GENERALIZED RUSANOV METHOD FOR SAINT-VENANT

WITH VARIARIE HORIZONIAL DEN

Durham F. Benkhaldoun*, K. Mohamed[†],

* LAGA, Université Paris 13 93430 Villetaneuse, France

[†]Department of Computer Science, Taibah University Madinah, KSA

M. Seaïd[‡]

[‡] School of Engineering, University of Durham South Road, Durham DH1 3LE, UK

Introduction

Shallow water flows with variable horizontal density occur in many hydraulic phenomena e.g., river discharge in the ocean. We present a class of finite volume methods for the numerical solution of Saint-Venant equations with variable horizontal density. The model is based on coupling the Saint-Venant equations for the hydraulic variables with a suspended sediment transport equation for the concentration variable. To approximate the numerical solution of the considered models we propose a generalized Rusanov method which is well-balanced, conservative, non-oscillatory and suitable for Saint-Venant equations for which Riemann problems are difficult to solve.

Objectives

The Model

The Saint-Venant equations with variable horizontal density can be formulated in a conservative form as

To develop a robust finite volume method for solving Saint-Venant equations with variable horizontal density. To validate developed methods with numerical solutions obtained using other methods.

where
$$\mathbf{W} = (\rho h, \rho h u, \rho_s h c)^T$$
, $Q(\mathbf{W}) = \left(0, -g\rho h \frac{\partial Z}{\partial x}, 0\right)^T$.
 $F(W) = \left(\rho h u, \rho h u^2 + \frac{1}{2}g\rho h^2, \rho_s h u c\right)^T$. To close the system, the density is updated as

$$\rho = \rho_w + (\rho_s - \rho_w) c, \qquad (2)$$

(6)

(7)

where ρ_s is the sediment density and c is the depthaveraged concentration of the suspended sediment. It is easy to verify that the system (1) is hyperbolic.

A Generalized Rusanov Method

To formulate our finite volume method, we integrate the equation (1) with respect to time and space over the domain $[t_n, t_{n+1}] \times [x_{i-1/2}, x_{i+1/2}]$ to obtain

$$\mathbf{W}_{i}^{n+1} = \mathbf{W}_{i}^{n} - \frac{\Delta t}{\Delta x} \left(\mathbf{F}(\mathbf{W}_{i+1/2}^{n}) - \mathbf{F}(\mathbf{W}_{i-1/2}^{n}) \right) + \Delta t \mathbf{Q}_{i}^{n}, \qquad (3)$$

where \mathbf{W}_{i}^{n} is the time-space average of the solution W in the domain $[x_{i-1/2}, x_{i+1/2}]$ at time t_n and $\mathbf{F}(\mathbf{W}_{i\pm 1/2}^n)$ is the numerical flux at $x = x_{i\pm 1/2}$ and time t_n . In general, the construction of numerical fluxes requires a solution of Riemann problems at the interfaces $x_{i\pm 1/2}$. In order to avoid these difficulties and reconstruct an approximation of $\mathbf{W}_{i+1/2}^n$, we integrate the equation (1) over a control domain $[t_n, t_n + \theta_{i+1/2}^n] \times [x_i, x_{i+1}]$ containing the point $(t_n, x_{i+1/2})$, and we have intermediate state given by

Selection of the parameter $\alpha_{i+1/2}^n$

It is clear that by setting $\alpha_{i+1/2}^n = 1$ the proposed finite volume method reduces to the well-established Rusanov method for linear systems of conservation laws, whereas for $\alpha_{i+1/2}^n = (\Delta t / \Delta x) S_{i+1/2}^n$ one recovers the well-known Lax-Wendroff scheme. Another choice of the slopes $\alpha_{i+1/2}^n$ leading to a first-order scheme is $\alpha_{i+1/2}^n = \tilde{\alpha}_{i+1/2}^n$ with

$$\tilde{\alpha}_{i+1/2}^n = rac{S_{i+1/2}^n}{s_{i+1/2}^n}$$

 $s_{i+1/2}^{n} = \varepsilon + \min_{k=1,2,3} \left(\min\left(\left| \lambda_{k,i}^{n} \right|, \left| \lambda_{k,i+1}^{n} \right| \right) \right).$

where

$$\mathbf{W}_{i+1/2}^{n} = \frac{1}{2} \left(\mathbf{W}_{i}^{n} + \mathbf{W}_{i+1}^{n} \right) - \frac{\theta_{i+1/2}^{n}}{\Lambda x} \left(F(\mathbf{W}_{i+1}^{n}) - F(\mathbf{W}_{i}^{n}) \right) + \theta_{i+1/2}^{n} Q_{i+1/2}^{n}.$$
(4)

In order to complete the implementation of the above finite volume method the parameters $\theta_{i+1/2}^n$ and $Q_{i+1/2}^n$ have to be selected. Based on the stability analysis for conservation laws with source terms, the variable $\theta_{i+1/2}^n$ is selected as

$$\theta_{i+1/2}^{n} = \alpha_{i+1/2}^{n} \bar{\theta}_{i+1/2}; \ \bar{\theta}_{i+1/2} = \frac{\Delta x}{2S_{i+1/2}^{n}}; \ S_{i+1/2}^{n} = \max_{k=1,2,3} \left(\max\left(\left| \lambda_{k,i}^{n} \right|, \left| \lambda_{k,i+1}^{n} \right| \right) \right).$$
(5)

In the current study we incorporate limiters in its reconstruction as

$$\alpha_{i+1/2}^{n} = \tilde{\alpha}_{i+1/2}^{n} + \sigma_{i+1/2}^{n} \Phi\left(r_{i+1/2}\right), \qquad (8)$$

where $\tilde{\alpha}_{i+1/2}^n$ is given by (6) and $\Phi_{i+1/2} = \Phi(r_{i+1/2})$ is an appropriate limiter which is defined by using a flux limiter function Φ acting on a quantity that measures the ratio $r_{i+1/2}$ of the upwind change to the local change,. In the present study,

$$\sigma_{i+1/2}^n = \frac{\Delta t}{\Delta x} S_{i+1/2}^n - \tilde{\alpha}_{i+1/2}^n$$

Numerical Results for density dam-break with single initial discontinuity.

Numerical Results for density dam-break with two initial discontinuities.

Conclusions

We have solved of Saint-Venant equations with variable horizontal density, by using finite volume method which is accurate, well-balanced, conservative, non-oscillatory.

Further Work

To apply the finite volume methods for two layers density variable.