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I- NUMERICAL SIMULATION OF WATER-OIL FLOW

IN A POROUS MEDIUM
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MOTIVATIONS

Numerical simulation by Finite Volumes (FV) of the flow of a fluid

constituted by two immiscible and incompressible phases in a

porous medium. One example of such a flow is the extraction of oil

by water during exploitation of oil gisements.
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MATHEMATICAL MODEL

• The tank is represented by an open set Ω of R
2 with smooth by

parts boundary Γ. Γ = Γ1 ∪ Γ2 ∪ Γ3, where Γ1 is the inlet

where water is injected, Γ3 the outlet from which oil is

recovered, and Γ2 an impermeable part.

injection

Reservoir

production
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• Assumptions

1. the Darcy law applies separately for each fluid,

2. the medium is saturated by the two fluids,

3. the thermodynamic properties (density, viscosity) of the two

phases are constants,

4. the capillary pressure and the permeability depend only of

saturation (case where Ω is constituted by only one type of

rock),

5. the deformations of the porous medium as well as the effect

of gravity are negligible.
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• The model of equations:

Under the previous assumptions, the application of continuity

law and Darcy law to each phase, leads to the system:














































































Φ(x)
∂Sw

∂t
−∇.[K(x)kw(Sw)∇pw] = 0 in QT = Ω × [0, T [

Φ(x)
∂So

∂t
−∇.[K(x)ko(So)∇po] = 0 in QT = Ω × [0, T [

S = Sw, So = 1 − S

PC = pw − po = pc(S)PCM

S = Sw,M ~qw.~n = −qd on Γ1

~qw.~n = 0 ~qo.~n = 0 on Γ2

S = Sw,m, po = Patm and ~qo.~n > 0 on Γ3

S(x, 0) = S0(x) in Ω

(1)
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The above system can not be subject to a mathematical study,

owing to the fact that in the area where Sw = Sw,m, the first

equation disappears. It is one of the reasons for which Chavent

introduced a new unknown, called global pressure. This leads to

a system of coupled P.D.E. formed by a family of elliptic equations

in pressure and by a nonlinear parabolic equation in saturation:







~q = −d(u)K(x)∇P ; div(~q) = 0

~q.~n|Γ1
= −qd; ~q.~n|Γ2

= 0 P|Γ3
= P0 ∀t ∈ [0, T [

(2)



















Φ(x)
∂u

∂t
+ div(b(u)~q − K(x)∇α(u)) = 0 dans QT

u|Γ1
= 1; K∇α(u).~n|Γ2

= 0; u|Γ3
= 0 ∀t ∈ [0, T [

u(x, 0) = u0(x) ∀x ∈ Ω

(3)
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whith:

u =
S − Sw,m

1 − Sw,m − So,m

d(u) = kw(u) + ko(u) the total mobility of the fluid,

~q = ~qw + ~qo

b(u) =
kw(u)

kw(u) + ko(u)

α(u) =

∫ u

0

a(s)ds where a(u) =
kw(u)ko(u)

kw(u) + ko(u)
p

′

c(u)PCM

(note that a(1) = a(0) = 0),

P =
1

2
(pw + po) + δ(u) the global pressure

with δ(u) =

∫ u

1

(b(u) −
1

2
)p

′

c(s)PCMds.
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THE NUMERICAL SCHEME

The temporal domain [0, T [ is discretized in subintervals: [tn, tn+1[

of length ∆tn, n = 0, ..., NT − 1 with t0 = 0 and tNT
= T .

The space domain, Which is the tank Ω, is discretized using a

triangular non structured grid Th.

un
C and P n

C represent respectively a constant by cell approximation

of u and P in the center of the control volume C at time tn.

Integrating the equations (2) and (3) and applying the divergence

theorem, one has for the pressure elliptic problem:

∑

γ∈∂C

∫

γ

d(un)K(x)∇P n.~nγds = 0
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for the parabolic problem:

ΦC

un+1
C − un

C

∆tn
mes(C) =

∑

γ∈∂C

(

−

∫ tn+1

tn

b(u)γ~qγ~nγmes(γ)dt

)

+

∑

γ∈∂C\∂Ω

∫ tn+1

tn

Kγα
′

(u)∇uγ~nγmes(γ)dt

For these two problems one needs to devise a discrete gradient on

the interface of the grid cells. For this purpose a first choice is a

method suggested by Vila, Coudière et Villedieu [1]. It

consists in approaching the gradient by its average on a diamond

shape Co-volume around the edge γ. One builds this cell diamond

by connecting the barycentres of the two triangles having γ in

common to the ends of γ (see figure(1)).
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Figure 1: Diamond co-volume
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Hence the component of the approximate gradient along x-axis

writes:
∂P

∂x |γ
≈

1

mes(Cdec)

∫

Cdec

∂P

∂x
dx

(subscript n is ommited to simplify) Application of divergence

theorem gives:

∂P

∂x |γ
≈

1

mes(Cdec)

∑

ε∈∂Cdec

P|ε

∫

ε

nxεdσ

ε is an edge of the co-volume Cdec and nxε the axial component of

the outer normal vector to ε.

For an edge ε of the diamond cell, let us note N1 and N2 its two

ends, one then writes: P|ε ≈ 1
2 (PN1

+ PN2
), where PN1

and PN2
are

the values of the pressure P at the points N1 and N2. Hence one

has:
∂P

∂x |γ
≈

1

mes(Cdec)

∑

ε∈∂Cdec

1

2
(PN1

+ PN2
)

∫

ε

nxεdσ
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In an analogous way, one has:

∂P

∂y |γ

≈
1

mes(Cdec)

∑

ε∈∂Cdec

1

2
(PN1

+ PN2
)

∫

ε

nyεdσ

The values of P at the centers W and E are PW and PE while the

values at the nodes N and S are interpolated or deduced from

boundary conditions and are noted PN and PS . For a node N one

has:

PN =
∑

K∈V(N)

αK(N)PK

where V(N) is the set of triangles having in common the node N ,

PK the value of P at the center of cell K and αK(N) the

interpolation weights.
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These weights must verify the following conditions for the scheme

to be consistant:

∑

K∈V(N)

αK(N) = 1

∑

K∈V(N)

αK(N)(xK − xN ) = 0

∀h > 0, max
K∈V(N)

|αK(N)| < Cst
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NUMERICAL EXPERIMENTS

Two test cases have been performed. A homogeneous isotropic

tank and a non homogeneous anisotropic one.

• In both cases, the initial condition u0, the porosity Φ and the

pressure P0 are the same.

u0(x) =







1 if x ∈ Γ1

0 if x ∈ Ω\Γ1

Φ = 0.2 and P0 = 0, the mobilities and the capillary pressure

are given by:

pc(u) = −[(1 − u)/u]
1
2

,

kw(u) =
1

2µw

ur1
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ko(u) =
(1 − u)r2

µo

• homogeneous isotropic case:

the tank Ω =]0, 0.1[×]0, 0.1[ is discretized with 3826 triangles.

A constant time step has been used: ∆t = 1, 3.10−6, qd = 1.4,

K = Id where Id is the 2 × 2 identity matrix

µw = 1, µo = 3, r1 = 5 and r2 = 3.

The following figures show the evolution of water saturation

with time as well as velocity field distribution in the thank.
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Figure 2: u at t = 0.016s
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Figure 3: u at t = 0.08 s
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Figure 4: u at t = 0.176 s
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• non homogeneous anisotropic case:

Ω =]0, 1[×]0, 1[, is discretized using 3662 triangles, time step is

∆t = 2, 46.10−4, qd = 0.5, µw = 1, µo = 10, r1 = 3 et r2 = 3,

permeabilities tensor is defined as follows:

K(x) =







K1 si x ∈ Z1

K2 sinon

where

K1 =





0.1 0.03

0.03 0.1



 ,

K2 =





1 0.3

0.3 1





and Z1 is a part of Ω defined on the figure (6).
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COMPARAISON OF DIFFERENTS SCHEMES FOR

THE ELLIPTIC OPERATOR
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Here we make a comparison between the diamond scheme

presented above and two other schemes suggested respectively by:

Pascal OMNES and al. and G. MANZINI and al.

The test case:


















∂u(x, t)

∂t
− ∆u(x, t) = f(x, t) in Ω×]0, T ]

u(x, t)|∂Ω = 0 ∀ t ∈]0, T ]

u(x, 0) = 0 ∀ x ∈ Ω

(4)

If

f(x, t) = x(1 − x)y(1 − y) cos t + 2(x(1 − x) + y(1 − y)) sin t

with x = (x, y)

then:

u(x, t) = x(1 − x)y(1 − y) sin t ∀ (x, t) ∈ Ω×]0, T ]
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P. OMNES SCHEME [7]

It consists of the construction of (∇h), the discrete gradient

operator, and (∇h.) the discrete divergence operator.

The discrete gradient:

The construction of the gradient is made in the same way as in the

diamond scheme, with the difference that the values on the nodes

are no more interpolated but are calculated as unknown of the

problem. For this purpose one integrates on two grids, the primal

triangular grid MT , and a dual grid MP obtained by joining the

centers of the cells around a node of MT . This gradient is given by

its values on the diamond cells:

(∇hu)j :=
1

2mes(Dj)

(

[

uP
k2

− uP
k1

]

mes(A
′

j)n
′

j +
[

uT
i2
− uT

i1

]

mes(Aj)nj

)

where:
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• Sk1
, Sk2

are the ends of the edge j corresponding to the centers

of the cells of MP Pk1
, Pk2

• Ti1 , Ti2 are the 2 cells of MT having in common the edge j,

Gi1 , Gi2 their gravity centers

• Dj the diamond cell,

• uT
iα

≈ u(Giα
) and uP

kα
≈ u(Skα

)

• Aj = [Sk1
, Sk2

] and A
′

j = [Gi1 , Gi2 ]

• ~nj the normal to Aj such that
−−−−→
Gi1Gi2 . ~nj ≥ 0

• ~n′
j the normal to A′

j such that
−−−−→
Sk1

Sk2
. ~n′

j ≥ 0
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The discrete divergence:

It is defined by its values on the two meshes ∇h. := (∇T
h .,∇P

h .) as

follows:

(∇T
h .V )i :=

1

mes(Ti)

∑

j∈ν(i)

mes(Aj)Vj .nji

(∇P
h .V )k :=

1

mes(PK)





∑

j∈ε(k)

mes(A′
j)Vj .n

′
jk





+
1

mes(PK)





∑

j∈ε(k)∩[J−Jbord+1,J]

1

2
mes(A′

j)V j.nj
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where:

• J : is the total number of edges of the primal mesh MT and

Jbord is the number of edges on the boundary

• V ∈ (RJ )2, such that V|Dj
= Vj

• ν(i) = {j, such that Aj is an edge of Ti},

• ε(k) = {j, such that Sk is a node of Aj}

• nji the normal to Aj out of Ti,

• n′
jk the normal to A′

j out of Pk

For the test case (4) an explicit version of the scheme is:

un+1

i
= un

i
+ ∆t (∇h.(∇hu

n))
i
+ ∆tfn

i

un+1

k
= un

k
+ ∆t (∇h.(∇hu

n))
k

+ ∆tfn

k
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G. MANZINI SCHEME [6]

It is an alternative of the diamond scheme. It is distinguished from

this one by the conditions imposed on the weights for the

interpolation on the nodes, and a nonlinear approximation of the

gradient on the diamond cell.

Conditions on the weights

• Cgrid ≤ αK(P ) < 1 ∀K ∈ V(P )

•
∑

K∈V(P ) αK(P ) = 1

•
∑

K∈V(P ) αK(P )(xK − xP ) = 0

Approximation of the gradient

The gradient Gij(uh) on the interface fij = Ti ∩ Tj is approximated

as follows:

Gij(uh) = wij(uh)G̃ij(uh) + wji(uh)G̃ji(uh)
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where:

G̃ij(uh) =
uij − ui

hij

nij + {the tangential term},

ui ≈ u(xi),

uij ≈ u(xij),

nij = the normal tofij out of Ti,

hij = (xij − xi).nij ,

xi = the gravity center of the cell Ti,

xij = orthogonal projection of xi on fij.

The explicit version of this scheme for the problem (4) writes:

un+1
i = un

i +
∆t

mes(Ti)

∑

j∈ν(i)

Gij(u
n
h).nijmes(fij) + ∆tfni
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COMPARISON BETWEEN EXACT SOLUTION AND

THE SOLUTION GIVEN BY THE DIFFERENT

SCHEMES

For T = 1.5 and on the same grid we implement the 3 schemes.

Figure 7 represents a cut in Y = 0.5 of each of the calculated

solutions and that of the exact solution. The solution calculated by

the schem of OMNES is the closest one to exact solution.
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COMPARISON OF CPU TIME

In the table bellow CPU times are marked for each scheme on the

same mesh and for the same final time T = 1,

Schemes Coudière Manzini Omnes

Temps CPU 3.024s 5.264 s 4.588 s
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BEHAVIOUR OF L1 ERREOR IN TIME

For a fixed grid we mark the L1 error for different times of

simulation: 0.3, 0.6, 0.9, 1.2, 1.5, and we observe the evolution of

the error for each scheme:
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ORDER OF CONVERGENCE

We fix the final time T to 0.1, the spatial domain Ω is refined 5

times.
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Figure 9: the initial mesh (coarse) and the mesh refined two times
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Figure 10: finest mesh
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The following figures represent the log of the L2 error as a function

of the log of the step h = max
K

δ(K) where δ(K) indicates the

diameter of K. They show that the diamond scheme has the

highest order of convergence.
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for the 3 schemes
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of h for Manzini scheme
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CONCLUSION

• Treatment of the elliptic and parabolic equation by a Finite

Volume scheme

• Robust scheme able to deal with heterogeneities and anisotropy

• The compared numerical study shows that the scheme of

Coudiere seems to be a good compromise of the different

schemes

47



References
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