From the Quasi-static to the Dynamic Maxwell's Model in Micromagnetism

Laurence Halpern^{*} Stéphane Labbé[†]

Abstract

A commonly used model for ferromagnetic materials in the quasistatic regime is the Landau-Lifshitz system coupled with the so-called quasistatic Maxwell's equations. By an appropriate scaling, we justify this approach and we propose a new asymptotic expansion. This suggest a new numerical method.

1 The micromagnetism model

The magnetic material fills a bounded domain Ω in \mathbb{R}^3 . The evolution of the magnetization field is governed by the Landau-Lifshitz system

(1)
$$\frac{\partial \mathbf{M}}{\partial T} = -\gamma \mu_0 \left(\mathbf{M} \times \mathbf{H}_T + \frac{\alpha}{|\mathbf{M}|} \mathbf{M} \times (\mathbf{M} \times \mathbf{H}_T) \right) \text{ in } \Omega,$$

with initial condition $\mathbf{M}^{(0)}$. \mathbf{M} is the magnetization field; it vanishes outside Ω , and has a prescribed length in Ω

(2)
$$|\mathbf{M}(\mathbf{X},T)| = |\mathbf{M}(\mathbf{X},0)| = M_S \text{ a.e in } \Omega.$$

 μ_0 is the magnetic permeability, γ the Larmor precession factor, and α a dimensionless dumping factor. They are all positive factors. The total magnetic field \mathbf{H}_T is a linear function of \mathbf{M} . It is the sum of three magnetic contributions (we consider the external field to be zero) : the exchange field $\mathbf{H}_{ex} = A\Delta\mathbf{M}$, the anisotropy field $\mathbf{H}_a = -K\mathbf{u} \times (\mathbf{M} \times \mathbf{u})$, where \mathbf{u} is the direction of anisotropy, and K and A are physical positive constants. Finally the Maxwell's field \mathbf{H} solves the system of equations whose unknowns are the magnetic field \mathbf{H} , the electric field \mathbf{E} , and the electrostatic charge ρ , the magnetization field \mathbf{M} being given

(3)
$$\varepsilon(\mathbf{X})\frac{\partial \mathbf{E}}{\partial T} + \sigma(\mathbf{X})\mathbf{E} - \mathbf{rot} \ \mathbf{H} = \mathbf{0}, \\ \mu_0 \frac{\partial}{\partial T}(\mathbf{H} + \mathbf{M}) + \mathbf{rot} \ \mathbf{E} = \mathbf{0},$$

with prescribed initial conditions. Furthermore we have for all time the following constraints

(4)
$$\operatorname{div} (\varepsilon(\mathbf{X})\mathbf{E}) = \rho, \quad \operatorname{div} (\mu_0(\mathbf{H} + \mathbf{M})) = 0.$$

^{*}University of Paris 13, Département de Mathématiques, Institut Galilée,93430 Villetaneuse, France, halpern@math.univ-paris13.fr .

[†]University of Paris 11, Laboratoire de Mathématique, Bat. 425, 91405 Orsay, France, labbe@math.u-psud.fr.

$\mathbf{2}$ HALPERN AND LABBÉ

 ε_0 is the permittivity in the vacuum, ε_r the relative permittivity of the material, and the value of $\varepsilon(x)$ is $\varepsilon_0 \varepsilon_r$ in Ω , ε_0 in the exterior. $\sigma(x)$ is the conductivity of the material; it vanishes outside Ω .

The total field is thus given by

(5)
$$\mathbf{H}_T(\mathbf{M}) = -K \mathbf{u} \times (\mathbf{M} \times \mathbf{u}) + A\Delta \mathbf{M} + \mathbf{H}(\mathbf{M}).$$

The system we consider here is composed of (1, ..., 5), with the mandatory constraints (4) and initial conditions.

$\mathbf{2}$ Two scalings for the micromagnetism model

We perform the following scaling

(6)
$$\mathbf{H} = \bar{h}\hat{\mathbf{h}}, \ \mathbf{E} = \bar{e}\hat{\mathbf{e}}, \ \rho = \bar{\rho}\hat{R}, \ \mathbf{M} = \bar{m}\hat{\mathbf{m}}$$

and the change of variables

(7)
$$\mathbf{X} = \bar{x} \mathbf{x}, \ T = \bar{t} t,$$

where \bar{x} and \bar{t} are the characteristic length and time. By homogeneity, we have the following relations :

(8)
$$\bar{m} = \bar{h}, \ \mu_0 \frac{\bar{h}}{\bar{t}} = \frac{\bar{e}}{\bar{x}}, \ \frac{\varepsilon_0 \bar{e}}{\bar{x}} = \bar{\rho}$$

The dimensionless Landau and Lifchitz system is

(9)
$$\frac{\partial \hat{\mathbf{m}}}{\partial t} = -\gamma \mu_0 \bar{m} \left(\hat{\mathbf{m}} \times \hat{\mathbf{h}}_T + \frac{\alpha}{|\hat{\mathbf{m}}|} \hat{\mathbf{m}} \times (\hat{\mathbf{m}} \times \hat{\mathbf{h}}_T) \right) \text{ in } \omega,$$

with the constraint $|\hat{\mathbf{m}}(\mathbf{x},t)| = \frac{M_S}{\bar{m}}$ a.e in ω . By homogeneity in the Landau-Lifshitz system, and linearity in \mathbf{H}_T , there appears a new scale $\zeta = \bar{t}\gamma\mu_0$. Applying the new scaling to all variables,

(10)
$$\mathbf{h} = \zeta \mathbf{h}, \ R = \zeta R, \ \hat{\mathbf{e}} = \zeta \mathbf{e}, \ \hat{\mathbf{m}} = \zeta \mathbf{m},$$

and choosing $\bar{m} = \bar{t}\gamma\mu_0 M_S$, system (9) becomes

(11)
$$\frac{\partial \mathbf{m}}{\partial t} = -\mathbf{m} \times \mathbf{h}_T - \alpha \mathbf{m} \times (\mathbf{m} \times \mathbf{h}_T) \text{ in } \omega.$$

with the constraint

(12)
$$|\hat{\mathbf{m}}(\mathbf{x},t)| = |\hat{\mathbf{m}}(\mathbf{x},0)| = 1$$
 a.e in ω .

The total field \mathbf{h}_T is given by the three contributions $\mathbf{h}_a = -K \mathbf{u} \times (\mathbf{m} \times \mathbf{u}), \ \mathbf{h}_{ex} = \bar{A} \Delta \mathbf{m} =$ $\frac{A}{\bar{r}^2}\Delta \mathbf{m}$ and \mathbf{h} :

(13)
$$\mathbf{h}_T(\mathbf{m}) = -K \, \mathbf{u} \times (\mathbf{m} \times \mathbf{u}) + \bar{A} \Delta \mathbf{m} + \mathbf{h}(\mathbf{m})$$

We set $\eta = \frac{\bar{x}}{c\bar{t}}$ where c is the speed of light. In our context, the length of Ω is supposed to be small with respect to the wavelengths. Thus the parameter η is small. With these notations, the Maxwell's system of equations becomes

(14)
$$\eta^{2} \tilde{\varepsilon} \frac{\partial \mathbf{e}}{\partial t} + \eta \tilde{\sigma} \mathbf{e} - \mathbf{rot} \ \mathbf{h} = \mathbf{0},$$
$$\frac{\partial}{\partial t} (\mathbf{h} + \mathbf{m}) + \mathbf{rot} \ \mathbf{e} = \mathbf{0},$$
$$\mathbf{div} \ (\mathbf{h} + \mathbf{m}) = 0, \quad \mathbf{div} \ (\tilde{\varepsilon} \mathbf{e}) = R$$

with *ad hoc* initial values. The problem is now ready for asymptotic expansion. Note that it is a kind of singular perturbation for the electric and magnetic fields, in the time variable.

3 Asymptotic expansion for the Maxwell's system

We place ourselves in the linear case, where the magnetization field \mathbf{m} is given, and we consider the system (14). For other asymptotic expansions and scaling concerning Maxwell's equations see [1] and [3]. The well-posedness can be shown using the theory of semi-groups.

We expand now R and \mathbf{m} as functions of η ,

(15)
$$R = \sum_{i=0}^{\infty} \eta^i R_i, \quad \mathbf{m} = \sum_{i=0}^{\infty} \eta^i \mathbf{m}_i,$$

and we search for ${\bf e}$ and ${\bf h}$ such that

(16)
$$\mathbf{e} = \sum_{i=0}^{\infty} \eta^i \, \mathbf{e}_i, \quad \mathbf{h} = \sum_{i=0}^{\infty} \eta^i \, \mathbf{h}_i.$$

Inserting these expansions into the system (14), we obtain first the so-called quasi-static Maxwell's system

(17)
$$\begin{cases} \mathbf{div} (\mathbf{h}_0 + \mathbf{m}_0) = 0, \ \mathbf{rot} \ \mathbf{h}_0 = \mathbf{0}, \\ \mathbf{rot} \ \mathbf{e}_0 = -\frac{\partial}{\partial t} (\mathbf{m}_0 + \mathbf{h}_0), \ \mathbf{div} \ (\tilde{\varepsilon} \mathbf{e}_0) = R_0 \end{cases}$$

and a sequence of systems for $k \geq 1$

(18)
$$\begin{cases} \operatorname{\mathbf{div}} (\mathbf{h}_k + \mathbf{m}_k) = 0, \ \operatorname{\mathbf{rot}} \, \mathbf{h}_k = \tilde{\varepsilon} \frac{\partial \mathbf{e}_{k-2}}{\partial t} + \tilde{\sigma} \mathbf{e}_{k-1}, \\ \operatorname{\mathbf{rot}} \, \mathbf{e}_k = -\frac{\partial}{\partial t} (\mathbf{h}_k + \mathbf{m}_k), \ \operatorname{\mathbf{div}} \, (\tilde{\varepsilon} \mathbf{e}_k) = R_k. \end{cases}$$

(with the convention $\mathbf{e}_{-2} = \mathbf{e}_{-1} = \mathbf{0}$). Using the Helmholtz decomposition in weighted Sobolev spaces, we proved

THEOREM 3.1. Suppose \mathbf{m}_k belongs to $\mathcal{C}^{p-k+1}(\mathbb{R}^+; \mathbb{L}^2(\omega))$ and R_k belongs to $\mathcal{C}^{p-k}(\mathbb{R}^+, \mathbb{L}^2(\omega))$ for $0 \leq k \leq p$. Then problems (17) and (18) have a unique solution $(\mathbf{h}_k, \mathbf{e}_k)$ in $\mathcal{C}^{p-k+1}(\mathbb{R}^+, \mathbb{L}^2(\mathbb{R}^3)) \times \mathcal{C}^{p-k}(\mathbb{R}^+, \mathbb{L}^2(\mathbb{R}^3))$ for $0 \leq k \leq p$.

We verify now that the asymptotic expansions really approximate the fields. Let $\check{\mathbf{h}}_p$ and $\check{\mathbf{e}}_p$ be the partial sums, $\check{\mathbf{h}}_p$ and $\check{\mathbf{e}}_p$ denote the errors, *i.e.*

(19)
$$\check{\mathbf{e}}_p = \sum_{i=0}^p \eta^i \, \mathbf{e}_i, \, \check{\mathbf{e}}_p = \mathbf{e} - \check{\mathbf{e}}_p; \quad \check{\mathbf{h}}_p = \sum_{i=0}^p \eta^i \, \mathbf{h}_i, \, \check{\mathbf{h}}_p = \mathbf{h} - \check{\mathbf{h}}_p.$$

The errors satisfy, for any $p \ge 0$, a system of the type

4 HALPERN AND LABBÉ

(20)
$$\begin{cases} \eta^{2} \tilde{\varepsilon} \frac{\partial \tilde{\mathbf{e}}_{p}}{\partial t} + \eta \tilde{\sigma} \tilde{\mathbf{e}}_{p} - \mathbf{rot} \ \tilde{\mathbf{h}}_{p} = 0(\eta^{p+1}), \\ \frac{\partial \tilde{\mathbf{h}}_{p}}{\partial t} + \mathbf{rot} \ \tilde{\mathbf{e}}_{p} = 0(\eta^{p+1}), \\ \tilde{\mathbf{h}}_{p}(\mathbf{x}, 0) = \tilde{\mathbf{e}}_{p}(\mathbf{x}, 0) = \mathbf{0}. \end{cases}$$

We obtain hyperbolic estimates by multiplying the first equation by $\tilde{\mathbf{e}}$, the second by $\tilde{\mathbf{h}}$, and using Green's formula. The Gronwall lemma leads to the conclusion

THEOREM 3.2. For any $p \ge 1$, the following error estimates hold : for any positive time τ , there exists a constant C such that

(21)
$$\begin{aligned} ||\mathbf{h}_p||_{\mathbb{L}^{\infty}(0,\tau;\mathbb{L}^2(\mathbb{R}^3))} &\leq C\eta^p, \\ ||\tilde{\mathbf{e}}_p||_{\mathbb{L}^{\infty}(0,\tau;\mathbb{L}^2(\mathbb{R}^3))} &\leq C\eta^{p-1}, \ ||\tilde{\mathbf{e}}_p||_{\mathbb{L}^2(0,\tau;\mathbb{L}^2(\omega))} &\leq C\eta^{p-\frac{1}{2}} \end{aligned}$$

For p = 0, the error estimates are weaker : for any positive time τ , there exists a constant C such that

(22)
$$\begin{aligned} ||\tilde{\mathbf{h}}_{0}||_{\mathbb{L}^{\infty}(0,\tau;\mathbb{L}^{2}(\mathbb{R}^{3}))} \leq C\sqrt{\eta}, \ |\tilde{\mathbf{h}}_{0}|_{\mathbb{L}^{\infty}(0,\tau;\mathbb{H}^{1}(\mathbb{R}^{3}))} \leq C\eta, \\ ||\mathbf{rot} \ (\tilde{\varepsilon}\tilde{\mathbf{e}}_{0})||_{\mathbb{L}^{2}(0,\tau;\mathbb{L}^{2}(\omega))} \leq C\eta. \end{aligned}$$

4 Asymptotic developpement for the Micromagnetism system coupled with the Maxwell's model

We come back now to the Landau-Lifshitz system (11). Theorems of existence and comments on uniqueness can be found in [5].

The magnetization field **m** is now an unknown, with initial value independent of η . Inserting expansions (15) and (16) into (11) and (14), we obtain the first term

(23)
$$\frac{\partial \mathbf{m}_0}{\partial t} = -\mathbf{m}_0 \times \mathbf{h}_{T,0} - \alpha \mathbf{m}_0 \times (\mathbf{m}_0 \times \mathbf{h}_{T,0}) \text{ in } \omega, \\ |\mathbf{m}_0| = 1, \mathbf{m}_0(\mathbf{x}, 0) = \mathbf{m}^{(0)}(\mathbf{x}), \text{ a.e. in } \omega,$$

and

(24)
$$\mathbf{h}_{T,0} = -K \, \mathbf{u} \times (\mathbf{m}_0 \times \mathbf{u}) + \bar{A} \Delta \mathbf{m}_0 + \mathbf{h}_0$$

where \mathbf{h}_0 is given by the quasi-static Maxwell's system in (17).

The problem (23) is proved to be well-posed in [4]. We first give an energy estimate on the solution to (11) and (14).

THEOREM 4.1. Let $(\mathbf{m}, \mathbf{e}, \mathbf{h})$ solve the equations (11) and (14). The following energy estimate holds

(25)
$$\frac{1}{2}\frac{d}{dt}\left[\eta^{2}\int_{\mathbb{R}^{3}}\tilde{\varepsilon}|\mathbf{e}|^{2}\,dx\right] + \int_{\mathbb{R}^{3}}|\mathbf{h}|^{2}\,dx + \int_{\mathbb{R}^{3}}\tilde{A}|\mathbf{grad}\ \mathbf{m}|^{2}\,dx + \int_{\mathbb{R}^{3}}K|\mathbf{u}\cdot\mathbf{m}|^{2}\,dx] + \eta\int_{\omega}\tilde{\sigma}|\mathbf{e}|^{2}\,dx + \int_{\omega}|\mathbf{m}\times\mathbf{h}_{T}|^{2}\,dx = 0.$$

With these estimates, we can prove convergence

THEOREM 4.2. The solution (\mathbf{m}, \mathbf{h}) to (11) (14) converges weak-* to the solution $(\mathbf{m}_0, \mathbf{h}_0)$ of the quasistatic model (23) in $\mathbb{L}^{\infty}(0, \tau; \mathbb{H}^1(\mathbb{R}^3))$ as η tends to 0(modulo the extraction of a subsequence).

The proof mimics the proof by Carbou in [2] for the convergence of the complete system towards the quasistatic system as the permittivity ε_0 tends to 0. But we still do not approximate the electric field. Therefore we introduce the other terms in the expansion.

They are given for any $n \ge 0$ by

പ

(26)

$$\frac{\partial \mathbf{m}_n}{\partial t} = -\sum_{k+l=n} \mathbf{m}_k \times \mathbf{h}_{T,l} - \alpha \sum_{k+l=n} \sum_{i+j=k} \mathbf{m}_l \times (\mathbf{m}_i \times \mathbf{h}_{T,j}) \text{ in } \omega,$$
$$\sum_{k+l=n} \mathbf{m}_k \cdot \mathbf{m}_l = 0, \mathbf{m}_n(\mathbf{x}, 0) = 0, \text{ a.e. in } \omega$$

and

(27)
$$\mathbf{h}_{T,j} = -K \mathbf{u} \times (\mathbf{m}_j \times \mathbf{u}) + \bar{A} \Delta \mathbf{m}_j + \mathbf{h}_j$$

where \mathbf{h}_j is given by (18).

It is a linear equation which can be shown to be well-posed. There is no proof of convergence today.

5 A dynamical method of simulation using finite volume

The idea is to compute the partial sums $(\check{\mathbf{m}}_n, \check{\mathbf{h}}_n, \check{\mathbf{e}}_n)$. Using the fact that for all i in \mathbb{N} , $(\mathbf{e}_i, \mathbf{h}_i, \mathbf{m}_i)$ depend only on $(\mathbf{e}_j, \mathbf{h}_j, \mathbf{m}_j)$ for $j \leq i$, we compute the $(\mathbf{e}_j, \mathbf{h}_j, \mathbf{m}_j)$ successively. At each level, we use the same finite volume method in space, but a different scheme in time to compute $(\mathbf{e}_i^n, \mathbf{h}_i^n, \mathbf{m}_i^n)$, approximation of $(\mathbf{e}_j, \mathbf{h}_j, \mathbf{m}_j)$ at time t_n .

For each time step t_n , $(\mathbf{e}_0^n, \mathbf{h}_0^n, \mathbf{m}_0^n)$ is first computed, by an explicit second order Taylor scheme in time for the system (26). It is proved in [4] that there exists a unique time step Δt_n such that the scheme is stable and has optimal convergence. \mathbf{e}_0^n and \mathbf{h}_0^n are obtained by solving a Laplace equation in ω .

Then $(\mathbf{e}_k^n, \mathbf{h}_k^n, \mathbf{m}_k^n)$ for k > 0 are computed successively by the following algorithm :

- 1. Prediction of \mathbf{h}_{k}^{n} using \mathbf{e}_{k-1}^{n} , \mathbf{e}_{k-2}^{n} and \mathbf{m}_{k}^{n-1} with a first order implicit scheme in (18).
- 2. Computation of \mathbf{m}_k^n using \mathbf{h}_k^n with a first order implicit scheme in (26).
- 3. Correction of \mathbf{h}_k^n using \mathbf{m}_k^n in (18).
- 4. Computation of \mathbf{e}_k^n by solving (18).

All the computations in space amount to solving a Poisson equation, for which we have fast solvers (see [4]). The presented algorithm provides an accurate method to compute the solutions to Landau-Lifshitz coupled with Maxwell's equations in ferromagnets.

References

- [1] H. Ammari, A. Buffa, J-C. Nédélec, A justification of eddy currents models for the Maxwell equations, to appear in SIAM Journal of Appl. Math.
- [2] G. Carbou, P. Fabrie, *Time average in micromagnetism*, J. Differ. Equations 147, 2 (1998), pp. 383-409
- [3] P. Degond, P-A. Raviart, An analysis of the Darwin model of approximation to Maxwell's equations, Forum Math. 4, 1 (1992), pp. 13-44.
- [4] S. Labbé, Simulation numérique du comportement hyperfréquence des matériaux magnétiques, thèse de l'Université Paris-Nord (1998).
- [5] A. Visintin, On Landau-Lifshitz equation for ferromagnetism, Japan Journal of Appl. Math., 2 (1985), pp. 62-84.