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Abstract

A commonly used model for ferromagnetic materials in the quasistatic regime is the
Landau-Lifshitz system coupled with the so-called quasistatic Maxwell’s equations. By
an appropriate scaling, we justify this approach and we propose a new asymptotic
expansion. This suggest a new numerical method.

1 The micromagnetism model

The magnetic material fills a bounded domain € in R3. The evolution of the magnetization
field is governed by the Landau-Lifshitz system

oM

(1) a7 — ko (M x Hy + ——M x (M x HT)) in ©,

M
with initial condition M(®). M is the magnetization field ; it vanishes outside €2, and
has a prescribed length in 2

2) IM(X,T)| = [M(X,0)| = Ms a.e in Q.

1o is the magnetic permeability, v the Larmor precession factor, and « a dimensionless
dumping factor. They are all positive factors. The total magnetic field Hy is a linear
function of M. It is the sum of three magnetic contributions (we consider the external field
to be zero) : the exchange field H,, = AAM, the anisotropy field H, = —K u x (M X u),
where u is the direction of anisotropy, and K and A are physical positive constants. Finally
the Maxwell’s field H solves the system of equations whose unknowns are the magnetic field
H, the electric field E, and the electrostatic charge p, the magnetization field M being given

OE
e(X)=— + o(X)E —rot H=0,
(3) oT
Ho 7 (H + M) +rot E = 0,

with prescribed initial conditions. Furthermore we have for all time the following
constraints

(4) div (¢(X)E) = p, div (uo(H+M)) =0.
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€o is the permittivity in the vacuum, ¢, the relative permittivity of the material, and
the value of e(z) is gge, in Q, ¢ in the exterior. o(z) is the conductivity of the material;
it vanishes outside €2.

The total field is thus given by
(5) Hr(M)=-Kux (M xu)+ AAM + HM).

The system we consider here is composed of (1,...,5), with the mandatory constraints
(4) and initial conditions.

2 Two scalings for the micromagnetism model
We perform the following scaling

(6) H = hh, E =¢é, p = pR, M = mi,
and the change of variables

(7) X=zx, T=1t,

where T and ¢ are the characteristic length and time. By homogeneity, we have the
following relations :

_ h & ge
8 m=nh -—=—, — =p.
( ) m » MO b 7 T P
The dimensionless Landau and Lifchitz system is
(9) om T AXfl—i-aAX(AXfl) i
— = —yuem { m —m X (m in w
ot YHO T |ﬁ1| T )

with the constraint |m(x,t)| = % a.e in w.
By homogeneity in the Landau-Lifshitz system, and linearity in Hp, there appears a
new scale ( = tyug. Applying the new scaling to all variables,

(10) h=(h R=(R, &=(e, m=(m,
and choosing m = tyugMg, system (9) becomes

(11) aa—r;l:—mth—amx(mth)inw,

with the constraint

(12) |m(x,t)| = |m(x,0)] =1 a.e in w.

The total field hy is given by the three contributions h, = —K ux (m x u), h,;, = AAm =
:Z%Am and h :

(13) hy(m) = —Ku x (m x u) + AAm + h(m).

We set n = Et_ where c is the speed of light . In our context, the length of €2 is supposed

C
to be small with respect to the wavelengths. Thus the parameter n is small. With these
notations, the Maxwell’s system of equations becomes
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0

77258—(2 +née —rot h =0,

0
(19) a(h+m)+rot e=0,

div (h+m) =0, div (fe) = R,

with ad hoc initial values. The problem is now ready for asymptotic expansion. Note

that it is a kind of singular perturbation for the electric and magnetic fields, in the time
variable.

3 Asymptotic expansion for the Maxwell’s system

We place ourselves in the linear case, where the magnetization field m is given, and we

consider the system (14). For other asymptotic expansions and scaling concerning Maxwell’s

equations see [1] and [3]. The well-posedness can be shown using the theory of semi-groups.
We expand now R and m as functions of 7,

o0 [e.e]
(15) Rzznl Ria m:ZT/Z mg,
1=0 1=0

and we search for e and h such that

(16) e:ini €;, h:ini hi.
1=0 1=0

Inserting these expansions into the system (14), we obtain first the so-called quasi-static
Maxwell’s system

div (ho + mo) =0, rot hg =0,
(17)

0 . .
&(mg + hy), div (¢ey) = Ro,

rot eg = —
and a sequence of systems for £ > 1

€r—2

div (hy + mg) =0, rot hy = 58 + oeg_1,

(18) 9
rot e, = —a(hk + mk), div (éek) = Ry.
(with the convention e_y = e_; = 0). Using the Helmholtz decomposition in weighted
Sobolev spaces, we proved

THEOREM 3.1. Suppose my belongs to CP~FH1(RT:L?(w)) and Ry belongs to
CP=F(R*, 12 (w)) for 0 < k < p. Then problems (17)and (18) have a unique solution
(hy, er) in CP7FTIH(RT,L2(R?)) x CP~F(RT,L?(R3)) for 0 < k < p.

We verify now that the asymptotic expansions really approximate the fields. Let flp
and &, be the partial sums, flp and €, denote the errors, i.e.

p p
(19) &= n'e,&=e—&; h,=> n' h,h,=h—h,
1=0 ]

The errors satisfy, for any p > 0, a system of the type
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oe B ~
7]%% +n5é, — rot h, = 0(pP™!),

h
(20) % + rot ép — 0(77p+1),

h,(x,0) = €,(x,0) = 0.

We obtain hyperbolic estimates by multiplying the first equation by €, the second by
h, and using Green’s formula. The Gronwall lemma leads to the conclusion

THEOREM 3.2. For any p > 1, the following error estimates hold : for any positive
time T, there exists a constant C such that

(21) ||1~1p||]L°°(0,T;L?(R3)) < CnP, 1
|[€pl]Lo0 (0,ms12 m2)) < CP™, l€pl1L2 0,752 (w)) < CP 2.

For p = 0, the error estimates are weaker : for any positive time 7, there exists a constant
C such that

(22) ||1~10||L°°(0,7;L2(R3)) < C\/ﬁa |1~10|L°°(0,7;H1 (R3)) < Ch,
|[rot (€€o)|[L2 (0,712 (w)) < Cn-

4 Asymptotic developpement for the Micromagnetism system coupled
with the Maxwell’s model

We come back now to the Landau-Lifshitz system (11). Theorems of existence and
comments on uniqueness can be found in [5].

The magnetization field m is now an unknown, with initial value independent of 7.
Inserting expansions (15) and (16) into (11) and (14), we obtain the first term

om .
(23) =0 = —Img X hT70 — amyg X (mo X hT,O) m w,
Img| = 1, my(x,0) = m?(x),a.e. in w,
and
(24) hrp=—-Kux (mpxu)+ AAmg + hy

where hy is given by the quasi-static Maxwell’s system in (17).

The problem (23) is proved to be well-posed in [4]. We first give an energy estimate on
the solution to (11) and (14).

THEOREM 4.1. Let (m, e, h) solve the equations (11) and (14). The following energy
estimate holds

1d -
——[772/ Ele|* du +/ |h|? d:v+/ Algrad m|? d:v+/ K|u-m|* dz]
2dt R3 R3 R3 R3

+n/ 6|e|2dm+/ lm x hy|? dz = 0.
w w

(25)

With these estimates, we can prove convergence

THEOREM 4.2. The solution (m,h) to (11) (1}) converges weak-* to the solution
(mg, hg) of the quasistatic model (23) in L>®(0,7;H'(R?)) as n tends to 0(modulo the
extraction of a subsequence).
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The proof mimics the proof by Carbou in [2] for the convergence of the complete system
towards the quasistatic system as the permittivity ¢ tends to 0. But we still do not
approximate the electric field. Therefore we introduce the other terms in the expansion.

They are given for any n > 0 by

818rtln:_ Z kahT,l_a Z Z mlx(mithyj) inw,

(26) k+l=n k+l=nit+j=k
Z my -m; = 0,m,(x,0) =0,a.e. inw
k+l=n
and
(27) hTJ' =—Kux (mj X u) + AAmJ + hj

where h; is given by (18).
It is a linear equation which can be shown to be well-posed. There is no proof of
convergence today.

5 A dynamical method of simulation using finite volume

The idea is to compute the partial sums (rh,,h,,&,). Using the fact that for all 7 in N,
(€4, h;,m;) depend only on (ej,h;,m;) for j <4, we compute the (e;,hj, m;) successively.
At each level, we use the same finite volume method in space, but a different scheme in
time to compute (e, h}, m”), approximation of (e;, h;, m;) at time ¢,.

For each time step t,, (e, h{, my) is first computed, by an explicit second order Taylor
scheme in time for the system (26). It is proved in [4] that there exists a unique time step
At,, such that the scheme is stable and has optimal convergence. e and hg are obtained
by solving a Laplace equation in w.

Then (e}, hy,m}) for k > 0 are computed successively by the following algorithm :

1. Prediction of hj using e}_,, e}'_, and mz_l with a first order implicit scheme in (18).
2. Computation of m} using h} with a first order implicit scheme in (26).

3. Correction of hy using mj} in (18) .

4. Computation of e} by solving (18) .

All the computations in space amount to solving a Poisson equation, for which we have
fast solvers (see [4]). The presented algorithm provides an accurate method to compute the
solutions to Landau-Lifshitz coupled with Maxwell’s equations in ferromagnets.

References

[1] H. Ammari,A. Buffa,J-C. Nédélec, A justification of eddy currents models for the Mazwell
equations, to appear in SIAM Journal of Appl. Math.

[2] G. Carbou, P. Fabrie, Time average in micromagnetism, J. Differ. Equations 147, 2 (1998),
pp. 383-409

[3] P. Degond, P-A. Raviart, An analysis of the Darwin model of approzimation to Mazwell’s
equations, Forum Math. 4, 1 (1992), pp. 13-44.

[4] S. Labbé,Simulation numérique du comportement hyperfréquence des matériauz magnétiques,
these de I"Université Paris-Nord (1998).

[5] A. Visintin, On Landau-Lifshitz equation for ferromagnetism, Japan Journal of Appl. Math.,
2 (1985), pp. 62-84.



