int_0^1 \cdots \int_0^1 |\det T_{\mathbf{e},\Gamma}| dx_1 \cdots dx_n, \text{ soit } \mu(P_{\mathbf{e},\Gamma}) = \sqrt{\det S_{\mathbf{e},\Gamma}}.$ Si \mathbf{f} est une autre \mathbb{Z} -base de Γ , on ntoe Q la matrice de passage de \mathbf{e} à \mathbf{f} ; $Q \in GL_n(\mathbb{Z})$ et $S_{\mathbf{f},\Gamma} = {}^tQS_{\mathbf{e},\Gamma}Q$, soit $\det S_{\mathbf{f},\Gamma} = \det S_{\mathbf{e},\Gamma}(\det Q)^2$; or comme $Q \in GL_n(\mathbb{Z})$, on a $\det Q \in \mathbb{Z}^\times$, soit $\det Q = \pm 1$, d'où le résultat.

(b) $D_{\mathbf{e},\Gamma}$ est évidemment un domaine fondamental. Soient alors \mathcal{D}_1 et \mathcal{D}_2 des domaines fondamentaux quelconques. En considérant \mathcal{D}_2 comme un domaine fondamental, on écrit

$$\mathcal{D}_1 = \coprod_{v \in \Gamma} \mathcal{D}_1 \cap (v + \mathcal{D}_2),$$

 Γ étant dénombrable et μ étant invariante par translation, on a

$$\mu(\mathcal{D}_1) = \sum_{v \in \Gamma} \mu(\mathcal{D}_1 \cap (v + \mathcal{D}_2))$$

=
$$\sum_{v \in \Gamma} \mu((-v + \mathcal{D}_1) \cap \mathcal{D}_2)$$

Or comme $-\Gamma = \Gamma$, on en déduit $\mu(\mathcal{D}_1) = \sum_{v \in \Gamma} \mu(\mathcal{D}_2 \cap (v + \mathcal{D}_1)) = \mu(\mathcal{D}_2)$, la dernière égalité découlant du fait que \mathcal{D}_1 est un domaine fondamental.

- (c) D'après le théorème de la base adaptée, il existe une \mathbb{Z} -base $\mathbf{v} = (v_1, \dots, v_n)$ de Γ et des entiers $a_1|a_2|\cdots|a_n$ tels que $\mathbf{w} = (a_1v_1, \dots, a_nv_n)$ est une \mathbb{Z} -base de Λ . Ainsi on obtient $\operatorname{card}(\Gamma/\Lambda) = \prod_{i=1}^n a_i$ et $S_{\mathbf{w},\Lambda} = {}^tDS_{\mathbf{v},\Gamma}D$ avec $D = \operatorname{diag}(a_1, \dots, a_n)$, d'où le résultat.
 - (d) (i) Soit \mathcal{D} un domaine fondamental:

$$\mu(F) = \sum_{\gamma \in \Gamma} \mu(F \cap (\gamma + \mathcal{D})) = \sum_{\gamma \in \Gamma} \mu((F - \gamma) \cap \mathcal{D}) > \mu(D)$$

d'où il en résulte que les $(F - \gamma) \cap \mathcal{D}$ pour $\gamma \in \Gamma$ ne sont pas deux à deux disjoints. Soient donc $x, y \in F$ et $\alpha \neq \beta \in \Gamma$ vérifiant $x - \alpha = y - \beta$ soit $x - y = \alpha - \beta \in \Gamma \setminus \{O\}$ et donc φ non injective.

- (ii) Soit $F = \frac{1}{2}A$; on a donc $\mu(F) > \mu(\mathbb{R}^n/\Gamma)$. D'après la question précédente, il existe donc $x, y \in F$ tels que $x y \in \Gamma \setminus \{O\}$. En outre 2x et -2y appartiennent à A d'après la propriété de symétrie de A par rapport à O, et donc $x y = \frac{(2x 2y)}{2}$ appartient à A d'après la propriété de convexité de A, d'où le résultat.
- (iii) Soit $C_r = (1+1/r)C$ pour $r \ge 1$; $C = \bigcap_{r \ge 1} C_r$ et $\mu(C_r) > 2^n \mu(\mathbb{R}^n/\Gamma)$. D'après la question précédente, soit $x_r \in C_r \cap (\Gamma \setminus \{O\}) \subset K := 2C \cap (\Gamma \setminus \{O\})$; K étant fini, on peut extraire de la suite $(x_r)_{r \ge 1}$ une sous-suite convergente, donc stationnaire, d'où le résultat.
 - (iv) Une boule $\overline{B}(O,r)$ vérifie $\overline{B}(O,r) \cap (\Gamma \setminus \{O\}) \neq \text{dès que } v_n r^n \geqslant \mu(\mathbb{R}^n/\Gamma), \text{ d'où le résultat.}$

Exercice 3. Quelques applications arithmétiques:

- (a) Soient $\epsilon > 0$ et $(\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n \setminus \mathbb{Q}^n$; montrez qu'il existe $p_1, \dots, p_n \in \mathbb{Z}$ et $q \in \mathbb{N}$ non nul tels que pour tout $1 \leq i \leq n$, on ait $|\alpha_i \frac{p_i}{q}| < \frac{\epsilon}{q}$.

 Indication: considérez le groupe Γ engendré par les vecteurs de la base canonique et le vecteur $(\alpha_1, \dots, \alpha_n)$ et remarquez que Γ n'est pas un réseau et n'est donc pas discret.
- (b) Montrez que si $p \equiv 1 \mod 4$, p premier, alors p est somme de deux carrés. Indication: (-1) étant un carré modulo p, soit $u \in \mathbb{Z}$ tel que $u^2 + 1 \equiv 0 \mod p$ et soit $\Gamma = \{(a,b) \in \mathbb{Z}^2 \mid a \equiv ub \mod p\}$. Soit $\psi : \mathbb{Z}^2 \longrightarrow \mathbb{Z}/p\mathbb{Z}$ défini par $\psi(a,b) = \overline{a - ub}$. Montrez que Γ est un réseau de mesure p et utilisez le point (d) (iv) de l'exercice précédent.
- (c) Montrez que tout nombre premier p est somme de quatre carrés. ndication: montrez l'existence d'un couple $(u,v) \in \mathbb{Z}^2$ tel que $u^2 + v^2 + 1 \equiv 0 \mod p$. On fixe un tel couple et soit $\Gamma = \{(a,b,c,d) \in \mathbb{Z}^4 \mid ua + vb \equiv c \mod p \text{ et } ub - va \equiv d \mod p\}$. Soit $\psi : \mathbb{Z}^4 \longrightarrow (\mathbb{Z}/p\mathbb{Z})^2$ défini par $\psi(a,b,c,d) = (\overline{c-ua-vb},\overline{d+va-ub})$. Montrez que Γ est un réseau de \mathbb{R}^4 de mesure p^2 et utilisez le point (d) (iv) de l'exercice précédent.

Preuve: (a) Soit Γ le groupe engendré par (e_1, \dots, e_n, e_0) où e_1, \dots, e_n sont les vecteurs de la base canonique de \mathbb{R}^n et $e_0 = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$. Si Γ était discret, il serait un réseau; soit \mathbf{f} une

 \mathbb{Z} -base de Γ et P la matrice de passage de (e_1, \dots, e_n) à \mathbf{f} , $P \in M_n(\mathbb{Z})$ et $P^{-1} \in M_n(\mathbb{Q})$ de sorte que e_0 est une combinaison linéaire à coefficients dans \mathbb{Q} des e_i , ce qui n'est pas. Ainsi Γ n'est pas discret et admet un point d'accumulation P. Soit alors $\epsilon > 0$ avec $\overline{B}(O, \epsilon) \cap \Lambda = \{O\}$, où Λ est le réseau $\mathbb{Z}e_1 + \dots + \mathbb{Z}e_n$; il existe alors des entiers comme dans l'énoncé tels que $(qe_0 + p_1e_1 + \dots + p_ne_n) - (q'e_0 + p'_1e_1 + \dots + p'_ne_n)$ soit de norme inférieure à ϵ avec $q - q' \neq 0$, d'où le résultat.

car $\gamma \notin \Lambda$, d'où le résultat.

- (b) Soit x un générateur de $(\mathbb{Z}/p\mathbb{Z})^{\times} \simeq \mathbb{Z}/(p-1)\mathbb{Z}$; on a $x^{p-1} = 1$ et $u = x^{p-1/4}$ est d'ordre 4, soit u^2 d'ordre 2; or dans un corps commutatif de caractéristique différent de 2, il y a exactement un élément d'ordre 2, i.e. -1; en effet l'équation $X^2 1$ y a au plus deux solutions. Soit alors $\Gamma = \{(a,b) \in \mathbb{Z}^2 \mid a \equiv ub \mod p\}$ et $\psi : \mathbb{Z}^2 \longrightarrow \mathbb{Z}/p\mathbb{Z}$ défini par $\psi(a,b) = a ub$; ψ est clairement surjective et son noyau est Γ de sorte que ψ induit un isomorphisme $\mathbb{Z}^2/\Gamma \simeq \mathbb{Z}/p\mathbb{Z}$. On en déduit donc que Γ est un réseau de mesure p car $\mu(\mathbb{R}^2/\mathbb{Z}^2) = 1$. D'après l'exercice précédent question (d) (iv), il existe donc $\gamma = ae_1 + be_2 \neq O \in \Gamma$ de module inférieur ou égal à $2\sqrt{\frac{p}{\pi}}$, soit $0 < a^2 + b^2 \leqslant 4p/\pi < 2p$; or comme $\gamma \in \Gamma$, on a $a^2 + b^2 \equiv b^2(u^2 + 1) \equiv 0 \mod p$, d'où $a^2 + b^2 = p$.
- (c) Le cas $p=2=1^2+1^2+0^2+0^2$ est vite traité, soit donc $p\geqslant 3$ premier. Soit $\phi:(\mathbb{Z}/p\mathbb{Z})^\times \longrightarrow (\mathbb{Z}/p\mathbb{Z})^\times$ défini par $\phi(x)=x^2; \mathbb{Z}/p\mathbb{Z}$ étant un corps, Ker $\phi=\{1,-1\}$ de sorte que $\mathbb{I}\phi$ est de cardinal (p-1)/2. En remarquant que 0 est un carré, on en déduit que $\{u^2 \mid u \in \mathbb{Z}/p\mathbb{Z}\}$ est de cardinal (p+1)/2 et qu'il en est de même pour $\{1-v^2 \mid v \in \mathbb{Z}/p\mathbb{Z}\}$; comme 2(p+1)/2>p on en déduit que $\{u^2 \mid u \in \mathbb{Z}/p\mathbb{Z}\} \cap \{1-v^2 \mid v \in \mathbb{Z}/p\mathbb{Z}\}$ est non vide, et on fixe u,v tels que $u^2+v^2+1\equiv 0 \mod p$. Avec les notations de l'énoncé, ψ est clairement surjective et son noyau est le groupe Γ ; ψ induit donc un isomorphisme $\mathbb{Z}^4/\Gamma \simeq (\mathbb{Z}/p\mathbb{Z})^2$. On en déduit donc que Γ est un réseau de mesure p^2 . D'après le point (d) (iv) de l'exercice précédent, soit

 $\gamma=(a,b,c,d)=\in \Gamma\backslash\{O\}$ de norme au carré inférieure ou égale à $4\sqrt{2}p/\pi<2p$. Or comme $\gamma\in\Gamma$, on a $a^2+b^2+c^2+d^2\equiv (a^2+b^2)(u^2+v^2+1)\equiv 0 \ \mathrm{mod}\ p$, soit $p=a^2+b^2+c^2+d^2$. Remarque: En utilisant l'identité remarquable³

$$(a^{2} + b^{2} + c^{2} + d^{2})(\alpha^{2} + \beta^{2} + \gamma^{2} + \delta^{2}) = (a\alpha - b\beta - c\gamma - d\delta)^{2} + (a\beta + b\alpha + c\delta - d\gamma)^{2} + (a\gamma + c\alpha + d\beta - b\delta)^{2} + (a\delta + b\gamma + d\alpha - c\beta)^{2}$$

on en déduit que tout entier est somme de quatre carrés.

³cf. le corps des quaternions