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1 Introduction

This chapter deals with multi-output Boolean functions viewed from a cryp-
tographic viewpoint, that is, functions from the vectorspace Fn2 , of all binary
vectors of length n, to the vectorspace Fm2 , for some positive integers n and
m, where F2 is the finite field with two elements1. Obviously, these func-
tions include the (single-output) Boolean functions which correspond to the
case m = 1. The present chapter follows the chapter “Boolean Functions
for Cryptography and Error Correcting Codes” (dedicated to Boolean func-
tions), to which we refer for all the definitions and properties which will
be needed in the present chapter. As in this previous chapter, additions of
bits performed in characteristic 0 (that is, in Z, i.e. not modulo 2) will be
denoted by +, and additions modulo 2 (in F2) will be denoted by ⊕. The
multiple sums will be denoted by

∑
i when they are calculated in character-

istic 0 and by
⊕

i when they are calculated modulo 2. These two different
notations are necessary because some representations of (vectorial) Boolean
functions live in characteristic 2 and some representations of the same func-
tions live in characteristic 0. However, the additions of elements of the finite
field F2n will be denoted by +, as it is usual in mathematics, despite the fact
they are performed in characteristic 2. So, for simplicity (since Fn2 will often
be identified with F2n) and because there will be no ambiguity, we shall also
denote by + the addition of vectors of Fn2 when n > 1.

Let n and m be two positive integers. The functions from Fn2 to Fm2 are
called (n,m)-functions. Such function F being given, the Boolean functions
f1, . . . , fm defined, at every x ∈ Fn2 , by F (x) = (f1(x), . . . , fm(x)), are called
the coordinate functions of F . When the numbers m and n are not specified,
(n,m)-functions are called multi-output Boolean functions, vectorial Boolean
functions or S-boxes2 (this last term is the most often used in cryptography,
but is dedicated to the vectorial functions whose role is to provide confusion
into the system; see the subsection on the cryptographic criteria for Boolean
functions in the chapter “Boolean Functions for Cryptography and Error
Correcting Codes” for the meaning of this term).

S-boxes are parts of iterative block ciphers and they play a central role
in their robustness. Iterative block ciphers are the iterations of a transfor-
mation depending on a key over each block of plaintext. The iterations are
called rounds and the key used in an iteration is called a round key. The
round keys are computed from the secret key (called the master key) by a

1Denoted by B in some chapters of the present collection.
2“S” for “Substitution”.
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key scheduling algorithm. The rounds consist of vectorial Boolean functions
combined in different ways involving the round key. Figures displaying the
location of the S-boxes in the two main block ciphers, DES and AES, can
be found in the chapter “Boolean Functions for Cryptography and Error
Correcting Codes”.
The main attacks on block ciphers, which will result in design criteria, are
the following.
The differential attack , introduced by Biham and Shamir [11], assumes the
existence of ordered pairs (α, β) of binary strings of the same length as the
blocks (which are binary strings too), such that, a block m of plaintext be-
ing randomly chosen and c and c′ being the cipher texts related to m and
m+α, the bitwise difference c+c′ (recall that we use + to denote the bitwise
addition/difference in Fn2 ) has a larger probability to be equal to β than if c
and c′ were binary strings randomly chosen; such an ordered pair (α, β) is
called a differential; the larger the probability of the differential, the more
efficient is the attack. The related criterion on an (n,m)-function F used
as an S-box in the round functions of the cipher is that the output to its
derivatives Da(x) = F (x) + F (x + a); x, a ∈ Fn2 , must be as uniformly dis-
tributed as possible (except for the case a = 0, obviously). There are several
ways to mount the differential cryptanalysis. The most common (and most
efficient) one is to use differentials for the reduced cipher , that is, the input
to the last round (i.e. the cipher obtained from the original one by removing
its last round); this allows, see figure 1 below, to distinguish, in a last round
attack , the reduced cipher from a random permutation; the existence of such
distinguisher allows recovering the key used in the last round (either by an
exhaustive search, which is efficient if this key is shorter than the master
key, or by using specificities of the cipher allowing replacing the exhaustive
search by, for instance, solving algebraic equations).

The linear attack , introduced by Matsui [131] is based on an idea from
[153]. Its most common version is also an attack on the reduced cipher. It
uses as distinguishers triples (α, β, γ) of binary strings such that, a block m
of plaintext and a key k being randomly chosen, the bit α ·m⊕ β · c⊕ γ · k,
where “·” denotes the usual inner product, has a probability different from
1/2 of being null. The more distant from 1/2 the probability is, the more
efficient is the attack. The related criterion on the S-boxes used in the round
functions of the cipher deals with the so-called component functions, which
are the linear combinations, with non all-zero coefficients, of the coordinate
functions of the S-box (their set is the vector space spanned by the coordi-
nate functions, deprived of the null function if the coordinate functions are
F2-linearly independent). The nonlinearities (see definition in the chapter
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Figure 1: Last round attacks

“Boolean Functions for Cryptography and Error Correcting Codes” or see
below) of all these component functions must be as high as possible. The
design of the AES has been partly founded on the studies (by K. Nyberg and
others) on the notions of nonlinearity (for the resistance to linear attacks)
and differential uniformity (for the resistance to differential attacks). This
has allowed the AES to use S-boxes working on bytes (it would not have
been possible to find a good 8-bit-to-8-bit S-box by a computer search as
this had been done for the 6-bit-to-4-bit S-boxes of the DES).
The higher order differential attack [124, 118] exploits the fact that the
algebraic degree of the S-box F is low, or more generally that there ex-
ists a low dimensional vector subspace V of Fn2 such that the function
DV F (x) =

∑
v∈V F (x+v) is constant. A probabilistic version of this attack

[109] allows the derivative not to be constant and the S-box must then have
high “higher order nonlinearity” (see Subsection 3.2 on this notion).
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The interpolation attack [110] is efficient when the degree of the univariate
polynomial representation of the S-box over F2n – see the next section – is
low or when the distance of the S-box to the set of low univariate degree
functions is small.
Algebraic attacks also exist on block ciphers (see e.g. [73]), exploiting the
existence of multivariate equations involving the input to the S-box and its
output (an example of such equation is x2y = x in the case of the AES), but
their efficiency has to be more precisely studied: the number of variables in
the resulting system of equations, which equals the global number of data
bits and of key bits in all rounds of the cipher, is much larger than for stream
ciphers and the resulting systems of equations are not as overdefined as for
stream ciphers. However, the AES allowing bilinear relations between the
input and the output bits to the S-boxes3, this may represent a thread.
The Slide attack [12], when it can be mounted, has a complexity indepen-
dent of the number of rounds in the block cipher, contrary to the attacks
previously described. It analyzes the weaknesses of the key schedule (the
most common case of weakness being when round keys repeat in a cyclic
way) to break the cipher. The slide attack is efficient when the cipher can
be decomposed into multiple rounds of an identical F function vulnerable
to a known-plaintext attack.

In the pseudo-random generators of stream ciphers, (n,m)-functions can
be used to combine the outputs to n linear feedback shift registers (LFSR),
or to filter the content of a single one, generating then m bits at each clock
cycle instead of only one, which increases the speed of the cipher (but risks
decreasing its robustness). The attacks, described in the chapter “Boolean
Functions for Cryptography and Error Correcting Codes”, are obviously also
efficient on these kinds of ciphers. They are in fact often more efficient (see
Subsection 3.3).

2 Generalities on vectorial Boolean functions

2.1 The Walsh transform

We shall call Walsh transform of an (n,m)-function F the function which
maps any ordered pair (u, v) ∈ Fn2 × Fm2 to the value at u of the Walsh
transform of the component4 function v · F , that is,

∑
x∈Fn

2
(−1)v·F (x)⊕u·x.

3It is possible to avoid such relations when the number of input/output bits is 8, if
non-power S-boxes are used (but this may have a cost in terms of speed).

4Properly speaking, we can use the term of component function only for v 6= 0; so we
make an abuse, here.
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If we denote by GF the graph {(x, y) ∈ Fn2 × Fm2 / y = F (x)} of F , and
by 1GF

its indicator (taking value 1 on GF and 0 outside), then we have∑
x∈Fn

2
(−1)v·F (x)⊕u·x = 1̂GF

(u, v), where 1̂GF
is the Fourier transform of

the Boolean function 1GF
(see the definition of the Fourier transform in

the previous chapter). This observation gives more insight on what is the
Walsh transform and it gives moreover a convenient notation for denoting it.

Observation The Walsh transform of any vectorial function is the Fourier
transform of the indicator of its graph.

There is a simple way of expressing the value of the Walsh transform of the
composition of two vectorial functions by means of those of the functions:

Proposition 1 If we write the values of the function 1̂GF
in a 2m × 2n

matrix (in which the term located at the row indexed by v ∈ Fm2 and at the
column indexed by u ∈ Fn2 equals 1̂GF

(u, v)), then, the matrix corresponding
to the composition F ◦ H of F , where H is an (r, n)-function, equals the
product (in the same order) of the matrices associated to F and H, divided
by 2n.

Proof. For every w ∈ Fr2 and every v ∈ Fm2 , we have∑
u∈Fn

2

1̂GF
(u, v)1̂GH

(w, u) =
∑

u∈Fn
2 ;x∈Fr

2;y∈Fn
2

(−1)v·F (y)⊕u·y⊕u·H(x)⊕w·x

= 2n
∑

x∈Fr
2;y∈Fn

2 / y=H(x)

(−1)v·F (y)⊕w·x

= 2n1̂GF◦H (w, v),

since
∑

u∈Fn
2
(−1)u·y⊕u·H(x) equals 2n if y = H(x), and is null otherwise. 2

Remark. Because of Proposition 1, it could seem more convenient to ex-
change the positions of u and v in 1̂GF

(u, v), in order to have the row in-
dex first. However, it seems to us more natural to respect the order (in-
put,output).

We shall call Walsh spectrum of F the multi-set of all the values of the
Walsh transform of F , i.e.

∑
x∈Fn

2
(−1)v·F (x)⊕u·x where u ∈ Fn2 , v ∈ Fm2 ∗

(where Fm2 ∗ = Fm2 \ {0}). We shall call extended Walsh spectrum of F the
multi-set of their absolute values, and Walsh support of F the set of those
(u, v) such that

∑
x∈Fn

2
(−1)v·F (x)⊕u·x 6= 0.
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Remark. We have∑
x∈Fn

2

(−1)v·F (x)⊕u·x =
∑
b∈Fm

2

ϕ̂b(u)(−1)v·b (1)

where ϕ̂b is the discrete Fourier transform of the indicator function ϕb of the
pre-image F−1(b) = {x ∈ Fn2/F (x) = b}, defined by ϕb(x) = 1 if F (x) = b
and ϕb(x) = 0 otherwise.

2.2 The different ways of representing vectorial functions

2.2.1 The Algebraic Normal Form

The notion of algebraic normal form of Boolean functions can easily be ex-
tended to (n,m)-functions. Since each coordinate function of such a function
F is uniquely represented as a polynomial on n variables, with coefficients
in F2 and in which every variable appears in each monomial with degree
0 or 1, the function F itself is uniquely represented as a polynomial of
the same form with coefficients in Fm2 , or more precisely as an element of
Fm2 [x1, · · · , xn]/(x2

1 ⊕ x, · · · , x2
n ⊕ x):

F (x) =
∑

I∈P(N)

aI

(∏
i∈I

xi

)
=

∑
I∈P(N)

aI x
I , (2)

where P(N) denotes the power set of N = {1, . . . , n}, and aI belongs to Fm2
(according to our convention on the notation for additions, we used

∑
to

denote the sum in Fm2 , but recall that, coordinate by coordinate, this sum is a⊕
). This polynomial is called again the algebraic normal form (ANF) of F .

Keeping the i-th coordinate of each coefficient in this expression gives back
the ANF of the i-th coordinate function of F . Moreover, according to the
relations recalled in the chapter “Boolean Functions for Cryptography and
Error Correcting Codes”, aI equals

∑
x∈Fn

2 / supp(x)⊆I
F (x) (this sum being

calculated in Fn2 ) and conversely, we have F (x) =
∑

I⊆supp(x) aI .
The algebraic degree of the function is by definition the global degree of its
ANF: d◦F = max{|I|/ aI 6= (0, . . . , 0); I ∈ P(N)}. It therefore equals the
maximal algebraic degree of the coordinate functions of F . It also equals
the maximal algebraic degree of the component functions of F . It is a right
and left affine invariant (that is, its value does not change when we compose
F , on the right or on the left, by an affine automorphism). Another notion
of degree is also relevant to cryptography (and is also affine invariant): the
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minimum algebraic degree of all the component functions5 of F , often called
the minimum degree.

2.2.2 The representation as a univariate polynomial over F2n

A second representation of (n,m)-functions exists when m = n: we endow
Fn2 with the structure of the field F2n , as explained in the chapter “Boolean
Functions for Cryptography and Error Correcting Codes” (see “The trace
representation”, in Subsection 2.1); any (n, n)-function F then admits a
unique univariate polynomial representation over F2n , of degree at most
2n − 1:

F (x) =
2n−1∑
j=0

δjx
j , δj ∈ F2n . (3)

Indeed, the mapping which maps any such polynomial to the corresponding
(n, n)-function is F2n-linear and has kernel {0}, since a nonzero univariate
equation of degree at most 2n−1 over a field can not have more than 2n−1
solutions. The dimensions of the vectorspaces over F2n of, respectively,
all such polynomials, and all (n, n)-functions, being both equal to 2n, this
mapping is bijective. Note that the univariate representation (3) of F can
be obtained by expanding and simplifying the expression:∑

a∈F2n

F (a)(1 + (x+ a)2
n−1).

The way to obtain the ANF from this univariate polynomial is similar to the
case of Boolean functions seen in the previous chapter; we recall it for self-
completeness: for every binary vector x ∈ Fn2 , we can also denote by x the
element

∑n
i=1 xiαi of F2n , where (α1, . . . , αn) is a basis of the F2-vectorspace

F2n . Let us write the binary expansion of every integer j ∈ [0; 2n − 1]:∑n−1
s=0 js2

s, js ∈ {0, 1}. We have:

F (x) =
2n−1∑
j=0

δj

(
n∑
i=1

xiαi

)j

=
2n−1∑
j=0

δj

(
n∑
i=1

xiαi

)Pn−1
s=0 js2

s

=
2n−1∑
j=0

δj

n−1∏
s=0

(
n∑
i=1

xiα
2s

i

)js
5Not just the coordinate functions; the notion would then not be affine invariant.
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since the mapping x → x2 is F2-linear over F2n and xi ∈ F2. Expand-
ing these last products, simplifying and decomposing again over the basis
(α1, . . . , αn) gives the ANF of F .
Another method is the Lagrange interpolation theorem.
It is then possible to read the algebraic degree of F directly on the univariate
polynomial representation: let us denote by w2(j) the number of nonzero co-
efficients js in the binary expansion

∑n−1
s=o js2

s of j, i.e. w2(j) =
∑n−1

s=0 js .
The number w2(j) is called the 2-weight of j. Then, the function F has
algebraic degree maxj=0,...,2n−1/ δj 6=0w2(j). Indeed, according to the above
equalities, the algebraic degree of F is clearly bounded above by this num-
ber, and it can not be strictly smaller, because the number 2n

Pd
i=0 (n

i)

of those (n, n)-functions of algebraic degrees at most d equals the num-
ber of those univariate polynomials

∑2n−1
j=0 δjx

j , δj ∈ F2n , such that
maxj=0,...,2n−1/ δj 6=0w2(j) ≤ d.
In particular, F is F2-linear (resp. affine) if and only if F (x) is a linearized
polynomial over F2n :

∑n−1
j=0 δjx

2j
, δj ∈ F2n (resp. a linearized polynomial

plus a constant).
- If m is a divisor of n, then any (n,m)-function F can be viewed as a
function from F2n to itself, since F2m is a sub-field of F2n . Hence, the
function admits a univariate polynomial representation. Note that this
unique polynomial can be represented in the form trn/m(

∑2n−1
j=0 δjx

j), where
trn/m(x) = x+ x2m

+ x22m
+ x23m

+ · · ·+ x2n−m
is the trace function from

F2n to F2m . Indeed, there exists a function G from F2n to F2n such that F
equals trn/m ◦ G (for instance, G(x) = λF (x), where trn/m(λ) = 1). But
there is no uniqueness of G in this representation.

2.2.3 The multidimensional Walsh transform

K. Nyberg defines in [141] a polynomial representation, called the multidi-
mensional Walsh transform; let us define:

W(F )(z1, · · · , zm) =
∑
x∈Fn

2

m∏
j=1

z
fj(x)
j ∈ Z[z1, · · · , zm]/(z2

1 − 1, · · · , z2
m − 1),

where f1, · · · , fm are the coordinate functions of F . The multidimensional
Walsh transform maps every linear (n,m)-function L to the polynomial
W(F +L)(z1, · · · , zm). This is a representation with uniqueness of F , since,
for every L, the knowledge of W(F + L) is equivalent to that of the eval-
uation of W(F + L) at (χ1, · · · , χm) for every choice of χj , j = 1, · · · ,m,
in the set {−1, 1} of roots of the polynomial z2

j − 1. For such a choice,
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let us define the vector v ∈ Fm2 by vj = 1 if χj = −1 and vj = 0 other-
wise. For every j = 1, · · · ,m, let us denote by aj the vector of Fn2 such
that the j-th coordinate of L(x) equals aj · x. We denote then by u the
vector

∑m
j=1 vjaj ∈ Fn2 . Then this evaluation equals

∑
x∈Fn

2
(−1)v·F (x)⊕u·x.

We see that the correspondence between the multidimensional Walsh trans-
form and the Walsh transform is the correspondence between a multi-variate
polynomial of Z[z1, · · · , zm]/(z2

1 − 1, · · · , z2
m − 1) and its evaluation over

{(z1, · · · , zm) ∈ Zm / z2
1 − 1 = · · · = z2

m − 1 = 0} = {−1, 1}m. Consequently,
the multidimensional Walsh transform satisfies a relation equivalent to the
Parseval’s relation (see [141]).

2.3 Balanced functions

As for Boolean functions, balancedness plays an important role for vectorial
Boolean functions in cryptography. An (n,m)-function F is called balanced
if it takes every value of Fm2 the same number 2n−m of times. By definition,
F is balanced if every function ϕb has Hamming weight 2n−m.
Obviously, the balanced (n, n)-functions are the permutations on Fn2 .

2.3.1 Characterization through the component functions

The balanced S-boxes (and among them, the permutations) can be nicely
characterized by the balancedness of their component functions:

Proposition 2 [129] An (n,m)-function is balanced if and only if its com-
ponent functions are balanced, that is, if and only if, for every nonzero
v ∈ Fm2 , the Boolean function v · F is balanced.

Proof. The relation:∑
v∈Fm

2

(−1)v·(F (x)+b) =
{

2m if F (x) = b
0 otherwise

= 2m ϕb(x), (4)

is valid for every (n,m)-function F , every x ∈ Fn2 and every b ∈ Fm2 , since
the function v 7→ v · (F (x) + b) being linear, it is either balanced or null.
Thus: ∑

x∈Fn
2 ;v∈Fm

2

(−1)v·(F (x)+b) = 2m |F−1(b)| = 2m wH(ϕb), (5)

where wH denotes the Hamming weight as in the previous chapter. Hence,
the discrete Fourier transform of the function v 7→

∑
x∈Fn

2
(−1)v·F (x) equals

the function b 7→ 2m |F−1(b)|. We know (see the previous chapter) that a
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pseudo-Boolean function has constant Fourier transform if and only if it is
null at every nonzero vector. We deduce that F is balanced if and only if
the function v 7→

∑
x∈Fn

2
(−1)v·F (x) is null on Fm2 ∗. 2

2.4 Generalizations to vectorial functions of notions on Boolean
functions

The most important notion on Boolean functions is the nonlinearity. We
devote the whole Section 3 to its generalization to S-boxes. We also devote
a section (Section 4) to the notion of resiliency of vectorial functions.

2.4.1 Covering sequences

The notion of covering sequence of a balanced Boolean function has been
generalized to vectorial functions and the properties of this generalization
have been studied in [63].

2.4.2 Algebraic immunity

The notion of algebraic immunity of S-boxes has been studied in [1, 2]. As
recalled in the introduction, the existence of multivariate relations of low
degrees between the input bits and the output bits may be exploited in al-
gebraic attacks [73] (but contrary to the case of stream ciphers, the system
of equations is generally not overdefined). Several notions of algebraic im-
munity of an S-box F have been related to these attacks. We first recall the
definition of annihilator and we give the definition of the algebraic immunity
of a set:

Definition 1 We call annihilator of a subset E of Fn2 any n-variable Boolean
function vanishing on E. We call algebraic immunity of E, and we denote
by AI(E), the minimum algebraic degree of all the non-zero annihilators of
E.

The algebraic immunity of a Boolean function f (see the previous chapter)
equals by definition min(AI(f−1(0)), AI(f−1(1))).
The first generalization of algebraic immunity to S-boxes is its direct exten-
sion:

Definition 2 The basic algebraic immunity AI(F ) of any (n,m)-function
F is the minimum algebraic immunity of all the pre-images F−1(z) of ele-
ments z of Fm2 by F .
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Note that AI(F ) also equals the minimum algebraic immunity of all the
indicators ϕz of the pre-images F−1(z) since, the algebraic immunity being
a non-decreasing function over sets, we have for every z ∈ Fm2 :

AI(Fn2 \ F−1(z)) ≥ AI(F−1(z′)), ∀z 6= z′.

This notion has an interest only for sufficiently small values of m (for in-
stance, for S-boxes used in stream ciphers), see below. A second notion of
algebraic immunity of S-boxes, more relevant when m is comparable to n
(which is the case of S-boxes used in block ciphers) has been called the graph
algebraic immunity and is defined as follows:

Definition 3 The graph algebraic immunity of any (n,m)-function F is the
algebraic immunity of the graph {(x, F (x)); x ∈ Fn2} of the S-box.

This second notion will be denoted by AIgr(F ).
Two other notions have been studied in [2] but it is proved in [128] that
they are in fact different expressions for the same AI(F ) and AIgr(F ).
A third notion, that we shall call the component algebraic immunity , seems
also natural:

Definition 4 The component algebraic immunity of any (n,m)-function F
is the minimal algebraic immunity of the component functions v · F (v 6= 0
in Fm2 ) of the S-box.

We shall denote it by AIcomp(F ).

Properties It has been observed in [1] that, for any (n,m)-function F ,
we have AI(F ) ≤ AIgr(F ) ≤ AI(F ) + m. The left-hand side inequality
is straightforward (by restricting an annihilator of the graph to a value
of y such that the annihilator does not vanish for every x) and the right-
hand side inequality comes from the fact that, since there exists z and a
non-zero annihilator g(x) of F−1(z) of algebraic degree AI(F ), the function
g(x)

∏m
i=1(yj ⊕ zj ⊕ 1) is an annihilator of algebraic degree AI(F ) + m of

the graph of F .
It has been also observed in [1] that, denoting by d the smallest integer
such that

∑d
i=0

(
n
i

)
> 2n−m, we have AI(F ) ≤ d (indeed, there is at

least one z such that |F−1(z)| ≤ 2n−m, the annihilators of F−1(z) are the
solutions of |F−1(z)| linear equations in

∑d
i=0

(
n
i

)
unknowns - which are

the coefficients of the ANF of an unknown annihilator of degree at most
d - and the number of equations being strictly smaller than the number
of unknowns, the system must have non-trivial solutions). It has been
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proved in [95] (among other results) that this bound is tight. Note that
it shows that the basic algebraic immunity has no relevance when m is
not small enough: we need m ≤ n − log2(n + 1) for AI(F ) being pos-
sibly greater than 1; more generally, we know (see [130], page 310) that∑d

i=0

(
n
i

)
≥ 2nH2(d/n)√

8d(1−d/n)
, where H2(x) = −x log2(x) − (1 − x) log2(1 − x);

hence, for AI(F ) being possibly greater than a number k, we must have
m ≤ n (1−H2(k/n)) + 1

2 (3 + log2(k(1− k/n))).
Finally, it has also been proved in [1] that, denoting by D the smallest inte-
ger such that

∑D
i=0

(
n+m
i

)
> 2n, we have AIgr(F ) ≤ D (the proof is similar,

considering annihilators in n+m variables - the input coordinates and the
output coordinates - of the graph) but it is not known whether this bound
is tight (it is shown in [1] that it is tight for n ≤ 14 and partially for n = 15).

Since the algebraic immunity of any Boolean function is bounded above
by its algebraic degree, the component algebraic immunity of any vecto-
rial function is bounded above by its minimum degree and therefore by its
algebraic degree:

AIcomp(F ) ≤ d◦F.

We have also:
AIcomp(F ) ≥ AI(F ),

since AIcomp(F ) equaling the algebraic immunity of the Boolean function
v ·F for some v 6= 0, it equals AI(F−1(H)) for some affine hyperplane H of
Fm2 , and AI is a non-decreasing function over sets. We have:

AIcomp(F ) ≥ AIgr(F )− 1

since:
- if g is a nonzero annihilator of v · F , v 6= 0, then the product h(x, y) =
g(x) (v · y) is a nonzero annihilator of the graph of F ;
- if g is a nonzero annihilator of v · F ⊕ 1 then h(x, y) = g(x) (v · y) ⊕ g(x)
is a nonzero annihilator of the graph of F .

3 Highly nonlinear vectorial Boolean functions

3.1 Nonlinearity of S-boxes in block ciphers

A generalization to (n,m)-functions of the notion of nonlinearity of Boolean
functions has been introduced and studied by Nyberg [136] and further stud-
ied by Chabaud and Vaudenay [65]:
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Definition 5 The nonlinearity nl(F ) of an (n,m)-function F is the mini-
mum nonlinearity of all the component functions x ∈ Fn2 7→ v ·F (x), v ∈ Fm2 ,
v 6= 0.

In other words, nl(F ) equals the minimum Hamming distance between all
the component functions of F and all affine functions on n variables. As we
saw in the introduction, this generalization quantifies the level of resistance
of the S-box to the linear attack.
The nonlinearity of S-boxes is clearly a right and left affine invariant (that
is, it does not change when we compose F by affine automorphisms) and
the nonlinearity of an S-box F does not change if we add to F an affine
function. Moreover, if A is a surjective linear (or affine) function from
Fp2 (where p is some positive integer) into Fn2 , then it is easily shown that
nl(F ◦ A) = 2p−nnl(F ), since by affine invariance, we can assume without
loss of generality that A is a projection.
According to the equality relating the nonlinearity of a Boolean function to
the maximal magnitude of its Walsh transform, we have:

nl(F ) = 2n−1 − 1
2

max
v∈Fm

2
∗; u∈Fn

2

∣∣∣∣∣∣
∑
x∈Fn

2

(−1)v·F (x)⊕u·x

∣∣∣∣∣∣ (6)

= 2n−1 − 1
2

max
v∈Fm

2
∗; u∈Fn

2

∣∣∣1̂GF
(u, v)

∣∣∣ .
Note that “ max

v∈Fm
2
∗; u∈Fn

2

” can be replaced by “ max
(u,v)∈Fn

2×Fm
2 ;(u,v) 6=(0,0)

”, since we

have
∑

x∈Fn
2
(−1)u·x = 0 for every nonzero u. Hence, if n = m and if F is a

permutation, then F and its inverse F−1 have the same nonlinearity (change
the variable x into F−1(x).

Relation with linear codes As observed in [56, 156], there is a rela-
tionship between the maximal possible nonlinearity of (n,m)-functions and
the possible parameters of the linear supercodes of the Reed-Muller code of
order 1. Let C be a linear [2n,K,D] binary code including the Reed-Muller
code RM(1, n) as a subcode. Let (b1, . . . , bK) be a basis of C completing
a basis (b1, . . . , bn+1) of RM(1, n). The n-variable Boolean functions cor-
responding to the vectors bn+2, . . . , bK are the coordinate functions of an
(n,K − n − 1)-function whose nonlinearity is D. Conversely, if D > 0 is
the nonlinearity of some (n,m)-function, then the linear code equal to the
union of the cosets v · F + RM(1, n), where v ranges over Fm2 , has param-

16



eters [2n, n + m + 1, D]. Existence and non-existence results6 on highly
nonlinear vectorial functions are deduced in [156] and upper bounds on the
nonlinearity of (n,m)-functions are derived in [58].

3.1.1 The covering radius bound; bent/perfect nonlinear func-
tions

The covering radius bound being valid for every n-variable Boolean function
(see the previous chapter), it is a fortiori valid for every (n,m)-function:

nl(F ) ≤ 2n−1 − 2n/2−1. (7)

Definition 6 An (n,m) function is called bent if it achieves the covering
radius bound (7) with equality.

The notion of bent vectorial function is invariant under composition on the
left and on the right by affine automorphisms and by addition of affine func-
tions. Clearly, an (n,m)-function is bent if and only if all of the component
functions v · F , v 6= 0 of F are bent (i.e. achieve the same bound7). Hence,
the algebraic degree of any bent (n,m)-function is at most n/2. Note also
that, since any n-variable Boolean function f is bent if and only if all of its
derivatives Daf(x) = f(x)⊕f(x+a), a 6= 0, are balanced, an (n,m)-function
F is bent if and only if, for every v ∈ Fm2 , v 6= 0, and every a ∈ Fn2 , a 6= 0,
the function v · (F (x) + F (x+ a)) is balanced. According to Proposition 2,
this implies:

Proposition 3 An (n,m)-function is bent if and only if all of its derivatives
DaF (x) = F (x) + F (x+ a), a ∈ Fn2 ∗, are balanced.

For this reason, bent functions are also called perfect nonlinear8; they con-
tribute then also to an optimum resistance to the differential attack (see
introduction) of those cryptosystems in which they are involved (but they
are not balanced). They can be used to design authentication schemes (or
codes); see [66].
Thanks to the observations made in Subsection 2.2 (where we saw that the
evaluation of the multidimensional Walsh transform corresponds in fact to

6Using the linear programming bound due to Delsarte.
7In other words, the existence of a bent (n,m)-function is equivalent to the existence

of an m-dimensional vector space of n-variable Boolean bent functions.
8We shall see that perfect nonlinear (n, n)-functions do not exist; but they do exist in

other characteristics than 2 (see e.g. [57]); they are then often called planar .
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the evaluation of the Walsh transform), it is a simple matter to character-
ize the bent functions as those functions whose squared expression of the
multidimensional Walsh transform at L is the same for every L.

Note that, according to the results recalled in the chapter “Boolean
Functions for Cryptography and Error Correcting Codes”, if a bent (n,m)-
function F is normal in the sense that it is null on (say) an n/2-dimensional
vector space E, then F is balanced on any translate of E. Indeed, for every
v 6= 0 in Fm2 and every u ∈ Fn2 \ E, the function v · F is balanced on u+ E.

Existence of bent (n,m)-functions: since bent n-variable Boolean func-
tions exist only if n is even, bent (n,m)-functions exist only under this same
hypothesis. But, as shown by Nyberg in [135], this condition is not sufficient
for the existence of bent (n,m)-functions. Indeed, we have seen in Relation
(5) that, for every (n,m)-function F and any element b ∈ Fm2 , the size of
F−1(b) is equal to 2−m

∑
x∈Fn

2 ;v∈Fm
2

(−1)v·(F (x)+b). Assuming that F is bent

and denoting, for every v ∈ Fn2 ∗, by ṽ · F the dual of the bent Boolean func-
tion x 7→ v ·F (x), we have, by definition:

∑
x∈Fn

2
(−1)v·F (x) = 2n/2(−1)ṽ·F (0).

The size of F−1(b) equals then 2n−m + 2n/2−m
∑

v∈Fn
2
∗(−1)ṽ·F (0)⊕v·b. Since

the sum
∑

v∈Fn
2
∗(−1)ṽ·F (0)⊕v·b has an odd value (Fn2 ∗ having an odd size),

we deduce that, if m ≤ n then 2n/2−m must be an integer. And it is also
easily shown that m > n is impossible. Hence:

Proposition 4 Bent (n,m)-functions exist only if n is even and m ≤ n/2.

We shall see below that, for every ordered pair (n,m) satisfying this condi-
tion, bent functions do exist.

Open problem: Find a better bound than the covering radius bound for:
- n odd and m < n (we shall see that for m ≥ n, the Sidelnikov-Chabaud-
Vaudenay bound, and other bounds if m is large enough, are better);
- n even and n/2 < m < n (idem).

Primary constructions of bent functions: The two main classes of
bent Boolean functions described in the chapter “Boolean Functions for
Cryptography and Error Correcting Codes” lead to two classes of bent
(n,m)-functions (this was first observed by Nyberg in [135]). We endow
Fn/22 with the structure of the field F2n/2 . We identify Fn2 with F2n/2 ×F2n/2 .
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• Let us define F (x, y) = L(xπ(y)) +H(y), where the product xπ(y) is cal-
culated in F2n/2 , where L is any linear or affine mapping from F2n/2 onto Fm2 ,
π is any permutation of F2n/2 and H is any (n/2,m)-function. This gives
a bent function that we shall call strict Maiorana-McFarland’s bent (n,m)-
function. More generally, we obtain bent functions (that we can call general
Maiorana-McFarland’s bent (n,m)-functions) by taking for F = (f1, · · · , fm)
any (n,m)-function such that, for every v ∈ Fm2 ∗, the Boolean function
v · F = v1f1 ⊕ · · · ⊕ vmfm belongs, up to linear equivalence, to the original
Maiorana-McFarland class of bent functions. The function L(xπ(y))+H(y)
has this property, since the function v ·L(z) being a nonzero linear function,
it equals trn

2
(λ z) for some λ 6= 0, where trn

2
(x) = x+x2 +x22

+ · · ·+x2
n
2−1

is the (absolute) trace function from F2n/2 to F2.

An example of general Maiorana-McFarland’s bent function is given in [147]:
the i-th coordinate of this function is defined as fi(x, y) = trn

2
(xφi(y)) ⊕

gi(y), x, y ∈ F2n/2 , where gi is any Boolean function on F2n/2 and where

φi(y) =
{

0 if y = 0
αdec(y)+i−1 otherwise

, where α is a primitive element of F2n/2

and dec(y) = 2n/2−1y1 + 2n/2−2y2 + · · · + yn/2. This function belongs in
fact to the strict Maiorana-McFarland class of bent functions because the

mapping y →
{

0 if y = 0
αdec(y) otherwise

is a permutation from Fn/22 to F2n/2 , and

the function L : x ∈ F2n/2 → (trn
2
(x), trn

2
(αx), · · · , trn

2
(αn/2−1x)) ∈ Fn/22 is

an isomorphism.
Examples of functions in the general class which may not all belong to
the strict class are the bent quadratic functions (i.e. the bent functions of
algebraic degree 2).
Modifications of the Maiorana-McFarland bent functions have been pro-
posed in [138], using the classes C and D of bent Boolean functions recalled
in the chapter “Boolean Functions for Cryptography and Error Correcting
Codes”.

• Defining F (x, y) = G(xy2n−2) = G(xy ) (with x
y = 0 if y = 0), where G

is a balanced (n/2,m)-function, gives also a bent (n,m)-function: for every
v 6= 0, the function v ·F belongs to the class PSap of Dillon’s functions (seen
in the chapter “Boolean Functions for Cryptography and Error Correcting
Codes”), according to Proposition 2.

Remark. The functions above are given as defined over F2n/2×F2n/2 . In the
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case they are valued in F2n/2 , we may want to see them as functions from F2n

to itself and wish to express them in the univariate representation. If n/2
is odd, this is quite easy: we have then F2n/2 ∩ F4 = F2 and we can choose
the basis (1, w) of the 2-dimensional vector space F2n over F2n/2 , where w
is a primitive element of F4. Then w2 = w + 1 and w2n/2

= w2 since n/2 is
odd. A general element of F2n has the form X = x+wy where x, y ∈ F2n/2

and we have X2n/2
= x + w2y = X + y and therefore y = X + X2n/2

,
and x = w2X + wX2n/2

. For instance, the univariate representation of the
simplest Maiorana-McFarland function, that is the function (x, y) → xy, is
(X +X2n/2

)(w2X + wX2n/2
), that is, up to linear terms: X1+2n/2

.

• We have already observed that constructing a bent (n,m)-function corre-
sponds to finding an m-dimensional vectorspace of functions whose nonzero
elements are all bent. An example (found by the author in common with G.
Leander) of such construction is the following: let n be divisible by 2 but
not by 4. Then F2n/2 consists of cubes only (since gcd(3, 2n/2−1) = 1). If we
choose some w ∈ F2n which is not a cube, then all the nonzero elements of
the vector space U = w F2n/2 are non-cubes. Then if F (X) = Xd where d =
2i+1 (d is called a Gold exponent, see below) or 22i−2i+1 (d is then called
a Kasami exponent) and gcd(n, i) = 1, all the functions trn(vF (X)), where
v ∈ U∗, are bent (see the section on bent functions in the chapter “Boolean
Functions for Cryptography and Error Correcting Codes”). This leads to the
bent (n, n/2)-functions X ∈ F2n → (trn(β1wX

d), · · · , trn(βn/2wXd) ∈ Fn/22 ,
where (β1, · · · , βn/2) is a basis of F2n/2 over F2. Let us see how these func-
tions can be represented as functions from F2n to F2n/2 . Let us choose a
basis (α1, · · · , αn/2) of F2n/2 orthogonal to (β1, · · · , βn/2), that is, such that
trn

2
(αiβj) = δi,j . Since the two bases are orthogonal, for every y ∈ F2n/2 , we

have y =
∑n/2

j=1 αjtrn
2
(βjy). For every X ∈ F2n , the image of X by the func-

tion equals
∑n/2

j=1 αjtrn(βjwXd) =
∑n/2

j=1 αjtrn
2
(βj(wXd + (wXd)2

n/2
)) =

wXd + (wXd)2
n/2

. Let us see now how, in the case of the Gold exponent, it
can be represented as a function from F2n/2 × F2n/2 to F2n/2 : we express X
in the form x+wy where x, y ∈ F2n/2 and if n is not a multiple of 3, we can
take for w a primitive element of F4 (otherwise, all elements of F4 are cubes
and we have then to take w outside F4), for which we have then w2 = w+1,
w2i

= w2 (since i is necessarily odd) and w2i+1 = w3 = 1. We have then
Xd = x2i+1+wx2i

y+w2xy2i
+y2i+1 and wXd+(wXd)2

n/2
= (w+w2)x2i+1+

(w2 + w)x2i
y + (w3 + w3)xy2i

+ (w + w2)y2i+1 = x2i+1 + x2i
y + y2i+1.

It would be nice being able to do the same for the Kasami function.
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Note that, in the case of the Gold functions xd with d = 2i + 1, we can
extend the construction to the case where i is not co-prime with n. The
exact condition for trn(vXd) to be bent is then (as we saw in the chapter
“Boolean Functions for Cryptography and Error Correcting Codes”) that

n
gcd(i,n) is even and v 6∈ {xd, x ∈ F2n}.

A class of bent vectorial functions can be found in [92] and a survey on
the subject can be found in [61].

Secondary constructions: Given any bent (n,m)-function F , any chop-
ped function obtained by deleting some coordinates of F (or more generally
by composing it on the left with any surjective affine mapping) is obviously
still bent. But there exist other more useful secondary constructions (that
is, constructions of new bent functions from known ones). In [50] is given
the following secondary construction of bent Boolean functions (recalled
in the chapter “Boolean Functions for Cryptography and Error Correcting
Codes”): let r and s be two positive integers with the same parity and such
that r ≤ s, and let n = r + s; let φ be a mapping from Fs2 to Fr2 and g
a Boolean function on Fs2; let us assume that φ is balanced and, for every
a ∈ Fr2, the set φ−1(a) is an (s − r)-dimensional affine subspace of Fs2; let
us assume additionally if r < s that the restriction of g to φ−1(a) (viewed
as a Boolean function on Fn−2r

2 via an affine isomorphism between φ−1(a)
and this vectorspace) is bent; then the function fφ,g(x, y) = x · φ(y)⊕ g(y),
x ∈ Fr2, y ∈ Fs2, where “·” is an inner product in Fr2, is bent on Fn2 . This
generalizes directly to vectorial functions:

Proposition 5 Let r and s be two positive integers with the same parity and
such that r ≤ s

3 . Let ψ be any (balanced) mapping from Fs2 to F2r such that,
for every a ∈ F2r , the set ψ−1(a) is an (s − r)-dimensional affine subspace
of Fs2. Let H be any (s, r)-function whose restriction to ψ−1(a) (viewed as
an (s − r, r)-function via an affine isomorphism between ψ−1(a) and Fs−r2 )
is bent for every a ∈ F2r . Then the function Fψ,H(x, y) = xψ(y) + H(y),
x ∈ F2r , y ∈ Fs2, is a bent function from Fr+s2 to F2r .

Indeed, taking x · y = trr(xy) for inner product in F2r , for every v ∈ F∗2r ,
the function trr(v Fψ,H(x, y)) is bent, according to the result of [50] recalled
above, with φ(y) = v ψ(y) and g(y) = trr(v H(y)). The condition r ≤ s

3 ,
more restrictive than r ≤ s, is meant so that r ≤ s−r

2 , which is necessary, ac-
cording to Proposition 4, for allowing the restrictions of H to be bent. The
condition on ψ being easily satisfied9, it is then a simple matter to choose

9Note that it does not make ψ necessarily affine.
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H. Hence, this construction is quite effective (but only for designing bent
(n,m)-functions such that m ≤ n/4, since r ≤ s

3 is equivalent to r ≤ r+s
4 ).

In [49] is given another secondary construction of bent Boolean functions,
which is very general and can be adapted to vectorial functions as follows:

Proposition 6 Let r and s be two positive even integers and m a positive
integer such that m ≤ r/2. Let H be a function from Fn2 = Fr2 × Fs2 to Fm2 .
Assume that, for every y ∈ Fs2, the function Hy : x ∈ Fr2 → H(x, y) is a bent
(r,m)-function. For every nonzero v ∈ Fm2 and every a ∈ Fr2 and y ∈ Fs2, let
us denote by fa,v(y) the value at a of the dual of the Boolean function v ·Hy,
that is, the binary value such that

∑
x∈Fr

2
(−1)v·H(x,y)⊕a·x = 2r/2(−1)fa,v(y).

Then H is bent if and only if, for every nonzero v ∈ Fm2 and every a ∈ Fr2,
the Boolean function fa,v is bent.

Indeed, we have, for every nonzero v ∈ Fm2 and every a ∈ Fr2 and b ∈ Fs2:∑
x∈Fr

2
y∈Fs

2

(−1)v·H(x,y)⊕a·x⊕b·y = 2r/2
∑
y∈Fs

2

(−1)fa,v(y)⊕b·y.

An example of application of Proposition 6 is when we choose every Hy in
the Maiorana-McFarland’s class: Hy(x, x′) = xπy(x′)+Gy(x′), x, x′ ∈ F2r/2 ,
where πy is bijective for every y ∈ Fs2. According to the results recalled
in the previous chapter on the duals of Maiorana-McFarland’s functions,
for every v ∈ F∗

2r/2 and every a, a′ ∈ F2r/2 , we have then f(a,a′),v(y) =
tr r

2

(
a′ π−1

y

(
a
v

)
+ v Gy

(
π−1
y

(
a
v

)))
, where tr r

2
is the trace function from F2r/2

to F2. Then H is bent if and only if, for every v ∈ F∗
2r/2 and every

a, a′ ∈ F2r/2 , the function y → tr r
2

(
a′ π−1

y (a) + v Gy(π−1
y (a))

)
is bent on

Fs2. A simple possibility for achieving this is for s = r/2 to choose π−1
y such

that, for every a, the mapping y → π−1
y (a) is an affine automorphism of

F2r/2 (e.g. π−1
y (a) = πy(a) = a + y) and to choose Gy such that, for every

a, the function y → Gy(a) is bent.

An obvious corollary of Proposition 6 is that the so-called direct sum of
bent functions gives bent functions: we define H(x, y) = F (x)+G(y), where
F is any bent (r,m)-function and G any bent (s,m)-function, and we have
then fa,v(y) = ṽ · F (a)⊕v ·G(y), which is a bent Boolean function for every
a and every v 6= 0. Hence, H is bent.

Remark. The direct sum of bent Boolean functions has been general-
ized into the indirect sum (see the previous chapter). The direct sum of
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bent vectorial functions cannot be similarly generalized into a secondary
construction of bent vectorial functions, as is. As mentioned in [51], we
can identify Fm2 with F2m and define H(x, y) = F1(x) + G1(y) + (F1(x) +
F2(x)) (G1(y)+G2(y)), where F1 and F2 are (r,m)-functions and G1 and G2

are (s,m)-functions. However, in general, Proposition 6 cannot be applied
as is. Indeed, taking (as usual) for inner product in F2m : u · v = trm(uv),
then v ·Hy(x) equals:

trm(v F1(x))⊕ trm(v G1(y)) + trm (v (F1(x) + F2(x)) (G1(y) +G2(y))) ,

which does not enter, in general, in the framework of the construction
of Boolean functions called “indirect sum”. Note that the function fa,v
exists under the sufficient condition that, for every nonzero ordered pair
(v, w) ∈ F2m ×F2m , the function trm(v F1(x)) + trm(wF2(x)) is bent (which
is equivalent to saying that the (r, 2m)-function (F1, F2) is bent). There are
particular cases where the construction works.

Open problem: Find new constructions of bent (perfect nonlinear) functions.

3.1.2 The Sidelnikov-Chabaud-Vaudenay bound

Since bent (n,m)-functions do not exist if m > n/2, this leads to asking the
question whether better upper bounds than the covering radius bound can
be proved in this case. Such bound has been (in a way) re-discovered10 by
Chabaud and Vaudenay in [65]:

Theorem 1 Let n and m be any positive integers such that m ≥ n− 1. Let
F be any (n,m)-function. Then:

nl(F ) ≤ 2n−1 − 1
2

√
3× 2n − 2− 2

(2n − 1)(2n−1 − 1)
2m − 1

.

Proof. Recall that nl(F ) = 2n−1 − 1
2

max
v∈Fm

2
∗; u∈Fn

2

∣∣∣∣∣∣
∑
x∈Fn

2

(−1)v·F (x)⊕u·x

∣∣∣∣∣∣. We

have:

max
v∈Fm

2
∗

u∈Fn
2

∑
x∈Fn

2

(−1)v·F (x)⊕u·x

2

≥

∑
v∈Fm

2
∗

u∈Fn
2

(∑
x∈Fn

2
(−1)v·F (x)⊕u·x

)4

∑
v∈Fm

2
∗

u∈Fn
2

(∑
x∈Fn

2
(−1)v·F (x)⊕u·x

)2 . (8)

10We write “re-discovered” because a bound on sequences due to Sidelnikov [150] is
equivalent to the bound obtained by Chabaud and Vaudenay for power functions and its
proof is in fact valid for all functions.

23



Parseval’s relation (see the previous chapter) states that, for every v ∈ Fm2 :

∑
u∈Fn

2

∑
x∈Fn

2

(−1)v·F (x)⊕u·x

2

= 22n. (9)

Using the fact (already used in the proof of Proposition 2) that any character
sum

∑
x∈E(−1)`(x) associated to a linear function ` over any F2-vectorspace

E is nonzero if and only if ` is null on E, we have:

∑
v∈Fm

2 , u∈Fn
2

∑
x∈Fn

2

(−1)v·F (x)⊕u·x

4

=
∑

x,y,z,t∈Fn
2

∑
v∈Fm

2

(−1)v·(F (x)+F (y)+F (z)+F (t))

∑
u∈Fn

2

(−1)u·(x+y+z+t)


= 2n+m

∣∣∣∣{(x, y, z, t) ∈ F4n
2 /

{
x+ y + z + t = 0
F (x) + F (y) + F (z) + F (t) = 0

}∣∣∣∣
= 2n+m|{(x, y, z) ∈ F3n

2 /F (x) + F (y) + F (z) + F (x+ y + z) = 0}|(10)
≥ 2n+m|{(x, y, z) ∈ F3n

2 / x = y or x = z or y = z}|. (11)

Clearly: |{(x, y, z)/ x = y or x = z or y = z}| = 3 · |{(x, x, y)/ x, y ∈ Fn2}| −
2 · |{(x, x, x)/ x ∈ Fn2}| = 3 · 22n − 2 · 2n. Hence, according to Relation (8):

max
v∈Fm

2
∗; u∈Fn

2

∑
x∈Fn

2

(−1)v·F (x)⊕u·x

2

≥

2n+m(3 · 22n − 2 · 2n)− 24n

(2m − 1) 22n
= 3× 2n − 2− 2

(2n − 1)(2n−1 − 1)
2m − 1

and this gives the desired bound, according to Relation (6). 2

The condition m ≥ n−1 is assumed in Theorem 1 to make non-negative
the expression located under the square root. Note that for m = n − 1,
this Sidelnikov-Chabaud-Vaudenay bound coincides with the covering radius
bound. For m ≥ n, it strictly improves upon it. For m > n, the square
root in it cannot be an integer (see [65]). Hence, the Sidelnikov-Chabaud-
Vaudenay bound can be tight only if n = m with n odd. We shall see in the
next subsection that, under this condition, it is actually tight.
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Other bounds have been obtained in [58] and improve, when m is suf-
ficiently greater than n (which makes them less interesting, cryptographi-
cally), upon the covering radius bound and the Sidelnikov-Chabaud-Vaudenay
bound (examples are given).

3.1.3 Almost bent and almost perfect nonlinear functions

Almost bent functions

Definition 7 [65] The (n, n)-functions F which achieve the bound of The-
orem 1 with equality – that is, such that nl(F ) = 2n−1 − 2

n−1
2 (n odd)– are

called almost bent (AB).

Remark. The term of almost bent is a little misleading. It gives the feeling
that these functions are not quite optimal. But they are. Recall that, ac-
cording to Nyberg’s result (Proposition 4), (n, n)-bent functions do not exist.

According to Inequality (8), the AB functions are those (n, n)-functions
such that, for every u, v ∈ Fn2 , v 6= 0, the sum

∑
x∈Fn

2
(−1)v·F (x)⊕u·x =

1̂GF
(u, v) equals 0 or ±2

n+1
2 (indeed, the maximum of a sequence of non-

negative integers equals the ratio of the sum of their squares over the sum
of their values if and only if these integers take at most one nonzero value).
Note that this condition does not depend on the choice of the inner product.

There exists a bound on the algebraic degree of AB functions, similar to
the bound for bent functions:

Proposition 7 [56] Let F be any (n, n)-function (n ≥ 3). If F is AB, then
the algebraic degree of F is less than or equal to (n+ 1)/2.

This is a direct consequence of the fact that the Walsh transform of any
function v · F is divisible by 2

n+1
2 and the fact, recalled in the chapter

“Boolean Functions for Cryptography and Error Correcting Codes”, that if
the Walsh transform values of an n-variable Boolean function are divisible
by 2k, then the algebraic degree of the function is at most n− k + 1. Note
that the divisibility plays also a role with respect to the algebraic degree of
the composition of two vectorial functions: in [48] has been proved that, if
the Walsh transform values of a vectorial function F : Fn2 → Fn2 are divisible
by 2` then, for every vectorial function F ′ : Fn2 → Fn2 , the algebraic degree of
F ′ ◦F is at most equal to the algebraic degree of F ′ plus n− `. This means
that using AB power functions as S-boxes in block ciphers may not be a
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good idea. Suboptimal functions (as the multiplicative inverse function, see
below) may be better (as usual in cryptography).

Almost perfect nonlinear functions Inequality (11) is an equality if
and only if the relation F (x) + F (y) + F (z) + F (x + y + z) = 0 can be
achieved only when x = y or x = z or y = z. There are several equivalent
ways of characterizing this property:
- the restriction of F to any 2-dimensional flat (i.e. affine subspace) of Fn2 is
non-affine (indeed, the set {x, y, z, x+y+ z} is a flat and it is 2-dimensional
if and only if x 6= y and x 6= z and y 6= z; saying that F (x) +F (y) +F (z) +
F (x+ y+ z) = 0 is equivalent to saying that the restriction of F to this flat
is affine, since we know that a function F is affine on a flat A if and only if,
for every x, y, z in A we have F (x+ y + z) = F (x) + F (y) + F (z));
- for every distinct nonzero (that is, F2-linearly independent) vectors a and
a′, the second order derivative DaDa′F (x) = F (x) +F (x+ a) +F (x+ a′) +
F (x+ a+ a′) takes only non-zero values;
- the equation F (x) + F (x + a) = F (y) + F (y + a) (obtained from F (x) +
F (y) + F (z) + F (x + y + z) = 0 by denoting x + z by a) can be achieved
only for a = 0 or x = y or x = y + a;
- for every a ∈ Fn2 ∗ and every b ∈ Fn2 , the equation F (x) + F (x+ a) = b has
at most 2 solutions (that is, 0 or 2 solutions, since if it has one solution x,
then it has x+ a for second solution).

Definition 8 [142, 8, 137] An (n, n)-function F is called almost perfect
nonlinear (APN) if, for every a ∈ Fn2 ∗ and every b ∈ Fn2 , the equation F (x)+
F (x+ a) = b has 0 or 2 solutions; that is, equivalently, if the restriction of
F to any 2-dimensional flat (i.e. affine subspace) of Fn2 is non-affine.

Remark. Here again, the term of almost perfect nonlinear is a little mis-
leading, giving the feeling that these functions are almost optimal while they
are optimal.

According to the proof of Sidelnikov-Chabaud-Vaudenay’s bound above,
every AB function is APN (this was first observed by Chabaud and Vaude-
nay). In fact, this implication can be more precisely changed into a charac-
terization of AB functions (see Proposition 8 below), involving the notion
of plateaued function.

Definition 9 An (n,m)-function is called plateaued if, for every nonzero
v ∈ Fm2 , the component function v · F is plateaued, that is, there exists a
positive integer λv (called the amplitude of the plateaued Boolean function
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v · F ) such that the values of its Walsh transform:
∑

x∈Fn
2
(−1)v·F (x)⊕u·x,

u ∈ Fn2 , all belong to the set {0,±λv}.

Then, because of Parseval’s relation (9), 22n equals λ2
v times the size of the

set {u ∈ Fn2 /
∑

x∈Fn
2
(−1)v·F (x)⊕u·x 6= 0}, and λv equals then a power of 2

whose exponent is greater than or equal to n/2 (since this size is at most
2n). The extreme case λv = 2n/2 corresponds to the case where v ·F is bent.
Every quadratic function (that is, every function of algebraic degree 2) is
plateaued, see the chapter “Boolean Functions for Cryptography and Error
Correcting Codes”.
It has been proved in [36] that no power plateaued bijective (n, n)-function
exists11 when n is a power of 2 and in [132] that no such function exists with
Walsh spectrum {0,±2n/2+1} when n is divisible by 4.

Proposition 8 Every AB function is APN. More precisely, any vectorial
function F : Fn2 → Fn2 is AB if and only if F is APN and the functions v ·F ,
v 6= 0, are plateaued with the same amplitude.

This comes directly from Relations (8) and (11). We shall see below, in
Proposition 15, that if n is odd, the condition “with the same amplitude” is
in fact not necessary.
Note that, according to Relations (10) and (11), and to the two lines fol-
lowing them, APN (n, n)-functions F are characterized by the fact that the
power sums of degree 4 of the values of their Walsh transform take the
minimal value 3 · 24n − 2 · 23n, that is, F is APN if and only if:

∑
v∈Fn

2 ,u∈Fn
2

∑
x∈Fn

2

(−1)v·F (x)⊕u·x

4

= 3 · 24n − 2 · 23n (12)

or equivalently, replacing
∑

u∈Fn
2

(∑
x∈Fn

2
(−1)u·x

)4
by its value 24n and us-

ing Parseval’s relation (9):

Proposition 9 Any (n, n)-function F is APN if and only if

∑
v∈Fn

2
∗

u∈Fn
2

∑
x∈Fn

2

(−1)v·F (x)⊕u·x

2∑
x∈Fn

2

(−1)v·F (x)⊕u·x

2

− 2n+1

 = 0. (13)

11A conjecture by T. Helleseth states that there is no power permutation having 3 Walsh
transform values when n is a power of 2.
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This characterization will have nice consequences in the sequel.
Note that, similarly as for the power sum of degree 4, the power sum∑

v∈Fn
2 ,u∈Fn

2

(∑
x∈Fn

2
(−1)v·F (x)⊕u·x

)3
of degree 3 equals

22n
∣∣{(x, y) ∈ F2n

2 /F (x) + F (y) + F (x+ y) = 0
}∣∣ .

Applying (with z = 0) the property that, for every APN function F , the
relation F (x) + F (y) + F (z) + F (x+ y + z) = 0 can be achieved only when
x = y or x = z or y = z, we have then, for every APN function such that
F (0) = 0:

∑
v∈Fn

2 ,u∈Fn
2

∑
x∈Fn

2

(−1)v·F (x)⊕u·x

3

= 3 · 23n − 2 · 22n. (14)

But this property is not characteristic (except for quadratic functions, see
below) of APN functions among those (n, n)-functions such that F (0) = 0,
since it is only characteristic of the fact that

∑
x∈E F (x) 6= 0 for every 2-

dimensional vector subspace E of Fn2 .

APN property is a particular case of a notion introduced by Nyberg
[135, 136]: an (n,m)-function F is called differentially δ-uniform if, for ev-
ery nonzero a ∈ Fn2 and every b ∈ Fm2 , the equation F (x) + F (x + a) = b
has at most δ solutions. The number δ is then bounded below by 2n−m and
equals 2n−m if and only if F is perfect nonlinear. The behavior of δ for
general S-boxes has been studied in [155].
The smaller δ is, the better is the contribution of F to a resistance to dif-
ferential cryptanalysis. When m = n, the smallest possible value of δ is 2,
since we already saw that if x is a solution of equation F (x) +F (x+ a) = b
then x+a is also a solution. Hence, APN functions contribute to a maximal
resistance to differential cryptanalysis when m = n and AB functions con-
tribute to a maximal resistance to both linear and differential cryptanalyses.

Note that if F is a quadratic (n, n)-function, the equation F (x) +F (x+
a) = b is a linear equation. It admits then at most 2 solutions for ev-
ery nonzero a and every b if and only if the related homogeneous equation
F (x) + F (x + a) + F (0) + F (a) = 0 admits at most 2 solutions for every
nonzero a. Hence, F is APN if and only if the associated bilinear symmetric
(2n, n)-function ϕF (x, y) = F (0) + F (x) + F (y) + F (x + y) never vanishes
when x and y are F2-linearly independent vectors of Fn2 . For functions of
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higher degrees, the fact that ϕF (x, y) (which is no longer bilinear) never
vanishes when x and y are linearly independent is only a necessary condi-
tion for APNness.

A subclass of APN functions (and a potential superclass of APN quadratic
permutations), called crooked functions, has been considered in [6] and fur-
ther studied in [35, 76, 120]. All known crooked functions are quadratic. It
can be proved [121] that every power crooked function is a Gold function
(see definition below).

Other characterizations of AB and APN functions

•A necessary condition dealing with quadratic terms in the ANF of any APN
function has been observed in [8]. Given any APN function F (quadratic
or not), every quadratic term xixj (1 ≤ i < j ≤ n) must appear with a
non-null coefficient in the algebraic normal form of F . Indeed, we know
that the coefficient of any monomial

∏
i∈I x

i in the ANF of F equals aI =∑
x∈Fn

2 / supp(x)⊆I
F (x) (this sum being calculated in Fn2 ). Applied for in-

stance to I = {n− 1, n}, this gives aI = F (0, . . . , 0, 0, 0) +F (0, . . . , 0, 0, 1) +
F (0, . . . , 0, 1, 0) +F (0, . . . , 0, 1, 1), and F being APN, this vector can not be
null. Note that, since the notion of almost perfect nonlinearity is affinely
invariant (see below), this condition must be satisfied by all of the functions
L′ ◦ F ◦ L, where L′ and L are affine automorphisms of Fn2 . Extended this
way, the condition becomes necessary and sufficient (indeed, for every dis-
tinct x, y, z in Fn2 , there exists an affine automorphism L of Fn2 such that
L(0, . . . , 0, 0, 0) = x, L(0, . . . , 0, 1, 0) = y and L(0, . . . , 0, 0, 1) = z).

• The properties of APNness and ABness can be translated in terms of
Boolean functions, as observed in [56]:

Proposition 10 Let F be any (n, n)-function. For every a, b ∈ Fn2 , let
γF (a, b) equal 1 if the equation F (x) + F (x + a) = b admits solutions, with
a 6= 0. Otherwise, let γF (a, b) be null. Then, F is APN if and only if γF
has weight 22n−1− 2n−1, and F is AB if and only if γF is bent. The dual of
γF is then the indicator of the Walsh support of F , deprived of (0, 0).

Proof.
1) If F is APN, then for every a 6= 0, the mapping x 7→ F (x) + F (x+ a) is
two-to-one (that is, the size of the pre-image of any vector equals 0 or 2).
Hence, γF has weight 22n−1 − 2n−1. The converse is also straightforward.
2) We assume now that F is APN. For every u, v ∈ Fn2 , replacing (−1)γF (a,b)
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by 1 − 2γF (a, b) in the character sum
∑

a,b∈Fn
2
(−1)γF (a,b)⊕u·a⊕v·b leads to∑

a,b∈Fn
2
(−1)u·a⊕v·b−2

∑
a,b∈Fn

2
γF (a, b)(−1)u·a⊕v·b. Denoting by δ0 the Dirac

symbol (δ0(u, v) = 1 if u = v = 0 and 0 otherwise), we deduce that the Walsh
transform of γF equals 22n δ0(u, v)−

∑
x∈Fn

2 ,a∈Fn
2
∗(−1)u·a⊕v·(F (x)+F (x+a)) =

22n δ0(u, v) −
(∑

x,y∈Fn
2
(−1)v·F (x)⊕v·F (y)⊕u·x⊕u·y

)
+ 2n = 22n δ0(u, v) −(∑

x∈Fn
2
(−1)v·F (x)⊕u·x

)2
+ 2n. Hence, F is AB if and only if the value of

this Walsh transform equals ±2n at every (u, v) ∈ Fn2 ×Fn2 , i.e. if γF is bent.
Moreover, if γF is bent, then for every (u, v) 6= 0, we have γ̃F (u, v) = 0, that
is,
∑

a,b∈Fn
2
(−1)γF (a,b)⊕u·a⊕v·b = 2n if and only if

∑
x∈Fn

2
(−1)v·F (x)⊕u·x = 0.

Hence, the dual of γF is the indicator of the Walsh support of F , deprived
of (0, 0). 2

• Obviously, an (n, n)-function F is APN if and only if, for every (a, b) 6=

(0, 0), the system
{
x+ y = a
F (x) + F (y) = b

admits 0 or 2 solutions. As shown

by van Dam and Fon-Der-Flaass in [76], it is AB if and only if the system{
x+ y + z = a
F (x) + F (y) + F (z) = b

admits 3 · 2n − 2 solutions if b = F (a) and

2n − 2 solutions otherwise. This can easily be proved by using the facts
that F is AB if and only if, for every v ∈ Fn2 ∗ and every u ∈ Fn2 , we have(∑

x∈Fn
2
(−1)v·F (x)⊕u·x

)3
= 2n+1

∑
x∈Fn

2
(−1)v·F (x)⊕u·x, and that two pseudo-

Boolean functions (that is, two functions from Fn2 to Z) are equal to each
other if and only if their discrete Fourier transforms are equal to each other:
the value at (a, b) of the Fourier transform of the function of (u, v) equal to(∑

x∈Fn
2
(−1)v·F (x)⊕u·x

)3
if v 6= 0, and to 0 otherwise equals

∑
u∈Fn

2
v∈Fn

2

∑
x∈Fn

2

(−1)v·F (x)⊕u·x

3

(−1)a·u⊕b·v − 23n =

22n

∣∣∣∣{(x, y, z) ∈ F3n
2 /

{
x+ y + z = a
F (x) + F (y) + F (z) = b

}∣∣∣∣− 23n,

and the value of the Fourier transform of the function which is equal to
2n+1

∑
x∈Fn

2
(−1)v·F (x)⊕u·x if v 6= 0, and to 0 otherwise equals

23n+1

∣∣∣∣{x ∈ Fn2 /
{
x = a
F (x) = b

}∣∣∣∣− 22n+1.

30



This proves the result. Note that 3 · 2n− 2 is the number of triples (x, x, a),
(x, a, x) and (a, x, x) where x ranges over Fn2 . Hence the condition when
F (a) = b means that these particular triples are the only solutions of the

system
{
x+ y + z = a
F (x) + F (y) + F (z) = F (a)

. This is equivalent to saying that

F is APN and we can therefore replace the first condition of van Dam and
Fon-Der-Flaass by “F is APN”. Denoting c = F (a) + b, we have then:

Proposition 11 Let n be any positive integer and F any APN (n, n)-function.
Then F is AB if and only if, for every c 6= 0 and every a in Fn2 , the equation
F (x) + F (y) + F (a) + F (x+ y + a) = c has 2n − 2 solutions.

Let us denote by A2 the set of 2-dimensional flats of Fn2 and by ΦF the
mapping A ∈ A2 →

∑
x∈A F (x) ∈ Fn2 . Proposition 11 is equivalent to

saying that an APN function is AB if and only if, for every a ∈ Fn2 , the
restriction of ΦF to those flats which contain a is a 2n−1−1

3 -to-1 function.
Hence we have:

Corollary 1 Any (n, n)-function F is APN if and only if ΦF is valued in
Fn2 ∗ = Fn2 \ {0}, and F is AB if and only if, additionally, the restriction
of ΦF : A2 → Fn2 ∗ to those flats which contain a vector a is a balanced
function, for every a ∈ Fn2 .

Note that, for every APN function F and any two distinct vectors a and a′,
the restriction of ΦF to those flats which contain a and a′ is injective, since
for two such distinct flats A = {a, a′, x, x+a+a′} and A′ = {a, a′, x′, x′+a+
a′}, we have ΦF (A)+ΦF (A′) = F (x)+F (x+a+a′)+F (x′)+F (x′+a+a′) =
ΦF ({x, x + a + a′, x′, x′ + a + a′}) 6= 0. But this restriction of ΦF cannot
be surjective since the number of flats containing a and a′ equals 2n−1 − 1,
which is less than 2n − 1.

Remark: Other characterizations can be derived with the same method
as in the proof of the result of van Dam and Fon-Der-Flaass. For in-
stance, F is AB if and only if, for every v ∈ Fn2 ∗ and every u ∈ Fn2 , we

have
(∑

x∈Fn
2
(−1)v·F (x)⊕u·x

)4
= 2n+1

(∑
x∈Fn

2
(−1)v·F (x)⊕u·x

)2
. By apply-

ing again the Fourier transform and dividing by 22n, we deduce that F is
AB if and only if, for every (a, b), we have∣∣∣∣{(x, y, z, t) ∈ F4n

2 /

{
x+ y + z + t = a
F (x) + F (y) + F (z) + F (t) = b

}∣∣∣∣− 22n =
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2n+1

∣∣∣∣{(x, y) ∈ F2n
2 /

{
x+ y = a
F (x) + F (y) = b

}∣∣∣∣− 2n+1.

Hence, F is AB if and only if the system
{
x+ y + z + t = a
F (x) + F (y) + F (z) + F (t) = b

admits 3 · 22n− 2n+1 solutions if a = b = 0 (this is equivalent to saying that
F is APN), 22n− 2n+1 solutions if a = 0 and b 6= 0 (note that this condition
corresponds to adding all the conditions of Proposition 11 with c fixed to b
and with a ranging over Fn2 ), and 22n+2n+2γF (a, b)−2n+1 solutions if a 6= 0
(indeed, F is APN; note that this gives a new property of AB functions).

• A relationship has been observed in [56]) (see also [156, 58]) between the
properties, for an (n, n)-function, of being APN or AB and properties of
related codes:

Proposition 12 Let F be any (n, n)-function such that F (0) = 0. Let H be

the matrix
[

1 α α2 . . . α2n−2

F (1) F (α) F (α2) . . . F (α2n−2)

]
, where α is a primitive

element of the field F2n, and where each symbol stands for the column of its
coordinates with respect to a basis of the F2-vectorspace F2n. Let CF be the
linear code admitting H for parity-check matrix. Then, F is APN if and
only if CF has minimum distance 5, and F is AB if and only if C⊥F ( i.e.
the code admitting H for generator matrix) has weights 0, 2n−1− 2

n−1
2 , 2n−1

and 2n−1 + 2
n−1

2 .

Proof. Since H contains no zero column, CF has no codeword of Hamming
weight 1 and since all columns of H are distinct vectors, CF has no code-
word of Hamming weight 2. Hence12, CF has minimum distance at least
3. This minimum distance is also at most 5 (this is known, see [56]). The
fact that CF has no codeword of weight 3 or 4 is by definition equivalent to
the APNness of F , since a vector (c0, c1, · · · , c2n−2) ∈ F2n−1

2 is a codeword if

and only if
{ ∑2n−2

i=0 ciα
i = 0∑2n−2

i=0 ciF (αi) = 0
. The inexistence of codewords of weight

3 is then equivalent to the fact that
∑

x∈E F (x) 6= 0 for every 2-dimensional
vector subspace E of F2n and the inexistence of codewords of weight 4 is
equivalent to the fact that

∑
x∈A F (x) 6= 0 for every 2-dimensional flat A

not containing 0. The characterization of ABness through the weights of
C⊥F comes directly from the characterization of AB functions by their Walsh

12We can also say that, CF being a subcode of the Hamming code (see the definition
of the Hamming code in the chapter “Boolean Functions for Cryptography and Error
Correcting Codes”), it has minimum distance at least 3.
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transform values, and from the fact that the weight of the Boolean function
v · F (x)⊕ u · x equals 2n−1 − 1

2 1̂GF
(u, v). 2

Remark.
1. Any subcode of dimension 2n− 1− 2n of the [2n− 1, n, 3] Hamming code
is a code CF for some function F .
2. Proposition 12 assumes that F (0) = 0. If we want to express the APN-
ness of any (n, n)-function, another matrix can be considered as in [23]: the

(2n+ 1)× (2n− 1) matrix

 1 1 1 1 . . . 1
0 1 α α2 . . . α2n−2

F (0) F (1) F (α) F (α2) . . . F (α2n−2)

.

Then F is APN if and only if the code C̃F admitting this parity-check ma-
trix has parameters [2n, 2n − 1 − 2n, 6]. To prove this, note first that this
code does not change if we add a constant to F (contrary to CF ). Hence,
by adding the constant F (0), we can assume that F (0) = 0. Then, the
code C̃F is the extended code of CF (obtained by adding to each codeword
of CF a first coordinate equal to the sum modulo 2 of its coordinates).
Since F (0) = 0, we can apply Proposition 12 and it is clear that CF is a
[2n−1, 2n−1−2n, 5] code if and only if C̃F is a [2n, 2n−1−2n, 6] code (we
know that CF cannot have minimum distance greater than 5, as recalled in
[56]).

As shown in [56], using Parseval’s relation and Relations (12) and (14), it
can be proved that the weight distribution of C⊥F is unique13 for every AB
(n, n)-function F such that F (0) = 0: there are 1 codeword of null weight,
(2n−1)(2n−2 +2

n−3
2 ) codewords of weight 2n−1−2

n−1
2 , (2n−1)(2n−2−2

n−3
2 )

codewords of weight 2n−1 +2
n−1

2 , and (2n−1)(2n−1 +1) codewords of weight
2n−1. We shall see that the function x → x3 over the field F2n is an AB
function. The code C⊥F corresponding to this function is known in coding
theory as the dual of the 2-error-correcting BCH code of length 2n − 1.

If F is APN on F2n and null at 0, and n > 2, it can also be proved that the
code C⊥F has dimension 2n. Equivalently, let us prove that the code whose
generator matrix equals

[
F (1) F (α) F (α2) . . . F (α2n−2)

]
, and which

13Being able to determine such weight distribution is rare (when the code does not
contain the all-one vector): it is equivalent to determining the Walsh value distribution
of the function, and we have seen in the previous chapter that this is much more difficult
in general than just determining the distribution of the absolute values, which for an AB
function is easily deduced from the single Parseval’s relation.
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can therefore be seen as the code {trn(vF (x); v ∈ F2n}, has dimension n
and intersects the simplex code {trn(ux); u ∈ F2n} (whose generator matrix
is equal to

[
1 α α2 . . . α2n−2

]
) only in the null vector. Slightly more

generally:

Proposition 13 Let F be an APN function in n > 2 variables. Then the
nonlinearity of F cannot be null and, assuming that F (0) = 0, the code C⊥F
has dimension 2n.

Proof. Suppose there exists v 6= 0 such that v · F is affine. Without loss of
generality (by composing F with an appropriate linear automorphism and
adding an affine function to F ), we can assume that v = (0, · · · , 0, 1) and
that v · F is null. Then, every derivative of F is 2-to-1 and has null last
coordinate. Hence, for every a 6= 0 and every b, the equation DaF (x) = b
has no solution if bn = 1 and it has 2 solutions if bn = 0. The (n, n − 1)
function obtained by erasing the last coordinate of F (x) has therefore bal-
anced derivatives; hence it is a bent (n, n−1)-function, a contradiction with
Nyberg’s result, since n− 1 > n/2. 2

Note that for n = 2, the nonlinearity can be null. An example is the function
(x1, x2)→ (x1x2, 0).

J. Dillon (private communication) observed that the property of Proposi-
tion 13 implies that, for every nonzero c ∈ F2n , the equation F (x) +F (y) +
F (z) + F (x + y + z) = c must have a solution (that is, the function ΦF

introduced after Proposition 11 is onto Fn2 ∗). Indeed, otherwise, for every
Boolean function g(x), the function F (x) + g(x) c would be APN. But this
is contradictory with Proposition 13 if we take g(x) = v0 · F (x) (that is,
g(x) = trn(v0F (x)) if we have identified Fn2 with the field F2n) with v0 6∈ c⊥,
since we have then v0 · [F (x) + g(x) c] = v0 · F (x)⊕ g(x) (v0 · c) = 0.

There is a connection between AB functions and the so called uniformly
packed codes [3]:

Definition 10 Let C be any binary code of length N , with minimum dis-
tance d = 2e + 1 and covering radius ρ. For any x ∈ FN2 , let us denote by
ζj(x) the number of codewords of C at distance j from x. The code C is
called uniformly packed, if there exist real numbers h0, h1, ..., hρ such that,
for any x ∈ FN2 , the following equality holds

ρ∑
j=0

hj ζj(x) = 1.
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As shown in [4], this is equivalent to saying that the covering radius of
the code equals its external distance (i.e. the number of different nonzero
distances between the codewords of its dual). Then, as shown in [56]:

Proposition 14 Let F be any polynomial of the form (3), where n is odd.
Then F is AB if and only if CF is a uniformly packed code of length N = 2n−
1 with minimum distance d = 2e+ 1 = 5 and covering radius ρ = e+ 1 = 3.

• We have seen that all AB functions are APN. The converse is false, in
general. But if n is odd and if F is APN, then, as shown in [45, 42], there
exists a nice necessary and sufficient condition, for F being AB: the weights
of C⊥F are all divisible by 2

n−1
2 (see also [46], where the divisibilities for

several types of such codes are calculated, where tables of exact divisibilities
are computed and where proofs are given that a great deal of power functions
are not AB). In other words:

Proposition 15 Let F be an APN (n, n)-function, n odd. Then F is AB
if and only if all the values

∑
x∈Fn

2
(−1)v·F (x)⊕u·x of the Walsh spectrum of

F are divisible by 2
n+1

2 .

Proof. The condition is clearly necessary. Conversely, assume that F is APN
and that all the values

∑
x∈Fn

2
(−1)v·F (x)⊕u·x are divisible by 2

n+1
2 . Writing(∑

x∈Fn
2
(−1)v·F (x)⊕u·x

)2
= 2n+1λu,v, where all λu,v’s are integers, Relation

(13) implies then ∑
v∈Fn

2
∗,u∈Fn

2

(λ2
u,v − λu,v) = 0, (15)

and since all the integers λ2
u,v−λu,v are non-negative (λu,v being an integer),

we deduce that λ2
u,v = λu,v for every v ∈ Fn2 ∗, u ∈ Fn2 , i.e. λu,v ∈ {0, 1}. 2

Hence, if an APN function F is plateaued, or more generally if F = F1 ◦F−1
2

where F2 is a permutation and where the linear combinations of the compo-
nent functions of F1 and F2 are plateaued, then F is AB. Indeed, the sum∑

x∈Fn
2
(−1)v·F (x)⊕u·x =

∑
x∈Fn

2
(−1)v·F1(x)⊕u·F2(x) is then divisible by 2

n+1
2 .

This allows to deduce easily the AB property of Gold and Kasami functions
(see their definitions below) from their APN property, since the Gold func-
tions are quadratic and the Kasami functions are equal, when n is odd, to
F1 ◦ F−1

2 where F1(x) = x23i+1 and F2(x) = x2i+1 are quadratic14.
14It is conjectured that the component functions of the Kasami functions are plateaued

for every n even too. This is already proved in [82, Theorem 11] when n is not divisible
by 6.
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In the case n even: If F is APN, then there must exist v ∈ Fn2 ∗, u ∈ Fn2
such that

∑
x∈Fn

2
(−1)v·F (x)⊕u·x is not divisible by 2(n+2)/2. Indeed, suppose

that all the Walsh values of F have such divisibility. Then denoting again(∑
x∈Fn

2
(−1)v·F (x)⊕u·x

)2
= 2n+1λu,v, we have Relation (15). All the values

λ2
u,v − λu,v are non-negative integers and (for each v 6= 0) at least one

value is strictly positive, a contradiction. If all the Walsh values of F are
divisible by 2n/2 (e.g. if F is plateaued), then we deduce that there must
exist v ∈ Fn2 ∗, u ∈ Fn2 such that

∑
x∈Fn

2
(−1)v·F (x)⊕u·x is congruent with 2n/2

modulo 2n/2+1. Hence, if F is plateaued, there must exist v ∈ Fn2 ∗ such that
the Boolean function v ·F is bent. Note that this implies that F cannot be a
permutation, according to Proposition 2 and since a bent Boolean function is
never balanced. More precisely, when F is plateaued and APN, the numbers
λu,v involved in Equation (15) can be divided into two categories: those such
that the function v ·F is bent (for each such v, we have λu,v = 1/2 for every
u and therefore

∑
u∈Fn

2
(λ2
u,v − λu,v) = −2n−2); and those such that v · F is

not bent (then λu,v ∈ {0, 2i} for some i ≥ 1 depending on v, and therefore
λ2
u,v = 2iλu,v and we have, thanks to Parseval’s relation applied to the

Boolean function v · F :
∑

u∈Fn
2
(λ2
u,v − λu,v) = (2i − 1)

∑
u∈Fn

2
λu,v = (2i −

1) 22n

2n+1 = (2i− 1)2n−1 ≥ 2n−1). Equation (15) implies then that the number
B of those v such that v ·F is bent satisfies −B 2n−2 +(2n−1−B) 2n−1 ≤ 0,
which implies that the number of bent functions among the functions v · F
is at least 2

3(2n − 1).
In the case of the Gold functions F (x) = x2i+1, gcd(i, n) = 1 (see Subsection
3.1.7), the number of bent functions among the functions trn(vF (x)) equals
2
3(2n − 1). Indeed, according to the results recalled in the section on bent
functions of the previous chapter, the function trn(vF (x)) is bent if and only
if v is not the third power of an element of F2n .
Note that, given an APN plateaued function F , saying that the number of
bent functions among the functions trn(vF (x)) equals 2

3(2n−1) is equivalent
to saying, according to the observations above, that there is no v such that
λu,v = ±2i with i > n

2 + 1, that is, F has nonlinearity 2n−1 − 2n/2 and it is
also equivalent to saying that F has the same extended Walsh spectrum as
the Gold functions.
The fact that an APN function F has same extended Walsh spectrum as
the Gold functions can be characterized by using a similar method as for
proving Proposition 11: this situation happens if and only if, for every
v ∈ Fn2 ∗ and every u ∈ Fn2 , we have 1̂GF

(u, v) ∈ {0,±2
n
2 ,±2

n+2
2 } (where
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1̂GF
(u, v) =

∑
x∈Fn

2
(−1)v·F (x)⊕u·x), that is

1̂GF
(u, v)

(
1̂GF

2
(u, v)− 2n+2

)(
1̂GF

2
(u, v)− 2n

)
= 0,

or equivalently 1̂GF

5
(u, v)−5 ·2n 1̂GF

3
(u, v)+22n+21̂GF

(u, v) = 0. Applying
the Fourier transform and dividing by 22n, this is equivalent to the fact that∣∣∣∣{(x1, · · · , x5) ∈ F5n

2 /

{ ∑5
i=0 xi = a∑5
i=0 F (xi) = b

}∣∣∣∣− 23n−

5 · 2n
(∣∣∣∣{(x1, · · · , x3) ∈ F3n

2 /

{ ∑3
i=0 xi = a∑3
i=0 F (xi) = b

}∣∣∣∣− 2n
)

+

22n+2

(∣∣∣∣{x ∈ Fn2/
{
x = a
F (x) = b

}∣∣∣∣− 2−n
)

= 0

for every a, b ∈ Fn2 . A necessary condition is (taking b = F (a) and using
that F is APN) that, for every a, b ∈ Fn2 , we have∣∣∣∣{(x1, · · · , x5) ∈ F5n

2 /

{ ∑5
i=0 xi = a∑5
i=0 F (xi) = b

}∣∣∣∣ =

23n + 5 · 2n(3 · 2n − 2− 2n)− 22n+2(1− 2−n) =

23n + 3 · 22n+1 − 3 · 2n+1.

There exist APN quadratic functions whose Walsh spectra are different from
the Gold functions. K. Browning et al. [23] have exhibited such function
in 6 variables: F (x) = x3 + α11x5 + α13x9 + x17 + α11x33 + x48, where α
is a primitive element in the field. For this function, we get the following
spectrum: 46 functions tr6(vF (x)) are bent, 16 are plateaued with amplitude
16 and one is plateaued with amplitude 32. 2

3.1.4 The particular case of power functions

We have seen that the notion of AB function being independent of the
choice of the inner product, we can identify Fn2 with the field F2n and take
x · y = trn(xy) for inner product (where trn is the trace function from this
field to F2). This allows to consider those particular (n, n)-functions which
have the form F (x) = xd, called power functions (and sometimes, monomial
functions).
When F is a power function, it is enough to check the APN property for
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a = 1 only, since changing, for every a 6= 0, the variable x into ax in the
equation F (x) + F (x+ a) = b gives F (x) + F (x+ 1) = b

F (a) . Note that this
implies that if a power function from F2n to itself is APN then for every
m dividing n, this power function is APN as a function from F2m to itself.
Moreover, checking the AB property

∑
x∈F2n

(−1)trn(vF (x)+ux) ∈ {0,±2
n+1

2 },
for every u, v ∈ F2n , v 6= 0, is enough for u = 0 and u = 1 (and every v 6= 0),
since changing x into x

u (if u 6= 0) in this sum gives
∑

x∈F2n
(−1)trn(v′F (x)+x),

for some v′ 6= 0. If F is a permutation, then checking the AB property is
also enough for v = 1 and every u, since changing x into x

F−1(v)
in this sum

gives
∑

x∈F2n
(−1)

trn
“
F (x)+ u

F−1(v)
x
”
.

Also, when F is an APN power function, we have additional information on
its bijectivity. It was proved in [56] that, when n is even, no APN function
exists in a class of permutations including power permutations, that we
describe now. Let k = 2n−1

3 (which is an integer, since n is even) and let α
be a primitive element of the field F2n . Then β = αk is a primitive element of
F4. Hence, β2 +β+ 1 = 0. For every j, the element (β+ 1)j +βj = β2j +βj

equals 1 if j is coprime with 3 (since βj is then also a primitive element
of F4), and is null otherwise. Let F (x) =

∑2n−1
j=0 δjx

j , (δj ∈ F2n ) be an
(n, n)-function. According to the observations above, β and β + 1 are the
solutions of the equation F (x)+F (x+1) =

∑
gcd(j,3)=1 δj . Also, the equation

F (x) + F (x+ 1) =
∑2n−1

j=1 δj admits 0 and 1 for solutions. Thus:

Proposition 16 Let n be even and let F (x) =
∑2n−1

j=0 δjx
j be any APN

(n, n)-function, then
∑k

j=1 δ3j 6= 0, k = 2n−1
3 . If F is a power function,

then it can not be a permutation.

H. Dobbertin gives in [91] a result valid only for power functions but slightly
more precise, and he completes it in the case that n is odd:

Proposition 17 If a power function F (x) = xd over F2n is APN, then for
every x ∈ F2n, we have xd = 1 if and only if x3 = 1, that is, F−1(1) =
F4 ∩ F∗2n. If n is odd, then gcd(d, 2n − 1) equals 1 and, if n is even, then
gcd(d, 2n−1) equals 3. Consequently, APN power functions are permutations
if n is odd, and are three-to-one if n is even.

Proof. Let x 6= 1 be such that xd = 1. There is a (unique) y in F2n ,
y 6= 0, 1, such that x = (y + 1)/y. The equality xd = 1 implies then
(y + 1)d + yd = 0 = (y2 + 1)d + (y2)d. By the APN property and since
y2 6= y, we conclude y2 + y + 1 = 0. Thus, y, and therefore x, are in F4 and
x3 = 1. Conversely, if x 6= 1 is an element of F∗2n such that x3 = 1, then 3
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divides 2n − 1 and n must be even. Moreover, d must also be divisible by 3
(indeed, otherwise, the restriction of xd to F4 would coincide with the func-
tion xgcd(d,3) = x and would be therefore linear, a contradiction). Hence, we
have xd = 1. The rest is straightforward. 2

A. Canteaut proves in [43] that for n even, if a power function F (x) = xd

on F2n is not a permutation (i.e. if gcd(d, 2n − 1) > 1), then the nonlin-
earity of F is bounded above by 2n−1 − 2n/2 (she also studies the case of
equality). Indeed, denoting gcd(d, 2n − 1) by d0, then for every v ∈ F2n ,
the sum

∑
x∈F2n

(−1)trn(vxd) equals
∑

x∈F2n
(−1)trn(vxd0 ) which implies that∑

v∈F2n

(∑
x∈F2n

(−1)trn(vxd)
)2

equals 2n |{(x, y), x, y ∈ F2n , xd0 = yd0}|.
The number of elements in the image of F∗2n by the mapping x → xd0 is
(2n − 1)/d0 and every element of this image has d0 pre-images. Hence,∑

v∈F∗2n

(∑
x∈F2n

(−1)trn(vxd)
)2

equals 2n[(2n − 1)d0 + 1] − 22n = 2n(2n −

1)(d0 − 1) and maxv∈F∗2n

(∑
x∈F2n

(−1)trn(vxd)
)2
≥ 2n(d0 − 1) ≥ 2n+1.

The possible values of the sum
∑

x∈F2n
(−1)trn(vxd) are determined in [7] for

APN power functions in an even number of variables.

If F is a power function, then the linear codes CF and C⊥F (viewed in
Proposition 12) are cyclic codes, that is, are invariant under cyclic shifts of
their coordinates (see [130] and the chapter “Boolean Functions for Cryptog-
raphy and Error Correcting Codes”). Indeed, (c0, . . . , c2n−2) belongs to CF if
and only if c0+c1α+. . .+c2n−2α

2n−2 = 0 and c0+c1αd+. . .+c2n−2α
(2n−2)d =

0; this implies (by multiplying these equations by α and αd, respectively)
c2n−2+c0α+. . .+c2n−3α

2n−2 = 0 and c2n−2+c0αd+. . .+c2n−3α
(2n−2)d = 0.

Recall that, representing each codeword (c0, c1, · · · , c2n−2) by the element∑2n−2
i=0 ciX

i of the algebra F2[X]/(X2n−1 + 1), the code is then an ideal
of this algebra and it equals the set of all those polynomials of degrees
at most 2n − 2 which are multiples (as elements of the algebra and more
strongly as polynomials) of a polynomial, called generator polynomial, di-
viding X2n−1 + 1, which is the unique element of minimal degree in the
code. In other words,

∑2n−2
i=0 ciX

i is a codeword if and only if the roots in
F2n of the generator polynomial are also roots of

∑2n−2
i=0 ciX

i. The roots of
the generator polynomial are of the form {αi, i ∈ I} where I ⊆ Z/(2n− 1)Z
is a union of cyclotomic classes of 2 modulo 2n − 1. The set I is called the
defining set of the code. In the case of CF , the defining set I is precisely
the union of the two cyclotomic classes containing 1 and d.
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A very efficient bound on the minimum distance of cyclic codes, also re-
called in the previous chapter, is the BCH bound [130]: if I contains a string
{l+ 1, . . . , l+ k} of length k in Z/(2n − 1)Z, then the cyclic code has mini-
mum distance greater than or equal to k+1. This bound shows for instance

in an original way that the function x2
n−1

2 +1, n odd, is AB: by definition,
the defining set I of CF equals the union of the cyclotomic classes of 1 and
2

n−1
2 + 1, that is

{1, 2, · · · , 2n−1}∪

{2
n−1

2 + 1, 2
n+1

2 + 2, · · · , 2n−1 + 2
n−1

2 , 2
n+1

2 + 1, 2
n+3

2 + 2, · · · , 2n−1 + 2
n−3

2 }.

The defining set of C⊥F equals then Z/(2n − 1)Z \ {−i; i 6∈ I} (this property
is valid for every cyclic code, see [130]). Since there is no element equal
to 2n−1 + 2

n−1
2 + 1, · · · , 2n − 1 in I, the defining set of C⊥F contains then a

string of length 2n−1 − 2
n−1

2 − 1. Hence the nonzero codewords of this code
have weights greater than or equal to 2n−1 − 2

n−1
2 . This is not sufficient

for concluding that the function is AB (since we need also to know that
the complements of the extended codewords have weight at least 2n−1 −
2

n−1
2 ), but we can apply the previous reasoning to the cyclic code C⊥F ∪

((1, · · · , 1) + C⊥F ): the defining set of the dual of this code being equal to
that of CF , plus 0, the defining set of the code itself equals that of C⊥F less
0, which gives a string of length 2n−1 − 2

n−1
2 − 2 instead of 2n−1 − 2

n−1
2 −

1. Hence the complements of the codewords of C⊥F have weights at least
2n−1 − 2

n−1
2 − 1, and since for these codewords, the corresponding Boolean

function takes value 1 at the zero vector (which is not taken into account in
the corresponding codeword), this allows now to deduce that all functions

trn(vx2
n−1

2 +1 + ux) ⊕ ε, v 6= 0, ε ∈ F2, have weights between 2n−1 − 2
n−1

2

and 2n−1 + 2
n−1

2 , that is, F is AB.
The powerful McEliece Theorem (see e.g. [130]) gives the exact divisibility
of the codewords of cyclic codes. Translated in terms of vectorial functions,
it says that if d is relatively prime to 2n− 1, the exponent ed of the greatest
power of 2 dividing all the Walsh coefficients of the power function xd is given
by ed = min{w2(t0)+w2(t1), 1 ≤ t0, t1 < 2n−1; t0 + t1d ≡ 0 [mod 2n−1]}.
It can be used in relationship with Proposition 15. This led to the proof, by
Canteaut, Charpin and Dobbertin, of a several decade old conjecture due to
Welch (see below).

Note finally that, if F is a power function, then the Boolean function
γF seen in Proposition 10 is within the framework of Dobbertin’s triple
construction [83].
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3.1.5 Notions of equivalence respecting the APN and AB prop-
erties

The right and left compositions of an APN (resp. AB) function by an affine
permutation are APN (resp. AB). Two functions are called affine equivalent
if one is equal to the other, composed by such affine permutations.
Adding an affine function to an APN (resp. AB) function respects its APN
(resp. AB) property. Two functions are called extended affine equivalent
(EA-equivalent) if one is affine equivalent to the other, added with an affine
function.
The inverse of an APN (resp. AB) permutation is APN (resp. AB) but
is in general not EA-equivalent to it. There exists a notion of equivalence
between (n, n)-functions which respects APNness and ABness and for which
any permutation is equivalent to its inverse. As we shall see, this equivalence
relation is still more general than EA-equivalence between functions, up to
replacing the functions by their inverses when they are permutations.

Definition 11 Two (n, n)-functions F and G are called CCZ-equivalent15

if their graphs CF = {(x, y) ∈ Fn2 × Fn2 | y = F (x)} and CG = {(x, y) ∈
Fn2 × Fn2 | y = G(x)} are affine equivalent, that is, if there exists an affine
automorphism L = (L1, L2) of Fn2 × Fn2 such that y = F (x) ⇔ L2(x, y) =
G(L1(x, y)).

As observed in [23], given two (n, n)-functions F and G such that F (0) =
G(0) = 0, there exists a linear automorphism16 which maps GF to GG
if and only if the codes CF and CG (see the definition of these codes in
Proposition 12) are equivalent (that is, are equal up to some permutation
of the coordinates of their codewords). Indeed, the graph GF of F equals
the (unordered) set of columns in the parity-check matrix of the code CF ,
plus an additional point equal to the all-zero vector. Hence, the existence
of a linear automorphism which maps GF onto GG is equivalent to the fact
that the parity-check matrices17 of the codes CF and CG are equal up to
multiplication (on the left) by an invertible matrix and to permutation of
the columns. Since two codes with given parity-check matrices are equal if
and only if these matrices are equal up to multiplication on the left by an
invertible matrix, this completes the proof. It is nicely deduced in [23] that

15This notion has been introduced in [56] and later named CCZ-equivalence in [26, 27];
it could be also called graph-equivalence.

16Note that this is a sub-case of CCZ-equivalence - in fact, a strict sub-case as shown
in [23].

17This is true also for the generator matrices of the codes.
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two functions F and G taking any values at 0 are CCZ-equivalent if and
only if the codes C̃F and C̃G (see the definition of these codes in the remark
- alinea 2 - following Proposition 12) are equivalent.

The notion of CCZ-equivalence can be similarly defined for functions
from Fn2 to Fm2 .

Given a function F : Fn2 → Fm2 and an affine automorphism L = (L1, L2)
of Fn2 × Fm2 , the image of the graph of F by L is the graph of a function
if and only if the function F1(x) = L1(x, F (x)) is a permutation of Fn2 .
Indeed, if F1 is a permutation then L(GF ) equals the graph of the function
G = F2 ◦ F−1

1 ; and conversely, denoting F2(x) = L2(x, F (x)), the image
of the graph of F by L equals {(F1(x), F2(x)); x ∈ Fn2} and since L is a
permutation, if F1(x) = F1(x′) for some x 6= x′ then F2(x) 6= F2(x′), and
L(GF ) is not the graph of a function.

Proposition 18 If two (n, n)-functions F and G are CCZ-equivalent then
F is APN (resp. AB) if and only if G is APN (resp. AB). Moreover,
denoting by L = (L1, L2) an affine automorphism between the graphs of F
and G, the function γF (see Proposition 10) equals γG ◦ L, where L is the
linear automorphism such that L = L+ cst.

Proof. We have seen that G = F2 ◦ F−1
1 , where F1(x) = L1(x, F (x)) and

F2(x) = L2(x, F (x)). The value γG(a, b) equals 1 if and only if a 6= 0 and
there exists (x, y) in Fn2×Fn2 such that F1(x)+F1(y) = a and F2(x)+F2(y) =
b, that is, L(x, F (x)) + L(y, F (y)) = L(x + y, F (x) + F (y)) = (a, b). Thus,
γG is equal to γF ◦L−1. The function γG is therefore bent (resp. has weight
22n−1 − 2n−1) if and only if γF is bent (resp. has weight 22n−1 − 2n−1).
Proposition 10 completes the proof. 2

All the transformations respecting the APN (resp. AB) property that
we have seen previously to Proposition 18 are particular cases of this general
one:
- if L1(x, y) only depends on x, then writing L1(x, y) = L1(x) and L2(x, y) =
L′(x) + L′′(y), the function F1(x) = L1(x) is a permutation (since L being
onto Fn2 ×Fm2 , L1 must be onto Fn2 ) and we have F2 ◦F−1

1 (x) = L′ ◦L−1
1 (x)+

L′′ ◦ F ◦ L−1
1 (x); this corresponds to EA-equivalence;

- if (L1, L2)(x, y) = (y, x), then F2(x) = x and F1(x) = F (x); if F is a
permutation then F1 is a permutation and F2 ◦ F−1

1 is equal to F−1.

It has been proved in [26, 27] that CCZ-equivalence is strictly more gen-
eral than EA-equivalence between the functions or their inverses (when they
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exist), by exhibiting (see below) APN functions which are CCZ-equivalent to
the APN function F (x) = x3 on F2n , but which are provably EA-inequivalent
to it and (for n odd) to its inverse.
Note however that if we reduce ourselves to bent functions, then CCZ-
equivalence and EA-equivalence coincide: let F be a bent (n,m)-function
(n even, m ≤ n/2) and let (without loss of generality) L1 and L2 be two lin-
ear functions from Fn2 × Fm2 to (respectively) Fn2 and Fm2 , such that (L1, L2)
and L1(x, F (x)) are permutations. For every vector v in Fn2 , the function
v ·L1(x, F (x)) is necessarily unbent since, if v = 0 then it is null and if v 6= 0
then it is balanced, according to Proposition 2. Let us denote L1(x, y) =
L′(x) + L′′(y). We have then F1(x) = L′(x) + L′′ ◦ F (x). The adjoint op-
erator L′′′ of L′′ (satisfying by definition v · L′′(y) = L′′′(v) · y, that is, the
linear function having for matrix the transpose of the matrix of L′′) is then
the null function, since if L′′′(v) 6= 0 then v ·F1(x) = v ·L′(x)⊕L′′′(v) ·F (x)
is bent. This means that L′′ is null and L1 depends then only on x, which
corresponds to EA-equivalence.

Note that if (L1, L2) and (L1, L
′
2) are linear permutations of Fn2 × Fm2

and F1 = L1(x, F (x)) is a permutation of Fn2 , then as shown in [24], the
functions F ′ and F ′′ obtained by CCZ-equivalence from F by using (L1, L2)
and (L1, L

′
2) are EA-equivalent; so finding new EA-inequivalent functions

by using CCZ-equivalence needs to find new permutations F1, which is the
difficult task.

Proving the CCZ-inequivalence between two functions is mathematically
(and also computationally) difficult, unless some CCZ-invariant parameters
can be proved different for the two functions. Examples of direct proofs of
CCZ-inequivalence using only the definition can be found in [29, 30].
Examples of CCZ-invariant parameters are the following (see [23] and [94]
where they are introduced and used):

• The extended Walsh spectrum.

• The equivalence class of the code C̃F (under the relation of equivalence
of codes), according to the result of [23] recalled after Definition 11,
and all the invariants related to this code (the weight enumerator of
C̃F , the weight enumerator of its dual - but it corresponds to the
extended Walsh spectrum of the function - the automorphism group
etc..., which coincide with some of the invariants below).

• The Γ-rank: let G = F2[Fn2 × Fn2 ] be the so-called group algebra of
Fn2 × Fn2 over F2, consisting of the formal sums

∑
g∈Fn

2×Fn
2
ag g where
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ag ∈ F2. If S is a subset of Fn2 × Fn2 , then it can be identified with
the element

∑
s∈S s of G. The dimension of the ideal of G generated

by the graph GF = {(x, F (x)); x ∈ Fn2} of F is called the Γ-rank of
F . The Γ-rank equals (see [94]) the rank of the matrix MGF

whose
term indexed by (x, y) ∈ Fn2 × Fn2 and by (a, b) ∈ Fn2 × Fn2 equals 1 if
(x, y) ∈ (a, b) +GF and equals 0 otherwise.

• The ∆-rank, that is, the dimension of the ideal of G generated by
the set DF = {(a, F (x) + F (x + a)); a, x ∈ Fn2 ; a 6= 0} (recall that,
according to Proposition 10, this set has size 22n−1 − 2n−1 and is
a difference set when F is AB). The ∆-rank equals the rank of the
matrix MDF

whose term indexed by (x, y) and by (a, b) equals 1 if
(x, y) ∈ (a, b) +DF and equals 0 otherwise.

• The order of the automorphism group of the design dev(GF ), whose
points are the elements of Fn2 × Fn2 and whose blocks are the sets
(a, b) +GF (and whose incidence matrix is MGF

), that is, of all those
permutations on Fn2 × Fn2 which map every such block to a block.

• The order of the automorphism group of the design dev(DF ), whose
points are the elements of Fn2 × Fn2 and whose blocks are the sets
(a, b) +DF (and whose incidence matrix is MDF

).

• The order of the automorphism group M(GF ) of the so-called multi-
pliers of GF , that is, the permutations π of Fn2 × Fn2 such that π(GF )
is a translate (a, b) +GF of GF . This order is easier to compute and it
allows in some cases to prove CCZ-inequivalence easily. As observed
in [23], M(GF ) is the automorphism group of the code C̃F .

• The order of the automorphism group M(DF ).

CCZ-equivalence does not preserve crookedness nor the algebraic degree.

3.1.6 The known AB functions

Power functions: Until recently, the only known examples of AB func-
tions were (up to EA-equivalence) the power functions x 7→ xd on the field
F2n (n odd) corresponding to the following values of d, and the inverses of
these power functions:

• d = 2i + 1 with gcd(i, n) = 1 and 1 ≤ i ≤ n−1
2 (proved by Gold, see

[97, 137]). The condition 1 ≤ i ≤ n−1
2 (here and below) is not necessary but
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we mention it because the other values of i give EA-equivalent functions.
These power functions are called Gold functions.
• d = 22i − 2i + 1 with gcd(i, n) = 1 and 2 ≤ i ≤ n−1

2 (the AB property of
this function is equivalent to a result by Kasami [115], historically due to
Welch, but never published by him; see another proof in [86]). These power
functions are called Kasami functions (some authors call them Kasami-
Welch functions).
• d = 2(n−1)/2 + 3 (conjectured by Welch and proved by Canteaut, Charpin
and Dobbertin, see [87, 45, 46]). These power functions are called Welch
functions.
• d = 2(n−1)/2 + 2(n−1)/4 − 1, where n ≡ 1 (mod 4) (conjectured by Niho,
proved by Hollman and Xiang, after the work by Dobbertin, see [88, 106]).
• d = 2(n−1)/2 + 2(3n−1)/4 − 1, where n ≡ 3 (mod 4) (idem). The power
functions in these two last cases are called Niho functions.

The almost bentness of these functions can be deduced from their almost
perfect nonlinearity (see below) by using Proposition 15 (and McEliece’s
Theorem in the cases of the Welch and Niho functions; the proofs are then
not easy). The direct proof that the Gold function is AB is easy by using the
properties of quadratic functions recalled in the chapter “Boolean Functions
for Cryptography and Error Correcting Codes”, in the subsection devoted
to quadratic functions. The value at a of the Walsh transform of the Gold
Boolean function trn(x2i+1) equals ±2

n+1
2 if trn(a) = 1 and is null otherwise,

since trn(x2i
y + xy2i

) = trn((x2i
+ x2n−i

) y) is null for every y if and only if
x22i

+ x = 0, that is, if and only if x ∈ F2 (since gcd(22i − 1, 2n − 1) = 1),
and since trn(x2i+1 + ax) is constant on F2 if and only if trn(a) = 1. This
gives easily the magnitude (but not the sign, which is studied in [123]) of
the Walsh transform of the vectorial Gold function, this function being a
permutation (see Subsection 3.1.4).
The inverse of x2i+1 is xd, where

d =

n−1
2∑

k=0

22ik,

and xd has therefore the algebraic degree n+1
2 [137].

It has been proved in [81, Theorem 7] and [82, Theorem 15] that, if 3i is
congruent with 1 mod n, then the Walsh support of the Kasami Boolean
function trn(x22i−2i+1) equals the support of the Gold Boolean function
trn(x2i+1) (i.e. the set {x ∈ F2n | trn(x2i+1) = 1}) if n is odd and equals
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the set {x ∈ F2n | trn/2(x2i+1) = 0} if n is even, where trn/2 is the trace
function from F2n to the field F22 : trn/2(x) = x + x4 + x42

+ . . . + x4n/2−1
.

When n is odd, this gives the magnitude (but not the sign) of the Walsh
transform of the vectorial Kasami function, this function being a permu-
tation. Note that this gives also an information on the autocorrelation of
the Kasami Boolean function: according to the Wiener-Khintchine theo-
rem (see the previous chapter), the Fourier transform of the function a →
F(Daf) =

∑
x∈Fn

2
(−1)Daf(x), where f is the Kasami Boolean function,

equals the square of the Walsh transform of f . According to Dillon’s and
Dobbertin’s result recalled above, and since we know that the Kasami func-
tion is almost bent when n is odd, the value at b of the square of the Walsh
transform of f equals then 2n+1 if trn(x2i+1) = 1 and equals zero other-
wise. Hence, by applying the inverse Fourier transform (that is, by applying
the Fourier transform again and dividing by 2n), F(Daf) equals twice the
Fourier transform of the function trn(x2i+1). We deduce that, except at
the zero vector, F(Daf) equals the opposite of the Walsh transform of the
function trn(x2i+1).

It is proved in [30] that Gold functions are pairwise CCZ-inequivalent and
that they are in general CCZ-inequivalent to Kasami and Welch functions.

We have seen that the Walsh value distribution of AB functions is known.
A related result of [123] is generalized in [98]: for every AB power function
xd over F2n whose restriction to any subfield of F2n is also AB, the value∑

x∈F2n
(−1)trn(xd+x) equals 2

n+1
2 if n ≡ ±1 [mod 8] and −2

n+1
2 if n ≡ ±3

[mod 8].

Remark. There is a close relationship between AB power functions and
sequences used for radars and for spread-spectrum communications. A bi-
nary sequence which can be generated by an LFSR, or equivalently which
satisfies a linear recurrence relation si = a1si−1 ⊕ . . .⊕ ansi−n, is called an
m-sequence or a maximum-length sequence if its period equals 2n−1, which
is the maximal possible value. Such a sequence has the form trn(λαi), where
λ ∈ F2n and α is some primitive element of F2n , and where trn is the trace
function on F2n . Consequently, its auto-correlation values

∑2n−2
i=0 (−1)si⊕si+t

(1 ≤ t ≤ 2n−2) are equal to -1, that is, are optimum. Such a sequence can be
used for radars and for code division multiple access (CDMA) in telecommu-
nications, since it allows sending a signal which can be easily distinguished
from any time-shifted version of itself. Finding an AB power function xd on
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the field F2n allows to have a d-decimation18 s′i = trn(λαdi) of the sequence,
whose cross-correlation values

∑2n−2
i=0 (−1)si⊕s′i+t (0 ≤ t ≤ 2n − 2) with the

sequence si have minimum overall magnitude19 [101]. The cross-correlation
is then called a preferred cross-correlation function, see [36]. The conjec-
tures that the power functions above were AB have been stated (before being
proved later) in the framework of sequences for this reason.

It has been conjectured by Hans Dobbertin that the list of power AB
functions above is complete. See [126] about this conjecture.

Non-power functions: It was first conjectured that all AB functions are
equivalent to power functions and to permutations. These two conjectures
were later disproved, in a first step by exhibiting AB functions which are
EA-inequivalent to power functions and to permutations, but which are by
construction CCZ-equivalent to the Gold function x→ x3, and in a second
step by finding AB functions which are CCZ-inequivalent to power func-
tions20 (at least for some values of n):

Functions CCZ-equivalent to power functions:

Two examples of linear permutations over F2n×F2n transforming the graph
of the Gold function x → x3 into the graph of a function have been found
in [26], giving new classes of AB functions:
• The function F (x) = x2i+1 + (x2i

+ x) trn(x2i+1 + x), where n > 3 is
odd and gcd(n, i) = 1, is AB. It is provably EA-inequivalent to any power
function and it is EA-inequivalent to any permutation (at least for n = 5),
which disproves a conjecture stated in [26].
• For n odd and divisible by m, n 6= m and gcd(n, i) = 1, the following
function from F2n to F2n :

x2i+1 + trn/m(x2i+1) + x2i
trn/m(x) + x trn/m(x)2

i
+

[trn/m(x)2
i+1 + trn/m(x2i+1) + trn/m(x)]

1

2i+1 (x2i
+ trn/m(x)2

i
+ 1) +

[trn/m(x)2
i+1 + trn/m(x2i+1) + trn/m(x)]

2i

2i+1 (x+ trn/m(x))

where trn/m denotes the trace function trn/m(x) =
∑n/m−1

i=0 x2mi
from F2n

18Another m-sequence if d is co-prime with 2n − 1.
19This allows, in code division multiple access, to give different signals to different users.
20The question of knowing whether all AB functions are CCZ-equivalent to permutations

remains open, as far as we know.
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to F2m , is an AB function of algebraic degree m+ 2 which is provably EA-
inequivalent to any power function; the question of knowing whether it is
EA-inequivalent to any permutation is open.

Open problem: Find classes of AB functions by using CCZ-equivalence with
Kasami (resp. Welch, Niho) functions.

• Though the AB functions constructed in [26] cannot be obtained from
power functions by applying only EA-equivalence and inverse transforma-
tion, L. Budaghyan shows in [25] that AB functions EA-inequivalent to
power functions can be constructed by only applying EA-equivalence and
inverse transformation to power AB functions.

Functions CCZ-inequivalent to power functions:

The problem of knowing whether there exist AB functions which are CCZ-
inequivalent to power functions remained open after the introduction of
the two functions above. Also, it was conjectured that any quadratic APN
function is EA-equivalent to Gold functions and this problem remained open.
A paper by Edel, Kyureghyan and Pott [93] introduced two quadratic APN
functions from F210 (resp. F212) to itself. The first one was proved to be
CCZ-inequivalent to any power function.
These two (quadratic) functions were isolated and this left open the question
of knowing whether a whole infinite class of APN/AB functions being not
CCZ-equivalent to power functions could be exhibited.
• The new following class of AB functions was found in [28, 29]:

Proposition 19 Let s and k be positive integers with gcd(s, 3k) = 1 and
t ∈ {1, 2}, i = 3− t. Furthermore let d = 2ik + 2tk+s − (2s + 1),

g1 = gcd(23k − 1, d/(2k − 1)),

g2 = gcd(2k − 1, d/(2k − 1)).

If g1 6= g2 then the function

F : F23k → F23k

x 7→ α2k−1x2ik+2tk+s
+ x2s+1

where α is primitive in F23k is AB when k is odd and APN when k is even.
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It could be proved in [28, 29] that some of these functions are EA-inequivalent
to power functions and CCZ-inequivalent to some AB power functions, and
this was sufficient to deduce that they are CCZ-inequivalent to all power
functions for some values of n:

Proposition 20 Let s and k ≥ 4 be positive integers such that s ≤ 3k − 1,
gcd(k, 3) = gcd(s, 3k) = 1, and i = sk [mod 3], t = 2i [mod 3], n = 3k. If
a ∈ F2n has the order 22k+2k+1 then the function F (x) = x2s+1+ax2ik+2tk+s

is an AB permutation on F2n when n is odd and is APN when n is even.
It is EA-inequivalent to power functions and CCZ-inequivalent to Gold and
Kasami mappings.

• It has been shown in [32] that:

Proposition 21 For every odd positive integer, the function x3 + trn(x9)
is AB on F2n (and that it is APN for n even).

This function is the only example, with the function x3, of a function which
is AB for any odd n (if we consider it as the same function for every n
which is not quite true since the trace function depends on n). It is CCZ-
inequivalent to any Gold function on F2n if n ≥ 7.

Open problem: Find infinite classes of AB functions CCZ-inequivalent to
power functions and to quadratic functions.

3.1.7 The known APN functions

We list now the known APN functions (in addition to the AB functions
listed above).

Power functions: The so-called multiplicative inverse permutation (or
simply inverse function) x 7→ F (x) = x2n−2 (which equals 1

x if x 6= 0, and
0 otherwise) is APN if n is odd [8, 137]. Indeed, the equation x2n−2 + (x+
1)2

n−2 = b (b 6= 0, since the inverse function is a permutation) admits 0 and
1 for solutions if and only if b = 1; and it (also) admits (two) solutions dif-
ferent from 0 and 1 if and only if there exists x 6= 0, 1 such that 1

x + 1
x+1 = b,

that is, x2 + x = 1
b . It is well-known that such existence is equivalent to the

fact that trn
(

1
b

)
= 0. Hence, F is APN if and only if trn(1) = 1, that is, if

n is odd.
Consequently, the functions x 7→ x2n−2i−1, which are linearly equivalent to
F (through the linear isomorphism x 7→ x2i

) are also APN, if n is odd.
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If n is even, then the equation x2n−2 + (x + 1)2
n−2 = b admits at most 2

solutions if b 6= 1 and admits 4 solutions (the elements of F4) if b = 1, which
means that F opposes a good (but not optimal) resistance against differen-
tial cryptanalysis. Its nonlinearity equals 2n−1 − 2n/2 when n is even and it
equals the highest even number bounded above by this number, when n is
odd (see [64]; Lachaud and Wolfmann proved in [122] that the set of values
of its Walsh spectrum equals the set of all integers s ≡ 0 [mod 4] in the
range [−2n/2+1 + 1; 2n/2+1 + 1]; see more in [104]). Knowing whether there
exist (n, n)-functions with nonlinearity strictly greater than this value when
n is even is an open question (even for power functions). These are some of
the reasons why the function x 7→ x2n−2 has been chosen for the S-boxes of
the AES.
Until recently, the only known examples of APN functions were (up to
affine equivalence and to the addition of an affine function) power func-
tions x 7→ xd. We list below the known values of d for which we obtain APN
functions, without repeating the cases where the functions are AB:

• d = 2n − 2, n odd (inverse function);
• d = 2i + 1 with gcd(i, n) = 1, n even and 1 ≤ i ≤ n−2

2 (Gold functions, see
[97, 137]);
• d = 22i − 2i + 1 with gcd(i, n) = 1, n even and 2 ≤ i ≤ n−2

2 (Kasami
functions, see [111], see also [86]);
• d = 2

4n
5 + 2

3n
5 + 2

2n
5 + 2

n
5 − 1, with n divisible by 5 (Dobbertin functions,

see [89]). It has been shown by Canteaut, Charpin and Dobbertin [46] that
this function can not be AB: they showed that C⊥F contains words whose
weights are not divisible by 2

n−1
2 .

The proof that the Gold functions are APN (whatever is the parity of
n) is easy: the equality F (x) + F (x+ 1) = F (y) + F (y + 1) is equivalent to
(x+ y)2

i
= (x+ y), and thus implies that x+ y = 0 or x+ y = 1, since i and

n are co-prime. Hence, any equation F (x) + F (x + 1) = b admits at most
two solutions.
The proofs that the Kasami and Dobbertin functions are APN are difficult.
They come down to showing that some mappings are permutations. H. Dob-
bertin gives in [90] a nice general method for this.
The Gold and Kasami functions, for n even, have the best known nonlinear-
ity when n is even too [97, 115], but not the Dobbertin functions. See [46]
for a list of all known permutations with best known nonlinearity. See also
[84].
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Inverse and Dobbertin functions are CCZ-inequivalent to all other known
APN functions because of their peculiar Walsh spectra.
It is proven in [21] that there exists no APN function CCZ-inequivalent to
power mappings on F2n for n ≤ 5.
The exponents d such that the function xd is APN on infinitely many fields
F2n have been called exceptional by J. Dillon (see e.g. [23]). We have
seen above that a power function xd is APN if and only if the function
xd + (x+ 1)d + 1 (we write ‘ +1” so that 0 is a root, which simplifies presen-
tation) is 2-to-1. For every (n, n)-function F over F2n , there clearly always
exists a polynomial P such that F (x)+F (x+1)+F (1) = P (x+x2). J. Dillon
observed that, in the cases of the Gold and Kasami functions, the polynomial
P is an exceptional polynomial (i.e. is a permutation over infinitely many
fields F2n); from there comes the term. In the case of the Gold function
x2i+1, we have P (x) = x+ x2 + x22

+ · · ·+ x2i−1
which is a linear function

over the algebraic closure of F2 having kernel {x ∈ F2i / tri(x) = 0} and is
therefore a permutation over F2n for every n co-prime with i. In the case

of the Kasami function, P (x) = (tri(x))
2i+1

x2i is the Müller-Cohen-Matthews
polynomial [71]. It is conjectured that the Gold and Kasami exponents are
the only exceptional exponents.

Non-power functions: As for AB functions, it had been conjectured that
all APN functions were EA-equivalent to power functions and this conjec-
ture was proven false:

Functions CCZ-equivalent to power functions:

Using also the stability properties recalled in Subsection 3.1.5, two more
infinite classes of APN functions have been introduced in [26] and disprove
the conjecture above:
• The function F (x) = x2i+1 + (x2i

+ x+ 1) trn(x2i+1), where n ≥ 4 is even
and gcd(n, i) = 1 is APN and is EA-inequivalent to any power function.
• For n even and divisible by 3, the function F (x) equal to

[x+ trn/3(x2(2i+1) + x4(2i+1)) + trn(x) trn/3(x2i+1 + x22i(2i+1))]2
i+1,

where gcd(n, i) = 1, is APN and is EA-inequivalent to any known APN
function.

Open problem: Find classes of APN functions by using CCZ-equivalence
with Kasami (resp. Welch, Niho, Dobbertin, inverse) functions.
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Functions CCZ-inequivalent to power functions:

• As recalled above, the paper [93] introduced two quadratic APN functions
from F210 (resp. F212) to itself. The first one: F (x) = x3 + ux36, where
u ∈ F4 \ F2, was proved to be CCZ-inequivalent to any power function by
computing its ∆-rank.
The functions viewed in Proposition 19 are APN when n is even and gen-
eralize the second function: F (x) = x3 + α15x528, where α is a primitive
element of F212 ; some of them can be proven CCZ inequivalent to Gold and
Kasami mappings, as seen in Proposition 20. A similar class but with n di-
visible by 4 was later given in [31]. As observed by J. Bierbrauer, a common
framework exists for the class of Proposition 20 and this new class:

Theorem 2 Let:
- n = tk be a positive integer, with t ∈ {3, 4}, and s be such that t, s, k are
pairwise coprime and such that t is a divisor of k + s,
- α be a primitive element of F2n and w = αe, where e is a multiple of 2k−1,
coprime with 2t − 1,
then the function

F (x) = x2s+1 + wx2k+s+2k(t−1)

is APN.

For n ≥ 12, these functions are EA-inequivalent to power functions and
CCZ-inequivalent to Gold and Kasami mappings [29].
In particular, for n = 12, 20, 24, 28 they are CCZ-inequivalent to all power
functions.
• Proposition 20 has been generalized21 in [16, 17] by C. Bracken, E. Byrne,
N. Markin and G. McGuire:

F (x) = u2k
x22k+2k+s

+ ux2s+1 + vx22k+1 + wu2k+1x2k+s+2s

is APN on F23k , when 3 | k + s, (s, 3k) = (3, k) = 1 and u is primitive in
F23k , v 6= w−1 ∈ F2k .
The same authors in the same paper obtained another class of APN func-
tions:

F (x) = bx2s+1 + b2
k
x2k+s+2k

+ cx2k+1 +
k−1∑
i=1

rix
2i+k+2i

21Note that Proposition 19 covers a larger class of APN functions than Proposition 20.
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where k, s are odd and coprime, b ∈ F22k is not a cube, c ∈ F22k \ F2k ,
ri ∈ F2k is APN on F22k .
The extended Walsh spectrum of these functions is the same as for Gold
function, see [14]. But it is proved in [18] that at least some of these func-
tions are inequivalent to Gold functions.

• As already mentioned, the construction of AB functions of Proposition
21 gives APN functions for n even: for any positive integer n, the function
x3 + trn(x9) is APN on F2n.
This function is CCZ-inequivalent to any Gold function on F2n if n ≥ 7.
The extended Walsh spectrum of this function is the same as for the Gold
functions as shown in [13].

• An idea of J. Dillon [79] was that (n, n)-functions (over F2n) of the form:

F (x) = x(Ax2 +Bxq + Cx2q) + x2(Dxq + Ex2q) +Gx3q,

where q = 2n/2, n even, have good chances to be differentially 4-uniform.
This idea was exploited and pushed further in [33], which gave new APN
functions:

Proposition 22 Let n be even and i be co-prime with n/2. Set q = 2n/2 and
let c, b ∈ F2n be such that cq+1 = 1, c 6∈ {λ(2i+1)(q−1), λ ∈ F2n}, cbq + b 6= 0.
Then the function

F (x) = x22i+2i
+ bxq+1 + cxq(2

2i+2i)

is APN on F2n.
Such vectors b, c do exist if and only if gcd(2i + 1, q + 1) 6= 1. For n/2 odd,
this is equivalent to saying that i is odd.

The extended Walsh spectrum of these functions is the same as that of the
Gold functions [163].

• Another class was obtained in this same paper [33] with the same idea:

Proposition 23 Let n be even and i be co-prime with n/2. Set q = 2n/2

and let c ∈ F2n and s ∈ F2n \ Fq. If the polynomial

X2i+1 + cX2i
+ cqX + 1

is irreducible over F2n, then the function

F (x) = x(x2i
+ xq + cx2iq) + x2i

(cqxq + sx2iq) + x(2i+1)q

is APN on F2n.

53



It was checked with a computer that some of the functions of the present
class and of the previous one are CCZ-inequivalent to power functions for
n = 6. It remains open to prove the same property for every even n ≥ 6.

Open problem: The APN power functions listed above are not permutations
when n is even. The question of knowing whether there exist APN per-
mutations when n is even was wide open until recently. This question was
first raised (at least in a printed form) in [139]. We have seen that the
answer is “no” for all plateaued functions (this was first observed in this
same paper [139] when all the component functions of F are partially-bent;
Nyberg generalized there a result given without a complete proof in [148],
which was valid only for quadratic functions). We have also seen above in
Subsection 3.1.4 that the answer is “no” for a class of functions including
power functions. And X.-d. Hou proved in [108] that it is also “no” for
those functions whose univariate representation coefficients lie in F2n/2 ; he
showed this problem is related to a conjecture on the symmetric group of
F2n . An example of APN permutation in 6 variables has been given by J.
Dillon at last conference Fq 9 [80]. The existence of infinite classes of APN
permutations when n is even remains open.

• We introduce now a method for constructing APN functions from bent
functions, which leads to two classes (we do not know yet if these classes are
new) and should lead to others. Let B be a bent (n, n/2)-function and let
G be a function from Fn2 to Fn/22 . Let

F : x ∈ Fn2 → (B(x), G(x)) ∈ Fn/22 × Fn/22 .

F is APN if and only if, for every nonzero a ∈ Fn2 , and for every c ∈ Fn/22

and d ∈ Fn/22 , the system of equations{
B(x) +B(x+ a) = c
G(x) +G(x+ a) = d

has 0 or 2 solutions.
Since B is bent, the number of solutions of the first equation equals 2n/2

for every a 6= 0. We need to find functions G such that, among these 2n/2

solutions, only 0 or 2 satisfy additionally the second equation.
Obviously, the condition on G depends on the choice of B. We take the
Maiorana-McFarland function defined on F2n/2 × F2n/2 by B(x, y) = xy,
where xy is the product of x and y in the field F2n/2 . We write then (a, b)
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with a, b ∈ F2n/2 instead of a ∈ Fn2 . Changing c into c + ab, the system of
equations above becomes{

bx+ ay = c
G(x, y) +G(x+ a, y + b) = d

It is straightforward to check that F is APN if and only if, for every nonzero
ordered pair (a, b) in F2n/2×F2n/2 and every c, d in F2n/2 , denotingGa,b,c(x) =
G(ax, bx+ c):

1. for every y ∈ F2n/2 , the function x ∈ F2n/2 → G(x, y) is APN (this
condition corresponds to the case b = 0);

2. for every x ∈ F2n/2 , the function y ∈ F2n/2 → G(x, y) is APN (this
condition corresponds to the case a = 0);

3. for every (a, b) ∈ F2n/2 × F2n/2 such that a 6= 0 and b 6= 0, and for
every c, d ∈ F2n/2 , the equation Ga,b,c(x) +Ga,b,c(x+ 1) = d has 0 or 2
solutions.

Note that condition 3 is equivalent to “Ga,b,c is APN”, since for every nonzero
e ∈ F2n/2 , we have Gae,be,c(x) +Gae,be,c(x+ 1) = Ga,b,c(ex) +Ga,b,c(ex+ e),
and therefore condition 3 includes condition 1 (which corresponds to b = 0).
Note also that in condition 3, we can without loss of generality take a = 1.
Moreover, ifG is quadratic (that is, if F is quadratic) then sinceGa,b,c+Ga,b,0
is affine, we can without loss of generality take c = 0.
Let us choose G(x, y) = sx2i+1 + ty2i+1 + ux2i

y + vxy2i
, where (n/2, i) = 1

and s, t, u, v ∈ F2n/2 , s 6= 0, t 6= 0. Then, since the Gold function x2i+1 is
APN, the function x ∈ F2n/2 → G(x, y) is APN for every y ∈ F2n/2 (the
other terms being affine in x) and the function y ∈ F2n/2 → G(x, y) is APN
for every x ∈ F2n/2 . The function Ga,b,c(x) equals (sa2i+1 + tb2

i+1 + ua2i
b+

vab2
i
)x2i+1, plus an affine function. Then, if the polynomial sX2i+1 + t +

uX2i
+ vX has no zero in F2n/2 (for instance if it is irreducible over F2n/2),

we have sa2i+1 + tb2
i+1 + ua2i

b+ vab2
i 6= 0 for every a 6= 0 and every b 6= 0

(dividing this expression by b2
i+1 and taking X = a/b), and the equation

Ga,b,c(x) + Ga,b,c(x + 1) = d has at most 2 solutions, since the function
x→ x2i+1 is APN. Thus, F is then APN.
If we take for instance G(x, y) = x3 + xy2 + y3 with (n/2, 3) = 1, then
the polynomial above equals X3 + X + 1 and has no zero (which implies
that it is irreducible since it has degree 3), since X3 = X + 1 implies
X8 = X2(X2 + 1) = X(X3 + X) = X, which in its turn implies X ∈ F2,
since (n/2, 3) = 1, and X3 +X + 1 has no zero in F2. More generally than

55



X3 +X+1, if we take any irreducible polynomial over a subfield F2r of F2n/2

which has the desired form sX2i+1+t+uX2i
+vX, then its roots will belong

to the field F
2r(2i+1) and if gcd(n, 2i+1) = 1, then it will have no root in F2n/2

since it has no root in F2r and F
2r(2i+1)∩F2n/2 = F2r . When n is not divisible

by 3, this works for instance with the polynomial 1 +X +X9 (taking r = 1
and i = 3). For n divisible by 4 but not by 3, it works with any of the 20
irreducible polynomials of degree 3 over F4 (taking r = 2; these polynomials
can be obtained at URL http://www.theory.cs.uvic.ca/ cos/gen/poly.html).
For n divisible by 4 but not by 5, it works with 23 polynomials of degree 5
(those of the desired form given by this same URL).
If we take G(x, y) = x2i+1 + λ y2i+1 where (i, n/2) = 1 and λ is not a cube
(λ can exist only if n/2 is even, i.e. n is divisible by 4) then the polynomial
equals X2i+1 + λ. This polynomial has no zero since gcd(2n − 1, 2i + 1) = 3
and since λ is not a cube. The function is therefore APN.
- It is also easy to construct differentially 4-uniform functions this way. For
instance the functions (x, y) → (xy, x3 + y5), (x, y) → (xy, x3 + y6) and
(x, y) → (xy, x5 + y6). More interestingly there are non-quadratic differ-
entially 4-uniform functions: the function (x, y) → (xy, (x3 + w)(y3 + w′)),
where w and w′ belong to F2n/2 \{x3, x ∈ F2n/2}, with n/2 even (for allowing
the existence of such elements), and (x, y)→ (xy, x3(y2 + y+ 1) + y3), with
n/2 odd (so that y2 + y + 1 is never null).

Open problem: Find infinite classes of APN functions CCZ-inequivalent to
power functions and to quadratic functions.
Observation: A classification under CCZ-inequivalence of all APN functions
up to dimension five and a (non-exhaustive) list of CCZ-inequivalent func-
tions in dimension 6 have been given in [21]. One of the functions in dimen-
sion 6 is CCZ-inequivalent to power functions and to quadratic functions,
as proved by Edel and Pott in [94] (this had not been seen by the authors
of [21]). This function is:

x3 + α17(x17 + x18 + x20 + x24) + tr2(x21) + tr3(α18x9)
+α14 tr6 (α52x3 + α6x5 + α19x7 + α28x11 + α2x13).

Differentially 4-uniform functions Additionally to those listed above,
such functions can be obtained from APN functions by adding a func-
tion taking its value in a pair (that is, up to translation, by adding a
Boolean function times a nonzero vector), or composing it on the left with
a 2-to-1 affine function. The Gold functions x2i+1 such that gcd(i, n) =
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2 are straightforwardly differentially 4-uniform and the Kasami functions
x22i−2i+1 such that n is divisible by 2 but not by 4 and gcd(i, n) = 2 are also
differentially 4-uniform, as proved in [105]. The functions ax22s+1 +bx2s+1 +
cx22s+2s

such that gcd(s, n) = 1 are also differentially 4-uniform when they
are not APN, as shown in [14]. The functions x2n−1−1+ax5 (n odd, a ∈ F2n)
and x2n/2+2n/4+1 (n divisible by 4) are also differentially 4-uniform, as shown
in the conference [19] (paper to appear). Some constructions of differentially
4-uniform functions have been given in [133], in connection with commuta-
tive semifields. A semifield is a finite algebraic structure (E,+, ◦) such that
(1) (E,+) is an Abelian group, (2) the operation ◦ is distributive on the left
and on the right with respect to +, (3) there is no nonzero divisor of 0 in
E and (4) E contains an identity element with respect to ◦. This structure
has been very useful for constructing planar functions in odd characteristic.
In characteristic 2, it may lead to new APN functions by considering for
instance the function (x◦x)◦x in a classical semifield (there are two classes
of them, whose underlying Abelian group is the additive group of F2n : the
Albert semifields, in which the multiplication is x ◦ y = xy + β(xy)σ, where
x → xσ is an automorphism of the field F2n which is not a generator and
β 6∈ {xσ+1; x ∈ F2n}, and the Knuth semifield where the multiplication is
x ◦ y = xy + (xtr(y) + ytr(x))2, where tr is a trace function from F2n to a
suitable subfield).

More open problems:

1. Find secondary constructions of APN and AB functions.

2. Derive more constructions of APN/AB functions from perfect nonlinear
functions, and vice versa.

3. Classify APN functions, or at least their extended Walsh spectra, or at
least their nonlinearities.
Observations:
For n odd, the known APN functions have three possible spectra:

• the spectrum of the AB functions which gives a nonlinearity of 2n−1−
2

n−1
2 ,

• the spectrum of the inverse function, which takes any value divisible
by 4 in [−2n/2+1 + 1; 2n/2+1 + 1] and gives a nonlinearity close to
2n−1 − 2n/2,
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• the spectrum of the Dobbertin function which is more complex (it is
divisible by 2n/5 and not divisible by 22n/5+1); its nonlinearity seems to
be bounded below by approximately 2n−1− 23n/5−1− 22n/5−1 - maybe
equal - but this has to be proven (or disproven).

For n even, the spectra may be more diverse:

• the Gold functions whose component functions are bent for a third
of them and have nonlinearity 2n−1 − 2n/2 for the rest of them; the
Kasami functions which have the same extended spectra,

• the Dobbertin function (same observation as above),

• As soon as n ≥ 6, we find (quadratic) functions with different spectra.

The nonlinearities seem also bounded below by approximately 2n−1−23n/5−1−
22n/5−1 (but this has to be proven ... or disproven too). Note that the ques-
tion of classifying APN functions is open even when restricting ourselves to
quadratic APN functions (even classifying their Walsh spectra is open for
even numbers of variables). Already for n = 6 there are at least 9 mutually
CCZ-inequivalent quadratic APN polynomials which are CCZ-inequivalent
to power functions [23].
Open question: The nonlinearities of the known APN functions do not seem
to be very weak; is this situation general to all APN functions or specific to
the APN functions found so far?

Observation: We have seen in Proposition 13 that an APN function cannot
have null nonlinearity. We can improve upon this lower bound under some
hypothesis:

Proposition 24 [54] Let F be an APN function in n > 2 variables. For all
real numbers a and b such that a ≤ b, let Na,b be the number of ordered pairs

(u, v) ∈ Fn2 × Fn2 ∗ such that 1̂GF

2
(u, v) ∈]2n + a; 2n + b[, where 1̂GF

(u, v) =∑
x∈Fn

2
(−1)v·F (x)⊕u·x. Then:

nl(F ) ≥ 2n−1 − 1
2

√
2n +

1
2

(b+ a+
√

∆a,b),

where ∆a,b = (Na,b + 1)(b− a)2 + a b 2n+2(2n − 1) + 24n+2 − 23n+2.

Proof: Relation (13) shows that for all real numbers a, b we have∑
u∈Fn

2 ,

v∈Fn
2
∗

(1̂GF

2
(u, v)−2n−a)(1̂GF

2
(u, v)−2n−b) = (23n+a b 2n)(2n−1), (16)
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since
∑

u∈Fn
2 ,v∈Fn

2
∗(1̂GF

2
(u, v)−2n) = 0 and

∑
u∈Fn

2 ,v∈Fn
2
∗(1̂GF

2
(u, v)−2n)2 =∑

u∈Fn
2 ,v∈Fn

2
∗ 1̂GF

2
(u, v)(1̂GF

2
(u, v)− 2n+1) + 23n(2n − 1).

The expression (x − a)(x − b) is non-negative outside ]a, b[; it takes its
minimum at x = b+a

2 and this minimum equals − (b−a)2
4 . We deduce that

we have (1̂GF

2
(u, v)− 2n − a)(1̂GF

2
(u, v)− 2n − b) ≥ − (b−a)2

4 for these Na,b

ordered pairs and (1̂GF

2
(u, v) − 2n − a)(1̂GF

2
(u, v) − 2n − b) ≥ 0 for all

the others. Hence − (b−a)2
4 ≤ (1̂GF

2
(u, v) − 2n − a)(1̂GF

2
(u, v) − 2n − b) ≤

24n − 23n + a b 2n(2n − 1) + Na,b
(b−a)2

4 for any (u, v) ∈ Fn2 × Fn2 ∗, that is,

(1̂GF

2
(u, v)− 2n)2 − (b+ a)(1̂GF

2
(u, v)− 2n) + ab− (24n − 23n + a b 2n(2n −

1) +Na,b
(b−a)2

4 ) ≤ 0, which implies

1
2

(
b+ a−

√
∆a,b

)
≤ 1̂GF

2
(u, v)− 2n ≤ 1

2

(
b+ a+

√
∆a,b

)
,

where ∆a,b = (b + a)2 − 4(a b − 24n + 23n − a b 2n(2n − 1) − Na,b
(b−a)2

4 ) =
(Na,b + 1)(b− a)2 + a b 2n+2(2n − 1) + 24n+2 − 23n+2. This implies that the
nonlinearity of F is bounded below by

2n−1 − 1
2

√
2n +

1
2

(
b+ a+

√
∆a,b

)
.

2

Consequences:
- taking b = −a = 2n, we see that if 1̂GF

2
(u, v) does not take values in the

range ]0; 2n+1[, then F is AB (this was known according to Relation (13)).
- more generally, taking a = −22n

b (b necessarily greater than or equal to 2n

since we shall see below that otherwise this would contradict the Sidelnikov-
Chabaud-Vaudenay bound), we see that if 1̂GF

2
(u, v) does not take values

in the range ]2n − 22n

b ; 2n + b[, the nonlinearity of F is bounded below by

2n−1 − 1
2

√
2n + b. For instance (for b = 2n+1), if 1̂GF

2
(u, v) does not take

values in the range ]2n−1; 3 · 2n[, the nonlinearity of F is bounded below by
2n−1 − 1

2

√
3 · 2n.

As observed by G. Leander (private communication), if n is odd and F is
an APN power (n, n)-function, then since we know that F is a bijection and
thus all functions v · F have the same Walsh spectrum, we have, according
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to Relation (12):

max
v 6=0,u

1̂GF

4
(u, v) ≤

∑
v 6=0,u 1̂GF

4
(u, v)

2n − 1
= 23n+1.

Thus we have maxv 6=0,u |1̂GF
(u, v) ≤ 2

3n+1
4 and

nl(F ) ≥ 2n−1 − 2
3n−3

4 . (17)

In fact, the lower bound of Proposition 24 can be improved then: denoting by
N ′a,b the number Na,b

2n−1 of elements u of Fn2 such that 1̂GF

2
(u, v) ∈]2n+a; 2n+b[

(which is the same for every v ∈ Fn2 ∗), we have:

nl(F ) ≥ 2n−1 − 1
2

√
2n +

1
2

(
b+ a+

√
∆′a,b

)
,

where ∆′a,b = (N ′a,b + 1)(b − a)2 + a b 2n+2 + 23n+2. This does not improve
the lower bound in the cases considered above but it does in general. Note
that, for a = b = −2n, it gives (17).

Concluding remark.
As we can see, very few functions usable as S-boxes have emerged so far.
The Gold functions, all the other recently found quadratic functions and
the Welch functions have too low algebraic degrees for being widely chosen
for the design of new S-boxes. The Kasami functions themselves seem too
closely related to quadratic functions. The inverse function has many very
nice properties: large Walsh spectrum and good nonlinearity, differential
uniformity of order at leat 4, fast implementation. But it has a potential
weakness, which did not lead yet to efficient attacks, but may in the future:
denoting its input by x and its output by y, the bilinear expression xy equals
1 for every nonzero x. The candidates for future block ciphers not using the
inverse function as an S-box are the Niho and Dobbertin functions. The Niho
functions exist only in odd numbers of variables (which is not convenient for
implementation in software, but is not a real problem in hardware), and the
Dobbertin function needs n to be divisible by 5 (idem). The nonlinearity is
also a concern. So further studies seem indispensable for the future designs
of SP networks. This is the main open problem.

3.1.8 Lower bounds on the nonlinearity of S-boxes by means of
their algebraic immunity

As proved in [53], Lobanov’s bound recalled in the chapter “Boolean Func-
tions for Cryptography and Error Correcting Codes” for Boolean functions
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generalizes to (n,m)-functions as follows:

nl(F ) ≥ 2m
AI(F )−2∑
i=0

(
n− 1
i

)
,

where AI(f) is the basic algebraic immunity of F .
Note that, applying Lobanov’s bound to the component functions of F , we
obtain

nl(F ) ≥ 2
AIcomp(F )−2∑

i=0

(
n− 1
i

)
,

where AIcomp(F ) is the component algebraic immunity of F . The inequality
AIcomp(F ) ≥ AIgr(F )− 1 implies then

nl(F ) ≥ 2
AIgr(F )−3∑

i=0

(
n− 1
i

)
,

where AIgr(F ) is the graph algebraic immunity of F .

3.2 Higher order nonlinearities

For every positive integer r, the r-th order nonlinearity of a vectorial function
F is the minimum r-th order nonlinearity of its component functions (recall
that, as defined in the previous chapter, the r-th order nonlinearity of a
Boolean function equals its minimum Hamming distance to functions of
algebraic degrees at most r). As proved in [53], the bounds recalled in the
chapter “Boolean Functions for Cryptography and Error Correcting Codes”
for Boolean functions generalize to (n,m)-functions as follows:

nlr(F ) ≥ 2m
AI(F )−r−1∑

i=0

(
n− r
i

)
and

nlr(F ) ≥ 2m−1

AI(F )−r−1∑
i=0

(
n

i

)
+ 2m−1

AI(F )−r−1∑
i=AI(F )−2r

(
n− r
i

)
(the first of these two bounds can be slightly improved as for Boolean func-
tions).
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Applying the bounds valid for Boolean functions to the component func-
tions of F , we have also:

nlr(F ) ≥ 2
AIcomp(F )−r−1∑

i=0

(
n− r
i

)
and

nlr(F ) ≥
AIcomp(F )−r−1∑

i=0

(
n

i

)
+

AIcomp(F )−r−1∑
i=AIcomp(F )−2r

(
n− r
i

)
.

The inequality AIcomp(F ) ≥ AIgr(F )− 1 implies then

nlr(F ) ≥ 2
AIgr(F )−r−2∑

i=0

(
n− r
i

)
and

nlr(F ) ≥
AIgr(F )−r−2∑

i=0

(
n

i

)
+

AIgr(F )−r−2∑
i=AIgr(F )−2r−1

(
n− r
i

)
.

In the definition of nlr(F ), we consider approximations by Boolean func-
tions of algebraic degrees at most r of the component functions of F , that is,
of the functions equal to F composed on the left by nonzero linear Boolean
functions on Fm2 (and taking instead non-constant affine functions does not
change the value). We can also consider F composed by functions of higher
degrees:

Definition 12 For every S-box F : Fn2 → Fm2 , for every positive integers
s ≤ m and t ≤ n+m, and every non-negative integer r ≤ n, we define:

nls,r(F ) = min{nlr(f ◦ F ); f ∈ Bm, d◦f ≤ s, f 6= cst}
= min{dH(g, f ◦ F ); f ∈ Bm, d◦f ≤ s, f 6= cst, g ∈ Bn, d◦g ≤ r}

and

NLt(F ) = min{wH(h(x, F (x))); h ∈ Bn+m, d
◦h ≤ t, h 6= cst},

where dH denotes the Hamming distance and Bm the set of m-variable
Boolean functions, as in the previous chapter.
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Definition 12 excludes obviously f = cst and h = cst because the knowledge
of the distance dH(g, f ◦ F ) or of the weight wH(h(x, F (x))) when f or h is
constant gives no information specific to F and usable in an attack against
a stream or block cryptosystem using F as an S-box.
Clearly, for every S-box F and every integers t ≤ t′, s ≤ s′ and r ≤ r′, we
have NLt(F ) ≥ NLt′(F ) and nls,r(F ) ≥ nls′,r′(F ). Note also that, for every
vectorial function F , we have NL1(F ) = nl(f).
T. Shimoyama and T. Kaneko have exhibited in [149] several quadratic func-
tions h and pairs (f, g) of quadratic functions showing that the nonlinearities
NL2 and nl2,2 of some sub-S-boxes of the DES are null (and therefore that
the global S-box of each round of the DES has the same property). They
deduced a “higher-order non-linear” attack (an attack using the principle
of the linear attack by Matsui but with non-linear approximations) which
needs 26% less data than Matsui’s attack. This improvement is not very
significant, practically, but some recent studies, not yet published, seem to
show that the notions of NLt and nls,r can be related to potentially more
powerful attacks. Note that we have NLmax(s,r)(F ) ≤ nls,r(F ) by taking
h(x, y) = g(x)+f(y) (since f 6= cst implies then h 6= cst) and the inequality
can be strict if s > 1 or r > 1 since a function h(x, y) of low degree and such
that wH(h(x, F (x))) is small can exist while no such function exists with
separated variables x and y, that is, of the form g(x) + f(y). This is the
case, for instance, of the S-box of the AES for s = 1 and r = 2 (see below).

We now study bounds on these parameters. We begin with an easy
one coming from the existence of n-variable Boolean functions of algebraic
degree s and Hamming weight 2n−s:

Proposition 25 [53] For every positive integers m, n, s ≤ m and r ≤ n
and every (n,m)-function F , we have: NLs(F ) ≤ 2n−s and nls,r(F ) ≤ 2n−s.
These inequalities are strict if F is not balanced (that is, if its output is not
uniformly distributed over Fm2 ).

The bound nls,r(F ) ≤ 2n−s is asymptotically almost tight (in a sense which
will be precised in Proposition 27) for permutations when r ≤ s ≤ .227n.

3.2.1 Existence of permutations with lower bounded higher order
nonlinearities

Proposition 26 [53] Let n and s be positive integers and let r be a non-
negative integer. Let D be the greatest integer such that

D∑
t=0

(
2n

t

)
≤

(
2n

2n−s

)
2
Ps

i=0 (n
i)+

Pr
i=0 (n

i)
.
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There exist (n, n)-permutations F whose higher order nonlinearity nls,r(F )
is strictly greater than D.

Proof. For every integers i ∈ [0, 2n] and r, let us denote by Ar,i the number
of codewords of Hamming weight i in the Reed-Muller code of order r.
Given a number D, a permutation F and two Boolean functions f and
g, if we have dH(f ◦ F, g) ≤ D then F−1 maps the support supp(f) of f
onto the symmetric difference supp(g)∆E between supp(g) and a set E of
size at most D (equal to the symmetric difference between F−1(supp(f))
and supp(g)). And F−1 maps Fn2 \ supp(f) onto the symmetric difference
between Fn2 \supp(g) and E. Given f , g and E and denoting by i the size of
supp(f) (with 0 < i < 2n, since f 6= cst), the number of permutations whose
restriction to supp(g)∆E is a one-to-one function onto supp(f) and whose
restriction to (Fn2 \ supp(g))∆E is a one-to-one function onto Fn2 \ supp(f)
equals i! (2n− i)!. We deduce that the number of permutations F such that
nls,r(F ) ≤ D is bounded above by

D∑
t=0

(
2n

t

) ∑
0<i<2n

2n∑
j=1

As,iAr,j i! (2n − i)!

Since the non-constant codewords of the Reed-Muller code of order s have
weights between 2n−s and 2n − 2n−s, we deduce that the probability Ps,r,D
that a permutation F chosen at random (with uniform probability) satisfies
nls,r(F ) ≤ D is bounded above by

D∑
t=0

(
2n

t

) 2n∑
j=0

Ar,j
∑

2n−s≤i≤2n−2n−s

As,i
i! (2n − i)!

2n!
=

D∑
t=0

(
2n

t

) 2n∑
j=0

Ar,j
∑

2n−s≤i≤2n−2n−s

As,i(
2n

i

)
<

(∑D
t=0

(
2n

t

))
2
Ps

i=0 (n
i)+

Pr
i=0 (n

i)(
2n

2n−s

) . (18)

If this upper bound is at most 1, then we deduce that Ps,r,D < 1 and this
proves that there exist permutations F from Fn2 to itself whose higher order
nonlinearity nls,r(F ) is strictly greater than D. This completes the proof.2

Let us see now what happens when n tends to∞. LetH2(x) = −x log2(x)−
(1− x) log2(1− x) be the binary entropy function.
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Proposition 27 [53] Let sn
n tend to a limit ρ ≤ .227 when n tends to ∞.

If rn ≤ µn for every n, where 1−H2(µ) > ρ (e.g. if rn/sn tends to a limit
strictly smaller than 1), then for every ρ′ > ρ, almost all permutations F of
Fn2 satisfy nlsn,rn(F ) ≥ 2(1−ρ′)n.

Proof. We know (see e.g. [130], page 310) that, for every integer n and
every λ ∈ [0, 1/2], we have

∑
i≤λn

(
n
i

)
≤ 2nH2(λ). According to the Stirling

formula, we have also, when i and j tend to ∞: i! ∼ iie−i
√

2πi and
(
i+j
i

)
∼

( i+j
i

)i( i+j
j

)j

√
2π

√
i+j
ij . For i+ j = 2n and i = 2n−sn , this gives

(
2n

2n−sn

)
∼ (2sn)2

n−sn

√
2π(1− 2−sn)2n−2n−sn

√
2sn

2n − 2n−sn

=
2sn2n−sn

√
2π 2(2n−2n−sn ) ln(1−2−sn ) log2 e

√
2sn

2n − 2n−sn
.

We deduce then from Inequality (18):

log2 Psn,rn,Dn = O

(
2n
[
H2

(
Dn

2n

)
+ 2−n(1−H2(sn/n)) + 2−n(1−H2(rn/n))

−2−sn+log2(sn) − 2−sn(1− 2−sn) log2 e
])

(we omit − sn
2n+1 + n

2n+1 log2(1 − 2−sn) inside the brackets above since it is
negligible).
For ρ ≤ .227, we have 1 − H2(ρ) > ρ. If lim sn

n = ρ ≤ .227 then there
exists ρ′ > ρ such that 1 − H2(ρ′) > ρ′ and such that asymptotically we
have sn ≤ ρ′ n; hence 2−n(1−H2(sn/n)) is negligible with respect to 2−sn . And
if rn ≤ µn where 1 − H2(µ) > ρ, then we have 2−n(1−H2(rn/n)) = o(2−sn)
and for Dn = 2(1−ρ′)n where ρ′ is any number strictly greater than ρ, we
have H2

(
Dn
2n

)
= H2

(
2−ρ

′ n
)

= ρ′ n 2−ρ
′ n − (1 − 2−ρ

′ n) log2(1 − 2−ρ
′ n) =

o(2−ρn) = o(2−sn). We obtain that, asymptotically, nlsn,rn(F ) > 2(1−ρ′ )n

for every ρ′ > ρ. 2

3.2.2 The inverse S-box

For Finv(x) = x2n−2 and finv(x) = trn(Finv(x)), we have nlr(Finv) =
nlr(finv) as for any power permutation. Recall that, for r = 1, this pa-
rameter equals 2n−1 − 2n/2 when n is even and is close to this number
when n is odd, and that for r > 1, it is approximately bounded below by
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2n−1 − 2(1−2−r)n (see more in [52]). We have NL2(Finv) = 0, since we have
wH(h(x, Finv(x))) = 0 for the bilinear function h(x, y) = trn(axy) where
a is any nonzero element of null trace and xy denotes the product of x
and y in F2n . Indeed we have xFinv(x) = 1 for every nonzero x. As ob-
served in [73], we have also wH(h(x, Finv(x))) = 0 for the bilinear functions
h(x, y) = trn(a(x+ x2y)) and h(x, y) = trn(a(y + y2x)) where a is now any
nonzero element, and for the quadratic functions h(x, y) = trn(a(x3 + x4y))
and h(x, y) = trn(a(y3 + y4x)). These properties are the core properties
used in the tentative algebraic attack on the AES by Courtois and Pieprzyk
[73].

It is proved in [53] that, for every ordered pair (s, r) of strictly positive
integers, we have:

• nls,r(Finv) = 0 if r + s ≥ n;

• nls,r(Finv) > 0 if r + s < n;

and that, in particular, for every ordered pair (s, r) of positive integers such
that r + s = n− 1, we have nls,r(Finv) = 2. The other values are unknown
when r + s < n, except for small values of n.

3.3 Nonlinearity of S-boxes in stream ciphers

The classical notion of nonlinearity (see Definition 5) and its generalizations
given in Subsection 3.2 have been introduced in the framework of block
ciphers: due to the iterative structure of these ciphers, the knowledge of a
nonlinear combination by a function f of the output bits of an S-box F ,
such that f ◦ F has a low (higher order) nonlinearity, does not necessarily
lead to an attack, unless the degree of f is low. This is why, in Definition
12, the degree of f is also specified. We recall in Figures 2 and 3 below how
vectorial functions can be used in the pseudo-random generators of stream
ciphers to speed up the ciphers.

Since the structure of these pseudo-random generators is not iterative, all
of the m binary sequences produced by an (n,m)-function can be combined
by a linear or nonlinear (but non-constant) m-variable Boolean function f
to perform (fast) correlation attacks. Consequently, a second generalization
to (n,m)-functions of the notion of nonlinearity has been introduced (in
[62], but the definition was based on the observations of Zhang and Chan in
[162]).

Definition 13 Let F be an (n,m)-function. The unrestricted nonlinearity
unl(F ) of F is the minimum Hamming distance between all non-constant
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affine functions and all Boolean functions g◦F , where g is any non-constant
Boolean function on m variables.

If unl(F ) is small, then one of the linear or nonlinear (non-constant) combi-
nations of the output bits to F has high correlation to a non constant affine
function of the input, and a (fast) correlation attack is feasible.

Remark.
1. In Definition 13, the considered affine functions are non-constant, because
the minimum distance between all Boolean functions g ◦F (g non-constant)
and all constant functions equals minb∈Fm

2
|F−1(b)| (each number |F−1(b)| is

indeed equal to the distance between the null function and g ◦ F , where g
equals the indicator of the singleton {b}); it is therefore an indicator of the
balancedness of F . It is bounded above by 2n−m (and it equals 2n−m if and
only if F is balanced).
2. We can replace “non constant affine functions” by “nonzero linear func-
tions” in the statement of Definition 13 (replacing g by g ⊕ 1, if necessary).
3. Thanks to the fact that the affine functions considered in Definition 13
are non-constant, we can relax the condition that g is non-constant: the dis-
tance between a constant function and a non-constant affine function equals
2n−1, and unl(F ) is clearly always smaller than 2n−1.

The unrestricted nonlinearity of any (n,m)-function F is obviously un-
changed when F is right-composed with an affine invertible mapping. More-
over, if A is a surjective linear (or affine) function from Fp2 (where p is
some positive integer) into Fn2 , then it is easily shown that unl(F ◦ A) =
2p−nunl(F ). Also, for every (m, p)-function φ, we have unl(φ◦F ) ≥ unl(F )
(indeed, the set {g◦φ, g ∈ BFp}, where BFp is the set of p-variable Boolean
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functions, is included in BFm), and if φ is a permutation on Fm2 , then we
have unl(φ ◦ F ) = unl(F ) (by applying the inequality above to φ−1 ◦ F ).

A further generalization of the Zhang-Chan attack, called the generalized
correlation attack has been introduced in [59]: considering implicit equations
which are linear in the input variable x and of any degree in the output
variable z = F (x), the following probability is considered, for any non-
constant function g and every functions wi : Fm2 → F2:

Pr [g(z) + w1(z)x1 + w2(z)x2 + · · ·+ wn(z)xn = 0], (19)

where z = F (x) and where x uniformly ranges over Fn2 .
The knowledge of such approximation g with a probability significantly
higher than 1/2 leads to an attack, because z = F (x) corresponding to
the output keystream is known, and therefore g(z) and wi(z) are known for
all i = 1, . . . , n.
This led to a new notion of generalized nonlinearity:

Definition 14 Let F : Fn2 → Fm2 . The generalized Hadamard transform
F̂ : (F2m

2 )n+1 → R is defined as:

F̂ (g(·), w1(·), . . . , wn(·)) =
∑
x∈Fn

2

(−1)g(F (x))+w1(F (x))x1+···+wn(F (x))xn ,
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where the input is an (n + 1)-tuple of Boolean functions g, wi : Fm2 → F2,
i = 1, . . . , n.
Let W be the set of all n-tuple functions w(·) = (w1(·), . . . , wn(·)), where wi
is an m-variable Boolean function and such that w(z) = (w1(z), . . . , wn(z)) 6=
(0, . . . , 0) for all z ∈ Fm2 .
The generalized nonlinearity is defined as:

gnl(F ) = min{ min
0 6=u∈Fm

2

(wH(u · F ), 2n − wH(u · F )), nonlingenF},

where

nonlingenF = 2n−1 − 1
2

max
g∈G,w∈W

F̂ (g(·), w1(·), . . . , wn(·)). (20)

The generalized nonlinearity is clearly not greater than the other nonlinear-
ity measures and provides linear approximations with better bias for (fast)
correlation attacks.

3.3.1 Relations to the Walsh transforms and lower bounds

The unrestricted nonlinearity of F can be related to the values of the discrete
Fourier transforms of the functions ϕb, and a lower bound (observed in [162])
depending on nl(F ) can be directly deduced:

Proposition 28 For every (n,m)-function, we have

unl(F ) = 2n−1 − 1
2

max
u∈Fn

2
∗

∑
b∈Fm

2

|ϕ̂b(u)| , (21)

and:
unl(F ) ≥ 2n−1 − 2m/2

(
2n−1 − nl(F )

)
. (22)

The lower bound (22) is far from giving a good idea of the best possible
unrestricted nonlinearities: even if nl(F ) is close to the nonlinearity of bent
functions, that is 2n−1 − 2n/2−1, it implies that unl(F ) is approximately
greater than 2n−1−2

n+m
2
−1, whereas there exist balanced (n, n/2)-functions

F such that unl(F ) = 2n−1 − 2n/2 (see below).

Proposition 29 [59] Let F : Fn2 → Fm2 and let w(·) denote the n-tuple of
m-bit Boolean functions (w1(·), . . . , wn(·)). Then

nonlingenF = 2n−1 − 1/2
∑
z∈Fm

2

max
w(z)∈Fn

2−{0}
|ϕ̂b(w(z))|

= 2n−1 − 1
2m+1

∑
z∈Fm

2

max
0 6=w(z)∈

Fn
2

∣∣∣∣∣∣
∑
v∈Fm

2

(−1)v·z 1̂GF
(w(z), v)

∣∣∣∣∣∣ ,
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where 1̂GF
denotes the Walsh transform. Hence

gnl(F ) ≥ 2n−1 − (2m − 1)
(
2n−1 − nl(F )

)
.

3.3.2 Upper bounds

If F is balanced, the minimum distance between the component functions
v·F and the affine functions can not be achieved by constant affine functions,
because v · F , which is a Boolean balanced function, has distance 2n−1 to
constant functions. Hence:

Proposition 30 (covering radius bound) For every balanced S-box F ,
we have:

unl(F ) ≤ nl(F ). (23)

This implies unl(F ) ≤ 2n−1 − 2n/2−1.

Another upper bound:

unl(F ) ≤ 2n−1− 1
2

22m − 2m

2n − 1
+

√
22n − 22n−m

2n − 1
+
(

22m − 2m

2n − 1
− 1
)2

− 1


has been obtained in [62]. It improves upon the covering radius bound
only for m ≥ n/2 + 1, and the question of knowing whether it is possible
to improve upon the covering radius bound for m ≤ n/2 is open. In any
case, this improvement will not be dramatic, at least for m = n/2, since
it is shown (by using Relation (21)) in this same paper that the balanced

function F (x, y) =
{ x

y if y 6= 0
x if y = 0

satisfies unl(F ) = 2n−1−2n/2 (see other

examples of S-boxes in [116], whose unrestricted nonlinearities seem low,
however). It is pretty astonishing that an S-box with such high unrestricted
nonlinearity exists; but it can be shown that this balanced function does not
contribute to a good resistance to algebraic attacks and has null generalized
nonlinearity (see below).

Proposition 31 Let F : Fn2 → Fm2 . Then the following inequality holds.

nonlingenF ≤ 2n−1 − 1
4

∑
z∈Fm

2

√
2n+2|F−1(z)| − 4|F−1(z)|2

2n − 1
.

Furthermore if F (x) is balanced, then we have:

gnl(F ) ≤ 2n−1 − 2n−1

√
2m − 1
2n − 1
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This upper bound is much lower than the covering radius bound 2n−1 −
2n/2−1 and than the upper bound given above for UNF .

It is proved in [60] that the balanced function F (x, y) =
{ x

y if y 6= 0
x if y = 0

has null generalized nonlinearity. Hence, a vectorial function may have very
high unrestricted nonlinearity and have zero generalized nonlinearity. Some
functions with good generalized nonlinearity are given in [60]:

1. F (x) = trn/m(xk) where k = 2i + 1, gcd(i, n) = 1, is a Gold exponent;

2. F (x) = trn/m(xk) where k = 22i − 2i + 1 is a Kasami exponent such
that 3i ≡ 1 [mod] n,

where m divides n and n is odd, and where trn/m is the trace function
from F2n to F2m , have generalized nonlinearity satisfying gnl(F ) ≥ 2n−1 −
2(n−1)/2+m−1.

4 Resilient vectorial Boolean functions

Resilient Boolean functions have been studied in the chapter “Boolean Func-
tions for Cryptography and Error Correcting Codes”. The notion, when
extended to vectorial functions, is relevant, in cryptology, to quantum cryp-
tographic key distribution [5] and to pseudo-random sequence generation for
stream ciphers.

Definition 15 Let n and m be two positive integers. Let t be an integer such
that 0 ≤ t ≤ n. An (n,m)-function F (x) is called t-th order correlation-
immune if its output distribution does not change when at most t coordinates
xi of x are kept constant. It is called t-resilient if it is balanced and t-th order
correlation-immune, that is if it stays balanced when at most t coordinates
xi of x are kept constant

This notion has a relationship with another notion which plays also a role in
cryptography: an (n,m)-function F is called a multipermutation (see [154])
if any two ordered pairs (x, F (x)) and (x′, F (x′)), such that x, x′ ∈ Fn2 are
distinct, differ in at least m+ 1 distinct positions (that is, collide in at most
n − 1 positions); such (n,m)-function ensures then a perfect diffusion; an
(n,m)-function is a multipermutation if and only if the indicator of its graph
{(x, F (x)); x ∈ Fn2} is an n-th order correlation-immune Boolean function
(see [38]).
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Since S-boxes must be balanced, we shall focus on resilient functions, but
most of the results below can also be stated for correlation-immune func-
tions.
We call an (n,m) function which is t-resilient an (n,m, t)-function. Clearly,
if such a function exists, then m ≤ n − t, since balanced (n,m)-functions
can exist only if m ≤ n. This bound is weak (it is tight if and only if
m = 1 or t = 1). It is shown in [70] (see also [9]) that, if an (n,m, t)-
function exists, then m ≤ n − log2

[∑t/2
i=0

(
n
i

)]
if t is even and m ≤ n −

log2

[(
n−1

(t−1)/2

)
+
∑(t−1)/2

i=0

(
n
i

)]
if t is odd. This can be deduced from a clas-

sical bound on orthogonal arrays, due to Rao [145]. But, as shown in
[9] (see also [127]), potentially better bounds can be deduced from the
linear programming bound due to Delsarte [77]: t ≤

⌊
2m−1 n
2m−1

⌋
− 1 and

t ≤ 2
⌊

2m−2(n+1)
2m−1

⌋
− 1.

Note that composing a t-resilient (n,m)-function by a permutation on Fm2
does not change its resiliency order (this obvious result was first observed
in [160]). Also, the t-resiliency of S-boxes can be expressed by means of the
t-resiliency and t-th order correlation immunity of Boolean functions:

Proposition 32 Let F be an (n,m) function. Then F is t-resilient if and
only if one of the following conditions is satisfied :
1. for every nonzero vector v ∈ Fm2 , the Boolean function v · F (x) is t-
resilient,
2. for every balanced m-variable Boolean function g, the n-variable Boolean
function g ◦ F is t-resilient.

Equivalently, F is t-resilient if and only if, for every vector u ∈ Fn2 such
that wH(u) ≤ t, one of the following conditions is satisfied :
(i).

∑
x∈Fn

2
(−1)v·F (x)+u·x = 0, for every v ∈ Fm2 ∗,

(ii).
∑

x∈Fn
2
(−1)g(F (x))+u·x = 0, for every balanced m-variable Boolean func-

tion g.
Finally, F is t-resilient if and only if, for every vector b ∈ Fm2 , the

Boolean function ϕb is t-th order correlation-immune and has weight 2n−m.

Proof. According to the characterization recalled in the previous chapter,
Condition 1 (resp. Condition 2) is equivalent to the fact that Condition
(i) (resp. Condition (ii)) is satisfied for every vector u ∈ Fn2 such that
wH(u) ≤ t.
Let us prove now that the t-resiliency of F implies Condition 2, which im-
plies Condition 1, which implies that, for every vector b ∈ Fm2 , the Boolean
function ϕb is t-th order correlation-immune and has weight 2n−m, which
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implies that F is t-resilient. If F is t-resilient, then, for every balanced m-
variable Boolean function g, the function g ◦ F is t-resilient, by definition;
hence Condition 2 is satisfied; this clearly implies Condition 1, since the
function g(x) = v · x is balanced for every nonzero vector v. Relation (4)
implies then that, for every non-zero vector u ∈ Fn2 such that wH(u) ≤ t
and for every b ∈ Fm2 , we have ϕ̂b(u) = 2−m

∑
x∈Fn

2 ,v∈Fm
2

(−1)v·(F (x)+b)+u·x =
2−m

∑
x∈Fn

2
(−1)u·x = 0. Hence, Condition 1 implies that ϕb is t-th order

correlation-immune for every b. Also, according to Proposition 2, Condition
1 implies that F is balanced, i.e. ϕb has weight 2n−m, for every b. These
two conditions obviously imply, by definition, that F is t-resilient. 2

Consequently, the t-resiliency of vectorial functions is invariant under
the same transformations as for Boolean functions.

4.1 Constructions

4.1.1 Linear or affine resilient functions

The construction of t-resilient linear functions is easy: Bennett et al. [5]
and Chor et al. [70] established the connection between linear resilient
functions and linear codes (correlation-immune functions being related to
orthogonal arrays, see [40, 39], we could in fact refer to Delsarte [78] for
this relationship). There exists a linear (n,m, t)-function if and only if there
exists a binary linear [n,m, t+ 1] code.

Proposition 33 Let G be a generating matrix for an [n,m, d] binary linear
code. We define L : Fn2 7→ Fm2 by the rule L(x) = x ×GT , where GT is the
transpose of G. Then L is an (n,m, d− 1)-function.

Indeed, for every nonzero v ∈ Fm2 , the vector v · L(x) = v · (x×Gt) has the
form x · u where u = v ×G is a nonzero codeword. Hence, u has weight at
least d and the linear function v · L is (d− 1)-resilient, since it has at least
d independent terms of degree 1 in its ANF.
The converse of Proposition 33 is clearly also true.
Proposition 33 is still trivially true if L is affine instead of linear, that is
L(x) = x×Gt + a, where a is a vector of Fk2.
Stinson [151] considered the equivalence between resilient functions and
what he called large sets of orthogonal arrays. According to Proposition
32, an (n,m)-function is t-resilient if and only if there exists a set of 2m

disjoint binary arrays of dimensions 2n−m × n, such that, in any t columns
of each array, every one of the 2t elements of Ft2 occurs in exaclty 2n−m−t
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rows and no two rows are identical.
The construction of (n,m, t)-functions by Proposition 33 can be generalized
by considering nonlinear codes of length n (that is subsets of Fn2 ) and of
size 2n−m whose dual distance d⊥ equals t + 1 (see [152]). In the case of
Proposition 33, C is the dual of the code of generating matrix G. As recalled
in the chapter “Boolean Functions for Cryptography and Error Correcting
Codes”, the dual distance of a code C of length n is the smallest nonzero
integer i such that the coefficient of the monomial Xn−iY i in the polyno-
mial

∑
x,y∈C(X +Y )n−wH(x+y)(X −Y )wH(x+y) is nonzero (when the code is

linear, the dual distance is equal to the minimum Hamming distance of the
dual code, according to MacWilliams’ identity). Equivalently, according to
the calculations made in the chapter “Boolean Functions for Cryptography
and Error Correcting Codes” for proving the MacWilliams identity and to
Proposition 32, the dual distance is the number d⊥ such that the indicator
of C is d⊥-th order correlation immune. The nonlinear code needs also to be
systematic (that is, there must exist a subset I of {1, · · · , n} called an infor-
mation set of C, necessarily of size n−m since the code has size 2n−m, such
that every possible tuple occurs in exactly one codeword within the specified
coordinates xi; i ∈ I) to allow the construction of an (n,m, d⊥−1)-function:
the image of a vector x ∈ Fn2 is the unique vector y of Fn2 such that yi = 0
for every i ∈ I and such that x ∈ y + C (in other words, to calculate y, we
first determine the unique codeword c of C which matches with x on the
information set and we have y = x+c). It is deduced in [152] that, for every
r ≥ 3, a (2r+1, 2r+1 − 2r − 2, 5)-resilient function exists (the construction is
based on the Kerdock code), and that no affine resilient function with such
good parameters exists.

4.1.2 Maiorana-MacFarland resilient functions

The idea of designing resilient vectorial functions by generalizing the Maio-
rana-MacFarland construction is natural. One can find a first reference of
such construction in a paper by Nyberg [135], but for generating perfect
nonlinear functions. This technique has been used by Kurosawa et al. [119],
Johansson and Pasalic [113], Pasalic and Maitra [143] and Gupta and Sarkar
[99] to produce functions having high resiliency and high nonlinearity22.

22But, as recalled in Section 3.3, this notion of nonlinearity is not relevant to S-boxes
for stream ciphers. The unrestricted nonlinearity of resilient functions and of Maiorana-
MacFarland functions has to be further studied.
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Definition 16 The class of Maiorana-McFarland (n,m)-functions is the
set of those functions F which can be written in the form:

F (x, y) = x×

 ϕ11(y) · · · ϕ1m(y)
...

. . .
...

ϕr1(y) · · · ϕrm(y)

+H(y), (x, y) ∈ Fr2 × Fs2 (24)

where r and s are two integers satisfying r+s = n, H is any (s,m)-function
and, for every index i ≤ r and every index j ≤ m, ϕij is a Boolean function
on Fs2.

The concatenation of t-resilient functions being still t-resilient, if the trans-
pose matrix of the matrix involved in Equation (24) is the generator matrix
of a linear [r,m, d]-code for every vector y ranging over Fs2, then the (n,m)-
function F is (d− 1)-resilient.

Any Maiorana-McFarland’s (n,m)-function F can be written in the form:

F (x, y) =

(
r⊕
i=1

xiϕi1(y)⊕ h1(y), . . . ,
r⊕
i=1

xiϕim(y)⊕ hm(y)

)
(25)

where H = (h1, ..., hm).

After denoting, for every i ≤ m, by φi the (s, r)-function which admits
the Boolean functions ϕ1i, ..., ϕri for coordinate functions, we can rewrite
Relation (25) as :

F (x, y) = (x · φ1(y)⊕ h1(y), . . . , x · φm(y)⊕ hm(y)) . (26)

- Resiliency: As a direct consequence of Proposition 33, we have (equiv-
alently to what is written above in terms of codes):

Proposition 34 Let n, m, r and s be three integers such that n = r + s.
Let F be a Maiorana-McFarland’s (n,m)-function defined as in Relation
(26) and such that, for every y ∈ Fs2, the family (φi(y))i≤m is a basis of an
m-dimensional subspace of Fr2 having t+ 1 for minimum Hamming weight,
then F is at least t-resilient.

- Nonlinearity: According to the known facts about the Walsh transform
of the Boolean Maiorana-MacFarland functions, the nonlinearity nl(F ) of

75



any Maiorana-McFarland’s (n,m)-function defined as in Relation (26) sat-
isfies

nl(F ) = 2n−1 − 2r−1 max
(u,u′)∈Fr

2×Fs
2,v∈Fm

2
∗

∣∣∣∣∣∣
∑

y∈Eu,v

(−1)v·H(y)+u′·y

∣∣∣∣∣∣ (27)

where Eu,v denotes the set {y ∈ Fs2;
∑m

i=1 viφi(y) = u}.
The bounds proved in the chapter “Boolean Functions for Cryptography and
Error Correcting Codes”, for the nonlinearities of Maiorana-McFarland’s
Boolean functions imply that the nonlinearity nl(F ) of a Maiorana-McFarland’s
(n,m)-function defined as in Relation (26) satisfies

2n−1 − 2r−1 max
u∈Fr

2,v∈Fm
2
∗
|Eu,v| ≤ nl(F ) ≤ 2n−1 − 2r−1

⌈√
max

u∈Fr
2,v∈Fm

2
∗
|Eu,v|

⌉
.

If, for every element y, the vectorspace spanned by the vectors φ1(y), ...,
φm(y) admits m for dimension and has a minimum Hamming weight strictly
greater than k (so that F is t-resilient with t ≥ k), then we have

nl(F ) ≤ 2n−1 − 2r−1

 2s/2√∑r
i=k+1

(
r
i

)
 . (28)

The nonlinearity can be exactly calculated in two situations (at least): if,
for every vector v ∈ Fm2 ∗, the (s, r)-function y 7→

∑
i≤m viφi(y) is injective,

then F admits 2n−1−2r−1 for nonlinearity; and if, for every vector v ∈ Fm2 ∗,
this same function takes exactly two times each value of its image set, then
F admits 2n−1 − 2r for nonlinearity.
Johansson and Pasalic described in [113] a way to specify the vectorial func-
tions φ1, ..., φm so that this kind of condition is satisfied. Their result can
be generalized in the following form:

Lemma 1 Let C be a binary linear [r,m, t + 1] code. Let β1, . . . , βm be a
basis of the F2-vectorspace F2m, and let L0 be a linear isomorphism be-
tween F2m and C. Then the functions Li(z) = L0(βiz), i = 1, . . . ,m,
have the property that, for every vector v ∈ Fm2 ∗, the function z ∈ F2m 7→∑m

i=1 viLi(z) is a bijection from F2m into C.

Proof. For every vector v in Fm2 and every element z of F2m , we have∑m
i=1 viLi(z) = L0 ((

∑m
i=1 viβi)z). If the vector v is nonzero, then the ele-

ment
∑m

i=1 viβi is nonzero. Hence, the function z ∈ F2m 7→
∑m

i=1 viLi(z) is

76



a bijection. 2

Since the functions L1, L2, · · · , Lm vanish at (0, . . . , 0), they do not satisfy
the hypothesis of Proposition 34 (i.e. the vectors L1(z), ...., Lm(z) are not
linearly independent for every z ∈ F2m). A solution to derive a family of
vectorial functions also satisfying the hypothesis of Proposition 34 is then to
right-compose the functions Li with a same injective (or two-to-one) function
π from Fs2 into F∗2m . Then, for every nonzero vector v ∈ Fm2 ∗, the function
y ∈ Fs2 7→

∑m
i=1 viLi[π(y)] is injective from Fs2 into C∗.

This gives the following construction23:
Given two integers m and r (m < r), construct an [r,m, t + 1]-code C
such that t is as large as possible (Brouwer gives in [22] a precise overview
of the best known parameters of codes). Then, define m linear functions
L1, ..., Lm from F2m into C as in Lemma 1. Choose an integer s strictly
lower than m (resp. lower than or equal to m) and define an injective
(resp. two-to-one) function π from Fs2 into F∗2m. Choose any (s,m)-function
H = (h1, . . . , hm) and denote r+ s by n. Then the (n,m)-function F whose
coordinate functions are defined by fi(x, y) = x · [Li ◦ π] (y) ⊕ hi(y) is t-
resilient and admits 2n−1 − 2r−1 (resp. 2n−1 − 2r) for nonlinearity.
All the primary constructions presented in [113, 119, 143, 136] are based on
this principle. Also, the recent construction of (n,m, t)-functions defined by
Gupta and Sarkar in [99] is also a particular application of this construction,
as shown in [63].

4.1.3 Other constructions

Constructions of highly nonlinear resilient vectorial functions, based on el-
liptic curves theory and on the trace of some power functions x 7→ xd on
finite fields, have been designed respectively by Cheon [68] and by Khoo
and Gong [117]. However, it is still an open problem to design highly non-
linear functions with high algebraic degrees and high resiliency orders with
Cheon’s method. Besides, the number of functions which can be designed
by these methods is very small.
Zhang and Zheng proposed in [160, 161] a secondary construction consist-
ing in the composition F = G ◦ L of a linear resilient (n,m, t)-function L

23Another construction based on Lemma 1 is given by Johansson and Pasalic in the
same paper [113]. It involves a family of nonintersecting codes, that is a family of codes
having the same parameters (same length, same dimension and same minimum distance)
and whose pairwise intersections are reduced to the null vector. However, this construction
is often worse for large resiliency orders, as shown in [63].
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with a highly nonlinear (m, k)-function. F is obviously t-resilient, admits
2n−mnl(G) for nonlinearity where nl(G) denotes the nonlinearity of G and
its degree is the same as that of G. Taking for function G the inverse function
x 7→ x−1 on the finite Field F2m studied by Nyberg in [137] (and later used
for designing the S-boxes of the AES), Zhang and Zheng obtained t-resilient
functions having a nonlinearity larger than or equal to 2n−1 − 2n−m/2 and
having m− 1 for algebraic degree. But the linear (n,m)-functions involved
in the construction of Zhang and Zheng introduce a weakness: their unre-
stricted nonlinearity being null, this kind of functions can not be used as
a multi-output combination function in stream ciphers. Nevertheless, this
drawback can be avoided by concatenating such functions (recall that the
concatenation of t-resilient functions gives t-resilient functions, and a good
nonlinearity can be obtained by concatenating functions with disjoint Walsh
supports). We obtain this way a modified Maiorana-McFarland’s construc-
tion, which should be investigated.

Other secondary constructions of resilient vectorial functions can be derived
from the secondary constructions of resilient Boolean functions. (see e.g.
[39, 51]).
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[98] F. Göloglu and A. Pott. Results on the crosscorrelation and autocor-
relation of sequences. Proceedings of Sequences and their Applications
- SETA 2008 - Lecture Notes in Computer Science 5203, pp. 95-105,
2008.

[99] K. Gupta and P. Sarkar. Improved Construction of Nonlinear Resilient
S-Boxes. Proceedings of ASIACRYPT 2002, Lecture Notes in Computer
Science 2501, pp. 466-483, 2002.

[100] K. Gupta and P. Sarkar. Construction of perfect nonlinear and max-
imally nonlinear multiple-output Boolean functions satisfying higher
order strict avalanche criteria. IEEE Transactions on Inform. Theory,
vol. 50, pp. 2886-2894, 2004.

[101] T. Helleseth and P. V. Kumar. Sequences with low correlation. In
Handbook of Coding Theory, V. Pless and W.C. Huffman Eds. Amster-
dam, The Netherlands: Elsevier, vol. II, pp. 1765-1854, 1998.

87



[102] T. Helleseth and D. Sandberg. Some power mappings with low dif-
ferential uniformity. Applic. Alg. Eng., Commun. Comput., vol. 8, pp.
363-370, 1997.

[103] T. Helleseth, C. Rong and D. Sandberg. New families of almost perfect
nonlinear power mappings. IEEE Transactions on Inform. Theory, vol.
45, pp. 475-485, 1999.

[104] T. Helleseth and V. Zinoviev. On Z4-linear Goethals codes and Kloost-
erman sums. Designs, Codes and Cryptography 17, pp. 269-288, 1999.

[105] D. Hertel, A. Pott, Two results on maximum nonlinear functions, Des.
Codes Crypt., in press, 2009.

[106] H. Hollman and Q. Xiang. A proof of the Welch and Niho conjectures
on crosscorrelations of binary m-sequences. Finite Fileds and Their Ap-
plications 7, pp. 253-286, 2001.

[107] K. Horadam. Hadamard Matrices and their Applications. Princeton
University Press, 2006.

[108] X.-d. Hou. Affinity of permutations of Fn2 . Proceedings of the Workshop
on Coding and Cryptography WCC 2003, pp. 273-280, 2003. Completed
version in Discrete Applied Mathematics 154, Issue 2, pp. 313-325, 2006.

[109] T. Iwata and K. Kurosawa. Probabilistic higher order differential at-
tack and higher order bent functions. Proceedings of ASIACRYPT 1999,
Lecture Notes in Computer Science 1716, pp. 62-74, 1999.

[110] T. Jakobsen and L.R. Knudsen. The interpolation attack on block
ciphers. Proceedings of Fast Software Encryption’97, Lecture Notes in
Computer Science 1267, pp. 28-40, 1997.

[111] H. Janwa and R. Wilson, Hyperplane sections of Fermat varieties in P 3

in char. 2 and some applications to cyclic codes. Proceedings of AAECC-
10, Lecture Notes in Computer Science 673, pp. 180–194, 1993.

[112] D. Jedlicka. APN monomials over GF (2n) for infinitely many n.
Preprint.

[113] T. Johansson and E. Pasalic. A construction of resilient functions with
high nonlinearity. Proceedings of the IEEE International Symposium on
Information Theory Sorrente, Italy, 2000.

88



[114] D. Jungnickel and A. Pott. Difference sets: An introduction. In Dif-
ference sets, Sequences and their Autocorrelation Properties, A. Pott,
P.V. Kumar, T. Helleseth and D. Jungnickel, Eds. Amsterdam, The
Netherlands: Kluwer, pp. 259-295, 1999.

[115] T. Kasami. The weight enumerators for several classes of subcodes of
the second order binary Reed-Muller codes. Information and Control
18, pp. 369-394, 1971.

[116] K. Khoo, G. Gong and D. Stinson. Highly nonlinear S-boxes
with reduced bound on maximum correlation. Proceedings of
2003 IEEE International Symposium on Information Theory, 2003.
http://www.cacr.math.uwaterloo.ca/techreports/2003/corr2003-12.ps

[117] K. Khoo and G. Gong. New constructions for resilient and highly non-
linear Boolean functions. Proceedings of 8th Australasian Conference,
ACISP 2003, Lecture Notes in Computer Science 2727, pp. 498-509,
2003.

[118] L. Knudsen. Truncated and higher order differentials. Proceedings
of Fast Software Encryption, Second International Workshop, Lecture
Notes in Computer Science 1008, pp. 196-211, 1995.

[119] K. Kurosawa, T. Satoh and K. Yamamoto. Highly Nonlinear t-
Resilient Functions. Journal of Universal Computer Science vol. 3, no
6, pp. 721–729, 1997.

[120] G. Kyureghyan. Differentially affine maps. Proceedings of the Work-
shop on Coding and Cryptography, WCC 2005, pp. 296-305, 2005.

[121] G. Kyureghyan. The only crooked power functions are x2k+2l
. Eur. J.

Comb. 28(4), pp. 1345-1350, 2007.

[122] G. Lachaud and J. Wolfmann. The Weights of the Orthogonals of
the Extended Quadratic Binary Goppa Codes. IEEE Trans. Inform.
Theory, vol. 36, pp. 686-692, 1990.

[123] J. Lahtonen, G. McGuire and H. Ward. Gold and Kasami-Welch func-
tions, quadratic forms and bent functions. Advances of Mathematics of
Communication, vol. 1, pp. 243-250, 2007.

[124] X. Lai. Higher order derivatives and differential cryptanalysis. Pro-
ceedings of the ”Symposium on Communication, Coding and Cryptog-

89



raphy”, in honor of J. L. Massey on the occasion of his 60’th birthday.
1994.
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