
Distributed Verification
of Parametric Real-Time Systems

Hoang Gia Nguyen
LIPN, CNRS UMR 7030, Université Paris 13, Sorbonne Paris Cité, France

1. Context
Real-time systems are difficult to test and their failure leads to dramatic consequences

Model checking is an automatic verification technique to verify the correctness of the sys-
tem model w.r.t. a property:

• Verification procedure: exhaustive search of the state space of the model

(State: ©; Transition: −→)

•Checking question: Does the model of the system satisfy the property?

2. Goal
• Verify real-time systems, modelled by parametric timed automata. Take advantage of

high-performance distributed computing for faster verification

→ Design algorithms distributed on a cluster to perform faster
(Note: Most algorithms use a Master-Worker scheme)

3. System model: Parametric timed automata
• A formalism to model and verify concurrent real-time systems [Alur et al., 1993].
• 1 Parametric timed automaton (parameter)↔ n.Timed automata (concrete value)

x: Clock
p: Parameters allow to represent unknown values (e.g. a transmission delay or a timeout)
Trace set: set of all sequences of (untimed) actions

4. Checking algorithm: Behavioural cartography
• Exhibit all subparts of the parameter space (system behaviours) (i.e. dense sets of pa-

rameter values of the parametric timed automata) [André and Fribourg, 2010]

• Easily check a certain value or a certain trace set for a certain behaviour

Method: Enumerate integer points and generate a tile (use the Inverse Method
[André et al., 2009]). All points in a same tile have the same possible behaviours

5. Distribution: High performance distributed algorithms

Solution 1: Point-based distribution
Master sends all the individual points to the Workers [André et al., 2015a,
André et al., 2014]. 3 algorithms:

1. Sequential: Each point is sent to a worker sequentially
2. Random: Points are selected randomly, then switch to Sequential
3. Shuffle: Similar to Sequential, but the master must statically compute the array of all

points, then shuffle all points, then store them back in the array (new!)

Solution 2: Region-based distribution
Each process is in charge of a set of points (subdomain) [André et al., 2015a]

Static:
•One of the processes splits the do-

main, then sends to other processes
and gathers the results of all pro-
cesses
•Drawback: No load balancing although

the workload is irregular

Dynamic:
• A Master is solely responsible for gath-

ering tiles and splitting domain/sub-
domains
• The master monitors the progress of

all workers: it can balance workload
(by splitting) between workers

6. Implementation and experiments

• IMITATOR [André, Fribourg, Kühne, Soulat, 2012] : Parameter synthesis tool for real-time systems
•OCaml: All algorithms implemented in the OCaml language
•MPI: Using the OcamlMPI library bindings on top of Open MPI for message-passing be-

tween processes
•Grid’5000: homogeneous cluster featuring various technologies. Experiments conducted

on 2 real clusters: Pastel (Toulouse, FR) 140 4-core nodes and Griffon (Nancy, FR) 92
8-core nodes

The case studies are a flip-flop circuit, a root contention protocol, some tasks scheduling
problems and a networked automation system:

Hybrid: switch between Subdomain + H (≥100.000 points) and Shuffle (<100.000 points)

7. Conclusion and future works
• Proposed a new efficient distributed algorithm + Heuristic for Behavioural Cartography
• Implemented the new algorithms in IMITATOR

•Design an fully distributed scheme for BC (No Master!)
• Try BC in GPU’s or CPU+GPU’s environments
• Formally prove the deadlock-freeness of our master-worker communication scheme

References
[Alur et al., 1993] Alur, R., Henzinger, T. A., and Vardi, M. Y. (1993). Parametric real-time reasoning. In STOC, pages 592–601. ACM.

[André et al., 2009] André, É., Chatain, Th., Encrenaz, E., and Fribourg, L. (2009). An inverse method for parametric timed automata. IJFCS, 20(5):819–836.

[André et al., 2014] André, É., Coti, C., and Evangelista, S. (2014). Distributed behavioral cartography of timed automata. In Dongarra, J., Ishikawa, Y., and
Atsushi, H., editors, 21st European MPI Users’ Group Meeting (EuroMPI/ASIA’14), pages 109–114. ACM.

[André and Fribourg, 2010] André, É. and Fribourg, L. (2010). Behavioral cartography of timed automata. In RP, volume 6227 of Lecture Notes in Computer
Science, pages 76–90. Springer.

[André et al., 2012] André, É., Fribourg, L., Kühne, U., and Soulat, R. (2012). IMITATOR 2.5: A tool for analyzing robustness in scheduling problems. In FM,
volume 7436 of Lecture Notes in Computer Science, pages 33–36. Springer.

[André et al., 2015a] André, É., Lipari, Coti, C., and Nguyen, H. G. (2015a). Enhanced distributed behavioral cartography of parametric timed automata. In
Butler, M. and Conchon, S., editors, Proceedings of the 7 ICFEM’15, Springer LNCS 9407, November 2015. Springer.

[André et al., 2015b] André, É., Lipari, G., Nguyen, H. G., and Sun, Y. (2015b). Reachability preservation based parameter synthesis for timed automata. In
Havelund, K., Holzmann, G., and Joshi, R., editors, Proceedings of the 7th NASA Formal Methods Symposium (NFM’15), volume 9058 of Lecture Notes in
Computer Science, pages 50–65. Springer.


