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Contribution : FVC
We present a new finite volume method for the numerical solution of shallow water models for either flat or
non-flat topography. The method is simple, accurate and avoids the solution of Riemann problems during
the time integration process.
The performance of the method is also demonstrated by comparing the results and the cpu times obtained
using some other FV schemes.

Comparison of some test examples

1 Classical dam-break problem [1]
Gridpoints Roe method SRNH method FVC method

500 8.746 13.193 1.008
1000 34.780 52.655 2.707
2000 134.152 210.620 15.756
4000 534.124 834.055 61.096
8000 2178.701 3378.303 249.209

CPU times for classical dam-break on wet bed at t = 50 s using hr/hl = 0.005.

2 Density dam-break problem [2]
a single initial discontinuity two initial discontinuities

Gridpoints FVC Rusanov ROE SRNH FVC Rusanov ROE SRNH

100 0.21 0.06 0.78 0.81 0.61 0.17 2.67 2.7
200 0.4 0.19 3.1 3.17 1.33 0.6 10.36 10.6
400 0.94 0.67 12.18 12.58 3.36 2.22 41.37 42.46
800 2.58 2.66 48.83 50.34 9.64 8.73 164.86 172.34
1600 8.48 10.25 193.5 206.58 31.29 34.46 656.72 705.67

CPU times for density dam-break problem at t = 200 s using different gridpoints.

3 Multi-layered dam-break problem [3]
10-layer model 20-layer model

Gridpoints Kinetic scheme fvc scheme Kinetic scheme fvc scheme

200 3.2 3.0 5.4 4.8
400 12.5 9.7 20.8 15.5
800 49.1 34.9 81.9 55.4

CPU times for 10-layer and 20-layer models on different meshes for a dam-break at t = 14.

4 Circular dam-break problem [4]
4 s 8 s 20 s

Gridpoints FVC ROE SRNH FVC ROE SRNH FVC ROE SRNH

50× 50 3.74 6.03 6.16 10.66 18 18.2 17.64 29.74 30.02
100× 100 23.52 44.63 46.27 70.61 137.22 139.81 115.17 230.29 232.54

CPU times on different meshes for circular dam-break on a flat bottom at different times.
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1D Formulation
In a vector form, the proposed Finite Volume Char-
acteristics (FVC) method reads
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i±1/2 = F(Wn

i±1/2) are the numerical fluxes
at x = xi±1/2 and time tn. Here, Wn

i±1/2 is con-
structed with the method of characteristics applied
to the advective version of the considered system.

The characteristic curves are solutions of the initial-
value problem
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Once the characteristics curves Xi+1/2(tn) are
known, a solution at the cell interface xi+1/2 is
reconstructed.

Conclusion

The new method has several advantages. First,
it can compute the numerical flux corresponding to
the real state of water flow without relying on Rie-
mann problem solvers. Second, reasonable accuracy
can be obtained easily and no special treatment is
needed to maintain a numerical balance, because it is

performed automatically in the integrated numerical
flux function. Finally, the proposed approach does
not require either nonlinear solution or special front
tracking techniques. Furthermore, it has strong ap-
plicability to various conservative laws.

2D Formulation
The Eulerian step
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The Lagrangian step
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