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Abstract. A highly efficient solver is proposed for the numerical solution of
density-dependent shallow water flows. The governing equations consist on
coupling the multi-layer shallow water equations for the hydraulic variables
with a suspended sediment transport equation for the concentration variable.
The layers can be formed in the shallow water model based on the variation
of vertical and horizontal density which depend on the watertemperature and
salinity. At each time step, the method consists of two stages to update the
numerical solution. In the first stage, the multi-layer shallow water equations
are rewritten in a non-conservative form and the intermediate solutions are
calculated using the modified method of characteristics. Inthe second stage,
the numerical fluxes are reconstructed from the intermediate solutions in the
first stage and used in the conservative form of the multi-layer shallow water
equations. The proposed method avoids Riemann problem solvers and suitable
for multi-layer shallow water equations on non-flat topography.
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1 The Model

In the current study we are interested on hydraulic flows occurring on the
water free-surface where assumptions of shallow water flowsapplied. We
consider the one-dimensional multi-layer shallow water equations written in
a conservative form as

∂t (ρjhj) + ∂x (ρjhjuj) = 0,

∂t (ρjhjuj) + ∂x

(

ρjhju
2
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2
gρjh
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j

)

= −gρjhj∂xZ − (1)

gρjhj

j−1
∑
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∂xhk − ghj

M
∑

k=j+1

∂x (ρkhk) ,

wherej = 1, . . . ,M with M is the total number of layers,ρj is the water
density of thejth layer,hj(t, x) is the water height of thejth layer,uj(t, x) is
the local water velocity for thejth layer,Z(x) is the bottom topography and
g the gravitational acceleration. For two layers with constant densityρ1 and
ρ2, the equations (1) reduce to the standard two-layer shallowwater equations
studied for example in [3] among others. In the current work,we assume that
a sediment transport takes place such that the density depends on space and
time variables,i.e., ρj = ρj(t, x). This requires additional equations for its
evolution. Here, the equations used to close the system are given by

ρj = ρw +
(

ρsj − ρw
)

cj , j = 1, . . . ,M, (2)

whereρsj is the sediment density withρsj > ρw, andcj is the depth-averaged
concentration of the suspended sediment for thejth layer. The equation for
mass conservation of species is modeled by

∂t
(

ρsjhjcj
)

+ ∂x
(

ρsjhjujcj
)

= 0, j = 1, . . . ,M. (3)

For simplicity in presentation we rewrite the equations (1)and (3) in a compact
conservative form as

∂tW + ∂xF(W) = Q(W), (4)

whereW is the vector of conserved variables,F the vector of flux functions,Q
is the vector of source terms. An equivalent system to the water flow equations
(1) and the suspended sediment equations (3) can be obtainedby using the
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Figure 1: Schematic of a multi-layer shallow water equations.

physical variables as

D
(j)
t (ρjhj) + ρjhj∂xuj = 0,

D
(j)
t uj + g∂x
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,

D
(j)
t ρj = 0, j = 1, . . . ,M,

whereD(j)
t denotes the total derivative defined as

D
(j)
t ω = ∂tω + uj∂xω, j = 1, . . . ,M. (5)

2 The Method

Let us discretize the spatial domain into control volumes[xi−1/2, xi+1/2]
with uniform size∆x = xi+1/2 − xi−1/2 and divide the temporal domain into
subintervals[tn, tn+1] with stepsize∆t. Here,tn = n∆t, xi−1/2 = i∆x and
xi = (i+1/2)∆x is the center of the control volume. Integrating the equation
(4) with respect to space over the control volume[xi−1/2, xi+1/2] and in time
we obtain the following fully-discrete equations

Wn+1
i = Wn

i −∆t
Fn
i+1/2 −Fn

i−1/2

∆x
+∆tQn

i , (6)

whereWn
i is the space average of the solutionW in the control volume

[xi−1/2, xi+1/2] at timetn andFn
i±1/2 = F(Wn

i±1/2) are the numerical fluxes
atx = xi±1/2 and timetn. To reconstruct the numerical fluxesFn

i±1/2 in (6),
we consider the method of characteristics applied to the advective version of
the system (4). In general, the advective form of the multi-layer system (4)
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is built such that the non-conservative variables are transported with the same
velocity field associated with each layer. Thus, the characteristic curves asso-
ciated with the equation (5) are solutions of the initial-value problems

dXj,i+1/2(τ)

dτ
= uj,i+1/2

(

τ,Xj,i+1/2(τ)
)

, τ ∈ [tn, tn +∆t/2] ,

(7)
Xj,i+1/2(tn +∆t/2) = xi+1/2, j = 1, . . . ,M.

Note thatXj,i+1/2(τ) is the departure point at timeτ of a particle that will
arrive at pointxi+1/2 in time tn + ∆t/2. The method of characteristics does
not follow the flow particles forward in time, as the Lagrangian schemes do,
instead it traces backward the position at timetn of particles that will reach the
points of a fixed mesh at timetn +∆t/2. By doing so, the method avoids the
grid distortion difficulties that the conventional Lagrangian schemes have.

Once the characteristics curvesXj,i+1/2(tn) are known, a solution at the
cell interfacexi+1/2 is reconstructed as

Un
j,i+1/2 = Uj

(

tn +∆t/2, xi+1/2

)

= Ũj

(

tn,Xj,i+1/2(tn)
)

, (8)

whereŨj

(

tn,Xj,i+1/2(tn)
)

is the solution at the characteristic foot computed
by interpolation from the gridpoints of the control volume where the departure
point residesi.e.

Ũj

(

tn,Xj,i+1/2(tn)
)

= P
(

Uj

(

tn,Xj,i+1/2(tn)
)

)

, (9)

whereP represents the interpolating polynomial.
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