Chapitre 2 : Espaces vectoriels

1 Vecteurs

Définition 1.1

- Soit $m \ge 1$ un entier. Un **vecteur** de \mathbb{R}^m est une matrice à m lignes et 1 colonne.
- Un scalaire est un nombre réel.

Notations : Un vecteur $\overrightarrow{\mathbf{u}}$ de \mathbb{R}^m s'écrit $\overrightarrow{\mathbf{u}} = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{pmatrix}$, u_1, \cdots, u_m des réels. Par souci de gain de u_1, \dots, u_m des réels de gain de u_2, \dots, u_m des réels de gain de u_1, \dots, u_m des réels de gain de u_2, \dots, u_m des réels de gain de u_1, \dots, u_m des réels de gain de u_2, \dots, u_m des réels de gain de u_1, \dots, u_m des réels de gain de u_2, \dots, u_m des réels de gain de u_1, \dots, u_m des réels de gain de u_2, \dots, u_m des réels de gain de u_1, \dots, u_m des réels de gain de gain

place on utilise aussi la notation d'un m-uplet $\overrightarrow{\mathbf{u}} = (u_1, u_2, \dots, u_m)$. Cette notation ne doit pas être confondue avec la notation $(u_1 u_2 \cdots u_m)$ qui désigne une matrice à 1 ligne et m colonnes.

Définition 1.2

On définit sur \mathbb{R}^m ,

- une opération interne appelée addition par

$$\forall \overrightarrow{\mathbf{u}} = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{pmatrix}, \ \forall \overrightarrow{\mathbf{v}} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{pmatrix}, \quad \overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}} = \begin{pmatrix} u_1 + v_1 \\ u_2 + v_2 \\ \vdots \\ u_m + v_m \end{pmatrix} \in \mathbb{R}^m,$$

- une opération externe appelée multiplication par un scalaire par

$$\forall \overrightarrow{\mathbf{u}} = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{pmatrix}, \ \forall \lambda \in \mathbb{R}, \quad \lambda \overrightarrow{\mathbf{u}} = \begin{pmatrix} \lambda u_1 \\ \lambda u_2 \\ \vdots \\ \lambda u_m \end{pmatrix} \in \mathbb{R}^m.$$

Notons que ces deux opérations sont définies ligne par ligne.

1.1 Interprétation géométrique dans le plan et dans l'espace

- L'addition de deux vecteurs se traduit par la règle du parallélogramme : la somme de deux vecteurs est représentée par la diagonale du parallélogramme ayant ces deux vecteurs comme côtés.
- Par le théorème de Thalès, l'ensemble des multiples scalaires d'un vecteur est la droite qui supporte le segment représentant le vecteur.

1.2 Structure algébrique de $(\mathbb{R}^m, +, \cdot)$

Grâce aux opérations d'addition et de multiplication l'ensemble \mathbb{R}^m acquiert une **structure algébrique**, c'est à dire des règles de calcul sur les vecteurs.

Le vecteur $\overrightarrow{\mathbf{0}} = (0, 0, \dots, 0) \in \mathbb{R}^m$ est appelé le **vecteur nul** de \mathbb{R}^m .

Propriétés 1.1 Pour tous $\overrightarrow{\mathbf{u}}$, $\overrightarrow{\mathbf{v}}$, $\overrightarrow{\mathbf{w}}$ dans \mathbb{R}^m et λ , μ dans \mathbb{R} ,

- (i) $\overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{v}} + \overrightarrow{\mathbf{u}}$, (commutativité de l'addition).
- (ii) $(\overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}}) + \overrightarrow{\mathbf{w}} = \overrightarrow{\mathbf{u}} + (\overrightarrow{\mathbf{v}} + \overrightarrow{\mathbf{w}})$, (associativité de l'addition).
- (iii) $\overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{0}} = \overrightarrow{\mathbf{0}} + \overrightarrow{\mathbf{u}} = \overrightarrow{\mathbf{u}}$, $(\overrightarrow{\mathbf{0}} \text{ est un \'el\'ement neutre pour l'addition}).$
- (iv) $\overrightarrow{\mathbf{u}} + (-1)\overrightarrow{\mathbf{u}} = (-1)\overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{u}} = \overrightarrow{\mathbf{0}}$, (tout élément admet un opposé pour l'addition).
- (v) $\lambda(\overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}}) = \lambda \overrightarrow{\mathbf{u}} + \lambda \overrightarrow{\mathbf{v}}$, (distributivité de la multiplication par un scalaire par rapport à l'addition vectorielle).
- (vi) $(\lambda + \mu)\overrightarrow{\mathbf{u}} = \lambda \overrightarrow{\mathbf{u}} + \mu \overrightarrow{\mathbf{u}}$, (distributivité de la multiplication par un scalaire par rapport à l'addition scalaire).
- (vii) $\lambda(\mu \overrightarrow{\mathbf{u}}) = (\lambda \mu) \overrightarrow{\mathbf{u}}$ ("associativité" de la multiplication externe).
- (viii) $1\overrightarrow{\mathbf{u}} = \overrightarrow{\mathbf{u}}$, (1 est un "élément neutre" pour la multiplication externe).

Définition 1.3

Au vu des propriétés (i) à (viii) ci-dessus, on dit que $(\mathbb{R}^m, +, \cdot)$ est un **espace vectoriel** sur \mathbb{R} . Les éléments de \mathbb{R}^m sont appelés les **vecteurs** de cet espace vectoriel,

Attention à ne jamais additionner des scalaires et des vecteurs et à multiplier deux vecteurs entre eux.

Définition 1.4

Soient $\overrightarrow{\mathbf{u}}_1, \overrightarrow{\mathbf{u}}_2, \cdots, \overrightarrow{\mathbf{u}}_n$, n vecteurs de \mathbb{R}^m et $\lambda_1, \lambda_2, \cdots, \lambda_n$, n scalaires. Alors, on dit que le vecteur

$$\overrightarrow{\mathbf{w}} = \lambda_1 \overrightarrow{\mathbf{u}}_1 + \lambda_2 \overrightarrow{\mathbf{u}}_2 + \dots + \lambda_n \overrightarrow{\mathbf{u}}_n,$$

est une **combinaison linéaire** des vecteurs $\overrightarrow{\mathbf{u}}_1$, $\overrightarrow{\mathbf{u}}_2$, \cdots , $\overrightarrow{\mathbf{u}}_n$ dont les coefficients sont $\lambda_1, \lambda_2, \cdots, \lambda_n$.

Théorème 1.1

Un vecteur $\overrightarrow{\mathbf{b}}$ de \mathbb{R}^m est une combinaison linéaire des vecteurs $\overrightarrow{\mathbf{u}}_1, \overrightarrow{\mathbf{u}}_1, \cdots, \overrightarrow{\mathbf{u}}_n$ de \mathbb{R}^m si et seulement si le système linéaire ayant pour matrice augmentée $(\overrightarrow{\mathbf{u}}_1 \ \overrightarrow{\mathbf{u}}_2 \ \dots \ \overrightarrow{\mathbf{u}}_n \ \overrightarrow{\mathbf{b}})$ est compatible.

Définition 1.5

On dit que les vecteurs $\overrightarrow{\mathbf{u}}_1, \dots, \overrightarrow{\mathbf{u}}_n$ de \mathbb{R}^m engendrent \mathbb{R}^m si <u>tout</u> vecteur $\overrightarrow{\mathbf{w}}$ de \mathbb{R}^n peut s'écrire comme une combinaison linéaire des vecteurs $\overrightarrow{\mathbf{u}}_1, \dots, \overrightarrow{\mathbf{u}}_n$, i.e.

Pour tout $\overrightarrow{\mathbf{w}}$ dans \mathbb{R}^n , il existe des scalaires $\lambda_1, \dots, \lambda_n$ tels que

$$\overrightarrow{\mathbf{w}} = \lambda_1 \overrightarrow{\mathbf{u}}_1 + \dots + \lambda_n \overrightarrow{\mathbf{u}}_n.$$

1.3 Indépendance linéaire

Définition 1.6

Les vecteurs $\overrightarrow{\mathbf{u}}_1$, $\overrightarrow{\mathbf{u}}_2$, \cdots , $\overrightarrow{\mathbf{u}}_n$ de \mathbb{R}^m sont dits linéairement indépendants (ou libres) si

$$\lambda_1 \overrightarrow{\mathbf{u}}_1 + \lambda_2 \overrightarrow{\mathbf{u}}_2 + \dots + \lambda_n \overrightarrow{\mathbf{u}}_n = \overrightarrow{\mathbf{0}} \Longrightarrow \lambda_1 = \lambda_2 = \dots = \lambda_n = 0.$$

Dans le cas contraire on dit que les vecteurs sont linéairement dépendants (ou liés).

Théorème 1.2

Les vecteurs $\overrightarrow{\mathbf{u}}_1$, $\overrightarrow{\mathbf{u}}_2$, \cdots , $\overrightarrow{\mathbf{u}}_n$ de \mathbb{R}^m sont linéairement indépendants si et seulement si le système linéaire ayant pour matrice augmentée ($\overrightarrow{\mathbf{u}}_1$ $\overrightarrow{\mathbf{u}}_2$... $\overrightarrow{\mathbf{u}}_n$ $\overrightarrow{\mathbf{0}}$) a une unique solution.

Par convention, l'ensemble vide est une famille libre.

- i) Le vecteur $\overrightarrow{\mathbf{v}}$ est linéairement indépendant si $\overrightarrow{\mathbf{v}} \neq \overrightarrow{\mathbf{0}}$ et linéairement dépendant si $\overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{0}}$.
- ii) Les vecteurs $\overrightarrow{\mathbf{v}}_1$, $\overrightarrow{\mathbf{v}}_2$ sont linéairement indépendants si et seulement si $\overrightarrow{\mathbf{v}}_1$ n'est pas un multiple de $\overrightarrow{\mathbf{v}}_2$ et $\overrightarrow{\mathbf{v}}_2$ n'est pas un multiple de $\overrightarrow{\mathbf{v}}_1$.

Théorème 1.3

Les vecteurs $\overrightarrow{\mathbf{v}}_1, \cdots, \overrightarrow{\mathbf{v}}_n$ de $n \geq 2$ de \mathbb{R}^m sont linéairement dépendants si et seulement si il existe au moins un vecteur $\overrightarrow{\mathbf{v}}_k, 1 \leq k \leq n$, qui est une combinaison linéaire des vecteurs $\overrightarrow{\mathbf{v}}_1, \cdots, \overrightarrow{\mathbf{v}}_{k-1}, \overrightarrow{\mathbf{v}}_{k+1}, \cdots, \overrightarrow{\mathbf{v}}_n$.

Théorème 1.4

- 1. Lorsque n>m alors toute famille de n vecteurs de \mathbb{R}^m est linéairement dépendante.
- 2. Toute famille linéairement indépendante de vecteurs de \mathbb{R}^m a au plus m éléments.
- 3. Si une famille de vecteurs de \mathbb{R}^m contient le vecteur nul, alors elle est linéairement dépendante. Si elle contient deux vecteurs égaux, alors elle est linéairement dépendante.

1.4 Bases de \mathbb{R}^m

Définition 1.7

Des vecteurs $\overrightarrow{\mathbf{v}}_1, \dots, \overrightarrow{\mathbf{v}}_n$ qui à la fois sont linéairement indépendants **et** engendrent \mathbb{R}^m forment une base de \mathbb{R}^m . On note alors $\mathcal{B} = (\overrightarrow{\mathbf{v}}_1, \dots, \overrightarrow{\mathbf{v}}_n)$.

Théorème 1.5

Des vecteurs $\overrightarrow{\mathbf{v_1}}, \cdots, \overrightarrow{\mathbf{v_n}}$ de \mathbb{R}^n forment une **base** de \mathbb{R}^n si et seulement si Pour tout vecteur $\overrightarrow{\mathbf{w}}$ de \mathbb{R}^n il existe des scalaires $\lambda_1, \lambda_2, \cdots, \lambda_n$ **uniques** tels que

$$\overrightarrow{\mathbf{w}} = \lambda_1 \overrightarrow{\mathbf{v}}_1 + \lambda_2 \overrightarrow{\mathbf{v}}_2 + \dots + \lambda_n \overrightarrow{\mathbf{v}}_n. \tag{1.1}$$

Remarque : L'équation (1.1) signifie que les vecteurs $\overrightarrow{\mathbf{v_1}}, \cdots, \overrightarrow{\mathbf{v_n}}$ engendrent \mathbb{R}^m . De plus le fait que les scalaires $\lambda_1, \cdots, \lambda_n$ sont uniques signifie que la famille est linéairement indépendante.

Les vecteurs $\overrightarrow{\mathbf{e}}_1 = (1, 0, \dots, 0)$, $\overrightarrow{\mathbf{e}}_2 = (0, 1, 0, \dots, 0)$, $\overrightarrow{\mathbf{e}}_3 = (0, 0, 1, 0, \dots, 0)$, \cdots , $\overrightarrow{\mathbf{e}}_m = (0, 0, \dots, 0, 1)$ forment une base de \mathbb{R}^m . Cette base s'appelle la base canonique de \mathbb{R}^m .

Définition 1.8

- $\overline{-}$ L'expression (1.1) est la **décomposition** du vecteur $\overrightarrow{\mathbf{w}}$ dans la base $(\overrightarrow{\mathbf{v}}_1, \dots, \overrightarrow{\mathbf{v}}_n)$.
- Les scalaires $\lambda_1, \lambda_2, \dots, \lambda_n$ sont appelés **coordonnées** (ou **composantes**) du vecteur $\overrightarrow{\mathbf{w}}$ dans la base $(\overrightarrow{\mathbf{v}}_1, \dots, \overrightarrow{\mathbf{v}}_n)$.

Théorème 1.6

- i) Toute base de \mathbb{R}^m admet exactement m éléments.
- ii) Toute famille libre de m vecteurs de \mathbb{R}^m est une base de \mathbb{R}^m .

Définition 1.9

La dimension de \mathbb{R}^m est le nombre d'éléments de toute base de \mathbb{R}^m ,

$$\dim \mathbb{R}^m = m.$$

2 Sous-espaces vectoriels

Désormais nous n'utiliserons plus la notation avec une flèche pour désigner un vecteur.

Définition 2.10

Soit F un sous-ensemble de \mathbb{R}^m . On dit que F est un sous-espace vectoriel (s.e.v.) de \mathbb{R}^m si

- i) $0_{\mathbb{R}^m} \in F$.
- ii) pour tous u et v dans F, $u + v \in F$, (F est stable par addition).
- iii) pour tout u dans F et tout λ dans \mathbb{R} , $\lambda u \in F$, (F est stable pour la multiplication par un scalaire).

Remarques 1) Un s.e.v. n'est jamais vide puisqu'il contient toujours au moins le vecteur nul $0_{\mathbb{R}^m}$.

2) Un s.e.v. est un espace vectoriel sur \mathbb{R} .

Théorème 2.7

Soient F_1 et F_2 deux s.e.v de \mathbb{R}^m . Alors, $F_1 \cap F_2$ est un s.e.v. de \mathbb{R}^m .

Remarque : En général, $F_1 \cup F_2$ n'est pas un s.e.v. de \mathbb{R}^m .

La notion de base vue à la section précédente s'étend naturellement aux s.e.v de \mathbb{R}^m .

Définition 2.11

Soit F un s.e.v. de \mathbb{R}^m . Des vecteurs v_1, \dots, v_k de F qui à la fois sont linéairement indépendants **et** engendrent F forment une **base de** F.

Théorème 2.8

Soit F un s.e.v. Les vecteurs v_1, \dots, v_n de F forment une **base de** F si et seulement si : Pour tout vecteur \underline{w} de \underline{F} il existe des scalaires $\lambda_1, \lambda_2, \dots, \lambda_n$ uniques tels que

$$w = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n.$$

Définition 2.12

Les scalaires $\lambda_1, \lambda_2, \dots, \lambda_m$ sont appelés **coordonnées** (ou **composantes**) de <u>w dans \mathcal{B} </u>. Et l'on note $(x)_{\mathcal{B}} = (\lambda_1, \lambda_2, \dots, \lambda_m)$.

Théorème 2.9

(de la base extraite) Soit F un s.e.v. de \mathbb{R}^m engendré par une famille finie de vecteurs \mathcal{V} . Alors il existe un sous-ensemble de \mathcal{V} qui est une base de F.

(de la base incomplète) Soit F un s.e.v. de \mathbb{R}^m et \mathcal{V} une famille libre de vecteurs de F. Alors il existe une base \mathcal{B} de F qui contient \mathcal{V} .

Corollaire 2.1 Tout s.e.v admet une base.

Théorème 2.10

Soient F un s.e.v. de \mathbb{R}^m et \mathcal{B} une base de F de cardinal k, $\{u_1, u_2, \ldots, u_n\}$ une famille de vecteurs de F. On note A la matrice définie comme suit

$$A = ((u_1)_{(\mathcal{B})} (u_2)_{(\mathcal{B})} \dots (u_n)_{(\mathcal{B})}).$$

Alors, la famille $\{u_1, u_2, \dots, u_n\}$ est libre si et seulement si le sysème linéaire homogène Ax = 0 n'admet que la solution triviale.

Théorème 2.11

Soit F un s.e.v. de \mathbb{R}^m et soit \mathcal{B} une base de F de cardinal k. Toute famille de n vecteurs avec n>k est linéairement dépendante.

Théorème 2.12 (de la dimension)

Toutes les bases d'un s.e.v. de \mathbb{R}^m ont le même nombre d'éléments.

Ce qui conduit à la définition suivante.

Définition 2.13

La dimension d'un s.e.v. F de \mathbb{R}^m est le nombre d'éléments de chacune de ses bases.

 $\dim F = \operatorname{card} \mathcal{B}$, pour toute base \mathcal{B} de F.

Théorème 2.13

Soit F un s.e.v de **dimension** k alors

- toute famille linéairement indépendante de F a **au plus** k éléments,
- une famille linéairement indépendante de F ayant k éléments est une base de F,
- toute famille génératrice de F a **au moins** k éléments,
- une famille génératrice de F ayant k éléments est une base de F.

Remarque. Quand on connaît la valeur de la dimension d'un s.e.v. et <u>seulement dans ce cas</u>, pour montrer qu'une famille donnée est une base, il suffit de s'assurer que son nombre d'éléments est égal à la dimension, puis vérifier soit que la famille est linéairement indépendante, soit qu'elle est génératrice.

Théorème 2.14

Soient F_1 et F_2 deux s.e.v. de \mathbb{R}^m tels que $F_1 \subset F_2$. Alors

$$\dim F_1 \leq \dim F_2 \leq m$$
.

De plus, $\dim F_1 = \dim F_2$ si et seulement si $F_1 = F_2$.

En général un s.e.v. admet une infinité de bases. Comment sont reliées les composantes d'un vecteur dans une base aux composantes de ce même vecteur dans une autre base?

Définition 2.14

Soit F un s.e.v. de \mathbb{R}^m de dimension k et soient $\mathcal{B} = (u_1, u_2, \dots, u_k)$ et $\mathcal{B}' = (v_1, v_2, \dots, v_k)$ deux bases de F.

On appelle matrice de passage de \mathcal{B} à \mathcal{B}' la matrice

$$\mathcal{P}_{\mathcal{B}\to\mathcal{B}'}=((v_1)_{\mathcal{B}}\ (v_2)_{\mathcal{B}}\ \cdots\ (v_k)_{\mathcal{B}}).$$

C'est une matrice $k \times k$.

Théorème 2.15

Pour tout $x \in F$, $(x)_{\mathcal{B}} = \mathcal{P}_{\mathcal{B} \to \mathcal{B}'}(x)_{\mathcal{B}'}$.