Exercice 1. Dire si les affirmations suivantes sont vraies ou fausses. Justifiez vos réponses.

- 1. Une suite (u_n) converge vers 0 si et seulement si la suite $(|u_n|)$ converge vers 0.
- 2. Soit I une partie non vide de \mathbb{R} , $f: I \to \mathbb{R}$ continue en $\ell \in I$ et (u_n) une suite dont les termes sont dans I et convergeant vers ℓ . Alors la suite $f(u_n)$ converge vers $f(\ell)$. En particulier, si (u_n) est une suite récurrente de la forme $u_{n+1} = f(u_n)$, alors la limite vérifie $\ell = f(\ell)$.
- 3. Si une suite (u_n) converge vers ℓ alors la suite $(u_{n+1} u_n)$ converge vers 0.
- 4. Si la suite $(u_{n+1} u_n)$ converge vers 0 alors la suite (u_n) converge vers une limite ℓ .
- 5. Soit (u_n) une suite bornée et (v_n) une suite convergente de limite nulle. Alors la suite (w_n) définie pour $n \in \mathbb{N}$ par $w_n = u_n v_n$ est convergente de limite nulle.
- 6. Soit (u_n) une suite réelle convergente.
 - a. Si à partir d'un certain rang on a $u_n \ge 0$, alors nécessairement $\lim_{n \to +\infty} u_n \ge 0$.
 - b. Si à partir d'un certain rang on a $u_n > 0$, alors nécessairement $\lim_{n \to +\infty} u_n > 0$.
- 7. Soient (u_n) , (v_n) , (w_n) trois suites telles que $u_n \leq v_n \leq w_n$ à partir d'un certain rang. Alors, si (u_n) et (w_n) sont convergentes de même limite ℓ , la suite (v_n) est convergente de limite ℓ .

Exercice 2. Étudier la nature des suites suivantes, et déterminer leur limite éventuelle.

a)
$$u_n = \frac{\sin(n) + 3\cos(n^2)}{\sqrt{n}}$$
 b) $v_n = \left(\frac{n-x}{n+x}\right)^n$, $x \in \mathbb{R}$ c) $w_n = \frac{1}{n!} \sum_{k=1}^n k!$ d) $z_n = \cos\left((n+\frac{1}{n})\pi\right)$

Exercice 3. Soient $a, b \in \mathbb{R}$ avec $a \neq 1$ et (u_n) la suite définie par $u_{n+1} = au_n + b$.

- 1. Si la suite (u_n) converge, quelle est sa limite? On note ℓ cette limite.
- 2. Soit $v_n = u_n \ell$. Montrer que (v_n) est une suite géométrique, et en déduire la nature de la suite (u_n) .
- 3. Application : on considère un carré de côté 1. On le partage en 9 carrés égaux, et on colorie le carré central. Puis, pour chaque carré non-colorié, on réitère le procédé. On note u_n l'aire hachurée après l'étape n. Quelle est la limite de la suite (u_n) ?

Exercice 4.

- 1. Soit (u_n) une suite telle que $\lim_{n\to+\infty}u_n=+\infty$. A-t-on : $(u_n)^2+u_n\sim u_n^2$, $e^{(u_n)^2+u_n}\sim e^{(u_n)^2}$?
- 2. Soit (u_n) une suite telle que $\lim_{n\to+\infty}u_n=0$. A-t-on : $\cos u_n\sim 1+u_n,\ \cos u_n-1\sim u_n$?

Montrer que $\ln(1+u_n) \sim u_n$, $e^{u_n} - 1 \sim u_n$, $\frac{1}{1+u_n} \sim 1 - u_n$, $\sin(u_n) \sim u_n$, puis $\cos(u_n) - 1 \sim -\frac{(u_n)^2}{2}$.

3. Donner un équivalent simple et la limite éventuelle des suites (u_n) définies par :

$$u_n = \frac{n^4 - 2n^3 + 100}{3n^5 + 6}, \qquad u_n = \frac{(-1)^n n + 1}{n + \sqrt{n}}, \qquad u_n = \ln(n^2 + n + 5) - \ln(n^2 - n + 3).$$

Exercice 5. Étudier la vitesse de convergence des suites $(u_n)_{n\geq 2}$ définies par :

$$u_n = \frac{1}{\ln(n)}, \qquad u_n = \frac{1}{n!}, \qquad u_n = \frac{n!}{n^n}.$$

Exercice 6.

1. Soient p_n une suite convergent linéairement vers 0 et q_n une suite convergent quadratiquement vers 0 avec le même facteur asymptotique $\frac{1}{2}$. Pour simplifier, on suppose que $\frac{|p_{n+1}|}{|p_n|} \approx \frac{1}{2}$ et $\frac{|q_{n+1}|}{|q_n|^2} \approx \frac{1}{2}$ pour tout $n \ge 1$.

- a) Montrer que $|p_n| \approx \left(\frac{1}{2}\right)^n |p_0|$ et que $|q_n| \approx \left(\frac{1}{2}\right)^{2^n-1} |q_0|^{2^n}$ pour tout $n \geq 1$.
- b) Lorsque $p_0 = q_0 = 1$, calculer p_i et q_i pour $i = 1, \dots 4$. Commenter vos résultats.
- 2. Donner un exemple de suite convergent à l'ordre 3 vers 0.

Exercice 7.

1. Soit $r \in \mathbb{R}$, $r \neq 1$. Montrer que

$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2}, \quad \sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}, \quad \sum_{k=0}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2, \quad \sum_{k=0}^{n} r^k = \frac{1-r^{n+1}}{1-r}.$$

- 2. (Série arithmétique). Etudier la série (Σu_n) avec u_n une suite arithmétique de raison $r \neq 0$.
- 3. (Série géométrique). Etudier la série (Σu_n) avec u_n une suite géométrique.

Exercice 8. Etudier la série (Σu_n) lorsque

1.
$$u_n = \frac{a^n}{n!}$$
, $a > 0$, $u_n = \frac{1}{a^n + \frac{1}{a^n}}$, $a > 0$ $u_n = \frac{n!}{n^n}$,

2.
$$u_n = \frac{n^{\alpha}}{2^n}, \ \alpha \in \mathbb{R}, \quad u_n = \left(\frac{n}{n+1}\right)^{n^2}, \ n \ge 1, \quad u_n = \frac{n^{\ln n}}{(\ln n)^n}, \ n > 1.$$

3.
$$u_n = \frac{\cos n}{n}$$
, $v_n = \frac{(-1)^n}{n + (-1)^n \sqrt{n}}$.

1. Soit $\sum_{n=0}^{\infty} c_n x^n$ une série entière de rayon de convergence égal à 10. Quel est le rayon de convergence de la série entière

$$\sum_{n=0}^{\infty} c_n x^{n-1} ?$$

2. Soit $\sum_{n=0}^{\infty} c_n x^n$ une série entière convergeant pour |x| < 2. Que peut-on dire de la série $\sum_{n=0}^{\infty} \frac{c_n}{n+1} x^{n+1}$?

Exercice 10. Donner le développement en série entière des fonctions ci-dessous et déterminer l'intervalle de convergence.

a)
$$f(x) = \frac{1}{1 + x}$$

b)
$$f(x) = \frac{5}{1 - 4x^2}$$

c)
$$f(x) = \frac{2}{3-x}$$

a)
$$f(x) = \frac{1}{1+x}$$
, b) $f(x) = \frac{5}{1-4x^2}$, c) $f(x) = \frac{2}{3-x}$, d) $f(x) = \frac{x}{2x^2+1}$.

Exercice 11. Dire si les affirmations suivantes sont vraies ou fausses. Justifiez vos réponses.

- 1. Dans la théorie des DL_n , on peut toujours se ramener au voisinage de 0 (i.e. un $DL_n(0)$).
- 2. L'ordre d'un développement limité est le degré du polynôme P_n .
- 3. Si f admet un $DL_n(x_0)$, il est unique.
- 4. f admet un $DL_0(x_0) \iff f$ continue en x_0 .
- 5. f admet un $DL_1(x_0) \iff f$ dérivable en x_0 .
- 6. f admet un $DL_2(x_0) \iff f$ deux fois dérivable en x_0 .

Exercice 12. Calculer les limites ci-dessous.

a)
$$\lim_{x \to 0} \frac{e^{x^2} - \cos(x)}{x^2}$$
 b) $\lim_{x \to 0} \frac{1}{\sin^2(x)} - \frac{1}{x^2}$ c) $\lim_{x \to 0} (1 + \sin(x))^{\frac{1}{x}}$.

Exercice 13. Pour chacune des fonctions f suivantes : $f: x \mapsto \cos(x)$, $f: x \mapsto e^x$, $f: x \mapsto \sqrt{1+x}$,

- 1. Écrire le développement limité d'ordre 5 de f en 0. Ce développement sera utilisé pour toutes les questions suivantes.
- 2. Écrire le développement limité à l'ordre 3 au voisinage de 0^+ pour $f(\sqrt{x})$.
- 3. Écrire un développement limité à l'ordre 3 au voisinage de $+\infty$ pour $f(e^{-x})$.
- 4. Écrire un développement limité à l'ordre 3 au voisinage de $+\infty$ pour f(1/x).

Exercice 14.

- 1. Soit a et b deux réels. Donner le développement limité 'a l'ordre 4 en 0 de $g(x) = \ln \frac{1+ax}{1+bx}$.
- 2. Soit f la fonction définie, lorsque cela a un sens, par

$$f(x) = (3x^2 + 6x - 10) \ln \frac{x+4}{x+2}.$$

Montrer qu'elle admet un développement asymptotique lorsque x tend vers l'infini, de la forme

$$f(x) = \alpha x + \beta + \gamma \frac{1}{x^2} + o(\frac{1}{x^2}),$$

où α, β et γ sont des réels non nuls.

3. En déduire la position de la courbe représentative de f en $+\infty$ et en $-\infty$ par rapport à ses asymptotes.

Exercices supplémentaires.

Exercice 15.

- 1. A., B. et P. ont developpé trois procédures de tri d'une suite u_1, \ldots, u_n de n termes. La procedure développée et programmée par A. trie ce suite en $100 \times n^2$ millisecondes. La procédure développée et programmée par B. trie la suite en $10^{-5} \times 2^n$ millisecondes. L'algorithme de P. a besoin de $10^5 \times n \log n$ millisecondes pour la même opération. Quand n est trés grand, quelle procédure est la plus efficace? (Indication : commencer par déterminer $\lim_{n \to \infty} u_n$, ou $u_n = \frac{n^2}{2^n}$; examiner $\frac{u_{n+1}}{n}$).
- 2. Étudier la nature des suites suivantes et déterminez leur limites eventuelles :

$$1) \lim_{n \to \infty} \frac{2n^3 + 10^{200}n + \sqrt{n} + 5}{6 + 2n^3}, \qquad 2) \lim_{n \to \infty} \frac{\sqrt[3]{n^2} \sin n!}{n + 1},$$

3)
$$\lim_{n\to\infty} n\left(a^{\frac{1}{n}}-1\right)$$
 (Indication: poser $t_n:=a^{\frac{1}{n}}-1$ et considerer $t_n\to 0$).

3

- 3. Montrer que $\lim_{n \to +\infty} \sqrt[n]{n} = 1$. Indication : representer $n = (n^{\frac{1}{n}} 1 + 1)^n$ et montrer que $n > \frac{n(n-1)}{2}(n^{\frac{1}{n}} 1)^2$.
- 4. montrez que $v_n = o(u_n), w_n = o(v_n) \implies w_n = o(u_n).$

5. trouvez un équivalent simple et la limite éventuelle des suites (u_n) définies par :

1)
$$u_n = \frac{1}{n} + \frac{2}{n} + \frac{3}{n} + \dots + \frac{n-1}{n};$$
 2) $u_n = \tan \frac{1}{n},$ 3) $u_n = n \cos \left(n \frac{\pi}{2}\right).$

6. En supposant que (u_n) admette une limite ℓ , où $u_{n+1} = \frac{1}{3} \left(2u_n + \frac{a}{u_n^2} \right)$, et $u_0 \neq 0$, trouvez la limite ℓ de u_n .

Exercice 16.

1. Calculer les développements limités suivants au voisinage de 0

à l'ordre 3

$$\sin(\ln(1+x))$$
, $\ln(1+\sin x)$, $(1+2x-2x^2)^{\frac{1}{3}}$, $\ln(1+x)+(1+x)^2$, e^{e^x} , $\frac{1-\cos x}{x\ln(1+x)}$,

à l'ordre 4

$$e^x - \sqrt{1+x}$$
, $(1+x)\sin x$, $e^x \sin x$, $\frac{\cos x}{1-x}$, $\ln(1+x) + (1+x)^2$,

à l'ordre 5

$$\sin x + \cos x$$
, $x^2 \sin x$.

2. Calculer les limites suivantes.

$$\lim_{x \to 0} \frac{\sin x \ln(1+x^2)}{x \tan x}, \qquad \lim_{x \to +\infty} \left(\left(\frac{\ln(1+x)}{\ln x}\right)^x - 1 \right) \ln x.$$

3. Soit f la fonction de $\mathbb{R} \to \mathbb{R}$ définie par $f(x) = \ln(x^2 + 2x + 2)$. Déterminer l'équation de la tangente à la courbe représentative de f au voisinage de 0 et étudier la position relative de la courbe et de la tangente au voisinage de ce point.