HPCDD 04/07/2016

Semi-Algebraic Coarse Space for Parallel Sparse Hybrid Solvers

Louis Poirel Emmanuel Agullo Luc Giraud

HiePACS Project Team Inria Bordeaux Sud-Ouest

Introduction

Goal

Solve Ax = b, where A is a large sparse matrix, on a distributed platform

How?

Use Domain Decomposition (DD)

Focus of the talk

- DD is relevant for linear algebra applications
 - Can a high performance algebraic solver compete with problem-dependent solvers?
- Coarse Space for Additive Schwarz on the Schur and MaPHyS
 - Only in the SPD case
 - Need access to local matrices

1 Additive Schwarz on the Schur (AS/S)

- AS/S step by step
- Comparison with other DD preconditioners

2 MaPHyS solver

- Software Framework
- Distributed Subdomain Interface
- Two-level Parallelism

- Need for Coarse Correction
- Coarse Space for AS/S
- Experimental results

1 Additive Schwarz on the Schur (AS/S)

- AS/S step by step
- Comparison with other DD preconditioners

2 MaPHyS solver

- Software Framework
- Distributed Subdomain Interface
- Two-level Parallelism

- Need for Coarse Correction
- Coarse Space for AS/S
- Experimental results

1 Additive Schwarz on the Schur (AS/S)

- AS/S step by step
- Comparison with other DD preconditioners

2 MaPHyS solver

- Software Framework
- Distributed Subdomain Interface
- Two-level Parallelism

- Need for Coarse Correction
- Coarse Space for AS/S
- Experimental results

Global Matrix \mathcal{A}

• \mathcal{A} is a general sparse matrix. We want to solve $\mathcal{A}x = b$.

■ The adjacency graph of \mathcal{A} $(n \times n)$ is used as an algebraic mesh: $G = (\{1, ..., n\}, \{(i, j), a_{ij} \neq 0 | a_{ji} \neq 0\})$

• On the first row of \mathcal{A} , $a_{1,1}$, $a_{1,2}$ and $a_{1,11} \neq 0$

 \Rightarrow (1,1), (1,2) and (1,11) \in G

• A graph partitioner is used to split the graph

Global Matrix \mathcal{A}

 $\begin{pmatrix} \mathcal{A}_{\mathcal{I}\mathcal{I}} & \mathcal{A}_{\mathcal{I}\Gamma} \\ \mathcal{A}_{\Gamma\mathcal{I}} & \mathcal{A}_{\Gamma\Gamma} \end{pmatrix} \begin{pmatrix} x_{\mathcal{I}} \\ x_{\Gamma} \end{pmatrix} = \begin{pmatrix} b_{\mathcal{I}} \\ b_{\Gamma} \end{pmatrix}$

\blacksquare $\mathcal{A}_{\mathcal{II}}$ has a block diagonal structure suitable for parallel computation

Semi-Algebraic Coarse Space for Parallel Sparse Hybrid Solvers

Global Matrix \mathcal{A}

• How do we distribute $A_{\Gamma\Gamma}$?

Local Matrix \mathcal{A}_i

• We assign each interface node to a neighboring subdomain

• We assign each interface node to a neighboring subdomain

Local Matrix \mathcal{A}_i

• We assign each interface node to a neighboring subdomain

Local Matrix \mathcal{A}_i

• We assign each interface node to a neighboring subdomain

$$\mathcal{A}_{i} = egin{pmatrix} \mathcal{A}_{\mathcal{I}_{i}\mathcal{I}_{i}} & \mathcal{A}_{\mathcal{I}_{i}\Gamma_{i}} \ \mathcal{A}_{\Gamma_{i}\mathcal{I}_{i}} & \mathcal{A}_{\Gamma_{i}\Gamma_{i}} \end{pmatrix} \qquad \qquad \mathcal{A} = \sum_{i=1}^{N} \mathcal{R}_{i}^{\mathsf{T}} \mathcal{A}_{i} \mathcal{R}_{i}$$

• We factorize $A_{\mathcal{I}_i \mathcal{I}_i}$ and compute $S_i = A_{\Gamma_i \Gamma_i} - A_{\Gamma_i \mathcal{I}_i} A_{\mathcal{I}_i \mathcal{I}_i}^{-1} A_{\mathcal{I}_i \Gamma_i}$

$$\mathcal{A}_{i} = \begin{pmatrix} \mathcal{A}_{\mathcal{I}_{i}\mathcal{I}_{i}} & \mathcal{A}_{\mathcal{I}_{i}\Gamma_{i}} \\ \mathcal{A}_{\Gamma_{i}\mathcal{I}_{i}} & \mathcal{A}_{\Gamma_{i}\Gamma_{i}} \end{pmatrix}$$

Local Matrix \mathcal{A}_i

• We factorize $A_{\mathcal{I}_i \mathcal{I}_i}$ and compute $S_i = A_{\Gamma_i \Gamma_i} - A_{\Gamma_i \mathcal{I}_i} A_{\mathcal{I}_i \mathcal{I}_i}^{-1} A_{\mathcal{I}_i \Gamma_i}$

$$\mathcal{A}_{i} = \begin{pmatrix} \mathcal{A}_{\mathcal{I}_{i}\mathcal{I}_{i}} & \mathcal{A}_{\mathcal{I}_{i}\Gamma_{i}} \\ \mathcal{A}_{\Gamma_{i}\mathcal{I}_{i}} & \mathcal{A}_{\Gamma_{i}\Gamma_{i}} \end{pmatrix}$$

- We factorize $\mathcal{A}_{\mathcal{I}_i \mathcal{I}_i}$ and compute $\mathcal{S}_i = \mathcal{A}_{\Gamma_i \Gamma_i} \mathcal{A}_{\Gamma_i \mathcal{I}_i} \mathcal{A}_{\mathcal{I}_i \mathcal{I}_i}^{-1} \mathcal{A}_{\mathcal{I}_i \Gamma_i}$
- Now, on each subdomain, the whole local problem is condensed onto the interface (dense matrix)

• We solve the interface problem $Sx_{\Gamma} = f = b_{\Gamma} - A_{\Gamma I} A_{II}^{-1} b_{I}$ with a preconditioned Krylov method

AS Preconditioner

• No overlap in \mathcal{A}_i : $\mathcal{A} = \sum_{i=1}^{N} \mathcal{R}_i^T \mathcal{A}_i \mathcal{R}_i$

Semi-Algebraic Coarse Space for Parallel Sparse Hybrid Solvers

AS Preconditioner

No overlap in A_i : $A = \sum_{i=1}^{N} \mathcal{R}_i^T A_i \mathcal{R}_i$ Assemble $\overline{A}_i = \mathcal{R}_i \mathcal{A} \mathcal{R}_i^T$ using neighbor-to-neighbor communications

Semi-Algebraic Coarse Space for Parallel Sparse Hybrid Solvers

AS Preconditioner

No overlap in A_i: A = ∑^N_{i=1} R^T_i A_iR_i
 Assemble Ā_i = R_iAR^T_i using neighbor-to-neighbor communications

•
$$\mathcal{M}_{AS/A} = \sum_{i=1}^{N} \mathcal{R}_{i}^{T} \bar{\mathcal{A}}_{i}^{-1} \mathcal{R}_{i}$$
 Not what we do

Semi-Algebraic Coarse Space for Parallel Sparse Hybrid Solvers

Step 3: Preconditioner Setup (AS/S)

• No overlap in $S_i = A_{\Gamma_i \Gamma_i} - A_{\Gamma_i \mathcal{I}_i} A_{\mathcal{I}_i \mathcal{I}_i}^{-1} A_{\mathcal{I}_i \Gamma_i}$: $S = \sum_{i=1}^N \mathcal{R}_{\Gamma_i}^T S_i \mathcal{R}_{\Gamma_i}$

Semi-Algebraic Coarse Space for Parallel Sparse Hybrid Solvers

Step 3: Preconditioner Setup (AS/S)

No overlap in $S_i = \mathcal{A}_{\Gamma_i \Gamma_i} - \mathcal{A}_{\Gamma_i \mathcal{I}_i} \mathcal{A}_{\mathcal{I}_i \mathcal{I}_i}^{-1} \mathcal{A}_{\mathcal{I}_i \Gamma_i} : S = \sum_{i=1}^N \mathcal{R}_{\Gamma_i}^T S_i \mathcal{R}_{\Gamma_i}$ Assemble $\bar{S}_i = \mathcal{R}_{\Gamma_i} S \mathcal{R}_{\Gamma_i}$ $\mathcal{M}_{AS/S} = \sum_{i=1}^N \mathcal{R}_{\Gamma_i}^T \bar{S}_i^{-1} \mathcal{R}_{\Gamma_i}$

Semi-Algebraic Coarse Space for Parallel Sparse Hybrid Solvers

Step 3: Preconditioner Setup (AS/S)

- Share not only the $\mathcal{A}_{\Gamma_i\Gamma_i}$ part, but also $\mathcal{A}_{\Gamma_i\mathcal{I}_i}\mathcal{A}_{\mathcal{I}_i\mathcal{I}_i}^{-1}\mathcal{A}_{\mathcal{I}_i\Gamma_i}$
 - The neighbor's interiors are condensed on the subdomain's interface too.

Step 4: Solve

- on Γ: Krylov method
 - $S x_{\Gamma} = f$ preconditioned with $\mathcal{M}_{AS/S}$

Step 4: Solve

Local Matrix \mathcal{A}_i

on Γ: Krylov method
S x_Γ = f preconditioned with M_{AS/S}
on I: Direct method
x_{Ii} = A⁻¹_{IiIi} (b_{Ii} - A_{IiΓi}x_{Γi})

Step by step

Step 1: Analysis

Graph partitioning and data distribution

Step 2: Factorization

• Computation of $\mathcal{A}_{\mathcal{I}_{i}\mathcal{I}_{i}}^{-1}$ and $\mathcal{S}_{i} = \mathcal{A}_{\Gamma_{i}\Gamma_{i}} - \mathcal{A}_{\Gamma_{i}\mathcal{I}_{i}}\mathcal{A}_{\mathcal{I}_{i}\Gamma_{i}}^{-1}\mathcal{A}_{\mathcal{I}_{i}\Gamma_{i}}$

Step 3: Preconditioner Setup

• Assembly and factorization of \bar{S}_i

Step 4: Solve

on Γ: Krylov method
S x_Γ = f preconditioned with M_{AS/S} = Σ^N_{i=1} R^T_{Γi} S⁻¹_i R_{Γi}
on I: Direct method
x_{Ii} = A⁻¹_{IiIi} (b_{Ii} - A_{IiΓi}x_{Γi})

1 Additive Schwarz on the Schur (AS/S)

- AS/S step by step
- Comparison with other DD preconditioners

2 MaPHyS solver

- Software Framework
- Distributed Subdomain Interface
- Two-level Parallelism

3 Two-level preconditioner for AS/S

- Need for Coarse Correction
- Coarse Space for AS/S
- Experimental results

Related DD preconditioners

Neumann-Neumann (NN)

$$\mathbf{\mathcal{M}}_{NN} = \sum_{i=1}^{N} \mathcal{R}_{\Gamma_i}^T \ \mathbf{D}_i \mathcal{S}_i^{\dagger} \mathbf{D}_i \ \mathcal{R}_{\Gamma_i}$$

where
$$D_i$$
 is a partition of unity
and $S_i = A_{\Gamma_i \Gamma_i} - A_{\Gamma_i \mathcal{I}_i} A_{\mathcal{I}_i \mathcal{I}_i}^{-1} A_{\mathcal{I}_i \Gamma_i}$

Schur of Additive Schwarz (S-AS)

$$\textbf{M}_{S-AS} = \sum_{i=1}^{N} \mathcal{R}_{\Gamma_{i}}^{I} \ \hat{\mathcal{S}}_{i}^{-1} \ \mathcal{R}_{\Gamma_{i}} \qquad \text{where } \bar{\mathcal{A}}_{\Gamma_{i}\Gamma_{i}} = \sum_{i=1}^{N} \mathcal{R}_{\Gamma_{i}} \mathcal{R}_{\Gamma_{j}}^{I} \ \mathcal{A}_{\Gamma_{j}\Gamma_{j}} \ \mathcal{R}_{\Gamma_{j}} \mathcal{R}_{\Gamma_{i}}^{I} \mathcal$$

Additive Schwarz on the Schur (AS/S)

3D Test problem

Heterogeneous diffusion

- $\nabla(K\nabla u) = 1$
- Alternating conductivity layers of 3 elements

(ratio $K = K_{max}/K_{min}$ between layers)

Domain decomposition

- Constant subdomain size: $10 \times 10 \times 10$ elements
- N subdomains
 - $N \times 1 \times 1$ (1D decomposition)
 - $N/2 \times 2 \times 1$ (2D decomposition)

Boundary conditions

- Dirichlet on the left
- Neumann elsewhere

(nría_

Semi-Algebraic Coarse Space for Parallel Sparse Hybrid Solvers

Louis Poirel

12/42

Additive Schwarz on the Schur (AS/S)

- AS/S step by step
- Comparison with other DD preconditioners

2 MaPHyS solver

- Software Framework
- Distributed Subdomain Interface
- Two-level Parallelism

- Need for Coarse Correction
- Coarse Space for AS/S
- Experimental results

Additive Schwarz on the Schur (AS/S)

- AS/S step by step
- Comparison with other DD preconditioners

2 MaPHyS solver

- Software Framework
- Distributed Subdomain Interface
- Two-level Parallelism

- Need for Coarse Correction
- Coarse Space for AS/S
- Experimental results

Step by step

Step 1: Analysis

Graph partitioning and data distribution

Step 2: Factorization

• Computation of $\mathcal{A}_{\mathcal{I}_{i}\mathcal{I}_{i}}^{-1}$ and $\mathcal{S}_{i} = \mathcal{A}_{\Gamma_{i}\Gamma_{i}} - \mathcal{A}_{\Gamma_{i}\mathcal{I}_{i}}\mathcal{A}_{\mathcal{I}_{i}\Gamma_{i}}^{-1}\mathcal{A}_{\mathcal{I}_{i}\Gamma_{i}}$

Step 3: Preconditioner Setup

• Assembly and factorization of \bar{S}_i

Step 4: Solve

on Γ: Krylov method
S x_Γ = f preconditioned with M_{AS/S} = Σ^N_{i=1} R^T_{Γi} S⁻¹_i R_{Γi}
on I: Direct method
x_{Ii} = A⁻¹_{IiIi} (b_{Ii} - A_{IiΓi}x_{Γi})

Software Framework

Graph Partitioner

- Scotch [F. Pellegrini et al.]
- Metis [G. Karypis and V. Kumar]

Sparse Direct Solver

- MUMPS [P.R. Amestoy et al.]
- PaStiX [P. Ramet et al.]

Dense Direct Solver

MKL library (Intel)

Iterative Solver

CG/GMRES/FGMRES [V.Fraysse and L.Giraud]

Use it!

Installing MaPHyS

 \blacksquare MaPHyS and its dependencies can be installed through spack in \leq 15 minutes + coffee break

morse.gforge.inria.fr/spack/spack.html

From a laptop to an heterogeneous supercomputer

morse.gforge.inria.fr/maphys/install-maphys-cluster.html

Using MaPHyS

- Documented test cases
- Centralized/Distributed input

maphys.gforge.inria.fr/maphystp.html

CeCILL-C license

Outline

Additive Schwarz on the Schur (AS/S)

- AS/S step by step
- Comparison with other DD preconditioners

2 MaPHyS solver

Software Framework

Distributed Subdomain Interface

Two-level Parallelism

3 Two-level preconditioner for AS/S

- Need for Coarse Correction
- Coarse Space for AS/S
- Experimental results

Application			\downarrow		
Analysis			\downarrow		
Factorization	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
Preconditioner Setup	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
Solve	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow

Centralized Matrix Interface

- \blacksquare Application provides global matrix ${\cal A}$ on one process
- MaPHyS performs algebraic domain decomposition and data distribution

Application	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
Analysis	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
Factorization	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
Preconditioner Setup	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
Solve	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow

Distributed matrix interface

- \blacksquare Application provides global matrix ${\cal A}$ in a distributed way
- MaPHyS performs parallel algebraic domain decomposition and data redistribution

Application	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
Factorization Preconditioner Setup Solve	$\stackrel{\downarrow}{\downarrow}$	$\stackrel{\downarrow}{\rightarrow} \stackrel{\downarrow}{\rightarrow}$	$\stackrel{\downarrow}{\rightarrow} \stackrel{\downarrow}{\rightarrow}$	$\stackrel{\downarrow}{\rightarrow} \stackrel{\downarrow}{\rightarrow}$	$\stackrel{\downarrow}{\rightarrow} \stackrel{\downarrow}{\rightarrow}$

Distributed subdomain interface

- Application performs domain decomposition and provides subdomain connectivity and local matrices A_i in a distributed way
- Analysis is bypassed

Application	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
Factorization Preconditioner Setup Solve	$\stackrel{\downarrow}{\rightarrow} \stackrel{\downarrow}{\rightarrow}$	$\stackrel{\downarrow}{\rightarrow} \stackrel{\downarrow}{\rightarrow}$	$\stackrel{\downarrow}{\rightarrow} \stackrel{\downarrow}{\rightarrow}$	$\stackrel{\downarrow}{\rightarrow} \stackrel{\downarrow}{\rightarrow}$	$\stackrel{\downarrow}{\downarrow}_{\downarrow}$

Distributed subdomain interface

- Application performs domain decomposition and provides subdomain connectivity and local matrices A_i in a distributed way
- Analysis is bypassed
- A request from users
- Naturally compliant with FEM, but also FV, DG, HDG...
 - provides more relevant local information: A_i is the true matrix of the local problem!

Outline

Additive Schwarz on the Schur (AS/S)

- AS/S step by step
- Comparison with other DD preconditioners

2 MaPHyS solver

- Software Framework
- Distributed Subdomain Interface
- Two-level Parallelism

3 Two-level preconditioner for AS/S

- Need for Coarse Correction
- Coarse Space for AS/S
- Experimental results

- 1 thread per process (32 domains in total)
- One subdomain per core leads to a huge number of subdomains on modern architectures
 - Lack of robustness

- 2 threads per process (16 domains in total)
- \blacksquare Multithreaded subdomains \rightarrow fewer and bigger subdomains
 - Bigger local problem to solve ©
 - Smaller and better-conditioned interface problem ©

- 4 threads per process (8 domains in total)
- \blacksquare Multithreaded subdomains \rightarrow fewer and bigger subdomains
 - Bigger local problem to solve ©
 - Smaller and better-conditioned interface problem ©

- 8 threads per process (4 domains in total)
- \blacksquare Multithreaded subdomains \rightarrow fewer and bigger subdomains
 - Bigger local problem to solve S
 - Smaller and better-conditioned interface problem ©

Hopper Platform (NERSC)

- Two twelve-core AMD 'MagnyCours' 2.1-GHz
- Memory: 32 GB GDDR3
- Double precision

Matrix

	Nachos4M
Ν	4.1 <i>M</i>
Nnz	256.4 <i>M</i>
	A

Outline

Additive Schwarz on the Schur (AS/S)

- AS/S step by step
- Comparison with other DD preconditioners

2 MaPHyS solver

- Software Framework
- Distributed Subdomain Interface
- Two-level Parallelism

3 Two-level preconditioner for AS/S

- Need for Coarse Correction
- Coarse Space for AS/S
- Experimental results

Context

Goal

- Stabilize the iterative solve time
- Improve the method's scalability

How?

- Add some coarse correction in our preconditioner
 - No change to the API

My contribution

- Convergence proof
 - Only in the SPD case
 - Need A_i to be Symmetric Positive Semi-Definite (SPSD)

(e.g. through Distributed Subdomain Interface)

- Experimental results
 - Python/MPI prototype

Outline

Additive Schwarz on the Schur (AS/S)

- AS/S step by step
- Comparison with other DD preconditioners

2 MaPHyS solver

- Software Framework
- Distributed Subdomain Interface
- Two-level Parallelism

3 Two-level preconditioner for AS/S

- Need for Coarse Correction
- Coarse Space for AS/S
- Experimental results

2D Test problem

Heterogeneous diffusion

- $\nabla(K\nabla u) = q$
- 7 alternating conductivity layers
- Subdomain: 20 × 20 elements

Boundary conditions

- Dirichlet on the left
- Neumann elsewhere
- Source: q = 1

2D Test problem

Heterogeneous diffusion

- $\nabla(K\nabla u) = q$
- 7 alternating conductivity layers
- Subdomain: 20 × 20 elements

Boundary conditions

- Dirichlet on the left
- Neumann elsewhere
- Source: q = 1

Problem

- No global exchange of information
- Algebraic bound on $\lambda_{\max}(\mathcal{M}_{AS/S}S)$, but problem with λ_{\min}

Problem

- No global exchange of information
- Algebraic bound on $\lambda_{\max}(\mathcal{M}_{AS/S}S)$, but problem with λ_{\min}

Solution

■ Use an exact direct solve on a coarse space V₀

Coarse Correction for AS

Coarse space V_0

- Should contain the problematic modes
- Often problem-dependent

Notations

$$\begin{array}{ll} V_0 & & \text{Basis of th} \\ \mathcal{R}_0 &= V_0^T & & \text{Restriction} \\ \bar{\mathcal{S}}_0 &= \mathcal{R}_0 \mathcal{S} \mathcal{R}_0^T & & \text{Coarse max} \\ \mathcal{M}_0 &= \mathcal{R}_0^T \bar{\mathcal{S}}_0^{-1} \mathcal{R}_0 & & \text{Coarse solv} \\ \mathcal{P}_0 &= \mathcal{M}_0 \mathcal{S} & & \mathcal{S}\text{-orthogor} \end{array}$$

Basis of the coarse space Restriction to the coarse space Coarse matrix Coarse solve S-orthogonal projection on V₀

2-level Additive Preconditioner

$$\mathcal{M}_{AS,2} = \mathcal{M}_0 + \mathcal{M}_{AS}$$

Deflated Preconditioner

$$\mathcal{M}_{AS,D} = \mathcal{M}_0 + (\mathcal{I} - \mathcal{P}_0) \mathcal{M}_{AS} (\mathcal{I} - \mathcal{P}_0)^T$$

2-level Additive Preconditioner

$$\mathcal{M}_{AS,2} = \mathcal{M}_0 + \mathcal{M}_{AS}$$

Deflated Preconditioner

$$\mathcal{M}_{AS,D} = \mathcal{M}_0 + \left(\mathcal{I} - \mathcal{P}_0\right) \mathcal{M}_{AS} \left(\mathcal{I} - \mathcal{P}_0\right)^T$$

Additive Schwarz on the Schur (AS/S)

- AS/S step by step
- Comparison with other DD preconditioners

2 MaPHyS solver

- Software Framework
- Distributed Subdomain Interface
- Two-level Parallelism

3 Two-level preconditioner for AS/S

- Need for Coarse Correction
- Coarse Space for AS/S
- Experimental results

GenEO coarse space [N. Spillane 2014]

Robust Solvers

- Bound on the condition number independent of the "difficulty" of the problem and the number of subdomains
- Coarse space for Additive Schwarz (AS), Neumann (NN) and Finite Element Tearing and Interconnecting (FETI)

Context

- *A* Symmetric Positive Definite (SPD)
- Element matrices a_{τ}

Method

- Solve a generalized eigenproblem in each subdomain
 - \blacksquare keep eigenvalues below a threshold η in the coarse space
- Use a two-level preconditioner

GenEO coarse space [N. Spillane 2014]

Local Eigenproblem and Global Coarse Space

• Let
$$(p_j^k)_{k=1}^{m_j}$$
 be the eigenvectors of
 $a_{\Omega_j}(p,v) = \lambda \ a_{\Omega_j^\circ}(\Xi_j(p), \Xi_j(v)) \qquad \forall v \in V_h(\Omega_j)$

corresponding to the m_j smallest eigenvalues.

•
$$V_0 = \operatorname{span}\{\mathcal{R}_j^T \Xi_j(p_j^k) : k = 1, \dots, m_j; j = 1, \dots, N\}$$

Convergence Theorems

$$egin{aligned} &\kappa(\mathcal{M}_2\mathcal{A}) \leq (1+k_0) \left[2+k_0(2k_0+1)\max_{1\leq j\leq N}\left(1+rac{1}{\lambda_{m_j+1}}
ight)
ight] \ &\kappa(\mathcal{M}_D\mathcal{A}) \leq k_0 \left[1+k_0\max_{1\leq j\leq N}\left(1+rac{1}{\lambda_{m_j+1}}
ight)
ight] \end{aligned}$$

(nría_

GenEO coarse space [N. Spillane 2014]

Local Eigenproblem and Global Coarse Space

• Let
$$(p_j^k)_{k=1}^{m_j}$$
 be the eigenvectors of
 $a_{\Omega_j}(p, v) = \lambda \ a_{\Omega_j^o}(\Xi_j(p), \Xi_j(v)) \quad \forall v \in V_h(\Omega_j)$

corresponding to the m_j smallest eigenvalues.

•
$$V_0 = \operatorname{span}\{\mathcal{R}_j^T \Xi_j(p_j^k) : k = 1, \dots, m_j; j = 1, \dots, N\}$$

Convergence Theorems

$$egin{aligned} &\kappa(\mathcal{M}_2\mathcal{A}) \leq (1+k_0) \left[2+k_0(2k_0+1)\max_{1\leq j\leq N}\left(1+rac{1}{\lambda_{m_j+1}}
ight)
ight] \ &\kappa(\mathcal{M}_D\mathcal{A}) \leq k_0 \left[1+k_0\max_{1\leq j\leq N}\left(1+rac{1}{\lambda_{m_j+1}}
ight)
ight] \end{aligned}$$

(nría_

Semi-Algebraic Coarse Space for Parallel Sparse Hybrid Solvers

Louis Poire

Partition of Unity

Local Coarse Space

Global Coarse Space

Partition of Unity

$$D_i = \mathcal{R}_{\Gamma_i} \left(\sum_{j=1}^N \mathcal{R}_{\Gamma_j}^T \mathcal{R}_{\Gamma_j} \right)^{-1} \mathcal{R}_{\Gamma_i}^T$$

Local Coarse Space

Global Coarse Space

Partition of Unity

$$D_i = \mathcal{R}_{\Gamma_i} \left(\sum_{j=1}^N \mathcal{R}_{\Gamma_j}^T \mathcal{R}_{\Gamma_j} \right)^{-1} \mathcal{R}_{\Gamma_i}^T$$

Local Coarse Space

•
$$V_0^i = \operatorname{span}\{p_k^i, \quad S_i \ p_k^i = \lambda_k^i \ D_i \overline{S}_i D_i \ p_k^i \quad \text{with} \quad \lambda_k^i \le \eta\}$$

($S_i \text{ is SPSD}$)

Global Coarse Space

Partition of Unity

$$D_i = \mathcal{R}_{\Gamma_i} \left(\sum_{j=1}^N \mathcal{R}_{\Gamma_j}^T \mathcal{R}_{\Gamma_j} \right)^{-1} \mathcal{R}_{\Gamma_i}^T$$

Local Coarse Space

$$V_0^i = \operatorname{span}\{p_k^i, \quad S_i \ p_k^i = \lambda_k^i \ D_i \overline{S}_i D_i \ p_k^i \quad \text{with} \quad \lambda_k^i \le \eta \}$$

$$(S_i \text{ is SPSD})$$

Global Coarse Space

$$\bullet V_0 = \sum_{i=1}^N \mathcal{R}_{\Gamma_i}^T D_i V_0^i$$

Number of colors

Let N_c be the minimal number of colors needed to assign a color c_i to each subdomain i, such that:

$$c_i = c_j \quad \Longleftrightarrow \quad \mathcal{R}_{\Gamma_j} S \mathcal{R}_{\Gamma_j}^T = 0.$$

Convergence of the additive operator

$$\kappa(\mathcal{M}_{AS/S,2}\mathcal{S}) \leq (1+N_c)\left(N_c+1+rac{N_c+2}{\eta}\right)$$

Convergence of the deflated operator

$$\kappa(\mathcal{M}_{\mathcal{AS}/\mathcal{S},D}\mathcal{S}) \leq N_{c}\left(1+rac{1}{\eta}
ight)$$

Outline of the proof: Fictitious Space Lemma

- Upper bound: coloring techniques
- Lower bound:
 - Existence of splittings $(u_i)_{1 \le i \le N}$ and $(v_i)_{1 \le i \le N}$ such that:

$$u = \mathcal{R}_0^T u_0 + \sum_{i=1}^N \mathcal{R}_{\Gamma_i}^T u_i = \mathcal{R}_0^T v_0 + (\mathcal{I} - \mathcal{P}_0) \sum_{i=1}^N \mathcal{R}_{\Gamma_i}^T v_i.$$

• Control the local norms of (u_i) through the norm of u:

$$\sum_{i=0}^{N} ||u_i||_{\bar{\mathcal{S}}_i}^2 \leq \left(N_c + 1 + \frac{N_c + 2}{\eta}\right) ||u||_{\mathcal{S}}^2,$$

$$\sum_{i=0}^{N} ||v_i||_{\tilde{\mathcal{S}}_i}^2 \leq \left(1+\frac{1}{\eta}\right) ||u||_{\mathcal{S}}^2.$$

Use a Cauchy-Schwarz inequality to conclude.

Additive Schwarz on the Schur (AS/S)

- AS/S step by step
- Comparison with other DD preconditioners

2 MaPHyS solver

- Software Framework
- Distributed Subdomain Interface
- Two-level Parallelism

3 Two-level preconditioner for AS/S

- Need for Coarse Correction
- Coarse Space for AS/S
- Experimental results

3D Test problem

Heterogeneous diffusion

- $\nabla(K\nabla u) = 1$
- Alternating conductivity layers of 3 elements (ratio K between layers)
- Dirichlet on the left, Neumann elsewhere

Domain decomposition

- $N \times 1 \times 1$ (1D decomposition)
- $N/2 \times 2 \times 1$ (2D decomposition)
- Constant subdomain size: $10 \times 10 \times 10$ elements

Implementation

MPI+Python code (< 200 lines)

(nría_

Semi-Algebraic Coarse Space for Parallel Sparse Hybrid Solvers

Louis Poirel

(nría_

Semi-Algebraic Coarse Space for Parallel Sparse Hybrid Solvers

Louis Poirel

Innía

Louis Poire

Louis Poirel

Louis Poire

Inría

Perspectives

GenEO in MaPHyS

- Loosening the assumptions (A_i SPSD and A SPD)
- Implementation and test of the 2-level preconditioner on real applications

Other recent/ongoing efforts in MaPHyS

- Partioning/balancing both interface and interior vertices (A. Casadei)
- Parallel analysis and dist. sub. API (M. Kuhn)
- *H*-arithmetic for local solve (*H*-PaStiX) and preconditioner (A. Falco, G. Pichon, Y. Harness)
- Numerical resilience policies (M. Zounon)
- Task-based implementation (S. Nakov)

Thanks for your attention !

Questions ?

Funded by the Dedales ANR Project

Semi-Algebraic Coarse Space for Parallel Sparse Hybrid Solvers

Louis Poire

- ANR
- 2-level parallelism
- Subdomain Interface
- Figures

ANR

- 2-level parallelism
- Subdomain Interface
- Figures

ANR DEDALES project

Goal:

 High performance software for the simulation of two phase flow in porous media

Challenges:

- Very large problems
- Highly heterogeneous medium, widely varying space and time scales

Solution:

- Improved Domain Decomposition algorithms
- Parallel hybrid linear solver

Partners:

Louis Poire

ANR

2-level parallelism

- Subdomain Interface
- Figures

MPI Parallelism in MaPHyS

$\begin{array}{cccc} \mathsf{Factorization} & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \mathsf{Preconditioner Setup} & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \mathsf{Solve} & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \end{array}$

MPI + threads Parallelism in MaPHyS

ANR

2-level parallelism

Subdomain Interface

Figures

Distributed Subdomain Interface [M. Kuhn]

Global data

- myndof: number of degree of freedom
- mysizeintrf: number of interface nodes

Local data

• \mathcal{A}_i , b_i

nala

- myinterface(:): interface node list in global ordering
- mynbvi: number of neighbor processes
- myindexVi(:): list of neighbor processes (MPI ranks)
- myptrindexVi(:): pointer to common interface nodes of neighbors
- mynindexintrf(:): common interface node list of neighbors

- ANR
- 2-level parallelism
- Subdomain Interface

Figures

Louis Poire

