Exact Solutions for Shallow Water Equations
F. Benkhaldoun

LAGA Université Paris 13
Non Linear Systems Considered

We are interested by fluid flow problems described by such non linear systems:

\[
\frac{\partial W}{\partial t} + \frac{\partial F(W)}{\partial x} + \frac{\partial G(W)}{\partial y} + \frac{\partial H(W)}{\partial z} = 0
\]

(1)

Examples:
Euler equations in one space dimension

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} &= 0 \\
\frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u^2 + P)}{\partial x} &= 0 \\
\frac{\partial E}{\partial t} + \frac{\partial [u (E + P)]}{\partial x} &= 0
\end{align*}
\]

(2)

with ideal gas equation of state : \(p = (\gamma - 1) \left(E - \frac{1}{2} \rho u^2 \right) \), where \(\rho \) is fluid density, \(u \) the velocity, \(E \) the energy, and \(p \) : the pressure.
Shallow Water Flow

We consider water flow in a configuration where the water depth is negligible when compared to the characteristic length of the domain. [3]). If the bottom is flat, and the friction negligible, the problem is described by the following system:

\[
\begin{align*}
\frac{\partial h}{\partial t} + \frac{\partial (hu)}{\partial x} &= 0 \\
\frac{\partial (hu)}{\partial x} + \frac{\partial}{\partial x} \left(hu^2 + \frac{1}{2} gh^2 \right) &= 0
\end{align*}
\]

(3)

h being the water depth, u the velocity, and g the gravity constant.
Introduction

Consider the scalar problem:

\[
\begin{align*}
\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} &= 0 \quad \text{in } \mathbb{R} \times]0, T]\n
\{ u = u(x, t) \in \mathbb{R} \\
 u(x, 0) = u_0(x)
\end{align*}
\]

In the sequel, note \(X = \mathbb{R} \times [0, T] \).

Example, Burger’s equation:

\[
\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(\frac{u^2}{2} \right) = 0
\]
Weak solution and jump condition

Smooth solution

If $u \in C^1(X)$, one has: (4) $\implies \frac{\partial u}{\partial t} + f'(u) \frac{\partial u}{\partial x} = 0$

then in the frame (x, t), u is constant on the characteristic curve given by:

$$\begin{align*}
\frac{dx(t)}{dt} &= f'[u(x(t), t)] \\
x(t = 0) &= x_0
\end{align*} \tag{5}$$

One deduce the solution u:

$$u(x(t), t) = u(x(0), 0) = u(x_0, 0) = u_0(x_0)$$
Weak solution and jump condition

Smooth solution

If \(u \in C^1(X) \), one has: (4) \[\frac{\partial u}{\partial t} + f'(u) \frac{\partial u}{\partial x} = 0 \]
then in the frame \((x, t)\), \(u \) is constant on the characteristic curve given by:

\[
\begin{cases}
\frac{dx(t)}{dt} = f'(u(x(t), t)) \\
x(t = 0) = x_0
\end{cases}
\]

One deduce the solution \(u \):

\[u(x(t), t) = u(x(0), 0) = u(x_0, 0) = u_0(x_0) \]
Weak solution and jump condition

Smooth solution

If $u \in C^1(X)$, one has: (4) $\implies \frac{\partial u}{\partial t} + f'(u) \frac{\partial (u)}{\partial x} = 0$
then in the frame (x, t), u is constant on the characteristic curve given by:

$$
\begin{cases}
\frac{dx(t)}{dt} = f'[u(x(t), t)] \\
x(t = 0) = x_0
\end{cases}
$$

(5)

One deduce the solution u:

$$
u(x(t), t) = u(x(0), 0) = u(x_0, 0) = u_0(x_0)$$
Note \(f'(u) = a(u) \), the characteristic system considered is then:

\[
\begin{align*}
\frac{dx}{dt} &= a\left(u_0(x_0)\right) \\
u(x, t) &= u_0(x_0)
\end{align*}
\]

which gives:

\[
\begin{align*}
x_0 &= x - ta\left(u_0(x_0)\right) \\
u(x, t) &= u_0(x_0)
\end{align*}
\]

Applications:
Note $f'(u) = a(u)$, the characteristic system considered is then:

\[
\begin{align*}
\frac{dx}{dt} &= a(u_0(x_0)) \\
 u(x, t) &= u_0(x_0)
\end{align*}
\]

which gives:

\[
\begin{align*}
x_0 &= x - ta(u_0(x_0)) \\
u(x, t) &= u_0(x_0)
\end{align*}
\]

(6)

Applications:
1. Linear case

\[f(u) = cu : \frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0 \implies a(u) = c \]

characteristic curve : \(x = x_0 + tc \iff x_0 = x - ct \)

Solution : \(u(x, t) = u_0(x - ct) \)
1. Linear case

\[f(u) = cu : \frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0 \implies a(u) = c \]

characteristic curve : \(x = x_0 + tc \iff x_0 = x - ct \)

Solution : \(u(x, t) = u_0(x - ct) \)
Non Linear Systems Considered

Exact solution for 1D scalar problems

Physical validation of the solution: the entropy condition

Physical validation of the solution: the entropy condition

Bibliography
Non Linear Systems Considered

Exact solution for 1D scalar problems

Physical validation of the solution: the entropy condition

Physical validation of the solution: the entropy condition

Bibliography

F. Benkhaldoun - MHYCOF - MENHYDRO 2010
2. Burger’s equation

Consider the non linear equation:
\[
\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(\frac{u^2}{2} \right) = 0,
\]

here \(f(u) = \frac{u^2}{2} \), then \(a(u) = f'(u) = u \)

The characteristic curve is given by: \(x = x_0 + tu_0(x_0) \)
Consider the different initial conditions:

case 1

\[u_0(x) = \begin{cases}
0 & \text{if } x < 0 \\
1 & \text{if } x \geq 0
\end{cases} \]

case \(x_0 < 0 \), \(x = x_0 \), \(u_1(x, t) = u_0(x) \)

case \(x_0 \geq 0 \), \(x = x_0 + tx_0 \), \(u_1(x, t) = u_0(x_0) = u_0 \left(\frac{x}{1 + t} \right) = \frac{x}{1 + t} \)

case 2

\[u_0(x) = \begin{cases}
1 & \text{if } x < 0 \\
0 & \text{if } x \geq 0
\end{cases} \]

case \(x_0 < 0 \), \(x = x_0 + t \), \(u_2(x, t) = u_0(x - t) = u_0(x_0) = 1 \)

case \(x_0 \geq 0 \), \(x = x_0 \), \(u_2(x, t) = u_0(x) = 0 \)
Non Linear Systems Considered

Exact solution for 1D scalar problems

Physical validation of the solution: the entropy condition

Bibliography

F. Benkhaldoun - MHYCOF - MENHYDRO 2010
Discontinuous solution and jump condition:

Theorem

The 3 following assertions are equivalent:

i) u is a weak solution of problem (4), i.e:

$$
\int_0^\infty \int_{\mathbb{R}} \left(u \frac{\partial \varphi}{\partial t} + f(u) \frac{\partial \varphi}{\partial x} \right) \, dx \, dt + \int_{\mathbb{R}} u_0(x) \varphi(x, 0) \, dx = 0,
$$

$\forall \varphi \in D(\mathbb{R} \times [0, +\infty[)$

ii) $\forall R = [x_1, x_2] \times [t_1, t_2] \subset \Omega = \mathbb{R} \times [0, T]$, $\forall R = [x_1, x_2] \times [t_1, t_2] \subset \Omega = \mathbb{R} \times [0, T]$

$$
\int_{\partial R} [u \cdot n_t + f(u) \cdot n_x] \, d\sigma = 0
$$
iii) If \(u \) is \(C^1 \), \(u \) is classical solution of \(\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} f(u) = 0 \), and on a shock curve \(\Gamma (u_l, u_r) \), the solution is governed by the jump condition: \([f(u)] = s[u] \).

One defines the jump \([u] = u_r - u_l \), and the curve \(\Gamma (u_l, u_r) \), which equation is: \(\frac{dx}{dt} = s \), separates the left and right states \(u_l \) and \(u_r \).

The jump condition is called the Rankime-Hugoniot condition in gas dynamics.
Example: Consider the Burger’s equation:

\[
\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \frac{u^2}{2} = 0
\] \hspace{1cm} (7)

and the initial condition: \(u_0(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \geq 0 \end{cases} \)

First possibility: a weak solution with the shock \(\Gamma(0, 1) \).

The jump condition gives:

\[
[f(u)] = s[u] \implies \left[\frac{u_r^2}{2} - \frac{u_l^2}{2} \right] = s[u_r - u_l] \implies s = \frac{1}{2} \implies
\]

\[
u(x, t) = \begin{cases} 0 & \text{if } \frac{x}{t} < \frac{1}{2} \\ 1 & \text{if } \frac{x}{t} \geq \frac{1}{2} \end{cases}
\]
Example: Consider the Burger’s equation:

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \frac{u^2}{2} = 0$$ \hspace{1cm} (7)$$

and the initial condition: \(u_0(x) = \begin{cases}
0 & \text{if } x < 0 \\
1 & \text{if } x \geq 0
\end{cases} \)

First possibility: a weak solution with the shock \(\Gamma (0, 1) \).

The jump condition gives:

\[
[f(u)] = s [u] \implies \left[\frac{u_r^2}{2} - \frac{u_l^2}{2} \right] = s [u_r - u_l] \implies s = \frac{1}{2} \implies
\]

\[
u(x, t) = \begin{cases}
0 & \text{if } x < \frac{1}{2t} \\
1 & \text{if } x \geq \frac{1}{2t}
\end{cases}
\]
Second possibility : a continuous weak solution.

\[
\begin{align*}
 u(x, t) &= \begin{cases}
 0 & \text{si } \frac{x}{t} < 0 \\
 \frac{x}{t} & \text{si } 0 \leq \frac{x}{t} < 1 \\
 1 & \text{si } \frac{x}{t} \geq 1
 \end{cases}
\end{align*}
\]

We come to the fact that one needs a specific criterium to select, among the above two weak solutions, the unique real solution.
Second possibility: a continuous weak solution.

\[
u(x, t) = \begin{cases}
0 & \text{si } \frac{x}{t} < 0 \\
\frac{x}{t} & \text{si } 0 \leq \frac{x}{t} < 1 \\
1 & \text{si } \frac{x}{t} \geq 1
\end{cases}
\]

We come to the fact that one needs a specific criterium to select, among the above two weak solutions, the unique real solution.
Physical validation of the solution : the entropy condition

The entropy solution

Definition

A smooth convex function U, is said to be an entropy of the problem, if there exists an entropy flux F such that:

$$U'(u)f'(u) = F'(u).$$

Definition

A weak solution u of (4) is said entropy solution if

$$\forall \varphi \in D(\mathbb{R} \times [0, T]) : \int_0^T \int_{\mathbb{R}} \left(U(u) \frac{\partial \varphi}{\partial t} + F(u) \frac{\partial \varphi}{\partial x} \right) dx dt \geq 0,$$

where U is an entropy of the problem, and F its entropy flux.
The entropy solution

Definition

A smooth convex function U, is said to be an entropy of the problem, if there exists an entropy flux F such that:

$$U'(u)f'(u) = F'(u).$$

Definition

A weak solution u of (4) is said entropy solution if

$$\forall \varphi \in D([R \times]0, T]) : \int_0^T \int_0^T \left(U(u) \frac{\partial \varphi}{\partial t} + F(u) \frac{\partial \varphi}{\partial x} \right) \, dx \, dt \geq 0,$$

where U is an entropy of the problem, and F its entropy flux.
Remark 1: An entropy solution respects the entropy condition with the convex (though non derivable) function, $U(u) = |u - k|$, and the associated entropy flux: $F(u) = \text{sgn}(u - k)(f(u) - f(k))$, where $k \in \mathbb{R}$.

Remark 2: Reciprocally, since every convex function belongs to the convex hull of all affine functions, and functions of the form $x \rightarrow |x - k|$, a weak solution which respects the entropy condition with the convex function $U(u) = |u - k|$, is an entropy solution.

Theorem

(Kruzkov 1970) Under some regularity assumptions on u_0, there exists a unique entropy weak solution of problem (4).
Remark 1: An entropy solution respects the entropy condition with the convex (though non derivable) function, $U(u) = |u - k|$, and the associated entropy flux: $F(u) = \text{sgn}(u - k)(f(u) - f(k))$, where $k \in \mathbb{R}$.

Remark 2: Reciprocally, since every convex function belongs to the convex hull of all affine functions, and functions of the form $x \mapsto |x - k|$, a weak solution which respects the entropy condition with the convex function $U(u) = |u - k|$, is an entropy solution.

Theorem

(Kruzkov 1970) Under some regularity assumptions on u_0, there exists a unique entropy weak solution of problem (4).
Remark 1: An entropy solution respects the entropy condition with the convex (though non derivable) function, $U(u) = | u - k |$, and the associated entropy flux: $F(u) = \text{sgn}(u - k)(f(u) - f(k))$, where $k \in \mathbb{R}$.

Remark 2: Reciprocally, since every convex function belongs to the convex hull of all affine functions, and functions of the form $x \rightarrow | x - k |$, a weak solution which respects the entropy condition with the convex function $U(u) = | u - k |$, is an entropy solution.

Theorem

(Kruzkov 1970) Under some regularity assumptions on u_0, there exists a unique entropy weak solution of problem (4).
About Entropy

Lemme : There exists a function U which is transported in regions where u is C^1. i.e. $\frac{\partial}{\partial t} U(u) + \frac{\partial}{\partial x} F(u) = 0$

proof : If u is C^1 : $U'(u) \left(\frac{\partial u}{\partial t} + f'(u) \frac{\partial u}{\partial x} \right) = 0$, if there exists F such that $U'(u)f'(u) = F'(u)$, then $\frac{\partial}{\partial t} U(u) + \frac{\partial}{\partial x} F(u) = 0$
About Entropy

Lemme: There exists a function U which is transported in regions where u is C^1. i.e.
\[
\frac{\partial}{\partial t} U(u) + \frac{\partial}{\partial x} F(u) = 0
\]

proof: If u is C^1:
\[
U'(u) \left(\frac{\partial u}{\partial t} + f'(u) \frac{\partial u}{\partial x} \right) = 0,
\]
if there exists F such that $U'(u)f'(u) = F'(u)$, then
\[
\frac{\partial}{\partial t} U(u) + \frac{\partial}{\partial x} F(u) = 0
\]
Consider the regularized problem:

\[
\begin{aligned}
\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} &= \varepsilon \frac{\partial^2 u}{\partial x^2} \\
\quad u(x, 0) &= u_0(x)
\end{aligned}
\] \quad (8)

Proposition

There exists a unique smooth solution \(u^\varepsilon \) of the problem (8)

Proposition

The solution of problem (4) is the limit in the distribution sens of the solution of problem (8), as \(\varepsilon \) tends to 0.
Consider the regularized problem:

\[
\begin{align*}
\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} &= \varepsilon \frac{\partial^2 u}{\partial x^2} \\
u(x, 0) &= u_0(x)
\end{align*}
\]

(8)

Proposition

There exists a unique smooth solution \(u^\varepsilon \) of the problem (8)

Proposition

The solution of problem (4) is the limit in the distribution sens of the solution of problem (8), as \(\varepsilon \) tends to 0
Consider the regularized problem:

\[
\begin{aligned}
\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} &= \varepsilon \frac{\partial^2 u}{\partial x^2} \\
u(x, 0) &= u_0(x)
\end{aligned}
\] (8)

Proposition

There exists a unique smooth solution \(u^\varepsilon \) of the problem (8)

Proposition

The solution of problem (4) is the limit in the distribution sens of the solution of problem (8), as \(\varepsilon \) tends to 0
Proposition

A piecewise C^1 function u, is an entropy weak solution of (4) if and only if:

i) u is a classical solution in (x, t) regions where u is C^1

ii) On a shock curve Γ, u satisfies $[F(u)] \leq s [U(u)]$, $\forall (U, F)$ a couple of entropy and antropy flux.

Corollaire

1) If f is strictly convex, then a shock is entropic if and only if:

$f'(u_r) < s < f'(u_l)$

Corollaire

2) If f is strictly convex, then a shock is entropic if and only if:

$u_r < u_l$
Proposition

A piecewise C^1 function u, is an entropy weak solution of (4) if and only if:

1. u is a classical solution in (x, t) regions where u is C^1
2. On an shoc curve Γ, u satisfies $[F(u)] \leq s [U(u)]$, $\forall (U, F)$ a couple of entropy and antropy flux.

Corollaire

1. If f is strictly convex, then a shoc is entropic if and only if:

 \[f'(u_r) < s < f'(u_l) \]

2. If f is strictly convex, then a shoc is entropic if and only if:

 \[u_r < u_l \]
Proposition

A piecewise C^1 function u, is an entropy weak solution of (4) if and only if:

i) u is a classical solution in (x, t) regions where u is C^1

ii) On an shock curve Γ, u satisfies $[F(u)] \leq s[U(u)]$, $\forall (U, F)$ a couple of entropy and antropy flux.

Corollaire

1) If f is strictly convex, then a shock is entropic if and only if:
$f'(u_r) < s < f'(u_l)$

Corollaire

2) If f is strictly convex, then a shock is entropic if and only if:
$u_r < u_l$
Proposition

A piecewise C^1 function u, is an entropy weak solution of (4) if and only if:

i) u is a classical solution in (x, t) regions where u is C^1

ii) On an shock curve Γ, u satisfies $[F(u)] \leq s[U(u)]$, $\forall (U, F)$ a couple of entropy and antropy flux.

Corollaire

1) If f is strictly convex, then a shock is entropic if and only if:

$f'(u_r) < s < f'(u_l)$

Corollaire

2) If f is strictly convex, then a shock is entropic if and only if:

$u_r < u_l$
Application: the first weak solution in example (7) is non entropic, and hence non admissible.
