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Artificial Boundary Conditions for the 
Linear Advection Diffusion Equation 

By Laurence Halpern 

Abstract. A family of artificial boundary conditions for the linear advection diffusion equation 
with small viscosity is developed. Well-posedness for the associated initial boundary value 
problem is analyzed. The error produced by truncating the domain is estimated. Numerical 
results are presented. 

1. Introduction. When computing the solution of a partial differential equation in 
an unbounded domain, one often introduces artificial boundaries. In order to limit 
the computational cost, these boundaries must be chosen not too far from the 
domain of interest. Therefore, the boundary conditions must be good approxima- 
tions to the so-called " transparent"i boundary condition (i.e.,, such Ithat the solution 
of the problem in the bounded domain is equal to the solution in the original 
domain). The transparent boundary condition is usually an integral relation in time 
and space between u and its normal derivative on the boundary, which makes it 
impractical from a numerical point of view. One must approximate this relation to 
get local boundary conditions: they are often called absorbing or artificial boundary 
conditions. 

This question is of crucial interest in such different areas as geophysics, plasma 
physics, fluid dynamics [1], [2], [3], and the use of such conditions is now classical in 
geophysics. 

Our interest for the linear advection diffusion equation comes from the Navier- 
Stokes equation, but it arises also in other fields as, for example, meteorology [6]. 

The incompressible Navier-Stokes equation can be written as 

(1 .1) ut +(u V )U - vAU + Vp = O0 
divu = 0O 

where V is the gradient operator and a the Laplacian. The viscosity v is assumed to 
be small. 

A common application is the flow around a body. Far away, the flow u is almost 
constant, equal to a [7]. Linearizing the equation, and using a vorticity formulation 
yields 

(1.2) W,+(a v)w-VAw=0 

which is the equation we are dealing with in this work. 
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426 LAURENCE HALPERN 

We assume that a, is positive, so that the solution is essentially propagating in the 
right x-direction. 

We further assume that the data are of compact support in space. We put artificial 
boundary conditions at x2 and xl, and find "good" boundary conditions. 

K2 ,c1 

Because of the rightward propagation, the conditions to impose on the right and 
left boundaries, respectively, are inherently different. In the first five sections we 
deal with the right boundary. 

In Section 2, using as essential tool the Fourier transform, we formulate the 
transparent boundary condition and approximate it for small values of the viscosity 
by means of generalized continued fractions. This leads to an infinite family of 
boundary conditions, which are partial differential equations of first order in x. For 
example, in one dimension, the first three boundary conditions are 

(1.3) X 0x09 

(1.4) Wt + awX =, (a # O). 
(1.5) Wt + awX + V(2awxt + Wtt) = 09 

Relations (1.3) and (1.4) are a Neumann and transport condition, respectively. They 
are easy to guess and have already been used in applications. As far as we know, the 
higher-order conditions are new. 

In Section 3 we analyze these boundary conditions and give energy estimates, 
which show that the associated initial boundary value problems are well-posed. 

In Section 4, using again the Fourier transform, we establish L2-norm error 
estimates for the solution in the slab [0, xl], in terms of xl, v, and the original 
solution in [0, + oo[: the accuracy of the nth order boundary condition is of order 

2n 
V 

In Section 5 we give numerical schemes which discretize the equation and the 
right-hand boundary conditions, and we show by numerical results the efficiency of 
the approximation. 

In Section 6 we briefly develop the boundary conditions for the left boundary x2. 
The results analogous to those in Sections 3 and 4 are given without proofs, since the 
proofs are essentially the same as for the boundary on the right. 

2. Construction of a Family of Absorbing Boundary Conditions. To begin with, we 
formulate at every point x outside the support of the data an integro-differential 
equation, which will in time be the transparent boundary condition. 

2.1. The transparent boundary condition. We consider the solutions of the equation 

(2.1) L,,u= O 
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in the halfspace x > 0, where L, is the differential operator 

(2.2) L= + + a V - vPA. 

The vector a is given in Rn, V denotes the gradient with respect to y = (Yi,...*, n) 
and A the Laplacian in all variables X = (x, y). 

THEOREM 1. The transparent boundary condition at point xl is 

(2.3) Tx ff (k, )u(xj, k, w)ei(tkY) d d k, 

where A is given by 

(2.4) A = (1 - 81/2)/2v, 

(2.5) 8 = 1 + 4iv(w + a * k) + 4v21k1 . 

The determination of 81/2 is chosen such that 

(2.6) Re 81/2 > 0. 

Proof. We shall write at every point x > 0 an integral relation between u and uX. 
For this purpose, we use the Fourier transform in t and y. The Fourier transform u 
of every solution u to L, in the halfspace x > 0 satisfies the second-order ordinary 
differential equation in x: 

(2.7) -XX + UX +(i(w + a * k) + vlkI2)i = O. 

The solutions of this equation have the form 

(2.8) u(wx,k) = a(wk)ex + b(W,k)e'x, 

where A and A' solve the quadratic equation 

(2.9) -v2 + X + i(w + a k) + vlk2 = 0. 

The discriminant is 8, given by (2.5). One root is A (cf. (2.4)), the other is 

(2.10) A' = (1 + 81/2)/2v. 

Our choice (2.6) implies that the real part of A is negative, while that of A' is 
positive. In order to keep u bounded in the halfplane x > 0, the coefficient b must 
vanish, so that 

(2.11) Ox, k, w) =a(k, )e 

By differentiation with respect to x, the following identity is seen to hold at every 
point x > 0: 

aA~ 
(2.12) a ix = 0. 

Hence, at point xl, u satisfies the integro-differential equation (2.3). 0 
Relation (2.3) is the transparent boundary condition at point xl. It is global in 

time and space. Hence we shall approximate the nonlocal operator 

u |f X(k, )u(x, k, w)e( Yt~k) dY dwk 

by a suitably chosen local operator, in time and space. 
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2.2. Approximation of the transparent boundary condition. For wave equations, the 
approximation is made with respect to the incidence angle to the boundary, that is, 
roughly, in terms of Ikl/w. The strategy here is different: we shall approximate 
X(k, w) for small values of v, for any value of k and w. In order to get a local 
operator, we shall use polynomial or rational approximations. 

Taylor approximation. The first two approximations to X, given by (2.4), come 
from zero- and first-order Taylor approximation to 81/2, respectively: 

81/2 = 1 + 0(v), 

{ 81/2 = 1 + 2iv(w + a k) + O(v2), 

which give 

XA= 0(l)9 

X = -(w + a k) + O(v). 

These approximations lead to the boundary conditions 

(2.13) Bou = ux = 0, 
(2.14) Blu = ut + UX + a VU = O. 

Higher-order approximations. For higher-order approximations, various strategies 
can be applied. The idea of using Taylor or Pade approximations has been 
introduced for the wave equation in [1]. There, the authors have shown that, except 
for the first one, Taylor approximations lead to ill-posed problems, while a hierarchy 
of Pade approximants lead to well-posed problems. We shall develop here a family 
of generalized continued fractions related to certain Pade approximants. 

It is well-known (see [4]) that one can approximate a root X of a quadratic 
equation 

aX2 + bX + c = 0 
in terms of generalized continued fractions by rewriting the equation as 

X(aX + b + d) + c - Xd = 0 

and defining the sequence XA by 

(2.15) Xn+1 = (Xnd- c)/(aX + b + d) 

for a suitable choice of d. We choose here d and X1 as follows: 

(2.16) fX1=-i(w + a k)9 

\d=-iv(w + a k). 

Thus, as a function of v, XA is the quotient of two polynomials of degree n - 1, 
Pn-1 and Qn 1 , given recursively by 

(2.17) =Pn -i(w + a- k)vP,-1 +(i(w + a- k) + vjkj )Q2 Q 

{Q = vP,~ -(1 + i(w + a- k)v)Qn- 

Furthermore, XA is of order 2n - 1 in v, 

(2.18) n- X = o(n-l) 
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In other words, XAn is the [(n - 1)/(n - 1)] Pad6 approximant to X. This can be 
proved by defining the error coefficient q. as 

(2.19) qn = (X - A X'- Qn). 

An easy calculation shows that 

(2.20) Jq = (ql)f, 

q,= 0(V2), 

and the estimate for XA follows. 
Remark 1. What first comes to mind, when seeking a sequence of rational 

fractions approximating X, would be to choose d = 0 (and X, = 0). Unfortunately, 
this provides a less accurate approximation (n - 1, n), with X, - X = 0(vn-l). 

Likewise, the choice d = 1 leads to a divergent sequence XA. 
Boundary operators. We return to XA as a function of v, w and k. It is easy to see 

inductively that P. and Q. are also polynomials in w and k, and their degrees in 
these variables are n + 1 and n, respectively. The corresponding approximation to 
the boundary identity (2.3) is in Fourier coordinates 

BnA = O 

where B. is given by 

(2.21) Bn = Qn-1(ki w) - P1 (k, w). 

Upon application of the inverse Fourier transform, this formula yields a local 
operator B. which is globally of order n, and of order 1 in x. 

Example. The second-order boundary operator is 

(2.22) B2 = -B1 - vBY( 
a + B1) + VA 

where Ay is the Laplacian with respect to y, and By the transverse transport 
operator 

(2.23) By at 

For the study of the associated initial boundary value problems, a formal 
factorization of the boundary operators B. will be useful. 

LEMMA 1. If u is a sufficiently smooth solution to the problem 

L,,u = 0 for x < x, 

Bnu(xl, y, t) = 0, 

then u satisfies the boundary condition 

(B1) nu(xj, y, t) = 0. 

Proof. The hypothesis can be written in Fourier coordinates as in (2.7), 

-XX + UX +(i(w + a k) + vlkI2)i = 0, 
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Using the recurrence formulae for Pn and Q, we get 

Bn = -^ ax + i(w + a k))Bni-; 

then we have on the boundary 

B (-v)n-(B,)n. El 

3. A Priori Estimates for the Initial Boundary Value Problem. We consider the 
following problem in the halfspace x < xl: 

{L,,u = O. x < xl, t E [0, T], 

(3.1) uu(X,0) = u0, x < xl, 

Bnu(xj, y, t) = O, t e [O, T]. 

We assume uO to be as smooth as needed, with compact support in the halfspace 
- = { X; x < xl 1. Then the problem is well-posed, i.e., there are a priori estimates: 

THEOREM 2. Suppose u is a solution to (3.1). Then the following holds: 
(i) u belongs to L'(O, T, L2(9_)) n L2(0, T, H1(Q_)); 

(ii) u belongs to L'(O, T, L2(R- 1)) on the boundary x = xl. 

Before proving the theorem, we introduce some notations. 
We denote by q, q1, qO the squares of the usual Sobolev norms (or seminorms), 

defined by 

q(u) = u2(X, y, t) dxdy, 

(3.2) ql(u)= ff lVU2(Xyt)dxdy, 

qO (U) = f U2(X1,y, t) dy. 

Proof of Theorem 2. Suppose u is a solution to L1,u = 0 in the halfspace, that is, 

ut + uX + a - Vu - vAu = 0. 

Multiplying by u and integrating with respect to X in the whole domain, we get 

(3.3) d q(u) + 2vql(u) + qO(u) - 2v (uux)(xl y, t) dy = 0. 

The condition Bo is quite easy to analyze: If ux vanishes on the boundary, the last 
term in (3.3) is zero, and the result is clear. If n is equal to 1, then u satisfies the 
boundary condition 

t +uX +aVu = O; 

we can replace uX in the last term of (3.3), 

(3.4) d (q(u) + vqO(u)) + 2Vql(u) + qO(u) = O. 

which gives estimates (i) and (ii) in this case. 
We now proceed by induction: Assume the theorem holds for B.-, If the 

function u is a solution of (3.1), we define a function v for x < xl, t in [0, T], by 

(3.5) v= ut+ uX. 
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The function v is a solution of (3.1) for n - 1 and therefore fulfills (i) and (ii). 
Furthermore, multiplying (3.5) by u and integrating in y for x equal to xl, we get 

(3.6) diq0(u) + 2J (uux)(xl,y, t) dy = 2f (uv)(xl,y, t) dy. 

We multiply (3.6) by v and add it to (3.3) to get rid of the last term in the left-hand 
side: 

d (q(u) + vq0(u)) + 2vqj(u) + q0(u) = vf (uv)(xl,y, t) dy. 

We now use the following inequality on the right-hand side, 

UV K eu2 + V2 /4e. 

By choosing e such that Pe < a < 1, we finally obtain 

d-(q(u) + vqo(u)) + 2Vqj(u) + Cqo(u) < qo(v) 

which gives the desired bounds. 0 

4. Error Estimates for the Approximate Problem. Let us consider the initial 
boundary value problem in the halfspace x > 0: 

{L,,u= O, X >'0, t >'0, 

(4.1) u(X,0)=0, x>0, 

tu(O, y, t) = g, t >' O. 

We approximate it in the slab 0 < x < x1 by the problem 

Lun =, O. O<x x1, t > O. 

(4.2) yUt(X ) ) -OO < x < x 

Bnu,(xl, y, t) = 0, t> 0. 

The principal result of this section is 

THEOREM 3. The boundary condition B. has an accuracy of order 2n in P: the error 

is bounded in L2(R + X Rn 1) for any x in ]O, xj] by 

I | p2nd(xj,v)llLnulI(x) forn >?1, 

(4.3) || u-uo (x) < vd(xl, v)(|| Bu || + vI I yu I)(x), 

where By is the transverse transport operator defined in (2.23), the operator L is 

(4.4) L = B 

and the function d(xj, P) is given by 

(4.5) d~l )2 
d ( x' VJ) = 1 - exp(-xl/2v)) 

Remark 2. The bound depends on v and xj. In order to keep it small, x1 must 
remain large compared to v. 
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Proof of Theorem 3. The main tool will again be the Fourier transform with 
respect to t and y. We denote by v, the error in the slab 0 < x < xl, 

(4.6) Vn = u -un. 

Using Section 1, we can write the Fourier transforms ui and tn of u and vn explicitly 
as 

u geA 

v= ae x + beax 

The coefficients a and b are given by the boundary conditions at x = 0 and x =x, 
and tn can be expressed as 

(4.7) vn = RO(e(AA)X1 - ,')(xi-X))U 

where Rn is related to the error coefficient qn, defined in (2.19), through 

1 -qn 

Since the real part of A - A' is negative, we get immediately a first bound on tn, 

(4.8) 1 - < 21R u . 

A bound on qn will give a bound on Rn, and thereby complete the proof. 

LEMMA 2. The following bounds hold for qn: 
(i) I<j < 1; 

(ii) Iqnj< V2n((w + a - k)2 + Ik2)n. 

Proof. Since qn is equal to (q)n, we only need to prove the lemma when n is 
equal to 1. The value of q1 is 

1 + 2iv(w + a k) - 81/2 

- 1 + 2iv(w + a k) + 81/2 

We denote by a and fi the real and imaginary parts of qj; a is greater than one. It is 
easy to see that 

Iq11= (a - 1)/(a + 1), 

which proves part (i). We note that 

V2 ( @+ a k)2 + k12) = (a 2 - 1)(,32 + 1)/4, 

which leads to 

1qj1 4 

v2 ( + a k)2 +Ik12) (a + 1)2(2 +1) 

and thus finishes the proof of part (ii). 
Using this lemma, we can bound Rn by 

12n((w + a )k)2 + Ik12 
IR ~ 1 - exp(-xl/2p) 
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We use this in (4.8), and obtain 

|v? < d(x1, v)v2nIF(Lnu) I, 
where F is the Fourier transform in t and y. Parseval's theorem now completes the 
proof. 

The estimate for condition Bo is obtained in the same way. 0 
Remark 3. The use of the Fourier transform in time is only formal here. But one 

can justify it by using the Laplace transform. The term iW is replaced by s, with 
Re s > 0. One easily proves that the denominator of Rn cannot be zero. Then tin is 
analytic in the halfspace Res > 0, and the Paley-Wiener theorem allows us to take 
the limit when Re s goes to zero. 

5. One-Dimensional Numerical Experiments. We deal here with problem (4.1) in 
R+X [O T], and problem (4.2) in [0,1] x [0, T]. We shall consider only the boundary 
operators Bo, B1 and B2. The initial value is chosen to be zero, and the boundary 
value at point x = 0 is (cf. Figure 1) 

(5.1) g(t) = sint/ t(t2 J+ 1). 

BOUNDARY DATA G(T) 
AS A NCtV OF TIME 

0.6 

0.5 

0.4 

0. 3 

0. 2 

0.1 

-0.1I 

-0. 2 

0 1 2 3 4 5 6 7 8 9 10 

FIGURE~ 1 

Boundary data 

We do not have the exact solution to problem (4.1) in closed form. But it can be 
observed that the reflection due to the boundary condition affects the solution only 
near the artificial boundary. Thus, we shall call here "exact" solution the computed 
solution in a larger domain, with a "good" boundary condition. For practical 
purposes, we take as the larger domain [0, 2] X [0, Tj and the second-order boundary 
condition B2 at x = 2. 

We use second-order finite difference schemes in time and space. We recall some 
notations: 

*j 
u7 approximates u (xj, t0) on the grid (xj, 0 ), 0 < j <, J, 0 <, n < N, x1 = jA x, 

0 A= n, 
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* The operators D +, D, and DO denote forward, backward and centered 
differences, respectively. S+, S and So are forward, backward and centered sums; 
for example, 

(5.2) Dtu n = (Uj+1 - Uj)/lt, StUn7 = (Uj;1 + un)/2. 

The operator L. is approximated by the following discrete scheme, derived from 
the Crank-Nicolson scheme, 

(5.3) Ld = D++ DO'St - vDxDxS. 

This scheme is implicit, has order two in time and space, and is unconditionally 
stable. 

The operator Bo is approximated by 

(5.4) Bd = Dx. 

For the operator B1, we use the transport part of operator Ld and introduce a 
virtual point. This yields 

(5.5) Bld= D++ DXS. 

Using the characterization of B2 given by Lemma 1, the second-order boundary 
condition is approximated by 

(5.6) B dun = (DtDt+ 2DoDx)un + DxDxSotunl = 0. 

For any of these boundary conditions, the interior scheme together with the 
boundary scheme is stable and has order two in time and space. 

The mesh sizes are taken equal to lAt = lAx = 0.001. 
Since we are dealing with parabolic equations, the maximum principle asserts that 

the largest error occurs at point x equal to 1. Hence Figures 2-4 show the "exact" 
solution and the error on the boundary for the various boundary conditions, as 

EXACT SOLUTION ON 0,2 
FOR DIFFERENT VALUES OF TIME 1.2 3,4 5 

THE VCSIXI IS KOUAL TO 0.02 

-0.4 "'/ 

0.3 

0.2 

T=3_' 

-0.2 s _ 

0.0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2.0 

FIGURE 2 

"exact " solution on [0 2] for a viscosity equal to 0.02; 
time varies from 1 to 5 
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EXACT SOLUTION ON THE BOUNDARY 

0.6- 

0.5. 

0. 

0. 

0.21 

0.1 

0. -- 

-0.11 

-0.2- 

0 1 2 3 4 5 6 7 8 9 10 

FIGuRE 3 

Exact solution on the boundary. 
The viscosity is equal to 0.02. 

ERROR ON THE BOUNDARY 

CONDITION Bo 

9.10-3 
ERROR ON THE BOUNDARY 

CONDITION B| 

0.4 

6.10 

0 1 2 3 4 5 6 7 8 9 10 

0 1 2 3 4 5 6 7 8 9 10 

ERROR ON THE BOUNDARY 

CONDITION B2 

4.106 ERROR ON THE BOUNDARY 
TRANSPORT EQUATION 

7.10-2 
0. 

0 1 2 3 4 5 6 7 8 9 10 

0 1 2 3 4 5 6 7 8 9 10 

FIGURE 4 

Errors on the boundary as functions of time. 
The viscosity is equal to 0.02 
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TABLE 1 

L2-norm in time of the error on the boundary 

viscosity Bo B1 B2 

0.002 0.2 10-2 0.8 i0-' 0.7 10-8 

0.004 0.4 10-2 0.3 10-4 0.4 10-7 

0.006 0.5 10-2 0.6 10-4 0.1 10-6 

0.008 0.7 10-2 0.1 10-3 0.3 10-6 

0.01 0.8 10-2 0.2 10-3 0.6 10-6 

0.02 0.2 10-1 0.5 10-3 0.4 10-5 

0.04 0.3 10-1 0.2 10-2 0.3 10-4 

0.06 0.4 10-1 0.3 10-2 0.8 10-4 

0.08 0.5 10-1 0.5 10-2 0.2 10-3 

0.1 0.6 10-1 0.8 10-2 0.3 10-3 

functions of time. The last curve represents the error when replacing the diffusion 
equation by the transport equation in the domain, i.e., when ignoring the term v/vu. 

One can see that the error oscillates and decreases in time, as does the exact 
solution. Moreover, the second-order condition B2 produces the smallest error, while 
Bo produces the largest. All these errors are smaller than the one produced by 
neglecting the diffusion in the equation. 

Table 1 gives the L2-norm of the error on the boundary, for different values of v 
increasing from 0.002 to 0.1. 

To show the dependence in v, we plot in Figure 5 the logarithm of the L2-error as 
a function of the logarithm of the viscosity. 

-2.5, 

B0 
-5.0 

L 

5 -7. 5 

r _10.0 

-12.5 

-15.0 

-17.5 

-20.0__________________________________ 
-7.0 -5.5 -6.0 -5.5 -5.0 -I1.5 -11.0 -3.5 -3.0 -2.5 

Log(viscosity) 

FIGURE 5 

Logarithmic plot of L2-error on boundary 
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It can be seen that for Bo and B1 the dependence is linear in v, respectively 
quadratic, as stated in Theorem 2, or even better. For the second-order condition, it 
is of fourth order in v when v is not too small. This of course is related to the size of 
At and Ax: the schemes have order two, and the error cannot become much smaller 
than Ax2 and At2. 

6. Left-Hand Boundary Conditions. We are now formulating boundary conditions 
on the left wall x2. In the same way as in Section 2, the transparent boundary 
condition is 

(6.1) - _'i = 0, 

where A' is given by (2.10). In particular, we have 

(6.2) xi = 1/v - X. 

With this formula, we can approximate X' by using the approximations to X. 
Thus, the first approximation to X' is Xo = 1/v, which gives the boundary 

condition 

au 
(6.3) Bou = v ax - u. 

If Xn is the approximation to X given in Subsection 2.2, we define an approxima- 
tion to X' by 

(6.4) X'/= 1/^-Xn n > 1. 

Then Xn is an approximation of order p2n-1 to X', and leads to an inhomogeneous 
boundary condition. The boundary operator Bn can be written as in Lemma 1, 

(6.5) Bnt= (B") 
n 

where the first-order operator B' is defined by 

(6.6) B'u = v(ux -u,-a VU) - u. 

From the recursion formula (6.5) one can deduce, as in the previous sections, that: 
* The associated initial boundary value problems in the halfspace x > 0 are 

well-posed. 
* The boundary condition Bn has accuracy of order 2n in P. 

Conclusion. We have developed two families of artificial boundary conditions for 
the linear advection diffusion equation, when the viscosity is small. They lead to 
well-posed initial boundary value problems and produce errors which are powers of 
P. The numerical experiments confirm the theoretical study. 
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