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Introduction
Shallow water flows with variable horizontal density
occur in many hydraulic phenomena e.g., river
discharge in the ocean. We present a class of fi-
nite volume methods for the numerical solution
of Saint-Venant equations with variable horizon-
tal density. The model is based on coupling the
Saint-Venant equations for the hydraulic variables
with a suspended sediment transport equation for
the concentration variable. To approximate the
numerical solution of the considered models we
propose a generalized Rusanov method which is
well-balanced, conservative, non-oscillatory and
suitable for Saint-Venant equations for which Rie-
mann problems are difficult to solve.

Objectives

To develop a robust finite volume method for solving
Saint-Venant equations with variable horizontal density.
To validate developed methods with numerical solutions
obtained using other methods.

The Model
The Saint-Venant equations with variable horizontal den-
sity can be formulated in a conservative form as
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stem, the density is updated as

= w+( s− w)c, (2)

where s is the sediment density and c is the depth-
averaged concentration of the suspended sediment. It is
easy to verify that the system (1) is hyperbolic.

A Generalized Rusanov Method
To formulate our finite volume method, we integrate the equation (1) with respect to
time and space over the domain [tn, tn+1]× [xi−1/2,xi+1/2] to obtain
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whereWn
i is the time-space average of the solutionW in the domain [xi−1/2,xi+1/2] at

time tn and F(Wn
i±1/2) is the numerical flux at x = xi±1/2 and time tn. In general, the

construction of numerical fluxes requires a solution of Riemann problems at the in-
terfaces xi±1/2. In order to avoid these difficulties and reconstruct an approximation of
Wn

i+1/2, we integrate the equation (1) over a control domain [tn, tn+ n
i+1/2]× [xi,xi+1]

containing the point (tn,xi+1/2), and we have intermediate state given by
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In order to complete the implementation of the above finite volume method the para-
meters n

i+1/2 and Q
n
i+1/2 have to be selected. Based on the stability analysis for con-

servation laws with source terms, the variable n
i+1/2 is selected as

n
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Selection of the parameter n
i+1/2

It is clear that by setting n
i+1/2 = 1 the proposed finite volume method reduces to the

well-established Rusanov method for linear systems of conservation laws, whereas for
n
i+1/2 = ( t/ x)Sni+1/2 one recovers the well-known Lax-Wendroff scheme. Another
choice of the slopes n

i+1/2 leading to a first-order scheme is
n
i+1/2 = ˜ ni+1/2 with
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Sni+1/2
sni+1/2

, (6)

where
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In the current study we incorporate limiters in its reconstruction as
n
i+1/2 = ˜ ni+1/2+

n
i+1/2

(
ri+1/2

)
, (8)

where ˜ ni+1/2 is given by (6) and i+1/2 =
(
ri+1/2

)
is an appropriate limiter which is

defined by using a flux limiter function acting on a quantity that measures the ratio
ri+1/2 of the upwind change to the local change,. In the present study,

n
i+1/2 =

t
x
Sni+1/2− ˜ ni+1/2.

Numerical Results for density dam-break with single initial discontinuity.
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Numerical Results for density dam-break with two initial discontinuities.
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Conclusions
We have solved of Saint-Venant equations with variable horizontal density,by using
finite volume method which is accurate,well-balanced, conservative,non-oscillatory.

Further Work
To apply the finite volume methods for two layers density variable.


