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Introduction

@ Let us consider the conservation law defined by

ow 0 0
ALY,
+ (w) + 3y

= 0 z.y) €ER% >0,
at am g(w) ) (‘L/ y) e 7 > I
w(z,y,0) = wo(z,y), (z,y)€R?

(1)

with w = w(x,t) is a scalar function, f(w) and g(w) are linear or
nonlinear functions.

e This kind of PDEs are widely used for numerical simulations of
physical, biological and environmental phenomena.

@ The goal of this work is to propose and study a robust and stable
meshfree method to solve accurately this PDE in complex shaped
domains.
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Local RBF scheme formulation

@ The problem is discretized in a set of N collocation point
x={x1,...,zy} called centers.

For each center, the local RBF method is formulated as a local
interpolation of the form:

@)=Y M@)oz -2, (2)

jeli,m,

where A = {\;} are the expansion coefficients of the RBF method
to be determined, ¢ is a radial basis function and /;,, is a local
vector that contains the reference node 7 and indices of collocation
points belonging in the local stencil.

By imposing the interpolation condition in each point of the
stencil, we obtain

@) = f(5), € Lim. (3)
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Local RBF scheme formulation

@ This produces the linear m x m system

BA = f(Izm)

to be solved to local expansion coefficients A.

@ The elements of the interpolation matrix B are

bk:j - d)(ka — Ly Dv k,j € Ii,m- <4)

o If the local interpolation matrix B is invertible, expansion
coefficients A exist and are given by

A= B (L m). (5)
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Local RBF scheme formulation

e To calculate an approximation of partial derivatives of flux
functions f(u) at the reference point i, the differentiation operator
L is applied as

Lf() = > NEL(lwi — zll2), (6)

jeli,nl
which can be written in scalar product by
Lf(x;)=h-A,

where A is a column vector with m elements and h is a line vector
with m elements defined by

hj = L(|lzi — z5l)),  J € Ligm.
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Local RBF scheme formulation

Using equation (5), coefficients A can be replaced in the previous
equation by

Lf(wi) =h- (B f(Lim)) = (h- B f(Lim) =D fLim), (7)

where D is a vector containing the m differentiation weights w;. Thus,
partial differentiation of the flux function f(u) are computed by simply
multiplying the flux values in the points belonging in the local stencil
with the local differentiation weights

Ef(l‘i) = Z ij(l'j)a JE [i.,777,~ (8)

.jEI'i,m
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Local RBF scheme formulation

We obtain the semi-discrete form in the reference point ¢

O
l’:}:i + ‘C f( ) + ﬁ?ﬂ(“)f - 0
ot
which can be rewritten as
du
e = Flu)i + Glu,
with
Fu)i = —Lof(u)i=— Y xjf(u))
7€['Lm
and
G(u)i = —Lyg(u); Z T,9(uy ),
jelb.ﬂl

where x and T are the local differentiation weights associated to the
partial derivatives that respect = and y respectively.
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Local RBF scheme formulation

@ An explicit first order Euler scheme is obtained by

't =l — At Z X f(uj) + Z T,g(uj) | . (9

7€]'Lm jeli,m

~—

e To ensure a stable, high-order local meshfree scheme, we use the
following techniques:

o A predictor/corrector scheme based on the characteristics methods
at the midpoints;

e An upwind RBF-MUSCL scheme with stencil adaptation and slope
limiters incorporating;

o An upwind RBF-MUSCL scheme with state reconstruction and
slope limiters incorporating.
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INRITSTEI ST BYSENIEEI  Multilayer shallow water equations

Initial Conditions Steady-state solution
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Figure: Lock-exchange between the Mediterranean Sea and the Atlantic
ocean, initial solution (left) stationary solution (right).
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Multidimensional shallow water equations

= First order [|
— Van Leer
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Figure: Dambreak problem: Van Albada solution (left) and profiles
comparison of different slope limiters (right).
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Figure: Lid-Driven Cavity flows for Re = 10000.
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Numerical results Burgers problem in a complexly shaped domain

halton solution

Figure: Burgers problem in a complex domain using different distributions of
collocation points.

F. Benkhaldoun (L ) RBF-TVD for conservation laws April 6, 2016 13 / 14



Numerical results Burgers problem in a complexly shaped domain

Thank you for your attention !
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