Feuille de TD 2

Exercice 1. Soit $C \subset \mathbb{F}_q^n$ un code parfait qui corrige t erreurs. Montrer que

$$\sharp C. \sum_{i=0}^{t} \binom{n}{i} (q-1)^i = q^n.$$

Exercice 2. Soit C un code linéaire de \mathbb{F}_q^n de dimension k et de distance d. Montrer la borne du singleton

$$d \le n - k + 1$$
.

Exercice 3. Soit $G = (I_k|B)$ la matrice génératrice d'un code systématique. Montrer que la matrice H de contrôle peut s'écrire sous la forme $H = (-{}^tB|I_{n-k})$.

Exercice 4. Donner une expression d'une matrice de contrôle du code de Hamming de longueur 7.

Exercice 5. Montrer que d = 3 pour un code de Hamming.

Exercice 6. Montrer que $\mathbb{F}_{256} \simeq \mathbb{F}_2[X]/(X^8+X^7+X^6+X^5+X^4+X^2+1)$ et que $\alpha := \overline{X}$ est un générateur du groupe multiplicatif.

Soit $\Delta(X) \in \mathbb{F}_{256}[X]$ tel que $\Delta(\alpha) = \Delta(\alpha^2) = \Delta(\alpha^3) = \Delta(\alpha^4)$. Montrer alors que Δ possède au moins 5 coefficients non nuls.