Préambule

Dans tout le texte $\mathcal{M}_{n,m}(\mathbf{C})$ désigne l'ensemble des matrices à n lignes, m colonnes et à coefficients complexes; on notera I_n la matrice identité de $\mathcal{M}_n(\mathbf{C}) = \mathcal{M}_{n,n}(\mathbf{C})$. Pour $A \in \mathcal{M}_n(\mathbf{C})$, le spectre $\operatorname{Sp}(A)$ de A est le sous-ensemble de \mathbf{C} constitué des valeurs propres de A. Si $A = [a_{i,j}]_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}} \in \mathcal{M}_{n,m}(\mathbf{C})$, on notera

 $A^* = {}^t \overline{A} = [\overline{a_{j,i}}]_{\substack{1 \leq j \leq m \\ 1 \leq i \leq n}} \in \mathcal{M}_{m,n}(\mathbf{C})$ le conjugué de la transposée de A. On identifiera les vecteurs de \mathbf{C}^n avec les éléments de $\mathcal{M}_{n,1}(\mathbf{C})$. On utilisera la notation $\operatorname{diag}(\lambda_1, \dots, \lambda_n)$ pour désigner la matrice diagonale de $\mathcal{M}_n(\mathbf{C})$ dont les coefficients diagonaux sont les λ_i .

L'espace vectoriel \mathbb{C}^n est muni du produit scalaire hermitien,

$$(x,y) \in \mathbf{C}^n \times \mathbf{C}^n \mapsto \langle x|y \rangle = x^*y \in \mathbf{C}$$

et pour tout sous-espace vectoriel F de \mathbb{C}^n , on note F^{\perp} l'orthogonal de F dont on rappelle qu'il est de dimension

$$\dim F^{\perp} = n - \dim F.$$

Étant donnés des vecteurs v_1, \dots, v_k de \mathbb{C}^n , le sous-espace vectoriel de \mathbb{C}^n qu'ils engendrent sera noté $\mathrm{Vect}(v_1, \dots, v_k)$. Dans le problème nous aurons besoin du vocabulaire suivant : $A \in \mathcal{M}_n(\mathbb{C})$ est dite

- hermitienne si $A^* = A$;
- anti-hermitienne si $A^* = -A$;
- unitaire si $AA^* = I_n$.

Aucune connaissance spécifique sur ces matrices n'est requise à l'exception du théorème de réduction suivant que l'on admet; quand son invocation sera nécessaire pour répondre à la question posée, nous le signalerons systématiquement dans le texte.

Théorème T.

- Soit $H \in \mathcal{M}_n(\mathbf{C})$ une matrice hermitienne. Il existe une matrice unitaire U telle que U^*HU est diagonale réelle.
- Soit $H \in \mathcal{M}_n(\mathbf{C})$ une matrice anti-hermitienne. Il existe une matrice unitaire U telle que U^*HU est diagonale imaginaire pure.

Pour X et Y des parties de \mathbb{C} , X+Y désigne la partie de \mathbb{C} dont les éléments sont ceux qui peuvent s'écrire sous la forme x+y avec $x\in X$ et $y\in Y$:

$$X+Y=\{x+y\in {\bf C}\ /\ x\in X\ {\rm et}\ y\in Y\}.$$

De même $XY = \{xy \in \mathbb{C} \ / \ x \in X \text{ et } y \in Y\}$. On notera enfin

$$\mathbf{P} = \{ z \in \mathbf{C} / \operatorname{Re}(z) > 0 \},\$$

où Re (z) (resp. Im(z)) désigne la partie réelle (resp. imaginaire) du nombre complexe z.

Première partie

1) Pour tout nombre réel α , on définit les matrices

$$A(\alpha) = \begin{pmatrix} 1 - \alpha & 1 \\ \alpha(1 - \alpha) - 1 & \alpha \end{pmatrix} \text{ et } B(\alpha) = \begin{pmatrix} 1 + \alpha & 1 \\ -\alpha(1 + \alpha) - 1 & -\alpha \end{pmatrix}.$$

Calculez $\operatorname{Sp}(A(\alpha))$, $\operatorname{Sp}(B(\alpha))$ et $\operatorname{Sp}(A(\alpha) + B(\alpha))$.

- 2) En vous aidant des matrices $A(\alpha)$ et $B(\alpha)$, justifiez le fait que l'on ne peut pas en général, borner $\operatorname{Sp}(A+B)$ en fonction seulement de $\operatorname{Sp}(A)$ et $\operatorname{Sp}(B)$.
- 3) Soit $A \in \mathcal{M}_n(\mathbf{C})$ hermitienne; d'après le théorème T, A est diagonalisable dans une base orthonormée (v_1, \dots, v_n) de vecteurs de \mathbf{C}^n . Pour tout $i \in \{1, \dots, n\}$, on note λ_i la valeur propre associée à v_i et on suppose que celles-ci sont ordonnées par ordre croissant, c'est à dire

$$\lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_n$$
.

Pour $k \in \{1, \dots, n\}$, on note \mathcal{E}_k l'ensemble des sous-espaces vectoriels de dimension k de \mathbb{C}^n .

- 3-a) Montrez que pour tout $F \in \mathcal{E}_k$, la dimension de $F \cap \text{Vect}(v_k, v_{k+1}, \dots, v_n)$ est supérieure ou égale à 1.
- 3-b) Pour $F \in \mathcal{E}_k$, montrez qu'il existe un vecteur non nul $x \in F$ tel que $\frac{x^*Ax}{x^*x} \geqslant \lambda_k$.
- 3-c) Donnez un sous-espace vectoriel F appartenant à \mathcal{E}_k tel que $\max_{x \in F \setminus \{0\}} \frac{x^* A x}{x^* x} = \lambda_k$.
- 3-d) Déduisez de ce qui précède que pour tout $1 \leq k \leq n$, on a

$$\lambda_k = \min_{F \in \mathcal{E}_k} \max_{x \in F \setminus \{0\}} \frac{x^* A x}{x^* x}.$$

3-e) Soient A, B des matrices hermitiennes de valeurs propres respectives

$$\lambda_1(A) \leqslant \cdots \leqslant \lambda_n(A), \quad \lambda_1(B) \leqslant \cdots \leqslant \lambda_n(B).$$

On classe de même les valeurs propres $\lambda_1(A+B) \leq \cdots \leq \lambda_n(A+B)$ de A+B. Montrez que, pour tout $k \in \{1, \dots, n\}$, on a

$$\lambda_k(A) + \lambda_1(B) \leqslant \lambda_k(A+B) \leqslant \lambda_k(A) + \lambda_n(B).$$

Deuxième partie

4) Pour $A \in \mathcal{M}_n(\mathbf{C})$, on note $\mathcal{V}(A)$ le sous-ensemble de \mathbf{C} défini par

$$\mathcal{V}(A) = \left\{ \frac{x^* A x}{x^* x} \in \mathbf{C} / x \in \mathbf{C}^n \setminus \{0\} \right\}.$$

- 4-a) Pour $A = [a_{i,j}]_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbf{C})$, montrez que pour tout $i \in \{1, \dots, n\}$, $a_{i,i} \in \mathcal{V}(A)$.
- 4-b) On note $H(A) = \frac{A+A^*}{2}$. Montrez que $\mathcal{V}(H(A)) = \text{Re } (\mathcal{V}(A))$.
- 4-c) Montrez que pour $A, B \in \mathcal{M}_n(\mathbf{C})$, on a $\mathcal{V}(A+B) \subset \mathcal{V}(A) + \mathcal{V}(B)$.
- 4-d) Montrez que pour $A \in \mathcal{M}_n(\mathbf{C})$, on a $\mathrm{Sp}(A) \subset \mathcal{V}(A)$.
- 4-e) Montrez que pour $A, B \in \mathcal{M}_n(\mathbf{C})$, on a $\operatorname{Sp}(A+B) \subset \mathcal{V}(A) + \mathcal{V}(B)$.
- 4-f) Montrez que pour $\lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_n$ des nombres réels,

$$\mathcal{V}\Big(\operatorname{diag}(\lambda_1,\cdots,\lambda_n)\Big)=[\lambda_1,\lambda_n].$$

- 4-g) Montrez que si U est unitaire alors $\mathcal{V}(U^*AU) = \mathcal{V}(A)$.
- 4-h) En utilisant le théorème T, déterminez $\mathcal{V}(A)$ dans le cas où A est une matrice hermitienne.
- 4-i) Montrez que pour $A \in \mathcal{M}_n(\mathbf{C})$, $\mathcal{V}(A)$ est une partie compacte de \mathbf{C} .
- 5) On rappelle qu'une matrice $A \in \mathcal{M}_n(\mathbf{C})$ est dite *nilpotente* s'il existe $m \in \mathbb{N}$ tel que A^m est la matrice nulle.
 - 5-a) Montrez, en utilisant par exemple le théorème de Cayley-Hamilton, que $A \in \mathcal{M}_n(\mathbf{C})$ est nilpotente si et seulement si $\mathrm{Sp}(A) = \{0\}.$
 - 5-b) Soit $A \in \mathcal{M}_n(\mathbf{C})$ telle que $\mathcal{V}(A) = \{0\}$.
 - i) Montrez que A est nilpotente.
 - ii) Montrez que Ker $A = (\operatorname{Im} A)^{\perp}$.
 - iii) Déduisez des questions précédentes que A est la matrice nulle.

Troisième partie

6) Soit $A = [a_{i,j}] \in \mathcal{M}_n(\mathbf{C})$. Pour $i \in \{1, \dots, n\}$, on note

$$L_i(A) = \sum_{\substack{j=1\\j\neq i}}^n |a_{i,j}|, \qquad C_i(A) = \sum_{\substack{j=1\\j\neq i}}^n |a_{j,i}|.$$

- 6-a) On suppose que pour tout $i \in \{1, \dots, n\}$, on a $|a_{i,i}| > L_i(A)$. Montrez que A est inversible.
- 6-b) Déduisez de la question précédente que $\operatorname{Sp}(A) \subset G(A) \cap G({}^tA)$ où

$$G(A) = \bigcup_{i=1}^{n} \{ z \in \mathbf{C} / |z - a_{i,i}| \leq L_i(A) \}.$$

7) Un sous-ensemble X de C est dit convexe s'il vérifie la propriété suivante :

$$\forall (x_1, x_2) \in X \times X, \quad \forall t \in [0, 1], \quad tx_1 + (1 - t)x_2 \in X.$$

- 7-a) Montrez que l'intersection d'une famille quelconque de sous-ensembles convexes de **C** est un sous-ensemble convexe de **C**.
- 7-b) Montrez que pour toute partie X de \mathbb{C} , il existe un plus petit ensemble convexe contenant X: on le note $\operatorname{Conv}(X)$ et on l'appelle l'enveloppe convexe de X.
- 7-c) Montrez que Conv(X) est égal à l'ensemble :

$$\Big\{\sum_{i=1}^{n} t_i x_i / n \geqslant 1, \ \{x_1, \dots, x_n\} \subset X, \ \forall i \in \{1, \dots, n\}, \ t_i \geqslant 0 \text{ et } \sum_{i=1}^{n} t_i = 1\Big\}.$$

- 7-d) Soit K un convexe fermé de \mathbb{C} qui ne contient pas 0. Montrez qu'il existe un unique $z_0 \in K$ tel que $|z_0| = \min_{z \in K} |z|$.
- 7-e) Construisez une droite du plan complexe d'équation f(z) = 0 de la forme $f(z) = a \operatorname{Re}(z) + b \operatorname{Im}(z) + c$ où $(a, b, c) \in \mathbf{R}^3$ et telle que c < 0 et f(z) > 0 pour tout $z \in K$.
- 7-f) Montrez qu'un convexe fermé K de \mathbf{C} ne contient pas 0 si et seulement s'il existe un réel θ tel que $e^{i\theta}K$ soit contenu dans \mathbf{P} .
- 8) Pour tout $i \in \{1, \dots, n\}$, on pose $E_i(A) = \frac{L_i(A) + C_i(A)}{2}$ ainsi que

$$G_{\mathcal{V}}(A) = \operatorname{Conv}\left(\bigcup_{i=1}^{n} \{z \in \mathbf{C} \text{ tel que } |z - a_{i,i}| \leqslant E_i(A)\}\right);$$

dont on admet qu'il est fermé.

- 8-a) Montrez que $0 \notin G_{\mathcal{V}}(A)$, si et seulement s'il existe un réel θ tel que $G_{\mathcal{V}}(e^{i\theta}A) \subset \mathbf{P}$.
- 8-b) Montrez que $G_{\mathcal{V}}(A) \subset \mathbf{P}$ si et seulement si pour tout $i \in \{1, \dots, n\}$, on a Re $(a_{i,i}) > E_i(A)$.
- 8-c) On suppose que $G_{\mathcal{V}}(A) \subset \mathbf{P}$ et on rappelle que H(A) désigne la matrice hermitienne $\frac{A+A^*}{2}$. En remarquant que $L_i(H(A)) \leqslant E_i(A)$, montrez que $\mathrm{Sp}(H(A)) \subset \mathbf{P}$ et déduisez-en que $\mathcal{V}(A) \subset \mathbf{P}$.
- 8-d) Montrez que $0 \notin G_{\mathcal{V}}(A)$ implique $0 \notin \mathcal{V}(A)$.
- 8-e) Déduisez de ce qui précède que $\mathcal{V}(A) \subset G_{\mathcal{V}}(A)$.

Quatrième partie

Le rayon spectral d'une matrice $A \in \mathcal{M}_n(\mathbf{C})$ est défini par

$$\rho(A) = \max\{|z| \text{ tel que } z \in \operatorname{Sp}(A)\}.$$

D'après la compacité de $\mathcal{V}(A)$ prouvée à la question 4-i), on définit le rayon numérique de A par

$$r(A) = \max\{|z| \text{ tel que } z \in \mathcal{V}(A)\}.$$

Étant donnée une norme $||\cdot||$ sur \mathbb{C}^n , la norme $|||\cdot||$ sur $\mathcal{M}_n(\mathbb{C})$ subordonnée à $||\cdot||$ sur \mathbb{C}^n est définie par la formule suivante :

$$|||A||| = \sup_{x \in \mathbf{C}^n, \ ||x|| = 1} ||Ax||.$$

Pour $x \in \mathbb{C}^n$ et $i \in \{1, \dots, n\}$, on notera x_i sa i-ème coordonnée.

- 9) Une norme matricielle $||| \cdot |||$ sur $\mathcal{M}_n(\mathbf{C})$ est par définition une norme telle que pour tous $A, B \in \mathcal{M}_n(\mathbf{C})$, on a $|||AB||| \leq |||A||| \cdot |||B|||$.
 - 9-a) Montrez qu'une norme subordonnée est une norme matricielle.
 - 9-b) On note $||| \cdot |||_2$ la norme subordonnée à la norme $|| \cdot ||_2$ définie par $||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$. En utilisant le *théorème T*, montrez que pour tout $A \in \mathcal{M}_n(\mathbf{C})$, $|||A|||_2$ est égale à la racine carrée positive de la plus grande des valeurs propres de A^*A .
 - 9-c) On admet que les normes $||| \cdot |||_1$ et $||| \cdot |||_{\infty}$ subordonnées respectivement aux normes $||x||_1 = \sum_{i=1}^n |x_i|$ et $||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$ sont données par les formules

$$|||A|||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{i,j}|, \qquad |||A|||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^n |a_{i,j}|.$$

- i) Montrez que pour tout $A \in \mathcal{M}_n(\mathbf{C}), \, \rho(A) \leqslant r(A)$.
- ii) Montrez, en utilisant 8-e), que pour tout $A \in \mathcal{M}_n(\mathbf{C})$,

$$r(A) \le \max_{1 \le i \le n} \frac{1}{2} \sum_{i=1}^{n} (|a_{i,j}| + |a_{j,i}|).$$

- iii) Déduisez des questions précédentes que $\rho(A) \leqslant r(A) \leqslant \frac{|||A|||_1 + |||A|||_{\infty}}{2}$.
- 10) On note désormais $r: \mathcal{M}_n(\mathbf{C}) \to \mathbf{R}_+$ la fonction qui à A associe r(A).
 - 10-a) Montrez que r est une norme sur l'espace vectoriel $\mathcal{M}_n(\mathbf{C})$.
 - 10-b) Soient $A = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}$. Calculez $\mathcal{V}(A)$, $\mathcal{V}(B)$, $\mathcal{V}(A)\mathcal{V}(B)$ et $\mathcal{V}(AB)$. La norme définie par r est-elle matricielle?
 - 10-c) Montrez que pour tout $A \in \mathcal{M}_n(\mathbf{C})$, on a $r(A) \leq |||A|||_2$; en utilisant le théorème T montrez que l'on a égalité si A est hermitienne ou antihermitienne.
 - 10-d) En écrivant $A = \frac{A+A^*}{2} + \frac{A-A^*}{2}$ montrez que $|||A|||_2 \leqslant 2r(A)$.
 - 10-e) Déduisez de ce qui précède que 4r est une norme matricielle sur $\mathcal{M}_n(\mathbf{C})$.
 - 10-f) Montrez que pour c réel strictement positif, cr est une norme matricielle sur $\mathcal{M}_n(\mathbf{C})$ si et seulement si $c \ge 4$.

FIN DE L'ÉPREUVE

Corrigé

- I-1) Le polynôme caractéristique de $A(\alpha)$ et $B(\alpha)$ est $X^2 X + 1$ de sorte que $\operatorname{Sp}(A) = \operatorname{Sp}(B) = \{\frac{1 \pm i\sqrt{3}}{2}\}$. Pour $\frac{A(\alpha) + B(\alpha)}{2}$, on trouve $X^2 - X + 1 + \alpha^2$ et donc $Sp(A(\alpha) + B(\alpha)) = \{1 \pm i\sqrt{3 + 4\alpha^2}\}.$
- I-2) L'exemple précédent montre qu'en général on ne peut tirer aucune information sur les valeurs propres de A + B à partir de celles de A et B, puisque que l'on peut rendre les éléments de $Sp(A(\alpha) + B(\alpha))$ aussi grand qu'on veut sans modifier $\operatorname{Sp}(A(\alpha))$ et $\operatorname{Sp}(B(\alpha))$.

I-3-a) D'après le théorème du rang, on a $\dim (F \cap \operatorname{Vect}(v_k, \dots, v_n)) = \dim F +$ $(n-k+1)-\dim(F+\operatorname{Vect}(v_k,\cdots,v_n))\geqslant k+n-k+1-n=1.$

I-3-b) D'après 3-a) il existe un vecteur non nul $x = \sum_{i=k}^{n} \alpha_i v_i \in F$. On a alors $x^*Ax = \sum_{i=k}^n \lambda_i |\alpha_i|^2 \geqslant \lambda_k \sum_{i=k}^n |\alpha_i|^2 = \lambda_k (x^*x).$

I-3-c)Soit $F = \text{Vect}(v_1, \dots, v_k)$, on a $\lambda_k = \max_{0 \neq x \in F} \frac{x^*AX}{x^*x}$. I-3-d) D'après 3-b) on a l'inégalité $\lambda_k \geqslant \min_{F \in \mathcal{E}_k} \max_{0 \neq x \in F} \frac{x^*AX}{x^*x}$. L'inégalité inverse se déduit de 3-c).

I-3-e) On a $\frac{x^*(A+B)x}{x^*x} = \frac{x^*Ax}{x^*x} + \frac{x^*Bx}{x^*x}$; le résultat découle alors simplement de l'encadrement $\lambda_1(B) \leqslant \frac{x^*Bx}{x^*x} \leqslant \lambda_n(B)$ et de 3-d) appliqué à la matrice A.

II-4-a) $v_i = e_i$ le *i*-ème vecteur de la base canonique convient.

II-4-b) On a $x^*H(A)x = \frac{1}{2}(x^*Ax + \overline{x^*Ax}) = \text{Re } x^*Ax \text{ d'où le résultat.}$

II-4-c) On a $\frac{x^*(A+B)x}{x^*x} = \frac{x^*Ax}{x^*x} + \frac{x^*Bx}{x^*x} \in \mathcal{V}(A) + \mathcal{V}(B)$. II-4-d) Pour $x \neq 0$ de norme 1 et $\lambda \in \mathbf{C}$ tels que $Ax = \lambda x$ on a $\lambda = x^*Ax \in \mathcal{V}(A)$.

II-4-e) Cela découle directement de II-4-d) et II-4-c).

II-4-f) On a $\mathcal{V}(D) = \{\sum_{i=1}^{n} |x_i|^2 \lambda_i : \sum_{i=1}^{n} |x_i|^2 = 1\}$ et donc $\mathcal{V}(D) = [\lambda_{min}, \lambda_{max}] \subset$ \mathbf{R} .

II-4-g) Cela découle du fait que $\{x \in \mathbf{C}^n - \{0\}\} = \{Ux \in \mathbf{C}^n : x \in \mathbf{C}^n - \{0\}\}$ et de l'égalité $(Ux)^*Ux = x^*x$.

II-4-h) On diagonalise $A = U^*DU$ où D est une matrice diagonale réelle. D'après II-4-g) on a $\mathcal{V}(A) = \mathcal{V}(D) = [\lambda_{min}, \lambda_{max}] \subset \mathbf{R}$.

II-4-i) On remarque que $\mathcal{V}(A) = \{x^*Ax \text{ tel que } x^*x = 1\}$ est l'image de la sphère unité par une application continue; il est donc compact.

II-5-a) Le polynôme X^m est annulateur de A de sorte que les valeurs propres de A sont des racines de X^m , i.e. nulles : sur C il existe toujours des valeurs propres. Réciproquement si $Sp(A) = \{0\}$, alors comme toute racine du polynôme caractéristique de A est une valeur propre et que sur ${\bf C}$ tout polynôme est totalement décomposé, on en déduit qu'il est égal à $(-1)^n X^n$ et donc d'après le théorème de Cayley-Hamilton A est nilpotente.

II-5-b-i) D'après 4-d), on a $Sp(A) = \{0\}$ et donc A est nilpotente.

II-5-b-ii) Pour tout $x \in \mathbb{C}^n$ on a donc $x^*Ax = 0$ (pas besoin de diviser par la norme); en particulier pour tout $x_0 \in \operatorname{Ker} A$, on a $(x+x_0)^*A(x+x_0) = x^*Ax +$ $x_0^*Ax = x_0^*Ax = 0$ et donc Ker $A \subset (\operatorname{Im} A)^{\perp}$; l'égalité découle de l'égalité des dimensions en utilisant le produit hermitien $(x,y) \mapsto x^*y$ avec dim $F^{\perp} = n - \dim F$ pour tout sous-C-espace vectoriel F de \mathbb{C}^n .

II-5-b-iii) Comme Im $A \cap (\operatorname{Im} A)^{\perp} = \{0\}$ (ce sont des supplémentaires), on en déduit donc Ker $A \cap \operatorname{Im} A = \{0\}$. Ainsi la restriction de A à Im A est injective et comme A est nilpotente elle est aussi nilpotente de sorte que Im $A = \{0\}$, i.e. A = 0.

III-6-a) Soit $x = [x_i]$ un vecteur non nul du noyau et r tel que $|x_r|$ est maximal par les $|x_i|$ pour $i = 1, \dots, n$. On a alors

$$0 = \sum_{j=1}^{n} a_{r,j} x_j \Longleftrightarrow -x_r a_{r,r} = \sum_{\substack{j=1\\j \neq r}}^{n} a_{r,j} x_j$$

L'inégalité triangulaire donne alors $|x_r||a_{r,r}| \leq |x_r|L'_r(A)$ ce qui contredit l'hypothèse.

III-6-b) Si λ est une valeur propre alors d'après la question précédente appliqué à la matrice $A - \lambda I_n$, il existe un indice i tel que $|a_{i,i} - \lambda| \leq L_i(A)$ de sorte que $\operatorname{Sp}(A) \subset G(A)$. Par ailleurs les valeurs propres de tA sont aussi celles de A et donc $\operatorname{Sp}(A) = \operatorname{Sp}({}^tA) \subset G({}^tA)$.

III-7-a) C'est immédiat.

III-7-b) L'ensemble $\bigcap_{X\subset C\subset \mathbf{C}} C$, l'intersection étant prise sur tous les convexes de \mathbf{C} contenant X est d'après 7-a) un convexe de \mathbf{C} contenant X; par construction il est contenu dans tout convexe de \mathbf{C} contenant X, c'est donc le plus petit convexe de \mathbf{C} contenant X.

III-7-c) Par associativité du barycentre l'ensemble du membre de droite est contenu dans Conv(X); par ailleurs comme c'est un convexe de \mathbf{C} contenant X et que Conv(X) est le plus petit de ces convexes, on a bien l'inclusion inverse, d'où le résultat.

III-7-d) La fonction $z\mapsto |z|$ est continue, sur un compact elle atteint ses bornes ; on se ramène à un convexe compact en considérant K' l'intersection de K avec la boule, convexe, centrée à l'origine et de rayon le module d'un point de K. Si $z_1, z_2 \in K'$ réalisent le minimum alors $\frac{z_1+z_2}{2} \in K$ par convexité de K' est alors de norme strictement inférieure sauf si $z_1 = z_2$.

II-7-e) La droite médiatrice du segment $[0, z_0]$ répond alors à la question.

III-7-f) Soit θ tel que la rotation de centre 0 et d'angle θ envoie la droite D sur une droite verticale, en laissant K dans le demi-espace à droite. On a alors $e^{i\theta}K \subset \mathbf{P}$. La réciproque est clairement vraie.

III-8-a) Le convexe $G_{\mathcal{V}}(A)$ est compact car contenu dans le disque de centre 0 et de rayon $\max_i |a_{i,i}| + \max_i E_i(A)$. D'après 7-e) $0 \notin G_{\mathcal{V}}(A)$ si et seulement s'il existe un réel θ tel que $e^{i\theta}G_{\mathcal{V}}(A) \subset \mathbf{P}$ et le résultat découle alors de l'égalité $G_{\mathcal{V}}(e^{i\theta}A) = e^{i\theta}G_{\mathcal{V}}(A)$.

III-8-b) Comme **P** est convexe, la condition est équivalente à demander que tous les disques $|z - a_{i,i}| \leq E_i(A)$ soient contenus dans **P** et donc Re $a_{i,i} > E_i(A)$.

III-8-c) On a $L_i(A^*) = C_i(A)$ de sorte que d'après l'inégalité triangulaire $L_i(H(A)) \leq E_i(A)$. Ainsi comme les $a_{i,i}$ sont aussi les termes diagonaux de H(A), on en déduit que $G(H(A)) \subset \mathbf{P}$ et d'après 6-b) $\operatorname{Sp}(H(A)) \subset \mathbf{P}$ (or H(A)) étant hermitien, on a $\mathcal{V}(H(A)) = \operatorname{Conv}(\operatorname{Sp}(H(A))) \subset \mathbf{P}$ et donc d'après 4-b) $\mathcal{V}(A) \subset \mathbf{P}$.

III-8-d) Après multiplication par $e^{i\theta}$, on a $G_{\mathcal{V}}(A) \subset \mathbf{P}$ et donc d'après 8-c), $\mathcal{V}(A) \subset \mathbf{P}$ et donc $0 \notin \mathcal{V}(A)$.

III-8-e) Soit $\alpha \notin G_{\mathcal{V}}(A)$, il s'agit de montrer que $\alpha \notin \mathcal{V}(A)$. Or comme $\mathcal{V}(A - \alpha I_n) = \mathcal{V}(A) - \alpha$ et $G_{\mathcal{V}}(A - \alpha I_n) = G_{\mathcal{V}}(A) - \alpha$, on se ramène au cas de $\alpha = 0$ traité à la question précédente, d'où le résultat.

IV-9-a) On a $|||A||| = \sup_{||x|| \le 1} ||Ax|| = \sup_{x \ne 0} \frac{||Ax||}{||x||}$ qui est matricielle car

$$\frac{||ABx||}{||x||} = \frac{||ABx||}{||Bx||} \frac{||Bx||}{||x||}$$

et donc en prenant les $\sup_{x\neq 0}$, on a bien $|||AB||| \leq |||A|||.|||B|||$.

IV-9-b) Par définition $||\dot{A}||_2^2 = \max_{x^*x=1} x^*A^*Ax = \lambda_{max}(A^*A)$: en effet soit U unitaire telle que $U^*(A^*A)U = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ avec les $\lambda_i \in \mathbf{R}^\times$ car A^*A est hermitienne positive. Comme $||Ux||_2 = ||x||_2$, on en déduit que $|||A|||_2^2 = \max_{x^*x=1} x^*Dx = \lambda_{max}(D)$.

IV-9-c-i) Cela découle directement de l'inclusion $\operatorname{Sp}(A) \subset \mathcal{V}(A)$.

IV-9-c-ii) Cela découle directement de l'inclusion $\mathcal{V}(A) \subset G_{\mathcal{V}}(A)$.

IV-9-c-iii) Par rapport à (i) et (ii) il suffit de rajouter la majoration suivante :

$$\max_{1 \leqslant i \leqslant n} \sum_{j=1}^{n} (|a_{i,j}| + |a_{j,i}|) \leqslant \max_{1 \leqslant i \leqslant n} \sum_{j=1}^{n} |a_{i,j}| + \max_{1 \leqslant i \leqslant n} \sum_{j=1}^{n} |a_{j,i}|$$

où on reconnaît dans le terme de droite $|||A|||_1$ et $|||A|||_{\infty}$.

IV-10-a) La positivité est évidente; comme $\mathcal{V}(\alpha A) = \alpha \mathcal{V}(A)$ on a bien $r(\alpha A) = |\alpha| r(A)$; l'inégalité triangulaire découle, d'après II-4-c) de $\mathcal{V}(A+B) \subset \mathcal{V}(A) + \mathcal{V}(B)$. Reste alors à vérifier que si r(A) = 0 alors A = 0: or si r(A) = 0 alors $\mathcal{V}(A)$ est réduit à 0 et donc A = 0 d'après II-5-b).

IV-10-b) Par Cauchy-Schwarz $\mathcal{V}(A) = \mathcal{V}(B) = \mathcal{V}(A)\mathcal{V}(B)$ est le disque unité alors que $\mathcal{V}(AB)$ est le segment [0,4].

IV-10-c) On a $r(A) = \max_{||x||_2=1} |x^*Ax| \leq \max_{||x||_2=1} ||Ax||_2 = |||A|||_2$. Si A est hermitienne ou anti-hermitienne alors d'après le théorème T, il existe U unitaire telle que $U^*AU = D$ avec $\mathcal{V}(A) = \mathcal{V}(D)$ qui est égal au segment sur l'axe des réels (ou des imaginaires purs) $[\lambda_{min}, \lambda_{max}]$ d'où le résultat.

IV-10-d) Comme $A_1 = (A+A^*)/2$ (resp. $A_2 = (A-A^*)/2$) est hermitienne (resp. anti-hermitienne) alors

$$|||A|||_2 \le |||A_1|||_2 + |||A|||_2 = r(A_1) + r(A_2) \le r(A) + r(A^*) = 2r(A).$$

IV-10-e) On a $4r(AB) \leq 4|||A|||_2.|||B|||_2 \leq 4r(A).4r(B)$.

IV-10-f) Pour $c \geqslant 4$, cr est une norme matricielle d'après la question précédente. Par ailleurs l'exemple de IV-10-b) exige $c \geqslant 4$ d'où le résultat.