High Performance meshfree methods for fluid flows Computation

F. Benkhaldoun, A. Halassi, D. Ouazar, M. Seaid and A. Taik

LAGA, Université Paris 13, SPC, Villetaneuse, France,

Introduction

Let us consider the conservation law defined by

$$\frac{\partial \mathbf{w}}{\partial t} + \frac{\partial \mathbf{f}(\mathbf{w})}{\partial x} + \frac{\partial \mathbf{g}(\mathbf{w})}{\partial y} = 0,$$

to be solved in a complex shaped domain.

Objectifs

We aim at constructing a general RBF Meshfree method having good qualities of accuracy an robustness, efficient enough and able to deal with convection dominated problems.

(7)

(8)

(9)

Radial basis function formulation

Let us assume that

$$\mathbf{f}(\mathbf{w}_{\mathbf{i}}) = \sum_{j \in I_i} \lambda_j \varphi(r_{ij}, \boldsymbol{\varepsilon}), \qquad (2)$$

(1)

where $\Lambda = {\lambda_1, ..., \lambda_m}$ are the expansion coefficients to be determined and $\varphi(r, \varepsilon)$ is a radial basis function with r_{ij} the Euclidean distance between the *i*eth and the *j*eth points.

In a compact form, equation (2) can be written as

$$\mathbf{f}(\mathbf{w}) = \Phi \Lambda, \tag{3}$$

which is solved to determine the local expansion coefficients, if the RBF matrix Φ is invertible;

$$\Lambda = \Phi^{-1} \mathbf{f}(\mathbf{w}). \tag{4}$$

By linearity, the partial derivative of the flux $\mathbf{f}(\mathbf{w}_i)$ from equation (1) can be evaluated in its compact form

$$\mathbf{f}_x(\mathbf{w}) = \mathbf{\Phi}_x \mathbf{\Lambda} = \mathbf{\Phi}_x \mathbf{\Phi}^{-1} \mathbf{f}(\mathbf{w})$$
(5)

where $\mathbf{D}_x = \Phi_x \Phi^{-1}$ is called the differentiation matrix associated to the partial derivative that respects *x* and $\mathbf{D}_x = \Phi_y \Phi^{-1}$ is calculated is the same manner. Hence, in (1) :

Numerical results

• 1D Shallow water equations using predictor-corrector scheme

Lock-exchange in the Gibraltar Strait

$$\mathbf{f}_x(\mathbf{w}) = \mathbf{D}_x \mathbf{f}(\mathbf{w})$$
 and $\mathbf{g}_y(\mathbf{w}) = \mathbf{D}_y \mathbf{g}(\mathbf{w})$. (6)

Inserting the above expression in (1), a semi-discrete formulation of the system (1) can be obtained as

$$\frac{\partial \mathbf{w}}{\partial t} + \mathbf{D}_x \mathbf{f}(\mathbf{w}) + \mathbf{D}_y \mathbf{g}(\mathbf{w}) = 0.$$

The canonical system of ordinary differential equations of (7) is

$$\frac{d\mathbf{w}}{dt} = \mathbf{F}(\mathbf{w}) + \mathbf{G}(\mathbf{w}), \ t \in (0,T],$$

where $\mathbf{F}(\mathbf{w}) = -\mathbf{D}_x \mathbf{f}(\mathbf{w})$ and $\mathbf{G}(\mathbf{w}) = -\mathbf{D}_y \mathbf{g}(\mathbf{w})$. Therefore,

 $\mathbf{w}^{n+1} = \mathbf{w}^n + \Delta t \left[\mathbf{F}(\mathbf{w}^n) + \mathbf{G}(\mathbf{w}^n) \right].$

Dambreak problem: results with Van Albada (left) and comparison of profiles using different limiters (right)

• Navier-Stokes equations using RBF-characteristics scheme

Lid-driven cavity flow problem using Re = 10,000.

Stabilized high performance schemes

The proposed meshfree scheme (9) is only first order accurate. Instead of using this formulation, some stable high order schemes are achieved :

• A quasi second order predictor-corrector scheme based on the method of characteristics and midpoints;

Other results

• A reconstruction of states using MUSCL slope limiters to obtain high order schemes.

Bibliography

• F. Benkhaldoun, A. Halassi, D. Ouazar, M. Seaïd and A. Taik. Slope limiters for radial basis functions applied to conservation laws with discontinuous flux function (2016). *Engineering Analysis with Boundary Elements, Volume 66, Pages 49-65.*

• F. Benkhaldoun, A. Halassi, D. Ouazar, M. Seaïd and A. Taik. A new local radial basis function for solving free surface water flows with topography (2016). *International Journal of Applied and Computational Mathematics*, submitted.

• F. Benkhaldoun, A. Halassi, D. Ouazar, M. Seaïd and A. Taik. A stabilized meshless method for time-dependent convection-dominated flow problems (2016). *Mathematics and Computers in Simula-tion*, submitted.

2D Burgers problem on comlex geometry using different distributions of collocation points and an adapted upwind local stencil.

Perspectives

Solving pollutant and sediment transport in two-dimensional shallow water flows
considering more complex shaped domains such as Mediterranean Sea and North Sea