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PARABOLIC WAVE EQUATION APPROXIMATIONS IN 
HETEROGENEOUS MEDIA* 

A. BAMBERGERt, B. ENGQUISTt, L. HALPERN? AND P. JOLY? 

Abstract. The properties of different variants of parabolic approximations of scalar wave equations are 
analyzed. These equations are of general form which includes those used in seismology, underwater acoustics 
and other applications. A new version of the parabolic approximation is derived for heterogeneous media. 
It has optimal properties with respect to wave reflection at material interfaces. The amplitudes of the reflected 
and transmitted waves depend continuously on the interface. Existence, uniqueness and energy estimates 
are proved. 

Key words. one-way wave equation, parabolic approximation, migration 
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1. Introduction. Parabolic wave equation approximations have been used to 
describe wave propagation with a preferred direction in a number of applications. The 
name, parabolic equation, had already been used by Leontovich and Fock [20]; they 
applied the method to describe electromagnetic waves along the surface of the earth. 

Different versions of parabolic approximations to wave equations have later been 
used as mathematical models for computational algorithms in many other areas. In 
seismology, parabolic wave equation approximations were introduced by Claerbout 
[6] and have been applied both to scalar and elastic wave propagation [7]-[9], [17], 
[19], [22]. 

The geophysical applications in seismology have been particularly successful for 
the inverse problem, in connection with the so-called migration process [8]. Numerical 
computations based on wave approximations are now a standard part of geophysical 
data processing. 

In underwater acoustics, parabolic approximations have also become an essential 
tool. The idea was introduced into the field by Tappert and Hardin [26] and has given 
rise to lively research activity [5], [12], [23], [24]. 

In [27], Tappert gives a survey of the applications of parabolic approximation in 
acoustics as well as in other fields. This article also contains analysis of basic properties 
of these equations. 

Other fields of application for parabolic wave approximations are optics and, in 
particular, laser optics, plasma physics, radio waves diffraction problems and small 
disturbance calculations of transonic flow [10], [15], [16], [27]. In different fields of 
application this type of wave equation approximation goes under different names as, 
e.g., "thin beam approximation,". "quasi-optical approximation," "15'-approxima- 
tion," or "one-way wave equation." 
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Parabolic approximations are also very useful as boundary conditions in computa- 
tions with the full wave equation [9], [13]. They can be used as "absorbing boundary 
conditions" when there is no physical boundary, but where an artificial boundary has 
to be introduced in order to limit the domain of computation. These boundary 
conditions produce very small artificial reflections at the computational boundary. 

The simplest (and most common in applications) form of a paraxial approximation 
is the parabolic approximation of a scalar wave equation for a homogeneous medium 
(by paraxial approximations we mean the general class of wave equation approxima- 
tions which describe wave propagation in a preferred direction [2], [14]). In two space 
dimensions, the solution u(x, t) of the wave equation 

1 2 U/d2 u 2U 
2au a2u a2u~ 

(. 1.l) C2 dt-d0+d2 

with velocity c is approximated by the solution of the parabolic approximation 

(1.2) c a2+t ax2 
C 

=0- 
2 

ta- 2a4 

This approximation is exact for plane waves traveling in the positive x2 direction (i.e., 
"upgoing" waves) 

u(x, t) =f(x2-ct). 

The function u above is obviously a solution to both (1.1) and (1.2). Moreover, the 
approximation (1.2) is good for waves traveling close to the positive x2 direction. 

In a retarded coordinate system t t -(x2/c), the approximate equation (1.2) 
becomes 

a2u c a2u 

(1.3) dtd - =dx 
0 (1.3) 

~~~~~~at ax2 2ax1 

This form is common in applications, i.e., when performing the computations in the 
frequency domain (see the references to the applications above). There are two main 
reasons for using parabolic wave equations instead of the full wave equation: 

(i) it is simpler and computationally more efficient, particularly in time retarded 
coordinates (1.3); 

(ii) it only describes the wave propagating in the positive x2 direction, and not 
the back reflected wave. 

The property (i) is of course important in all applications. The second property 
(ii) is crucial in many cases. It makes it possible to use the approximation as an 
evolution equation in x2, which is not the case for the original wave equation. Property 
(ii) is also important in the migration process [8]. Scattered waves are traced backward 
in time and the reflection from (1.1) would not be physically relevant. Finally, property 
(ii) is essential when the parabolic approximation is used as a boundary condition. 

There are two ways of improving the approximation (1.2). It can be generalized 
in such a way that waves propagating in a direction with a substantial angle to the x2 
axis are also well approximated. This can be done by using higher order differential 
equations or systems of differential equations. It is studied in [1] and [3]. 

In this paper we shall consider the generalization to variable velocity media. 
Different types of such parabolic approximations have been derived, based on different 
principles and objectives, generally in smooth media. Here we are mostly interested 
in media for which the velocity distribution is not smooth (discontinuity along inter- 
face). This is the case of geological media, for instance. We thus shall analyze these 
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approximations with respect to their mathematical properties, and in particular the 
reflection and transmission at an interface. Neither of these approximations has good 
properties with respect to the amplitudes, and we shall design a new approximation. 

In ? 2, we recall the parabolic approximation in homogeneous media and we give 
some mathematical results: existence, uniqueness and energy estimates are proved for 
the solution of the standard Cauchy problem and also the Cauchy problem with data 
given on x2 =0. We also study the phase and group velocities and the fundamental 
solution. 

We write the various existing parabolic approximations in heterogeneous media 
on a general form in ? 3 and we study the reflection and transmission at an interface. 
We define the transmission conditions and calculate the reflection and transmission 
coefficients. These coefficients are compared to those for the wave equation and we 
study the continuity of them with respect to interfaces. 

In ? 4, we develop a new parabolic approximation which is a good approximation 
to the wave equation for heterogeneous media with small velocity variations and which 
has the amplitudes of the reflected and transmitted waves continuous with respect to 
the location of the interface. As for the homogeneous case energy estimates, existence 
and uniqueness for the Cauchy problem in time or space are proved. The propagation 
properties in a variable velocity medium are studied. 

Results from numerical experiments are presented in ? 5. A numerical approxima- 
tion of the fundamental solution in homogeneous and heterogeneous media gives 
quantitative illustrations to the qualitative analysis of the earlier sections. The calcula- 
tions were performed by F. Collino [11]. 

Some of the results of this paper were announced in [14] and some technical 
details in the proofs are omitted here but are given in the report [2]. 

2. Parabolic approximations in homogeneous media. 
2.1. Derivations of the approximation. The analysis in this paper is concerned with 

the wave equation in two space dimensions, but could be done in WR for any n as well. 
Consider the scalar wave equation in two space dimensions for a homogeneous 

medium with velocity c > 0: 

I 
2 

(2.1) l Auu=0. 
c2 a 2 

A plane harmonic wave 

u(xI, X2, t) = exp i(wt - klx, - k2x2) 

is a solution to (2.1) if the frequency w and the wave vector k = (k1, k2) satisfy the 
dispersion relation 

(2.2) c2 = C2IkI2 =c2(k2+ k2). 

From the dispersion relation we can define two frequencies wc(k) and w_(k) corre- 
sponding to waves traveling in the positive x2 direction (u+(x, t)) and the negative x2 
direction (u_(x, t)) respectively: 

cv+(k) =(k) 

c,,, ) (1 k> 
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u(x, t) = u+(X, t) + u_(x, t), 

u+(x, t) = 1| a+(k) exp i(c+(k)'t - k * x) dk 

u.(x, t) = a_(k) exp i(w_(k)t - k * x) dk. 

All solutions with finite energy can be written as a superposition of plane waves related 
to the freque~ncies w+(k) and @_(k). The amplitudes a+(k) and a_(k) are given by the 
Fourier transforms of the initial values at time to: 

A 
A(k' to /iAa 

a+(k) -- -a (@u( t) (k to)) 

a (k)= 1 (O+U^(kto)+i?(k, to)) 
(+(& at 

The purpose of a paraxial approximation of (2.1) is to provide an equation the solution 
of which is a good approximation of an essential part of u+ (or u_). The ideal equation 
should have the following dispersion relation: 

(2.3) c-=+(_- (c )2) 

This does not correspond to a partial differential equation.- If we also want to have a 
partial differential equation, we must settle for a rational dispersion relation which 
approximates (2.3). Our design criterion is to require the approximation to be good 
for propagation directions close to the positive x2 direction, i.e., for 

| c-l =j|sin 0j small, c-_0 

It is natural to use a first order Taylor expansion (E =c(kjw)): 

(1- )1/2 = 1-2?2+ 0(?4), 

in order to derive the dispersion relation 

C k21=+ 1c2k, o k2 2+(11 2 l o 

(2.4) 
2 1 

k -Xus +ck2w +-2c2kl2= 0 

The corresponding partial differential equation is the so-called parabolic approximation 
(see e.g. [27]) 

a2 u 
2 2 2u au 1 2a2U 

(2.5) dat ax2 at 2 a1 

In Fig. 2.1 the circular graph of the dispersion relation (2.2) and the graph of the 
parabolic approximation (2.4) are displayed (K = klw). In geophysics this equation 
has been called 15?-approximation [8] since it gave the required accuracy for 0? 15?. 
In that field the original technique used when deriving the equation was different. In 
[8], Claerbout introduced the change of variable t -o t + x2/ c. 
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K2 

1, 

_ c 

f 

U 

K, 

FIG. 2.1. Dispersion relations. 

The function 

v(x, t) = u (x, t + -) 

satisfies the equation 

ao2v aO2v a32v 
c2 2+c2 2- 2c =0. 

Ox1 Ox2 Ox2 at 

The term c2(a2v/1x2) is dropped since it is smaller than the other terms for harmonic 
waves originally traveling in a direction close to the positive x2 axis. The resulting 
equation 

22 2v. cOy2 
at-x2 2 -ax 

is the equivalent to (2.5) in a moving coordinate frame. 

2.2. Mathematical properties of the approximation. All possible harmonic plane 
wave solutions of the parabolic approximation are described by the dispersion relation 
(2.4). Thus, corresponding to a wave vector k there are two frequencies W+(k) and 
w@(k) with the slowness vectors K+ and K-, respectively, (K = klw), K2+ is positive, 
K- is negative. The parabolic approximation has been designed such that it can be 
used as an equation with x2 considered as an evolution direction. It might therefore 
seem paradoxical that there remain waves propagating in a direction with a negative 
x2 component (corresponding to the vector K- in Fig. 2.2). There is, however, no 
contradiction since the group velocity vector VG(K) always has a positive x2 com- 
ponent, 

(2.6) VG(K) = Vk(W) = 2-K (CKi) 
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K2 

K-~~~K 

K ~ ~ ~ ~~~~~~~~~~~~K 

K- /r 

FIG. 2.2. The two propagation modes. 

I W 1/K2 

4~~~~ f ~~~~~~~ X ~~~ Group velocity 

f 257,C H / _, > 1/~~~~~~I/K, 

FIG. 2.3. Phase velocity, group velocity. 

The fundamental solution E for (2.5) can be derived from the fundamental solution 
of the wave equation after a change of variables: 

a2E a2E C2 d2E 
at ax2 at 2 aX2 

E(x, O) = O, 
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at (x, 0) = 8(x). at 

With 

c 
xI Xi 2 X1 X2=X2-- t, t'=t x1-2x1 2 

E'(x',, t') = vr2E (x,, t), 

we get in the primal variables 

a2El C AEc2 O, 
at'2 4 

E'(x', 0) = 0, 

,t(x', 0) = 8(x'), 

and thus the fundamental solution E is 

E(x,t)- 1 H(2ctx2- -2x2) 
irC (2ctX2 -24)1/2 

where H is the Heaviside function. 
The support of E at time t is the interior of the ellipse W(t) in Fig. 2.4 whose 

equation is 

(2.7) 2X12+4 (x2j c ) = C2t2 

Note that the support of the fundamental solution is compact and included in the 
upper half plane (positive x2). The singularity along the boundary is of the same kind 
as that for the regular wave equation. 

' X2 

ctVX 

FIG. 2.4. Support of the fundamental solutions. 
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The parabolic approximation (2.5) has important energy conservation properties. 
Consider first the Cauchy problem with time as evolution direction: 

(2.8a) ~~2 + -2 22=0 X )E2X+ a2u a2u c2a u 
(2.8a) - - 0 (x, t) c=R2 xR?, at atx X2ax 

V 

(2.8b) u(x, 0) = uo(x), 
XER 2. 

(2.8c) - (x, 0) = u (x), a t 

The following energy identities are valid: 

1 au 2 2' au 2 t c2fau0 2 
(2.9) J - dx+c | | dx=- Jul 12dx+c dx, 

2 R2 a t 4 R2 X,2x 2 R2 4 R2 aX, 

if au au 2 2 au 2 

(2.10) - -+c dx+- - dx 
2JR2 at aX2 4 JR2 aX1 

2 |uO 2 |2 2 2u+ 
2 1 

+e dx +- au0 
2JR2 U1 2 ~ 4 JR2 aX1 x 

Equation (2.9) is obtained from (2.8a) after multiplying by au/at and integrating over 
R2. For the second identity we rewrite (2.8a) of the form 

a lau au\ C2 (92U 
-+c - --=O 

at at aX2J 2xl ' 

multiply by au/at + c au/ax2 and then integrate over R2. Consider now the half-space 
problem for X2 > O (R+ = {(X1, X2)/X2 > }): 

a2u a2u c2a2u 
(2.1la) -- =0 (x, t) E R2 XR+, a tat ax2 2 ax 1 

(2.1lb) u(x, 0) = uo(x), 
x E R+, 

au 
(2.11c) -(x, 0) = u (x), at 

The following energy identities are appropriate when x2 is considered as an evolution 
direction: 

(TI a2 1x f' a 2 

jT | |"(xX2 t) dxl dt+- 2 | xl(x,, T) dx 1d 
OJR a t cJ0 JR a9t 

+ f2- - (xl, ,T) dx2d; 
(2.12) CTC 2 1x2 

(2.12) =J | | (xl, t)| dxl dt+ | l ul (Xl ;)12 dX d; 
C R auo9t) 2 R 
+- - (xi, ~dxl d~, 

2 JOJR aX1 
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x(XI, x2 t) ldxl dt + l Al T x u lau 2 

+}j 1x , x() dx t+J- dxl d( 

(2.13) cJTJ |dg(XI t)| dxl dt+J A U+ ul (xi, C) dxl dC 2 0 R dXl I rR xX2 c 

+1 Jx2 -uo (xi, 4) 2dxl d;. 

The derivation is similar to the derivation for (2.9) and (2.10). 

3. Parabolic approximatilons in heterogeneous med'ia. 
3.1. Dif-erent derivations ofthe approximations. In this section, we shall describe 

three different ways of deriving the parabolic approximations that have appeared in 
the literature and which lead to three differentvequations. 

Consider the scalar wave equation of the form 

(3.1) C(X)22-AU =0. 

(A more general variable coefficient formulation will be introduced in ? 4.1.) 
The simplest way of deriving a parabolic approximation for (3.1) is the method 

of frozen coefficients. The equation is regarded as locally homogeneous and c is 
replaced by c(x) in formula (2.5), 

I aO2u I a2 u lOa2u 
(3.2) c(x)2 at2 c(x) t Ox2 2 =0 

In ? 2.1 we outlined a technique for the derivation inr the homogeneous case following 
[8]. This technique, which is based on a change of variables, can be extended to a 
variable velocity. The transformed function is given by 

v (x, t) = u (x, t + T(x)), T(X) = l c(x2 , 

The equation (3.1) expressed in v has the form 

a2v a2'v a i~ av 
2c + 2 2 2+ (l) _ 

at OX2 ax2 Ox2 \c/ at 

2 a 2V aT a2v {aT) 22V avav2T\ 
-C 2-2-O + = 2 21 0. 

aX2 ax, at Ox1 Ox, At at Ox, 

As in ? 2.1 the O2v/OX2 term is dropped and the inverse of the change of variables is 
performed. The resulting approximate equation is 

1 O 2u l a(lau lOa2u 
(3.3) -_+ cOx2\c 0x2 

c at + /2 X C1/2 at 2 X 

The third technique we shall discuss is based on the expansion of pseudo-differential 
operators. It follows the derivation of absorbing boundary conditions in [13]. These 
boundary conditions are paraxial wave equations with x2 in the direction normal to 
the boundary. 
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For smooth velocity c the hyperbolic operator (1/c2)(a2/at2)- A can be decom- 
posed into a product of two pseudo-differential operators. One of these operators 
corresponds to waves traveling in the positive x2 direction and the other in the negative 
x2 direction. The first terms in the asymptotic expansion for the one with waves traveling 
in the positive x2 direction lead to 

1 a2u 1 aI lau\ 1a I au\ =0 
(3.4) -2 2 +1c/2 (/2 A) - 

e at2 c11 ax, \c11 at 2c ax1 \ axl/ 
The details are given in [2]. 

The three approximations derived above can be written in the following general 
form: 

1 a2u 1 a/ au\ 1 a / u 
( 2ac at2 + (c) aX2 (c t 2Y(c) axl \ x, 

where q and 'f are smooth positive functions. When thte velocity c is constant this 
equation reduces to the parabolic approximation (2.5). In heterogeneous media it 
generalizes the equations defined above: 

equation (3.2): p(c)= 1, +(c)= 1, 

equation (3.3): p(c) = c112, 4fr(c)=1, 

equation (3,4): p(c) = c-1/2, +(c) = c. 

3.2. Transmitted and reflected wave at a linear interface. We shall see that the 
model (3.5) is not sufficient to ensure a good approximation to the wave equation for 
heterogeneous media with small velocity variations and the continuity of the solution 
with respect to interfaces between layers. Our analysis will be concerned with a 
particular heterogeneous medium. It consists of two homogeneous half-spaces QW and 
Q+, with a velocity c- and, c, respectively, separated by an interface F(a); see Fig. 
3.1. The unit normal and tangent vectors to the interface are denoted by v and r, 
respectively: 

r=(cos a, sin a), 

v = (-sin a, cos a), 

(3.6) F(a) ={x, x v=0}, 

fQ={x, x v<0}, 

Q+ V>0}. 

X1 

V P~~~~~(a) 

7. 

X2 

. 3(C ) 

FIG. 3.i. Description of the medium. 



PARABOLIC APPROXIMATIONS 109 

We shall investigate the reflection and transmission of a harmonic plane wave at 
F(a) and compare it to the case of the wave equation (2.1). The continuity with respect 
to a will be studied. 

We first derive the transmission conditions for (3.5) at IF(a). 

THEOREM 3.1. When a =0, there is one transmission condition, given by 

(3.7) [ (P (c)uIr(a) = 0. 

When a $ 0, there are two transmission conditions, defined by 

(3.8) [U]r(a)=0, 

[0(c) d+j u/+(c) -sin a =0, 

where [ ]r(a) denotes the jump across the interface, and thefunction 0(c) is defined by 

dO a(c,)(c(p(c)) dc' 
de ~~~~dc' 

(3.9) 0(1) 

Remark 3.1. The number of transmission conditions is discontinuous at a =0. 
Moreover the conditions themselves are discontinuous since neither of conditions (3.8) 
converges to the condition (3.7) when a goes to zero. This is of course due to the fact 
that the equation is of first order in x2 and second order in x1. 

Proof We begin with the case a = 0. Then the equation reduces to 

1 a 2u 1 a2 l a2u 
c, ati cq(cat ax2 2aXi 

The highest order of singularity in the equation is achieved by the x2 derivative. Thus 
the transmission condition is the same as for the equation 

dx ((p (c) u) = O 
ax2 

which is clearly relation (3.7). 
When r $ 0, we define new coordinates along the normal to the interface 

{x1h cosa sina X 

X2) --sin a cos a) (X2 

and then rewrite the equation in the new coordinates as 

1 a2u sina a2u 2 a2u sin_a cos a 2U 
c2 at2+ c at ax cos aX21 2 aXl aX2 

cos a a2 sin a cos a a2 (if(c)u)-sin2 a a c au \ 
cq(c) at aX2 2+i(c) aX1 aX2 24fr(c) aX2 aX2 

The highest order singularity is contained in the last term and, if u is not continuous, 
cannot be compensated by any of the others. Thus u is continuous and satisfies the 
first condition in (3.8). The highest order singularity is now the sum S of the last three 
terms: 

cos a d2 sin a cos a a2 )(sin2 a ( u 
cS(c at ax(c)2 2+f(c) aX, aX2 2i(c) aX2 aX2j 
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Using the function 0 defined in (3.9), a straightforward calculation gives 

1 a [cos aO(c) ausi(c) cos a -sin a au 
i.fi(C) a X2 at 2 ax, aX2 

A1 g(c)Q 
a2u 

+c Ol(c) at aX2. 

Again, if u is continuous, the highest singularity is in the X2 derivative, unless the 
bracket is continuous. We then get (3.8) by noticing that 

au au au 
cos ald -sin a = . o 

ax, aX2 aXl1 
We are now able to study the reflection and transmission of harmonic plane waves 

at the interface r(a). 
Let u' be an incident wave in Q-, that is, 

(3.10) u' = exp i(wot - k' * x) 

where the real vector k' and the frequency w are connected by the dispersion relation 
in Ql-: 

(3.11) 2 w+ - Ik2+1 (k1)2=o 
(C-2 c 22 

and are such that the group velocity vector is going toward the interface, i.e., 

(3.12) VG (-) n>O. 

The reflected and transmitted waves are defined by their wave vectors kR and kT and 
the reflection and transmission coefficients R(a) and T(a) such that the solution of 
equation (3.5) is equal to 

(3.13) U TuI+ R(a) exp i(wt - kR. x) in -, 

and satisfies the transmission condition(s). 
The reflected and transmitted wave vectors kR and kT are determined by the 

following conditions: 
* (c, kR) satisfies the dispersion relation (3.11) in Q-, 
* (o, kT) satisfies the dispersion relation in Q1+: 

(3.14) - 22 + k2 +k2 = 0. 
c + 2 

* The projections of kR and kT on r(a) are equal to the projection of k': 

(3.15) kR *=kT.T= k' T 

* kR is reflected in Q-, kT is transmitted in Q+: 

(3.16) VG' 
V) VG ()*V>O. 

The cases a = 0 and a $ 0 are inherently different, as stated in Lemma 3.1. 
LEMMA 3.1. (i) For a horizontal interface there is no reflected wave, and there is 

one transmitted wave. 



PARABOLIC APPROXIMATIONS i11 

(ii) For an oblique interface there are always one reflected wave and one transmitted 
wave. 

Proof: (i) Suppose a is equal to zero. Then the reflected wave vector would be 
such that 

k1R= k, 

2- 
R 

RT2 1 K)2 =0o _ 
i 

_ -k2 @ +-( k 1 
C-2 c- 2 

and k2 would be equal to k'. Thus, from (3.16), there is no reflected wave. The 
transmitted wave vector solves the system 

k 
T 

.k, 

1 2 1T i 
T)2= . 

C+2 c+ 2 

This gives a unique solution kT, and it can readily be checked that the corresponding 
wave is transmitted in Q. 

(ii) If a is not zero, then kR is the other solution of the system, 

k1 cos a+ k2sin a = kI- , 

- )2w +-k2w+2k =0, 

which can easily be solved, and kT is solution of 

kT cos a+kf sin a = kT. T 

- 2 K2+ WT 1 TK) = 0. 

Replacing k2T in the second equation yields a quadratic equation 

k,\2 co ma kw c2 k ina 
(3.17) r c:osa(kf) +3 (kJ ) c 0 

oi c sinx a @ c sin a c 

Depending on the sign of the discriminant, the solutions are real or imaginary: 
If 

k' . r 1 1+sin a 

w 2c+ sina 

kT is defined as the real root of (317) satisfying VG(kT/w() * > 0. 
If 

k'r. 1 1+sin2 a 
9 2c+ sin a 

kT iS the imaginary root of (3.17) such that Im (kT/I) . v > 0, and the corresponding 
wave is evanescent in Q+. O 

The coefficients R (a) and T(a) are now determined by applying the transmission 
conditions to (3.13). 

LEMMA 3.2. The reflection and transmission coefficients are given by: If a = 0 

(3.18) R(O)=0, T(O) = (P( +) 
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If a $ 0 

[(O(c')-O(c_))w cos a -'(A(c')kf-4ic")kf) sin a] T(a) 

(3.19) = --.i'(c-)(kR - kI) sin a, 

R(a)= T(a) - 1. 

We notice that for a horizontal interface, R and T do not depend on the incidence 
angle. 

We now compare these results to the ones obtained for the wave equation (2.1). 
In that case, there are always one reflected and one transmitted wave (when c' $ c). 
The corresponding coefficients depend on the incidence angle. For incident waves 
hitting the interface normally, the wave equation reflection and transmission coefficients 
are 

2 C-/C7c (3.20) T 2 Ra = 

If c+ is close to c-, it is natural to require T(0) to approximate To. A second order 
Taylor expansion of T(0), Ro and To yields 

R AC-+ O((ACc)2), To = 1 + + O((AC)2), 
c 2c 

(3.21) 

R(0) = 0, T(0) =1-Ac p ( ) + O((Ac)2) 

with 

Ac = c-e 

For any value of the functions p and 4i, T(0) and R(0) are first order approxima- 
tions of To and R0 -respectively. For a better approximation of To, we easily get the 
following result. 

THEOREM 3.2. For a normally incident wave on a horizontal interface, the Taylor 
expansions of To and T(O) coincide up to the second order with respect to Ac/c if and 
only if 

(3.22) (p(c) = c . 

The second main point we emphasize here is the continuity of R(a) and T(a) 
as a tends to zero. 

LEMMA 3.3. For anyfunctions p and fi, the limits of T(a) and R(a) when a tends 
to zero are given by 

lim T(a) = T*, lim R(a) =R*, 
a --)O,_0 a i)cO 

(3.23) W((c )- W(c))+ c T*= c 

R*= T*-1. 

Proof: If kV/l is fixed, we have 

lim sin a - = linm sin a - = 0 
a-+O 0 -of (0 



PARABOLIC APPROXIM-ATIONS 113 

and from the dispersion relation in Ql 

kR 2 
lim sin a 1= 
a-.6 j C 

The result is then achieved by passing to the limit in (3.19) (for details see [2]). 
THEOREM 3.3. (i) T(a) is continuous as a tends to zero for any values of c' and 

c f and only if 

d (q41(c) \d 
(3.24) =0 or -q(c)=O 

(ii) R(a) is continuous as a tends to zero for any values of c+ and c- if and only if 

(3.25) - p(c) = 0. 
dc 

Proof From (3.18) and (3.23), the condition for T(a) to be continuous is 

Vc ,c, [O(c+) - O(c) + C Oc= ] c(c =(c (c 

Differentiating with respect to c' and using the definition of 0 given in (3.9) yields 

C-, v d(p c+)Lf(c-) +(c+)] 0 

which is (3.24). 
Conversely, it is clear that (3.24) implies the continuity of T(-a). The same argument 

holds for R(a). 
Remark 3.2. By Theorem 3.2, the parabolic equation is a good approximation of 

the wave equation if (qc)= c-l2. The continuity of the transmission coefficient then 
requires +i(c) to be c'12. But in that case the reflection coefficient is not continuous. 
Let us notice that for (3.2) the coefficients are continuous, but it is not a second order 
approximation to the wave equation, in the sense stated in Theorem 3.2. On the other 
hand, equations (3.3) and (3.4) yield a good approximation to the wave equation, 
while the coefficients are not continuous. 

Our conclusion is thus that (3.5) is not general enough to satisfy all the criteria 
discussed above and a more general form is needed. 

4. A new parabolic approximation in heterogeneous media. As we mentioned in the 
Introduction, the parabolic approximation has been designed so that its dispersion 
relation approximates that of the wave equation, i.e., we approximate the velocity of 
waves. One also needs to approximate the amplitudes of waves. In particular, good 
properties of the amplitudes of reflected and transmitted waves across interfaces are 
important. Therefore we intend to develop an equatiot which generalizes equation 
(2.5) and satisfies the three criteria below. 

Consider the medium consisting of Q-(c) and Q+(c+) defined in (3.6). The 
equation is required to be such that: 

(i) When a = 0, for a normal incidence, the transmission coefficient is equal to 
the one of the wave equation, up to the second order with respect to Ac/c. 

(ii) The reflexion and transmission coefficients R(a) and T(a), respectively, are 
continuous with respect to a. 

The third criterion applies to any velocity distribution: 
(iii) The Cauchy problem is well-posed. 
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We saw in the previous section that the model (3.4) is unable to satisfy these 
conditions. 

4.1. Derivation of the equation. We are seeking an equation in the following general 
family of parabolic approximations 

Ila2u 1 a / au\ 1 a la \ 
(4.1) 2 - + - ~ j(C ) -_c__c_u_=__ 

c at2 c(c) aX2 at 2x( c)(c)ax, )ax, 

where ;, f and X are smooth positive functions of c, and are to be determined such 
that criteria (i), (ii) and (iii) are satisfied. (Note that this family contains the family 
(3.5) of the previous section.) 

The main result is the following. 
THEOREM 4.1. Equation (4.1) satisfies the conditions (i) and (ii) if and only if; 

and f are modulo multiplicative constants given by 

(4.2) ;(C) = {(c) = C- 1/2, Vc ER*+ 

Moreover if X is chosen as 

(4.3) X(c) = c, Vc c R*, 

then the condition (iii) is satisfied and the following energy is constant with respect to 
time t 

(4.4) E Jldf{- 2 Jjc ?(C_1/2u)2 dx. 
2 2at 4 ax 

Therefore the new parabolic approximation in heterogeneous media, with proper- 
ties (i), (ii) and (iii), is 

1 a2u 1a 112au\ 11/ a /a 1/ 
(4.5) -2-t+c- 1/2 c-c /2 -) - -1/2ax c- (C61/2 ) =0 

c2a2 X at 2 a,ax1 
which can be rewritten using an auxiliary unknown 

V 1/2" 

(4.6) 1la2v a2v 1 a av 
Ca 

2 c- 0 __+__ Ic 1=0. 
c d t28at ax2 2 ax\ ax, 

Proof of Theorem 4.1. We shall treat the three criteria separately. 
Part (i). For a = 0, the equation reduces to (3.5). So we have the equivalent result 

to Theorem 3.2. Equation (4.1) fulfills criterion (i) if and only if the function f is given 
by 

((c) = c'/2, Vce R*. 

Part (ii). The new function defined by 

v =u 

is solution of the equation 

1 a2v~ a (av) ? a (av\, 1 + 0 .8)-(X 
)? 

c2 at2 c4 ax2 At 2ax, x ax, 

This equation belongs to family (3.5) with 

(p=- +fr=X. 
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Then seeking a solution u on the form 

u = exp i(wt - k' x) + R(a) exp i(wt - kR _ x) in Q-, 

u= T(a) exp i(wt-kT* x)TinQ+, 

is equivalent to seeking v on the form 

v = 6(c7)[exp i(wt - k' - x) + R(a) exp i(wt - kR _ x)] in Q-, 

v = {(c+) T(a) exp i(wt - kT_ x) in Q+ 

or, equivalently, if v = 6(c v 

v=exp i(wt - k'- x) + R(a) -exp i(a)t - kR _ x) in fQ, 

v = T(a) exp i(wt - kT *x)in 

where 

R(a) =R(a), T(a)=- T(a). 

We then can apply Lemmas 3.2 and 3.3 to obtain 

T(O) = 9(c+), R(O) = 0, 

T*=(c+) -(c-) + .(c-)/c9 
R* = 

where we have set 

= lim T(a), R = lim R(a). 
a-.O a-.O 

The condition (ii) can be written 

lim T(a) = T(0), lim R(a) = 0, 
a-.O a-.O 

or, equivalently, 

T(O) = T*, R(O) = R*. 

Applying Theorem 3.3 to T and R proves that the condition (ii) is fulfilled if and only 
if the functions ; and 6 are related by 

= 0. 

The functions ; and 6 are now defined (modulo a multiplicative constant) which gives 
the first part of the theorem. 

Part (iii). In the same way as in (2.9) (i.e., by multiplying by au/at the equation 
and integrating by part), we obtain the following a priori estimate 

Xi6i2 aU 1 a 1 ddx+ X u) x 
2 dt [l{2 lat 2 Ox, 

ff a0 au Cx =au 
+11 -- dx =0o JJ x2 \ atq ca t 
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that leads to a stifficient condition for an energy to be constant. If the functions X 
{ are related by 

xf2 = cC2 VCeR*, 

for any solution u to (4.1) the following energy is constant 

E)1 || || dx + | -(u) dx. I 2at I 4 i Iax, 
The second part of Theorem 4.1 is terminated by noting that, if f is equal to C, the 
previous result gives XV c. 

4.2. A general wave equatlon. For simplicity, we have been working on the reduced 
wave equation, but the analysis applies to the general wave equation as well: 

(4.7) P -' -div (,u grad u) = 0 a t 
where (p, ,u) are positive functions of x. 

We define new coefficients c and a by: 

(4.8) = = . 

With this notation, the corresponding parabolic approximation is given by: 

v 1= a1/2u, 

(4.9a) 1 a v a v 1 a _av=0. 

Cat2 at ax2 2 ax\ ax, 

This is the equation we shall consider all throughout the remainder of this paper and 
we shall study its mathematical properties. 

4.3. Well-posedness. To begin, we consider the Cauchy problem related to (4.9a) 

(4.9a) in 2 X[0, T]* 
1 a2v a2v 1 a / v 0 
_ + ___ C- O 
c at ax2 2ax\ ax/ 

with the initial data 

u(x, 0) = uo(x) in R2 
(4.9b) 

a- (x, 0) = u1(x) in R2 at 
For simplicity, we shall also note 

(4.10) vo = &'22uo, v= a1"22u1. 

The functions a(x) and c(x) are bounded from below and above: 

0 < a* _ a(x) c a* < +o a.e. in R2, 

(4.11) 0<c* c(x)?c*<+oo a.e. in R2. 

In order to give an existence result, we introduce the Hilbert spaces 

(4.12) H= L2(R2) 
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equipped with the usual scalar product and norm; denoted by (, ) and f, respectively, 
and 

(4.13) H ; axlE} 

equipped with the scalar product 

(V, W) V= (V, w) + aa9 aw 

and the norm 

v11 vlV = (V, V) I/2. 

THEOREM 4.2. Under the regularity assumptions 

(V0, Vj)e Vx V, 

1 a / dvo\ avi 
-_ c- l+-eH, 

2 ax, ax, / aX2 

the Cauchy problem (4.9a), (4.9b) has a unique (strong) solution u such that 

V E g2(O0 T; H) n 91(O0 T; V), 

1 a (C A + d E S?(0 T; H). 2 ax, ax, at aX2 

Moreover the following energy is- constant as a function of time 

(4.14) E(t)= ff- | dxff dx. 

Outline of proof. For further details the reader is referred to [2]. The result is an 
application of the semigroup theory after rewriting the equation as a system of equations 
which are of first order in time 

--w-0, at 
(4.15) 

aw awc a (av =0. 
at ax2 2 ox, \ax! 

In the classical way, we introduce the Hilbert space Yt = V x H, equipped with the 
following norm: 

II(v w)II2 - v' dx+ lic | v2 
2 dx+2 -| dx. cJJ ax1 c 

We define on XC an unbounded operator A by 

D(A) ={(v, w)e Y; aw E H, -2? (cax ) + aw H, 
ax, 2 x, ax, ax2 J 

(4.16) A: D(A) c Yte 7-Y, 

Cal av\ aw 
(v, w) -*A(v, w)=9-w,--- c- + c 

2 ax, ax1, aX2' 
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Within -this framework, the Cauchy problem becomes 

dt (v (t), w(t)) + A(v(t), w(t)) = O, 

(4.17) (v(O), W(O)) = (vo, v1). 

By virtue of the Hille-Yoshida theorem, our result is a straightforward consequence 
of the following Lemma. 

LEMMA 4.1. For A - 1/2v, A+A is m-accretive in W. 
Proof Let us recall the definition of m-accretive: 
(i) V/(v, w)ED D(A), (A (v, w)Yve))+I(, )lXO 
(ii) A+ A +1 applies D(A) onto Y. 
The first condition is easy to check using a formula of Green. The second is much 

more difficult to prove, since A is not H1 elliptic (there is no term in a2v/ax2). It is 
overcome by an elliptic regularization in the x2 direction. A priori estimates independent 
on the regularization parameter enable to take the limit as the latter goes to zero (see 
[2] for details). 

Using the energy estimate (4.14), we can weaken the regularity assumptions in 
the classical way. 

THEOREM 4.3. Assuming only that (vO, v) E Vx H, the Cauchy problem (4.9a), 
(4.9b) has a unique weak solution such that 

v E e1(O, T; H) n 60(O, T; V). 

Moreover, if a sequence cE of velocity distributions converges a.e. to c, the corresponding 
solutions v6 converge weakly to the solution v corresponding to the velocity c. 

We now turn to the initial boundary value problem in the half-plane 

R = {x/x2 > O}, 

v=-a Iu, 

(4.9a) la2v a2v 1 a I av\ 2 

C at 
' 

t -a -I_ c-=O in R+ x[0O,T], cad t datx2 2 ax, ax, 

with the initial data 

(4.9c) Ia (x, 0) = uo(x) in R+, 

au2 - (x, 0)=u1(x) in R+4 

and the boundary value 

(4.9d) u(xl,O, t)=g(x1, t) inRx[O, T]. 

We again denote by (vo, vl) the initial values of v and avlat. As above we define the 
Hilbert space V+ as 

V+= {vEL2(R+), EL2(R+ } 

THEOREM 4.4. With the following regularity assumptions 

(vo, v1, g)E V+ x L2(R 2) x H (O, T; L2(R)), 
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the problem (4.9a), (4.9c), (4.9d) has a unique weak solution u such that 

t -* v(x, t) E W1 Q(0, T; L2(R 2)) n Lf(O, T; L2(R2+)), 

X2<- V(X, t) E L?(R+, H1(0, T; L 2(gR))). 

Note that the last estimate enables us to consider x2 as an evolution direction. 

4.4. Propagation properties. We first study the propagation direction of the sol- 
ution to equation (4.9a), (4.9b). Theorems 4.5 and 4.6 express in different ways that 
the solution propagates only in the positive x2 direction, even when the medium is 
heterogeneous. 

THEOREM 4.5. Let u be the weak solution of (4.9a), (4.9b). Assuming that 

supp Uo U supp u1 C ,+ 

then for any t > 0, one has 

suppu(, t)c14+. 

THEOREM 4.6. Let u1 (resp. U2) be the weak solution of (4.9a), (4.9b) corresponding 
to the data (u', ul) (resp. (u2, U2t)) and the coefficients (cl, &') (resp. (c2, U2)). Assume 
that 

1= 
2 

u0 = 

U1 = 12 2 
1 2 a.e. in R. 

0.1 = 2 

Then, for any t > 0, one has 

1l( , t) = U2( , t) in2 

where R2 = {X, X2 < 0}. 

Proofs. Both results proceed from an energy identity in the half space R_ 
LEMMA 4.2. Let w be a sufficiently smooth function satisfying 

2 w + ~ (C-)c =0 in R- 
c at at ax2 2axl ax, 

Then the following identity is valid: 

(4.18) - ( + - | dx + -(xi, O, t) dxl =0. 
dt\2JJ2\ at 2 ax, ) ) a t 

The identity is easily obtained after multiplying the equation by aw/at and 
integrating by parts over R. 

We apply the Lemma to w = v = a 1/2u and get the Theorem 4.5. We then apply 
it to w =V &ul&u2 and obtain the Theorem 4.6. 

The last result of this section specifies an upper bound for the propagation speed. 
We first introduce some notation: 
* For any angle 0 in [-T, IT], the direction 0 is defined by 
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0 W*(t) denotes the support at time t of the fundamental solution in a 
homogeneous medium of velocity c* (see (2.7)): 

(4.20) W*(t) = {x E2 24 +4 (x2- c-) ' (c*t)2}. 

THEOREM 4.7. The solution u of (4.9a), (4.9b) propagates in any direction 0 with 
a velocity V(0) bounded by 

C8* 
(4.21) V*(0) - (cos 0 + (1 +sin2 0)1/2). 

2 

If the initial values uo and ul are of compact support X, then at any time t one has 

SUPP UF *, t) c %?+ W*(t). 

Proof We first assume that the data are smooth, so that energy estimates hold. 
We also assume that X is the disc of center 0 and radius R. 

Let fl t be the half-plane the ingoing normal vector of which is 0 and that propagates 
with a given velocity V> 0 

(4.22) fl = {x, (x-(R + Vt) ) * . > 0}. 

F0 denotes the boundary of flt, dcr is the measure on Ft. 
We shall actually prove that for any 0, the energy in 0l is decreasing as a function 

of time, for all values of V such that V? V*(8). This will give the first part of the 
theorem. 

The energy contained in the half-space fl' is denoted by E(v, 0l, t): 
iC 1 av2 1 

2 

(4.23) E(v, fl' t) =JJ -| dx+JJ c dx. 

By a formula of Green, we can prove the following. 
LEMMA 4.3. Forsmooth data, the solution of the Cauchy problem satisfies the equality 

(4.24) -E(v 4t t) +- f -dcr = 0 
dt ' 0' 2 Jr C 

where the function 4 is given by 

(4.25) 4 = (V-C Cos 0) av2 ?Sin 0 dV dV + 
I 

C2V 2aV 
at at ax, '2 ax, 

This function 4' can be seen as a quadratic form in the variables av/at and av/axl. 
A straightforward calculation shows that it is positive if V? V+(8). Under that 
condition, the energy in flt is decreasing as a function of time. The second part of 
the theorem is easily derived by taking the intersection of all the half-spaces lt for 
V= V*(8). 

This proves the theorem when the data are smooth and supported in B(O, R). By 
translation, linearity and continuity it can be extended to any support, and eventually 
to discontinuous data. 

To finish with the propagation properties, we shall point out a result analogous 
to the reciprocity property for the wave equation; i.e., the solution at point B for a 
source located at point A is equal to the solution at point A for a source located at 
point B at the same time. 

For the parabolic approximation, the result can be stated as follows. Let A and 
B be two points in R2 such that B2> A2. u' (resp. uB) is defined as the solution of 
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an "upgoing" (resp. "downgoing") equation with a source at point A (resp. B). The 
initial values are equal to zero: 

vA = U1/2 uA VB = Cr1/2UB 

1 a2vA a2v A 1a/avA\ 
(4.26) =8(A, t), 

c at tax2 20ax, ax, 
1 a2vB a2vB 1 'a / vB 

(4.27) ax2t ~ = 8(11, t), 

av B av 
V4(X, 0) =- (X, ) = V (X, O)=-(X, O)== O. 

THEOREM 4.8. At any time t > 0, one has 

(4.28) uA(B, t) = UB (A, t). 

Proof For any r> 0, we define a new function u B' by 
uB1 (x, t) = u (x, r-) 

Then vB,= U'/2UB is solution of 
12vB,r a2 V/,r I 10 4VB- la1 avv13'2rB 1 a,' avB' 

_ 2 +_---Ic I=8(B, C at2 ataOx2 2 ax, ax, 
(4.29) T 

v (x, r) (x, ) =0. 
a t 

We then multiply (4.26) by v1B3', (4.29) by VA, subtract the latter from the former and 
integrate it on [0, r] x R . 

Integration by parts easily shows that the left-hand side is equal to zero. The 
right-hand side is 

J [VB'T8(A, t) - VA8(B, t)] dx dt = VB(A, r) - VA(1 B), 

which proves the identity (4.28). 
4.5. Reflected and transmitted wave at a linear interface. The notation is the same 

as in ? 3.2. The transmission conditions at the interface F(a) for (4.9a) are: 

(4.30a) If a =0 [1/22u]r(o) =0, 
[ la1/2U]r(a) = 0 

(4.30b) If a# 50 a 1/2U) =? 

These transmission conditions are continuous with respect to a. For any incident wave 
u', there is one reflected wave if a 0, none if a = 0. There is always one transmitted 
wave, which is either traveling or evanescent (see the analysis in ? 3.2). For simplicity 
we shall consider the simplest equation, that is, the case where vr = c-. We introduce 
some notation: 

* The velocity contrast q is 
C 

q =C 
CT 

* The incidence angle at the interface, 0, is defined as the angle of the group 
velocity vector VG(k1/co) to the normal to the interface (see Fig. 4.1). The reflection 
and transmission coefficients depend on 0, q and a. Figures 4.2 and 4.3 show them as 
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K2 

\- -- '(' 

-/;; l _ VG~vcl(K) 

/ 1'\ E K, 

fL 

FIG. 4.1. Definition of the incidence angle. 

functions of 0 E [-E/2, 1IT2 - a] for various values of the parameter q and a. When 
q is greater than 1 (i.e., when the velocity in Q- is lower than in Q+), there is a critical 
angle 0*(q, a): for 0> 0*, the transmitted wave is traveling, while for 0< 0*, it is 
evanescent, and we do not plot it. 

5. Numerical experiments. We present here some numerical experiments for the 
equation we introduced in ? 4. They illustrate the properties of reflection and trans- 
mission on the boundary between two homogeneous media. These experiments have 
been implemented by F. Collino at IFP. The time dependence is handled by Fourier 
transform. It leads to an evolution problem in x2 of Schrodinger type. The corresponding 
equation is then semidiscretized in xl by P1 finite elements. A Crank-Nicolson scheme 
is finally used in the x2 direction. For further details and properties about these 
numerical schemes, see [11]. 

For each simulation, the source is quasi-punctual, i.e., its support is small. Its 
position is indicated on the figures by the point S. Its time dependence is given by the 
second derivative of a gaussian function (Ricker source). 

The figures presented here are snapshots of the solution at a given time. This gives 
an image of the solution in the (x1, x2) plane (this representation is commonly used 
by geophysicists). The areas where the solution is positive are darker, the ones where 
it is negative are lighter. 

We present on Fig. 5.1 the solution in a homogeneous medium. One easily 
recognizes the ellipse which defines the support of the fundamental solution. 

The plots below (Figs. 5.2-5.4) illustrate the results we gave in ?? 3 and 4 for the 
two-layers medium. 
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the figure the incident wave and the transmitted one. There is no reflected wave, and 
moreover there is no discontinuity between the incident front and the transmitted one. 

On Fig. 5.3, the angle a of the interface to the xl direction is equal to wr/4. The 
ratio c+lc- is the same as in the previous example. In this case the incident wave, the 
transmitted wave and the reflected wave are clearly visible. Notice existence of a head 
wave connecting the incident wave to the transmitted one. 
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To illustrate the influence of the angle a on the behaviour of the solution, we 
represent on Fig. 5.4 the same snapshot when a is equal to ir/8. The reflected wave 
is much weaker than in the previous example, as proved in ? 4. 

We finally present a numerical experiment concerning two media divided by a 
corner made of a horizontal line and a vertical one. The horizontal interface produces 
no reflected wave, while the vertical interface gives rise to a reflected wave. These 
results are in agreement with the theoretical study in ? 4. 
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FIG. 4.3. Transmission coefficient as afunction of the incidence angle for various values of the parameters. 
a = ir/36; a = ir/4;- a = 1r/2;- a =0. 
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FIG. 5.5. The corner case. 
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