## A fast finite volume solver for hydrostatic shallow water flows

#### Fayssal BENKHALDOUN

LAGA, Université Paris 13

Joint work with : Emmanuel AUDUSSE (Université Paris 13, France) Saida SARI (IPEIN, Tunisie) Mohammed SEAID (University of Durham, UK)

HPCDD day, 7<sup>th</sup> April, 2016

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

# Example of a Shallow Water model : Sediment Transport in 1D

$$\frac{\partial h}{\partial t} + \frac{\partial (hu)}{\partial x} = \frac{E - D}{1 - p}$$

$$\frac{\partial (hu)}{\partial t} + \frac{\partial}{\partial x} \left( hu^2 + \frac{1}{2}gh^2 \right) = gh(-\frac{\partial Z}{\partial x} - S_f) - \frac{(\rho_s - \rho_w)gh^2}{2\rho}\frac{\partial c}{\partial x}$$

$$-\frac{(\rho_0 - \rho)(E - D)u}{\rho(1 - p)}$$

$$\frac{\partial (hc)}{\partial t} + \frac{\partial (huc)}{\partial x} = E - D$$

$$\frac{\partial Z}{\partial t} = -\frac{E - D}{1 - p}$$

[3] Computational Dam-Break Hydraulics over Erodible Sediment Bed by Cao, (2004)

HPCDD day, 7<sup>th</sup> April, 2016

・ロト ・四ト ・ヨト ・ヨト

臣

### FVC method

$$\partial_t U + \partial_x F(U) = 0.$$

$$\partial_t U + V \partial_x U = 0, \quad V = F'(U).$$

$$\frac{dX_{i+1/2}(\tau)}{d\tau} = V_{i+1/2}(\tau, X_{i+1/2}(\tau)),$$

$$V_{i+1/2}(t_n + \alpha \Delta t) = x_{i+1/2},$$

$$V_{i+1/2}(\tau, X_{i+1/2}(\tau))$$

where  $V_{i+1/2} = F'(U_{i+1/2})$ .

#### Classical shallow water model



Figure: FVC. (left) Dam-break at t = 50 s using  $h_r/h_l = 0.005$ . (center) transcritical flow without shock. (right) transcritical flow with shock.

| Gridpoints | Roe method | SRNH method | FVC method |
|------------|------------|-------------|------------|
| 500        | 8.746      | 13.193      | 1.008      |
| 1000       | 34.780     | 52.655      | 2.707      |
| 2000       | 134.152    | 210.620     | 15.756     |
| 4000       | 534.124    | 834.055     | 61.096     |
| 8000       | 2178.701   | 3378.303    | 249.209    |

Table: Computational times in seconds for dam-break on wet bed at  $t = 50 \ s$  using  $h_r/h_l = 0.005$  and different gridpoints.

HPCDD day, 7<sup>th</sup> April, 2016

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

#### Multi-layered shallow water model



Figure: Comparisons of numerical predictions with the analytical solution for the wind-driven circulation flow without bottom friction : (left) Kinetic scheme, (right) FVC scheme.

|            | 10-layer       | model      | 20-layer model |            |  |
|------------|----------------|------------|----------------|------------|--|
| Gridpoints | Kinetic scheme | FVC scheme | Kinetic scheme | FVC scheme |  |
| 200        | 3.2            | 3.0        | 5.4            | 4.8        |  |
| 400        | 12.5           | 9.7        | 20.8           | 15.5       |  |
| 800        | 49.1           | 34.9       | 81.9           | 55.4       |  |

Table: CPU times for 10-layer and 20-layer models on different meshes for a dam-break at t = 14.

イロト イヨト イヨト イヨト

#### Density-driven shallow water flows



Figure: Density dam-break problem on a flat bottom with : (left) a single initial discontinuity, (right) two initial discontinuities.

|            | a single initial discontinuity |         |       |        | two initial discontinuities |         |        |        |
|------------|--------------------------------|---------|-------|--------|-----------------------------|---------|--------|--------|
| Gridpoints | FVC                            | Rusanov | ROE   | SRNH   | FVC                         | Rusanov | ROE    | SRNH   |
| 100        | 0.21                           | 0.06    | 0.78  | 0.81   | 0.61                        | 0.17    | 2.67   | 2.7    |
| 200        | 0.4                            | 0.19    | 3.1   | 3.17   | 1.33                        | 0.6     | 10.36  | 10.6   |
| 400        | 0.94                           | 0.67    | 12.18 | 12.58  | 3.36                        | 2.22    | 41.37  | 42.46  |
| 800        | 2.58                           | 2.66    | 48.83 | 50.34  | 9.64                        | 8.73    | 164.86 | 172.34 |
| 1600       | 8.48                           | 10.25   | 193.5 | 206.58 | 31.29                       | 34.46   | 656.72 | 705.67 |

Table: CPU times for density dam-break problem at  $t = 200 \ s$  using different gridpoints.

#### Rotational shallow water flows



Figure: Water depth and velocity fields for the circular dam-break problem on non-flat bottom at t = 2, 8 and 16.

|                                                                              | 4 <i>s</i> |       |       | 8 <i>s</i> |        |        | 20 <i>s</i> |        |        |
|------------------------------------------------------------------------------|------------|-------|-------|------------|--------|--------|-------------|--------|--------|
| Gridpoints                                                                   | FVC        | ROE   | SRNH  | FVC        | ROE    | SRNH   | FVC         | ROE    | SRNH   |
| 50 	imes 50                                                                  | 3.74       | 6.03  | 6.16  | 10.66      | 18     | 18.2   | 17.64       | 29.74  | 30.02  |
| 100 	imes 100                                                                | 23.52      | 44.63 | 46.27 | 70.61      | 137.22 | 139.81 | 115.17      | 230.29 | 232.54 |
| Table: CPU times on different meshes for sizeular dam break on a flat bettem |            |       |       |            |        |        |             |        |        |

 I able: CPU times on different meshes for circular dam-break on a flat bottom at different times.

 < □> < ♂> < ≥> < ≥> < ≥> <</td>

HPCDD day, 7<sup>th</sup> April, 2016