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1. Context
Real-time systems are difficult to test and their failure leads to dramatic consequences

Model checking is an automatic verification technique to verify the correctness of the sys-
tem model w.r.t. a property:

• Verification procedure: exhaustive search of the state space of the model

(State: ©; Transition: −→)

•Checking question: Does the model of the system satisfy the property?

2. Goal
• Verify real-time systems, modelled by parametric timed automata. Take advantage of

high-performance distributed computing for faster verification

→ Design algorithms distributed on a cluster to perform faster
(Note: Most algorithms use a Master-Worker scheme)

3. System model: Parametric timed automata
• A formalism to model and verify concurrent real-time systems [Alur et al., 1993].
• 1 Parametric timed automaton (parameter)↔ n.Timed automata (concrete value)

x: Clock
p: Parameters allow to represent unknown values (e.g. a transmission delay or a timeout)
Trace set: set of all sequences of (untimed) actions

4. Checking algorithm: Behavioural cartography
• Exhibit all subparts of the parameter space (system behaviours) (i.e. dense sets of pa-

rameter values of the parametric timed automata) [André and Fribourg, 2010]

• Easily check a certain value or a certain trace set for a certain behaviour

Method: Enumerate integer points and generate a tile (use the Inverse Method
[André et al., 2009]). All points in a same tile have the same possible behaviours

5. Distribution: High performance distributed algorithms

Solution 1: Point-based distribution
Master sends all the individual points to the Workers [André et al., 2015a,
André et al., 2014]. 3 algorithms:

1. Sequential: Each point is sent to a worker sequentially
2. Random: Points are selected randomly, then switch to Sequential
3. Shuffle: Similar to Sequential, but the master must statically compute the array of all

points, then shuffle all points, then store them back in the array (new!)

Solution 2: Region-based distribution
Each process is in charge of a set of points (subdomain) [André et al., 2015a]

Static:
•One of the processes splits the do-

main, then sends to other processes
and gathers the results of all pro-
cesses
•Drawback: No load balancing although

the workload is irregular

Dynamic:
• A Master is solely responsible for gath-

ering tiles and splitting domain/sub-
domains
• The master monitors the progress of

all workers: it can balance workload
(by splitting) between workers

6. Implementation and experiments

• IMITATOR [André, Fribourg, Kühne, Soulat, 2012] : Parameter synthesis tool for real-time systems
•OCaml: All algorithms implemented in the OCaml language
•MPI: Using the OcamlMPI library bindings on top of Open MPI for message-passing be-

tween processes
•Grid’5000: homogeneous cluster featuring various technologies. Experiments conducted

on 2 real clusters: Pastel (Toulouse, FR) 140 4-core nodes and Griffon (Nancy, FR) 92
8-core nodes

The case studies are a flip-flop circuit, a root contention protocol, some tasks scheduling
problems and a networked automation system:

Hybrid: switch between Subdomain + H (≥100.000 points) and Shuffle (<100.000 points)

7. Conclusion and future works
• Proposed a new efficient distributed algorithm + Heuristic for Behavioural Cartography
• Implemented the new algorithms in IMITATOR

•Design an fully distributed scheme for BC (No Master!)
• Try BC in GPU’s or CPU+GPU’s environments
• Formally prove the deadlock-freeness of our master-worker communication scheme
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