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Introduction

Goal
Solve Ax = b, where A is a large sparse matrix, on a distributed
platform

How?
Use Domain Decomposition (DD)

Focus of the talk
DD is relevant for linear algebra applications

Can a high performance algebraic solver compete with
problem-dependent solvers?

Coarse Space for Additive Schwarz on the Schur and MaPHyS
Only in the SPD case
Need access to local matrices
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Step 1: Analysis

Global Matrix A

A is a general sparse matrix. We want to solve Ax = b.
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Step 1: Analysis

Global Matrix A Adjacency graph G

The adjacency graph of A (n×n) is used as an algebraic mesh:
G = ({1, . . . , n} , {(i , j), aij 6= 0 | aji 6= 0})

On the first row of A, a1,1, a1,2 and a1,11 6= 0
⇒ (1, 1), (1, 2) and (1, 11) ∈ G
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Step 1: Analysis

Global Matrix A Adjacency graph G

A graph partitioner is used to split the graph
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Step 1: Analysis

Global Matrix A Adjacency graph G

(
AII AIΓ

AΓI AΓΓ

)(
xI
xΓ

)
=

(
bI
bΓ

)
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Step 1: Analysis

Global Matrix A Adjacency graph G

AII has a block diagonal structure suitable for parallel computation
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Step 1: Analysis

Global Matrix A Adjacency graph G

How do we distribute AΓΓ?
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Step 1: Analysis

Local Matrix Ai Adjacency graph G

We assign each interface node to a neighboring subdomain

Ai =

(
AIiIi AIiΓi

AΓiIi AΓiΓi

)
A =

N∑
i=1

RT
i AiRi
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Step 2: Factorization

Local Matrix Ai Adjacency graph G

We factorize AIiIi and compute Si = AΓiΓi −AΓiIiA−1
IiIiAIiΓi

Ai =

(
AIiIi AIiΓi

AΓiIi AΓiΓi

)
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Step 2: Factorization

Local Schur Si Adjacency graph G

We factorize AIiIi and compute Si = AΓiΓi −AΓiIiA−1
IiIiAIiΓi

Now, on each subdomain, the whole local problem is condensed onto
the interface (dense matrix)
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Step 2: Factorization

Local Schur Si Adjacency graph G

We solve the interface problem SxΓ = f = bΓ −AΓIA−1
IIbI

with a preconditioned Krylov method
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AS Preconditioner

Local Matrix Ai Adjacency graph G

No overlap in Ai : A =
∑N

i=1RT
i AiRi

Assemble Āi = RiART
i using neighbor-to-neighbor communications

MAS

/A

=
N∑
i=1
RT

i Ā−1
i Ri

Not what we do
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i Ā−1
i Ri

Not what we do

Semi-Algebraic Coarse Space for Parallel Sparse Hybrid Solvers Louis Poirel 6/ 42



AS Preconditioner

Assembled Loc. Mat. Āi Adjacency graph G
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Step 3: Preconditioner Setup (AS/S)

Local Schur Si Adjacency graph G

No overlap in Si = AΓiΓi −AΓiIiA−1
IiIiAIiΓi : S =

∑N
i=1RT

Γi
SiRΓi

Assemble S̄i = RΓiSRΓi

MAS/S =
N∑
i=1
RT

Γi
S̄−1
i RΓi
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Step 3: Preconditioner Setup (AS/S)

Assembled Local Schur S̄i Adjacency graph G

Share not only the AΓiΓi part, but also AΓiIiA−1
IiIiAIiΓi

The neighbor’s interiors are condensed on the subdomain’s interface
too.
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Step 4: Solve

Local Schur Si Adjacency graph G

on Γ: Krylov method
S xΓ = f preconditioned withMAS/S

on I: Direct method
xIi = A−1

IiIi (bIi −AIiΓi xΓi )
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Step by step

Step 1: Analysis

Graph partitioning and data distribution

Step 2: Factorization

Computation of A−1
IiIi and Si = AΓiΓi −AΓiIiA−1

IiIiAIiΓi

Step 3: Preconditioner Setup

Assembly and factorization of S̄i

Step 4: Solve
on Γ: Krylov method

S xΓ = f preconditioned withMAS/S =
∑N

i=1R
T
Γi
S̄−1
i RΓi

on I: Direct method
xIi = A−1

IiIi (bIi −AIiΓi xΓi )
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Related DD preconditioners

Neumann-Neumann (NN)

MNN =
N∑
i=1
RT

Γi
DiS†i Di RΓi where Di is a partition of unity

and Si = AΓiΓi −AΓiIiA
−1
IiIi
AIiΓi

Schur of Additive Schwarz (S−AS)

MS−AS =
N∑
i=1
RT

Γi
Ŝi
−1 RΓi where ĀΓiΓi =

N∑
j=1
RΓiR

T
Γj
AΓjΓj RΓjR

T
Γi

and Ŝi = ĀΓiΓi −AΓiIiA
−1
IiIi
AIiΓi is the Schur of Āi

Additive Schwarz on the Schur (AS/S)

MAS/S =
N∑
i=1
RT

Γi
S̄−1
i RΓi where S̄i = RΓi S R

T
Γi

S̄i =
N∑
j=1
RΓiR

T
Γj

(
AΓiΓi −AΓiIiA

−1
IiIi
AIiΓi

)
RΓjR

T
Γi
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3D Test problem

Heterogeneous diffusion

∇(K∇u) = 1

Alternating conductivity layers of 3 elements

(ratio K = Kmax/Kmin between layers)

Domain decomposition

Constant subdomain size: 10× 10× 10 elements

N subdomains

N × 1× 1 (1D decomposition)
N/2× 2× 1 (2D decomposition)

Boundary conditions

Dirichlet on the left

Neumann elsewhere
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Software Framework

Graph Partitioner

Scotch [F. Pellegrini et al.]
Metis [G. Karypis and V. Kumar]

Sparse Direct Solver

MUMPS [P.R. Amestoy et al.]
PaStiX [P. Ramet et al.]

Dense Direct Solver
MKL library (Intel)

Iterative Solver
CG/GMRES/FGMRES [V.Fraysse and L.Giraud]
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Use it! project.inria.fr/maphys/

Installing MaPHyS

MaPHyS and its dependencies can be installed through spack in
≤ 15 minutes + coffee break

morse.gforge.inria.fr/spack/spack.html

From a laptop to an heterogeneous supercomputer

morse.gforge.inria.fr/maphys/install-maphys-cluster.html

Using MaPHyS

Documented test cases
Centralized/Distributed input

maphys.gforge.inria.fr/maphystp.html

CeCILL-C license

Semi-Algebraic Coarse Space for Parallel Sparse Hybrid Solvers Louis Poirel 17/ 42
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Interfaces for MaPHyS

Application ↓
Analysis ↓
Factorization ↓ ↓ ↓ ↓ ↓
Preconditioner Setup ↓ ↓ ↓ ↓ ↓
Solve ↓ ↓ ↓ ↓ ↓

Centralized Matrix Interface
Application provides global matrix A on one process
MaPHyS performs algebraic domain decomposition and data
distribution

A request from users
Naturally compliant with FEM, but also FV, DG, HDG. . .

provides more relevant local information: Ai is the true matrix of the
local problem!
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Two-level Parallelism [S. Nakov]
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Two-level Parallelism [S. Nakov]

Node 1

MPI process DomainThread

Node 2

Node 3 Node 4

1 thread

s

per process (32 domains in total)
One subdomain per core leads to a huge number of subdomains on
modern architectures

Lack of robustness
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Two-level Parallelism [S. Nakov]

Node 1

MPI process DomainThread

Node 3

Node 2

Node 4

2 threads per process (16 domains in total)
Multithreaded subdomains → fewer and bigger subdomains

Bigger local problem to solve /
Smaller and better-conditioned interface problem ,
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Two-level Parallelism [S. Nakov]

Node 1

MPI process DomainThread

Node 3

Node 2

Node 4

4 threads per process (8 domains in total)
Multithreaded subdomains → fewer and bigger subdomains

Bigger local problem to solve /
Smaller and better-conditioned interface problem ,
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Two-level Parallelism [S. Nakov]

Node 1

MPI process DomainThread

Node 3

Node 2

Node 4

8 threads per process (4 domains in total)
Multithreaded subdomains → fewer and bigger subdomains

Bigger local problem to solve /
Smaller and better-conditioned interface problem ,
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Results (2-level parallelism)

Hopper Platform (NERSC)

Two twelve-core AMD ’MagnyCours’ 2.1-GHz
Memory: 32 GB GDDR3
Double precision

Matrix

Nachos4M
N 4.1M
Nnz 256.4M
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Results (2-level parallelism)
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Context

Goal
Stabilize the iterative solve time
Improve the method’s scalability

How?
Add some coarse correction in our preconditioner

No change to the API

My contribution
Convergence proof

Only in the SPD case
Need Ai to be Symmetric Positive Semi-Definite (SPSD)

(e.g. through Distributed Subdomain Interface)
Experimental results

Python/MPI prototype
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2D Test problem

Heterogeneous diffusion

∇(K∇u) = q

7 alternating conductivity
layers
Subdomain: 20× 20 elements

Boundary conditions

Dirichlet on the left
Neumann elsewhere
Source: q = 1

Conductivity K (N = 8 subdomains)

Solution x∗ (N = 8 subdomains)
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Convergence Behavior

xΓ, N = 128, niter = 0
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Convergence Behavior

xΓ, N = 128, niter = 10
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Convergence Behavior

xΓ, N = 128, niter = 20
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Convergence Behavior

xΓ, N = 128, niter = 30
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Convergence Behavior

xΓ, N = 128, niter = 40
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Convergence Behavior

xΓ, N = 128, niter = 50
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Convergence Behavior

xΓ, N = 128, niter = 60
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Convergence Behavior

xΓ, N = 128, niter = 70
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Convergence Behavior

xΓ, N = 128, niter = 70

Problem
No global exchange of information
Algebraic bound on λmax(MAS/SS), but problem with λmin
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Convergence Behavior

xΓ, N = 128, niter = 70

Problem
No global exchange of information
Algebraic bound on λmax(MAS/SS), but problem with λmin

Solution
Use an exact direct solve on a coarse space V0
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Coarse Correction for AS

Coarse space V0

Should contain the problematic modes
Often problem-dependent

Notations

V0 Basis of the coarse space
R0 = V T

0 Restriction to the coarse space
S̄0 = R0SRT

0 Coarse matrix
M0 = RT

0 S̄
−1
0 R0 Coarse solve

P0 =M0S S-orthogonal projection on V0
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Coarse Correction for AS

2-level Additive Preconditioner

MAS,2 =M0 +MAS

Deflated Preconditioner

MAS,D =M0 + (I − P0)MAS (I − P0)T
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GenEO coarse space [N. Spillane 2014]

Robust Solvers
Bound on the condition number independent of the "difficulty" of
the problem and the number of subdomains
Coarse space for Additive Schwarz (AS), Neumann (NN) and Finite
Element Tearing and Interconnecting (FETI)

Context
A Symmetric Positive Definite (SPD)
Element matrices aτ

Method
Solve a generalized eigenproblem in each subdomain

keep eigenvalues below a threshold η in the coarse space

Use a two-level preconditioner
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GenEO coarse space [N. Spillane 2014]

Local Eigenproblem and Global Coarse Space

Let (pkj )
mj

k=1 be the eigenvectors of

aΩj (p, v) = λ aΩ◦
j
(Ξj(p),Ξj(v)) ∀v ∈ Vh(Ωj)

corresponding to the mj smallest eigenvalues.
V0 = span{RT

j Ξj(p
k
j ) : k = 1, . . . ,mj ; j = 1, . . . ,N}

Convergence Theorems

κ(M2A) ≤ (1 + k0)

[
2 + k0(2k0 + 1) max

1≤j≤N

(
1 +

1
λmj+1

)]
κ(MDA) ≤ k0

[
1 + k0 max

1≤j≤N

(
1 +

1
λmj+1

)]
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My contribution (1/2)

Partition of Unity

Di = RΓi

(∑N
j=1RT

Γj
RΓj

)−1
RT

Γi

Local Coarse Space

V i
0 = span{pik , Si pik = λik Di S̄iDi p

i
k with λik ≤ η}

(Si is SPSD)

Global Coarse Space

V0 =
∑N

i=1RT
Γi
DiV

i
0
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My contribution (2/2)

Number of colors
Let Nc be the minimal number of colors needed to assign a color ci to each subdomain i , such
that:

ci = cj ⇐⇒ RΓi
SRT

Γj
= 0.

Convergence of the additive operator

κ(MAS/S,2S) ≤ (1 + Nc)

(
Nc + 1 +

Nc + 2
η

)

Convergence of the deflated operator

κ(MAS/S,DS) ≤ Nc

(
1 +

1
η

)
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Outline of the proof: Fictitious Space Lemma

Upper bound: coloring techniques
Lower bound:

Existence of splittings (ui )1≤i≤N and (vi )1≤i≤N such that:

u = RT
0 u0 +

N∑
i=1

RT
Γi ui = RT

0 v0 + (I − P0)
N∑
i=1

RT
Γi vi .

Control the local norms of (ui ) through the norm of u:

N∑
i=0

||ui ||2S̄i ≤
(
Nc + 1 +

Nc + 2
η

)
||u||2S ,

N∑
i=0

||vi ||2S̄i ≤
(
1 +

1
η

)
||u||2S .

Use a Cauchy-Schwarz inequality to conclude.
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3D Test problem

Heterogeneous diffusion

∇(K∇u) = 1
Alternating conductivity layers of 3 elements (ratio K between
layers)
Dirichlet on the left, Neumann elsewhere

Domain decomposition

N × 1× 1 (1D decomposition)
N/2× 2× 1 (2D decomposition)
Constant subdomain size: 10× 10× 10 elements

Implementation

MPI+Python code (< 200 lines)
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The number of iterations is stabilized independently of K and N
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More difficult problems require a bigger coarse space
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κ(MAS/S,2S) ≤ (1 + Nc)
(
Nc + 1 + Nc+2

η

)
κ(MAS/S,DS) ≤ Nc

(
1 + 1

η

)
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Perspectives

GenEO in MaPHyS

Loosening the assumptions (Ai SPSD and A SPD)
Implementation and test of the 2-level preconditioner on real
applications

Other recent/ongoing efforts in MaPHyS

Partioning/balancing both interface and interior vertices
(A. Casadei)
Parallel analysis and dist. sub. API (M. Kuhn)
H-arithmetic for local solve (H-PaStiX) and preconditioner
(A. Falco, G. Pichon, Y. Harness)
Numerical resilience policies (M. Zounon)
Task-based implementation (S. Nakov)

Semi-Algebraic Coarse Space for Parallel Sparse Hybrid Solvers Louis Poirel 41/ 42



Thanks for your attention !

Questions ?

Funded by the Dedales ANR Project
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Outline

ANR
2-level parallelism
Subdomain Interface
Figures
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ANR DEDALES project

Goal:
High performance software for the simulation of two phase flow in
porous media

Challenges:

Very large problems
Highly heterogeneous medium, widely varying space and time scales

Solution:
Improved Domain Decomposition algorithms
Parallel hybrid linear solver

Partners:
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MPI Parallelism in MaPHyS

Factorization ↓ ↓ ↓ ↓ ↓
Preconditioner Setup ↓ ↓ ↓ ↓ ↓
Solve ↓ ↓ ↓ ↓ ↓
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MPI + threads Parallelism in MaPHyS
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Distributed Subdomain Interface [M. Kuhn]

Global data
myndof: number of degree of freedom
mysizeintrf: number of interface nodes

Local data
Ai , bi
myinterface(:): interface node list in global ordering
mynbvi: number of neighbor processes
myindexVi(:): list of neighbor processes (MPI ranks)
myptrindexVi(:): pointer to common interface nodes of neighbors
mynindexintrf(:): common interface node list of neighbors
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λmax(MAS/S,2S) ≤ Nc + 1 λmax(MAS/S,DS) ≤ Nc
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λmin(MAS/S,2S) ≥ 1
Nc+1+ Nc+2

η

λmin(MAS/S,DS) ≥ 1
1+ 1

η
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