
Well-Posedness of One-Way Wave Equations and Absorbing Boundary Conditions
Author(s): Lloyd N. Trefethen and Laurence Halpern
Source: Mathematics of Computation, Vol. 47, No. 176 (Oct., 1986), pp. 421-435
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2008165
Accessed: 13/11/2008 04:16

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to
Mathematics of Computation.

http://www.jstor.org

http://www.jstor.org/stable/2008165?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=ams


MATHEMATICS OF COMPUTATION 
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Well-Posedness of One-Way Wave Equations 
and Absorbing Boundary Conditions 

By Lloyd N. Trefethen* and Laurence Halpern 

Abstract. A one-way wave equation is a partial differential equation which, in some approxi- 
mate sense, behaves like the wave equation in one direction but permits no propagation in the 
opposite one. Such equations are used in geophysics, in underwater acoustics, and as 
numerical "absorbing boundary conditions". Their construction can be reduced to the 

approximation of 1 - on [-1, 1] by a rational function r(s) = p (s)/q (s). This paper 
characterizes those rational functions r for which the corresponding one-way wave equation is 
well posed, both as a partial differential equation and as an absorbing boundary condition for 

the wave equation. We find that if r(s) interpolates V1 - s2 at sufficiently many points in 
(-1,1), then well-posedness is assured. It follows that absorbing boundary conditions based 
on Pade approximation are well posed if and only if (m, n) lies in one of two distinct 
diagonals in the Pade table, the two proposed by Engquist and Majda. Analogous results also 
hold for one-way wave equations derived by Chebyshev or least-squares approximation. 

1. Introduction. The wave equation 

(1.1) utt = uxx + uyy 

admits plane wave solutions 

(1.2) u(x, y, t) = ei(Tt+?x+?Y) 

for any T, i7, X e R that satisfy the dispersion relation 

(1.3) 2 = 42 + q2 

In the (,, q)-plane, the curves of constant T determined by this equation are 
concentric circles. The phase and group velocities of (1.2) are identical and equal to 

(1.4) v = (vx, vy) = (-T -T) = (cos O, sinO), 0 E [O, 2]. 

Thus, for each frequency T, (1.1) admits plane waves traveling with speed 1 in all 
directions. 

In certain applications, what is ideally wanted is a one-way wave equation or 
paraxial equation that admits only half of these solutions: in this paper, all those 
with vx < 0, i.e., 0 E [r/2, 3r/2]. This idea has been introduced over the years in 
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various fields, and some early references are given in the appendix to [27]. In the 
past decade and a half, one-way wave equations have come into heavy use in three 
areas. First, they were introduced by Claerbout in 1970 for geophysical migration of 
seismic waves, in which the aim is to construct images of geological formations 
underground by downward extrapolation of sound wave reflection data measured at 
the surface [7]. For subsequent developments see [4], [8], [26] and recent volumes of 
Geophysics. Second, they were introduced by Tappert and Hardin in 1973 for 
underwater acoustics calculations, where the simulation of waves in the ocean can be 
speeded up greatly by assuming one-way lateral propagation away from the source 
[27]. Further developments in this area are described in [22], [24], the latter of which 
contains many references, and in recent volumes of the Journal of the Acoustical 
Society of America. Finally, one-way wave equations were proposed again by 
Lindman in 1975 [23] and by Engquist and Majda in 1977 [10], [11] for application 
as approximate absorbing boundary conditions in numerical computations, where 
artificial boundaries must be introduced to limit a computational domain. For 
subsequent developments of this and related ideas, see [3], [9], [18] and recent 
volumes of the Journal of Computational Physics. 

Solving for t in (1.3), we get 

(1 .5) ?T +2 _2/ n2X 

where V7 denotes the standard branch of the square root. By (1.4), the plus and 
minus signs correspond to leftgoing and rightgoing waves, respectively: 

(1.6a) =+T+/ _ 
2/T 

2 
v." < 

? 

(1.6b) -T V > 

Consequently, the ideal one-way equation would be an equation with dispersion 
relation (1.6a), or equivalently 

(1.7) T = 1 2 
, S = /T = -sin O IDEAL O.W.W.E. 

In the (,, q)-plane, the curves of constant T determined by this equation are 
concentric semicircles. Since 1 - s2 is not rational, however, (1.7) is not the 
dispersion relation of a partial differential equation but of an equation containing a 
pseudodifferential operator. Such an operator is not local in space or time and 
cannot readily be implemented numerically, especially when the problem is gener- 
alized to allow variable coefficients. 

To construct practical one-way wave equations, therefore, we will approximate 
(1.7) with the aid of a function 

r(s) = p.(s)lqn (S) 

where Pm and qn are real polynomials of exact degrees m > 0 and n > 0 with no 
common zeros. We say that r is a rational function of exact type (m, n). The aim is 
for r(s) to be a good approximation to 1S2 on [-1,1]. From any such 
approximation, we will derive a corresponding partial differential equation by 
replacing (1.7) by the dispersion relation 

(1.8) | = Trr(s), s =/T = -sin | APPROXIMATE O.W.W.E. 
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For example, suppose r is the Taylor approximant r(s) = 1- IS2. Substituting this 
for 1 - 52 in (1.7) gives 

=T (1 - 7 

or, equivalently, 

T=T 2_- 1 2 

which is the dispersion relation of 
u =u i 

xt Utt 2 Uyy 

This is the original one-way wave equation, now classical, and is called the parabolic 
equation. In the general case (1.8), we multiply both sides by Tm'{ r-i, I}q (7q/tT) to 
clear denominators, and get 

(1.9) Td-lfq(,/qT) = Tdpm(l//T), d = max{ m, n + 1}. 

This equation has the form 

(1.10) P(t,q1,T) = 0, degree(P) = d, 
where P is a homogeneous polynomial with real coefficients in three variables. Thus 
it is the dispersion relation or symbol of a homogeneous partial differential equation 
of order d in x, y, t. 

The most usual method for obtaining r is by Pade approximation [10], [11]. (Our 
example above is the Pade approximant of type (2,0).) The disadvantage of Pade 
approximants is that although they are very accurate for s 0, they are inaccurate 
near the singularities at s = + 1, and as a result, the corresponding one-way wave 
equations behave poorly for 0 ' r/2, 3'n/2. Therefore, it is tempting to consider 
alternative choices of r. Two reasonable candidates that we treat here are Chebyshev 

(L.) approximation and least-squares (L2) approximation. (Certain least-squares 
approximations for one-way wave equations have been investigated previously [2], 
[23], [30].) There are many other possibilities too, such as Chebyshev-Pade approxi- 
mation [12], and we hope to compare the practical merits of various approximation 
schemes in a later work. (See [33].) 

The purpose of this paper is to investigate the well-posedness of one-way wave 
equations. In one-way wave calculations, as in many other areas of numerical 
computation, many seemingly reasonable approximations turn out to be ill-posed 
and hence useless in practice, and it is highly desirable to be able to identify these in 
advance. Depending on the application, various well-posedness questions arise, of 
which we will consider two: 

Initial value problem (IVP). A one-way wave equation could be applied as a 
partial differential equation in the domain t > 0, x, y e R, subject to initial data at 
t = 0. Well-posedness refers to the existence of a unique solution whose norm at 
t = to can be estimated in terms of the initial data. 

Initial boundary value problem (IB VP). In absorbing boundary condition applica- 
tions, the domain is x, t > 0, y E R, and the one-way wave equation is applied as a 
boundary condition along x = 0 for (1.1). Well-posedness is now the existence of a 
unique solution whose norm at t = to and along x = 0 can be estimated in terms of 
the initial data. 
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Our main result is that for most methods of approximation of 1 - s2, problems 
IVP and IBVP are well posed if and only if (m, n) lies in one of three diagonals of 
the table of approximants, or two in the case of even approximants. Our method 
consists of reducing each well-posedness question to algebraic criteria involving the 
function r, whose relationships to each other are studied systematically. Here is an 
intuitive explanation of why the result comes out so simply even for the relatively 
complicated problem IBVP: An absorbing boundary condition permits wave propa- 
gation in one direction, while ill-posedness amounts to the possibility of propagation 
in the other. Thus absorption and well-posedness are naturally related. 

According to standard results for hyperbolic partial differential equations, our 
well-posedness criteria are also valid for one-way wave equations with smoothly 
varying coefficients [20]. 

Analogous three-diagonal results have been obtained previously for other prob- 
lems. In the numerical solution of ordinary differential equations, the Ehle conjec- 
ture, proved by Wanner, Hairer, and N0rsett [31], asserts that a certain class of 
discrete approximations is stable in precisely three diagonals. More recently, Iserles 
and Strang have established a three-diagonal stability result for discrete approxima- 
tions to hyperbolic partial differential equations [17]. The connections between these 
results and ours are at present not understood. 

Well-posedness results for one-way wave equations have been proved previously 
in [1], [2], [9], [11], [30], [32], and elsewhere. In particular, Engquist and Majda 
showed in [11] that Pade approximation leads to a well-posed problem IBVP for all 
m = n and m = n + 2, but an ill-posed one in case (4,0). Thus another way to 
summarize our results is as follows: We show that the boundary conditions proposed 
by Engquist and Majda are the only Pade absorbing boundary conditions that are 
well posed, and we extend an analogous conclusion to other classes of approxima- 
tions and to initial-value problems. 

Two topics must be mentioned that are not discussed in this paper. First, we do 
not consider the well-posedness of one-way wave equations as evolution equations in 
x rather than t, although this is their most common use in geophysics and 
underwater acoustics. Second, nothing is said here about discrete approximations to 
one-way wave equations, which may be unstable even when the differential equation 
is well posed. We hope to repair these omissions in the future. 

2. Statement of Results and Outline of the Paper. Our results can be summarized 
as follows. Throughout, problems IVP and IBVP are based on the one-way wave 
equation derived by (1.8) from an arbitrary real rational function r of exact type 
(m, n) with r(O) # 0, oo. Also, the integer X mn is defined by 

(2.1) Xmn ={ if m+nisodd, 
Int if m + n is even. 

THEOREM 1. Problem IVP is well posed if and only if the zeros and poles of r(s)/s 
are real and simple and interlace along the real axis. 

THEOREM 2. Problem IBVP is well posed if and only if the zeros and poles of r(s)/s 
are real and simple and interlace along the real axis, and furthermore r(s) > 0 for 
s E [-1, 1]. 
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These results imply: 

COROLLARY 1. Problems IVP and IBVP can be well posed only if n < m < n + 2. 

COROLLARY 2. IBVP well posed -> IVP well posed. 

Corollary 1 has the following converse: 

THEOREM 3. If n < m < n + 2, and if r(s) interpolates 1 2 at m + n + 1 + 

Xmn points in (-1, 1), counted with multiplicity, then problems IVP and IBVP are well 

posed. 

The approximants one might consider in practice usually satisfy this interpolation 
condition. In particular, this is true of Pade, Chebyshev, and least-squares approxi- 
mants. (The least-squares approximants in question are required to be even, for as 
we will explain, the situation becomes more complicated otherwise.) This implies 
finally: 

THEOREM 4. The Pade, Chebyshev, and least-squares families of one-way wave 
equation yield well-posed problems IVP and IBVP in precisely two distinct diagonals of 
the tables of approximants, namely m = n and m = n + 2. 

A remark should be made about odd values of m and n. Usually, as in Theorem 
4, r is an even function, and the resulting one-way wave equation is symmetric 
about 6 = r. In this event m and n are even, so the case m = n + 1 of Theorem 3 
does not occur. But there are also applications in which one wants a one-way wave 
equation tuned asymmetrically to be accurate near some angle 60 # s7, and here, m 
or n may be odd. We have therefore considered it important to derive results for 
arbitrary m and n rather than assume these numbers are even. 

Here is an outline of the remainder of the paper. Section 3 is devoted to 
investigating certain purely algebraic properties of r that constitute the heart of our 
argument. First, Lemma 1 establishes three equivalent statements to the interlace 
condition of Theorem 1, assuming r(O) > 0. Thus a fuller assertion than Theorem 1 
would be that problem IVP is well posed if and only if r or -r satisfies the 
conditions of Lemma 1. Next, Lemma 2 establishes three equivalent statements to 
the condition of Theorem 2; problem IBVP is well posed if and only if r satisfies the 
conditions of Lemma 2. One of these is an interpolation condition from which 
Theorem 3 will follow. Finally, Lemma 3 shows that a rational function r can 
interpolate /1 _ S2 in at most m + n + 1 + Xmn points in the plane. This conclu- 
sion has been used already in the proof of Lemma 2, and will be applied again later 
to establish nondegeneracy of Pade and Chebyshev approximants. Because of it, 
Theorem 3 would be unchanged if it read at least m + n + 1 + Xmn points of 
interpolation. 

Section 4 treats well-posedness of problem IVP by reducing it to one of the 
algebraic conditions of Lemma 1. This proves Theorem 1. 

Section 5 treats well-posedness of problem IBVP by reducing it to one of the 
conditions of Lemma 2. This proves Theorems 2 and 3. 

Finally, Section 6 shows that various families of even approximants to 1 - S2 

including Pade, Chebyshev, and least-squares, satisfy the interpolation condition of 
Theorem 3. Together with Corollary 1, this proves Theorem 4. 
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3. Lemmas on the Rational Function r. Our first lemma identifies a class of 
functions that decrease monotonically along R except for simple poles. Parts of this 
result have appeared elsewhere, for example in [1], [2], [32]. 

LEMMA 1. Let r be a real rational function of exact type (m, n) with r(O) * 0, xc. 
The following conditions are equivalent: 

(a) If s is finite with Im s > 0, then r(s)/s is finite with Im r(s)/s < 0. 
(b) r(O) > 0, and the zeros and poles of r(s)/s in C are real and simple and 

interlace along the real axis. 
(c) r(s)/s can be written in the form 
(3.1) r(s) n+1 b 

(3.1) r(s) ba-b0+ E 
5 k=1 _ S 

for somea, bk,sk E R, wheres1 < s2 < ... < sn+1 bo > ?0, and bk > Ofork > 1. 

Proof. (a) (b). We will show that if any of the four assertions of condition (b) 
fails, then (a) cannot hold. First, if r(O) < 0, then r(s)/s behaves like a positive 
multiple of -1/s near s = 0, and necessarily maps i? into the upper half-plane for 
small enough e. Second, if r(s)/s has a zero or pole so E C - R, we can assume 
Im so > 0 by symmetry, and r(s)/s must take values in both the upper and lower 
half-planes near so. Third, if r(s)/s has a multiple zero or pole so E R, then r(s)/s 
must take values in both half-planes for s in a one-sided neighborhood of so with 
Im s > 0. Finally, suppose the zeros and poles are real and simple but do not 
interlace-there are two zeros sl, 52 E R with no pole in-between, or the reverse. 
Then r(s)/s has a local maximum or minimum a at some point s* E (sl, S2), SO 

r(s )/s - a has a multiple zero at s *, and this is inconsistent with (a) as before. 
(b) * (c). Condition (b) implies that r(s)/s has exactly n + 1 simple poles and at 

most n + 2 simple zeros, hence order at most 0(s) at s = ox. Therefore its partial 
fraction decomposition has the form (3.1) for some a, bk, Sk E R with s, < < 
Sn+1 and with bk 0 ? for k > 1, and if ko is the index with Sko = 0, then 
bk( =r(O) > 0. Now if bk <O for some k > 1, there must be a pair bk, bk+l with 
bkbk+l < 0. But in this event there are an even number of zeros between Sk and 
Sk+?1 contradicting the interlace condition. On the other hand, if bk > 0 for all 
k > 1 but bo < 0, then r(s)/s has constant sign and is therefore nonzero on 
(-cx, sl) and (s,+1, ox). It follows that if the interlace condition holds, r(s)/s has 
only n real zeros out of n + 2 zeros altogether, which implies the existence of a 
conjugate pair of zeros off the real axis, contradicting (b). 

(c) (a). Trivial. E 
The conditions of Lemma 1 are enough to ensure that r(s) does not interpolate 

- 1- -S2 in the upper half-plane or at s = 0. For well-posedness of problem IBVP, 
this will have to be strengthened to exclude interpolation throughout [-1,1]. In what 
follows, V/1 - S2 denotes the branch of the square root defined by branch cuts 
(-cx, -1] and [1, ox) that takes the value 1 at s = 0. 

LEMMA 2. Let r be a real rational function of exact type (m, n) with r(O) = 0, 00. 
The following conditions are equivalent: 

(d) r satisfies the conditions of Lemma 1, and moreover r(s) > 0 for s E [-1, 1]. 
(e) r(s) = - 1 - S2 has no solutions in C - (-ox, -1) - (1, ox). 
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(f) n m n+2, and r(s)= + 1ls2 has m+n +l+Xmn solutions in 
C - (- , -1] - [1, ), counted with multiplicity. 

Proof. (d) =- (e). For Im s > 0, we have Im[- V1 - 52 /s] > 0, while by condition 
(a) of Lemma 1, Im r(s)/s < 0. Therefore r(s) = - 1 - 52 has no solutions in the 

upper half-plane, or by symmetry, in the lower half-plane. On [-1,1] it cannot have 
any solutions either, since - V1 - < 0 < r(s) by assumption. 

(e) (f). Squaring r(s) = ? 1 - 5 2 yields the polynomial equation 

(3.2) p2 (S) -(1 - S2)qq2(S) = 0, 

which has exact degree 2d = 2 max{ m, n + 11, hence has 2d solutions counted with 
multiplicity, which can only lie in C - (-x, -1] - [1, ox) since (e) prohibits solu- 

tions at s = +1. Each of these is a solution of r(s) = V1 or of r(s) = 

- V1 - 52, but not both, so if (e) holds, there must be 2d solutions of the latter 
equation. Since 2 max{m, n + 1) > m + n + 1 + Xmn' with equality if and only if 
n < m < n + 2, condition (f) now follows from Lemma 3 below. 

(f) =* (d). Condition (f) can hold only if the estimates are sharp in the proof of 
Lemma 3 below, and this implies the interlace property (b) of Lemma 1; we omit the 
details. Moreover, r(s) must be positive on [-1, 1], for otherwise r(s) = _ V1 _ -2 

would have a solution there, and for n < m < n + 2, this would put the total 
number of solutions of (3.2) above the limit 2max{m, n + 1). 0 

Finally, Lemma 3, whose proof we have just appealed to, limits the number of 
times r(s) can interpolate V1 - S2 in the plane. The following argument is based on 
ideas suggested to us by Peter Borwein of Dalhousie University. See also Lemma 4.1 
of [17], where Rolle's theorem is used to limit the number of interpolation points on 
an interval. Arieh Iserles has further indicated to us that an alternative proof of 
Lemma 3 can be based on order stars [17], [31]. 

LEMMA 3. Let r be a real rational function of exact type (m, n), and let L be the 
number of solutions of r(s) = 1 - 52 in C - (-x, -1) - (1, x), counted with 

multiplicity. Then 
(3.3) L < m + n + 1 + Xmn. 

Proof. If there is a solution at s = + 1, its multiplicity is defined to be 1, since 
r(s) cannot match the infinite derivative there. But we can dispose of this possibility 
by considering a new rational function rE(s) = r(s + c) or rE(s) = r(s + ?s), de- 
pending on the signs of r(s) near the endpoints of [-1, 1]. For ? sufficiently small 
and of appropriate sign, rE = V1 - 52 will also have L solutions, all of them in the 
open region C - (-ox, -1] - [1, so). So without loss of generality, we can assume 
r(?1) * 0. 

The number L is the number of zeros of 

p(s) =pm(s) -1 - qn(S) 

in C - (-oc, -1] - [1, ox). For sufficiently large R, these must all lie in the region 
shown in Figure 1. Therefore p has winding number L along the boundary 
a -/ - y-y - /3 -a. This implies that Im4(s) and Re4(s) must each have at 

least 2L zeros interlacing on this boundary. In what follows we assume m > n + 1, 
and bound the number of zeros of Imp(s); for m < n + 1, one proceeds analo- 
gously by bounding the number of zeros of Re 4(s). 
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FIGURE 1 

Contour for counting zeros of r (s) -1 _ 

On ,8, p(s) behaves approximately like As'm - iBsn+1, where A and B are the 
leading coefficients of p and q, respectively. Therefore Im4(s) has at most m + X ln 
zeros on /B, where the Xmnl results from the fact that if m and n are both even or 
both odd, the lower-order term iBs +1 may bring about one extra crossing of the 
real axis. On /3 the count is the same. On a, y, y, and a, we have Re4(s) = Pm(s) 
and Im40(s) = -iV1- s2qn(s), and therefore Imp(s) has at most 2n + 2 zeros on 
these contours, including those at s = + 1. Adding these bounds together gives 

2L < 2m + 2Xmnl + 2n + 2, 
which reduces to (3.3). O 

4. Well-Posedness of Problem IVP. Let r be a real rational function of exact type 
(m, n), and consider the corresponding homogeneous partial differential equation of 
degree d = max{ m, n + 1) obtained from (1.8)-(1.10). Throu out this section, we 
assume r(O) * 0, x, which is no restriction in practice since 1 -2 = 1 at s = 0. 
By (1.9), the condition r(O) # 0 amounts to the assumption that the coefficient of Trd 

in P(t, 1, T) does not vanish, so that t = 0 is not a characteristic surface for the 
differential equation. Here is the standard result on well-posedness: 

WELL-POSEDNESS CRITERION. Problem IVP is wellposed if and only if P(t, q, 'T) = 0 

has no solutions with {, q e R and Im T < 0. 

A partial differential equation that satisfies this condition is said to be hyperbolic. 
For a precise definition of well-posedness and a derivation of this criterion, which 

is due originally to Garding, see Section 5.2(b) of [19] or Sections 12.3-12.5 of [15]. 
The essential idea is Fourier analysis. For suppose problem IVP admits as a solution 
a mode (1.2) with (, ,q E R and ImT < 0. By homogeneity, for any a > 0, there is 
another solution with parameters (at, aq, aT) that grows at the rate eatlImTl, and as a 
can be arbitrarily large, the growth up to a fixed time to cannot be bounded. 
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Here is the proof of Theorem 1. 

THEOREM 1. Problem IVP is well posed if and only if the zeros and poles of r(s)/s 
are real and simple and interlace along the real axis. 

Proof. Since the zeros of P(t, q, -) are continuous functions of 7, in the well- 
posedness criterion it is enough to look for normal modes with 'q * 0. By (1.9) and 
(1.10), since Pm and qn have no common zeros, an equivalent well-posedness 
criterion is therefore that if ( E R and q E R - {0}, then 

T Pm(71/T) _ T 

71 qn (7/T) 71 

has no solutions with Im T< 0-or with IMT > 0, since the solutions come in 
conjugate pairs. This is further equivalent to the statement that if r(s)/s E R for 
some s E C - {0}, then s E R. Contrapositively, if s E C - R, then r(s)/s E C - 
R. Since r(s)/s is a continuous function of s away from poles, this is equivalent to 
the statement that r(s)/s maps the upper half-plane either into itself or into the 
lower half-plane. That is, either r or -r satisfies condition (a) of Lemma 1. By that 
lemma, this is the same as saying that either r or -r satisfies condition (b), which is 
the assertion of Theorem 1. E 

As mentioned earlier, we have actually proved a stronger result: Problem IVP is 
well posed if and only if r or -r satisfies any of the conditions of Lemma 1. 

5. Well-Posedness of Problem IBVP. Again let r be a real rational function of 
exact type (m, n), and consider now the use of the corresponding one-way wave 
equation as a boundary condition at x = 0 for the wave equation (1.1) in the 
domain x > 0, y E R. For simplicity we continue to assume r(0) = 0, x, as in the 
last section. To determine well-posedness, we turn to the theory published by Kreiss 
in 1970 [20], specialized for the wave equation in the interior, and obtain: 

WELL- POSEDNESS CRITERION. Problem IBVP is well posed if and only if P(t, T), -) 

= 0 and (1.3) have no mutual solutions (T, 7, ) = (0, 0, 0) with j Ee R, Im T < 0, and 
with t belonging to the branch (1.6b). 

Since T and ( are now complex, we have to be careful about what is meant by the 
branch (1.6b). For q E R and ImT < 0, it means t = - -T2 _ 2, the analytic 
function of T and q obtained by analytic continuation from the values t = -T for 

q = 0. These values of ( satisfy Im > 0. For T Ee R, ( is defined by limits in the 
half-plane Im T < 0, and satisfies Imt > 0 if ITI < nq1, ( E [-1,1] if ITI > '1I. 

For the definition of well-posedness and a derivation of this criterion, see [20] and 
[10], [11]. Again, however, the essential idea is to look for ill-posed normal modes. 
Suppose problem IBVP admits a solution (1.2) with Im t > 0 and Im T < 0. If 
Im t > 0 (decay as x -x oc) but ImT < 0 (growth as t -x oc), then by homogeneity, 
as in the last section, unbounded exponential growth as a function of t is possible. If 
Im T = Im t = 0 and (1.6b) holds, on the other hand, the solution is a plane wave 
with vX > 0 that radiates energy from the boundary into the interior, generating 
weaker but still unbounded growth. See [13] for a presentation of the Kreiss theory 
from this physical point of view, and [28] for the analogous discussion of stability of 
finite difference models. 
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Here is the proof of Theorem 2. 

THEOREM 2. Problem IBVP is well posed if and only if the zeros and poles of r(s)/s 
are real and simple and interlace along the real axis, and furthermore r(s) > 0 for 
s E [-1, 1]. 

Proof. If there is a normal mode (1.2) with T = 0, then i = ? hi, and by (1.9), the 
equation P(t, 71, T) = 0 reduces to 

?iATd-l-n,1n+l = BTd- mm d= max{m,n + 1} 

for nonzero real constants A and B. Whether or not m = n + 1, this implies q = 0 
and thus ( = 0. Therefore, we can assume T # 0. Now for C E R and Im T < 0, the 
variable s = q/T lies in C - (-xo,0) - (0, ox). Taking limits ImT -O 0 with T -A 0 
amounts to letting s range over all of C, with points on the two sides of the cuts 
(-oo, 0) and (0, oo) viewed as distinct. By (1.6b) and (1.8)-(1.9), the well-posedness 
criterion now reduces to the condition that for s in this region, the equations ( = 
-TVI - 52 and ( = Tr(s) are never simultaneously satisfied. That is, the equation 
r(s) = - V1 _ 52 must have no solutions, where as in Section 3, the square root is 
defined by branch cuts (-ox, -1] and [1, ox) and the value 1 at s = 0. 

On (-oo, -1) and (1, oo), r(s) = V - /s,2 cannot be satisfied, because the 
left-hand side is real or infinite while the right-hand side is imaginary, finite, and 
nonzero. Thus we have reduced the well-posedness criterion to condition (e) of 
Lemma 2. By that lemma, an equivalent condition is (d), and by Lemma l(b), this is 
equivalent to the assertion of Theorem 2. O 

Again, we have actually proved a stronger result: Problem IBVP is well posed if 
and only if r satisfies any of the conditions of Lemma 2. In particular, by condition 
(e), it is well posed if and only if r(s) interpolates V1 - 52 at m + n + 1 + Xmn 

points in C - (-ox, -1] - [1, oo). Therefore, a sufficient condition for well-posed- 
ness is the existence of m + n + 1 + Xmn points of interpolation in (-1, 1), and 
together with Corollary 2, this proves Theorem 3. 

If one or two points of interpolation lie at + 1 instead of in (-1,1), problem IBVP 
is ill posed. This is a borderline case of weak ill-posedness, corresponding to a wave 
(1.2) that propagates tangentially to the boundary x = 0. 

6. Families of One-Way Wave Equations. In this final section we will examine 
various families of approximants r(s) to /1 - 2 on [-1,1], which correspond to 
various families of one-way wave equations. By Theorem 3, well-posedness is 
assured for n < m < n + 2 if r(s) interpolates /1- s 2 at m + n + I + Xmn 

points of (-1,1), and conversely, the approximants one might consider in practice 
will almost always satisfy this condition. In fact, different methods of approximation 
of 1 - 52 can fruitfully be interpreted and compared as different strategies for the 
allocation of interpolation points in (-1,1)-hence of angles in (7T/2,37i/2) at 
which the ideal and approximate one-way dispersion relations coincide. 

By a simple change of variables, an even approximation r(s) to V1- -s2 on 
[-1, 1] is equivalent to an approximation of the same type to the function Isl. The 
approximation of Isl is a well-studied problem in approximation theory, which 
features the discovery by D. J. Newman in 1964 that whereas type (n, 0) approxi- 
mants have LI error 0(1/n) as n -- oo, type (n, n) approximants have much 
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smaller errors O(const-F) [25]. Thus, fortunately, our results show that well-posed- 
ness correlates with accuracy as n - oo. 

Until the end of the section, r is an even function. First, we will show that 1 -2 

can be interpolated in an arbitrary set of points symmetrically distributed in (-1, 1). 
Then we will consider Chebyshev, Pade, and least-squares approximation, and show 
that each leads to the appropriate number of interpolation points, thereby proving 
Theorem 4. (These methods of approximation are illustrative; we make no claim 
about what method may be best in practice.) In Chebyshev and Pade approximation, 
uniqueness implies that r(s) is automatically even, for otherwise, r(-s) would be a 
distinct and equally good approximation. In least-squares approximation, unique- 
ness does not hold, so we have to impose evenness of r as an explicit constraint. 

Symmetric interpolation in arbitrary points. The following construction was pointed 
out to us by Philip Roe, but was used earlier by Newman [25]. For any even K > 2, 
let ? s1,..., +sK/2 be a set of K points in (-1, 1), counted with multiplicity, except 
that one of these pairs may be ? 1. Set m = 2 [K/4] and n = 2[K/41 - 2, so that 
m = n or m = n + 2 and K = m + n + 2. Let p be a nonzero polynomial of degree 
K/2 that is zero at V1 - s12 for each k, and set 

(6.1) r(s)- p (t)?p(-) 

where t = V1 - s 2 . Since the numerator is even as a function of t, it is a polynomial 
in s of degree m, and since the denominator is even as a function of t, it is a 
polynomial in s of degree n. Also, since Ip(-t)I > Ip(t)I for t > 0 and p'(O) 0 0, 
r(s) can have no poles or zeros in [-1, 1] (we exclude the trivial case K = 2, Sk = 1, 
r(s) 0). Thus r(s) = /1 - s2 is equivalent to 

p(t) + p(-t) = -p(t) + p(-t), 
that is, p(t) = 0. In other words, (6.1) interpolates 1 _ s2 at the points +Sk, and 
by Theorem 3, the corresponding one-way wave equation is well posed. 

An alternative and more transparent presentation of this construction is implicit 
in Section 9 of a paper by Higdon [14]. If we write V1 - s1 = -cos2k' then 

p (a/T) = 0 is equivalent to 
K/2 

(6.2) H1 (? + cos OkT) = 0, 
k=1 

which corresponds to the partial differential equation 
K/2 

(6.3) l (8x+ C?osOka,)u = 
09 

k=1 

which is satisfied exactly by plane waves at the angles +? k Conversely, given a 
one-way wave equation in the form (6.3), let us use (1.3) to eliminate all powers of t 

higher than 1 in its dispersion relation (6.2). The result is a new dispersion relation 
that interpolates {1 - s2 in the points Sk and is equivalent to a rational expression 
(1.8). For example, Higdon points out that the Engquist-Majda absorbing boundary 
conditions can be generated in this fashion from (a, - a,) K/2u = 0, an observation 
that highlights their close relation to the boundary conditions of Bayliss and Turkel 
(see Section 2 of [3]). 
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Now we turn to Chebyshev, Pade, and least-squares approximation. In what 
follows, let r denote a real rational function of type (M, N) but not necessarily exact 
type (M, N); that is, r has exact type (m, n) for some m < M, n < N. Assume 
further, until further notice, that M, N, m, and n are even integers and that r is an 
even function. The defect of r (as a function of type (M, N)) is the integer 

(6.4) 8 = min{ M-m, N-n }> O. 

Also, let K be the number of zeros of V1 - 5 2 r(s) in (-1, 1). By definition 
K < L, where L is the integer of Lemma 3, and so by that lemma, since Xmn = 1 

when m and n are both even, we have 

(6.5) K < m + n + 2. 

Chebyshev approximation. The Chebyshev approximant of type (M, N) to 1 2 

denoted rmA(s), is defined by the condition 

||l1 _-2 -rMN (s) || 
= minimum, 

where 1 is the supremum norm on [-1, 1]. It is well known that rmN exists, is 
unique, and is characterized by the following "equioscillation condition" [5], 
[27]. Let r be a rational function of type (M, N), exact type (m, n), and 
defect 3. Then r = rMN if and only if V1 _ -2 - r(s) attains alternating values 
?11 /1 - 52-_ r(s) II. at some sequence ofpoints -1 < so < ..< sj 1 with 

(6.6) J > M + N + 1-S. 

Let r = rMN be the Chebyshev approximant to V1 - 52 of type (M, N). Between 
any two equioscillation points there must be a zero, so we have K > J, and by (6.6), 

(6.7) K > M + N + 1-S. 

Together with (6.5), this yields 

M + N + 1-8 < m + n + 2, 

or by (6.4), 

M + N + 1 -8 < (M - 8) +(N - 8) + 2. 

Therefore 8 < 1. Since 3 is even, however, we must have 8 = 0. Since K is even 
also, (6.5) and (6.7) now yield 

(6.8) m = M, n = N, K= m + n + 2. 

(That is, the Chebyshev table for V1 - 52 is normal except for the even-odd 
degeneracy: It breaks into distinct 2 x 2 blocks of identical entries r*n = r*+ln = 

rm* n+ 1= r*+l,n+l ) This establishes the hypotheses of Theorem 3, proving Theorem 
4 for Chebyshev approximation. 

Pade approximation. The Pade approximant of type (M, N) to V1 - S2 denoted 
rMPN is defined by the condition 

21 - rMPN(s) = o(5maximum) as s -O. 

Again one has existence and uniqueness (the former is trivial). For this particular 
case, rP N is known explicitly and can be constructed from a continued fraction 
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expansion [4], [11], [31], from hypergeometric function identities [16], or from (6.1). 
Alternatively, to emphasize the analogy to Chebyshev approximation, one can 
reason by means of the following equioscillation-type characterization [29]. Let r be 
a rational function of type (M, N), exact type (m, n), and defect 3. Then r = rtN if 
and only if 

(6.9) V1-52 - r(s) = O(sj) ass -O 0 

for some J satisfying (6.6). Since (6.9) asserts that r(s) interpolates S1 - 2 at least 
J times at the origin, we again have K > J, and the argument leading to (6.8) goes 
through exactly as before. (That is, the Pade table for V1 - 52 is also normal except 
for even-odd degeneracy.) This proves Theorem 4 for Pade approximation. 

Least-squares approximation. Rational least-squares approximation, unlike its 
polynomial counterpart, has certain troublesome properties-notably nonunique- 
ness and the possibility of local best approximations that are not global. To begin 
with, let us drop the assumption that M, N, m, and n are even. It is known that a 
least-squares approximant of type (M, N) to S1 - 2 exists, so let us denote such a 
function by r(2). Here is the remarkable property that distinguishes this problem 
from Chebyshev and Pade approximation, proved by Cheney and Goldstein in 1967 
[6]: r(2) always has 8 = 0. As a corollary, first pointed out by Lamprecht [21], r(2) 

cannot be even when M and N are odd, and so it cannot be unique. We do not 
know whether it is unique when M and N are even. 

Nevertheless, certain conclusions about r(2) can be reached despite its lack of 

uniqueness. Since 8 = 0, one can show that 1 2 _ r(2) must be orthogonal on 
[-1,1] to all polynomials of degree M + N + 1 and, accordingly, must have K > M 
+ N + 1 zeros in (-1, 1). (Cheney and Goldstein point this out as their final 
corollary.) Since K < m + n + 1 + Xmn by Lemma 3, we now reason as follows: If 
M and N are both even or both odd, then m = M and n = N, but we are assured of 
only m + n + 1 interpolation points, not the m + n + 2 required by Lemma 3. On 
the other hand, if one of M and N is even and the other is odd, then the possibilities 
are m = M and n = N, m = M - 1 and n = N, or m = M and n = N - 1, and in 
each case, m + n + 1 + Xmn = M + N + 1, which guarantees a sufficient number 
of interpolation points. 

We conclude that if one-way wave equations are derived by general least-squares 
approximation, problems IVP and IBVP are well posed if M = N + 1, but whether 
they are well posed for M = N and M = N + 2 is uncertain. 

Symmetric least-squares approximation. The situation returns to normal if, rather 
than permitting an arbitrary approximant of type (M, N), we require r to be even. 
(Formula (6.1) will now be a computational help, for we can take the interpo- 
lation points as independent variables and vary them systematically to minimize 

1 - 52 - r(s)112.) Assume again that M, N, m, n, and K are even. The problem 
is equivalent to that of approximating 1 - a on [0,1] by a rational function of type 
(M/2, N/2) in the least-squares sense with weight function ( -1/2. By an adaptation 
of the Cheney-Goldstein argument, we get 8 = 0 again, from which (6.8) follows. 
This completes the proof of Theorem 4. 
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