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Introduction
Let us consider the conservation law defined by

∂w
∂t

+
∂f(w)

∂x
+

∂g(w)

∂y
= 0, (1)

to be solved in a complex shaped domain.

Objectifs
We aim at constructing a general RBF Meshfree
method having good qualities of accuracy an robust-
ness, efficient enough and able to deal with convection
dominated problems.

Radial basis function formulation
Let us assume that

f(wi) = ∑
j∈Ii

λ jϕ(ri j,ε), (2)

where Λ = {λ1, . . . ,λm} are the expansion coefficients to be determined and ϕ(r,ε) is
a radial basis function with ri j the Euclidean distance between the ieth and the jeth
points.

In a compact form, equation (2) can be written as

f(w) = ΦΛ, (3)

which is solved to determine the local expansion coefficients, if the RBF matrix Φ is
invertible;

Λ = Φ
−1f(w). (4)

By linearity, the partial derivative of the flux f(wi) from equation (1) can be evaluated
in its compact form

fx(w) = ΦxΛ = ΦxΦ
−1f(w) (5)

where Dx = ΦxΦ
−1 is called the differentiation matrix associated to the partial deriva-

tive that respects x and Dx = ΦyΦ
−1 is calculated is the same manner. Hence, in (1)

:

fx(w) = Dxf(w) and gy(w) = Dyg(w). (6)

Inserting the above expression in (1), a semi-discrete formulation of the system (1) can
be obtained as

∂w
∂t

+Dxf(w)+Dyg(w) = 0. (7)

The canonical system of ordinary differential equations of (7) is

dw
dt

= F(w)+G(w), t ∈ (0,T ], (8)

where F(w) =−Dxf(w) and G(w) =−Dyg(w). Therefore,

wn+1 = wn+∆t [F(wn)+G(wn)] . (9)

Stabilized high performance schemes
The proposed meshfree scheme (9) is only first order accurate. Instead of using this formulation, some
stable high order schemes are achieved :
• A quasi second order predictor-corrector scheme based on the method of characteristics and midpoints;
• A reconstruction of states using MUSCL slope limiters to obtain high order schemes.
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Numerical results
• 1D Shallow water equations using predictor-corrector scheme
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Steady−state solution
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Lock-exchange in the Gibraltar Strait

• 2D Shallow water equations using MUSCL reconstruction
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Dambreak problem: results with Van Albada (left) and comparison
of profiles using different limiters (right)

• Navier-Stokes equations using RBF-characteristics scheme
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Lid-driven cavity flow problem using Re = 10,000.

Other results

halton solution
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2D Burgers problem on comlex geometry using different distributions
of collocation points and an adapted upwind local stencil.

Perspectives
• Solving pollutant and sediment transport in two-dimensional shallow water flows

• considering more complex shaped domains such as Mediterranean Sea and North
Sea


