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Introduction: Complex fluid flow phenomena such as combustion,

multiphase flows or flows submitted to external forces, are

represented by stiff or ill posed inhomogeneous systems (e.g.

multiphase systems can have non hyperbolic regions). It is

therefore not easy to extend the usual Riemann solvers based on

system eigenvalues and eigenvectors computations. To propose an

alternative, we consider in this work a particular class of non

conservative systems. We assume that the solution of the associated

Riemann problem is self-similar. Assuming this hypothesis, a new

Non Homogeneous Riemann Solver (SRNH), using approximate

states instead of approximate fluxes, was developed. The new

scheme depends on a local parameter allowing to control numerical

diffusion. The stability analysis of the scheme, first in the scalar

case then in the case of systems of conservation laws, leads to a

new formulation of the scheme which is based on the sign of

genuine or approximate jacobian of the system considered.



1 Some non homogeneous systems

1.1 1D Two phase flows (non hyperbolic model):







∂W (x, t)

∂t
+

∂F (W (x, t))

∂x
+ S1(x, W ) = S2(x, W )

W (x, 0) = W0(x),
(1)

W (x, t) = (αvρv, αvρvuv, αlρl, αlρlul)
T

F (W (x, t)) =
(

αvρvuv, αvρvu2
v, αlρlul, αlρlu

2
l

)T

S1(x, W ) =

(

0, αv
∂p

∂x
, 0, αl

∂p

∂x

)T

S2(x, W ) = (0, αvρvg, 0, αlρlg)
T

, p = Cvργ
v = Clρ

β
l



1.2 2D Shallow Water equations with irregular

topography:































h,t + (hu),x + (hv),y = 0

(hu),t + (hu2),x + (huv),y + g
(

h2

2

)

,x
= −gh(Zf ),x

(hv),t + (huv),x + (hv2),y + g
(

h2

2

)

,y
= −gh(Zf ),y,

(2)

where h is the water elevation, u = t (u, v) the velocity, and Zf the

bottom function.



1.3 Non-isentropic Euler equations in a duct

with variable section

∂

∂t









ρA

ρAu

ρAE









+
∂

∂x









ρAu

ρA(u2 + p/ρ)

ρAuH









=











0

p
dA

dx
0











(3)

γ = 1.4

E =
p

(γ − 1)ρ
+

u2

2
H =

γp

(γ − 1)ρ
+

u2

2
(4)

A(x) is the duct section.



2 Presentation of the SRNH scheme

Integrating a first time the system in the square:

R =]xi− 1
2
, xi+ 1

2
[×[tn, tn+1[, gives :

W n+1
i = W n

i − rn

[

F
(

Rs(0, W n
i , W n

i+1)
)

− F
(

Rs(0, W n
i−1, W

n
i )

)]

+ ∆tnQn
i , (5)

where rn =
∆tn
∆x

,

Qn
i is an approximation of

1

∆tn∆x

∫

R

Q (x, W ) dxdt.



xi xi+1xi+1/2

W n
i+1

W n
i

Rs(x/t)

Figure 1: The Riemann problem solution Rs at a cell interface.



Let W n
i+ 1

2

be an approximation of Rs
(

0, W n
i , W n

i+1

)

.

xX+
xi+ 1

2

X−

tn

tn + θ

tn + θ̄

t

W n
i W n

i+1

Figure 2: Staggered box around the interface xi+ 1
2



With the choice : X− = xi and X+ = xi+1, one gets a generalized

expression :

W n
i+ 1

2

=
1

2
(W n

i + W n
i+1) −

θ

∆x

[

F (W n
i+1) − F (W n

i )
]

+ θ Qn
i+ 1

2

,

where

Qn
i+ 1

2

= G
(

W n
i , W n

i+1

)

[

E(xi+1, W
n
i+1) − E(xi, W

n
i )

∆x

]

.

A possible choice is: θ =
αn

i+ 1
2

2
∆t (see Benkhaldoun 02).



Here, to make the extension of SRNH scheme to 2D easier, one

writes: θ = αn
i+ 1

2

θ̄ where θ̄ is defined by the local Rusanov velocity

(see figure 2):

θ̄ =
∆x

2Sn
i+ 1

2

,

where Sn
i+ 1

2

= max
p=1...m

(

max
(∣

∣λn
i,p

∣

∣ ,
∣

∣λn
i+1,p

∣

∣

))

.

On gets the following expression of the intermediate state :

W n
i+ 1

2

=
1

2
(W n

i + W n
i+1) −

αn
i+ 1

2

2Sn
i+ 1

2

[

F (W n
i+1) − F (W n

i )
]

+
αn

i+ 1
2

2Sn
i+ 1

2

G
(

W n
i , W n

i+1

) [

E(xi+1, W
n
i+1) − E(xi, W

n
i )

]

.



3 SRNH final form for non linear

systems

Considering a local Roe linearisation, one obtains that necessarily

αn
i+ 1

2

= Sn
i+ 1

2

∣

∣Λ⋆
(

V
(

W n
i , W n

i+1

))∣

∣

−1
, and the SRNHS scheme

writes:



















W n
i+ 1

2

= 1

2

(

W n
i+1 + W n

i

)

− 1

2
sgn

[

Bn
i+ 1

2

]

(

W n
i+1 − W n

i

)

+∆x
2

∣

∣

∣
Bn

i+ 1
2

∣

∣

∣

−1

Qn
i+ 1

2

W n+1
i = W n

i − r
(

F (W n
i+ 1

2

) − F (W n
i− 1

2

)
)

+ ∆tQn
i

(6)

with : Bn
i+ 1

2

=
(

RΛ⋆R−1
) (

V
(

W n
i , W n

i+1

))

is a pseudo jacobian

matrix calculated at the average state V
(

W n
i , W n

i+1

)

.



4 Application to the 1D Shallow Water

equations with irregular topography

Let us consider the Shallow water equations :











∂W

∂t
+

∂F (W )

∂x
= Q (x, W ) , (x, t) ∈ D × R

×

+, D ⊂ R

W (x, 0) = W0(x), x ∈ D
(7)

W (x, t) = (h(x, t), hu(x, t))T

F (W (x, t)) =

(

hu(x, t), hu2(x, t) +
1

2
gh2(x, t)

)T

Q(x, W (x, t)) =

(

0,−gh(x, t)
dz(x)

dx

)T

.



The SRNHS scheme for problem (7) may be written:



















W n
i+ 1

2

= 1

2

(

W n
i+1 + W n

i

)

− 1

2
sgn

[

Bn
i+ 1

2

]

(

W n
i+1 − W n

i

)

+∆x
2

∣

∣

∣Bn
i+ 1

2

∣

∣

∣

−1

Qn
i+ 1

2

W n+1
i = W n

i − r
(

F (W n
i+ 1

2

) − F (W n
i− 1

2

)
)

+ ∆tQn
i

(8)

with

Qn
i+ 1

2

= − g

2∆x

(

hn
i + hn

i+1

)





0

zi+1 − zi



 ,

and

Qn
i =

1

∆t∆x

∫ tn+1

tn

∫ x
i+ 1

2

x
i−

1
2

Q(x, W (x, t))dxdt.



Définition 1. W (x, t) is a static stationary solution of the system

if
∂W

∂t
= 0 and u(x, t) = 0. In this case, one has

h(x, t) + z(x) = canstant.

Définition 2. A finite volume scheme is said to verify the exact

C-property (Bermudez & Vazquez 1999), if it preserves the

equilibrium state:

hn
i + zi = c and un

i = 0 ∀(i, n) ∈ Z × N.

Proposition 1. If the source term, in the second step of the

scheme, is discretized as follows : (Qn
i )

1
= 0, and

i) (Qn
i )

2
= − g

4∆x

(

hn
i+ 1

2

+ hn
i− 1

2

)

(zi+1 − zi−1) , or

ii) (Qn
i )

2
= − g

8∆x

(

hn
i+1 + 2hn

i + hn
i−1

)

(zi+1 − zi−1)

then the scheme (8) respects the exact C-property.
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5 Application to 1D non-isentropic

Euler equations in a duct of variable

cross section

The governing (Euler) equations can be written:

∂

∂t









ρA

ρAu

ρAE









+
∂

∂x









ρAu

ρA(u2 + p/ρ)

ρAuH









=











0

p
dA

dx
0











(9)

where ρ, u and p are the gas density, velocity and pressure

respectively. A(x) is the cross section of the duct, and E and H

represent the total energy and total enthalpy.

E =
p

(γ − 1)ρ
+

u2

2
H =

γp

(γ − 1)ρ
+

u2

2
(10)
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Figure 3: Shock tube problem with discontinuous cross section com-

puted with 200 cells. Density (left) and Mach number (right) at

t=2s (the duct cross section area is plotted also as a dotted line in

the Mach plot).
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Figure 4: Shock tube problem with discontinuous cross section com-

puted with 200 cells. Mass flow (left) and entropy (right) at t=2s.

Both quantities must be constant across the cross section disconti-

nuity.



Constant State 1 Constant State 2 Constant State 3

Exact Num. Exact Num. Exact Num.

ρ 1.433 1.427 1.285 1.287 2.208 2.211

u 0.661 0.666 1.105 1.107 1.105 1.107

p 3.764 3.747 3.231 3.237 3.231 3.238

M 0.345 0.347 0.589 0.590 0.772 0.773

Table 1: Comparison between exact and numerically computed con-

stant states on a 200 cell mesh
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Figure 5: L1 Convergence plot of the density and velocity for the

shock tube problem with cross section discontinuity. In this case the

convergence decay is more clearly visible than for the Shallow Wa-

ter Equations.), with both curves rapidly approaching a stagnation

condition.



6 Application of SRNH scheme to 1D

two-fluid model

Let us consider the two-fluid model :






∂W (x, t)

∂t
+

∂F (W (x, t))

∂x
+ S1(x, W ) = S2(x, W )

W (x, 0) = W0(x),
(11)

W (x, t) = (αvρv, αvρvuv, αlρl, αlρlul)
T

F (W (x, t)) =
(

αvρvuv, αvρvu2
v, αlρlul, αlρlu

2
l

)T

S1(x, W ) =

(

0, αv
∂p

∂x
, 0, αl

∂p

∂x
+ δ(p − pi

l)
∂αl

∂x

)T

S2(x, W ) = (0, αvρvg, 0, αlρlg)T , p − pi
l = αvρl(ul − uv)2

the subscript k is either v for vapour or l for liquid, and δ is a non

negative real parameter.



Numerical algorithm:
We use the splitting strategy presented in [Benkhaldoun 02]. The

gravity source term is treated in a first step, to get Ŵ from W n











∂Ŵ

∂t
= S2(Ŵ )

Ŵ (x, tn) = W n(x),

and using SRNH scheme, we solve






∂W (x, t)

∂t
+ A(W )

∂W (x, t)

∂x
= 0

W (x, 0) = Ŵ0(x),
(12)

where A(W ) = ∇F (W ) + C(W ) and C(W )
∂W (x, t)

∂x
= S1(x, W ).



Case δ = 0

A(W ) =















0 1 0 0

−u2
v + γp

ρv

2uv
γp
ρl

0

0 0 0 1

αl

αv

γp
ρv

0 −u2
l + αl

αv

γp
ρl

2ul















.

The SRNHS scheme writes






W n
i+ 1

2

= 1

2

(

W n
i + W n

i+1

)

− 1

2
sgn

(

A(W̄ )
) (

W n
i+1 − W n

i

)

W n+1
i = W n

i − r
(

F
(

W n
i+ 1

2

)

− F
(

W n
i− 1

2

))

+ ∆t(S1)
n
i .

(13)

W̄ is a Roe state.
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Figure 6: Ransom problem: variation of liquid quantity according to

time
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7 Application of SRNH scheme to non

homogeneous 2D Shallow Water flows

The system considered may by written as follows :






























h,t + (hu),x + (hv),y = 0

(hu),t + (hu2),x + (huv),y + g
(

h2

2

)

,x
= −gh(Zf ),x

(hv),t + (huv),x + (hv2),y + g
(

h2

2

)

,y
= −gh(Zf ),y,

(14)

where h is the water level, u = t (u, v) the water velocity and Zf

the bottom height.
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Figure 7: River bed , Ξ = h + Zf



To calculate the predictor phase of SRNHS scheme, one projects

the equations on each interface eij , and gets the following system

(Abgrall 03)

(Uη)t + (Fη),η = Q(x, y, Uη) (15)

with

Uη = (h, huη, huτ )
T

, Fη =

(

huη, hu2
η + g

h2

2
, huηuτ

)T

,

et Q(x, y, Uη) = (0,−gh(Zf ),η, 0)
T

,

uη = u · η, uτ = u · τ , η and τ the normal and the tangential vector

to the interface, and (.),η the derivate along the normal vector η.



In this case, the predictor phase of scheme SRNHS may be

written as follows :

Un
ij =

1

2

(

Un
i + Un

j

)

− 1

2
sgn

(

∇Fη

(

Ū
)) (

Un
j − Un

i

)

+
1

2

∣

∣∇Fη

(

Ū
)∣

∣

−1
Qn

ij , (16)

where

Qn
ij = −g

2
(hi + hj)

(

Zf j − Zf i

)















0

1

0















(17)

and Ū the Roe state.



The corrector phase may be written as follows :

W n+1
i = W n

i − ∆tn

Ai

∑

j∈Ni

G
(

W n
i , W n

j , Qn
ij , η

n
ij

)

+ ∆tQn
i , (18)

with

G
(

W n
i , W n

j , Qn
ij , η

n
ij

)

= F
(

W n
ij

)

· ηij

W n
ij =

(

hn
ij , (huη)

n
ij ηx − (huτ )

n
ij ηy, (huτ )

n
ij ηy + (huτ )

n
ij ηx,

)T

.

with

Qn
i = −g

hi

Ai

















0

∑

j∈Ni

Zij · (ηij)x|eij |
∑

j∈Ni

Zij · (ηij)y|eij |

















, where Zij =
Zf iAi + Zf jAj

Ai + Aj
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8 The convergence stagnation problem

Let us consider the scalar equation:

∂u

∂t
+ a

∂u

∂x
= −u

dz

dx
(19)

with a > 0 and the following source function:

z(x) =







zL if x < 0

zR if x > 0
(20)

In the following we will call:

∆z = zR − zL (21)



x

zL

zR

uR

a

u∗

uL

∆z

Figure 8: The Riemann solution for the linear equation.

The exact value u∗ in terms of uL and the problem parameters is:

u∗

exact = uL · e−∆z/a = uL(1− (∆z/a) +
1

2
(∆z/a)2 − 1

6
(∆z/a)3 + ...)



Application of the SRNHS scheme to linear equation (19) with

a > 0 leads to:

un+1
j = un

j − ar
(

un
j − un

j−1

)

+
r

4

[

(un
j+1 + un

j )(zj+1 − zj) − (un
j + un

j−1)(zj − zj−1)
]

−r

8
(un

j+1 + 2 un
j + un

j−1)(zj+1 − zj−1)

(22)

which converges to: u∗

num = uL
1− ∆z/2a + 3∆z2/64a2

1+ ∆z/2a + 3∆z2/64a2

hence: u∗

num = uL(1 − ∆z
a + 1

2

(

∆z
a

)2 − 13

64

(

∆z
a

)3
+ ...)
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Figure 9: Riemann problem for linear scalar equation with ∆z/a = 1.

Initial discontinuity at x = 20. Exact versus numerical solution with

102400 nodes (left). Error convervenge rate (right).



Another way of solving this problem avoiding the use of an exact

Godunov method is to regularize the source term discretization

(and correspondingly the initial data) to ensure that parameter

∆z/a is small at each cell interface. This can be accomplished for

instance by taking:

ẑ(x) =
zR + zL

2
+

zR − zL

2
· tanh

( x

C∆xp

)

(23)

and

û0(x) =
uR + uL

2
+

uR − uL

2
· tanh

( x

C∆xp

)

(24)
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1. SRNHS scheme with smooth initialization. Initial discontinuity
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Error convervenge rate (right).
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Figure 11: Smoothed dam break problem over a smoothed step.

Flow rate (left) and L1 Convergence plot of the velocity and the

depth (right).
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Flow rate (left) and L1 Convergence plot of the velocity and the

depth (right).



9 Pollutant Transport in the Strait of

Gibraltar

For simplicity in presentation we write the equations in a

conservative form as:

∂tW+∂x

(

F(W) − F̃(W)
)

+∂y

(

G(W) − G̃(W)
)

= Q(W), (25)

where W and Q are the vectors of conserved variables and source

terms, F and G are the convection tensor fluxes, F̃ and G̃ are the

diffusion tensor fluxes

W =















h

hu

hv

hC















, Q(W) =















0

−gh(S0x+Sfx)

−gh(S0y+Sfy)

hQ















,



F(W) =















hu

hu2 + 1

2
gh2

huv

huC















, G(W) =















hv

huv

hv2 + 1

2
gh2

hvC















,

F̃(W) = (0, 0, 0, Dxx∂x (hC) + Dxy∂y (hC))
T

G̃(W) = (0, 0, 0, Dyx∂x (hC) + Dyy∂y (hC))T

where Dxx, Dxy, Dyx and Dyy are entries of the diffusion matrix D

assumed to be nonnegative. S0x = ∂xZ, S0y = ∂yZ, with Z(x, y)

denotes the bottom topography, while Sfx and Sfy are the friction

losses along the x- and y-direction, and are defined by

Sfx = η2 u
√

u2 + v2

h4/3
, Sfy = η2 v

√
u2 + v2

h4/3
, where η is the Manning

roughness coefficient.
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10 Conclusions and future

* Construction of a new finite volume scheme designed for non

homogeneous systems

* The approximate intermediate state is upwind instead of the

numerical flux

* Both homogeneous and non homogeneous part of the system are

upwind

* Equilibrium for steady states is respected

* New applications were considered (Flow in a duct, problems of

pollutant transport)

* More complex problems (Water on a moving bed, realistic

pollutant problems) are under study


