
High Performance meshfree methods for fluid flows
Computation

F. Benkhaldoun1 A. Halassi2 D. Ouazar3 M. Seaid4 A. Taik2

1LAGA, Unstitut Galillé, Université Paris 13, Villetaneuse, France
2LaboMAC & PM, Dept. Maths., FSTM, Université Hassan II de Casablanca, Maroc
3LASH, Ecole Mohammadia d’Ingénieurs, Université Mohamed V de Rabat, Maroc

4School of Engineering and Computing Sciences, University of Durham, U.K.

April 6, 2016

Acknowledgements : This work is financially supported by the
EnCoMix Paris 13 SPC Project
& SYSCOM project of Moroccan CNRST.

F. Benkhaldoun (LAGA) RBF-TVD for conservation laws April 6, 2016 1 / 14



1 Introduction

2 Local RBF scheme formulation

3 Numerical results

F. Benkhaldoun (LAGA) RBF-TVD for conservation laws April 6, 2016 2 / 14



Introduction

Let us consider the conservation law defined by

∂w

∂t
+

∂

∂x
f(w) +

∂

∂y
g(w) = 0, (x, y) ∈ R2, t > 0,

(1)
w(x, y, 0) = w0(x, y), (x, y) ∈ R2,

with w = w(x, t) is a scalar function, f(w) and g(w) are linear or
nonlinear functions.
This kind of PDEs are widely used for numerical simulations of
physical, biological and environmental phenomena.
The goal of this work is to propose and study a robust and stable
meshfree method to solve accurately this PDE in complex shaped
domains.
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Local RBF scheme formulation

The problem is discretized in a set of N collocation point
x = {x1, . . . , xN} called centers.
For each center, the local RBF method is formulated as a local
interpolation of the form:

f [i](x) =
∑

j∈Ii,m

λj(t)φ(‖x− xj‖2), (2)

where Λ = {λj} are the expansion coefficients of the RBF method
to be determined, φ is a radial basis function and Ii,m is a local
vector that contains the reference node i and indices of collocation
points belonging in the local stencil.
By imposing the interpolation condition in each point of the
stencil, we obtain

f [i](xj) = f(xj), j ∈ Ii,m. (3)

F. Benkhaldoun (LAGA) RBF-TVD for conservation laws April 6, 2016 4 / 14



Local RBF scheme formulation

This produces the linear m×m system

BΛ = f(Ii,m),

to be solved to local expansion coefficients Λ.
The elements of the interpolation matrix B are

bkj = φ(‖xk − xj‖), k, j ∈ Ii,m. (4)

If the local interpolation matrix B is invertible, expansion
coefficients Λ exist and are given by

Λ = B−1f(Ii,m). (5)
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Local RBF scheme formulation

To calculate an approximation of partial derivatives of flux
functions f(u) at the reference point i, the differentiation operator
L is applied as

Lf(xi) =
∑

j∈Ii,m

λjLφ(‖xi − xj‖2), (6)

which can be written in scalar product by

Lf(xi) = h · Λ,

where Λ is a column vector with m elements and h is a line vector
with m elements defined by

hj = Lφ(‖xi − xj‖), j ∈ Ii,m.
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Local RBF scheme formulation

Using equation (5), coefficients Λ can be replaced in the previous
equation by

Lf(xi) = h · (B−1f(Ii,m)) = (h ·B−1)f(Ii,m) = D · f(Ii,m), (7)

where D is a vector containing the m differentiation weights ωj . Thus,
partial differentiation of the flux function f(u) are computed by simply
multiplying the flux values in the points belonging in the local stencil
with the local differentiation weights

Lf(xi) =
∑

j∈Ii,m

ωjf(xj), j ∈ Ii,m. (8)
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Local RBF scheme formulation

We obtain the semi-discrete form in the reference point i

∂u

∂t
|xi + Lxf(u)i + Lyg(u)i = 0,

which can be rewritten as

du

dt
|xi = F (u)i +G(u)i,

with
F (u)i = −Lxf(u)i = −

∑
j∈Ii,m

χjf(uj)

and
G(u)i = −Lyg(u)i = −

∑
j∈Ii,m

Υjg(uj),

where χ and Υ are the local differentiation weights associated to the
partial derivatives that respect x and y respectively.
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Local RBF scheme formulation

An explicit first order Euler scheme is obtained by

un+1
i = uni −∆t

 ∑
j∈Ii,m

χjf(uj) +
∑

j∈Ii,m

Υjg(uj)

 . (9)

To ensure a stable, high-order local meshfree scheme, we use the
following techniques:

A predictor/corrector scheme based on the characteristics methods
at the midpoints;
An upwind RBF-MUSCL scheme with stencil adaptation and slope
limiters incorporating;
An upwind RBF-MUSCL scheme with state reconstruction and
slope limiters incorporating.
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Numerical results Multilayer shallow water equations
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Figure: Lock-exchange between the Mediterranean Sea and the Atlantic
ocean, initial solution (left) stationary solution (right).
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Numerical results Multidimensional shallow water equations
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Figure: Dambreak problem: Van Albada solution (left) and profiles
comparison of different slope limiters (right).
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Numerical results Lid-Driven Cavity problems
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Figure: Lid-Driven Cavity flows for Re = 10000.
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Numerical results Burgers problem in a complexly shaped domain

halton solution

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 

 

Uniform

Halton

Random

Figure: Burgers problem in a complex domain using different distributions of
collocation points.
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Numerical results Burgers problem in a complexly shaped domain

Thank you for your attention !
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